Created
December 8, 2015 05:08
-
-
Save phobson/2020c0f383c14d78ab14 to your computer and use it in GitHub Desktop.
PDX daily rainfall
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "fragment" | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/Users/paul/miniconda3/envs/metar/lib/python3.4/site-packages/matplotlib/__init__.py:872: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.\n", | |
" warnings.warn(self.msg_depr % (key, alt_key))\n" | |
] | |
} | |
], | |
"source": [ | |
"%matplotlib inline\n", | |
"\n", | |
"import matplotlib.pyplot as plt\n", | |
"import seaborn\n", | |
"seaborn.set_style('ticks')\n", | |
"seaborn.set_color_codes()\n", | |
"\n", | |
"import metar" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.text.Text at 0x10921ed30>" | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAFbCAYAAABvQAy4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1YVWW+//HP5kEwtjppkSdJdFCbU12Z4nW0mpQRIU0y\nTbdBCDbag41sTZ1KtMnUMXyY1CNomV6To5kYZtmQXjrCpL/xHA05Jzthmjlm4TSp1BE24vC0fn94\n3BPCdivLtdk736+/XOve617fve6AT/d6shmGYQgAAKCZglq6AAAAENgIEwAAwBTCBAAAMIUwAQAA\nTCFM+Fh2dnZLl4CLMCb+hzHxP4yJ//GnMbFxN4dv3XrrrTp8+HBLl4EfYEz8D2PifxgT/+NPY2Lp\nzIRhGJo1a5aSk5OVnp6ur7/+ukF7YWGhRo0apeTkZOXl5VlZCgAAsIilYWLnzp2qrq5Wbm6upk2b\npqysLHdbbW2t5s+frzVr1mjdunXauHGjvvvuOyvLAQAAFrA0TBQXF+u+++6TJPXs2VOffvqpu+3o\n0aOKjo6W3W5XaGioYmNjVVRUZGU5AADAAiFWdu5yudSmTZt/7iwkRPX19QoKCmrUFhERoYqKiive\nx7lz5/Tpp5/qxhtvVHBw8FWp22qlpaUtXQIuwpj4H8bE/zAm/qOurk7S+b+B4eHhLVyNxWHCbrer\nsrLSvXwhSFxoc7lc7rbKykq1bdv2kv1lZ2crJyfHmmJ9KD4+vqVLwEUYE//DmPgfxsT/9OzZs9G6\njIwMOZ1On9ZhaZjo3bu3/vznP2vw4MH6+OOP1aNHD3dbTEyMjh8/rvLycoWHh6uoqEjjx4+/ZH9O\np7PRATp+/LgSExO1fv16dezY8Yrqez7n/0mSFmTc55PtzGjuPvMKjkiSHPHdfbbPljiu18o+rwUc\nH//T3N8jgfTzFUi1StLf//53paamaseOHYqOjr7i7a82S8NEQkKC9uzZo+TkZElSVlaW8vPzVVVV\nJYfDoczMTI0bN06GYcjhcCgyMvKK93Hh1EbHjh0VFRV1RduG2ztIks+2M6O5+5wytvk1+vr4mDmu\n18o+rwUcH//T3N8jgfTzFUi1/pC/nN63NEzYbDbNnj27wbquXbu6/x0XF6e4uDgrSwAAABazNEzg\n2nRvz04tXQIAwIcIE81wrfyxbO73HPfg7Ve5Eu+ulTEBAH9EmGiGlvhj2RIC6XsGUq0A8GPDi74A\nAIAphAkAAGAKYQIAAJhCmAAAAKYQJgAAgCmECQAAYAq3hgIArnk8q8YcwgQA4JrHs2rM4TQHAAAw\nhTABAABM4TRHgOB8HgDAXxEmAgTn8wAA/orTHAAAwBTCBAAAMIUwAQAATCFMAAAAUwgTAADAFMIE\nAAAwhTABAABMIUwAAABTCBMAAMAUnoAJv8EjwwEgMBEm4Dd4ZDgABCZOcwAAAFMIEwAAwBTCBAAA\nMIUwAQAATOECTACA3+HursBiaZgwDEMvvfSSDh8+rFatWmnevHm65ZZb3O1r1qzRpk2b1L59e0nS\nnDlz1KVLFytLAgAEAO7uCiyWhomdO3equrpaubm5OnDggLKysrRixQp3e0lJiRYuXKjbbrvNyjIA\nAICFLA0TxcXFuu+++yRJPXv21KefftqgvaSkRCtXrtSpU6cUFxenJ5980spyGmEaDQAA8ywNEy6X\nS23atPnnzkJCVF9fr6Cg89d9Dh06VKmpqbLb7Zo4caJ27dqlAQMGeOwvOztbOTk5V60+ptEAAIEs\nPj6+0bqMjAw5nU6f1mFpmLDb7aqsrHQv/zBISNLYsWNlt9slSQMGDNDBgwcvGSacTmejA1RaWtrk\nwQQAXHtaYsa5JWe5CwoKFBUV1WL7v8DSW0N79+6tXbt2SZI+/vhj9ejRw93mcrmUlJSkqqoqGYah\nvXv36vbbmSkAADTfuAdv9/msc0vs099YOjORkJCgPXv2KDk5WZKUlZWl/Px8VVVVyeFwaOrUqUpL\nS1NYWJjuvvtu9e/f38pyAACABSwNEzabTbNnz26wrmvXru5/Dxs2TMOGDbOyBAAAYDGegAkAAEwh\nTAAAAFMIEwAAwBTCBAAAMIUwAQAATCFMAAAAUwgTAADAFMIEAAAwhTABAABMIUwAAABTCBMAAMAU\nwgQAADCFMAEAAEwhTAAAAFMIEwAAwBTCBAAAMIUwAQAATCFMAAAAUwgTAADAFMIEAAAwhTABAABM\nIUwAAABTQlq6AADAj9O9PTu1dAnwEcIErmn8sgOsM+7B21u6BPgIYQLXtJb4ZUeAAfBjQ5gAfIz/\nWwPwY8MFmAAAwBTCBAAAMIUwAQAATCFMAAAAUywPEwcOHFBaWlqj9YWFhRo1apSSk5OVl5dndRkA\nAMAilt7NsXr1am3ZskUREREN1tfW1mr+/PnavHmzwsLClJKSovj4eLVv397KcgAAgAUsnZmIjo7W\n8uXLG60/evSooqOjZbfbFRoaqtjYWBUVFVlZCgAAsIilYSIhIUHBwcGN1rtcLrVp08a9HBERoYqK\nCitLAQAAFmmRh1bZ7Xa5XC73cmVlpdq2bet1u+zsbOXk5FhZGoAWxhNCgcsXHx/faF1GRoacTqdP\n6/BJmDAMo8FyTEyMjh8/rvLycoWHh6uoqEjjx4/32o/T6Wx0gEpLS5s8mAACE08IBS5fQUGBoqKi\nWroM34QJm80mScrPz1dVVZUcDocyMzM1btw4GYYhh8OhyMhIX5QCAACuMsvDRKdOnZSbmytJSkpK\ncq+Pi4tTXFyc1bsHAAAW8xomzp07p3379un48eMKCgpS586d1a9fP7Vq1coX9QF+i3P7AHCexzDx\nj3/8QytWrNDWrVvVrVs3derUSSEhIdq7d6/mzp2rBx54QE899ZSuu+46X9YL+A3O7QPAeR7DxLRp\n0zRy5EhNmjSp0e2ddXV1Kigo0LRp0/Tqq69aXiQAAPBfHsPEsmXLFBTU9GMogoODlZiYqEGDBllW\nGAAACAwew8SFIOFyuZSfn68zZ840uMVzwoQJHsMGAAC4dni9AHPy5MkKCwtT9+7d3bd4AgAAXOA1\nTJw8eVJ//OMffVELAAAIQF7PU9x66606cuSIL2oBAAAByOvMxLFjx/TQQw8pMjJSYWFhMgxDNptN\n27dv90V9AADAz3kNE0uWLPFFHQAAIEB5DBO7d+9W//79deDAgSbbO3fubFlRAAAgcHgME8XFxerf\nv792797dqM1ms+nBBx+0tDAAABAYPIaJiRMnSpIWLVrkcePq6mre0QEAwDXO490c06ZN0zvvvKOz\nZ882ajt79qxyc3M1ZcoUS4sDAAD+z+PMxNKlS/Xmm29qxIgRat++vTp27Kjg4GCdOHFCp0+fVmpq\nqpYuXerLWgEAgB/yGCaCg4M1duxYpaenq6SkRMePH5fNZlPnzp11xx13+LJGAADgx7zeGmqz2XTH\nHXcQIAAAQJN4UxcAADCFMAEAAEzxGCaaer6EJNXV1XHhJQAAcPMYJpYuXaqFCxeqrq7Ove7LL7/U\nI488ov/+7//2SXEAAMD/eQwTubm5crlcSklJ0ddff63c3Fw98sgjGjp0qNasWePDEgEAgD/zeDdH\nq1atNGfOHOXl5WnIkCH6yU9+ojfffFPdu3f3ZX0AAMDPXfICzD//+c9atmyZ0tLSFBUVpezsbFVU\nVPiqNgAAEAA8zky88MIL2rt3r5YsWaI+ffqorq5Oy5Yt00MPPaSXX35Z/fr182WdAADAT3kMEzU1\nNXrvvfdkt9slnX8i5pQpU9SvXz9Nnz5dH374oa9qBAAAfsxjmFiwYEGT6++++269++67lhUEAAAC\nyyUfp/3ee+9p/fr1OnbsmMLDwxUTE6MxY8YoISHBV/UBAAA/5zFMvPHGG9q0aZOefvppde/eXTab\nTYcOHdKyZcv0/fffa/To0b6sEwAA+CmPYWLTpk1at26d2rdv717Xo0cP9e3bVxMmTCBMAAAASZe4\nNTQ4OLhBkLjgpptuuqIdHDhwQGlpaY3Wr1mzRklJSUpPT1d6erq+/PLLK+oXAAD4B48zE8HBwaY7\nX716tbZs2aKIiIhGbSUlJVq4cKFuu+020/sBAAAtx2OYOHXqlF577bVG6w3D0OnTpy+r8+joaC1f\nvlzPPfdco7aSkhKtXLlSp06dUlxcnJ588skrKBsAAPgLj2Fi1KhROnfuXJNtI0eOvKzOExISdOLE\niSbbhg4dqtTUVNntdk2cOFG7du3SgAEDLqtfAADgPzyGiWeeeUaGYcjlcqlNmzZXfcdjx451PxBr\nwIABOnjwoNcwkZ2drZycnKteCwAAgSg+Pr7RuoyMDDmdTp/W4TFM7N+/X88884zKysoUExOjJUuW\nNPslX4ZhNFh2uVxKSkrStm3bFB4err1792rUqFFe+3E6nY0OUGlpaZMHEwCAH7uCggJFRUW1dBme\n7+aYP3++5s2bp/379yslJUWLFi1q9k5sNpskKT8/X3l5ebLb7Zo6darS0tI0ZswY9ejRQ/379292\n/wAAoOVc8t0cF047pKamasOGDc3aQadOnZSbmytJSkpKcq8fNmyYhg0b1qw+AQCA//A4MxEU1LAp\nNDTU8mIAAEDg8TgzUVtbq5MnT7qvd7h4+UofXgUAAH6cPIaJM2fOaPTo0Q0unnQ4HJLOXwPBK8gB\nAIB0iTCxe/duX9YBAAAClMdrJgAAAC4HYQIAAJjSrDBRW1t7tesAAAABymuYSElJabRuxIgRlhQD\nAAACj8cLMB977DEVFRWprq5Od9xxh6R/PhabF3IBAIALPIaJNWvWqLa2VvPmzdMLL7zgXh8cHOyT\nwgAAQGDwGCYkKSQkRJmZmdq1a5fOnj0rwzBUV1en0tJSZWRk+KpGAADgxy4ZJiRp0qRJKi8vV2lp\nqXr16qXi4mL17t3bF7UBAIAA4PUCzC+++ELr169XYmKiJkyYoE2bNunkyZO+qA0AAAQAr2Hihhtu\nkM1mU9euXXX48GF17NhR1dXVvqgNAAAEAK+nOWJiYjRv3jyNHj1azz33nMrKylRTU+OL2gAAQADw\nOjMxe/ZsDRo0SN27d9evfvUrlZaWatGiRb6oDQAABACvMxMhISHq27evJCkhIUEJCQmWFwUAAAIH\n7+YAAACmECYAAIApXsNEbW2tjhw5IknaunWrXnnlFZ0+fdrywgAAQGDwGiaeffZZ5efn65NPPtGS\nJUsUGhqq559/3he1AQCAAOA1THz11VeaMmWKduzYIYfDoUmTJul///d/fVEbAAAIAF7DRF1dncrL\ny/WnP/1J/fv3V1lZmc6dO+eL2gAAQADwemvoY489poceekgDBw7Uz372MyUmJsrpdPqiNgAAEAC8\nhonhw4dr+PDh7uUPPvhAoaGhlhYFAAACh8cwkZiYKJvN5nHD7du3W1IQAAAILB7DxOrVq31ZBwAA\nCFAew0Tnzp0lSdXV1frLX/6is2fPyjAM1dXVqbS0VBkZGT4rEgAA+C+v10xMmjRJ5eXlKi0tVa9e\nvVRcXKzevXv7ojYAABAAvN4a+sUXX2j9+vVKTEzUhAkTtGnTJp08edIXtQEAgADgNUzccMMNstls\n6tq1qw4fPqyOHTuqurraF7UBAIAA4PU0R0xMjObNm6fRo0frueeeU1lZmWpqai6r89raWs2YMUMn\nTpxQTU2NJkyYoIEDB7rbCwsLtWLFCoWEhGjkyJFyOBzN/yYAAKBFeA0Ts2fPVnFxsbp3765f/epX\n+o//+A8tWrTosjp///33df3112vhwoU6c+aMhg8f7g4TtbW1mj9/vjZv3qywsDClpKQoPj5e7du3\nN/eNAACAT3k9zbFgwQL17dtXkpSQkKBZs2bpD3/4w2V1PmTIEE2ePFmSVF9fr5CQf2aXo0ePKjo6\nWna7XaGhoYqNjVVRUVFzvgMAAGhBHmcmfvOb3+jEiRM6cOCAjh496l5fW1ur77///rI6b926tSTJ\n5XJp8uTJmjJlirvN5XKpTZs27uWIiAhVVFRcsr/s7Gzl5ORc1r4BAPixi4+Pb7QuIyPD56+98Bgm\nnnjiCZWWlmrevHl64okn3OuDg4PVrVu3y97BN998o4yMDI0ZM0YPPPCAe73dbpfL5XIvV1ZWqm3b\ntpfsy+l0NjpApaWlTR5MAAB+7AoKChQVFdXSZXg+zdG5c2fdc889+uCDDxQZGakvv/xSR48eVbt2\n7S77uobTp09r/PjxevbZZzVixIgGbTExMTp+/LjKy8tVXV2toqIi3XXXXea+DQAA8DmvF2Dm5+dr\n8eLFGjhwoAzD0O9//3tlZGTo4Ycf9tr5ypUrVV5erhUrVmj58uWy2WwaPXq0qqqq5HA4lJmZqXHj\nxskwDDkcDkVGRl6VLwUAAHzHa5hYtWqVNm3a5J6NmDhxotLT0y8rTMycOVMzZ8702B4XF6e4uLjL\nrxYAAPgdr3dz1NfXNzit0b59+0u+TRQAAFxbvM5M9OjRQwsWLNCoUaMkSZs2bVKPHj0sLwwAAAQG\nrzMTc+fOlWEYmjZtmqZMmaL6+nrNnj3bF7UBAIAA4HFm4t1339WIESN03XXXafr06b6sCQAABBCP\nMxNr1671ZR0AACBAeT3NAQAAcCkeT3McOXKkySdLGoYhm82mgoICSwsDAACBwWOYiI6O1uuvv+7L\nWgAAQADyGCZCQ0PVqVMnX9YCAAACkMdrJnr37u3LOgAAQIDyGCZefPFFX9YBAAACFHdzAAAAUwgT\nAADAFK/v5pCknTt3au/evQoODlb//v117733Wl0XAAAIEF5nJhYsWKDVq1crOjpaN998s/793/9d\nK1eu9EVtAAAgAHidmSgsLNQHH3ygkJDzH01OTtbw4cP11FNPWV4cAADwf15nJjp06KDy8nL3ck1N\nja6//npLiwIAAIHD68xEu3bt9NBDD2ngwIEKCQnR7t271aFDB2VmZkqSsrKyLC8SAAD4L69hIjEx\nUYmJie7lO+64w9KCAABAYPEYJk6dOqUbb7xRffv2bbL95ptvtqwoAAAQODyGiRdeeEErV67UmDFj\n3OtsNhtvDQUAAA14DBMXbv8sLCxUTU2NQkNDVVNTo+rqakVERPisQAAA4N+83s2xbds2Pfzww5Kk\nb775Rg888IB27txpeWEAACAweA0TK1as0BtvvCFJ6ty5szZv3qzs7GzLCwMAAIHBa5ioqanRDTfc\n4F7u0KGDDMOwtCgAABA4vN4aGhsbq6lTp+rBBx+UdP60x1133WV5YQAAIDB4DROzZs3SunXrtHHj\nRoWEhKhPnz569NFHfVEbAAAIAF7DRKtWrXT//fcrJiZGP//5z/XNN9+oVatWvqgNAAAEAK/XTGzd\nulVPP/205s2bpzNnzig5OVlbtmzxRW0AACAAeA0Tq1at0oYNGxQREaEOHTro3Xff1euvv+6L2gAA\nQADwepojKChIdrvdvRwZGamgIK8ZRJJUW1urGTNm6MSJE6qpqdGECRM0cOBAd/uaNWu0adMmtW/f\nXpI0Z84cdenS5Qq/AgAAaElew0T37t315ptvqra2Vp999pneeust/exnP7uszt9//31df/31Wrhw\noc6cOaPhw4c3CBMlJSVauHChbrvttuZ/AwAA0KK8TjG8+OKL+vbbbxUWFqYZM2bIbrdr1qxZl9X5\nkCFDNHnyZElSfX29QkIaZpeSkhKtXLlSjz76KKdOAAAIUF5nJubOnausrCxNmzbtijtv3bq1JMnl\ncmny5MmaMmVKg/ahQ4cqNTVVdrtdEydO1K5duzRgwIAr3g8AAGg5XsPE559/rsrKyma/3Oubb75R\nRkaGxowZowceeKBB29ixY93XYwwYMEAHDx68ZJjIzs5WTk5Os+oAAODHJj4+vtG6jIwMOZ1On9Zx\nWRdg/uIXv1DXrl0VFhbmXr927VqvnZ8+fVrjx4/Xiy++qH79+jVoc7lcSkpK0rZt2xQeHq69e/dq\n1KhRl+zP6XQ2OkClpaVNHkwAAH7sCgoKFBUV1dJleA8Tzz77bLM7X7lypcrLy7VixQotX75cNptN\no0ePVlVVlRwOh6ZOnaq0tDSFhYXp7rvvVv/+/Zu9LwAA0DIuGSYKCwv15ZdfqlevXurVq9cVdz5z\n5kzNnDnTY/uwYcM0bNiwK+4XAAD4D493cyxdulTz58/X//zP/2jSpEl66623fFkXAAAIEB5nJrZv\n364tW7aodevWOnHihJxOJy/4AgAAjXicmQgLC3Pf2tmpUyfV1tb6rCgAABA4PIYJm83WYDk4ONjy\nYgAAQODxeJrj1KlTDZ7pcPFyRkaGtZUBAICA4HFmIjk5+ZLLAAAA0iVmJph5AAAAl+Py3iUOAADg\nAWECAACY4jVMbNu2TTU1Nb6oBQAABCCvYWL37t26//77NXv2bH3yySe+qAkAAAQQry/6ysrKUlVV\nlXbs2KHs7GyVlZVp6NChGj58uDp06OCLGgEAgB+7rGsmWrdurU6dOulf/uVf5HK5dOjQIT322GN6\n8803ra4PAAD4Oa8zE0uWLFF+fr6ioqI0cuRIzZw5U2FhYXK5XIqPj9eYMWN8UScAAPBTXsNEUFCQ\n1qxZo1tuuaXBervdrlWrVllWGAAACAwew8R7770nSYqOjlZxcbGKi4sbtA8fPlx33nmntdUBAAC/\n5zFM7Nu375IbDh8+/KoXAwAAAo/HMJGVleXLOgAAQIDyGCaeeuoprVy5UgMHDmz0OnJJKigosLQw\nAAAQGDyGiblz50qS1q1b57NiAABA4PEYJiIjIyVJN954o3bt2qXKykpJUl1dnUpLSzV58mTfVAgA\nAPya11tDMzIyVFVVpa+++kp9+vRRUVGR7rrrLl/UBgAAAoDXJ2AeO3ZMa9euVUJCgh5//HHl5eXp\n5MmTvqgNAAAEAK9hokOHDrLZbOratasOHz6sm266SdXV1b6oDQAABACvpzm6d++uuXPnKiUlRb/+\n9a918uRJXkkOAADcvM5MvPTSSxoyZIi6desmp9OpkydP6pVXXvFFbQAAIAB4nZk4evSoTp8+rQ8/\n/FA9evRQfHy8L+oCAAABwmOYKCsr06RJk3TkyBFFR0fLZrPp2LFj6tWrl373u9+pbdu2vqwTAAD4\nKY+nOebOnavY2Fjt2bNHeXl5evvtt7Vnzx7deuutevnll31ZIwAA8GMew8Thw4c1depUhYaGute1\natVKU6dO1cGDB31SHAAA8H8ew0RYWFiT6202m4KCvF63KUmqr6/XjBkzlJKSotTUVH3xxRcN2gsL\nCzVq1CglJycrLy/vCsoGAAD+wmMqaOrlXpfT9kOFhYWy2WzasGGDJk+erMWLF7vbamtrNX/+fK1Z\ns0br1q3Txo0b9d13311B6QAAwB94vADzyJEjTd65YRiGTp06dVmdDxo0SAMHDpQknThxQu3atXO3\nHT16VNHR0bLb7ZKk2NhYFRUV6f7777+iLwAAAFqWxzCxffv2q7KDoKAgTZ8+XTt37tSyZcvc610u\nl9q0aeNejoiIUEVFxVXZJwAA8B2PYaJTp05XbSfz589XWVmZHA6Htm7dqvDwcNntdrlcLvdnKisr\nvd5ump2drZycnKtWFwAAgaypMwgZGRlyOp0+rcPrQ6vM2LJli7799ls9+eSTCgsLU1BQkPvizZiY\nGB0/flzl5eUKDw9XUVGRxo8ff8n+nE5nowNUWlrKg7QAANekgoICRUVFtXQZ1oaJxMREZWZmasyY\nMaqtrdWMGTO0Y8cOVVVVyeFwKDMzU+PGjZNhGHI4HIqMjLSyHAAAYAFLw0Tr1q21dOlSj+1xcXGK\ni4uzsgQAAGCxy3tgBAAAgAeECQAAYAphAgAAmEKYAAAAphAmAACAKYQJAABgCmECAACYQpgAAACm\nECYAAIAphAkAAGAKYQIAAJhCmAAAAKYQJgAAgCmECQAAYAphAgAAmEKYAAAAphAmAACAKYQJAABg\nCmECAACYQpgAAACmECYAAIAphAkAAGAKYQIAAJhCmAAAAKYQJgAAgCmECQAAYAphAgAAmEKYAAAA\nphAmAACAKYQJAABgCmECAACYEmJl5/X19XrhhRd07NgxBQUFafbs2erWrZu7fc2aNdq0aZPat28v\nSZozZ466dOliZUkAAOAqszRMFBYWymazacOGDfroo4+0ePFirVixwt1eUlKihQsX6rbbbrOyDAAA\nYCFLw8SgQYM0cOBASdKJEyfUrl27Bu0lJSVauXKlTp06pbi4OD355JNWlgMAACxgaZiQpKCgIE2f\nPl07d+7UsmXLGrQNHTpUqampstvtmjhxonbt2qUBAwZ47Cs7O1s5OTlWlwwAQECIj49vtC4jI0NO\np9OndVgeJiRp/vz5Kisrk8Ph0NatWxUeHi5JGjt2rOx2uyRpwIABOnjw4CXDhNPpbHSASktLmzyY\nAAD82BUUFCgqKqqly7D2bo4tW7bo9ddflySFhYUpKChIQUHnd+lyuZSUlKSqqioZhqG9e/fq9ttv\nt7IcAABgAUtnJhITE5WZmakxY8aotrZWM2bM0I4dO1RVVSWHw6GpU6cqLS1NYWFhuvvuu9W/f38r\nywEAABawNEy0bt1aS5cu9dg+bNgwDRs2zMoSAACAxXhoFQAAMIUwAQAATCFMAAAAUwgTAADAFMIE\nAAAwhTABAABMIUwAAABTCBMAAMAUwgQAADCFMAEAAEwhTAAAAFMIEwAAwBTCBAAAMIUwAQAATCFM\nAAAAUwgTAADAFMIEAAAwhTABAABMIUwAAABTCBMAAMAUwgQAADCFMAEAAEwhTAAAAFMIEwAAwBTC\nBAAAMCWkpQsAAOBadG/PTi1dwlVDmAAAoAWMe/D2li7hquE0BwAAMIUwAQAATCFMAAAAUywPE2Vl\nZYqLi9OxY8carC8sLNSoUaOUnJysvLw8q8sAAAAWsfQCzNraWs2aNUvh4eGN1s+fP1+bN29WWFiY\nUlJSFB8fr/bt21tZDgAAsIClMxMLFixQSkqKIiMjG6w/evSooqOjZbfbFRoaqtjYWBUVFVlZCgAA\nsIhlMxObN29Whw4ddO+99+q1115r0OZyudSmTRv3ckREhCoqKpq1n7q6OknS3//+9+YXCwBAALnw\nN+/C38AbniRKAAAKMElEQVSWZmmYsNls2rNnjw4dOqTnn39er776qjp06CC73S6Xy+X+bGVlpdq2\nbeu1z+zsbOXk5DTZlpqaetVqBwAgECQmJjZal5GRIafT6dM6bIZhGFbvJC0tTXPmzFHXrl0lnb9m\nYujQocrLy1N4eLiSk5P12muvNTodcjnOnTunTz/9VDfeeKOCg4OvdulXXXx8vAoKClq6DPwAY+J/\nGBP/w5j4l7q6OiUmJurAgQONrktsCT55AqbNZpMk5efnq6qqSg6HQ5mZmRo3bpwMw5DD4WhWkJCk\n8PBw9enT52qWa7moqKiWLgEXYUz8D2PifxgT/+MPQULyUZhYu3atJLlnJiQpLi5OcXFxvtg9AACw\nEA+tAgAAphAmAACAKcEvvfTSSy1dxLWmb9++LV0CLsKY+B/GxP8wJv7HX8bEJ3dzAACAHy9OcwAA\nAFMIEwAAwBTCBAAAMIUwAQAATCFMAAAAUwgTAADAlGs+THz00Ufq06ePvv32W/e6V155Re+9957p\nvrOysrRx40b38ttvv62RI0cqOTlZH374YaPPf/bZZ0pNTVV6eroef/xxfffdd163+9Of/qRp06a5\nl3fu3KmEhASlp6crPT1d+/fvN/09fM1XY3Lo0CGlpaUpPT1daWlpuvPOO/WXv/ylwecZE2vGw9Nx\nlSTDMPTEE080+Nnxtt21NB7S+TG555573P/tpqSkaNu2bab6LCws1KhRo5ScnKy8vLwGbQcOHFBa\nWlqT2+Xn52v06NF69NFHdeGxRYZhaNasWUpOTlZ6erq+/vrrBttc/Ltx3rx5GjlypHtMfvhW6UDh\nqzGpra3VtGnTlJycrDFjxujYsWONtmuRMTGucfv27TPuvvtu45e//KV73e9+9zvj3XffbXafZWVl\nxuOPP24kJCQYubm5hmEYxqlTp4ykpCSjpqbGqKioMJKSkozq6uoG240ZM8Y4dOiQYRiGkZuba8yf\nP/+S2/32t781hgwZYkydOtXdx5IlS4wdO3Y0u3Z/4Ksx+aFt27YZv/71rxutZ0ysGY+Lj2tWVpa7\nbfHixcYjjzzS5DgxHuft27evwXeqrKw0RowYYXz22WfN6q+mpsZISEgwKioqjOrqamPkyJFGWVmZ\nYRiGsWrVKiMpKcl45JFHGm137tw5IyEhwfjHP/5hGIZhTJ061SgsLDR27NhhTJ8+3TAMw/j444+N\np59+2jAMzz+HKSkpxvfff9+s2v2Fr8Zk586dxjPPPGMYhmHs2bPHcDqdDbZrqTG55mcmJKlfv35q\n166d1q9f36jt97//vTsZvvLKK5KkkSNH6m9/+5skafv27Xr55ZcbbHP27Fk5nU4NGzbMve6TTz5R\nbGysQkJCZLfb1aVLFx0+fLjBdkuWLNGtt94q6Xz6bNWq1SW36927ty5+gGlJSYneeecdpaamasGC\nBaqvrzd3cFqIL8bkgqqqKmVnZ2vmzJmN2hiT8672eFx8XMPCwtyfDQoK0s9//vMm62A8mnbdddcp\nOTlZ27dvlyQtXrxYqampDdYdOHBAycnJeuSRRzRp0iRVV1e7tz969Kiio6Nlt9sVGhqq2NhYFRUV\nSZKio6O1fPnyJvfbqlUr5ebmqlWrVpL+OZbFxcW67777JEk9e/ZUSUmJpKZ/Dg3D0PHjx/Xiiy8q\nJSVF77zzzlU+Oi3DqjHp0qWL6urqZBiGKioqFBoa2mC/LTUmhAmdf0X6Sy+9pD/84Q/66quv3Os/\n//xzbd++XW+//bZyc3N1/Phxffjhh3I4HHr33XclSZs3b9bo0aMb9BcVFaU777yzwTqXy6U2bdq4\nl6+77jpVVFQ0+MwNN9wgSfqv//ovvfXWW3rssccuud2QIUMafZd7771XL7zwgtavX6/Kykpt2LCh\nOYekxfliTC7YtGmThgwZop/85CeN2hiT8672eDR1XD///HPl5+dr0qRJHutgPDzr0KGDvv/+e+3e\nvVulpaVav3691q5dq1dffVUVFRWaNWuWeyp7wIABOnr0qHvbi49hRESE+xgmJCQoODi4yX3abDa1\nb99ekrRu3TpVVVXpnnvuadRfcHCw6uvrm/w5PHv2rNLS0rRo0SKtXr1ab731lj7//POrdlxakhVj\nEhERodLSUg0ePFgvvvhio9NPLTUmhIn/065dO2VmZur555+X8X9PGP/rX/+qnj17Kijo/GHq3bu3\nvvjiCyUlJWn79u06efKkKisr1a1bN6/92+32BuecKisr1bZt20af27p1q2bPnq3XX39d119//WVv\nd8HIkSMVFRUlSYqPj9dnn312eQfAD1k9Jhf88Y9/lMPh8NjOmJx3tcfj4uO6ZcsWnTx5Uunp6dq8\nebPeeOONRtewNLXdtToeF/vb3/6mjh076vPPP1dJSYnS09M1fvx41dXV6cSJEzp9+rS6du0q6fwx\n+Nd//Vf3tld6DH/IMAwtWLBA//mf/6mcnBx3f5WVle7P1NfXu/8buVjr1q2VlpamsLAwRUREqF+/\nfjp06NAVf39/ZMWYrFmzRvfdd5+2b9+u999/X88//3yDGQ2pZcaEMPEDv/jFL9S1a1dt3rxZkvTT\nn/5Un3zyierr62UYhvbv368uXbrIbrfr9ttvV1ZWlh5++OHL6vvOO+9UcXGxqqurVVFRob/+9a/q\n3r17g89s2bJF69ev17p169SpU6fL3u6Hhg0b5r5Qbu/evbr99tubcyj8hpVjIp1P/zU1Nbrpppua\nbGdMGrpa49HUcX322We1ceNGrVu3Tg8//LB++ctfNjrdwXj8k/GD1yq5XC7l5eVp8ODB+ulPf6q+\nfftq7dq1Wrt2rQYPHqxbbrlFkZGR7lmlVatWaefOne7tY2JidPz4cZWXl6u6ulpFRUW66667PO7v\nh37zm9+opqZGK1ascE+t9+7dW7t27ZIkffzxx+rRo4fH73Hs2DGlpKTIMAzV1NSouLiYMVHjMdm/\nf7/uuusutW3bVna7XZLUpk0b1dbWNjpV1xJjEnIFx+maMGPGDO3du1eS1KNHDw0ePFjJyckyDEOx\nsbEaNGiQJGn06NF64oknlJWVdVn93nDDDUpLS9Ojjz4qwzA0depU9yBL51Piyy+/rJtvvlkTJ06U\nzWbTv/3bvykjI+OS211s3rx5ysjIUHh4uLp169ZoejkQWTUm0vkfmgt/lC7GmDTN7Hhc6rheCuPR\n0L59+5Senq6goCDV1dVp0qRJ6tKli7p06aKPPvpIqampqqqq0qBBgxQREaHZs2crMzNTQUFBioyM\n1GOPPebuKyQkRJmZmRo3bpwMw5DD4VBkZGSD/dlstkY1HDx4UJs3b1ZsbKzS0tJks9mUnp6uhIQE\n7dmzR8nJyZJ0yZ/JmJgYDR8+XA6HQ6GhoRoxYoRiYmKuzkHyMSvHZNSoUe7PzJgxQ6mpqe47O8LD\nw93btdSY8NZQAABgCqc5AACAKYQJAABgCmECAACYQpgAAACmECYAAIAphAkAAGAKYQIAAJjy/wFz\ntVSguozpwgAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1091e2c50>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"kpdx = metar.WeatherStation('KPDX')\n", | |
"kpdx.getWundergroundData('2015-11-07', '2015-12-07')\n", | |
"\n", | |
"fig, ax = plt.subplots()\n", | |
"\n", | |
"(\n", | |
" kpdx.data['wunder'][['Precip']]\n", | |
" .resample('1D', 'sum')\n", | |
" .reset_index()\n", | |
" .pipe((ax.stem, 'data'), 'Date', 'Precip', markerfmt='_')\n", | |
")\n", | |
"ax.invert_yaxis()\n", | |
"ax.set_ylabel('Daily Precip Totals at PDX (in)')" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.4.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment