Skip to content

Instantly share code, notes, and snippets.

@phobson
Last active December 12, 2015 06:48
Show Gist options
  • Save phobson/4731599 to your computer and use it in GitHub Desktop.
Save phobson/4731599 to your computer and use it in GitHub Desktop.
Another way to compute `e`
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "Finding e"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Estimate `e` by sampling from a uniform distribution\n",
"#### by pmhobson"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Function to sample from a uniform distribution between 0 and 1 until the sum of all samples is at least 1\n",
"This happens `num_iter` times and an array of results are returned"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def sumToOne(num_iter):\n",
" '''\n",
" sum up random samples until you reach 1,\n",
" return the array of the number of samples required \n",
" '''\n",
" num_samples = np.empty((num_iter,))\n",
" for k in range(num_iter):\n",
" total = 0\n",
" ns = 0\n",
" while total <= 1:\n",
" total += np.random.uniform(0,1)\n",
" ns += 1\n",
" num_samples[k] = ns\n",
" \n",
" return num_samples"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Function to make a plot"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def plot_e_guesses(num_trials, num_samples):\n",
" '''plot the results from estimated `e`'''\n",
" fig, ax1 = plt.subplots(figsize=(6,4), dpi=300)\n",
" ax1.plot(num_trials, num_samples, '.', markersize=4, markeredgecolor='k', \n",
" markerfacecolor='k', alpha=0.87, zorder=5, label='Average values')\n",
" ax1.axhline(np.e, color='b', linewidth=1.25, alpha=0.75, \n",
" zorder=0, label=r'e = %0.10f' % (np.e,))\n",
" \n",
" ax1.set_ylim([2.5,3.0])\n",
" ax1.set_xlabel('Number of iterations')\n",
" ax1.set_ylabel('Avg. number of samples to reach 1')\n",
" \n",
" ax1.legend(loc='lower right')\n",
" \n",
" ax1.set_xscale('log')\n",
" ax1.xaxis.grid(True, which='major', linestyle='-', alpha=0.35)\n",
" ax1.xaxis.grid(True, which='minor', linestyle='-', alpha=0.20)\n",
" ax1.yaxis.grid(True, which='major', linestyle='-', alpha=0.35)\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Execute everything"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"num_samples = np.array([])\n",
"num_trials = np.logspace(2,6,100)\n",
"for nt in num_trials:\n",
" ns = sumToOne(int(nt))\n",
" num_samples = np.hstack([num_samples, np.mean(ns)])\n",
"\n",
"plot_e_guesses(num_trials, num_samples)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAERCAYAAABhKjCtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcU/f6B/BPmMoQByi7ImgFMYKKXisUqVWhFlARtO5R\ntVpF6qjrtnrb/tRae63eOlttsbjr4rpwa8WtiHsURSMRBBc4mPn+/uByJOEkJ4Es4Hm/XnlJvus8\n52uSJ2fkHBFjjIEQQghRYGLoAAghhBgnShCEEEJ4UYIghBDCixIEIYQQXpQgCCGE8KIEQQghhJfO\nEkR+fj46duwIPz8/+Pj4YMaMGbztYmNj0bx5c7Rp0wYpKSm6CocQQoiGzHQ1cJ06dXDkyBFYWVmh\nuLgYgYGBOHHiBAIDA7k2e/bswd9//407d+7gzJkzGDt2LE6fPq2rkAghhGhAp7uYrKysAACFhYUo\nKSlBw4YN5eoTExMxdOhQAEDHjh3x/PlzZGVl6TIkQgghatLZFgQAyGQytG3bFmlpaRg7dix8fHzk\n6jMyMuDm5sY9d3V1xcOHD9GkSROuTCQS6TJEQgipsap6oQydbkGYmJjg0qVLePjwIY4fP46jR49W\naKO4AnwJgTGm08fkyZN13leonap6ZXWK5XztFMvGjh1rtPOpST9tz6c6ZdVpLvU1n5qU15b51Md7\nXZ351MpnuFZGEWBnZ4eePXvi/PnzcuUuLi6QSCTc84cPH8LFxUUfIcnp1KmTzvsKtVNVr6xOsZyv\nXVXWrbIqu0xN+ml7PtUpq05zqWnfys6nJuW1ZT718V7nK9PJfDIdyc7OZs+ePWOMMfb69WsWFBTE\nDh48KNdm9+7dLCwsjDHG2KlTp1jHjh0rjKPDEDlSqVTnfYXaqapXVqdYztdOsWzs2LEq49CGys6n\nJv20PZ/qlFWnudS0b2XnU5Py2jKf+niv85UpPtfGZ6fOjkE8evQIQ4cOhUwmg0wmw+DBg9G1a1es\nXLkSADBmzBh89NFH2LNnD7y8vGBtbY3ffvtNV+GQ/wkICDB0CDUGzaV20XwaH50liNatW+PixYsV\nyseMGSP3/Oeff9ZVCIQHvQm1h+ZSu2g+jQ/9kpoQQggvShCEEEJ4UYIghBDCixIEIYQQXpQgCCGE\n8KIEQQghhBclCEIIIbwoQRBCCOFFCYIQQggvShCEEEJ4UYIghBDCixIEIYQQXpQgCCGE8KIEQQgh\nhBclCEIIIbwoQRBCCOFFCYIQQggvShCEEEJ4UYIghBDCixIEIYQQXpVKEGFhYdqOgxBCiJExU1Zx\n8eJF3nLGGFJSUnQWECGEEOOgNEEEBATg/fff56178eKFzgIihBBiHJQmiJYtW2LlypVo0aJFhTo3\nNzedBkUIIcTwlB6DmDNnDmQyGW/dkiVLdBYQIYQQ46B0CyI6Olppp969e+skGEIIIcaDTnMlhBDC\nixIEIYQQXpQgCCGE8FJ6DKK85ORkpKeno7i4GAAgEokwZMgQnQZGCCHEsAQTxKBBg3D37l34+fnB\n1NSUK6cEQQghNZtggrhw4QKuX78OkUikj3gIIYQYCcFjEL6+vnj06JE+YiGEEGJElG5BhIeHAwBe\nvnwJHx8fdOjQAZaWlgBKj0EkJibqJ0JCCCEGoTRBTJ48GUBpMmCMydXR7iZCCKn5lCaILl26AADu\n3r0LJycn1K1bFwDw5s0bZGZmCg4skUgwZMgQPH78GCKRCKNHj0ZsbKxcm2fPnmHEiBG4e/cu6tSp\ngzVr1qBVq1ZVWB1CCCHaIngMIjo6Wu7sJRMTE8TExAgObG5ujkWLFuHatWs4ffo0li5dihs3bsi1\nmTt3Ltq2bYvU1FSsXbsWEydOrMQqEEII0QXBBFFSUgILCwvuuaWlJQoLCwUHdnR0hJ+fHwDAxsYG\n3t7ekEqlcm1u3LiBkJAQAMC7776L9PR0ZGdna7QChBBCdEPwNFd7e3vs3LkTkZGRAICdO3fC3t5e\no4Wkp6cjJSUFHTt2lCtv06YNtm3bhsDAQJw9exb379/Hw4cP4eDgINdu3Lhx3N8BAQEICAjQaPlC\nsrOz8eTJE532FWqnql5ZnWI5XzvFsjt37gjGWlWVnU9N+ml7PtUpq05zqWnfys6nJuW1ZT718V7n\nKztw4ID255AJuHPnDuvQoQNzdXVlrq6u7B//+Ae7c+eOUDdOXl4ea9euHdu+fXuFutzcXDZ8+HDm\n5+fHBg8ezAICAlhqaqpcGzVCrDKpVKrzvkLtVNUrq1Ms52unWHblyhWVcWhDZedTk37ank91yqrT\nXGrat7LzqUl5bZlPfbzX+coUn2vjs1NwC8LLywtnzpxBXl4eRCIRbGxs1E4+RUVFiIqKwqBBg9Cr\nV68K9ba2tlizZg333MPDA82aNVN7fEIIIbqj1rWYdu3ahevXryM/P58r+/rrr1X2YYxh5MiR8PHx\nQVxcHG+bFy9eoG7durCwsMAvv/yC4OBgjRIQIYQQ3RFMEGPGjMGbN29w+PBhjBo1Clu2bKlwLIFP\ncnIyEhISIBaL4e/vD6D0rKUHDx5w416/fh3Dhg2DSCSCr68vVq9eXcXVIYQQoi2CCeLkyZO4cuUK\nxGIxZs+ejcmTJyM0NFRw4MDAQKW3LC3TqVMn3Lp1S/1oCSGE6I3gaa5lP5CzsrJCRkYGzMzM1Pqh\nHCGEkOpNcAsiPDwcz549w9SpU9GuXTsAwKhRo3QeGCGEEMMSTBBfffUVACAqKgo9e/ZEfn4+6tev\nr/PACCGEGJbgLqZXr17h22+/xahRo1CnTh1kZ2dj165d+oiNEEKIAQkmiOHDh8PCwgInT54EADg7\nO2PWrFk6D4wQQohhCSaItLQ0TJs2jbsek7W1tc6DUpdEIoFEIjF0GIQQUiMJJghLS0u8efOGe56W\nlsbdOMiQJBIJQkNDERoaSkmCEEJ0QPAg9Zw5cxAaGoqHDx9iwIABSE5Oxu+//66H0AghhBiSygQh\nk8nw7NkzbN26FadPnwYALF68uMLVVg3Bzc0N+/bt4/4mhBCiXSoThImJCRYsWIB+/frh448/1ldM\naqPEQAghuiN4DKJbt25YuHAhJBIJnj59yj0IIYTUbILHIDZu3AiRSISlS5dyZSKRCHfv3tVpYIQQ\nQgxLMEGkp6frIQxCCCHGRnAXEyGEkNqJEgQhhBBelCAIIYTwUuuWozt37sTx48cBAF26dEF4eLhO\ngyKEEGJ4glsQ06dPx5IlS9CqVSv4+PhgyZIlmDFjhj5iI4QQYkCCWxC7d+/GpUuXYGpqCgAYNmwY\n/Pz8MG/ePJ0HRwghxHAEtyBEIhGeP3/OPX/+/DlEIpFOgyKEEGJ4glsQM2bMQNu2bRESEgLGGI4d\nO4b58+frIzZCCCEGJJggPvnkEwQHB+PcuXMQiUSYP38+nJyc9BEbIYQQAxLcxdS1a1c4OzsjMjIS\nERERcHJyQteuXfURGyGEEANSugXx5s0bvH79GtnZ2XIX58vNzUVGRoZegiOEEGI4ShPEypUrsXjx\nYkilUrRr144rt7W1xfjx4/USHCGEEMNRmiDi4uIQFxeHJUuWIDY2Vp8xEUIIMQKCxyAoORBCSO1E\n12IihBDCixIEIYQQXoIJ4sSJE3j58iUA4I8//sCkSZNw//59nQdGCCHEsAQTxNixY2FtbY3U1FT8\n+9//hqenJ4YMGaKP2AghhBiQYIIwMzODSCTCjh078Pnnn+Pzzz9HXl6ePmIjhBBiQIKX2rC1tcXc\nuXORkJCAv/76CyUlJSgqKtJHbIQQQgxIcAti06ZNqFOnDtasWQNHR0dkZGRg6tSp+oiNEEKIAQkm\nCCcnJ/Tp0wcFBQUAAHt7e/Tq1UvngRFCCDEswQSxatUqREdHY8yYMQCAhw8fonfv3joPjBBCiGEJ\nJoilS5fixIkTqFevHgCgRYsWePz4seDAEokEISEhaNWqFXx9fbFkyZIKbXJychAaGgo/Pz/4+vri\n999/13wNCCGE6IRggrC0tISlpSX3vLi4WK07ypmbm2PRokW4du0aTp8+jaVLl+LGjRtybX7++Wf4\n+/vj0qVLOHr0KCZPnozi4uJKrAYhhBBtE0wQwcHB+L//+z+8fv0aBw4cQHR0NMLDwwUHdnR0hJ+f\nHwDAxsYG3t7ekEqlcm2cnJyQm5sLoPQy4o0aNYKZmeCJVYQQQvRA8NN4/vz5WL16NVq3bo2VK1fi\no48+wqeffqrRQtLT05GSkoKOHTvKlY8aNQoffPABnJ2dkZeXh82bN/P2HzduHPd3QEAAAgICNFq+\nkOzsbDx58kSnfYXaqapXVqdYztdOsezOnTuCsVZVZedTk37ank91yqrTXGrat7LzqUl5bZlPfbzX\n+coOHDig/TlkOpaXl8fatWvHtm/fXqHu22+/ZRMnTmSMMfb3338zDw8PlpubK9dGDyEyqVSq875C\n7VTVK6tTLOdrp1h25coVlXFoQ2XnU5N+2p5Pdcqq01xq2rey86lJeW2ZT3281/nKFJ9r47NT6RZE\n69atlSYVkUiEy5cvCyafoqIiREVFYdCgQbynxp48eRKzZs0CAHh6esLDwwO3bt1C+/bthTMbIYQQ\nnVKaIP773/9WaWDGGEaOHAkfHx/ExcXxtmnZsiUOHjyIzp07IysrC7du3UKzZs2qtFxCCCHaoTRB\nNG3alPs7MzMTZ86cgYmJCQICAuDo6Cg4cHJyMhISEiAWi+Hv7w8AmDt3Lh48eAAAGDNmDGbOnInh\nw4ejTZs2kMlkWLBgARo2bFjFVSKEEKINggepf/31V3zzzTcICQkBAIwfPx5ff/01Ro4cqbJfYGAg\nZDKZyjb29vZV3lIhhBCiG4IJYsGCBUhJSUGjRo0AAE+ePEGnTp0EE0R1IJFIAIBOrSWEEB6Cv4Ow\nt7eHjY0N99zGxgb29vY6DUofJBIJQkNDERoaioyMDEOHQwghRkfwq7Onpyf+8Y9/IDIyEgCwc+dO\niMVi/PjjjxCJRJg0aZLOgySEEKJ/aiUIT09P7vIakZGREIlE3G1Iqys3Nzfs27cPAO1iIoQQPoKf\njHPmzNFDGIbh5uYGAHj06JGBIyGEEOMjmCDOnTuHuXPnIj09nbuQnro/lCPaVXZQvSyxEUKILgkm\niIEDB2LhwoXw9fWFiYngMW2iI2UH1QFg3759lU4SmZmZsLOzoyRDCBEkmCAcHBwQERGhj1iIjkkk\nEnz22WewtLSsUpIhhNQOggli9uzZGDlyJD788ENYWFgAKN3F1KdPH50HR94qf1CdPtgJIfogmCDi\n4+Nx69YtFBcXy+1iogShf1VNDG5ublixYgXeffddSjKEEEGCCeL8+fO4efOmWneRI8bP0dGRkgMh\nRC2CR53fe+89XL9+XR+xEEIIMSKCWxCnTp2Cn58fPDw8uHtT02muhBBS8wkmiLIDo0Q99FsFQkhN\nIZggyu4L8fjxY+Tn5+s6nmpNW79VIIQQYyB4DCIxMRHNmzeHh4cHgoOD0bRpU4SFhekjNkIIIQYk\nmCD++c9/4tSpU2jRogXu3buHQ4cOoWPHjvqIrdop+60CbT0QQmoCwQRhbm4Oe3t7yGQylJSUICQk\nBOfPn9dHbNWSm5tblZODRCLhjmUQQoihCB6DaNCgAfLy8hAUFISBAweicePGcjcQIupT5wA2Hccg\nhBgLwS2IHTt2wMrKCosWLUJoaCi8vLzoPtKVkJGRwd3BjrYOCCHVgeAWRNkvqM3NzdGpUyfcvHkT\n9erV03lgtZW2rrlU/n7bNfXU25q6XoQYC8EtiKCgIBQUFCAjIwM9evRAQkIChg0bpofQahYXFxe1\nD2BX9ThG+fttX7x4sUZuudAWGSG6J5ggGGOwsrLCtm3bMG7cOGzZsgVXr17VR2xaYywHfbVxAJsY\nH2N5fRGibWrdjPnUqVNYt24dVq9eDQCQyWQ6DUqZyuxSqI0HfRXvt11+l9WLFy/UHseYd+GUbZEB\nho2vNr6+SO0hmCB++uknzJs3D71790arVq2QlpaGkJAQfcQmh96Imil/v+3KzFV1mG9VMWVkZKC4\nuFhrcUskEmRlZcHJyUkr4xFSHQgmiODgYAQHB3PPPT09sWTJEp0GpU3aPuhrjB+UtUn5g++q2gwc\nOJDbetLG71JCQ0NRXFyMgwcPyo1HN3IiNZlau5iMQVXeiNr6gACM99u0thnjB1/5/4f4+HitfJvX\nxtlehpofXXxpoS9CpLxqkyAAetHqW2V3TRliV0z5DzY3NzesW7cOTZo0UftHiQsWLMCXX34J4O2X\ngPK7qfbt24esrCxuPIlEgszMTPj6+iqNQxfKHwzX9pcWxS9CZfTxvlM2n8SwlCaIadOm4fvvv8fm\nzZsRExOjz5iMjjF+mzZGqnbFaIPiwXfF5QJvPyxdXFy4JFXZkxsUd1OVLbNseQUFBThy5Ihc0tDl\nlmb58desWaPVsRVJpVKMGDECALjkqM1jOuUpm09lbQHaatIXpQli9+7dmD9/PubNm1frEwRALx5j\nUf7guzpUfWirOtvL2E9bdXZ21vqXlvLzUZ5UKsWQIUPkkqU6x4KElG2hqUsoAWvjLMcy5ddRaDzF\nduW3PFWNUb5O1Xyq2iovP4a2T8wAVCSIsLAwNGjQAC9fvoStra1cnUgkQm5urtaCEJKZqdvxHz8G\nKnvLbXX7CrVTVa+srnx5RoYEOTlZEImcVPbNydHdfJqbu2Ht2n3IycmCublbheVkZJS+mF1c+F/A\nmvw/lG9bttyyvzMz39Y/fgyUlLztY25esS8AZGU9QpMmpX9nZpaWL1myDvb2TSqMWba8tLRbcuvJ\nF4e6lM2NqvUso2w5lZnP8uOWLQsAiovfzufjxxIMHFj6obp4cTyk0uIKsfMtW/H12q/fQJibm2Hd\nun1y83nhgvK5UPy/LJOR8Tamdevexs03hlT6dvzyY16+LMXkyaVbTT/+uIb7e926fXBxccPlyxmQ\nSovh4uLG/X8BqLDcsvXiG6PsfSqVFnP9yrdbvDgeIpFThfGLioqxefNBufW6fDkDEycO5caIjR3C\nzae2iBhjTFWDiIgIJCYmam2BmhKJROjSRWWIVVZQ8AiWlpXbZ65uX6F2quqV1ZWV5+dLcPlyKBgr\nRps2B1GnjpvSvq9eXYW1Nf9+3vz80hdl+f58daraKYu3LEYAEIv38fbV5P9Bk/lUjJevrzplmsyl\nEMX5VDY3BQWPwFixXPzqjl9YmIV69dqr1V5oPnNzz8PCokmFeJs1W4C7d7+Ui13ZshXHSE39ECKR\nGdfv1aurMDW1U/k6Ufy/LHsOgOv37rtrcOvWiAoxAUBhYRZu3hzKW6dqDABcvOXr1G1XVlf2Pm3Z\nci3vGC1bxsPCokmFOBT7iMX75Nbl3XfX4ObNIdx8AsDp0+4Q+HgXJLh9mJiYiKysLJw7dw4A0KFD\nBzRu3LhKC9XUhg26HT8rC2jSRLd9hdqpqldWl5qaAXv70g+PgQOBoiLg558BFxflfW/eBFq2rDiW\n4jew8t+8ytfxfStSJ96MjNIYgYoxCq0nH83m001Fnfpl6s6lEL5vu8rmJjX17bdEZfOtbPyiomKs\nWiX/rVMZ4fl0QZMmZQnEDRkZpXHn5GRh4sS3sQP8ywaAmJi3WwwuLm5ITS3dQiuL6+ZNwNa24lzI\nb13xvy5L5/HtN+fyY5TFBAD//OcCfPed/PjyY+7jliX/twQxMaVbLd9+C0yeXNr+l1+cueWWrUf5\n9VIco+x9qtivrJ2ZmRmKi4u5+Mva5eRkwd6+idx6mZm5oLj47RiK86mN80QEE8TmzZsxdepUBAcH\ngzGG8ePH44cffkB0dHTVl64mR0fdjs9Y6TIqsw+zrG9V26mq56uTSCSIjX17EPXAgdIDie3auans\nm5PDv5yiIsDUtPTvxo3l25Svs7ev2E5x3vjidXR0w4EDqveZqzuX6rTVdD7VKVN3Lsvje00pzrWb\nm/K5efhQ+f+LsmU1blzahzGguFj+YLOy/faNG5tpNJ+OjmXHgszkYpdIJLzLXrNmDczMSuMqWw/G\nXOT2q+fkAL6+bhXGGzKE/7gD3zyW4YsJAFq2bKLydVi2Xnx/b9r09sy4sm/pfGOUXy/FMZS9T9/O\n5yM4OVV8PTx6ZAYnJye58rK2fMvVFsEE8d133+HcuXPcVkN2dja6du2q1wShD9X9tw7lz7LRRPkP\nMGUHPRXrFA/mqjtv6s6prs8q0cXBPD7K5oZvrpXFou4lRRSXVXbmUROezQK+U2Wr8rsSvgP/ist2\ndnZW69RjxfGE2ql6zfK1MzMzq/R6lj8zrrKvHXXfp8rG1/fnkmCkjDE4ODhwzxs1alTl/VqGVFNO\naVP3XH9VKvvhro0PemV1+jhVVJu/sq4sTU7lrEyMZR9ETk5OShO6rk6VVbbsynw4C51irkkyAdQ/\n+42UEkwQoaGh6NGjBwYMGADGGDZt2oSwsDDBgUs3DYfg8ePHEIlEGD16NGJjY+XaLFy4EOvWrQMA\nFBcX48aNG8jJyUH9+vUruTrCMalzymN1SR7lv9EYirJ5UzXXmiSB6pzQK/OaUpwbdbcK1f02XV75\nU2WrcrqqUFzGMAapHMFXxQ8//ICtW7ciOTkZADBmzBj07t1bcGBzc3MsWrQIfn5+ePnyJdq1a4du\n3brB29ubazNlyhRMmTIFALBr1y789NNPOksO6qhtL0RtJUVtzpviufja3prQxpaXpsvTF3WWpez/\nnL5ZEz5qfW2IiopCVFSURgM7OjrC8X9HtWxsbODt7Q2pVCqXIMpbv349PvnkE42WoanquJWga7qa\nB02OaSiLSVc/VjPUlpc6W0OKc6OLD2567RN16eVaTOnp6UhJSUHHjh1561+/fo2kpCQsW7aMt37c\nuHHc3wEBAQgICKhyTOXvi5CdnY0nT55Uahx1+6pql5mZiSdPnqBVq1Ya9VUs52unWHbnzh3BWKtK\ncZmq7kEh9P+wePFirp0m/2eq6tWZJ76yqsxlZmYmPvvsMwDAihUruC9Pqrx48UIvr0112qr7GlRV\nrs35rCxDv9eF6qsynwcOHND+HDIdy8vLY+3atWPbt29X2mbjxo0sIiKCt04PITKpVKrzvsraPXjw\ngPn4+LAWLVqwBw8eaNRXsZyvnWLZlStX1Am3Sio7n5r0E2qrql6deeIrq8pclv0/+/j4KP1/5qOP\n16Y6bdV9Daoq1+Z8VpYh3+vq1GtzPrXx2anylqOlP9gYWOnkU1RUhKioKAwaNAi9evVS2m7jxo06\n371UXUkkEmRkZBg6DJ2r6etZtuuoOp5CTWovlbuYzMzMcP/+fRQUFMDS0lKjgRljGDlyJHx8fBAX\nF6e03YsXL3D8+HGsX79eo/FrivLnjSs75VNXV0c1FrVlPWvqepGaS/AYhIeHBwIDAxEREQErKysA\npddHmjRpksp+ycnJSEhIgFgshr+/PwBg7ty5ePDgAYDSs6EAYMeOHejRowfq1q1bpRWpzir7IzdC\nCNElwU8lT09PeHp6QiaT4eXLl2oPHBgYCJlMJthu6NChGDp0qNrjGhtd/ipX1dZFTVJb1pOQ6kYw\nQcyZMwcA8OrVK1hbW+s6nmpFH7/KrS1bF7VlPQmpTlQepAaAkydPwsfHBy3/d9nK1NRUudNOCSGE\n1EyCCSIuLg779u2Dvb09AKBNmzY4duyYzgOrDsp+lUtnphBCaiK1tund3d3lO9GuAI4xXA+JEEJ0\nQfCT3t3dnbsOU2FhIZYsWaL0chmEEEJqDsFdTMuXL8fSpUuRkZEBFxcXpKSkYOnSpfqIjRBCiAEJ\nbkE4ODjU2h+xEUJIbSa4BZGWlobw8HDY29vDwcEBkZGRuHv3rj5iI4QQYkCCCWLAgAGIiYnBo0eP\nIJVKER0dbZTXTZJIJDq7PLQhl0UIIYYimCDevHmDwYMHw9zcHObm5hg0aBDy8/P1EZvayq7lExoa\nqvMPbn0uixBCDEnpMYinT5+CMYawsDDMmzeP22pQ95ajhBBCqjelCaJt27YQiUTc81WrVgEovUqr\nSCTC/PnzdR/d/0gkEo3uwqVLmtzxqzrfT5kQQpQmiPT0dD2GoVpoaKjgr5WN7d6/lb35PCGEGAvB\nT63i4mLs3r0b9+/fR3FxMbcFIXS5b0IIIdWbYIIIDw9H3bp10bp1a5iYCB7T1onqeK0joV1RtPuJ\nEGLsBBNERkYGLl++rI9YlKquH6LK4lbc/VRd148QUrMJbhJ0794dSUlJ+oiFEEKIERHcgnjvvffQ\nu3dvyGQymJubAyi95Whubq7Og6up9HnWFSGEVJZggpg0aRJOnz4NX19fgx2DqIkoMRBCjJ3gJ767\nuztatWpFyYEQQmoZwS0IDw8PhISEICwsDBYWFgBAp7kSQkgtoFaC8PDwQGFhIQoLC7nfQRBCCKnZ\nBBPEnDlz9BAGIYQQYyOYIEJCQiqUiUQiHD58WCcBEUIIMQ6CCeKHH37g/s7Pz8fWrVvpukKEEFIL\nCH7St2/fXu55YGAgAgICdBaQNmjjMhZ0KQxCSG0nmCCePn3K/S2TyXD+/Hmj/pGcNi5jQZfCIIQQ\nNRJE+ftCmJmZoWnTpli9erXOAyOEEGJYggnCmO4LoQ5tXMaCLoVBCCFqJAgAOHnyJNLT01FcXMyV\nDRkyRGdBVZU2PtQpMRBCajvBBDFo0CDcvXsXfn5+MDU15cqNOUEQQgipOsEEceHCBVy/fp1+PU0I\nIbWM4BX4fH19K9wNjRBCSM0nuAWRnZ0NHx8fdOjQAZaWlgBKf0mdmJio8+AIIYQYTqWuxUS7mwgh\npOYTTBBdunSp1MASiQRDhgzB48ePIRKJMHr0aMTGxlZod/ToUXzxxRcoKiqCvb09jh49WqnlEUII\n0S6dXVTJ3NwcixYtgp+fH16+fIl27dqhW7du8Pb25to8f/4cn3/+OZKSkuDq6oqcnBxdhUMIIURD\nOrtNnKOjI/z8/AAANjY28Pb2hlQqlWuzfv16REVFwdXVFQBgb2+vq3AIIYRoSC+XZU1PT0dKSgo6\nduwoV37nzh0UFRUhJCQEeXl5mDhxIgYPHlyh/7hx47i/AwICtH6xwOzsbDx58kSnfYXaqapXVqdY\nztdOsewmxNkYAAAeAElEQVTOnTuCsVZVZedTk37ank91yjSZy8DAQLx48ULlOhCiDXZ2djhx4gQO\nHDig/fc3q4Svv/5a7bZ5eXmsXbt2bPv27RXqPv/8c9apUyf2+vVrlpOTw5o3b85u374t16aSIWpE\nKpXqvK9QO1X1yuoUy/naKZZduXJFZRzaUNn51KSftudTnTJN5lIfr1tCGHv7WlN8fWrjNVipLQjF\nS4ArU1RUhKioKAwaNAi9evWqUO/m5gZ7e3vUrVsXdevWxfvvv4/U1FQ0b968MmERQgjRokodgwgP\nDxdswxjDyJEj4ePjg7i4ON42kZGROHHiBEpKSvD69WucOXMGPj4+lQmJEEKIlgluQUyYMAEikQil\nWyylv4Gws7ND+/btERkZqbRfcnIyEhISIBaL4e/vDwCYO3cuHjx4AAAYM2YMWrZsidDQUIjFYpiY\nmGDUqFGUIAghxEgIJoj8/HzcunUL0dHRYIxh69at8PDwQGpqKo4cOYKffvqJt19gYCBkMplgAFOm\nTMGUKVM0j5wQQohOCSaIy5cvIzk5mbsP9bhx4xAYGIgTJ06gdevWOg+QEEJ0rexGaF27djV0KEZF\n8BjE8+fP8fLlS+75y5cv8fTpU5iZmaFOnTo6DY4QoltdunRBw4YNUVhYaOhQDEokEtElhHgIbkF8\n+eWX8Pf3R3BwMADg2LFjmDlzJl69eoUPP/xQ5wESQnQjPT0dZ8+ehbu7OxITE9G3b1+tjl9cXMzt\neSDVk+AWxMiRI5GcnIxevXqhd+/eOHHiBEaNGgVra2v88MMP+oiREKIDa9euxYcffojBgwcjPj4e\nAFBQUID69evj2rVrXLvs7GxYWVlxl8LZtWsX/Pz80KBBA3Tu3BlXrlzh2jZt2hQLFiyAWCyGra0t\nSkpKMH/+fHh5eaFevXpo1aoVduzYwbWXyWSYPHkyHBwc0KxZM/z8888wMTHhjl++ePECI0eOhLOz\nM1xdXfHVV1/xHtuUSqWwsrLCs2fPuLKUlBQ4ODigpKQEaWlp+OCDD2Bvbw8HBwcMGjRI6Q8Zhw0b\nhq+++op7fvToUbk7TEqlUkRFRaFx48Zo1qwZ/vOf/3B1Z8+eRfv27WFnZwdHR0dMnjxZvf8MIyWY\nIMLDw3H06FF069YNkZGRcHFx0UdchNRoEokEEonEoGOsXbsW/fr1Q0xMDJKSkpCdnQ1LS0tERUVh\nw4YNXLvNmzejS5cusLe3R0pKCkaOHIlffvkFT58+xZgxYxAREYGioiKu/caNG7F37148f/4cpqam\n8PLywokTJ5Cbm4vZs2dj0KBByMrKAgCsWrUK+/btQ2pqKi5evIgdO3bI7eoZNmwYLCwskJaWhpSU\nFOzfvx+//vprhXVxdnZGp06dsHXrVq5s/fr1iI6O5u6EOWvWLDx69Ag3btyARCLhvVI1oHp3k0wm\nQ3h4OPz9/SGVSnHo0CH89NNP2L9/PwBg4sSJ+OKLL/DixQvcvXsXMTExav5vGCfBBDF58mT89ddf\n8PHxQd++ffHnn38iPz9fH7ERUiNJJBKEhoYiNDS00h/wVR3jxIkTyMjIQEREBJo3bw4fHx+sW7cO\nADBgwABs3LiRa7t+/XoMGDAAQOkH+pgxYxAQEACRSIQhQ4bA0tISp0+fBlD64RobGwsXFxfu/jF9\n+/aFo6MjACAmJgbNmzfH2bNnAZQmn7i4ODg7O6N+/fqYMWMGd0p9VlYW9u7di0WLFqFu3bpwcHBA\nXFycXGzlDRgwgEtsjDFs2rSJi9vT0xNdu3aFubk57O3t8cUXX+DYsWNK56csBkXnzp1DTk4O/vnP\nf8LMzAweHh749NNPuZgsLCxw584d5OTkwMrKqsLlhaobwQTRpUsXLF++HGlpaRgzZgw2b96Mxo0b\n6yM2QoiOxMfHo3v37rC1tQUAREdHc7uZunTpgtevX+Ps2bNIT09HamoqevfuDQC4f/8+fvzxRzRo\n0IB7PHz4UO5CnOV3xwClWyr+/v5c+6tXr3K7qx49eiTXvuzCnWXLKioqgpOTE9f3s88+Q3Z2Nu86\n9enTB6dOnUJmZiaOHz8OExMTBAYGAihNNv3794erqyvs7OwwePDgSl0v7P79+5BKpXLrP2/ePDx+\n/BgAsHr1aty+fRve3t7o0KEDdu/erfEyjIlaR5DevHmDxMREbN68GRcvXsTQoUN1HRchNZabmxv2\n7dvH/a3vMd68eYPNmzdDJpPByckJQOmxh+fPn+Py5csQi8WIiYnBhg0b0LhxY4SHh8Pa2hoA4O7u\njlmzZmHmzJlKxy+/e+b+/fsYPXo0Dh8+jE6dOkEkEsHf35/7hu7k5CS3BVT+bzc3N1haWuLJkycw\nMRG+6EODBg3QvXt3bNq0CdevX8cnn3zC1c2cOROmpqa4evUq6tevjx07dmDChAm841hbW+P169fc\n88zMTLmYPDw8cPv2bd6+Xl5eWL9+PQBg69at6Nu3L54+fYq6desKxm+MBGc9JiYGLVu2xOHDhzF+\n/HikpaXJHZQhhGjOzc2t0smhqmPs2LEDZmZmuHHjBlJTU5GamoobN24gKCgIa9euBfB2N1P53UsA\nMGrUKKxYsQJnz54FYwyvXr3C7t275U6FL+/Vq1cQiUSwt7eHTCbDb7/9hqtXr3L1MTExWLx4MaRS\nKZ4/f47vv/+eSzBOTk7o3r07Jk2ahLy8PMhkMqSlpeH48eNK123AgAGIj4/H1q1b5eJ++fIlrK2t\nUa9ePWRkZKg8wcbPzw979uzBs2fPkJmZKfdj4A4dOsDW1hYLFizAmzdvUFJSgqtXr+L8+fMAgISE\nBG4Lx87ODiKRSK3kZqwEIx8xYgTu3r2LlStXIiQkBMnJyfj888/1ERshRAfWrl2LESNGwNXVFY0b\nN0bjxo3RpEkTjB8/HuvXr4dMJkOHDh1gY2ODR48eISwsjOvbrl07/PLLLxg/fjwaNmyI5s2bY+3a\ntUoP6vr4+GDy5Mno1KkTHB0dcfXqVW63D1CacLp37w6xWIx27dqhZ8+eMDU15T5U165di8LCQvj4\n+KBhw4aIjo6W+0avKCIiAn///TecnJzkfsg7e/ZsXLx4EXZ2dggPD0dUVJTSmAcPHow2bdqgadOm\nCA0NRf/+/bm2pqam2LVrFy5duoRmzZrBwcEBo0ePRm5uLgAgKSkJvr6+sLW1xRdffIGNGzdyx2Kq\nJXUu+XrhwgU2ZcoU5u7uzoKDg9mSJUuqfBlZdakZYpXQ5b61iy73TZf7rqw9e/awd955x9BhVCsw\nxOW+b926hQ0bNmDTpk1wcHDgrsVE94wmhGhLfn4+Dh8+jO7duyMrKwv/+te/0KdPH0OHRf5H6S4m\nb29vXLx4EUlJSTh+/DgmTJjAnU9MCCHawBjDnDlz0LBhQ7Rt2xatWrXCN998Y+iwyP8o3YLYtm0b\nNmzYgPfffx+hoaHcFgQhhGhL3bp1ud9EEOOjdAuiV69e2LRpE65evYqgoCAsWrQI2dnZGDt2LPer\nQUIIITWX4FlMNjY2GDhwIHbt2gWJRAJ/f3/Mnz9fH7ERQggxII1O0G3YsCH3oxdCCCE1W/X9BQch\nhBCdogRBCCGEFyUIQgghvChBEEJ0YsqUKWjRogXq1asHb29v/PHHH0rbzp07F7a2ttzDysoKpqam\nePr0KYDSy4K/9957sLa2RkhISIX+J06cQEBAAOzs7ODp6YlffvmFq4uPj+du4uPm5oZp06ahpKSE\nq3/48CHCw8PRqFEjODk5YcKECVx9UVER+vbtCw8PD5iYmFS4RHhxcTEmTJgAJycnNGrUCBEREdyV\nbbOzs/HJJ5/AxcUF9evXR2BgYIVTeletWgUvLy/Y2dkhICAAycnJXN2wYcNgaWnJzUm9evX0/lMD\nShCEEJ2wsbHBrl27kJubi/j4eEycOBGnTp3ibTtz5kzk5eVxj2nTpiEkJAQNGzYEADRq1AiTJk3C\n9OnTK/QtKSlB7969MXr0aLx48QKbNm3CpEmTuDvdvXnzBosXL8aTJ09w5swZHDp0CAsXLuT6x8bG\nwt7eHo8ePcKlS5dw7NgxLFu2jKt///33kZCQAEdHxwrXb1q2bBn++usvXL58mbsMeNlVYl++fImO\nHTvi4sWLePbsGYYOHYqePXvi1atXAIBLly5h8uTJ2LJlC3fnvN69e3NJQCQSYdq0adyc5Obm6v2+\n2ZQgCKmFVN02U1vmzJmDFi1aACi9CmpQUJDSBFEeYwzx8fFytxXo2rUr+vbty12evLysrCw8efIE\ngwcPBgC0b98e3t7euH79OgDgs88+Q+fOnWFmZgZnZ2cMHDhQ7pv6tWvX0K9fP1hYWKBJkyYIDQ3l\nbrlqbm6O2NhYdO7cmfdKEteuXUOPHj3g4OAAS0tLxMTEcH09PDwQFxeHJk2aQCQSYdSoUSgsLOQu\nFX79+nX4+PjA398fQOlFAnNycrh7S5TNhSFRgiBEz0pKgMxM7TzK7SlRm9BtMxXNnz9f7gY55R9l\n3/CFvHnzBufOnYOvr69g27/++gvZ2dmIiopSa2xnZ2eIxWKsWbMGJSUlOHnyJO7fvy931djyjh07\nJhdHjx49sH79erx58wYZGRnYu3ev3BVsVenevTv27t2LR48e4fXr11i3bh0++ugj3raXLl1CYWEh\nvLy8AABBQUG4d+8ezp49i5KSEqxZswb+/v5o0qQJ12fZsmVo1KgR2rdvj23btqkVkzapdcMgQoj2\nZGcD5e5lUyUbNgD/u5un2srfNhOA3G0zu3fvXqH99OnTeXftaOKzzz6Dn58f7/iK4uPjER0dDSsr\nK7XHX7VqFXr27ImJEycCAFasWAEXF5cK7dasWYOLFy9izZo1XNmcOXPw4Ycfol69eigpKcGwYcMQ\nGRmp1nKjoqKQmJgIFxcXmJqaQiwWY+nSpRXa5ebmYvDgwZgzZw53Fz83Nzd899136Ny5M4DSGx7t\n2bOH6xMbG4t///vfsLOzQ1JSEvr16wdHR0e89957as9LVVGCIETPHBxKP9i1NZamyt82s0xJSQne\nf/997QSlYOrUqbh+/TqOHDki2Pb169f4888/kZiYqPb4GRkZ+Pjjj7F+/Xp069YNt2/fxscffwwn\nJye5b/M7duzAzJkzcejQIW7LhzGGHj16IDo6GmfOnEFeXh5GjBiBadOm4fvvvxdc9pQpU5CXl4en\nT5/CysoKCxYsQFhYGHePbqB06yk8PBzvvfcepk2bxpUnJibixx9/xI0bN+Dl5YWkpCR8/PHHSElJ\ngZOTE7frCQDCwsIwcOBAbNu2Ta8JgnYxEaJnpqal3/q18ajMBZbd3d3h4eGBZ8+ecY/c3Fzs2rWL\nt73iGUblH/Xq1VO5rNmzZyMpKQn79++HjY2NYGzbt29Ho0aNEBwczFvPd5D25MmTcHV1Rbdu3QAA\nLVq0QM+ePbF3716uzb59+zB69Gjs2rULrVq14spzcnJw4cIFjB8/Hubm5mjYsCGGDRsm901elX37\n9mH48OGoX78+LCwsMH78eJw9e5Y7+6qgoAC9evWCu7s7Vq5cKdc3KSkJPXv25HY59ejRA05OTmod\np9EXShCE1DJCt81UpHiGUflH2Z3U+MybNw8bNmzAgQMH5LZWVImPj8eQIUMqlMtkMuTn56OoqAgy\nmQwFBQUoKioCAPj6+uLWrVs4cuQIGGNIS0vDrl270KZNGwDA4cOHuW/f7du3lxvX3t4eTk5OWL58\nOUpKSvD8+XPEx8dzfYHSD/n8/PwKfwOAWCxGfHw8cnNzUVRUhGXLlsHFxQUNGzbkTpG1srLC77//\nXmGd2rRpg927d+PevXtgjOHAgQO4ffs2d3zkzz//xMuXLyGTybB//36sW7cOERERas2j1lT5lkM6\npo8Q6Y5y2kV3lDP+O8pJpVL2ySefMEdHR9agQQPWqVMndujQIa0uQyQSsTp16jAbGxvuMW/ePK7e\nxsaGnThxgnv+8OFDZm5uztLS0iqM9dtvvzGRSCT3GD58OFcfHx/PvL29ma2tLXN1dWXTp0/n6kJC\nQpi5ublcHB999BFXf/r0aRYYGMjq16/P7O3tWb9+/djjx4+5+nfeeYeJRCJmYmLC/Xv//n3GGGOZ\nmZksOjqa2dvbs/r167OgoCB27tw5xhhjR48eZSKRiFlbW8stu2ydS0pK2NSpU5mrqyuztbVlPj4+\nLCEhgVtuUFAQs7OzY/Xq1WN+fn5s06ZNvPMMHd5RzrhfxYwShKo6ShCVq6cEQWoSXSYI2sVECCGE\nFyUIQgghvChBEEII4UW/gyBEBxo0aKD36+aQ2kndM8Qqg7YgCNGBp0+fgpWeBFKlh1Qq1UtfobbK\n6jUpVyxTfH7lyhWtzJmh57Oyc1nZ+Sz7zYUuUIKoZc6dO2foEGoMmkvtovk0PjpLEBKJBCEhIWjV\nqhV8fX2xZMmSCm2OHj0KOzs7+Pv7w9/fH999952uwiH/Q29C7aG51C6aT+OjswRhbm6ORYsW4dq1\nazh9+jSWLl2KGzduVGgXHByMlJQUpKSkcBcP07eTJ0/qvK9QO1X1yuoUy/naVWXdKquyy9Skn7bn\nU52y6jSXmvat7HxqUl5b5lMf73W+Ml3Mp84ShKOjI/z8/ACU3jjE29ubu9NSeYwZ9nrnAKp07RN1\n+wq1U1WvrE6xnK+dIa7rUtllatJP2/OpTll1mktN+1Z2PjUpry3zqY/3Ol+ZTuaT6cG9e/eYu7s7\ny8vLkys/evQoa9iwIROLxSwsLIxdu3atQl8A9KAHPehBj0o8qkrnp7m+fPkSffv2xeLFiytczbFt\n27aQSCSwsrLC3r170atXL+5uS2WYEWxhEEJIbSRiOvwELioqwscff4ywsDDExcUJtvfw8MCFCxfU\nvksVIYQQ3dHZMQjGGEaOHAkfHx+lySErK4vbQjh79iwYY5QcCCHESOhsF1NycjISEhIgFou5OyPN\nnTsXDx48AACMGTMGf/75J5YvXw4zMzNYWVlh48aNugqHEEKIhnS6i4kQQkj1Rb+kJoQQwqvaJYid\nO3di9OjR6N+/Pw4cOGDocKq9mzdvYuzYsYiJicHq1asNHU619+rVKwQEBGD37t2GDqXaO3r0KIKC\ngjB27FgcO3bM0OFUe4wxzJo1C7GxsVi7dq1afapdgoiMjMSqVauwYsUKbNq0ydDhVHstW7bE8uXL\nsXHjRiQlJRk6nGpvwYIF6Nevn6HDqBFMTExga2uLgoICuLq6Gjqcam/Hjh3IyMiAhYWF2vNpFAli\nxIgRaNKkCVq3bi1Xvm/fPrRs2RLNmzfH999/L1f33XffYfz48foMs9rQdD7/+9//omfPnujfv7++\nQzV6mszlgQMH4OPjAwcHB0OEWi1oMp9BQUHYs2cP5s+fj9mzZxsiXKOnyXzevn0bnTt3xsKFC7F8\n+XL1FlDln9ppwfHjx9nFixeZr68vV1ZcXMw8PT3ZvXv3WGFhIWvTpg27fv06k8lk7Msvv2QHDx40\nYMTGTZP5LC8iIkLfoRo9TeZy1qxZLC4ujnXv3p1FRkYymUxmwMiNU2VemwUFBaxv376GCNfoaTKf\nCQkJbPPmzYwxxmJiYtQa3yhuGBQUFIT09HS5srNnz8LLywtNmzYFAPTv3x87d+7EwYMHcejQIeTm\n5uLvv//GmDFj9B+wkdNkPh8/foxt27YhPz8fISEh+g/WyGkyl2VXI46Pj4eDgwPdMIiHJvN58+ZN\nJCUl4fnz55gwYYL+g60GNJnPiRMnYsKECfjrr7/QpUsXtcY3igTBJyMjA25ubtxzV1dXnDlzBv/5\nz3/oxVIJyuYzODgYwcHBBoys+lE2l2WGDh1qiLCqLWXzOX36dPTu3duAkVVPyuazbt26+PXXXzUa\nyyiOQfChb1/aRfOpPTSX2kXzqV3anE+jTRAuLi6QSCTcc4lEQmcyVAHNp/bQXGoXzad2aXM+jTZB\ntG/fHnfu3EF6ejoKCwuxadMmREREGDqsaovmU3toLrWL5lO7tDqfOjm0rqH+/fszJycnZmFhwVxd\nXdmaNWsYY4zt2bOHtWjRgnl6erK5c+caOMrqg+ZTe2gutYvmU7t0PZ90LSZCCCG8jHYXEyGEEMOi\nBEEIIYQXJQhCCCG8KEEQQgjhRQmCEEIIL0oQhBBCeFGCIIQQwosSBNE7ExMTTJkyhXu+cOFC/Otf\n/9LK2MOGDcPWrVu1MpYqW7ZsgY+PD7p27SpXLpVKER0dDQBITU3F3r17tbbMFy9eyF3Hv/yyCNEF\nShBE7ywsLLB9+3Y8efIEgHYvLlaVsYqLi9Vuu3r1avz66684dOiQXLmzszO2bNkCAEhJScGePXu0\nFsOzZ8+wbNky3mURoguUIIjemZubY/To0Vi0aFGFOsUtABsbGwCl9ycODg5Gr1694OnpienTp+OP\nP/5Ahw4dIBaLcffuXa7PwYMHERAQgHfffZe7N3RJSQmmTp2KDh06oE2bNli1ahU3blBQECIjI9Gq\nVasK8WzYsAFisRitW7fG9OnTAQDffPMNkpOTMWLECHz55Zdy7dPT09G6dWsUFRXh66+/xqZNm+Dv\n748tW7bg1atXGDFiBDp27Ii2bdsiMTERAPD7778jIiICXbt2Rbdu3fDq1St8+OGHaNeuHcRiMddu\n+vTpSEtLg7+/P6ZNm4b79+/D19cXAJCfn4/hw4dDLBajbdu2OHr0KDd2nz59EBYWhhYtWmDatGnc\nfAwbNgytW7eGWCzGTz/9pOH/IqkVtHNFEELUZ2Njw3Jzc1nTpk3Zixcv2MKFC9mcOXMYY4wNGzaM\n/fnnn3JtGWPsyJEjrH79+iwzM5MVFBQwZ2dnNnv2bMYYY4sXL2ZxcXGMMcaGDh3KwsLCGGOM3blz\nh7m6urL8/Hy2cuVK9t133zHGGMvPz2ft27dn9+7dY0eOHGHW1tYsPT29QpwZGRnM3d2d5eTksOLi\nYvbBBx+wHTt2MMYY69KlC7tw4UKFPvfu3ePu7vX777+zCRMmcHUzZsxgCQkJjDHGnj17xlq0aMFe\nvXrFfvvtN+bq6sqePXvGGCu9I1hubi5jjLHs7Gzm5eXFGGMsPT1d7s5h5Ze1cOFCNnLkSMYYYzdv\n3mTu7u4sPz+f/fbbb6xZs2YsNzeX5efns3feeYdJJBJ2/vx51q1bN26s58+fq/w/I7UTbUEQg7C1\ntcWQIUOwZMkStfsEBASgSZMmsLCwgJeXF3r06AEA8PX15e6qJRKJEBMTAwDw8vJCs2bNcPPmTezf\nvx9r166Fv78//vGPf+Dp06f4+++/AQAdOnTAO++8U2F5586dQ0hICBo1agRTU1MMHDgQx48f5+qZ\nwGXMGGNybfbv34/58+fD398fISEhKCgowIMHDyASidCtWzfUr18fACCTyTBjxgy0adMG3bp1g1Qq\nxePHj1UuLzk5GYMGDQIAvPvuu3jnnXdw+/ZtiEQidO3aFba2trC0tISPjw8ePHgAT09P3L17F7Gx\nsUhKSkK9evWEpp/UQkZ7RzlS88XFxaFt27YYPnw4V2ZmZgaZTAag9IOysLCQq7O0tOT+NjEx4Z6b\nmJio3Hdfdlzi559/Rrdu3eTqjh49Cmtra6X9yn8oM8bkjnFU5njHtm3b0Lx5c7myM2fOyMWwbt06\n5OTk4OLFizA1NYWHhwfy8/MFx1aWQMrPm6mpKYqLi1G/fn2kpqYiKSkJK1aswObNm7F69WqN14fU\nbLQFQQymQYMGiImJwerVq7kP26ZNm+LChQsAgMTERBQVFWk0JmMMW7ZsAWMMaWlpuHv3Llq2bIke\nPXpg2bJlXCK5ffs2Xr9+rXKsgIAAHDt2DE+ePEFJSQk2btyo0e1Z69Wrh7y8PO55jx495LaYUlJS\nuJjLy83NRePGjWFqaoojR47g/v37AEq3usqPV15QUBDWrVvHrduDBw/QsmVL3qTBGOPWqU+fPvj2\n229x8eJFtdeL1B6UIIjelf/mPXnyZOTk5HDPR40ahWPHjsHPzw+nT5/mDlIr9lMcr6xOJBLB3d0d\nHTp0wEcffYSVK1fCwsICn376KXx8fNC2bVu0bt0aY8eORXFxsVxfRU5OTpg/fz5CQkLg5+eH9u3b\nIzw8XO31CwkJwfXr17mD1F999RWKioogFovh6+uL2bNnV4gfAAYOHIjz589DLBbjjz/+gLe3NwCg\nUaNG6Ny5M1q3bo1p06bJ9Rs3bhxkMhnEYjH69++P+Ph4mJub866fSCRCRkYGQkJC4O/vj8GDB2P+\n/PmC60VqH7ofBCGEEF60BUEIIYQXJQhCCCG8KEEQQgjhRQmCEEIIL0oQhBBCeFGCIIQQwuv/AdQ/\nOewaK9D3AAAAAElFTkSuQmCC\n"
}
],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment