Last active
December 16, 2015 17:08
-
-
Save phobson/5467824 to your computer and use it in GitHub Desktop.
netCDF stuff
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "netCDF_stuff" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "# Reading Climate Projections in netCDF4 format\nSource of data: \nftp://gdo-dcp.ucllnl.org/pub/dcp/subset/2013042521460Ac001_HlwaoL/bcca/\n\n### netCDF/Python reference:\nRead/write netCDF files: http://www.unidata.ucar.edu/software/netcdf/examples/programs/\n\nPlotting with matplotlib: http://www-pord.ucsd.edu/~cjiang/python.html" | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "### Setup up the Notebook Environment" | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "%pylab inline\n%cd C:/Users/workshop/Desktop/netcdf/", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "### Setup the python environment and read the data" | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "import netCDF4\nimport matplotlib.pyplot as plt\nfrom mpl_toolkits.axes_grid1 import ImageGrid\nimport matplotlib.dates as mdates\n\nprojections = netCDF4.Dataset('Extraction_pr.nc')\nextent = [\n projections.variables['lon'][0], \n projections.variables['lon'][-1],\n projections.variables['lat'][0], \n projections.variables['lat'][-1]\n]", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 65 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "### Plot the first timestamp(?) of the three projections" | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "fig = plt.figure(figsize(12, 5))\ngrid = ImageGrid(fig, 111, nrows_ncols=(1, 3),\n axes_pad=0.1, add_all=True, \n label_mode=\"L\")\nfor n, ax in enumerate(grid):\n ax.imshow(rain.variables['pr'][n][0][:,::-1], interpolation='none', extent=extent)\n ax.set_xlabel('Longitude')\n ax.set_title('Projection %d' % (n+1,))\n if n == 0:\n ax.set_ylabel('Latitude')", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAtIAAAESCAYAAADQajKDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VNUd9/HvkIR9D7IlSNhkRwJBfVRKiiBSigq2KI+4\nAm51xaUqVaEqrVK1Fqu1alVoXer2gICICtEKFioBNwQtJBLCYsRAAiFkO88fkSmQZfI7ZhIyfN6v\n17zIzJzvPefO5Nz55XLn3oBzzgkAAACASb3aHgAAAABQF1FIAwAAAB4opAEAAAAPFNIAAACABwpp\nAAAAwAOFNAAAAOCBQhpV1qxZM6Wnp9eZ5QKRiHkI1C7mIA5FIR3hEhIS1LhxYzVr1kzt27fXZZdd\npn379nktKzc3VwkJCT9qPMnJyXrmmWeqfbnleeyxx5SUlKSGDRvqsssuq/blA1V1rM7DgoICTZ48\nWQkJCWrevLkSExO1ZMmSau0DqIpjdQ5K0qRJk9ShQwc1b95cXbt21f3331/tfRzLKKQjXCAQ0MKF\nC5Wbm6vU1FR9/PHHuu+++8q0KyoqqrHx1JS4uDjddddduvzyy2usT6A8x+o8LCoq0vHHH68PPvhA\nOTk5uu+++zRhwgR98803NdI/cNCxOgcl6Y477lBaWppycnL01ltvac6cOfxBW40opI8hHTt21Fln\nnaUvvvhCklSvXj09/vjj6tGjh3r27ClJeuqpp9SjRw/FxsbqnHPO0fbt24P5evXqafPmzZKkAwcO\n6JZbblHnzp3Vvn17XX311crPzw+2nT9/vgYOHKgWLVqoe/fuevvttzV9+nT961//0rXXXqtmzZrp\n+uuvL7PcPXv26OKLL1bbtm2VkJCg+++/Xwcvvvncc8/p9NNP16233qrWrVura9eulW4Mxo0bp3PO\nOUexsbHV+CoCP86xNA8bN26se+65R8cff7wkacyYMerSpYtSU1Or8yUFTI6lOShJffv2VcOGDYP3\no6Oj1bZt2+p4KSFJDhEtISHBvfvuu84557Zs2eL69u3r7r77buecc4FAwJ155pkuOzvb5efnu/fe\ne8+1adPGrV271h04cMBdd9117ic/+UlwWYFAwG3atMk559yNN97ozjnnHJedne1yc3Pd2LFj3R13\n3OGcc27VqlWuRYsWwX4zMzPdhg0bnHPOJScnu2eeeeawMR663Isuuside+65bu/evS49Pd2dcMIJ\nwfbPPvusi4mJcU8//bQrKSlxTzzxhOvYsWPI12D69Onu0ksv9X4NgR+LeVhqx44drmHDhm7jxo1e\nryPg61ifg1dffbVr3Lixi4qKck888cSPei1xOArpCNe5c2fXtGlT17JlS9e5c2f3q1/9yuXn5zvn\nSift8uXLg20vv/xy9+tf/zp4f+/evS4mJsZ98803wfabNm1yJSUlrkmTJsEJ75xzK1eudF26dHHO\nOXfFFVe4adOmlTue5ORk9/TTTx/22MHlFhUVufr167svv/wy+NyTTz7pkpOTnXOlG4/u3bsHn9u3\nb58LBAJu586dlb4Gv/nNbyikUauYh84VFBS4M844w1111VWVtgPCgTnoXElJiVu+fLmLjY11q1at\nqrQtqi66tveII7wCgYDmz5+v4cOHl/t8p06dgj9v375dSUlJwftNmjRRbGysMjMzg/81K0lZWVnK\ny8vT4MGDg48551RSUiJJ2rp1q8aMGVPpmMrz3XffqbCwUJ07dw4+dvzxxyszMzN4v3379sGfGzdu\nLEnau3dvpf9N5X747zCgthzr87CkpEQXXXSRGjZsqMcee6zCMQHhcqzPwYP9JScn65e//KVefPFF\nnXTSSRW2RdVxjPQx7tCJ3LFjx8NOvbNv3z7t2rVLcXFxh2XatGmjRo0aaf369crOzlZ2drZ2796t\nnJwcSaUbpP/+978h+ztSmzZtFBMTc9gYtmzZovj4eI81q1qfwNEgkuehc06TJ09WVlaWXnvtNUVF\nRXktBwinSJ6DRyosLFSTJk2qZVmgkMYhJk6cqGeffVaffPKJDhw4oDvvvFOnnHLKYX+BS6VfiJg6\ndapuvPFGZWVlSZIyMzO1dOlSSdLkyZP17LPPatmyZSopKVFmZqY2btwoSWrXrp02bdpUbv9RUVGa\nMGGCpk+frr179+qbb77RI488okmTJnmtT3FxsfLz81VUVKTi4mIdOHBAxcXFXssCakqkzcOrr75a\nGzZs0IIFC9SgQQOvZQA1KZLmYFZWll566SXt27dPxcXFevvtt/XKK6/onHPOMS8LFajVA0sQdgkJ\nCe69994r97l69eoddmyXc8795S9/cd26dXOtW7d2Y8eOdZmZmcHnDv0iRH5+vrvzzjtd165dXfPm\nzV3v3r3dnDlzgm3feOMNN2DAANesWTPXvXt3t3TpUueccx999JE74YQTXKtWrdwNN9xQZrnZ2dlu\n0qRJ7rjjjnOdOnVy9957ryspKXHOOffcc8+5oUOHhlyHg+655x4XCAQOu82cObPKrx1QXY7VeZie\nnu4CgYBr1KiRa9q0afD2wgsvmF4/4Mc6VudgVlaWGzZsmGvZsqVr0aKFGzJkiJs/f77ptUPlAs5x\nAClCKykpUXR0dLX+9xIAG+YhULuYgzgSh3agSj777DM1bNjwsC84AKhZzEOgdjEHcSQKaYT02muv\n6YwzztCDDz6o6GhO9ALUBuYhULuYgyhPnTu0gzMwADWnos0D8xCoGZV9RDMPgZpR2Tysk39SPffc\np1qxIrPM42vW/F2DB1f0rdYYj55KPDLHh25ypOE9QzZZ8+oMDf7FjOD9pAtWmrq4UP+wjkp5amzO\nFKq+qf1DM/6lX80YYe7HZ2w5am7O5KqZqX29Q35n5s14XRfNGB8ys0ndzOOKlv3sI7H6ztR+fODc\nSp+fOvWjch9fs+ZpDR48pYLU96YxlLKuq/13QzoxZIs1ax7U4MG3HfLIFo9+Bnlk9npk8kM3OUTp\nuk019uGzffThc5qufcGf1qx5TIMHX1uFTA1dMnlgqyo3fepXoQvlqVMXlHlszZoXNXjwRNOwKldD\npywMhN7erlnzrAYPvux/D4wbau6m1Vk7zRmrxtpvzrwz4886bcYtpszunJbmftx/PM6e86k9ol2l\n/6z5YIYG/2RG6PbfevTh8TpL20M3OcRTT1X+GV0nC+kPPtiqv/2tvHd1p1JTP6kg1cijpyKPjEfB\n3jB0Ia0MKfWQ2jnngq9MXfxCfzMOSsqVfYLuNxYx+crWt8ox97PbY2w71c4jY/twPbTA3akt+kwr\nQmZWyv6fQvVVYM4kKN2cqcxTT5V/flTpe6WmVvTcNx49FRrbt/boo2sV2hQoNTX3kPtpHv34FNIH\nPDK5oZscpkCpqdbiwmf76MPn/Tz0D7ZcpaZW5YOzhs6re27VC+mqeOqpNeU8uk2pqeU97stnR5SH\nQBW2t+47paZu+N/9rvZCOv4s+2eOVUvtNme26IC+MX4ebtvf1NxPyecehfRieyT4kfO9VKUpWNHH\nRqWsnw+SlOXTUYU4RhoAAADwEGGFdFX2KtVRccm1PYKwGJLcsLaHEDbdkjvW9hBqSe/aHkCYnFzb\nAwijSF63gbU9gFqQUNsDCKMTansAYdMgOUIv2d0oubZHEFZhK6SLi4uVmJiosWPHBh+bM2eOevfu\nrX79+unXv/51ubklS5aoV69e6tGjhx544AFjrxFcSMcn1/YIwmJIss8hN3VD9+S40I0iUqQW0qfU\n9gDCKJLXjUI6ogSqcChkHdUgOUL/oI3wQjpsx0g/+uij6tOnj3JzS4/VW758uRYsWKBPP/1UMTEx\nwctpHqq4uFjXXnut3n33XcXFxWnIkCE6++yz1bt3pH4wAwAAoK4KSyG9detWLV68WNOnT9fDDz8s\nSXriiSd0xx13KCam9EsLxx13XJnc6tWr1b17dyUkJEiSLrjgAs2fP79MIb127T8kHfxiTFdF9J5o\noIZ8k5KuLSmWLwO+fsjPvRW5e6KBGvJdSunN5ND2CYrovdFAjUj94VY1YSmkb7rpJs2ePVs5Of/7\n9unXX3+tDz74QHfeeacaNmyoP/zhD0pKSjosl5mZqU6dOgXvx8fHa9WqVWWWn5h4odau9TkXC4CK\ndE5OUOfkhOD9D2d+ECIR+tR+AAzaJJfeDtowswqh5JAtAFgM0uFnWHq60tbVfoz0woUL1bZtWyUm\nJh52AuuioiJlZ2fr3//+t2bPnq0JEyaUyXJyeQAAANQV1b5HeuXKlVqwYIEWL16s/Px85eTk6KKL\nLlJ8fLzGjy/dgzVkyBDVq1dPu3btUmxsbDAbFxenjIyM4P2MjAzFx8dX9xABAACAH63a90jPmjVL\nGRkZSktL00svvaThw4dr3rx5Ovfcc7Vs2TJJ0ldffaWCgoLDimhJSkpK0tdff6309HQVFBTo5Zdf\n1tlnn13dQwQAAAB+tLCfR/rg4RqXX365Nm/erP79+2vixImaO3euJGnbtm0aM2aMJCk6OlqPPfaY\nRo0apT59+uj888/njB0AAAA4KoX1EuHDhg3TsGHDJEkxMTGaN29emTYdO3bUokWLgvdHjx6t0aNH\nh3NYAAAAwI8W1kI6fKIkxRgzuR79tPbI7LdHHrNH/jnqElP7lwKXmfto3X+HOZPv8ZLtbtLCnFmp\nU82ZBKWbM42VZ2p/nMqeHz2U/6q7OXO+XjZnWirb1P53IVs0N49B8rlIjcecMrOc9u8gjz/4fba4\nRT4XLbJuHyWpnbF91U8P9T8+29QeHhmPF7qlx5fd7VNXqpNf+ymsmW5ckT3zqD3S6dcZoRsdIs3j\nlIJ5amzOtNRuc2brvz3mR7o94rXtss6PNh59pHt8Du3wmbgVi7BLhAMAAAA1g0IaAAAA8EAhDQAA\nAHigkAYAAAA8UEgDAAAAHiikAQAAAA8U0gAAAIAHCmkAAADAA4U0AAAA4IFCGgAAAPBAIQ0AAAB4\noJAGAAAAPETX9gD8FEsqrO1BVB+3xp4ZP8jU/JEDV5m7mKB/mjNvabQ5M2XFP8yZ8d++Zc6oiz2y\nYWBnU/tt6mjuI0Fp5sy/NNSciVKxMfHHEM/X1By09hPj0ccuj8xn9siIk+2ZjxvbM995bFPU3Nje\n43Vu2MeeSbBHdIFHxjbVS33jkfmvR6ZO8pmHHtuUHR+aIx89PNwWGGzuwmuT0n78Znuor7NnPg7Y\nMwn2iFfGKtsj83ysrf2Oyp9mjzQAAADggUIaAAAA8EAhDQAAAHigkAYAAAA8UEgDAAAAHiikAQAA\nAA8U0gAAAIAHCmkAAADAA4U0AAAA4IFCGgAAAPBAIQ0AAAB4oJAGAAAAPETX9gCObvs9Mrs8Mv3N\nCVeYaWr/2wN3m/u4Ke0v5syUPf8wZ9TAHska19ScmaeLzJkoFZva99RGcx/NlGvOtNVmc+ZB3WZM\n/NHcR2g5HpmE6h5EORp5ZLbaIztOtmcusUf0zGB7ZrczBr6095Fvj2ivR8annxUeGftmSNrtkamT\nCj0yre0R970985ix/Sv2LuKHfW3O7NzVzt7RewF75l17RG08MunG9r08+vCZ6zs8MpVgjzQAAADg\ngUIaAAAA8EAhDQAAAHigkAYAAAA8UEgDAAAAHiikAQAAAA8U0gAAAIAHCmkAAADAA4U0AAAA4IFC\nGgAAAPBAIQ0AAAB4oJAGAAAAPETX9gBqTqFHxufl2e+RiffIfG1q3aJBsbmHv/WaaM40U64500fr\nzZkO2mbOTNvyhDnjBtna5+aZu9BxeVnmzN81yZzpbXydV4ds8Y15DJLxBZUk7TK295lPzTwyO+2R\ndbZ5W5r50p5Rgj0SPcDWvqiPvY+r7BG18Mis88jke2SaemRQiUY10805tub14veZu/D5LBwYa//F\n7XfF5+bM76NmmjPaYI/oGWP7JR59eNV26T4dVYg90gAAAIAHCmkAAADAA4U0AAAA4IFCGgAAAPBA\nIQ0AAAB4CFshXVxcrMTERI0dO1aSNGPGDMXHxysxMVGJiYlasqT8r2cmJCRowIABSkxM1EknnRSu\n4QEAAAA/SthOf/foo4+qT58+ys0tPQVMIBDQtGnTNG3atEpzgUBAKSkpat26dbiGBgAAAPxoYdkj\nvXXrVi1evFhTpkyRc06S5JwL/hxKVdsBAAAAtSUse6RvuukmzZ49Wzk5OcHHAoGA5syZo7lz5yop\nKUkPPfSQWrZsWSYbCAQ0YsQIRUVF6corr9TUqVPLtFm79h/638UQuv5wA/Bj7Ej5SjtSLBcMefuQ\nn7tJ6l7NIwKOMbtSSm8mh7ZPkNfFeAAcYpWqckmyg6q9kF64cKHatm2rxMREpaSkBB+/+uqrdffd\nd0uS7rrrLt1888165pmyl71ZsWKFOnTooKysLI0cOVK9evXS0KFDD2uTmHih1q79tLqHDhzT2ief\noPbJJwTvfzJzUYjEqPAOCDjWxCaX3g76qipXoEsO2QKAxck/3A6aU2nraj+0Y+XKlVqwYIG6dOmi\niRMnatmyZbr44ovVtm1bBQIBBQIBTZkyRatXl1/td+jQQZJ03HHHady4cRW2AwAAAGpTtRfSs2bN\nUkZGhtLS0vTSSy9p+PDhmjt3rrZv3x5s88Ybb6h///5lsnl5ecEvJ+7bt09Lly4ttx0AAABQ28J2\n1g6p9EuDgUBAknTbbbfpk08+USAQUJcuXfTkk09KkrZt26apU6dq0aJF2rFjh8aPHy9JKioq0oUX\nXqgzzzyznCUXSNpvHE2Mxxo08sg098hs9cjYjke9SNPNPexW2WPYQ8lVM3OmSFHmTH0VmDPRHXeG\nbnSE5pMLbe1bmLvQdrU3ZxqZf/+ltGo/dtJn85HukRlvbO8zB9/yyPj0E9ZN7iE8znrUz9je45D4\nnz/+ijkzf+MF5szVPR82Z3I83s+3Dow2Z/Y8ZJjvC82Lr+Ni7ZGAfWdb03uzTO2Liu2fUQfUwJzx\n+cxtEthnzpw++V1z5sPrR5gz5tXZnRO6TRmW7/Uc9L1HpmJh3aonJycrOTlZkjRv3rxy23Ts2FGL\nFpUei9m1a1etW7cunEMCAAAAqgVXNgQAAAA8UEgDAAAAHiikAQAAAA8U0gAAAIAHCmkAAADAA4U0\nAAAA4IFCGgAAAPBAIQ0AAAB4oJAGAAAAPFBIAwAAAB7Ceonwo4vPqjbyyLS2R1rGmyOBgc7UvpV2\nm/vIVTNzJkHp5sy5+xaYMx81OcWcuSv6XnMm4fff2AIBcxcqUpQ5s1KnmjMDtc6cqZzP/OjvkWlu\na97Uo4u9cR6h7z0y+z0yHq9ZQ/s2RUm25p3++pW5iwXvnG/OvH+WbVsnSUMDN5kzFy40R/T66NHm\nzLXT51S57Y7fmBdfx3W2R5JizZE+Td83tT+gBuY+2mmnOXOO/p8585Z+Zs58uGCEOeMlwdg+3adO\na+eRqV7skQYAAAA8UEgDAAAAHiikAQAAAA8U0gAAAIAHCmkAAADAA4U0AAAA4IFCGgAAAPBAIQ0A\nAAB4oJAGAAAAPFBIAwAAAB4opAEAAAAPFNIAAACAh+jaHoCfRpKaGzPdPfqx9iGVjs1otz3iegVM\n7VfqVHMfUSo2Z2K1y5z5skkvc6ZA9c2ZE/WJObMqcJKpfUdtN/exRoPNmTR1MWeKFWXOVO5ke6T9\ngGoeQzn2+oS+9MgUemS2emTy7ZFGU8yRlnNsv7vfrLLP28/OcuZM8k/NETn76itqwD5zpt5O+zby\nzHZLq9z2LfPSjya2zyhJ0m/s2zXF2yMn6CtT+8/U39xHnhqbM3vV1JxJUJo5c/o575gzOtv+fn44\ndYQtkOJRP3lth3t4ZCoWco90SUmJ5s2bp9/+9reSpC1btmj16tXVOggAAACgrglZSF9zzTX66KOP\n9MILL0iSmjZtqmuuuSbsAwMAAACOZiEP7Vi1apXWrl2rxMRESVLr1q1VWOizKx0AAACIHCH3SNev\nX1/Fxf87DiwrK0v16vEdRQAAABzbQlbE1113ncaNG6dvv/1Wd955p0477TTdcccdNTE2AAAA4KgV\n8tCOSZMmafDgwXrvvfckSfPnz1fv3r3DPjAAAADgaFZhIf39998Hf27Xrp0mTpwoSQoEAvr+++/V\nunXr8I8OAAAAOEpVWEgPGjRIgUBAzjlt2bJFrVq1kiRlZ2erc+fOSkuzn7sQAAAAiBQVHiOdnp6u\ntLQ0jRw5UgsXLtSuXbu0a9cuLVq0SCNHjqzJMQIAAABHnZBfNvzoo4/0s5/9LHh/9OjRWrlyZVgH\nBQAAABztQn7ZsGPHjrrvvvs0adIkOef0wgsvKC4uribGBgAAABy1Qu6RfvHFF/Xtt99q3LhxGj9+\nvL799lu9+OKLNTE2AAAA4KgVco90bGys/vSnP9XEWAyaSLKeNcTnaowhX55ydLdH4j26GWhr/rGS\nzF00U645s1dNzZk8NTJnErXOnNmlWHOmpXab2q+zvjGSNh7oac7s+Xd7c6bPsPXmTOU8ToP5nUc3\nRTuNAWt7yW+u+/zPnP13XfrWHsl+3RzZ3WScqX3/otXmPj6/fog5s+6RE8yZQas2mDOuR8CcKUl2\n5syiB39R5bZVu/RZjHkMdpfYI/08Ptja2CO9r0w1Z07VClP7lso29/GV7Nv1n+hf5kwPfWXOXKS/\nmzNvPTzenNF8a+Azex8tB9gzVZ+CpZ6u/OmQnx4//elPyzwWCAS0bNky40gAAACAyBGykJ49e3bw\n5/z8fL322muKjvbZewMAAABEjpAVcVLS4YcEnH766RoyxP7fcwAAAEAkCVlIH3qFw5KSEn388cfK\nyckJ66AAAACAo13IQvrgFQ4lKTo6WgkJCXrmmWfCPjAAAADgaBaykN6wYYMaNmx42GP5+flhGxAA\nAABQF4Q8u86pp55apccAAACAY0mFe6S3b9+ubdu2KS8vT6mpqXLOKRAIKCcnR3l5eTU5RgAAAOCo\nU2Eh/fbbb+v5559XZmambr755uDjzZo106xZs2pkcAAAAMDRqsJDOy699FItX75czz33nJYvXx68\nLViwQOPHh77CTXFxsRITEzV27FhJ0owZMxQfH6/ExEQlJiZqyZIl5eaWLFmiXr16qUePHnrggQc8\nVwsAAAAIrwr3SM+bN08XXXSR0tPT9fDDDwcfP3iIx7Rp0ypd8KOPPqo+ffooN7f0MtMHM5XliouL\nde211+rdd99VXFychgwZorPPPlu9e3tcihgAAAAIowoL6YPHQefm5gZPf1dVW7du1eLFizV9+vRg\nEe6ck3Ou0tzq1avVvXt3JSQkSJIuuOACzZ8/v0whvXbt3yTt+uFerx9uAH6M3SmfanfKp4bEvYf8\n/BNJw6p5RMCxJeU/Tu//x5padsjPXX64AfC2PaX0VkUVFtJXXnmlJGnEiBE6/fTTD3vuww8/rHSh\nN910k2bPnn3YhVsCgYDmzJmjuXPnKikpSQ899JBatmx5WC4zM1OdOnUK3o+Pj9eqVavKLD8xcZLW\nrt1wyCP7Kx1PqUZVaHOkqiy3Ggz0yIyo/I+SI/XURnMXJ3hkGnu8Zos1xpy5PfNBc6Zpy1xzZkiT\n1ab2/1V3cx97NrQ3Z7TCHvlXr6GVN+g9VDr0b9aZ/wixxBuOuF+FCzUV+cwpa6bQow8fPuvSwyPT\n2iNT5NGNbYfJ+hcHm7u48JGnzZkOge3mTLtT0syZHQu6mjOBfvYv3l/R/tGKn+wn6bJD7j9xfRWW\neKZxBHHG9pLX76DH51rXG74wZx5W5f87Xp7BWmNqf0ALzX18Kfv/pPc/8Jk50/gtWy0gSTrHHlH5\nR+NW7rv1xsBaex97Bpgj9e7dF6LFkB9upUo6zKx8eaE6vO6668o8dv31FU/uhQsXqm3btkpMTDxs\nD/TVV1+ttLQ0rVu3Th06dDjsC4wHWfd8AwAAALWlwj3SH330kVauXKmsrCw9/PDDwaI4NzdXxcXF\nFS5w5cqVWrBggRYvXqz8/Hzl5OTo4osv1ty5c4NtpkyZEvwS4qHi4uKUkZERvJ+RkaH4+HivFQMA\nAADCqcI90gUFBcGiOTc3V3v37tXevXvVvHlzvfrqqxUucNasWcrIyFBaWppeeuklDR8+XHPnztX2\n7f/777k33nhD/fv3L5NNSkrS119/rfT0dBUUFOjll1/W2Wef/SNXEQAAAKh+Fe6RHjZsmIYNG6ZL\nL700+OU/q4Nn+JCk2267TZ988okCgYC6dOmiJ598UpK0bds2TZ06VYsWLVJ0dLQee+wxjRo1SsXF\nxZo8eTJn7AAAAMBRqcJC+qDGjRvrlltu0fr167V/f+mXawKBgJYtWxYiKSUnJys5OVlS6en0ytOx\nY0ctWrQoeH/06NEaPXp0VcYOAAAA1JqQXza88MIL1atXL23evFkzZsxQQkKCkpKSamJsAAAAwFEr\nZCG9a9cuTZkyRfXr19ewYcP07LPPVmlvNAAAABDJQh7aUb9+fUlS+/bttXDhQnXs2FHZ2dlhHxgA\nAABwNAtZSE+fPl27d+/WQw89pOuuu045OTl65JFHamJsAAAAwFErZCF98HzPLVu2VEpKiiRRSAMA\nAOCYF/IY6fI8/PDD1T0OAAAAoE7xKqQBAACAY13IQzuOTg0lNTNmamhVO8XaM7+xR/5Pt+Wm9jfq\nj+Y+vlVbc+Yzlb1iZSjvp59hzujiGHMkN7mRObPswp/bAkXmLqQNHpm77JGT71xlav9RqAZtPH7X\nG9oj+s7YPn+XRyetPTIr7JGAfWytC1qYM5PrlX/e/srMbnO3qb3rGTD3sSnQzZx5vPgac+ahz+0b\n1cBmZ878bsTt5syler7KbZ+uUqvmxhHYt50K5Nojk+zb24Uybm8l9fpzujmz4npb+07F9nVpJvtr\n9l0D+zb123PbmTM7nf2zXSn2iLTaJ2TjbJ9rklRy/cnVOoQKq8umTZsGr0p4pLy8vGodBAAAAFDX\nVFhI7927tybHAQAAANQpHCMNAAAAeKCQBgAAADxQSAMAAAAeKKQBAAAADxTSAAAAgAcKaQAAAMAD\nhTQAAADggUIaAAAA8EAhDQAAAHigkAYAAAA8VHiJ8KNbI0nNjZnWHv0MsEdOs0dOPXmZOfPh5yNM\n7QNFztxfUFiIAAAS4klEQVSHvrRHXMkr5szkC58xZya9P8+cSV16ujmjV43tu9i7GPR/PzRnzv/l\ny+bMrUP/bGof8q/shuYhSLZfWz/fxdozF3pk4j3e7Kb2eXhx9O/NmQc+nmHOjNq11NR+5LJ/mfu4\nwf3RnGlxb4E5848Z48yZvwy4xpy5NfMxc2ZmJ3MkhP3G9o08+vD4/GxpjxS4GHPmt9fZ+7nnOGPg\npSxzH51Ps2dcVMCcuaHDo+ZM6v/1+CxMsEe09VJjwKNOyX/TnnnlU3umEuyRBgAAADxQSAMAAAAe\nKKQBAAAADxTSAAAAgAcKaQAAAMADhTQAAADggUIaAAAA8EAhDQAAAHigkAYAAAA8UEgDAAAAHiik\nAQAAAA8U0gAAAICH6NoegJ+2kurbItF97N0U2SNqaI+s/Odwcyb65P2m9jntGpv7yB5UYs58LmfO\njNI35sy5F843Z7ad2dGc2fF0V1vgbXMXWtv3NHPmHydOMmcCdxnfm1EhnveZHx97ZPqFub2k1r/I\nNGe+vybO3lHngDnyxxduN2cev+0ac6bwV81N7V2hfV0unPqGPWP/VVdvpZozfQLrzZnANnNEEwzT\ncKZ98VWw0x5x79kjM88yZxJ/t9Gc6Vf8H3Omp+43tT8/e4G5D31tnx+/PGmuOTN/+AXmjFJS7Bn1\n9si0M7ZP9+jje4+MbVsXCnukAQAAAA8U0gAAAIAHCmkAAADAA4U0AAAA4IFCGgAAAPBAIQ0AAAB4\noJAGAAAAPFBIAwAAAB4opAEAAAAPFNIAAACABwppAAAAwEPAOefCseDi4mIlJSUpPj5eb775ZvDx\nhx56SLfeequ+++47tW7dukwuISFBzZs3V1RUlGJiYrR69erDBxwI6PLLnf72N+OAmnqsxF6PTIJH\nptgeCbxje9t2d29g7qP5C4XmjP5sj+xcHbrNkdr+IWDOzJx2mznzjJtsaj9B/zT38Yp+ac5smdTT\nnFErW/PAn6WKNg+BQEAa6LHp8JmHHxvb579m7yNg/33SOePtmavsEb3rkbnWY+4+F2Nr/7S9C/Xz\nyGz1yHSw/26e8/aL5sy1UReaMyMuqXrbwHMVz0Hph3movxpHEG9sL0kev08Nz7ZnOtgj+oU90uye\nb03tOzTZZu6jp74yZ9LUxZz5/N0h5oxGrrFnlOmRsb5uP/Hoo5FHxvo6Byqdh9EeI6iSRx99VH36\n9FFubm7wsYyMDL3zzjvq3LlzhblAIKCUlJRyi2wAAADgaBGWQzu2bt2qxYsXa8qUKYdV8dOmTdOD\nDz4YMh+mneQAAABAtQnLHumbbrpJs2fPVk5OTvCx+fPnKz4+XgMGDKg0GwgENGLECEVFRenKK6/U\n1KlTy7RZu3bGIfeSf7gB+DFSMktvVbZjxv9+bppcegPgLWVH6c3mzUN+PkGSx2FfAA6R8sOtaqq9\nkF64cKHatm2rxMREpaSUDiQvL0+zZs3SO++8E2xX0V7nFStWqEOHDsrKytLIkSPVq1cvDR069LA2\niYkztHZtdY8cOLYlx5XeDpr5nxCB9jPCORzgmJPcvvR20Mx1VUmNDddwgGNUsg7fQTuz0tbVXkiv\nXLlSCxYs0OLFi5Wfn6+cnBxdfPHFSk9P14knniip9NCPwYMHa/Xq1Wrbtu1h+Q4dSr9tcNxxx2nc\nuHFavXp1mUIaAAAAqG3Vfoz0rFmzlJGRobS0NL300ksaPny4Xn31Ve3cuVNpaWlKS0tTfHy8UlNT\nyxTReXl5wS8n7tu3T0uXLlX//v2re4gAAADAjxb280gHyjmt1KGPbdu2TWPGjJEk7dixQ0OHDtXA\ngQN18skn6+c//7nOPPPMcA8RAAAAMAvb6e8kadiwYRo2bFiZxzdv3hz8uWPHjlq0aJEkqWvXrlq3\nrkoHhQEAAAC1iisbAgAAAB4opAEAAAAPFNIAAACABwppAAAAwENYv2wYNm0kJRgzTT366eeR2e2R\nOd1+SfTbT7jH1L751YXmPg67YFYVzdxmz5xqj2jkm/bX7JZf/cGcea7Bpab2L2iiuY822mXO3P/3\naebM9HcetgX+HOJ5n63Hxx6ZfOvrU/nVU8vletgzZU9IFFp3+++tehWZIz/tvNScWZ48xtS+9XTL\nZTBLfX9HXOhGR7J3o8C99swbWyeZM98V2z9YcooPVL3xc1XZbrc2jsDjPfCZU/ke3fgMrbM90qLJ\nHlP7IsWY+zhBX5kz2WplzvzyjLnmzCvnX2zO6OVB9ozXRtLIp057ytj+/1T+NHukAQAAAA8U0gAA\nAIAHCmkAAADAA4U0AAAA4IFCGgAAAPBAIQ0AAAB4oJAGAAAAPFBIAwAAAB4opAEAAAAPFNIAAACA\nBwppAAAAwAOFNAAAAOAhurYH4KVQUr4x08ajn+88MtZxSdKmgDnyvobZAtH3mvuwdiFJ9/isf2+P\nTAt7pOnXxebMJ71PNLX/NKq/uY+/6yJzZkvgeHNm2pn3GxPTK3/646/NY5C+9MhkGtu39ugj1R75\nf3H2zOTTzZGYU/abM98r1pyZOOxvpvbx2mru4/0H7RuVpg/mmjMNAgXmzEbZ51S6EsyZN6PHGlrf\nUoU29vfaLscjY//90AqPD4Pe9s/Pttppat9A9t+nPDU2Z/povTlTHIgyZ3Sfs2cutb/OWmhsv8ne\nheLtkYa9vze1D1XWsEcaAAAA8EAhDQAAAHigkAYAAAA8UEgDAAAAHiikAQAAAA8U0gAAAIAHCmkA\nAADAA4U0AAAA4IFCGgAAAPBAIQ0AAAB4oJAGAAAAPFBIAwAAAB6ia3sAXhIkJRkzn3v0U+SRSfbI\nHLBHOga22QIX2fvQXo/MFo/M4x6ZLh6ZFfZIi04FpvZD/7vG3EerJbvNmUG7Us2ZdrE7jYnpIZ63\nLk+SvvfI5Bjb7/foo5k94k6zZ+bbI4XRzc2ZZqNyzZkEpZvaF6i+uY9TAyvNmZ1qZ840k339f6lX\nzJkvNlo/iCTX0PLBcksV2vQ2juBLY3vJa34o3iPjsX0YFmuOtNEuU/tGyjP3keDSzJlb7/izOaMr\n7ZGm3e0f7i93m2DO7Mjsagv4/Jo1tEfy17X26Khi7JEGAAAAPFBIAwAAAB4opAEAAAAPFNIAAACA\nBwppAAAAwAOFNAAAAOCBQhoAAADwEFmF9K6U2h5B+GSm1PYIwiJlQ22PIHxSfE6ZHBHW1vYAwmRj\nbQ8gbPakfFLbQwibbSn/re0h1AL7+brrDOdxQYA6ImWLq+0hhMfGlNoeQVhRSNcV21JqewRhkRK5\ntQmFdMT5qrYHEDZ7Uj6t7SGEzXYK6QgTuYX0+z4XNKsLKKQBAAAAHIlCGgAAAPAQcM7VqYNyAoFA\nbQ8BOGZUtHlgHgI1o7KPaOYhUDMqnYd1rZAGAAAAjgYc2gEAAAB4oJAGAAAAPFBIAwAAAB7qRCH9\nyiuvqG/fvoqKitKaNWuCj7/zzjtKSkrSgAEDlJSUpOXLlwefO+usszRw4ED17dtXkydPVmFhYbnL\n/t3vfqcePXqoV69eWrp0adjX5UjWddu/f7/GjBmj3r17q1+/frrjjjvKXW56eroaNWqkxMREJSYm\n6pprrqmR9TkoXOsl1b33TJKmT5+u448/Xs2aNatwubX9noUSqfMwUuegxDyMtHkYqXNQitx5yByM\nrDlYLlcHfPnll27jxo0uOTnZrVmzJvj42rVr3fbt251zzn3++ecuLi4u+Fxubm7w5/POO8/Nmzev\nzHK/+OILd+KJJ7qCggKXlpbmunXr5oqLi8O4JmVZ1y0vL8+lpKQ455wrKChwQ4cOdW+99VaZ5aal\npbl+/frVwBqUL1zrVRffM+ecW7Vqldu+fbtr2rRphcut7fcslEidh5E6B51jHkbaPIzUOehc5M5D\n5mBkzcHyRNd2IV8VvXr1KvfxgQMHBn/u06eP9u/fr8LCQsXExKhp06aSpMLCQhUUFKhNmzZl8vPn\nz9fEiRMVExOjhIQEde/eXatXr9Ypp5wSnhUph3XdGjVqpGHDhkmSYmJiNGjQIGVmZtbIWC3CtV51\n8T2LiYnRSSedVFPDC5tInYeROgcl5mGkzcNInYNS5M5D5mBkzcHy1IlDO6ritdde0+DBgxUTExN8\nbNSoUWrXrp0aNWqks846q0xm27Ztio+PD96Pj48/KidieesmSbt379abb76pM844o9xcWlqaEhMT\nlZycrA8//LAmhmris151/T0L5Wh/z0KJ1HkYqXNQYh6Wpy68bxWJ1DkoRe48ZA6WdbS/Z4c6avZI\njxw5Ujt27Cjz+KxZszR27NhKs1988YVuv/12vfPOO4c9/vbbb+vAgQM6//zz9fzzz+uSSy4JOY5w\nnOA+HOtWVFSkiRMn6oYbblBCQkKZXMeOHZWRkaFWrVopNTVV5557rr744otKj0uyqo31Kk9dec9C\nqYn3LJRInYeROgcl5mFF6uo8jNQ5KEXuPGQOlq+uzkGro6aQtr7QB23dulXjx4/XvHnz1KVLlzLP\nN2jQQOedd55WrVpVZuMRFxenjIyMw5YVFxfnNY7KhGPdrrjiCvXs2VPXX399udn69eurfv36kqRB\ngwapW7du+vrrrzVo0CCvsZSnNtarLr9nodTEexZKpM7DSJ2DEvOwPHV5HkbqHJQidx4yB8uqy3PQ\nrLYP0rZITk52H3/8cfB+dna2GzBggHvjjTcOa7d37163bds255xzhYWFbsKECe7pp58us7yDB+sf\nOHDAbd682XXt2tWVlJSEdyUqUNV1c8656dOnu/POO6/SsWZlZbmioiLnnHObNm1ycXFxLjs7u/oH\nHkJ1r1ddfc8OquwLFkfLexZKpM7DSJ2DzjEPj1TX52GkzkHnInceMgcPV9fn4KHqRCH9+uuvu/j4\neNewYUPXrl07d9ZZZznnnLv33ntdkyZN3MCBA4O3rKwst2PHDjdkyBA3YMAA179/f3fLLbcEf8EW\nLFjg7r777uCy77//ftetWzfXs2dPt2TJkqN+3TIyMlwgEHB9+vQJPv7MM8+UWbdXX33V9e3b1w0c\nONANGjTILVy4MCLWy7m6954559ytt97q4uPjXVRUlIuPj3czZ84ss261/Z6FEqnzMFLnYDjXzTnm\nYW2I1Dnos251ZR4yByNrDpYn4Jxztb1XHAAAAKhrIuasHQAAAEBNopAGAAAAPFBIAwAAAB4opAEA\nAAAPFNKQpOBlZMNlzJgxysnJ0Z49e/TEE0+Y8ykpKSFP/g7UdcxDoHYxB2FFIQ1J4bki0qEWLVqk\n5s2bKzs7W48//nhY+wLqKuYhULuYg7CikEaF1q1bp1NOOUUnnniixo8fr927d0uSkpOTdfvtt+vk\nk09Wz5499eGHH0qS8vLyNGHCBPXt21fjx4/XKaecotTUVElSQkKCdu3apdtvv12bNm1SYmKibrvt\nNr3//vuH/XV97bXX6vnnn5ckLVmyRL1799bgwYP1xhtvBNvs27dPl19+uU4++WQNGjRICxYsqKmX\nBKhxzEOgdjEHURkKaVTo4osv1uzZs/XJJ5+of//+mjlzpqTSv9iLi4u1atUq/fGPfww+/vjjjys2\nNlZffPGF7r33Xq1Zsya4rEAgoEAgoAceeEDdunXT2rVr9eCDD+rI05gfbJefn68rrrhCCxcu1Jo1\na7Rjx47gnoL7779fZ5xxhlatWqVly5bp1ltvVV5eXg29KkDNYh4CtYs5iMpQSKNce/bs0Z49ezR0\n6FBJ0iWXXKIPPvgg+Pz48eMlSYMGDVJ6erokacWKFbrgggskSX379tWAAQPKLLcq1/9xzmnDhg3q\n0qWLunXrJkmaNGlSMLt06VL9/ve/V2Jion7605/qwIEDysjI8F9Z4CjFPARqF3MQoUTX9gBQNxw5\n6Rs0aCBJioqKUlFRUYXtQomOjlZJSUnwfn5+vqSyx6kdudzXX39dPXr0MPUF1HXMQ6B2MQdxJPZI\no1wtWrRQq1atgsd8zZs3T8nJyZVmTjvtNP3zn/+UJK1fv16fffZZmTbNmjVTbm5u8H7nzp21fv16\nFRQUaPfu3XrvvfcUCATUq1cvpaena/PmzZKkF198MZgZNWqU/vSnPwXvr1271ns9gaMZ8xCoXcxB\nhMIeaUgq/XJEp06dgvdvvvlmPf/887rqqquUl5enbt266dlnny03e/Av5muuuUaXXHKJ+vbtq169\neqlv375q0aLFYW1jY2N12mmnqX///vrZz36mBx54QBMmTFC/fv3UpUsXDRo0SFLpX/l//etfNWbM\nGDVu3FhDhw7Vvn37JEl33XWXbrzxRg0YMEAlJSXq2rUrX7JARGAeArWLOQirgLP+/wNQgZKSEhUW\nFqpBgwbatGmTRo4cqa+++krR0fy9BtQU5iFQu5iDxxbeVVSbffv2afjw4SosLJRzTk888QQbDqCG\nMQ+B2sUcPLawRxoAAADwwJcNAQAAAA8U0gAAAIAHCmkAAADAA4U0AAAA4IFCGgAAAPBAIQ0AAAB4\n+P9W99ai+2+33wAAAABJRU5ErkJggg==\n" | |
} | |
], | |
"prompt_number": 60 | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment