Skip to content

Instantly share code, notes, and snippets.

View philschmid's full-sized avatar

Philipp Schmid philschmid

View GitHub Profile
@philschmid
philschmid / _readme.md
Last active February 26, 2020 20:16
Gist for using Unittest with Pytest

How to use Pytest

Structure

test/
-- test_add.py
src/
-- add.py

Execution

@philschmid
philschmid / duplicate_dynamo_table_to_other_account.py
Created February 19, 2020 10:06
Duplicate Dynamo Table to other account/organization
import boto3
import os
### source aws config parameter
source_aws_region='eu-west-1'
source_aws_access_key_id='####'
source_aws_secret_acess_key='####'
source_dynamodb_table='table_name'
### target aws config parameter
target_aws_region='eu-west-1'
target_aws_access_key_id='####'
Resources:
LambdaExecutionAnomalyDetector:
Type: AWS::CloudWatch::AnomalyDetector
Properties:
MetricName: Duration
Namespace: AWS/Lambda
Stat: Sum
LambdaExecutionAlarm:
Type: AWS::CloudWatch::Alarm
var copy = require('copy-dynamodb-table').copy
var globalAWSConfig = { // AWS Configuration object http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Config.html#constructor-property
accessKeyId: 'AKID',
secretAccessKey: 'SECRET',
region: 'eu-west-1'
}
var sourceAWSConfig = {
accessKeyId: 'AKID',
import numpy as np
from sklearn.model_selection import KFold
# data sample
data = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6])
# prepare cross validation
kfold = KFold(n_splits=3, shuffle=True, random_state=1)
# enumerate splits
for train, test in kfold.split(data):
print('train: %s, test: %s' % (data[train], data[test]))
from simpletransformers.classification import ClassificationModel
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score
import pandas as pd
# Dataset
dataset = [["Example sentence belonging to class 1", 1],
["Example sentence belonging to class 0", 0],
["Example eval sentence belonging to class 1", 1],
from autogluon import TabularPrediction as task
predictor = task.fit(train_data=task.Dataset(file_path="TRAIN_DATA.csv"), label="PREDICT_COLUMN")
predictions = predictor.predict(task.Dataset(file_path="TEST_DATA.csv"))
# Here we assume CUDA 10.0 is installed. You should change the number
# according to your own CUDA version (e.g. mxnet-cu101 for CUDA 10.1).
!pip install --upgrade mxnet-cu100
!pip install autogluon
!pip install -U ipykernel
import autogluon as ag
from autogluon import ObjectDetection as task
print(ag.__version__)
# >>>> '0.0.6'