Last active
August 29, 2015 14:25
-
-
Save phobson/998e62fe5f36b07494f1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"# Why Domain Knowledge is Crucial\n", | |
"\n", | |
"## Paul Hobson (@pmhobson)\n", | |
"### Geosyntec Consultants\n", | |
"\n", | |
"## Github: https://github.com/Geosyntec/wqio\n", | |
"\n", | |
"## Reference - Helsel and Hirsch (USGS) http://pubs.usgs.gov/twri/twri4a3/" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "subslide" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"import seaborn\n", | |
"from scipy import stats\n", | |
"\n", | |
"import wqio\n", | |
"\n", | |
"seaborn.set(style='ticks', context='talk')\n", | |
"np.random.seed(0)\n", | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": true, | |
"slideshow": { | |
"slide_type": "skip" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"def probabiity_plot(raw, ros, **kwargs):\n", | |
" ax = plt.gca()\n", | |
" color = kwargs.pop('color')\n", | |
" _ = kwargs.pop('marker', None)\n", | |
" qraw, xraw = stats.probplot(raw, fit=False)\n", | |
" praw = stats.norm.cdf(qraw) * 100\n", | |
" \n", | |
" qros, xros = stats.probplot(ros, fit=False)\n", | |
" pros = stats.norm.cdf(qros) * 100\n", | |
" \n", | |
" ax.plot(praw, xraw, mfc=color, mec='white', linestyle='None',\n", | |
" marker='o', mew=0.75, alpha=0.75, label='Original', **kwargs)\n", | |
" ax.plot(pros, xros, mec=color, mfc='none', linestyle='None',\n", | |
" marker='s', mew=0.75, alpha=0.75, label='Imputed', **kwargs)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"## Load some water quality data " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "subslide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>res</th>\n", | |
" <th>qual</th>\n", | |
" <th>parameter</th>\n", | |
" <th>units</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>2.00</td>\n", | |
" <td>=</td>\n", | |
" <td>Cu</td>\n", | |
" <td>mg/L</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>4.20</td>\n", | |
" <td>=</td>\n", | |
" <td>Pb</td>\n", | |
" <td>mg/L</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>4.62</td>\n", | |
" <td>=</td>\n", | |
" <td>Pb</td>\n", | |
" <td>mg/L</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>5.00</td>\n", | |
" <td>ND</td>\n", | |
" <td>Cu</td>\n", | |
" <td>mg/L</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>5.00</td>\n", | |
" <td>ND</td>\n", | |
" <td>Pb</td>\n", | |
" <td>mg/L</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>5.50</td>\n", | |
" <td>ND</td>\n", | |
" <td>Pb</td>\n", | |
" <td>mg/L</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>5.57</td>\n", | |
" <td>=</td>\n", | |
" <td>Pb</td>\n", | |
" <td>mg/L</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>5.66</td>\n", | |
" <td>=</td>\n", | |
" <td>Pb</td>\n", | |
" <td>mg/L</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>5.75</td>\n", | |
" <td>ND</td>\n", | |
" <td>Pb</td>\n", | |
" <td>mg/L</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>5.86</td>\n", | |
" <td>=</td>\n", | |
" <td>Pb</td>\n", | |
" <td>mg/L</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" res qual parameter units\n", | |
"0 2.00 = Cu mg/L\n", | |
"1 4.20 = Pb mg/L\n", | |
"2 4.62 = Pb mg/L\n", | |
"3 5.00 ND Cu mg/L\n", | |
"4 5.00 ND Pb mg/L\n", | |
"5 5.50 ND Pb mg/L\n", | |
"6 5.57 = Pb mg/L\n", | |
"7 5.66 = Pb mg/L\n", | |
"8 5.75 ND Pb mg/L\n", | |
"9 5.86 = Pb mg/L" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df = (\n", | |
" wqio.testing\n", | |
" .getTestROSData()\n", | |
" .assign(parameter=np.random.choice(['Cu', 'Pb'], size=35))\n", | |
" .assign(units='mg/L')\n", | |
")\n", | |
"df.head(10)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"## What's wrong with this?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "fragment" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAErCAYAAABdBbAiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VPXd///nJCEQCPsOggnbh112ZJWtilq1Wm1rN2tb\nu91ar7t3229bf61d1C7Wbta7LnXpbQt1aRUQpez7vu+fEJJACIQlgYSQfWZ+f0zQGAOZJDNzzsy8\nHteVS+bMOWdexDB5z2f1+P1+RERERBqS4HQAERERiQ4qGkRERCQoKhpEREQkKCoaREREJCgqGkRE\nRCQoKhpEREQkKElOB6jNGPMp4GfANcAx4BFr7QJjzDhgC1Ba6/THrbW/ciCmiIhIXPK4ZZ0GY8wg\nYCcwx1q72RgzG1gM9AbuAm6z1t7uZEYREZF45pruCWttBtCtpmBIAnoAxUAlMBrY42Q+ERGReOea\nlobLjDHpwBHAA3zDWvuCMWYTUAakAYnA6wS6LiodCyoiIhJnXNPSUMtxoCUwB/idMWYmcAZYCAwD\nZgAzCYx9EBERkQhxXUtDbcaYV4Aia+3DdY7fBTxhrR0cxD06A53rHE4kUJjst9ZWhyiuiIhITHPN\n7AljzC3Af1trP1brcEvAY4x5CnjUWltSczyFQHdFMB4CHr3Cc+lATgPXu7eqEhERCT3PlZ5wTdEA\n7ADGGWM+D8wD5gI3A5MIdE34jTE/IDCu4UfAc0He9+ma+9XWG1gZgswiIiJxw1XdE8aYqcDvgUGA\nBb5nrV1TMx3zz8AEAms1PGut/XkzXicNyAbSrbU5DZzunm+QiIhI+F2xpcFVRUOkqGgQERG5oisW\nDW6cPSEiIiIupKJBREREgqKiQURERIKiokFERESCoqJBREREgqKiQURERIKiokFERESCoqJBRERE\ngqKiQURERIKiokFERESCoqJBREREgqKiQURERIKiokFERESCoqJBREREgqKiQURERIKS5HSA2owx\nnwJ+BlwDHAMesdYuMMZ0BF4CZgJFwM+stS85l1RERCT+uKalwRgziEBhcL+1ti3wMPCaMaYz8AJQ\nDHQD7gZ+Y4yZ6FhYERGROOSaosFamwF0s9ZuNsYkAT0IFAqVwB3Ao9baSmvtNmAe8EXn0oqIiMQf\nV3VPWGtLjTHpwBHAA3wDGABUWWtzap2aAdwZ+YQiIiLxy1VFQ43jQEtgOrAQ+A1QVuecUqB1MDer\n6d7oXOdw72ZmFBERiTuuKxqstd6aP64yxvwLGAe0qnNaa6AkyFs+BDwaongiIiJxyzVjGowxtxhj\nltU53BI4CiQbY/rUPh04EOStn645v/bXrGbGFRERiTtuamnYAYwzxnyewEDHucDNwASgL/BLY8wD\nwHDg3prnGmStLQAKah8zxlSGMLeIiNQor6rgUsUlwEOnNh3weDxOR5IQck3RYK09bYy5Dfg98Axg\ngTustRk1xcKzwAkC3RLfrZlFISIiLnHi/El+vuh3VHqrALjumqH898e+7nAqCSXXFA0A1tr1wPh6\njp8HPh35RCIiEqy9Jw69XzC8/7i6kuSkZAdTSSi5ZkyDiIhEt1NFpz/02I+f/OKzDqWRcFDRICIi\nIXHi/Kl6jp10IImEi4oGERFptmqft96i4VjBCQfSSLioaBARkWbLO3+KqlrjGS7LPnfcgTQSLioa\nRESk2Y6czqr3eNa541R5qyOcRsJFRYOIiDTbofwj9R6v9laTeSY7wmkkXFQ0iIhIs1T7vBw8VX/R\nAHDg5OEIppFwUtEgIiLNcuR0FmWVdfcV/MDu3GBX/Re3U9EgIiLNsv3Ynqs+f+L8KfKLzkQojYST\nigYREWkyr8/LtpzdDZ63JXtnBNJIuKloEBGRJtuXd5jisosNnrchcxt+vz8CiSScVDSIiEiTrcnY\nFNR5Zy6e49BVBktKdHDVhlUioVBYVEpF5QfzwhMTE+jasY226BUJsYKSQnbn7g/6/BWH1jG016Aw\nJpJwU9EgMWXx2kP8452P9p3eMK4fX//UJAcSicSupQfXNKrLYWfuPs4Un6Nbuy5hTCXhpO4JiRl+\nv59lGzPqfW79rhwulVVGOJFI7CqpuMQaG1zXxGV+v593968IUyKJBNe0NBhjpgJPAQY4B/zGWvu8\nMWYcsAUorXX649baXzkQU1zsaG4BZwpL6n3O6/Wxdd9xZk4YEOFUIrHpPwdWU15d0ejr1h3Zwm0j\nb6RzascwpJJwc0VLgzGmI7AQ+L21tgNwD/BLY8xsYDSw2FrbttaXCgb5iFVbM5v1vIgEp7i8hGUH\n1jTpWq/Py6I9S0OcSCLFFUUD0BdYZK39J4C1dhewCpgMjAKuvnKIxL3iknLW78y56jmZxws4cuxc\nZAKJxLBFe5Y2qZXhsrVHNnOq6HQIE0mkuKJosNbusdbed/lxTcvDNALFwmhgijEmyxhzzBjzpDEm\n2ams4k7vrjtEVbW3wfPeXhn8SG8R+aj8ojOsPLSuWffw+X28tm1hiBJJJLlmTMNlxpj2wCJge81/\nv0Kg1eE5oAfwBvAz4IdB3q8z0LnO4d6hyivOO19Uyn/W26DO3XUoD5tzBpPWLcypRGLT/K1v4fX7\nmn2f3bn72Z93mOG9B4cglUSKK1oaLjPGpAMbCQyEvMta67fW3mGt/YO1tsxamw08AdzZiNs+BNg6\nXytDHF0cNP+9XVRUNdzKcNnfFuzA52v+m55IvNmdu589Jw6G7H5/3/IvqrzVDZ8oruGaosEYMwbY\nDLxnrf2EtbbCGNPBGPM7Y0xqrVNTgCtvp/ZRTxOYkVH7a1aocouz9mWcanAsQ105eYX8Z0P9UzNF\npH4V1ZX8ffO/QnrP/KIzvLdPUzCjiSu6J4wx3YElwJPW2idrPVUM3Ab4jDE/ANKAHxHoqgiKtbYA\nKKjzepqwHwMulVXywpubm3Tta0t2M9L0pHe39iFOJRKb3t71HudKCkN+34V7ljIhfTQ92qvLMBq4\npaXhK0AX4CfGmIuXvwiMXbgVGEmgy2It8Jq19k/ORRU38Pv9vPDmZs5dKG345HpUVnl5+h/rqWxE\nt4ZIvMo5l8uSA6vCcu9qXzUvb3wNXwjGSUj4eeJx1zFjTBqQDaRba3MaOD3+vkFR4ErLRTfW9HH9\n+Po912tfCpErqPZW89NFv+XE+VNhfZ0vTrqHWYOnhvU1JGhXfEN0S0uDSND22JPMW7wrJPdauz2L\nJUHOvBCJR4v2Lg17wQDw2rYFnL1Y0PCJ4igVDRJVjp08zx9fXdeoTXIa8vd3drBtf27I7icSK3LO\n5bJoz7KIvFZFdSUvrp+nbgqXU9EgUeN0wUV+/eJKyitDO0XL74c/z9vAoaNaoU7kssrqKl5Y9/eI\n/hI/nJ/JikPrI/Z60ngqGiQqFFwo5YkXVnLhYnlY7l9V7eXJV1aTlavmURGAt3a9S96F/CZd6/f5\n8fua1hr4xvaFWmLaxVQ0iOudLy7j8eeXc/YKO1iGSnlFNU/8dQU5eaGfViYSTTJOH2XJ/qbNlvD7\n/FxYmsuFpblNKhwqvVW8sPYfeH2a2eRGKhrE1c4XlfLYs8vIP3cxIq9XWlbFEy+ocJD4VV5VwQvr\n/oG/iRPHfKXVH/pqiqxzx1isRZ9cSUWDuFbBhVJ+8dxyTkWoYLispLSSx59foa4KiUtumcWwYPcS\njhfmOR1D6lDRIK509nwJP49gC0Ndl8oChYO20pZ4sj/vMKvsBqdjAOD1eXlh7d+p1t4UrqKiQVzn\ndMFFfvGXZWEfw9CQsooqfvnCCg5nn3E0h0gklFWW89KG+U7H+JDc8ydZtHep0zGkFhUN4ionzxTz\n878sa/Ly0KFWXlnNr/+6kgOZTRtFLhItXt++kMJLF5yO8RHv7FnGsYITTseQGioaxDXyThfx2HPL\nOF/cmE1Mw6+iystvXlrNvozwr4on4gSbn+mabom6vH4fr2z8p2ZTuISKBnGFk2eKeey55WFbh6G5\nqqq9/PaVNWpxkJhT5Q1sGOVm2edyWX5ordMxBBUN4gJnCkt4/PnlFJW4s2C4rKray29fXq0xDhJT\n3t23gvwi9/9M/3vnuxSUnHc6RtxT0SCOKrpYxi9fWOm6LokrqagKFA7HT+nNS6Lf2YsFvLM3MntL\nNFdFdSWvbV/gdIy4p6JBHFNRWc2Tr6zhdIEz0yqbqrS8il+/uIrCIncM1hRpqte2L6TKW+V0jKBt\nzd6Fzc90OkZcc03RYIyZaozZYoy5YIzJNMZ8reZ4R2PMWzXHjxljvux0Vmk+v9/Pc69vitoFlM4X\nl/HbV9ZQWaU55BKdjpzOYnvObqdjNNr8rW9rJ0wHuaJoMMZ0BBYCv7fWdgDuAX5pjJkNvAAUA92A\nu4HfGGMmOhZWQmLpxgw27z3udIxmyckr5P8W7nA6hkij+f1+Xt++0OkYTZJTkMv2nD1Ox4hbriga\ngL7AImvtPwGstbuAVcBk4A7gUWttpbV2GzAP+KJjSaXZTpwu4h/v7HQ6Rkis3JLJ9gO5TscQaZR9\neYc4cibb6RhN9u+d7+LzqbXBCa4oGqy1e6y1911+XNPyMA3wAFXW2pxap2cAgyObUELF5/Pz1zc3\nU+2NnX/wr7y9jdLy6OkXlvjm9/tZsPs/TsdolvziM2yNwq6VWJDkdIC6jDHtgUXAdgKtDQ/XOaUU\naN2I+3UGOtc53Ls5GaXptu3PJSPG9nMoLCrj3bWHuPvGkU5HEWlQxumjHD2b43SMZlu8bzkT00fj\n8XicjhJXXNHScJkxJh3YCJwD7gIuAa3qnNYaaMymBA8Bts7XymaHlUbz+/38e/k+p2OExXvrDlGm\n1gaJAksOrHY6QkjkFuZx6FSG0zHijmuKBmPMGGAz8J619hPW2grgCJBsjOlT+1TgQCNu/XTNNbW/\nZoUmtTRG5vECcvPdt7Z9KJRVVLNpzzGnY4hcVUFJIbtz9zsdI2RWHF7vdIS444ruCWNMd2AJ8KS1\n9snLx621F40xCwjMpHgAGA7cC9wc7L2ttQXAh+b1GWMqQxJcGmXrvuieLdGQLfuOM2viAKdjiFzR\n2iOb8fv9TscImV3H93OhtJgOrds5HSVuuKJoAL4CdAF+Yoz5Sa3jfwAeAJ4FThDolvhuzSwKiTIH\nj552OkJYZWSfwev1kZjomgY8kff5/D42ZMbWW6fP72NT1nZuHq7G40hxRdFgrX0CeOIqp3w6Ulkk\nPPx+PyfPFDkdI6wqqrwUFJXSrVOq01FEPuLomWOcKyl0OkbIbcnaqaIhgvSRSCKirLyKiqrY39pW\nS0uLW23L2eV0hLDIKcjlzMXYmpHlZioaJCKq42QhFp8vdvqLJXb4/X52Ho/NmUsAu2L47+Y2Khok\nIlolt3A6QkS0SnZFj5/Ih+RdOBWTXROX7T7emAl10hwqGiQiklskkto62ekYYdexXYrTEUQ+Yt+J\nw05HCKuMM1mUVZU7HSMuqGiQiOndrb3TEcKqdUoyHVQ0iAvtPxnbRYPX59WW2RGiokEipl+fuqt5\nx5Z+13TSkrbiOpXVVWScznI6RtgdyLNOR4gLKhokYob06+Z0hLAa2q+70xFEPuLo2RyqvLG/xPlB\nLSkdESoaJGKG9u9BYkLsfhIfMain0xFEPuLgyfj4ZZp3IZ8LpcVOx4h5KhokYlq3aoFJi83WhnZt\nWpLeu5PTMUQ+4sDJ+Gm2P3gqfv6uTlHRIBF13eBeTkcIi5GmFwkx3Ioi0amk/BLZ52J7z5fa9mtc\nQ9ipaJCIGjGoh9MRwmKkuibEhfbmHcJP/Cw4tu/EQXxxspCcU1Q0SET17dGR1q1ib6Gnwemx2e0i\n0W338djZBjsYFysucfRsjtMxYpqKBomohAQPab1iq+8/tXVLOndo7XQMkQ+prK5kz4n4Wylxa85u\npyPENBUNEnFdOrZxOkJIde3YRusziOvsPL6fiupKp2NE3NbsXXh9sb85nlNct1C+MWYC8Ja1tnfN\n43HAFqD29oGPW2t/5UQ+ab7k5ESnI4RUS+03IS607shmpyM4oqismL0nDjG673Cno8Qk17zbGWM8\nwP3A74Da5fFoYLG19nZHgknIlZbF1kIzpeXx92lO3O3khdNxNdWyrhWH16loCBM3dU/8CPg28BhQ\nu613NLDHkUQSFsdOxtZue3lniqmsqnY6hsj7luxf6XQER+3PO8zxwjynY8QkNxUNL1prRwHb6xwf\nDUwxxmQZY44ZY540xsT+dokx6vip8+Sdia1V27xeH9v25zodQwSAsxcL2JC51ekYjluwe4nTEWKS\na4oGa23+FZ46AywEhgEzgJnAzyIUS0Ls38tjcwrYwlUHqPZqfrg4780d7+D162dxx7G9HDmd7XSM\nmOOaMQ1XYq29o9bDbGPME8ATwA+Dud4Y0xmou71i7xDFk0bYtj+Xrftic3W63PwiFq46wF1zRjgd\nReLY4fxMtmTvdDqGa/x9y5v85OPfITEhtgZfO8k1LQ31McZ0NMb8zhiTWutwClDWiNs8BNg6X/Hd\n4eeA7BOF/O/8DU7HCKs3l+5l895jTseQOFVZXckrG19zOoarHCs4wdKDa5yOEVPc3tJQBNwG+Iwx\nPwDSCAyYfK4R93gamFfnWG9UOETM4ewz/PaV1VRUxf7c6WfmbaCqysu0sf2cjiJx5vXti8gvOuN0\nDNf5147FDO81mD6dYnPfm0hza9HgB7DW+owxtwJ/Bs4RWKvhWWvtn4K9kbW2ACiofcwYozlyEeD3\n+1mzPYuX39pGVXXsFwwAXp+fv7y2ifxzF7lrzggSE13dmCcxYsexPSw/tNbpGK5U7avmL6tf4ce3\nfYeUFq2cjhP1PH5//GxmcpkxJg3IBtKttTkNnB5/36AQuFRWyctvbWPj7hynozhmcHpXvvnpyXTt\nlNrwySJNdPLCaX7+zlOUV1U4HQUAb0kVF5YGZhN1uLEPianu2GtmXNoovjXjPhI8KuSDcMUlbpv0\n3TPGeIwxfYwxGl0iH+L3+9mwK5v/eXJRXBcMAIezz/L9p95h0WrNrJDwKC67yO+XPeeagsHNtufs\n5t8733U6RtQLqnvCGNObwNiAx4CDwHJgMnDSGHOrtVaLLwmZx8/xz3d3czDrtNNRXKOiysv8d3ez\ndkc29948itFDemufCgmJsspyfr/8ec6WFDR8sgDwzt5ldGzdntlDpjkdJWoFO6bhGaADgbEB9wHD\ngUnAF4A/Elg/QeLUidNFvLl0D1v3aYGjK8k7XcRvX1mDSevKp28epa20pVkqqiv5w4oXyD4Xm1OY\nw+nVzW/SqkVLpgyY4HSUqBRs0TALmGCtPWaM+QSwyFq7xRhzFojN1XqkQUdzC1i46oBWQ2wEm3OW\nn/9lGYPTu3LHrOGMHNRTLQ/SKBVVFfx++fPY/Eyno9SruuiDrpJLewtoPbgDSZ3cNQDxr+vm4ffD\n1IEqHBor2KKhCkiqWS9hBvDlmuM9gZIw5BKX8vn87Dqcx5L1lgOZV1rEUxpyOPssh19cxbU9OzJ3\nmmHSdWkkt9AQIbm6SxWl/HHFC2ScznI6Sr2qC8sp2X72/cdV+aUUnyuj3dSerioc/Ph5cf08qrxV\nzBw8xek4USXYomEZ8BJwicAOlO8YY+YCfwIWhymbuMilskrW7shi6QbL6QLViaFy7NR5nnt9M/MX\n72L29QOZff1AOrVv7XQscaELpUU8tfRZcs+fdDrKFZVlFoH3wxPO/NV+yo4W09ZFRQMECoe/bXqd\ni+Ul3HbdjWrxC1KwRcPXgJ8TWFzpdmvtRWPMWGA18D/hiSZO8/v9ZB4vYMWWI2zec4zKOFicySnF\nlyp4a8V+Fqw6wOghvZk9cQAjB/UkIUHTwwTyzp/id8ueo+DSeaejXFV1QXn9x881ZhHfyPr3rncp\nuHSeL0y6hyQtN92gRq/TYIxJArzW2qhdv0DrNFzdxUsVbNiVzeptRzl+6oLTceJWl45tuGFcP6aP\n60fXjlrrIV7tzzvMM6tepqyq/l/IblK4OAd/xUenF3taJtDp1rTIB2qE4b0G880Z99GmpVr6uMo6\nDUEXDcaYbwLfIdDaMBj4f8BZ4P+LtgJCRcNHeb0+9macYs32LHYePKF1BVzE44Gh/XswY3w/xg3r\nQ8tkty7kKqHk9/tZenA1/9y2gGhZhC+aiwaAHu268e3ZX6VXh+5OR3HaFYuGYNdp+DbwA+CnwB8I\n/CJdQWB5Zx/w42ZHFEccO3medTuy2LArh6IS93+SiUd+PxzIzOdAZj4pLZOYOPJapo1Jx6R3IyFB\n/bCxqKKqgpc3vsbmrB1OR4kr+cVn+Pk7T/HAtM8z9tqRTsdxpWA/snwL+Lq1dpEx5ikAa+1rxphi\n4HlUNESVwqJSNu7OYf3ObHU/RJmyimpWbzvK6m1H6dKxDVNGpzF1TDq9u7V3OpqESH7RGZ5Z9bKr\nBzzGsvKqCp5e+SK3jpjDXWNu0bbadQRbNPQFDtRzPAvoEro4Ei5l5VVs25/L+l3ZHMjMJ0paO+Uq\nzp2/xIKVB1iw8gD9runE1DHpTBqVRvtUd41Sl+Btzd7FSxvma1loF1i8bzmZZ7L5xoz76NhaRfll\nwRYNe4A7gafqHP86sCukiSRkvF4f+46cYv3ObLYfOBFXsx+8ZQVUFh7GW36exFadSO5kSEzp7HSs\nsMk6UUjWiUL+/s5ORg7qydTR6Ywddo3GP0SJyupK5m99m1V2g9NRpBZ7+ig/WfAbHpj2eUZeM8Tp\nOK4Q7DvKd4D3jDEzgZbAT40xQ4AhwNxwhZPG8/v9NeMUstmwO4fiOByn4C0roPT4KvBVA1BdWUJ1\nyUla950Z04UDBBbf2n34JLsPn6RVchITRvZl2ph0hvTrrvEPLpV3IZ+/rHqFExdOOR1F6nGxvITf\nLXuWucNncfeYW0lKjO9CvDFFw+3AHKAcaEtgwadPWGvzwpRNGuHCxTLW78xm3Y5scvPje5xCZaF9\nv2B4n6+aysIMUnpPciaUA8orq1m7PYu127Po0qE1U8ekM21sP3p2bed0NCFQ4K88vJ5/bltAlbfK\n6TjSgCX7V3LoVAbfuOGL9Gwfv7MrgppyaYwpILD3xNHwRwJjzATgLWtt75rHHQmsSDkTKAJ+Zq19\nqRn3TyMGplxWe33sPpzHmm1Z7Dqch8/n2qgRVXJkIf7q0o8c9yS1JnXg7Q4kcpfB6V2ZMX4AE0b2\npZW6LxxRVFbMS+vns+fEQaejhFS0T7kMRnJSMveO/wQzzORYXkWyeVMugd8BLxlj/kBg8OOHlvey\n1mY0PdsHjDEe4P6a16us9dQLQDHQDbiOQFfJAWvtllC8brQ5W1jCii1HWLMtS9Mk6+O/wtiNKx2P\nM4ezz3I4+yx/W7CNSaPSmDNpIGm9OjkdK27sOr6flzbM52K5lmOPRpXVlfxt0+vsPnGAr0y5l3Yp\nbZ2OFFHBFg2/qPlvfZuQ+4FQzUn5EXAP8BiBxaOo2STrDmCgtbYS2GaMmQd8EYiboiHQV53H8s1H\n2GNPavaDNFtZRTUrt2SycksmA/p2Yc6kgVw/8lptnBUm5VUVzN/6FmsyNjkdRUJgT+4BHnn7V3x5\nymcY3XeE03EiJtiioV9YU3zgRWvt48aYGbWODQSq6nQjZBCYzRHzKiqrWbcji3fXHSb/3EWn40iM\nyjx+jszj55i3eBc3TRnEnOsH0bZNS6djxYwjp7N5ft2rnL1Y4HQUCaGL5SX8ccVfmTZwIp+deBcp\nLWJ/unNQRUMQ/f4hYa2tb6/lNtTpDgFKgZheILy0vIol6w+zZL2lpFRztiUyikvKeeM/e1mw8gAz\nJwzg9hlD6ahdN5us2lvN27uXsHjf8qhZCloab92RLRw+lckD0z/HoO79nY4TVtEwCqoUqFu+tQaC\n6hA0xnQG6s6z6x2CXGFRXlnN0g2Wd9YcpKS0suELRMKgssrLfzZYVm7JZM6kgdw+Yyjt26Y4HSuq\n5F3I5/k1r3Ks8ITTUSQCzpYU8Mt3n+aWEbO5c/TNMTs1Mxr+VkeAZGNMH2ttbs0xQ/0rVNbnIeDR\nsCQLIb/fz9Z9uby6aAeFRR8d+S/ihKpqL++tO8zqrUe5+6aR3DhpEImJ2q77avx+PysOreO17Qs1\nlTLO+PGzeN9y9ucd5us3fDEmN75yfdFgrb1ojFkA/NIY8wAwHLgXuDnIWzwNzKtzrDewMnQpm+d8\nUSnPvbGZvRla3EXcqayiilcX7mDttiy++ZlJ9O3Z0elIrlRUVsyL6+ezN8amUkrjHCs8wU8XPsm9\nE+6MuamZbi4aancAPgA8C5wg0C3xXWvttmBuYq0tAD40+sgY45p2//1H8vnz/A1xuXKjRJ9jp87z\n46f/w/13jmfG+Njuu22sAyctz619leIyDVgWqPRW8bdNr7P/5GG+POVe2rSMjbFBriwarLWrCazJ\ncPnxeeDTjgUKk427c3hm/kYNkAqD1NRUbr89sJDTggULuHTpksOJYkdVtZfn39jM2cIS7rnpOqfj\nOM7n8/H27iUs2rMUv3vXghOH7Di2l5yCE/zXjC/Rr+u1TsdpNlcWDfFg9+E8/vJPFQzhkJqaymM/\n/wn9+gVmCk+cOJFHHnmES2XqXw6lt1bsp01KMrdMj9+NfC6Wl/Dsmv/jwEnrdBTXUMH+UQUlhTzx\n7h/57MS7mGmmRHV3hUY0OaC8sprn39iMV8s+h8Xtt936fsEA0K9fv/ffxCS05r+3m9MF8dkcn1uY\nx08X/lYFQy2pqak8/vjj3Hvvvdx777088cQTpKamOh3LFap9Xv5v0xu8vPE1qr3VDV/gUioaHLBs\nYwYXLmoMg0Q/r9fHv5fvczpGxO09cZDHF/+RgkvnnY7iKrffersK9gaszdjEU0uf5VJFdM6SU9Hg\ngIycs05HiGkLFr5DVlbW+4+zsrJYsGCBg4lim82Or5/nzVk7+MPyFyiv1qJr0jSH8o/wqyV/jspB\nsyoaHKB1GMLr0qVLPPLII8yfP5/58+fzox/9SP2qYXS+OH5+njdkbuW5Na/i8390J0eBBe8sUMEe\npNzCPJ54709RVzhoIKQD+vTsQHZeodMxYlpJSQnz5tVdnkPCoU+PDk5HiIg9uQd4cf18zZC4issF\ne92BkJ73V8BwAAAatElEQVSW+nxan/yiM/x++XN8f+6DUbNvhf5POmDs0GucjiASMmOGxP7P8+ni\ns/xl9d/UwhCEywX7vHnz1MIXhOxzuby8/p9RM5NORYMDxg27hhEDezgdQ6TZunVK5dYbYnvKpc/n\n47k1r2oMg4TN1pxdbMgMar1Cx6locIDH4+Fr91xPl45tnI4i0mStkpN48LNTaJkc272cm7J2kHXu\nmNMxJMa9sWMRldWuWaz4ilQ0OKRzhzb8+Otz6NpJc5gl+qS0bMEPHpjFgL5dnI4Sdov3LXc6gsSB\norJi1mdudTpGg1Q0OKhrp1R+8dBNjB7cy+koscWT2Ljj0ihpvTry2LfnMujark5HCbuzFws4eSHf\n6RgSJ/aeOOR0hAapaHBYuzat+O79M/ji7WNpFePNvJGS2Lr+T7+JrWP/l1w4JSR4uHX6EH724E30\n7NrO6TgRkVOQ63QEiSM55447HaFB+i3lAh6Ph7lTBzNhRF/mLd7Jxt3qP22O5E6G6osnwV9rqdaE\nJJI7DXIuVJQbnN6N++8cHzfTKy+LlhHtEhuiYXaOigYX6dS+NQ9+dio3Tja8sXQPBzJPOx0pKiWm\ndKZVr4mU520IPE7tRcsuw0hM6exwsujTp0cH7r5xJOOGXRPVm+w0VfuU+GhREXeIhp83FQ0uNCit\nK498bQ4Hj57m38v2cTBLxUNjJbb64BNxq+6jSUhu62Ca6NOnR3vunD2CCSP6kpAQf8XCZf27pdGq\nRUvKqzTdUsJveO/BTkdoUNQUDcaY7wJPALX/9c611m5wKFLYDe3fnaH9u5OVW8A7aw6yZV+umksl\nrIYN6M7HbxjKyEE947Jloa6khERmmCks2b/S6SgS4xITEplhJjsdo0FRUzQAo4AfWGt/53SQSOvX\npzPf/vw0zhSWsGxjBqu3HeVSmfvn80p0aJGUyJTRadw4eRBpvTs5Hcd17rjuJjYd3U5RWbHTUSSG\n3TRsBt3buX+wdjQVDaOBl50O4aRunVL53MfHcPeNI9m05xjLNmZoDwtpsm6dUpkzaSA3jOtP2zYt\nnY7jWinJrXho1pf59ZJnqPJWOR3H1TwJnnp35vDEcRdXMIb2HMRdo29xOkZQoqJoMMa0BgzwsDHm\n78B54ElrbVwWES2Tk5gxvj8zxvcn+0QhK7dmsnFXNmUV1Q1fLHEtMTGB8cOuYdbEgQzt3z2uxys0\nxoBu6Xxrxpd4ZtXLVPv07+xKkjq3ovLER/ebSOqS4kCa6NCvy7U8NOsrJCVGxa9jPNHQR26MSSPQ\nyvBrYDlwPbAIuNdau6SBazsDdYfN9wZWAunW2pwGXt793yCgvKKKzXuPs2bbUWzOWafjOM5XeZFL\nRxcD0Kb/rXE/EPKa7u25YXx/po5Jp31qdOym50aZZ3L404oXKC4vcTqKK1UXllO07hR4P3jb9CR5\naDe1J0md9HNX1/i0UXx12udomZTsdJS6rvhpIiqKhvoYY/4EJFtrv9HAeT8FHr3C0zFTNNR26mwx\na7ZnsW5HFueLy5yO4wgVDdC6VQsmXXctMyYMoN81nTSwMUQKSs7z1/X/4NCpI05HcaWKvBJKtpwB\noEWP1rQe3EEFQx1JCUl8csyt3DR8BgkeV66xeMU3i6hoDzHGjAVutNb+stbhFCCYcv9pYF6dY5db\nGmJSz67t+MzNo/jUTSPZdySftduz2H7gBFXVXqejSZh5PB5GDurB9LH9GDvsGpJbRMU/8ajSObUj\n37vpW6w8vIHXty+Mik2GIimp/QfjY9qM7ExiagsH07hPepe+fHXa5+jdITp3Oo6Wd5Ri4MfGmAzg\nLWAm8GlgekMXWmsLgILax4wxcfGvPCEhgetML64zvbhUVsnmPcdYtyOLjGPnnI4mIda7Wzumje3H\n1DHpdGrf2uk4MS/Bk8CcIdMY23cEb+x4h41Ho2NbY3FOu1apfHLsx5k2YCIJCa5sXQhKVBQN1toj\nxpi7gV8CfwOOA/dZa3c7myx6tElJZvb1A5l9/UBOnS1m3c5s1u/I4tyFUqejSRO1SUlm8ug0po/t\np+4Hh3Rs04GvTf88c4ZM480d73DwVIbTkcRlWiW1ZM7Q6dw6Yg4pydHfTRO1Yxqao2ZgZTYxOqYh\nWD6fn4NHT7N2x1G27sulsip2ui9idUxDQoKH60wvbhjXj9FDetMiSTt3uonNz+Tt3UvieryD3+fn\nwtLARl8dbuwTt9MtWyYl87Gh07lp2Ezatkp1Ok5jxd5AyOZQ0fBRpeVVbNlzjDXbj8ZE90WsFQ29\nurXjhnH9mTY2nQ5tNX3N7TLPZPPe/pXsPLYPf3y8hXyI3xf4O8djwdAupS1zhkxnlplCaqs2Tsdp\nKhUNtalouLq8M0Ws3Z7F2u1ZFJWUOx2nSWKhaGiVnMSkUWnMGN+fAX07q/shCp0uPst/DqxmQ+ZW\nKjRgMqb17tCDG4fNYFK/cSQnRf3gTxUNtaloCE6118fOgydYtTWTvRmniKYflWguGgb07czMCQOY\ndN21tGoZ9W8+ApRWlrEhcxsrDq8jv+iM03EkRBI8CYy9diSzh0zDdO8fS4V9dE+5FGckJSYwYURf\nJozoy9nzJazeepRVWzO5cDE6Wx/cLKVlElPHpDP7+oH07dnR6TgSYq2TU/jY0OnMGTKNQ6eOsDpj\nIzuO7cXri51xRPGkc2onpg+8nukDJ9KxTYeGL4ghamlQS0OjVHt97DhwgmWbMjh41L1bdkdLS0Pf\nnh342KRBTBmdplaFOFNcXsKGzK2sydik1ocokOhJYFSf4dxgJjO8l4nqaZNBUPdEbSoaQiM3/wJL\n1lvW78x23cJRbi4aPB4P44dfw01TDIPTu8VSk6Y0gd/vJ/NMNmuPbGZr9i6NfXCZXu27M23Q9Uzu\nP472Ke2cjhMpKhpqU9EQWhcvVbByyxH+s8G6puvCjUVDq+QkZk0cwE1TDV07Rt0ULImA8qoKtmbv\nYn3mVjJOH3U6TtxKadGKieljmDpwIv27XhuPhb2KhtpUNIRHVbWXDbtyWLzmIHlnih3N4qaioUPb\nFG6eZpg1cSBtUly3MY241Onis6zP3MqGzK0UXrrgdJyY58HD0F6DmDpgAmOvHUmy+zaRiiQVDbWp\naAgvn8/P9gO5vL1iPzknzzuTwQVFQ9eObbh95jCmj+unRZikyXw+H4fyj7DuyBZ2HNtLlbfK6Ugx\npVvbLkwdMIEpA8bTObWT03HcQrMnJHISEjxMGNGX8cP7sPvwSd74zx7HigcndOnYhrvmjGDqmHSS\nEmN6sJREQEJCAsN6GYb1MpRWlrE1exdrj2wm6+wxp6NFrZZJyYxPG8W0gdczqHu/eOx+aDK1NKil\nIex8Pj/b9ufyxtI9nIxQt4Xf7+XS0XcBaNP/Fjye8H/S79C2FZ+YPZyZEwaoZUHCLu/8KdYd2cKG\no9u4WB7Mhr8ysFs60wZez/j0UaS0iP59IMJI3RO1qWhwhtfrY9XWTN5cupfiSxVhfz2/PzCjI9wF\nQ3KLRD5+w1A+fsMQTZuUiKv2edl9fD9rMjaxP+9wXC5bfTVtW7ZhyoAJTB80iV4dujsdJ1qoaKhN\nRYOzSsureHvFPt5bdxivL7q/vVNGp3HvLaO1HbW4wrmSQtYd2cyajM1cKC1yOo6jhvYcxAwzmdF9\nR9AiUT3xjaSioTYVDe6Qd7qIl9/e5upFoq7kmu7tuf/O8Qzpp08u4j7VPi+7ju9j1eENcbVdd0py\nCtMGTGDm4Cn0bK9/m82goqE2FQ3u4ff7WbM9i78v2kFpuftHhScmJvCJWcO4Y+YwkjRuQaLAyQun\nWX5oDeszt1EZowtH9WrfnY8NvYHJ/cfRskVLp+PEgugvGowxo4HngKHAEeAb1totTbxXGioaXOV8\nUSnPv7mZPfaU01Gu6NqeHfnmZyZpbwiJSiUVl1ibsZnlB9dSWBob6z6M6D2Em4bNYFgvoxkQoRXd\nRYMxphWQCfwC+CvwReBXQD9r7aUm3C8NFQ2u4/f7Wboxg3mLd1JV7XM6zofcOn0In5p7nWZFSNSr\n9lazKWs7i/etiMo9LzweDxPTx3DriNn06dTb6TixKurXaZgJeK21z9U8ftkY89/ALcAbzsWSUPJ4\nPNw0xWDSuvKHV9dxptD5aWStU1rwrU9PZszQa5yOIhISSYlJTBt4PVMGTGDHsb0s2LWEExfc28J3\nWYIngSkDxnPbdTfSrW0Xp+PErWgpGgYDB+scszXHJcak9e7EY9+ey5/nbWBvhnNvZn16tOc7991A\n987O71shEmoJngTGp41i7LUj2Zq9m7d3vUd+sftaHjx4uL7/WD4xai7d23V1Ok7ci5aioQ1QWudY\nKdDgPDdjTGegc53DatNyudTWLfne/TN4ddEOlm6M/OjvUYN78eBnp9K6ldZdkNiW4Eng+n5jGJd2\nHavtRt7e9R4lFY3u9Q2LIT0G8pkJn+Dazmrpc4toKRouASl1jrUGLgZx7UPAoyFPJGGXmJjAfXeM\no1P71vzzvd0Re93p4/rxwCcnkqgloCWOJCUkMmfINCb1G8vbu95j+eF1ODXmrXObjnxu4icZ3Xe4\nBji6TLQUDYeAB+scM8A/grj2aWBenWO9gZUhyCVh5vF4uH3mMNqkJPPiv7eG/fVummL44u1j9UYl\ncatNy9Z87vpPMnnAeF7Z8BrHCk9E7LU9Hg83Dr2BO0ffQitNnXSlaJk9kQxkEZgx8RzwBeAJArMf\nyppwvzQ0eyLqLNuUwctvbQvb/T82eRBfumOcCgaRGtU+Lwt2L+GdvcvC3urQNbUzX5v+BQZ2Tw/r\n60hQrvgmGBXtr9baSuBm4F6gAPgv4PamFAwSvT42aRCfmntdWO49ZXQa992ugkGktqSERD455lZ+\nMPchOqS0C9vrTEwfw8/v+L4KhigQFS0NoaaWhujl9/t58d9bWbklM2T3HNKvGz/86iyt8ChyFedL\ni3h65Ysh3ZLbg4d7xt3GzcNnqWB3l+huaRC5zOPx8KU7xjE4PTRTr7p0bMPDX5imgkGkAR1bt+cH\ncx9kVJ/hIblfYkIi35r5JW4ZMVsFQxRR0SBRJykpkYc+O5W2bZo3UCoxwcO3PzeVdm1ahSiZSGxL\nTkrmwVlfZnzaqGbdJykhkYdnP9Ds+0jkqWiQqNSxfWseuHtis+7xyY+NZEBfrSwn0hhJCYl8ffoX\nGNbLNOl6Dx6+Nv0LjLxmSIiTSSSoaJCoNW5YHyaPurZJ16b16sjHZwwNcSKR+JCUmMR/zbyf7k1Y\nzvnOMbcwIX10GFJJJKhokKj2uY+PpVXLxi83cv+dE0jS4k0iTdY6OYUHZ32ZpITgxwMN7z2Yj4+c\nE8ZUEm5615So1rFdCnfMHNaoayaPSmPgteqWEGmuPp16c9t1NwZ1bqukltw/+dMkePRrJ5pFy4qQ\nIld009TBvLfeUlxS3uC5Ho+Hu28cGYFUIvHh4yM/RsuklpwvvXDFczx4GHPtCDqndopgMgkHFQ0S\n9VolJzF3quH1JXsaPHfSdX3p0UW7VoqESmJCInOHz3Q6hkSI2okkJsyeOJAWSQ3/OM+dqt3URUSa\nSkWDxIS2bVoyYUTfq55zbc+O9O9Td5d0EREJlooGiRlTx1x93fopY9K08pyISDOoaJCYMWxAD1q3\nanHF5yc20BIhIiJXp6JBYkZSYgIjTa96n+vToz1dO6VGOJGISGxR0SAxZcSAHvUeH3aF4yIiEjwV\nDRJTTHq3eo8PvsJxEREJXlSs02CM2Q+kA76aQznW2hEORhKX6tm1Ld06pXKmsOT9Yy1bJF6xmBAR\nkeC5vmgwxqQABuhmrT3vdB5xN4/Hw6PfupGMnLP48QPQt0dH2qdq+2sRkeZyfdEAjADyVTBIsDq2\nS2HiSM2UEBEJNVcUDcaYRKC+tX19wGigyhizERgA7AIettYejmBEERGRuOeKogGYCSyt53gO8Ctg\nK/B94AzwY+BdY8xQa22DOxQZYzoDdZcB7N2stCIiInHI4/f7nc7QaMaYC8BN1totQZz7U+DRKzyd\nbq3NaeAW0fcNEhERaborLp3rlpaGKzLGfB3ItNauqHmcBLQAGt4HOeBpYF6dY72BlSELKSIiEgdc\nXzQA3YCHjDFzgQLg18Aha23D+yAD1tqCmuveZ4ypDHlKERGRGBcNRcMTQDsC4xpSgdXAHU4GEhER\niUeuLxqstV7gezVfIiIi4hAtIy0iIiJBUdEgIiIiQVHRICIiIkFR0SAiIiJBUdEgIiIiQVHRICIi\nIkFR0SAiIiJBUdEgIiIiQVHRICIiIkFR0SAiIiJBUdEgIiIiQVHRICIiIkFR0SAiIiJBUdEgIiIi\nQXHd1tjGmD8Cldba79U6Ngf4A5AG7AS+Yq094kxCERGR+OSalgZjTGdjzCvAQ4C/1vHuwL+A/wd0\nAJYDbzmRUUREJJ65pmgA1gGVBAoET63jdwG7rLWLrbXVwGNAL2PMeAcyioiIxK2IdU8YYxKBtvU8\n5bPWFgOzrLX5xpiX6zw/GDh4+YG11meMOVpzfFvYAouIiMiHRLKlYSZQWM/XbgBrbf4VrmsNlNU5\nVgqkhCemiIiI1CdiLQ3W2uU0rUipr0BoDZQEc7ExpjPQuc7h3k3IISIiEtdcN3uiHoeAey4/qOnm\nGECtLosGPAQ82ozX9zR8ioiISOxzY9FQ95f0W8CvjTF3AouBHwK51trdQd7vaWBenWOJQEvgRHOC\nioiIxBM3Fg1+ak25tNaeNsbcQWCdhr8BuwjMqAiKtbYAKAh1SBERkXjj8fv9DZ8lIiIicc9N6zSI\niIiIi6loEBERkaCoaBAREZGgqGgQERGRoKhoEBERkaC4ccqlSEgYY5KAa5zOIRLHTtRsNCgxQkWD\nxLLhBNb1EBFnjKZmfyGJDSoaJJZV1Px3FpDtZBCROJMOrOSDf4MSI1Q0SCzz1vw3z1qb42QQkXhi\njEmu+aP3qidK1NFASBEREQmKigYREREJiooGERERCYqKBollBcDP0C6nIpGmf3sxSrtcioiISFDU\n0iAiIiJBUdEgIiIiQVHRICIiIkFR0SAiIiJBUdEgIiIiQVHRICIiIkFR0SAiIiJB0YZVEhOMMXOB\n7wHXAR5gG/CItXaHo8FEYpgxxgeUAT7AX/O1Cfgfa+0BY8yXgE9ba292LqWEkloaJOoZYx4AXgae\nAroDvYClwEpjzFAns4nEgfHW2rbW2nZAZ2Af8J4xRr9fYpBWhJSoZoxpDZwC7rXWvlvnuSeAHcBD\nwBvW2mdqjj8IfNJaOzPSeUViSU1Lw3Br7cFax4YRKBy6ALcDXwVOAHOBXOAb1toNDsSVEFAlKNFu\nCoFutiV1n7DW/sha+y8+aDYVkdDzXP6DMaYj8G1gn7W2sObwZGAR0IlAa+A7NedJFNKYBol2XYDz\n1lqf00FE4tTGmhYHgApgM/DJWs9vsNb+o+bPrxhjHgZuBf4ewYwSIioaJNrlA52MMYnWWm/tJ4wx\n7YFLzsQSiRuTandP1ON4nccngB5hzCNhpO4JiXabgErglnqeewn4K+AFWtY63jkCuUQkoFedx2lA\nTuRjSCiopUGimrW23BjzQ+B5Y8xXCMyaSAH+G5hNoD/1QWCuMeZ/gd7A5wkMyBKR8JtmjPkU8Bbw\nNaAj8O7VLxG3UkuDRD1r7V+A7wCPAmeAbGACMKOm2fRXBArk08DrwCvOJBWJOQ0NMPYTGKT8ZaAQ\nuBe42VpbGu5gEh6acikiIiJBUUuDiIiIBEVFg4iIiARFRYOIiIgERUWDiIiIBEVFg4iIiARFRYOI\niIgERUWDiIiIBEVFg4jEJGNMqjHmfqdziMQSFQ0iEqv+h8CyxSISIioaRCRWeZwOIBJrtIy0iNTL\nGOMjsGfAjwjsVLgC+Jq19nTN8xOBXwPjCHwA2QF801q73xgzA/gn8A/gK8CL1tr/McZ8j8Cn/75A\nMfAm8JC1ttoY81NgMIGtlL9OYFvzHwAFwB+BbsDbwP2Xt0Gv6X64nO8A8ENr7QpjzJcI7HIK4LfW\nJhpjWgBPAF8gsOvpeuDb1trsWn/fXwDfALKttdeH7rspEhvU0iAiV/M4gWb+yQR2J3wLwBjTFngP\n2AAMB6YCicBTta7tBlwDjAb+1xjzeQJFwH8BA4BvAvcB99S65hM19xlFoKB4Fnik5pzPAZ8CPlmT\n4RbgN8D3gRHA/wHvGGOGEyhYngJ2Aj1r/V1mAHcC1wOngFXGmNrbpn8KuAH4aqO/UyJxQFtji8jV\nPGGtXQRQ8+k90xhzHZBP4Jfw76y1fiDHGPMS8NM61/+q1if5PsB91tqlNc/lGmMeBobWOv8i8F1r\nrd8Y8yyBbc0fs9buAnYZY3YDQ2rO/QHwa2vtWzWP/2yMmQw8bK19wBhzCaiy1p4xxqQADwHTrLXb\na/J8AzgG3E2gRQTgeWvt4WZ8v0RimooGEbmadZf/YK3NMsYUAsOttXuMMS8D364pIgwwBjhf5/qs\nWtevNsaMM8Y8RqAbYgSBFod1tc4/VlOEAJTWvQdQRqBrAQLFxnhjzKO1nk8GNtfz9+hfc91qY0zt\nPtlWwKD68orIR6loEJGrqa7zOBHwGmN6AduBvcAS4FUCLQA/rnN+2eU/1Iw/+DPwV2AR8Cjwlzrn\nV9WTwXeFbInAdwl0k1zmASrqOffye90MoLDO+RfqyysiH6WiQUSuZhxwEMAYMwhoD+wB7gVKrbVz\nL59ojLmZq89Y+A6B7o7Ha85PItDSsKGJ2Q4Badba91sHjDGPE+g6eRqo3aKQSaAA6l6reyIJmA88\nA6xuYgaRuKKiQUSu5jFjzAkC3Q7PAMustYdquiR6GmNuAiwwF3iggXvlAbONMW8S6Cr4EdCJQBdB\nsGoXJb8B5hljLLAKuIXAoMhba56/CPQwxqRba7ONMf9LYNxDFZBd8/ozCYybEJEgaPaEiFzNi8AL\nBD6JZ/LBTIfXgVeAeQRaHqYBNwPtjDHpNefUnc/9MIExB7sITJ3cAvySwFiIy+fXveaKj621b9fc\n8/sEplt+A/hCrYGW/yLQ3bHPGNOt5ry3CMyy2AWkAzdenkIqIg3TOg0iUq+adQtmWGvXOp1FRNxB\nLQ0iIiISFBUNIiIiEhR1T4iIiEhQ1NIgIiIiQVHRICIiIkFR0SAiIiJBUdEgIiIiQVHRICIiIkFR\n0SAiIiJB+f8BtdsUOFMwNRcAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x10954f2e8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fig, ax = plt.subplots(figsize=(8, 4))\n", | |
"seaborn.violinplot(data=df, x='parameter', y='res')\n", | |
"seaborn.despine(trim=True, offset=10)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "fragment" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.lines.Line2D at 0x1095ab208>" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAErCAYAAABdBbAiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Wd0XOW9/v3vSLJsufeKjeV2u4ONC8YFN8D0QCA5nBRC\nEtJOCOvkJPkn4UlIoSQhpBFOKKHkkNihJOAGxr333m9ZlmTLsmXZki1ZVp+Z58XIIGTJGkkzs/fM\nXJ+1tPDs2XvPJaHym7t6/H4/IiIiIg1JcDqAiIiIRAcVDSIiIhIUFQ0iIiISFBUNIiIiEhQVDSIi\nIhIUFQ0iIiISlCSnA9RkjPkM8HPgKuAY8Ji1dr4xZhywBSipcfqT1tpfORBTREQkLnncsk6DMWYI\nsBOYba3dbIyZBSwG+gD3Andaa+9yMqOIiEg8c033hLU2DeheXTAkAT2BIqACGAPscTKfiIhIvHNN\nS8MlxphU4AjgAb5hrX3ZGLMJKAX6A4nAWwS6LiocCyoiIhJnXNPSUMNxoCUwG/idMWYGkAcsAEYA\n04EZBMY+iIiISIS4rqWhJmPM60ChtfbRWsfvBZ6y1g4N4h5dgC61DicSKEz2W2urQhRXREQkprlm\n9oQx5jbgv621N9U43BLwGGOeBR631hZXH08h0F0RjEeAx+t5LhXIauB691ZVIiIioeep7wnXFA3A\nDmCcMebzwFxgDnArMIlA14TfGPNDAuMafgy8GOR9n6u+X019gJUhyCwiIhI3XNU9YYyZAvweGAJY\n4PvW2jXV0zH/DEwgsFbDC9baXzTjdfoDmUCqtTargdPd8wUSEREJv3pbGlxVNESKigYREZF61Vs0\nuHH2hIiIiLiQigYREREJiooGERERCYqKBhEREQmKigYREREJiooGERERCYqKBhEREQmKigYREREJ\niooGERERCYqKBhEREQmKigYREREJiooGERERCYqKBhEREQmKigYREREJiooGERERCUqS0wFqMsZ8\nBvg5cBVwDHjMWjvfGNMJeBWYARQCP7fWvupcUhERkfjjmpYGY8wQAoXBQ9badsCjwJvGmC7Ay0AR\n0B24D/iNMWaiY2FFRETikGuKBmttGtDdWrvZGJME9CRQKFQAdwOPW2srrLXbgLnAF51LKyIiEn9c\n1T1hrS0xxqQCRwAP8A1gEFBprc2qcWoacE/kE4qIiMQvVxUN1Y4DLYFpwALgN0BprXNKgNbB3Ky6\ne6NLrcN9mplRREQk7riuaLDWeqv/ucoY8y9gHNCq1mmtgeIgb/kI8HiI4omIiMQt14xpMMbcZoxZ\nVutwS+AokGyM6VvzdOBAkLd+rvr8mh8zmxlXREQk7rippWEHMM4Y83kCAx3nALcCE4B+wNPGmIeB\nkcAD1c81yFqbD+TXPGaMqQhhbhERqVZWWc7F8ouAh85tOuLxeJyOJCHkmqLBWnvaGHMn8HvgecAC\nd1tr06qLhReAEwS6Jb5XPYtCRERc4sS5k/xi4e+o8FYCcM1Vw/nvm77ucCoJJdcUDQDW2vXA+DqO\nnwM+G/lEIiISrL0nDn1UMHz0uKqC5KRkB1NJKLlmTIOIiES3U4WnP/HYj5/cojMOpZFwUNEgIiIh\nceLcqTqOnXQgiYSLigYREWm2Kp+3zqLhWP4JB9JIuKhoEBGRZss5d4rKGuMZLsk8e9yBNBIuKhpE\nRKTZjpzOqPN4xtnjVHqrIpxGwkVFg4iINNuh3CN1Hq/yVpGelxnhNBIuKhpERKRZqnxeDp6qu2gA\nOHDycATTSDipaBARkWY5cjqD0ora+wp+bHd2sKv+i9upaBARkWbZfmzPFZ8/ce4UuYV5EUoj4aSi\nQUREmszr87Ita3eD523J3BmBNBJuKhpERKTJ9uUcpqj0QoPnbUjfht/vj0AiCScVDSIi0mRr0jYF\ndV7ehbMcusJgSYkOrtqwSiQUCgpLKK/4eF54YmIC3Tq10Ra9IiGWX1zA7uz9QZ+/4tA6hvceEsZE\nEm4qGiSmLF57iH8surzv9MZxA/j6ZyY5kEgkdi09uKZRXQ47s/eRV3SW7u27hjGVhJO6JyRm+P1+\nlm1Mq/O59buyuFhaEeFEIrGruPwia2xwXROX+P1+3t+/IkyJJBJc09JgjJkCPAsY4CzwG2vtS8aY\nccAWoKTG6U9aa3/lQExxsaPZ+eQVFNf5nNfrY+u+48yYMCjCqURi04cHVlNWVd7o69Yd2cKdo2+m\nS9tOYUgl4eaKlgZjTCdgAfB7a21H4H7gaWPMLGAMsNha267GhwoGucyqrenNel5EglNUVsyyA2ua\ndK3X52XhnqUhTiSR4oqiAegHLLTW/hPAWrsLWAXcAFwLXHnlEIl7RcVlrN+ZdcVz0o/nc+TY2cgE\nEolhC/csbVIrwyVrj2zmVOHpECaSSHFF0WCt3WOtffDS4+qWh6kEioUxwGRjTIYx5pgx5hljTLJT\nWcWd3l93iMoqb4Pnvbcy+JHeInK53MI8Vh5a16x7+Pw+3ty2IESJJJJcM6bhEmNMB2AhsL36v18h\n0OrwItATeBv4OfCjIO/XBehS63CfUOUV550rLOHD9Taoc3cdysFm5WH6dw9zKpHYNG/ru3j9vmbf\nZ3f2fvbnHGZkn6EhSCWR4oqWhkuMManARgIDIe+11vqttXdba/9grS211mYCTwH3NOK2jwC21sfK\nEEcXB837YBfllQ23Mlzyt/k78Pma/0tPJN7szt7PnhMHQ3a/v2/5F5XeqoZPFNdwTdFgjBkLbAY+\nsNZ+ylpbbozpaIz5nTGmbY1TU4D6t1O73HMEZmTU/JgZqtzirH1ppxocy1BbVk4BH26oe2qmiNSt\nvKqCv2/+V0jvmVuYxwf7NAUzmriie8IY0wNYAjxjrX2mxlNFwJ2AzxjzQ6A/8GMCXRVBsdbmA/m1\nXk8T9mPAxdIKXn5nc5OufXPJbkabXvTp3iHEqURi03u7PuBscUHI77tgz1ImpI6hZwd1GUYDt7Q0\nfAXoCvzUGHPh0geBsQu3A6MJdFmsBd601v7JuajiBn6/n5ff2czZ8yUNn1yHikovz/1jPRWN6NYQ\niVdZZ7NZcmBVWO5d5avitY1v4gvBOAkJP0887jpmjOkPZAKp1tqsBk6Pvy9QFKhvuejGmjZuAF+/\n/3rtSyFSjypvFT9b+FtOnDsV1tf54qT7mTl0SlhfQ4JW7y9Et7Q0iARtjz3J3MW7QnKvtdszWBLk\nzAuReLRw79KwFwwAb26bz5kL+Q2fKI5S0SBR5djJc/zxjXWN2iSnIX9ftINt+7NDdj+RWJF1NpuF\ne5ZF5LXKqyp4Zf1cdVO4nIoGiRqn8y/w61dWUlYR2ilafj/8ee4GDh3VCnUil1RUVfLyur9H9I/4\n4dx0VhxaH7HXk8ZT0SBRIf98CU+9vJLzF8rCcv/KKi/PvL6ajGw1j4oAvLvrfXLO5zbpWr/Pj9/X\ntNbAt7cv0BLTLqaiQVzvXFEpT760nDP17GAZKmXlVTz11xVk5YR+WplINEk7fZQl+5s2W8Lv83N+\naTbnl2Y3qXCo8Fby8tp/4PVpZpMbqWgQVztXWMITLywj9+yFiLxeSWklT72swkHiV1llOS+v+wf+\nJk4c85VUfeKjKTLOHmOxFn1yJRUN4lr550v45YvLORWhguGS4pIKnnxphboqJC65ZRbD/N1LOF6Q\n43QMqUVFg7jSmXPF/CKCLQy1XSwNFA7aSlviyf6cw6yyG5yOAYDX5+XltX+nSntTuIqKBnGd0/kX\n+OVfloV9DENDSssrefrlFRzOzHM0h0gklFaU8eqGeU7H+ITscydZuHep0zGkBhUN4ion84r4xV+W\nNXl56FArq6ji139dyYH0po0iF4kWb21fQMHF807HuMyiPcs4ln/C6RhSTUWDuEbO6UKeeHEZ54oa\ns4lp+JVXevnNq6vZlxb+VfFEnGBz013TLVGb1+/j9Y3/1GwKl1DRIK5wMq+IJ15cHrZ1GJqrssrL\nb19foxYHiTmV3sCGUW6WeTab5YfWOh1DUNEgLpBXUMyTLy2nsNidBcMllVVefvvaao1xkJjy/r4V\n5Ba6/3v63zvfJ7/4nNMx4p6KBnFU4YVSnn55peu6JOpTXhkoHI6f0i8viX5nLuSzaG9k9pZorvKq\nCt7cPt/pGHFPRYM4pryiimdeX8PpfGemVTZVSVklv35lFQWF7hisKdJUb25fQKW30ukYQduauQub\nm+50jLjmmqLBGDPFGLPFGHPeGJNujPla9fFOxph3q48fM8Z82ems0nx+v58X39oUtQsonSsq5bev\nr6GiUnPIJTodOZ3B9qzdTsdotHlb39NOmA5yRdFgjOkELAB+b63tCNwPPG2MmQW8DBQB3YH7gN8Y\nYyY6FlZCYunGNDbvPe50jGbJying/xbscDqGSKP5/X7e2r7A6RhNkpWfzfasPU7HiFuuKBqAfsBC\na+0/Aay1u4BVwA3A3cDj1toKa+02YC7wRceSSrOdOF3IPxbtdDpGSKzcks72A9lOxxBplH05hziS\nl+l0jCb798738fnU2uAEVxQN1to91toHLz2ubnmYCniASmttVo3T04ChkU0ooeLz+fnrO5up8sbO\nD/zr722jpCx6+oUlvvn9fubv/tDpGM2SW5TH1ijsWokFSU4HqM0Y0wFYCGwn0NrwaK1TSoDWjbhf\nF6BLrcN9mpNRmm7b/mzSYmw/h4LCUt5fe4j7bh7tdBSRBqWdPsrRM1lOx2i2xfuWMzF1DB6Px+ko\nccUVLQ2XGGNSgY3AWeBe4CLQqtZprYHGbErwCGBrfaxsdlhpNL/fz7+X73M6Rlh8sO4QpWptkCiw\n5MBqpyOERHZBDodOpTkdI+64pmgwxowFNgMfWGs/Za0tB44AycaYvjVPBQ404tbPVV9T82NmaFJL\nY6Qfzyc7131r24dCaXkVm/YcczqGyBXlFxewO3u/0zFCZsXh9U5HiDuu6J4wxvQAlgDPWGufuXTc\nWnvBGDOfwEyKh4GRwAPArcHe21qbD3xiXp8xpiIkwaVRtu6L7tkSDdmy7zgzJw5yOoZIvdYe2Yzf\n73c6RsjsOr6f8yVFdGzd3ukoccMVRQPwFaAr8FNjzE9rHP8D8DDwAnCCQLfE96pnUUiUOXj0tNMR\nwiotMw+v10diomsa8EQ+4vP72JAeW786fX4fmzK2c+tINR5HiiuKBmvtU8BTVzjls5HKIuHh9/s5\nmVfodIywKq/0kl9YQvfObZ2OInKZo3nHOFtc4HSMkNuSsVNFQwTpLZFERGlZJeWVsb+1rZaWFrfa\nlrXL6QhhkZWfTd6F2JqR5WYqGiQiquJkIRafL3b6iyV2+P1+dh6PzZlLALti+HNzGxUNEhGtkls4\nHSEiWiW7osdP5BNyzp+Kya6JS3Yfb8yEOmkOFQ0SEcktEmnbOtnpGGHXqX2K0xFELrPvxGGnI4RV\nWl4GpZVlTseICyoaJGL6dO/gdISwap2STEcVDeJC+0/GdtHg9Xm1ZXaEqGiQiBnQt/Zq3rFlwFWd\ntaStuE5FVSVppzOcjhF2B3Ks0xHigooGiZhhA7o7HSGshg/o4XQEkcscPZNFpTf2lzg/qCWlI0JF\ng0TM8IE9SUyI3Xfio4b0cjqCyGUOnoyPP6Y553M5X1LkdIyYp6JBIqZ1qxaY/rHZ2tC+TUtS+3R2\nOobIZQ6cjJ9m+4On4udzdYqKBomoa4b2djpCWIw2vUmI4VYUiU7FZRfJPBvbe77UtF/jGsJORYNE\n1KghPZ2OEBaj1TUhLrQ35xB+4mfBsX0nDuKLk4XknKKiQSKqX89OtG4Vews9DU2NzW4XiW67j8fO\nNtjBuFB+kaNnspyOEdNUNEhEJSR46N87tvr+27ZuSZeOrZ2OIfIJFVUV7DkRfyslbs3a7XSEmKai\nQSKua6c2TkcIqW6d2mh9BnGdncf3U15V4XSMiNuauQuvL/Y3x3OK6xbKN8ZMAN611vapfjwO2ALU\n3D7wSWvtr5zIJ82XnJzodISQaqn9JsSF1h3Z7HQERxSWFrH3xCHG9BvpdJSY5JrfdsYYD/AQ8Dug\nZnk8Blhsrb3LkWASciWlsbXQTElZ/L2bE3c7ef50XE21rG3F4XUqGsLETd0TPwa+AzwB1GzrHQPs\ncSSRhMWxk7G1215OXhEVlVVOxxD5yJL9K52O4Kj9OYc5XpDjdIyY5Kai4RVr7bXA9lrHxwCTjTEZ\nxphjxphnjDGxv11ijDp+6hw5ebG1apvX62Pb/mynY4gAcOZCPhvStzodw3Hzdy9xOkJMck3RYK3N\nreepPGABMAKYDswAfh6hWBJi/14em1PAFqw6QJVX88PFee/sWITXr+/FHcf2cuR0ptMxYo5rxjTU\nx1p7d42HmcaYp4CngB8Fc70xpgtQe3vFPiGKJ42wbX82W/fF5up02bmFLFh1gHtnj3I6isSxw7np\nbMnc6XQM1/j7lnf46R3fJTEhtgZfO8k1LQ11McZ0Msb8zhjTtsbhFKC0Ebd5BLC1PuK7w88BmScK\n+N95G5yOEVbvLN3L5r3HnI4hcaqiqoLXN77pdAxXOZZ/gqUH1zgdI6a4vaWhELgT8Bljfgj0JzBg\n8sVG3OM5YG6tY31Q4RAxhzPz+O3rqymvjP2508/P3UBlpZep1w1wOorEmbe2LyS3MM/pGK7zrx2L\nGdl7KH07x+a+N5Hm1qLBD2Ct9Rljbgf+DJwlsFbDC9baPwV7I2ttPpBf85gxRnPkIsDv97Nmewav\nvbuNyqrYLxgAvD4/f3lzE7lnL3Dv7FEkJrq6MU9ixI5je1h+aK3TMVypylfFX1a/zk/u/C4pLVo5\nHSfqefz++NnM5BJjTH8gE0i11mY1cHr8fYFC4GJpBa+9u42Nu7OcjuKYoand+OZnb6Bb57YNnyzS\nRCfPn+YXi56lrLLc6SgAeIsrOb80MJuo4819SWzrjr1mxvW/lm9Nf5AEjwr5INS7xG2TvnrGGI8x\npq8xRqNL5BP8fj8bdmXyP88sjOuCAeBw5hl+8OwiFq7WzAoJj6LSC/x+2YuuKRjcbHvWbv69832n\nY0S9oLonjDF9CIwNeAI4CCwHbgBOGmNut9Zq8SUh/fhZ/vn+bg5mnHY6imuUV3qZ9/5u1u7I5IFb\nr2XMsD7ap0JCorSijN8vf4kzxfkNnywALNq7jE6tOzBr2FSno0StYMc0PA90JDA24EFgJDAJ+ALw\nRwLrJ0icOnG6kHeW7mHrPi1wVJ+c04X89vU1mP7d+Oyt12orbWmW8qoK/rDiZTLPxuYU5nB6Y/M7\ntGrRksmDJjgdJSoFWzTMBCZYa48ZYz4FLLTWbjHGnAFic7UeadDR7HwWrDqg1RAbwWad4Rd/WcbQ\n1G7cPXMko4f0UsuDNEp5ZTm/X/4SNjfd6Sh1qir8uKvk4t58Wg/tSFJndw1A/Ou6ufj9MGWwCofG\nCrZoqASSqtdLmA58ufp4L6A4DLnEpXw+P7sO57BkveVAen2LeEpDDmee4fArq7i6VyfmTDVMuqY/\nyS00REiu7GJ5CX9c8TJppzOcjlKnqoIyiref+ehxZW4JRWdLaT+ll6sKBz9+Xlk/l0pvJTOGTnY6\nTlQJtmhYBrwKXCSwA+UiY8wc4E/A4jBlExe5WFrB2h0ZLN1gOZ2vOjFUjp06x4tvbWbe4l3Mun4w\ns64fTOcOrZ2OJS50vqSQZ5e+QPa5k05HqVdpeiF4PznhzF/lp/RoEe1cVDRAoHD426a3uFBWzJ3X\n3KwWvyAFWzR8DfgFgcWV7rLWXjDGXAesBv4nPNHEaX6/n/Tj+azYcoTNe45REQeLMzml6GI5767Y\nz/xVBxgzrA+zJg5i9JBeJCRoephAzrlT/G7Zi+RfPOd0lCuqyi+r+/jZxiziG1n/3vU++RfP8YVJ\n95Ok5aYb1Oh1GowxSYDXWhu16xdonYYru3CxnA27Mlm97SjHT513Ok7c6tqpDTeOG8C0cQPo1klr\nPcSr/TmHeX7Va5RW1v0H2U0KFmfhL798erGnZQKdb+8f+UCNMLL3UL45/UHatFRLH1dYpyHoosEY\n803guwRaG4YC/w84A/x/0VZAqGi4nNfrY2/aKdZsz2DnwRNaV8BFPB4YPrAn08cPYNyIvrRMdutC\nrhJKfr+fpQdX889t84mWRfiiuWgA6Nm+O9+Z9VV6d+zhdBSn1Vs0BLtOw3eAHwI/A/5A4A/pCgLL\nO/uAnzQ7ojji2MlzrNuRwYZdWRQWu/+dTDzy++FAei4H0nNJaZnExNFXM3VsKia1OwkJ6oeNReWV\n5by28U02Z+xwOkpcyS3K4xeLnuXhqZ/nuqtHOx3HlYJ9y/It4OvW2oXGmGcBrLVvGmOKgJdQ0RBV\nCgpL2Lg7i/U7M9X9EGVKy6tYve0oq7cdpWunNkwe058pY1Pp072D09EkRHIL83h+1WuuHvAYy8oq\ny3lu5SvcPmo29469Tdtq1xJs0dAPOFDH8Qyga+jiSLiUllWybX8263dlciA9lyhp7ZQrOHvuIvNX\nHmD+ygMMuKozU8amMuna/nRo665R6hK8rZm7eHXDPC0L7QKL9y0nPS+Tb0x/kE6tVZRfEmzRsAe4\nB3i21vGvA7tCmkhCxuv1se/IKdbvzGT7gRNxNfvBW5pPRcFhvGXnSGzVmeTOhsSULk7HCpuMEwVk\nnCjg74t2MnpIL6aMSeW6EVdp/EOUqKiqYN7W91hlNzgdRWqwp4/y0/m/4eGpn2f0VcOcjuMKwf5G\n+S7wgTFmBtAS+JkxZhgwDJgTrnDSeH6/v3qcQiYbdmdRFIfjFLyl+ZQcXwW+KgCqKoqpKj5J634z\nYrpwgMDiW7sPn2T34ZO0Sk5iwuh+TB2byrABPTT+waVyzufyl1Wvc+L8KaejSB0ulBXzu2UvMGfk\nTO4beztJifFdiDemaLgLmA2UAe0ILPj0KWttTpiySSOcv1DK+p2ZrNuRSXZufI9TqCiwHxUMH/FV\nUVGQRkqfSc6EckBZRRVrt2ewdnsGXTu2ZsrYVKZeN4Be3do7HU0IFPgrD6/nn9vmU+mtdDqONGDJ\n/pUcOpXGN278Ir06xO/siqCmXBpj8gnsPXE0/JHAGDMBeNda26f6cScCK1LOAAqBn1trX23G/fsT\nA1Muq7w+dh/OYc22DHYdzsHnc23UiCo+sgB/Vcllxz1JrWk7+C4HErnL0NRuTB8/iAmj+9FK3ReO\nKCwt4tX189hz4qDTUUIq2qdcBiM5KZkHxn+K6eaGWF5FsnlTLoHfAa8aY/5AYPDjJ5b3stamNT3b\nx4wxHuCh6terqPHUy0AR0B24hkBXyQFr7ZZQvG60OVNQzIotR1izLUPTJOvir2fsRn3H48zhzDMc\nzjzD3+ZvY9K1/Zk9aTD9e3d2Olbc2HV8P69umMeFMi3HHo0qqir426a32H3iAF+Z/ADtU9o5HSmi\ngi0afln937o2IfcDoZqT8mPgfuAJAotHUb1J1t3AYGttBbDNGDMX+CIQN0VDoK86h+Wbj7DHntTs\nB2m20vIqVm5JZ+WWdAb168rsSYO5fvTV2jgrTMoqy5m39V3WpG1yOoqEwJ7sAzz23q/48uT/YEy/\nUU7HiZhgi4YBYU3xsVestU8aY6bXODYYqKzVjZBGYDZHzCuvqGLdjgzeX3eY3LMXnI4jMSr9+FnS\nj59l7uJd3DJ5CLOvH0K7Ni2djhUzjpzO5KV1b3DmQr7TUSSELpQV88cVf2Xq4In858R7SWkR+9Od\ngyoaguj3DwlrbV17LbehVncIUALE9ALhJWWVLFl/mCXrLcUlmrMtkVFUXMbbH+5l/soDzJgwiLum\nD6eTdt1ssipvFe/tXsLifcujZiloabx1R7Zw+FQ6D0/7HEN6DHQ6TlhFwyioEqB2+dYaCKpD0BjT\nBag9z65PCHKFRVlFFUs3WBatOUhxSUXDF4iEQUWllw83WFZuSWf2pMHcNX04HdqlOB0rquScz+Wl\nNW9wrOCE01EkAs4U5/P0+89x26hZ3DPm1pidmhkNn9URINkY09dam119zFD3CpV1eQR4PCzJQsjv\n97N1XzZvLNxBQeHlI/9FnFBZ5eWDdYdZvfUo990ympsnDSExUdt1X4nf72fFoXW8uX2BplLGGT9+\nFu9bzv6cw3z9xi/G5MZXri8arLUXjDHzgaeNMQ8DI4EHgFuDvMVzwNxax/oAK0OXsnnOFZbw4tub\n2ZumxV3EnUrLK3ljwQ7Wbsvgm/8xiX69OjkdyZUKS4t4Zf089sbYVEppnGMFJ/jZgmd4YMI9MTc1\n081FQ80OwIeBF4ATBLolvmet3RbMTay1+cAnRh8ZY1zT7r//SC5/nrchLldulOhz7NQ5fvLchzx0\nz3imj4/tvtvGOnDS8uLaNygq1YBlgQpvJX/b9Bb7Tx7my5MfoE3L2Bgb5MqiwVq7msCaDJcenwM+\n61igMNm4O4vn523UAKkwaNu2LXfdFVjIaf78+Vy8eNHhRLGjssrLS29v5kxBMfffco3TcRzn8/l4\nb/cSFu5Zit+9a8GJQ3Yc20tW/gn+a/qXGNDtaqfjNJsri4Z4sPtwDn/5pwqGcGjbti1P/OKnDBgQ\nmCk8ceJEHnvsMS6Wqn85lN5dsZ82KcncNi1+N/K5UFbMC2v+jwMnrdNRXEMF++Xyiwt46v0/8p8T\n72WGmRzV3RUa0eSAsooqXnp7M14t+xwWd915+0cFA8CAAQM++iUmoTXvg92czo/P5vjsghx+tuC3\nKhhqaNu2LU8++SQPPPAADzzwAE899RRt27Z1OpYrVPm8/N+mt3lt45tUeasavsClVDQ4YNnGNM5f\n0BgGiX5er49/L9/ndIyI23viIE8u/iP5F885HcVV7rr9LhXsDVibtolnl77AxfLonCWnosEBaVln\nnI4Q0+YvWERGRsZHjzMyMpg/f76DiWKbzYyv7+fNGTv4w/KXKavSomvSNIdyj/CrJX+OykGzKhoc\noHUYwuvixYs89thjzJs3j3nz5vHjH/9Y/aphdK4ofr6fN6Rv5cU1b+DzX76To8D8RfNVsAcpuyCH\npz74U9QVDhoI6YC+vTqSmVPgdIyYVlxczNy5tZfnkHDo27Oj0xEiYk/2AV5ZP08zJK7gUsFeeyCk\np6Xen9b70lbnAAAaS0lEQVQltzCP3y9/kR/M+XbU7Fuh/5MOuG74VU5HEAmZscNi//v5dNEZ/rL6\nb2phCMKlgn3u3Llq4QtC5tlsXlv/z6iZSaeiwQHjRlzFqME9nY4h0mzdO7fl9htje8qlz+fjxTVv\naAyDhM3WrF1sSA9qvULHqWhwgMfj4Wv3X0/XTm2cjiLSZK2Sk/j2f06mZXJs93JuythBxtljTseQ\nGPf2joVUVLlmseJ6qWhwSJeObfjJ12fTrbPmMEv0SWnZgh8+PJNB/bo6HSXsFu9b7nQEiQOFpUWs\nT9/qdIwGqWhwULfObfnlI7cwZmhvp6PEFk9i445Lo/Tv3YknvjOHIVd3czpK2J25kM/J87lOx5A4\nsffEIacjNEhFg8Pat2nF9x6azhfvuo5WMd7MGymJret+95vYOvb/yIVTQoKH26cN4+ffvoVe3do7\nHScisvKznY4gcSTr7HGnIzRIf6VcwOPxMGfKUCaM6sfcxTvZuFv9p82R3NlQdeEk+Gss1ZqQRHLn\nIc6FinJDU7vz0D3j42Z65SXRMqJdYkM0zM5R0eAinTu05tv/OYWbbzC8vXQPB9JPOx0pKiWmdKFV\n74mU5WwIPG7bm5ZdR5CY0sXhZNGnb8+O3HfzaMaNuCqqN9lpqg4p8dGiIu4QDd9vKhpcaEj/bjz2\ntdkcPHqafy/bx8EMFQ+Nldjq43fErXqMISG5nYNpok/fnh24Z9YoJozqR0JC/BULlwzs3p9WLVpS\nVqnplhJ+I/sMdTpCg6KmaDDGfA94Cqj50zvHWrvBoUhhN3xgD4YP7EFGdj6L1hxky75sNZdKWI0Y\n1IM7bhzO6CG94rJlobakhESmm8ks2b/S6SgS4xITEplubnA6RoOipmgArgV+aK39ndNBIm1A3y58\n5/NTySsoZtnGNFZvO8rFUvfP55Xo0CIpkclj+nPzDUPo36ez03Fc5+5rbmHT0e0UlhY5HUVi2C0j\nptOjvfsHa0dT0TAGeM3pEE7q3rktn7tjLPfdPJpNe46xbGOa9rCQJuveuS2zJw3mxnEDadempdNx\nXCsluRWPzPwyv17yPJXeSqfjuJonwVPnzhyeOO7iCsbwXkO4d8xtTscISlQUDcaY1oABHjXG/B04\nBzxjrY3LIqJlchLTxw9k+viBZJ4oYOXWdDbuyqS0vKrhiyWuJSYmMH7EVcycOJjhA3vE9XiFxhjU\nPZVvTf8Sz696jSqffs7qk9SlFRUnLt9vIqlrigNposOArlfzyMyvkJQYFX+O8URDH7kxpj+BVoZf\nA8uB64GFwAPW2iUNXNsFqD1svg+wEki11mY18PLu/wIBZeWVbN57nDXbjmKzzjgdx3G+igtcPLoY\ngDYDb4/7gZBX9ejAjeMHMmVsKh3aRsduem6UnpfFn1a8TFFZsdNRXKmqoIzCdafA+/GvTU+Sh/ZT\nepHUWd93tY3vfy1fnfo5WiYlOx2ltnrfTURF0VAXY8yfgGRr7TcaOO9nwOP1PB0zRUNNp84UsWZ7\nBut2ZHCuqNTpOI5Q0QCtW7Vg0jVXM33CIAZc1VkDG0Mkv/gcf13/Dw6dOuJ0FFcqzymmeEseAC16\ntqb10I4qGGpJSkji02Nv55aR00nwuHKNxXp/WURFe4gx5jrgZmvt0zUOpwDBlPvPAXNrHbvU0hCT\nenVrz3/cei2fuWU0+47ksnZ7BtsPnKCyyut0NAkzj8fD6CE9mXbdAK4bcRXJLaLiRzyqdGnbie/f\n8i1WHt7AW9sXRMUmQ5GU1OHj8TFtRnchsW0LB9O4T2rXfnx16ufo0zE6dzqOlt8oRcBPjDFpwLvA\nDOCzwLSGLrTW5gP5NY8ZY+LipzwhIYFrTG+uMb25WFrB5j3HWLcjg7RjZ52OJiHWp3t7pl43gClj\nU+ncobXTcWJegieB2cOmcl2/Uby9YxEbj0bHtsbinPat2vLp6+5g6qCJJCS4snUhKFFRNFhrjxhj\n7gOeBv4GHAcetNbudjZZ9GiTksys6wcz6/rBnDpTxLqdmazfkcHZ8yVOR5MmapOSzA1j+jPtugHq\nfnBIpzYd+dq0zzN72FTe2bGIg6fSnI4kLtMqqSWzh0/j9lGzSUmO/m6aqB3T0BzVAyszidExDcHy\n+fwcPHqatTuOsnVfNhWVsdN9EatjGhISPFxjenPjuAGMGdaHFknaudNNbG467+1eEtfjHfw+P+eX\nBjb66nhz37idbtkyKZmbhk/jlhEzaNeqrdNxGiv2BkI2h4qGy5WUVbJlzzHWbD8aE90XsVY09O7e\nnhvHDWTqdal0bKfpa26XnpfJB/tXsvPYPvzx8SvkE/y+wOccjwVD+5R2zB42jZlmMm1btXE6TlOp\naKhJRcOV5eQVsnZ7Bmu3Z1BYXOZ0nCaJhaKhVXISk67tz/TxAxnUr4u6H6LQ6aIzfHhgNRvSt1Ku\nAZMxrU/Hntw8YjqTBowjOSnqB3+qaKhJRUNwqrw+dh48waqt6exNO0U0fatEc9EwqF8XZkwYxKRr\nrqZVy6j/5SNASUUpG9K3seLwOnIL85yOIyGS4EnguqtHM2vYVEyPgbFU2Ef3lEtxRlJiAhNG9WPC\nqH6cOVfM6q1HWbU1nfMXorP1wc1SWiYxZWwqs64fTL9enZyOIyHWOjmFm4ZPY/awqRw6dYTVaRvZ\ncWwvXl/sjCOKJ13admba4OuZNngindp0bPiCGKKWBrU0NEqV18eOAydYtimNg0fdu2V3tLQ09OvV\nkZsmDWHymP5qVYgzRWXFbEjfypq0TWp9iAKJngSu7TuSG80NjOxtonraZBDUPVGTiobQyM49z5L1\nlvU7M123cJSbiwaPx8P4kVdxy2TD0NTusdSkKU3g9/tJz8tk7ZHNbM3cpbEPLtO7Qw+mDrmeGwaO\no0NKe6fjRIqKhppUNITWhYvlrNxyhA83WNd0XbixaGiVnMTMiYO4ZYqhW6eom4IlEVBWWc7WzF2s\nT99K2umjTseJWyktWjExdSxTBk9kYLer47GwV9FQk4qG8Kis8rJhVxaL1xwkJ6/I0SxuKho6tkvh\n1qmGmRMH0ybFdRvTiEudLjrD+vStbEjfSsHF807HiXkePAzvPYQpgyZw3dWjSXbfJlKRpKKhJhUN\n4eXz+dl+IJv3Vuwn6+Q5ZzK4oGjo1qkNd80YwbRxA7QIkzSZz+fjUO4R1h3Zwo5je6n0VjodKaZ0\nb9eVKYMmMHnQeLq07ex0HLfQ7AmJnIQEDxNG9WP8yL7sPnyStz/c41jx4ISundpw7+xRTBmbSlJi\nTA+WkghISEhgRG/DiN6GkopStmbuYu2RzWScOeZ0tKjVMimZ8f2vZerg6xnSY0A8dj80mVoa1NIQ\ndj6fn237s3l76R5ORqjbwu/3cvHo+wC0GXgbHk/43+l3bNeKT80ayYwJg9SyIGGXc+4U645sYcPR\nbVwoC2bDXxncPZWpg69nfOq1pLSI/n0gwkjdEzWpaHCG1+tj1dZ03lm6l6KL5WF/Pb8/MKMj3AVD\ncotE7rhxOHfcOEzTJiXiqnxedh/fz5q0TezPORyXy1ZfSbuWbZg8aALThkyid8ceTseJFioaalLR\n4KySskreW7GPD9YdxuuL7i/v5DH9eeC2MdqOWlzhbHEB645sZk3aZs6XFDodx1HDew1hurmBMf1G\n0SJRPfGNpKKhJhUN7pBzupDX3tvm6kWi6nNVjw48dM94hg3QOxdxnyqfl13H97Hq8Ia42q47JTmF\nqYMmMGPoZHp10M9mM6hoqElFg3v4/X7WbM/g7wt3UFLm/lHhiYkJfGrmCO6eMYIkjVuQKHDy/GmW\nH1rD+vRtVMTowlG9O/TgpuE3csPAcbRs0dLpOLEg+osGY8wY4EVgOHAE+Ia1dksT79UfFQ2ucq6w\nhJfe2cwee8rpKPW6ulcnvvkfk7Q3hESl4vKLrE3bzPKDaykoiY11H0b1GcYtI6YzorfRDIjQiu6i\nwRjTCkgHfgn8Ffgi8CtggLX2YhPu1x8VDa7j9/tZujGNuYt3UlnlczrOJ9w+bRifmXONZkVI1Kvy\nVrEpYzuL962Iyj0vPB4PE1PHcvuoWfTt3MfpOLEq6tdpmAF4rbUvVj9+zRjz38BtwNvOxZJQ8ng8\n3DLZYPp34w9vrCOvwPlpZK1TWvCtz97A2OFXOR1FJCSSEpOYOvh6Jg+awI5je5m/awknzru3he+S\nBE8CkweN585rbqZ7u65Ox4lb0VI0DAUO1jpmq4+H1dGjWv/dCV++YzBvLNjJ4Uzn3gn16taOr9w5\ngQ4ty/V9IDGpM+14cNSn2ZN9kGUH13CmON/pSJfx4GFMv5HcNGwaXdt14UJeIRfy4ntmSLgNHDiw\n3ueipWhoA5TUOlYCNDjPzRjTBehS63DQbVqDBg0K9lSJQS8/7XQCEfk38BOnQ8SRKw1biJai4SKQ\nUutYa+BCENc+Ajwe8kQiIiJxJlqKhkPAt2sdM8A/grj2OWBurWN9gJXBvHB6enowp0mYbdyVxVsf\n7gn760y7bgD3zB6pkdgS97ILTvKvHYvJKYzceAePx8PUQRO5efiNmjrpUtEyeyIZyCAwY+JF4AvA\nUwRmP5Q24X790eyJqLNsUxqvvbstbPe/6YYhfOnucSoYRKpV+bzM372ERXuXXbHJOhS6te3C16Z9\ngcE9UsP6OhKUen8JRsUWfNbaCuBW4AEgH/gv4K6mFAwSvW6aNITPzLkmLPeePKY/D96lgkGkpqSE\nRD499nZ+OOcROqa0D9vrTEwdyy/u/oEKhigQFS0NoaaWhujl9/t55d9bWbkldN1GwwZ050dfnakV\nHkWu4FxJIc+tfCWkW3J78HD/uDu5deRMFezuEt0tDSKXeDwevnT3OIamdgvJ/bp2asOjX5iqgkGk\nAZ1ad+CHc77NtX1HhuR+iQmJfGvGl7ht1CwVDFFERYNEnaSkRB75zym0a9O8gVKJCR6+87kptG/T\nKkTJRGJbclIy3575Zcb3v7ZZ90lKSOTRWQ83+z4SeSoaJCp16tCah++b2Kx7fPqm0Qzqp5XlRBoj\nKSGRr0/7AiN6myZd78HD16Z9gdFXDQtxMokEFQ0StcaN6MsN117dpGv79+7EHdOHhziRSHxISkzi\nv2Y8RI8mLOd8z9jbmJA6JgypJBJUNEhU+9wd19GqZeOXG3nongkkJerbX6SpWien8O2ZXyYpIfjx\nQCP7DOWO0bPDmErCTb81Jap1ap/C3TNGNOqaG67tz+Cr1S0h0lx9O/fhzmtuDurcVkkteeiGz5Lg\n0Z+daBYtK0KK1OuWKUP5YL2lqLiswXM9Hg/33Tw6AqlE4sMdo2+iZVJLzpWcr/ccDx7GXj2KLm07\nRzCZhIOKBol6rZKTmDPF8NaShpeZnnRNP3p2bReBVCLxITEhkTkjZzgdQyJE7UQSE2ZNHEyLpIa/\nnedMCftu6iIiMUtFg8SEdm1aMmFUvyuec3WvTgzsW3uXdBERCZaKBokZU8Zeed36yWP7a+U5EZFm\nUNEgMWPEoJ60btWi3ucnNtASISIiV6aiQWJGUmICo03vOp/r27MD3Tq3jXAiEZHYoqJBYsqoQT3r\nPD6inuMiIhI8FQ0SU0xq9zqPD63nuIiIBC8q1mkwxuwHUgFf9aEsa+0oByOJS/Xq1o7unduSV1D8\n0bGWLRLrLSZERCR4ri8ajDEpgAG6W2vPOZ1H3M3j8fD4t24mLesMfvwA9OvZiQ5ttf21iEhzub5o\nAEYBuSoYJFid2qcwcbRmSoiIhJorigZjTCJQ19q+PmAMUGmM2QgMAnYBj1prD0cwooiISNxzRdEA\nzACW1nE8C/gVsBX4AZAH/AR43xgz3Frb4A5FxpguQO1lAPs0K62IiEgc8vj9fqczNJox5jxwi7V2\nSxDn/gx4vJ6nU621WQ3cIvq+QCIiIk1X79K5bmlpqJcx5utAurV2RfXjJKAF0PA+yAHPAXNrHesD\nrAxZSBERkTjg+qIB6A48YoyZA+QDvwYOWWsb3gcZsNbmV1/3EWNMRchTioiIxLhoKBqeAtoTGNfQ\nFlgN3O1kIBERkXjk+qLBWusFvl/9ISIiIg7RMtIiIiISFBUNIiIiEhQVDSIiIhIUFQ0iIiISFBUN\nIiIiEhQVDSIiIhIUFQ0iIiISFBUNIiIiEhQVDSIiIhIUFQ0iIiISFBUNIiIiEhQVDSIiIhIUFQ0i\nIiISFBUNIiIiEhTXbY1tjPkjUGGt/X6NY7OBPwD9gZ3AV6y1R5xJKCIiEp9c09JgjOlijHkdeATw\n1zjeA/gX8P+AjsBy4F0nMoqIiMQz1xQNwDqggkCB4Klx/F5gl7V2sbW2CngC6G2MGe9ARhERkbgV\nse4JY0wi0K6Op3zW2iJgprU21xjzWq3nhwIHLz2w1vqMMUerj28LW2ARERH5hEi2NMwACur42A1g\nrc2t57rWQGmtYyVASnhiioiISF0i1tJgrV1O04qUugqE1kBxMBcbY7oAXWod7tOEHCIiInHNdbMn\n6nAIuP/Sg+pujkHU6LJowCPA4814fU/Dp4iIiMQ+NxYNtf9Ivwv82hhzD7AY+BGQba3dHeT9ngPm\n1jqWCLQETjQnqIiISDxxY9Hgp8aUS2vtaWPM3QTWafgbsIvAjIqgWGvzgfxQhxQREYk3Hr/f3/BZ\nIiIiEvfctE6DiIiIuJiKBhEREQmKigYREREJiooGERERCYqKBhEREQmKG6dcioSEMSYJuMrpHCJx\n7ET1RoMSI1Q0SCwbSWBdDxFxxhiq9xeS2KCiQWJZefV/ZwKZTgYRiTOpwEo+/hmUGKGiQWKZt/q/\nOdbaLCeDiMQTY0xy9T+9VzxRoo4GQoqIiEhQVDSIiIhIUFQ0iIiISFBUNEgsywd+jnY5FYk0/ezF\nKO1yKSIiIkFRS4OIiIgERUWDiIiIBEVFg4iIiARFRYOIiIgERUWDiIiIBEVFg4iIiARFRYOIiIgE\nRRtWSUwwxswBvg9cA3iAbcBj1todjgYTiWHGGB9QCvgAf/XHJuB/rLUHjDFfAj5rrb3VuZQSSmpp\nkKhnjHkYeA14FugB9AaWAiuNMcOdzCYSB8Zba9tZa9sDXYB9wAfGGP19iUFaEVKimjGmNXAKeMBa\n+36t554CdgCPAG9ba5+vPv5t4NPW2hmRzisSS6pbGkZaaw/WODaCQOHQFbgL+CpwApgDZAPfsNZu\ncCCuhIAqQYl2kwl0sy2p/YS19sfW2n/xcbOpiISe59I/jDGdgO8A+6y1BdWHbwAWAp0JtAYuqj5P\nopDGNEi06wqcs9b6nA4iEqc2Vrc4AJQDm4FP13h+g7X2H9X/ft0Y8yhwO/D3CGaUEFHRINEuF+hs\njEm01nprPmGM6QBcdCaWSNyYVLN7og7Haz0+AfQMYx4JI3VPSLTbBFQAt9Xx3KvAXwEv0LLG8S4R\nyCUiAb1rPe4PZEU+hoSCWhokqllry4wxPwJeMsZ8hcCsiRTgv4FZBPpTvw3MMcb8L9AH+DyBAVki\nEn5TjTGfAd4FvgZ0At6/8iXiVmppkKhnrf0L8F3gcSAPyAQmANOrm01/RaBAPg28BbzuTFKRmNPQ\nAGM/gUHKXwYKgAeAW621JeEOJuGhKZciIiISFLU0iIiISFBUNIiIiEhQVDSIiIhIUFQ0iIiISFBU\nNIiIiEhQVDSIiIhIUFQ0iIiISFBUNIhITDLGtDXGPOR0DpFYoqJBRGLV/xBYtlhEQkRFg4jEKo/T\nAURijZaRFpE6GWN8BPYM+DGBnQpXAF+z1p6ufn4i8GtgHIE3IDuAb1pr9xtjpgP/BP4BfAV4xVr7\nP8aY7xN4998PKALeAR6x1lYZY34GDCWwlfLXCWxr/kMgH/gj0B14D3jo0jbo1d0Pl/IdAH5krV1h\njPkSgV1OAfzW2kRjTAvgKeALBHY9XQ98x1qbWePz/SXwDSDTWnt96L6aIrFBLQ0iciVPEmjmv4HA\n7oTvAhhj2gEfABuAkcAUIBF4tsa13YGrgDHA/xpjPk+gCPgvYBDwTeBB4P4a13yq+j7XEigoXgAe\nqz7nc8BngE9XZ7gN+A3wA2AU8H/AImPMSAIFy7PATqBXjc9lOnAPcD1wClhljKm5bfpngBuBrzb6\nKyUSB7Q1tohcyVPW2oUA1e/e040x1wC5BP4I/85a6weyjDGvAj+rdf2varyT7ws8aK1dWv1ctjHm\nUWB4jfMvAN+z1vqNMS8Q2Nb8CWvtLmCXMWY3MKz63B8Cv7bWvlv9+M/GmBuAR621DxtjLgKV1to8\nY0wK8Agw1Vq7vTrPN4BjwH0EWkQAXrLWHm7G10skpqloEJErWXfpH9baDGNMATDSWrvHGPMa8J3q\nIsIAY4Fzta7PqHH9amPMOGPMEwS6IUYRaHFYV+P8Y9VFCEBJ7XsApQS6FiBQbIw3xjxe4/lkYHMd\nn8fA6utWG2Nq9sm2AobUlVdELqeiQUSupKrW40TAa4zpDWwH9gJLgDcItAD8pNb5pZf+UT3+4M/A\nX4GFwOPAX2qdX1lHBl892RKB7xHoJrnEA5TXce6l33XTgYJa55+vK6+IXE5Fg4hcyTjgIIAxZgjQ\nAdgDPACUWGvnXDrRGHMrV56x8F0C3R1PVp+fRKClYUMTsx0C+ltrP2odMMY8SaDr5DmgZotCOoEC\nqEeN7okkYB7wPLC6iRlE4oqKBhG5kieMMScIdDs8Dyyz1h6q7pLoZYy5BbDAHODhBu6VA8wyxrxD\noKvgx0BnAl0EwapZlPwGmGuMscAq4DYCgyJvr37+AtDTGJNqrc00xvwvgXEPlUBm9evPIDBuQkSC\noNkTInIlrwAvE3gnns7HMx3eAl4H5hJoeZgK3Aq0N8akVp9Tez73owTGHOwiMHVyC/A0gbEQl86v\nfU29j62171Xf8wcEplt+A/hCjYGW/yLQ3bHPGNO9+rx3Ccyy2AWkAjdfmkIqIg3TOg0iUqfqdQum\nW2vXOp1FRNxBLQ0iIiISFBUNIiIiEhR1T4iIiEhQ1NIgIiIiQVHRICIiIkFR0SAiIiJBUdEgIiIi\nQVHRICIiIkFR0SAiIiJB+f8BQLEJ6fkfb8wAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1095ab588>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fig, ax = plt.subplots(figsize=(8, 4))\n", | |
"seaborn.violinplot(data=df, x='parameter', y='res')\n", | |
"seaborn.despine(trim=True, offset=10)\n", | |
"ax.axhline(y=0, color='k')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"## Negative Concentrations make no sense. \n", | |
"## Most environmental quantities are lognormal" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "fragment" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAErCAYAAAB3gzx8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVNX9//HX7C679Lr0jsABBASki4IlBiSaGBMNUeM3\nmqLfqMk3xeSrv7RvLImJMYkFNbZoRI0xShGlLyBNevfQe2dp28vc3x8z6LruwuxOOVPez8djHzJ3\nzp35sLL7nnPuuef4PM9DRETEhTTXBYiISOpSCImIiDMKIRERcUYhJCIiziiERETEGYWQiIg4k+G6\ngIqMMaOAxwADHAMetdY+V0W7CcBDQCtgHnCHtfZILGsVEZHwxU1PyBjTDJgCPG6tbQp8HXjEGHNl\npXb9gYnATUA2cAh4KcbliohIBMRNCAGdgKnW2jcArLWrCfRyRlZqdzPwrrV2ubW2CPg5MNYY0zKm\n1YqISNjiJoSstWuttbedfRzsGV0KrKnU1ACbKpyXC+QGj4uISAKJmxCqyBjTBJgKrLDWTq30dAOg\noNKxAqB+LGoTEZHIiauJCQDGmK7ANGArges+lVUVOPWBvBBfvwXQotLhdCAL2GCtLatRwSIiUmtx\nFULGmEHA+8Cr1tqfVtNsMxWG3owx2UDz4PFQ3AP8uprnugK7znO+VnwVEakZX3VPxE0IGWNaAx8A\nf7TW/vEcTV8H5htjXgRWAo8A0621J0J8qyeASZWOtQfm1rBkEREJky9etnIwxtwPPAjkV3rqrwSH\nz6y1dwXbfj3Ytg2wAPi2tfZYGO/dBdgJdLXW7jpP8/j4homIJI5qe0JxE0IuKYRERKKq2hCKy9lx\nIiKSGhRCIiLijEJIREScUQiJiIgzCiEREXFGISQiIs4ohERExBmFkIiIOKMQEhERZxRCIiLijEJI\nREScUQiJiIgzCiEREXFGISQiIs4ohERExBmFkIiIOKMQEhERZxRCIiLijEJIREScUQiJiIgzCiER\nEXFGISQiIs4ohERExBmFkIiIOKMQEhERZxRCIiLijEJIREScUQiJiIgzGa4LEBGJFycLTrNm7wbK\n/eUAtG/Wll5tujuuKrkphEREgv6+8FU2HtjyyWMfPh68/he0b9rGYVXJTSEkMbVzXy7rthzAq3As\nKzOD0Rd3o369TGd1iZwpymPTwa2fOebhsXLXWtoPUAhFi0JIYqa4pIyH/z6H/MKSzz134Mhp7vjq\nUAdViQQs37UGz/M+d3zpzlVce9HV+Hw+B1UlP01MkJhZtm5PlQEEsGjVTgqLSmNckUiA53nMs4ur\nfO7AyUNsObwjxhWlDoWQxITneUxfuLna54tKyshZvj2GFYl8av3+j9mbu7/a599bPzuG1aQWhZDE\nxIqN+9hz8OQ520zN2URxSVmMKhIJ8Pv9/Hvl1HO2WbdvE/bQthhVlFriMoSMMUONMdV+LDHGTDPG\nFBhjzgS/TseyPqmZ0rJy3nh/zXnbnTxTyHsLqu8tiUTDnI8/ZM85ekFnvbLkLcrK9SEp0uIqhIwx\nPmPM7cBMoM45mg4ARllrGwW/GsemQqmNafM3cfBoaJ8TJs/dEHJbkXAdOHmYt1ZMCant/pOHeHvV\ne1GuKPXEVQgB9wP3Ag8CVU5FMca0AloBG2NYl9TSzn25/Gf2hpDbl5b5eeZfSygv90exKhEoLC3i\nyXkvUlIe+oSY9zfMZeXudVGsKvXEWwi9YK0dAKw4R5uBwBlgmjHmiDHmQ2PM8NiUJzVRUFjCk5M+\nrHGgbN19jLdmro1SVSJQ5i/n6Xkvc+DkoRqf+9yCV9l1bG8UqkpNcXWfkLU2lH8RWcBi4D5gG3AH\n8L4xppe19vD5TjbGtABaVDrcvqa1yrn5/X6efmMxB4+dqdX5U+Ztokv75gzv3znClUmq8/v9PL/w\nn6zfX7vrj8VlJTw26xl+MfZu2jdrG+HqUk+89YTOy1o7xVp7rbV2s7W21Fr7DLAXuDzEl7gHsJW+\n5kan2tTkeR6vTl3Fqs3nv9h7LhPfWMKWXUcjVJVIoAf03MJXWbpjVVivc6Yojz988OQ5p3VLaBIu\nhIwxNxpjvl7pcF2gMMSXeAIwlb6uiFyF8s6cDcxYZMN+ndKych59aR67D5yIQFWS6opKi/nbnOfD\nDqCzThfl8cj7T2jqdpjiajguRFnAo8aYDQSG435EIIRmhnKytfY4cLziMWNM1bfxS41NzdnIv2dG\n7sJtQWEpj/x9Dg98/yo6tmkasdeV1JKbf5K/zvk7u4/vi+jrFpQU8scZT3P7qAmMvGBIRF87VcRz\nT+iTRZyMMRONMRMBrLWvAo8DHwAngPHAOGttqD0hiQLP83h3zgZen37++4Fq6nR+MQ8+O5tdB3Ij\n/tqS/LYe3sFvpv4p4gF0Vpm/nOcW/JM3Pnr3ky0gJHS+qhbsSzXGmC7ATqCrtXbXeZrrG1aJ53m8\nPn010+ZH90bT+nXr8LPbx2C6tIrq+0hy8DyPmZty+NfyKZR7sZnyb9p0567R36Jp/SYxeb8EUu3q\nr/HcE5IEUFbu59m3lkY9gAAKikp55O9zWbkxOp9oJXnkFefzt7kv8PpH78YsgADsoW38avKjbNj/\ncczeM9GpJ4R6QrVVWFTK315byFp7MKbv6/P5uP36IVw5vEdM31cSw+aDW3luwaucKDjltI6xfa/g\na4PGk5GeiJfeI67anpC+O1IruacK+OOLOew+GPuZa57n8cJ/PuJIbh43jR1AWpr2eREoKy/jP6un\n8/76uXhx8Fnxgw1z2XTA8v3R39LOrOegnhDqCdXUrgO5/OmlHHJPuZ8LMqx/J+66aQSZdfR5KpXt\nP3GQZxe8GtJCpLFWJ70ONw6+jit7jyLNl7JXQNQTkshYvXk/f3vtw7jZcmHZuj0cP5nPT24bTZNG\n9VyXIzHm9/zM2byQf62YSmkN1oCLpdLyUl5b9jZr927kjku/STNNWvgM9YRQTyhUMxdb/jF5ZZVb\nILvWslkD7rv9ctq31g94qjhRcIrnF77GxgPh3xgdKw2y6vNfI29iSJcBrkuJtWp7QgohFELn4/d7\nTHpvFdMXxveMn/r16vDjb42mzwWtXZciUbZy9zpeXPQ6+cUFUXl9zx/4MfdF6XrjpT2GcfOwG6hb\nJysqrx+HFELnohCqXklpOU+/sZiP1u9xXUpI0tPTuOvGEYwc2MV1KRIFJWUlvP7Ru8yzi6L2Hp7f\n4+TMwCrZTa/uGLUgat24JXeNvo0u2R2j8vpxRvcJSc3lFRTz++fnJEwAAZSX+3ny9UW8F4P7liS2\nDp46zP9N+3NUAwjAX1D2ma9oOXz6KA++9zizNy2IyyHuWNHEBKnSiVMF/P6Feew9dNJ1KbXy2nur\nOJVXyIRrBuLzaQp3olu+aw0vLJxEUVmx61Iiqsxfzj+Xvc22ozv59shvkJU6w3OfUAjJ5xzNzeOh\n5+ZwJDfPdSlhmTZ/M/mFJdzx1aGkpanTn4j8np93Vr/P1LUhrU+csJbuWMX+k4e594o7aNmo8nZn\nyU0/mfIZB4+e5rcTZ0U9gDyvHM+L/mKP8z7azsQ3tV14IiopK+HpnH8kfQCdtTd3P7+b9me2H93l\nupSYUgjJJ/YfOcXvnplN7qnozDg6y/PKyd8+nfzt02MSRItW7+Kp1xdRpiBKGPnFBfxxxtOs2BX5\nVdnj2emiPP7w/pOs3bvRdSkxoxASAA4cOc1Dz87m5Jnor4LglRbgleYHv6IbeGctXbeHp15fpB5R\nAsgryucPHzzJ1iM7XZfiREl5KX+b8zzLUySAFULCwaOnefDZ2Zw8U+S6lKhatm4PT7+xGL9fQRSv\n8osLeHTGU3G5/E4slXt+Jub8g5W7I7dBZLxSCKW4I8FJCLHoAcWDJWt389xby/D7U3dKbLwqKSvh\nL7OfS/kAOsvv+ZmY8zKbD251XUpUKYRS2LET+Tz0bPSvAcWbBSt38MJ/PlIQxRHP83j+w0kpOwRX\nnTJ/OU/MfYGDpw67LiVqFEIpKvdUAQ89N4ejJ/Jdl+LEvI+28Y/Jy1P6JsF4Mn39HD7audp1GXGp\noKSQJ+a8QGFpcg6XK4RS0IlTBTz47GwOHz/juhSnZi3ZyitT4nNB1lSy9fBO3l71nusy4tqBU4d5\ndcm/XZcRFQqhFHP0RB7/98wsDh1L7QA6a8Yiy4samnOmuLSY5xa+ij+GW3AnqsXblyfljDmFUArZ\nf+QUv5s4i8PHE3slhEibs2wbE99crPuIHHh71XscPXPcdRkJ45Ulb5FXnFxD6AqhFLF19zF++/Qs\njp1MrUkIoVq0ehePvZxDYVF8boyWjPbk7mfW5gWuy0goZ4ry+PfKaa7LiCiFUApYvGYXDz47i7yC\n5Fr8MdLW2oP8duJMjqXoZI1Y8jyPScv+o+txtTDfLkmqaewKoSRWXu7n9emreXLSIkrLNNQUij0H\nT/L//vY+G7cdcl1KUlu3bxMfH9rmuoyE5OHx1oqprsuIGIVQkjpxqoBHnp/L1JxNrktJOKfzi3n4\n73OZPHeDJixEged5/GfVdNdlJLT1+zez5fB212VEhEIoCa3ctI+fPz6dTduT9wa3aPM8jzc/WMsj\nz89JuZt5o23N3g3szt3nuoyEN3nNDNclRIRCKInkF5bwzL+W8NjL83X9J0I2bjvMfY9NY8HKHbp+\nEQGe5zFt3WzXZSSFjQcsu47tdV1G2BRCSWL5hr38/M/TWLBih+tSkk5BUSnPvLmEP72Uw9ETmt4e\njm1Hdsb9fjllpz79AJe/7jhlufG7UsH7G+a6LiFsCqEEd/xkPo+/soDHX1lA7qnUWITUldUfH+C+\nx97jvQWbdU9RLc3YNN91CedUlltE3oqjnzwuPVTA6Q8Pxm0QLd+1htz8k67LCItCKEGVlZUzZd5G\nfvrHqSzfkPhd8kRRXFLGa9NW8cBfp7N5h6651cSJglOsivOtCQq3nYLyzw67emUehdtPO6ro3Pye\nnxy72HUZYVEIJRjP81i9eT/3/fk93nh/DcWl0d+ZVD5v76HALrRPvPah7isK0cKty+J+eZ6y41X3\neMqOxe8ow4KtSyn3J+7vgQzXBUjo9h0+xWvTVrLWHnRdigQtWbublZv28aXRffjSmD7UzdSPVFU8\nz+PDrctcl3FeXjVT8qs7Hg9OFpxi4wFL/w59XJdSK/qJSQBn8ot5e9Y6Zi/dqvtW4lBJaTn/mb2e\nnOXb+Ma4gYwc0IW0NJ/rsuLK9qO7OHLmmOsyktbi7SsUQhJ5ZeV+Zi3Zwtuz1lNQWOK6nIgpL/r0\nQmrR4dVkZV9Ier0WDiuKjNxThTz9xmJmLrbceu1genTOdl1S3Fi6Y5XrEpLa6j3rKS4rISsj03Up\nNRaXIWSMGQq8Y61tX83zE4CHgFbAPOAOa+2RGJYYdeu3HOQfU1Zw4Eh8XhCtrfLC4xQd+HRYpjzv\nAAUFR6jf6fKkCCKAbXuO8+unZjBqUBcmXDOIZo3ruS7JKb/nZ8Xuta7LSGrFZSWs37eZwV0ucl1K\njcXVxARjjM8YczswE6hTTZv+wETgJiAbOAS8FLMio+zYicCU60een5t0AQRQkmvBK/vsQX8ZJblb\n3BQURR+u2sVPHp3Ce/NTe0r3jqN7OFlwynUZSW9lggZ9XIUQcD9wL/AgUN2g+s3Au9ba5dbaIuDn\nwFhjTMsY1RgVfr+f9z/8mJ89Ni2pp1yXF1R9XaC84GiVxxNdUUkZr723il/+7QO2703NfXPifVp2\nslizbxNlCThLLt5C6AVr7QBgxTnaGOCTVTmttblAbvB4Qjp49DS/eXoWr05ZSXFJ2flPSGReNT8k\n1R1PErsPnuBXT87g9emrKS1L7r9rRZ7nsXKPQigWCksK+fjgVtdl1FhchZC1NpT18xsAlVeULADq\nR76i6MtZvp37/zKdbXs0cyjZeZ7H1JxN/OqJGUk51FqV/ScPcvh0cvZy49HKBOx1xuXEhPOoKnDq\nAyEt6mWMaQFUvgJe5QSIaCorK+eVqSuZvSTxPrlIeHYfPMEvn/iAu795CQN7x/yfXkwt37XGdQkp\nZcXutdwy/AbS09JdlxKyuOoJhWgzFYbejDHZQPPg8VDcA9hKXzFdBbC0rJzH/rFAAZTCCotL+dPL\nOUm94Kzf87N4+7lG1iXSzhTlsWH/x67LqJFEDKHXgRuMMZcYY+oCjwDTrbUnQjz/CQIhVvHriqhU\nWgW/389fX13IWnsgVm8pccrz4Nm3lrBkzS7XpUTF5oNbOXomNSdjuJSzZYnrEmoknofjPlkawBgz\nEcBae5e1dq0x5rvAi0AbYAHw7VBf1Fp7HPjMT4YxJmZ3gk6bv5lVm5Nnf/jaaNiwIddddx0AkydP\nJj8/ddde8zx47t/L6NqhBW2yG7kuJ6JmbMxxXUJKWrNnA4dPH6V148SYMByXIWStzSFwI+rZx3dV\nev4t4K0YlxW24yfzeWtm4l04jKSGDRvy4P/9im7dugEwbNgwHnjgAfILSx1X5k5xSRn/mLyCn99x\nuetSImbH0d2s25eYW8sn+ockD48pa2fy3Utvdl1KSBJxOC5hzV++g/IUvmkR4Lprx38SQADdunX7\n5Ac+la3bcoCjucmxYZ7nebyx/F3XZdRKw4YNeeihh5gwYQITJkzg4YcfpmHDhq7LqrHF25YnzK6r\ntQohY0xDY8ylwZlmEqKtezRVVarmeSTNzawLti5ly+HEnHBx3fjrkuJDkofHy4vfTIgtHkIKIWNM\nH2PMKmPMKGNMU2AVMB/YbYxJnjGEKCssTvIbUUMweco0duz49BfUjh07mDx5ssOK4kdhceIPSR45\nc4zXP3rHdRkC7Dq+lylrZ7ou47xCvSb0BLCNwHTm24HGQFvgDuBRYEhUqksyHVs3Ycuu1O4N5efn\n88ADD3xuzN2XnuW4Mvc6tmnquoSwlJSV8PS8lykqLXZdSq1NnjaZoRcP+aQ3lOgfkqasnUHP1t24\nsF38LigTaggNB/paa48aY74MTLbWHjbGTAJ+Fb3yksvgvh2Zs2yb6zKcy8vLY9KkSa7LiCvNm9Sj\nW4fmrsuoNc/zeGnxm+w6nhjXIapT7YekrMS8fO55Hk/nvMyvvvTjuJ0tF+p3Ng9oEVwkdCQwPXi8\nJ5WmO0v1+vdsy4Be7VyXIXHo1msHk5aWmL/oIPCJe0mS3Jh69kPSpEmTEm5mXFXyiwt4fNZz5BXF\n598l1H/1bxOYEj0fOAZ8YIy5GXgNeDNKtSUdn8/Hd24YRnbThFzmTqLk8qEXMLRfR9dl1NqCLUt5\nZ/X7rsuQczh0+gh/mfN3Ssrib3PMUEPoXuCvwCzgCmttMdAIeBy4L0q1JaXmTerzwPevonkTBZHA\nqEFduOOrQ/H5EnM78LV7N/LyYn0OTQTbjuzkmfmv4PfH120iIYWQtbbMWvsX4H+AImNMHeAla+3D\n1lpN+aqh1i0a8eC9Y+nVtdX5G0tS8vl83DT2Iu68cWTCDsPtPLaHp3Jexu/F1y81qd6qPev557K3\n8Tzv/I1jJNQp2hnGmD8A+QRmyXUCXjXGvGaMSe29i2upaaN63P+9K/nqVf1IT0/MX0K14qtmdd/q\njiehls0bcv93r+DLV/QlLS0xe0C5+Sf5y+z4HN6Rc5v78YfM2jTfdRmfCPW336+A64AvA4UE1nV7\nChgGPBad0pJfRnoaX7u6Pw//cBw9Ome7Licm0utX/fdMrx+fM3ciKT3Nx/jLevOHH4/nwu5tXJdT\na2XlZTw570VOFabGnkjJ6I3lk7GH4mOmbqghdAtwl7V2JsGFRa218wksHHpDlGpLGR3bNOU3/301\n9948ilbNE2+JkJrIbG7AV+nOgLQMMpv3dFNQjAzp25FHf/Ilbv7SIOpmxuWSjSGbvHYGO47udl2G\nhMHv+Xl2wasUlha5LiXk+4RaA/uqOH4cSO7fmjHi8/kYflFnBl/YgXkfbWdKzkaOn6y8gWziS6/X\ngrrthlG0f1HgccN2ZGVfSHq95FwBqn/Ptnz1C/3o2Tk5enqHTx9l+rrZrsuQCMjNP8nkNTP4xpAv\nO60j1BBaBHwf+NnZA8aYTOD/BZ+TCMnISOcLI3ty+dALWLByJ1NzNnL4eHIsbHlWet1PVwao23og\naZnJtYUBwKDe7fnKlX3p3im5hlnfWz+Hck1ESBpzNy/k2v5foEGWu9m6oYbQvcAMY8w4oC7wAtAj\n+NwXo1FYqsvISOeKYd0ZM6QbKzbuY9r8zWzbc8x1WXIOdTLSGDWoG9dc1ov2rZq4Lifiyv3lrNy1\n1nUZEkEl5aWs2buBS7oPdVZDSCFkrf3YGGOAbwJ9gue9DvzTWpt8Y0ZxJC0tjaH9OjG0Xye27D7K\nzEWWZev2UO6PnymWqa5po3pcNaIHVw7rTpNGyTtZ9ETBKfJL9OOebPaeOOj0/UMKIWPMUuA71toX\no1yPnEPPzi3p2bklN48vYPbSrcz7aBsnz7i/sJiqenbO5upLDEP7diQjI/mnmJeWJ/4q3/J5rv+/\nhjoc1xXQTalxolmT+nz9ixdx/VX9WLFxL7MXb2XTjsOuy0oJWZkZjBrUlS+M6EGnts1clxNTLRo0\nJz0tPSH2qJHQtXG8sGmoIfQM8I4x5jlgB4F7hT4RnLotMZaRnsbw/p0Z3r8z+w+fYs6yrSxYsYOC\nIn1ijbSObZpy1YgeXDKwK/Xr1nFdjhOZGXUY1Kkfy3etcV1K1PjSfFQ10O1L0JuKzyfNl8bgzhc5\nrSHUEPpl8L/V3ZiaQrf8x6f2rZvwresGc9PYASxZu5vZS7eyI0l26nSlTkYaw/p35qrhPejROTth\n13eLpOsHjmP1nvWUJWlvKKNFXUr2fX616Yzs5LzW94U+l9Gsgdt9rEKdmKCQSRBZmRmMGXIBY4Zc\nwI59x5mzdCuLV++iuDQ5f2lEQ+sWDblyeA8uG9yNxg3qui4nrrRr2oZbhn8taRctrde9CSUHC6D8\n0/6QL8NHvQsaO6wqOrpld+arg8a7LiPkiQmdqnnKA0qAo9Za3TwQZ7p1aEG3r7Xgm+MHsXDlDmYt\n2crBo1pqpSo+n49BfdrzhRE96du9TcKu6RYLY8xICkuLeHN54u44Wp2M5nVpOLglecuOAFCnTX3q\n92pKRvPk+jDSpUVHfnz198nKyHRdSsjDcTsAX/CrKiXGmLeB71lr43PnpBTWoF4mY0f14ouXGDZu\nO8yMxZZVm/YRRwvpOtOwfhZXDOvOVcN7kN2sgetyEsa4vlfQqlEL/r7wtYTezrsqGU0+3Wq+Qf8W\npDdMrmuAw7tdzLcv+UZcBBCEHkLfAR4A7gaWBo8NAZ4AXiaw2d2jwJ+AuyJbokSKz+ejb4829O3R\nhiO5ecxavIV5H22L+UQGX536+Oo0+OTPLnRq25Sxo3oxckBnMusk9lpurlzc+SI6t+jICx9OYvPB\nra7LkfNokFmfW0d8jWFdB8XV9U1fKPtKGGP2ALdYaxdUOj4SeN1a29kYczHwvrU24TbJMcZ0AXYC\nXa21u87TPKn6D4VFpeSs2M4HCz/m6InYdWI9L3CNyhfjLRwuMm255rLe9O3eJq5+EBOZ53ks27mK\nN5dP5kTBKdflhK08r5STM/cC0PTqjgnfE/LhY7QZwVcHjadxXWdLfVb7wxbqR8AmwJkqjhcBZxfH\nOgFou9AEU69uHcaN6sXVI3qybN0epuRsZM/Bk1F/31iGT1qajxEXdebaMX1S7t6eWPD5fAzvdjED\nO/VjzuaFTF8/h7xijcrHg4s79+f6gePo0Kyd61KqFWoIfQA8Y4z5trV2E4AxpjfwJPBBcDHTu4Dk\nvYEgyaWnpzFyYBdGDOjMmo8P8Pbs9Qk/xTs9zcfoIRdw7Zg+tG6RfIukxpusjEyu6Xcll5tLmGcX\nMWNjjvYccsDn8zGk8wDG97+Kzi06uC7nvEINoTsJrBW3wRhTQKBrVQ+YCnwPGAvcRmDjO0lgPp+P\ngb3bM6BXO1Zt3s+/Z65j94ETrsuqEZ/Px2UXd+X6q/ol/f5M8aheZl2u6XclV/W+jCU7VjBr43z2\nnXS7PlkqyMrIZFT3YVx94WhaO14FoSZCuiZ0ljGmJ9CfwLTsjdba7cHj9YDiRJ2mncrXhM7H7/dY\nvGYXb36wJiH2NxrYuz0TrhlIh9bJt4p1ovI8j80HtzBr80LW7N1ATX7nuJBo14RaN8rm8l6juLTH\nMKdbMpxHtdeEQg4hY0wacA1wIYEVEiww3Vqb8CtoKoTOr6S0jPcWbObdORspLYu/G1/btWrMbV8e\nTL8ebV2XIudwPO8EOVsWs3DLUk7G6VCd5/c+E0LxuGRPmi+NAR0v5Ipeo+jTridpvrhfTyC8EDLG\ndASmARcQCJ90AvsJHQDGWGv3R6ZONxRCoTt8/Awvv7uctTY+hlfqZKRx/VX9+NJlvVNiJetkUe4v\nZ+3eTeTYRaw/8HHc9Y684FYp8RZA2Q2bM7rnCC7tMYym9ROqtx92CL1L4BrQBGttbvBYNjAJOGWt\n/XqECnVCIVQznucx76PtvDp1JcUl7hZX79KuGf/9jZF0aON27SsJz/G8E3y47SMWbF3K8bxc1+XE\nnYy0dAZ17s/oniPo3bZHIvR6qhJ2CJ0BLrHWrqt0/CJggbU2oSK5MoVQ7Rw6dobHX1nA3kPRn9Jd\n2dhRhm9eM1C9nyTi9/xsOrCFBVuXsmr3uqRdJDVUHZq25bKewxl5wRAa1k341TzCvk/oNFXfA1Qf\nSMjJCBK+NtmN+O3dX+S5fy1h6bo9MXnPjPQ0vvf14Ywa1DUm7yexk+ZLo2/7XvRt34szRXks3r6C\n+VuWcODkIdelxUxWRibDul3MmJ4j6JrdKSVuqA41hN4BnjLG3Gat3QBgjOkPPAUk3yqGErK6mRnc\n/c1RNGm0khmLbHTfKyuDn9w2mgu7t4nq+4h7jeo25IsXjuHqPqPZdmQXOVsW89HO1c53AY2WLi06\nMsaMZFi3QdSrk1yLpZ5PqCF0P/A2sM4Yc3ZDu3oEAuhHkSrGGDMQeBboA2wF7rTWLqui3TTgCuBs\nf92z1ibfWusJIi3Nx7euuxjP85i5eEtU3qNORjr33X45vbom3KpQEgafz0eP1l3p0bor3xx6PYu2\nfcTcjxcbpFMYAAARwklEQVRx6PQR16WFLTO9DsO7XcwVvUbRJbuj63KcqTaEgvcEVXQ3UAe4HjgJ\n5BC4X6hV8HFYjDF1Cdz8+jvgeeBbwBRjTLcqVuYeAIyy1q4K930lMnw+H9+6bjDHTxWwcuO+iL/+\nDyaMVACluAZZ9bn6wjF8oc9oNh3cwuxNC1izdyNegl2mzW7YnKt6Xxbv9/XEzLl6Qh+H+BoegSnb\n4bocKLfWPht8/JIx5n8I3Jv01tlGxphWBIJvYwTeUyIoLc3HnTeO4H//Mp1jEVwMddyoXgztV92W\nVpJqfD4fF7YzXNjOcPj0UWZtWsCCrUspKStxXdo59WzdjS9eeDkDO/YlLS0hZ7hFxblCqFvMqgjo\nBWyqdMwGj1c0kMBiqtOCs/O2AD+11i5FnGtQL5Nvf2UIf3wpJyKvl92sATeOvSgiryXJp3Xjltwy\n/Aa+MmAscz7+kJmbcsgvjq+VPQZ26sf4flfSvZUm01Sl2hAKYapypDUAKv/rKeDzs/KygMXAfcA2\n4A7gfWNML2vt4fO9iTGmBdCi0uH2tapYqjSwd3t6dmnJll1Hw36t66/sS1am9vuRc2tYtwFfHvBF\nrr5wNHM3f8j0DXOch9HFnfpz3YAvJsQioi7F0093PoHJDhXVp9IWEtbaKcCUCoeeMcb8N4HhvDdC\neJ97gF+HUaeEYOwoE3YINaiXqanYUiP16tRlfP+ruLzXJby/YS4zNubEfJiud5sefH3wtXRr2Tmm\n75uo4imENhOY/FCRAV77zAFjbiQwG+6tCofrAoWE5gkCKz1U1B6YG3qpcj4De7WnTkZ6WOvMXdyn\nA3V0M6rUQv3MetwwaDyXm0t4c/lklu2M/hymlg1b8I2hX2FQp34pcX9PpMRTCM0FsowxdxOYpn0r\ngQkIMyq1ywIeNcZsIDAc9yMCITQzlDex1h4HPrNRjjEmvq9oJqCszAwu6Nicj3fWvjfUq5tmw0l4\nmjdoyl1jbuPSHsN4efGbHIvCskA+n4+xF17OVwaOIysjM+Kvn+ziZoqGtbYEGAdMIBASPwCus9YW\nGmMmGmMmBtu9CjxOYKO9E8B4YJy1NtSekMRIu1bhrebUPszzRc7q274XD37lF1zaY1hEXze7YXMe\nuOaH3DTkywqgWoqnnhDW2vXAJVUcv6vS40eBR2NVl9ROs8aVL/HVTNPGqXXnuERX3TpZ3DHqm5jW\n3Xl58Rthr03Xv0Mfvn/ZrbrXJ0xxFUKSXDLrhHc9J6uO/nlK5I3qMZTWjVvy+OxnKSip3QDKlb0v\n5eahX9X9PhGg76BEjd8f3p3s/jjbY0aSR4/WXfnFuHuon1nz3vq4vldwy7AbFEARou+iRE1RmHsN\nFRW726tIkl+n5u35n6u+T0Za6D32S3sM48bB12n2WwQphCRq8vKLwzr/TJjni5xPj9ZduWX410Jq\n26VFR7414kYFUIQphCRqTp4pCvN8TXiU6BvdcwT9O/Q5Z5v0tHS+d9kt1EnXdcpIUwhJ1OSeCm/Z\nlBOn42sNMElOPp+Pbw69/pzbZl/V+1LaNdU+VtGgEJKoCTeEwj1fJFRtmrRieLeLq3wuIy2D8f2u\ninFFqUMhJFFRVu7ndH54w3G5pzQcJ7FzdZ/R+Pj89Z6RFwymcb1GDipKDRrglKg4k1dEuDOsT+WF\nF2IiNdEluyMPjP8Rhyvs2lonvQ4Xned6kYRHISRRcaYg/Jlt4c6uE6mp7q260L1VF9dlpBQNx0lU\nROIen6Li0ghUIiLxTCEkUVFW7g/7NUoj8BoiEt8UQhIVkbidTzcFiiQ/hZBERZ0wFy8FyMzQP0+R\nZKefcomKBvXC31ulQf2sCFQiIvFMISRR0axJ+HusNA9zPyIRiX8KIYmKupkZNGkY3qZ0rVo0jFA1\nIhKvFEISNR3aNA3v/NbhnS8i8U8hJFHTrUPzMM9vEaFKRCReKYQkanp2blnrcxvWz6JNttbrEkl2\nCiGJml7dWtX6Xp8+F7QiLU33CYkkO4WQRE2Depn06Jxdq3MvMu0iXI2IxCOFkETVoN7ta3yOzwcD\netX8PBFJPAohiaohfTvW+JzunbJppnuERFKCQkiiqm3LxnSs4VTtYf06RakaEYk3CiGJumH9axYq\nQxVCIilDISRRN+KiziG37dE5m+xmDaJYjYjEE4WQRF3blo3p3LZZSG2H1yCwRCTxKYQkJoZdFNoQ\n29C+GooTSSUKIYmJUCYb9OicTYum4a++LSKJQyEkMdG2ZWPat25yzjaDL6z5dG4RSWwKIYmZ8924\nenGfDjGqRETihUJIYmZAr+qX4mnZvCFtW2rBUpFUoxCSmOnRKZuszIwqn+vXo02tFzsVkcSlEJKY\nychIp2c1C5r26dY6xtWISDyo+mOpI8aYgcCzQB9gK3CntXZZFe0mAA8BrYB5wB3W2iOxrFVqp2eX\nlqzfeqjK4yKSeuKmJ2SMqQtMBV4AmgB/A6YYYxpUatcfmAjcBGQDh4CXYlut1Fb3Tp/vCTVpWFdT\ns0VSVNyEEHA5UG6tfdZaW26tfQk4DFxTqd3NwLvW2uXW2iLg58BYY4w+SieALu0+v3JCl/bNdT1I\nJEXFUwj1AjZVOmaDxysyFdtZa3OB3OBxiXNNGtWjcYOszxzr1LZmq2yLSPKIp2tCDYCCSscKgMrj\nNKG2q5IxpgXQotJh7aAWQ/1NWz5cteuTx/16tHVXjIg4FU8hlA9U3smsPnCm0rGqAqc+kBfi+9wD\n/LrG1UnE3HnjCMaN6k2530+ThnVp2byh65JExJF4CqHNwN2VjhngtSrafTL0ZozJBpoHj4fiCWBS\npWPtgbkhVyphSUtLo2uH5q7LEJE4EE8hNBfIMsbcTWCa9q0EpmDPqNTudWC+MeZFYCXwCDDdWnsi\nlDex1h4Hjlc8ZowpCbN2ERGphbiZmGCtLQHGARMIhMQPgOustYXGmInGmInBdmuB7wIvEpg91wb4\ntpuqRUQkHD7P81zX4JwxpguwE+hqrd11nub6homI1Ey192DETU9IRERSj0JIREScUQiJiIgzCiER\nEXFGISQiIs4ohERExBmFkIiIOKMQEhERZxRCIiLijEJIREScUQiJiIgzCiEREXFGISQiIs4ohERE\nxBmFkIiIOKMQEhERZxRCIiLijEJIREScUQiJiIgzCiEREXFGISQiIs4ohERExBmFkIiIOKMQEhER\nZxRCIiLijEJIREScUQiJiIgzCiEREXFGISQiIs4ohERExBmFkIiIOKMQEhERZxRCIiLijEJIRESc\nyXBdwFnGmB8BPwUaAVOA71trC6polw0cAfIrHH7VWvvfMSlUREQiJi5CyBjzJQIBNIZAwLwO/BH4\nQRXNBwIbrLX9Y1agiIhERbwMx90KPG+t3WatPQ38ErjVGOOrou1AYG1MqxMRkaiIWU/IGJNOYKit\nMj9ggLcrHNsCNATaA/sqtR8IdDHGbAaaANOBn1hrT0W8aBERiapY9oQuB3Kr+FoLNAAqXv85++f6\nVbzOSWAuMBwYQCConolOySIiEk0x6wlZa2dTTegZY9YC9SocOhs+eVW8zl2Vzn0AWBhqHcaYFkCL\nSofbh3q+iIhETlxMTAA2A70qPDbASWvtgYqNgteIfg88ba3dHTxcDyipwXvdA/w6jFqruk4lIiK1\nEC8h9E/gGWPM2wSuAf0f8FrlRtZazxgzGHjEGPMdoDHwCPBSDd7rCWBSpWPpQBafv/4kIiJR5PM8\nz3UNABhj7gF+DDQFpgHftdYWBZ87A4y11i4yxrQBniRwjckjECg/sdaWuqlcRERqK25CSEREUk+8\n3CckIiIpSCEkIiLOKIRERMQZhZCIiDijEBIREWfi5T4hSTHGmAygg+s6RM5jn7W2zHURyUwhJK70\nBVa7LkLkPAYCa1wXkcwUQuJKcfC/VwA7XRYiUoWuBBZKLj5fQwmPQkhcKQ/+d7+1dpfLQkQqM8Zk\nBv9Yfs6GEjZNTBAREWcUQiIi4oxCSEREnFEIiSvHgd8G/ysSb/TvM0a0iraIiDijnpCIiDijEBIR\nEWcUQiIi4oxCSEREnFEIiYiIMwohERFxRiEkIiLOaAFTiQljzFjgZ8BFgA9YDjxgrV3ptDBJWcYY\nP1AI+AEv+LUE+Im1dqMx5r+Am6y149xVmfzUE5KoM8Z8F3gJeAxoDbQDZgJzjTF9XNYmKW+ItbaR\ntbYx0AJYD7xvjNHvxhjRigkSVcaY+sBBYIK1dnql5x4GVgL3AG9Za58KHr8buMFae3ms65XUEewJ\n9bXWbqpw7EICQZQNXAd8B9gHjAX2Andaaxc5KDdpKe0l2i4hMOz7QeUnrLX3W2vf5tOhEJFY8539\ngzGmGXAvsN5amxs8PBKYCjQn0JOfFmwnEaJrQhJt2cAJa63fdSEiVVgc7BFBYBfVpcANFZ5fZK19\nLfjnl40xPwTGA/+MYY1JTSEk0XYIaG6MSbfWfmaXSmNMEyDfTVkiAIyoOBxXhT2VHu8D2kSxnpSj\n4TiJtiVACXBNFc+9CDxPYAvlrArHW8SgLpFQtKv0uAuwK/ZlJC/1hCSqrLVFxpj/BZ4zxtxBYFZc\nPeB/gCsJjLnfDYw1xjwNtAduIXARWMS1S40xNwLvAN8DmgHTz32K1IR6QhJ11tqJwI+BXwNHgJ3A\nUGBMcCjk9wQ+EB0G/gW87KZSSTHnmwzjEZhQczuQC0wAxllrC6JdWCrRFG0REXFGPSEREXFGISQi\nIs4ohERExBmFkIiIOKMQEhERZxRCIiLijEJIREScUQiJCADGmIbGmG+7rkNSi0JIRM76CYGlaURi\nRiEkImf5zt9EJLK0bI9IhAT3pbkduJ/A6stzgO9Zaw8Hnx8G/AEYTOAD4ErgLmvtBmPMGOAN4DXg\nDuAFa+1PjDE/I9A76QScBv4N3GOtLTPG/AboRWC7ge8T2BbjF8Bx4K9AK+Bd4Ntnt9EIDredrW8j\n8L/W2jnGmP8isKo5gGetTTfG1AEeBm4lsMr5h8C91tqdFf6+vwPuBHZaa4dH7rspqUI9IZHIeojA\nsNZIAisuvwNgjGkEvA8sAvoCo4B0Art1ntUK6AAMBJ42xtxCIFR+AHQH7gJuA75e4ZyvBF9nAIGA\negZ4INjmZuBGgpu0GWOuAR4F7gP6Aa8Q2Cm0L4EAfAxYBbSt8HcZA1wPDCewTfs8Y0zFbTduBEYT\n2AZbpMa0lYNIZD1srZ0KEOxdbDPGXERgc7+HgD9baz1glzHmReA3lc7/fYWeRkfgNmvtzOBze4M7\ne/ap0P4M8FNrrWeMeYbAthgPWmtXA6uNMWuA3sG2vwD+YK19J/j4SWPMSOCH1trvGmPygVJr7RFj\nTD3gHuBSa+2KYD13AruBrxHosQE8Z639OIzvl6Q4hZBIZC08+wdr7Q5jTC7Q11q71hjzEnBvMJQM\nMAg4Uen8HRXOzzHGDDbGPEhg2K0fgR7RwgrtdwdDDaCg8msAhXy6YWAfYIgx5tcVns8ksKV1ZRcE\nz8sxxlQcs68L9KyqXpHaUAiJRFZZpcfpQLkxph2wAlhHYI+aVwn0UH5ZqX3h2T8Er988SWD32akE\n9mOaWKl9aRU1+KupLR34KYFhwbN8QHEVbc/+bhhDYC+diu1PVlWvSG0ohEQiazCwCcAY0xNoAqwl\nsCFagbV27NmGxphxnHtG2o8JDO89FGyfQaAntKiWtW0GulhrP+m9GGMeIjBU+ASf3eRtG4FAbV1h\nOC4DeB14CsipZQ0in6EQEomsB40x+wgMsz0FzLLWbg4OwbU1xnwRsMBY4Lvnea39wJXGmH8TGBq7\nH2hOYEgsVBVD7lFgkjHGAvOAawhMUhgffP4M0MYY09VauzO43fqTxphSArvh3g9cTuC6k0hEaHac\nSGS9APydQE9hG5/OZDu7bfkkAj2jS4FxQGNjTNdgm8r3S/yQwDWb1QSmWi8DHiFwLels+8rnVPvY\nWvtu8DXvIzA9+07g1goTH94mMLy33hjTKtjuHQKz6FYDXYGrz045F4kE3SckEiHB+2bGWGsXuK5F\nJFGoJyQiIs4ohERExBkNx4mIiDPqCYmIiDMKIRERcUYhJCIiziiERETEGYWQiIg4oxASERFn/j/K\nkjztHFS6FQAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x10978e908>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"df['logres'] = np.log10(df['res'])\n", | |
"seaborn.violinplot(data=df, x='parameter', y='logres')\n", | |
"seaborn.despine(trim=True, offset=10)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"## Let's use Regression on Order Statistics (ROS) to impute censored values" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "fragment" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>parameter</th>\n", | |
" <th>final_data</th>\n", | |
" <th>res</th>\n", | |
" <th>qual</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>Cu</td>\n", | |
" <td>3.111178</td>\n", | |
" <td>5.00</td>\n", | |
" <td>ND</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>Cu</td>\n", | |
" <td>6.295104</td>\n", | |
" <td>9.50</td>\n", | |
" <td>ND</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>Cu</td>\n", | |
" <td>6.295104</td>\n", | |
" <td>11.00</td>\n", | |
" <td>ND</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>15</th>\n", | |
" <td>Pb</td>\n", | |
" <td>3.915496</td>\n", | |
" <td>5.00</td>\n", | |
" <td>ND</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>16</th>\n", | |
" <td>Pb</td>\n", | |
" <td>3.915496</td>\n", | |
" <td>5.50</td>\n", | |
" <td>ND</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>17</th>\n", | |
" <td>Pb</td>\n", | |
" <td>4.655012</td>\n", | |
" <td>5.75</td>\n", | |
" <td>ND</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>18</th>\n", | |
" <td>Pb</td>\n", | |
" <td>5.553616</td>\n", | |
" <td>9.50</td>\n", | |
" <td>ND</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" parameter final_data res qual\n", | |
"0 Cu 3.111178 5.00 ND\n", | |
"1 Cu 6.295104 9.50 ND\n", | |
"2 Cu 6.295104 11.00 ND\n", | |
"15 Pb 3.915496 5.00 ND\n", | |
"16 Pb 3.915496 5.50 ND\n", | |
"17 Pb 4.655012 5.75 ND\n", | |
"18 Pb 5.553616 9.50 ND" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df2 = (\n", | |
" df.groupby(by=['parameter'])\n", | |
" .apply(lambda g: wqio.ros.MR(g).data)\n", | |
" .reset_index()\n", | |
" .drop('level_1', axis=1)\n", | |
")\n", | |
"df2.query(\"qual == 'ND'\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "subslide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAErCAYAAAB3gzx8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl81NW9//HXJCGBEEAJqwiyH1ZBRBSByuKGC12stmr7\ns2699VZte7te/d2f7a1ba9W2anEF64at4gLILvsi+xrgsC9hJ2HLvsz8/piJxpCQIZmZM8v7+Xjk\nYfKdM/P9EJO855zv+Z7j8fl8iIiIuJDkugAREUlcCiEREXFGISQiIs4ohERExBmFkIiIOKMQEhER\nZ1JcF1CZMWYo8CxggGPAn621r1bT7nbgCaAVMBe411p7JJK1iohI/UVNT8gYcz4wCXjeWnsecCvw\nlDFmVJV2FwNjge8BLYBDwPgIlysiIiEQNSEEdAAmW2vfB7DWrsHfy7mySrs7gU+stSustUXAb4Hr\njTEtI1qtiIjUW9SEkLV2nbX2roqvAz2jYcDaKk0NsKnS83KB3MBxERGJIVETQpUZY5oBk4GV1trJ\nVR5uDBRUOVYApEeiNhERCZ2ompgAYIzpBEwBtuG/7lNVdYGTDuQF+fqZQGaVw8lAGrDRWlt2TgWL\niEidRVUIGWMGANOAt621v6qh2WYqDb0ZY1oAzQPHg/EQ8FgNj3UCdtfyfK34KiJybjw1PRA1IWSM\naQ1MB56x1j5zlqYTgPnGmHHAKuApYKq19niQp3oBeK/KsXbAnHMsWURE6skTLVs5GGMeAR4H8qs8\n9DcCw2fW2gcCbW8NtG0DLADuttYeq8e5OwK7gE7W2t21NI+Ob5iISOyosScUNSHkkkJIRCSsagyh\nqJwdJyIiiUEhJCIiziiERETEGYWQiIg4oxASERFnFEIiIuKMQkhERJxRCImIiDMKIRERcUYhJCIi\nziiERETEGYWQiIg4oxASERFnFEIiIuKMQkhERJxRCImIiDMKIRERcUYhJCIiziiERETEGYWQiIg4\noxASERFnFEIiIuKMQkhERJxRCImIiDMKIRERcUYhJCIizqS4LkBEJFps3L+FRduX4fX6AGjZJJPv\nDLiB5KRkx5XFL4WQiAjg9Xl5dcHbnCrK+9rxDs3bcXnnAY6qin8KIYmo5Rv2smHboa8dS01J5toh\n3Wmd2cRRVSKw8+jeMwIIYO2+jQqhMFIIScTknCjgb+8swufznfHY/iMn+d19Ix1UJeK3fNfqao+v\n2beR4rIS0lJSI1xRYtDEBImYRat3VhtAABu2HSL3ZEGEKxLxKykrZcmOldU+VlRazPJdayJcUeJQ\nCElElJd7mf3Fthof9/l8zF66NYIViXxl8fbl5BXn1/j4jKy5eH3eCFaUOBRCEhFL1+0h58TZezqz\nlm6joKg0QhWJ+JWUlTJ5/cyztsk+fpCVu9dFqKLEohCSsCsrK+ej2RtqbZdfWMK0hZsjUJHIV6Zv\nnENu/ola2/1r5SSKy0oiUFFiUQhJ2M1cspVDx04H1XbKvE219phEQmX/iUNMWnf2XlCFnLxcPlr9\nWZgrSjxRGULGmEHGmP1neXyKMabAGHM68HEqkvVJ8I4ez+PDmeuDbl9cWs6bn6yocQKDSKiUlJXw\nyvy3KPOWBf2cmVnz2bh/SxirSjxRFULGGI8x5h5gJtDgLE37A0OttU0CH00jU6GcC6/Xx6sfLKOo\nJPhfcoBVm7JZtHpXmKoS8U+EeWvpB+zNrfG9bvXPw8cr89/i6OmcMFWWeKIqhIBHgIeBxwFPdQ2M\nMa2AVkBWBOuSOpgyfxNZ2w/V3rAa4z9ewcGj6uBKeExeP4tF25fX6bmni/N5ftYrZ51NJ8GLthB6\nw1rbH6h+wr7fJcBpYIox5ogxZpEx5orIlCfB2rDtIP+aXvfZREUlZTz/1gKKijVbTkJrzpZF9b62\nc+DkYZ6b9QqFpUUhqipxRVUIWWuDeducBizB32NqB7wDTDPGtA7mHMaYTGNM98ofQKc6Fy1nOHDk\nFH+vYWWEc5F9+CQvTViC16v7MyQ05mxZxFtLPwjJa+08uodnZ4yloKQwJK+XqKIqhIJhrZ1krb3Z\nWrvZWltqrX0Z2AeMCPIlHgJslY854ak28Zw8Xcifx80lvzA0U1lXbcrmn5NWaaKC1IvP52Pyupkh\nC6AK24/u5k/TXuRkoYaO6yrmQsgYc5sx5tYqhxsCwb4deQEwVT60aFkI5BeW8NTrcziSe+YikPUx\na8lWJs6q/T4jkeqUect5a+kHTAzT9Oo9udn8ccrz7D9Rt+ufiS4WFzBNA/5sjNkIbAd+jj+Egprs\nb63NAb42tcUYozvQ6qmgqJQ/vTGHvQdrv+mvLj6avYG01BRuHt4rLK8v8SmvKJ+x898k60B4l4Q6\nlpfL41Oe54Hhd3HxhfoZPRfR3BP6cvzFGDPWGDMWwFr7NvA8MB04DtwIjLbWamDWkYKiUv78xhy2\n7w3vtNUJU9fw2XytqCDB2ZOTzR+mPBv2AKpQWFrE87NeZfK6mVpn7hx4NNYOxpiOwC6gk7V2dy3N\n9Q2rJL+whKdfn8OOfZG7b+L7o/szZkTviJ1PYovP52PhtmW8/cWHlJa7mV3Zr31v7h92JxlpjZ2c\nPwpVe8sNRHdPSKLcqbwiHn9ldkQDCOD9aWv5YMY6TVaQMxSVFvPawncZt3iCswACWLcvi8c+fYbt\nR3TTdW0UQlInx08W8MdXZrPnwHEn5//48428M2W1gki+tPvYPh6b9AxLdqxwXQoAOfnHeXLq35m0\nbqZuMziLWJyYII4dyc3jyVc/D/ksuHM1beEWiopLufc7g0hK0vupROX1eZm+cS4TV39GubfcdTlf\n4/V5+Wj1Z2QdsPx42A/IzDjfdUlRR7+5ck72Hz7JH/4x03kAVZi7fAcvTlhCWbneaSai4/kn+MuM\nsfx75aSoC6DK7KHt/M+nf9IOrdVQT0iCtvtALk+9NofT+cWuS/maL9btoaSkjId/MIzUBsmuy5EI\nWbl7HeOXvE9+cWxs/VFQUsg/5r3J+uxN3HnFLTRq0NB1SVFBPSEJyva9x3j8ldlRF0AVVm/ez7Nv\nzqP4HFfslthTXFrMuMXv8+LccTETQJUt2r6cxz59hp1H97guJSoohKRWW/cc5cnXPqegMLoXE92w\n7RDPjJt3zltHSOzYk5PNY5P/woKtS8N6Hp/Xh88bvkkvR04f44nP/spn62cn/D1FCiE5q217jvH0\n63MoKo6NP+ybdh7mmXFz1SOKMz6fj883L+SPU57j0Mkj4T2X18eJmfs4MXNfWIOo3Oflg1WTeW7m\nK5wqDG7n4XikEJIa7crO5U9vxE4AVdi88wjP/XM+pWXRe6FagldYWsTY+f/k7S8+pCwCkw+8BWVf\n+wi3jQe28P8mPcPWwzvCfq5opBCSah04coqn35hDQVF0D8HVZMO2Q7z43mLdnxHjDp08wv9Ofi7u\nZ5WdKDjJ09NeZNam+Ql375tCSM5w/FQhT78RfbPgztWKjfsY//GKhPuljhcb9m/mD5Of5eDJw65L\niQivz8u7yz5i3OIJlJXH1uhDfSiE5GuKSsp4Zvw8jh2Pj62LP1+2ncnzNrkuQ87RnC2LeH7Wqwm5\nc+nCbct4ZubYmJz5VxcKIfmS1+vj5X8tYff+XNelhNT709ayMmuf6zIkCD6fj4/XTOWtpR8k9Kwx\ne2g7T039O8fzw7M1SjRRCMmXPpmzkeUbIvPH2ucrx+eL3MSBf0xYQvbhkxE7n5w7n8/Hv1Z8yqdr\nZ7guJSpknzjIU9NeICfPzfqMkaIQEgDW2QNMnLU+Iufy+crJ3zGV/B1TIxZERSVlPP/WgpidaJEI\nPlw1helZc12XEVWOnD7Gn6a/yImC+H0DpRASck7k89KEJUTq+r2vtABfaX7gI3Lj3gePnuL1ics0\nUSEKzciay2cbZrsuIyodOX2MZ2e+HLfXxxRCCa683MsL7y0mryC2Z8IF64t1e5izbLvrMqSStfuy\neH/5p67LiGr7jh/g5flvxeV1MoVQgvtw1nq27j7quoyIemvSKvYejO9x9lhx9HQOry54G582LK7V\nun1ZTFkff71FhVAC27D1IJPmZrkuI+JKy8r5+7uLKCrW9SGXvD4vry96j4KSQtelxIxP1kxj97H4\nmumpEEpQOScKeGnC4ohdB4o2B46c4vWJy3V9yKEFW7/AHtLQ6Lnw+ryMX/x+XK0EohBKQP6ewEJO\nxfiKCPW1ZO1uZi7Z6rqMhFRYWsTEVVNclxGT9uRms3D7MtdlhIxCKMH4fD7GfbScbXuOuS4lKrw9\neRVZ2w+5LiPhfL55IaeL42NVDhcmrZ0RkcVcI0EhlGAmzc1i/sqdrsuIGl6vj+ffXqAbWSOorLyM\nWZsWuC4jpuXkH2fl7nWuywgJhVACmbdiB/+aHh8/uKFUUFjKn96Yw9Hjea5LSQjrsjdxsvCU6zJi\n3sJt4d3YL1IUQgliwcqdvPbhF67LiFo5Jwp4/JXP42bh1mi2bNdq1yXEhU0HtsXFZngKoQQwfdEW\nXv730oSdCReso7l5/GHsTPZraC5svF4vG/ZvcV1GXPDhY332Ztdl1JtCKI55vV4mTF3DW5NWuS4l\nZuScKOAPY2eyeUdi7GETaXtz91Oo+4JCZsuhba5LqDeFUJwqKCzh2Tfnay+dOsgrKOHJ1z5n9tKt\nuo8oxHYd2+u6hFqVnfzq1oX89TmU5Ubvmm2x8P2sjUIoDu3cl8Mjf5vGmi0HXJcSs8q9PsZ9vIJ/\nvL+EQq28HTLZJw66LuGsynKLyFv51TJWpYcKOLXoYNQG0aGTR2J+qnaK6wIkdLxeL58t2MK/Z6yj\nvDx+7qh2afGa3ezYl8N/fv9KunZo4bqcmHf4VHSvU1i4/SSUf7336yvzUbjjFE2aN3RUVc3KfV5y\n8nJp3bSl61LqTD2hOHHo2Gn++PJsJkxdowAKsUPHTvPYSzP59/S1lJbF9rtO13KjfKfQspzqezxl\nx6L3Ola0f09ro55QjCsr9zJ1wWYmztqgP5Bh5PP5+GROFis27uO+716O6djKdUkxKdrvD/J5q78G\nWNPxaBDt39PaKIRi2NbdRxn/8Qr2aFuCiNl/5BR/+McsRl7ele9d358mjdNclxQzvF4vBcXR26OI\nVaeLYvsma4VQDDqZV8S/pq1l3oodrktJWHOWbWf5hn3cfkN/rhrYhaQkj+uSol5+SYH2DQqDvOLI\n7U4cDlEZQsaYQcDH1tp2NTx+O/AE0AqYC9xrrT0SwRKdKCv3MmvpVibOXE+BZmw5l1dQzGsfLuPz\nL7Zx1zcvo9tFmrhwNvkx/scyWsX69zWqQsgY4wHuBp4DSmpoczEwFrgG2AC8AIwHboxQmU5s2HqQ\ntyav0t38UWhndi6PvTSDoQM6cfvo/pzfLN11SVHpdJGWRAqHvGINx4XSI8CtwOPAb2tocyfwibV2\nBYAx5rfAUWNMS2ttdM//rIPDOad5Z8pqVmVluy5FarFo9S5WbtzHt0b1YfSwHjRISXZdUlSJ9Qvo\n0epkQWyvHxdtU7TfsNb2B1aepY0BvlwGwFqbC+QGjseNopIy/j19Lb95dkrcBVB50VdTSosOr6G8\nMMdhNaFVVFLG+9PW8ptnP2PN5v2uy4kqufmaQBMOOTH+fY2qnpC1NpjdxRoDVQdBC4C4GAPx+Xys\nzMrmrUkryTkR22O91SkvzKHowFe7QpbnHaCg4AjpHUaQ3CjTYWWhdTjnNM+Mn8eAnu2465sDadk8\nw3VJzh06FfeXbZ04lpdLaXkZDZKj6s950GKx6uoCJx0IamDUGJMJVP1rV+0EiEjLOZHPuI9XxPU7\n6JJcC76yrx/0llGSu5VG7Qa7KSqMVm/ez8bth7jlmr7cMKwnycnRNvgQObtz4qtHHy28Pi/Zxw/Q\nqUUH16XUSSyG0GYqDb0ZY1oAzQPHg/EQ8FgY6qozn8/H3OU7eGfKKoqKy2p/QgwrL6h+W/Hygri7\nnPelktJyJkxdy7L1e/mP2wbTvs15rkuKuMLSIvYc2+e6jLi15dD2mA2hWHxbNgG4xRgzxBjTEHgK\nmGqtDXZg9AX8IVb5Y2RYKg3C6fxi/vLmfF6fuCzuAwgAXw2rOtR0PI7szM7l0b9NY8Zim3Crc2/I\n3ky5T8tJhcvafVmuS6izaO4JfflbaowZC2CtfcBau84Ycz8wDmgDLMA/rTso1toc4GtXwo0x1U4H\nD7fte4/x17cXknsy/q79SPXKyr3889OVbNpxmAe+N5iGaQ1clxQRi7Yvd11CXNt6aAdHTh2jVdPY\nu1ctKkPIWjsP/42oFV8/UOXxD4APIlxWSK3KyuaF9xZRUhr/PQA504qN+zh2PJ/f3DOcZk0auS4n\nrPafOMSGONgBNJr58DFj0zx+eMV3XZdyzmJxOC7mrd6UzXNvLVAAJbhd+3P54yuzySsorr1xDPto\n1WdaricC5tslHDld/TXXaFanEDLGZBhjhgVmmsk52L0/lxfeXZRw1wSkegeOnOK5f86P2+031u3L\nYtXe9a7LSAhl3nLe+WJizP1tCSqEjDG9jDGrjTFDjTHnAauB+cAeY8yIsFYYR7xeL699uIxi9YCk\nki27jjL7i22uywi500V5jF/8vusyEsr67E3M37rUdRnnJNie0AvAdsAC9wBNgbbAk8Cfw1Na/FmZ\nlc2u/bmuy5AoNHHWesriaD8or9fLK/Pf5oSW6om4d5d9xJ4Yuicr2BC6AvhtYG22bwKfWmsPA+8B\nfcNVXLyJ55tQz0VGRgZ33HEHd9xxB40bN3ZdTlTIKyhh297YG8+vyfsrPmHjgS2uy0hIpeWl/G32\na5woiI3FjoMNoTwg0xjTErgSmBo43p0q052lZgePxfZCg6GQkZHBE088we23387tt9/Ok08+SUaG\nlrQB/zbi8WDahjnM3DTfdRkJLbfgBM/OeiUmtnkINoQm4p8SPR84Bkw3xtwJvAv8K0y1xZ30holx\nT8jZjLn5Rjp37vzl1507d2bMmDEOK4oe6Q1TXZdQb/O3LuVfKz91XUa9xEtPfV/ufv46+1WKS6N7\n9mWwIfQw8DdgFjDSWlsMNAGeB34TptriTo9OrWpvJAkpKckT85viLd6+gjcXx/Z70njrqW87sou/\nzn6N4jIn9+MHJagQstaWWWv/CvwCKDLGNADGW2uftNYmwFozoTH8si4Jv8fMp5OmsHPnzi+/3rlz\nJ59+GtvvnENhYO/2NI/hzfAWb1/B6wvfjfn7gcbcOCbueuqbD23jb1EcRMFO0U4xxvwJyMc/S64D\n8LYx5l1jTHzf7h1CTTMa8n/GXOq6DKfy8/N59NFHmTBhAhMmTOCRRx4hPz+xd9xs0jgtpn8uluyI\njwCKZ5sObvUPzUVhEAU7HPf/gDH4Z8YV4l/X7SXgcuDZ8JQWn0Ze3pVRl3d1XYZTeXl5vPfee7z3\n3nsJH0CpDZJ5+M6hMdsL+mLnKl6LowD6dMqncdtT33xwG3///HVKykpdl/I1wYbQD4AHrLUzCSws\naq2dj3/h0FvCVFtc8ng83POdQdx0VU/XpYhj6Q0b8Lv7RtK7axvXpdTJmr0beHXBOzF3h/7ZxHtP\nPeuAZey8NynzRs89acEuYNoaqO7upxwgdq/aOeLxeLjjxgFc2Po8xn+yguKSBLqs5qnhmlhNx+NU\np3bNefCOIbRt2dR1KXWy/cgu/jHvn3jjcHuGip56vFqzbyNvLfk3dw/5Ph6Px3U5QfeEFgP/UfmA\nMSYV+L+Bx6QOvjGwM0/+bHTMz4o6F8np1f9bk9NbRrgSN5KSPNw8vBd/+Om1MRtAufkn+Nvnr1Na\nHl3DOhK8Bdu+YEbWPNdlAMH3hB4GZhhjRgMNgTeAboHHrgtHYYmibcumPPbAtSxYtZMJU9dwOj+6\n5/TXV2pzQ1neAfBW6v0lpZDavLu7oiKkR6dW3P3ty2J6Z1Wv18vL8//J6aI816VIPX2wchLdW3em\nc8uLnNYRVAhZa7cYYwxwB9Ar8LwJwDvW2ui/JTfKJSV5GH5ZFwb2vpAp8zczfdGWuN3mIblRJukd\nRlCSaykvyiW5YSapzbuT3Ch+F2Rv27Ipt13Xj0F920fF8Ed9zLWL2Xp4Z+0NJeqV+7yMWzyB34/5\nNSlJ7obDgwohY8wXwH3W2nFhriehZaSn8f3R/bluiOGTzzcwd/kOyuJwif/kRpk0anel6zLCruX5\njfnWqD5849LOJCfH/tZdJWUlfLp2uusyJISyjx9k+a7VXNnlMmc1BDsc1wlIoKvnbp3ftBF3f3sQ\n3xrZh88WbObzL7Zp+4cY0rZlU745sjdX9u9IShyET4VVe9ZzSsNwcWfO5kUxEUIvAx8bY14FduK/\nV+hLganbEmLnN0vnBzdfypiRvZm9ZBszl1hOxfk1o1jWtUMLbrqqJwN7X0hSUvyET4WNB6zrEiQM\ndhzdQ0FJIempbtYdCDaE/ifw35puTI2/37go0rRxQ75zTV9uGt6That2MXXhFg4e1T4t0cDj8S+5\nc8M3emA6xvfagDl52gsrHvnwcTz/RHSHkLVWIRMFUhukMOqKbowY1JX1Ww8wbZFlw9aDrstKSI3S\nUhg+qCvXXtmd1plNXJcTEckOL15HiifJU+3aD56k2J5QUhuX/2+DnZjQoYaHfEAJcNRaG39X0KNU\nUpKH/j3a0b9HO7IPn2TGoi0sXL0rbmfURZPWmU24bkh3vjGwS8JtzdHuvDZkxfmQXEpmQ0qyz1wh\nIaVF/C6RmZrcgBYZzZ2dP9jhuJ2AJ/BRnRJjzETgx9ba+FnjIgZc2LoZ995yOd8b3Z+5y7czc8lW\nck5o1nyo9enWhuuHGPr3aEdSnL8rrsmgTpfE/WZ1jbo2o+RgAZR/1R/ypHho1CU2bywOxoCL+pKS\nHGwUhF6wZ74PeBR4EPgicOwy4AXgTfyb3f0Z+AvwQGhLlGBkpKdx8/De3DCsJyuy9jFt4Ra27Ymf\n7aJdaJCSxNABnbh+aI+YvsE0VLq07Eifdj3YuD9+t+1Oad6QjIEtyVt2BIAGbdJJ73EeKc0bOq4s\nPJI9Sdzcz+16A55gFh80xuwFfmCtXVDl+JXABGvtRcaYS4Fp1tqYuzprjOkI7AI6WWt319I8ZlZr\n3LbnGJ8t2MyKjfviapHJcGvaOI1rruzONYO70zQjPv/41NXR0zn8fvJfYmLb6LoqzyvlxMx9AJx3\nbXuSM+J32PWWATdyc79rI3GqGocPgu0JNQNOV3O8CKhYDOw4EJvr0cepbhe14Oc/HMbhnNNMW7iF\nuct3UFqm60Y1aZ2ZwU1X9WLYpZ1IbeBueCKatWySyUMj7+W5mS9TorXjYtqQLpdx08XXuC4j6KnV\n04GXjTG9Kg4YY3oCLwLTA4uZPgCsDX2JUl+tM5vwo29dxt8f+RbfHNmbRgl2Qb02Hdqex4N3DOEv\nv7qZUVd0UwDVokebrvzy2gdo1EC9xFg1sscQ7h16R1QsIxXscNz5+NeKuxYowN+1agRMBu4BhgCv\nA2OstV/U9DrRKl6H42qSV1DMtIVbmL5oC4XFibsQRoe253HLNRczsPeFUfHLGGsOnTzCi3PHkX08\nvm4TiOfhuJSkZO64/DuMMEMi/TNf48mCCqEKxpjuwMX4p2VnWWt3BI43AopjdZp2ooVQhbyCYibP\n28T0RTahhulaZzbhe6P7MahPh4Sd6RYqxWUlfLT6M2ZmzY+b3VXjNYTan38B9w27k4syL3Rx+vqH\nkDEmCbgB6I1/GM8CU621RaGo0KVEDaEKx47n88HMdSxctct1KWGVkZ7GLdf0ZdQV3eJqTbdosO3w\nLt764gP25e53XUq9xVsIpSY34KaLr+GGvqNcTsWuXwgZY9oDU4Au+MMnGf9+QgeA4dbamP7JS/QQ\nqrB191HGfbycvQdPuC4l5EZe3pXvXd+fJo3TXJcSt8q95czfupSP10yL6f2G4imELu80gNsG3kym\nw5tRA+o9O+4F4BAwwlqbC2CMaQG8B/wVuLW+FYp73Tu25ImHR/PZgs18OHN9XGwj0aZFE35y22C6\nd0yMnVtdSk5KZmSPoQzuMpAZG+cyPWsuRaVacNeFPhf04LuX3kTHFu1dl1KrYHtCp4Eh1tr1VY73\nAxZYa5uFqb6IUE/oTHsPHuelCUvYdyh2e0XXDO7GHTcOIC1Vs91cyCvOZ2bWfGZtmk9haeyM2vu8\nvq/1hGJp3bi+7Xryzf7X0bVVJ9elVFXvntApqr8HKB2I/bfLcoYObc/nfx+8jtc+XMaStbtdl3NO\n0hokc/93r+DKSzq6LiWhZaQ15jsDbuC63sOZaxczM2teTOxH5EnycN617b/8PNp58HBpx37c2HcU\nnVrUtMxn9Aq2J/QiMBi4y1q7MXDsYvxL9qy31v4ojDWGnXpCNfP5fHwyZyMfzFhfe+Mo0DSjIb+9\nZwSdLnQ+Bi5VlJSVsHj7CmZsmsehk0dclxPzUpMbMLTbIK7tNZw2zaJ+oZp694QeASYC640xFRva\nNQI+BX5ev9q+Yoy5BHgF6AVsA35irV1WTbspwEigYl6xz1obvysMOuTxePj2qL5kpKcx/uMVrss5\nq+bNGvHoj6+mbUv9KESj1JRURvQYwlVmMOuzNzEzaz6bDm51XVbMOa9RU0b2GMqIHkNo0jDDdTn1\nVmMIBe4JquxBoAHwbeAEMA///UKtAl/XizGmIf6bX/+I/8bX/wNMMsZ0rmZl7v7AUGvt6vqeV4Jz\nzeDuFBaV8v606FwUIyM9lf++b5QCKAYkeZLo374P/dv3YV/uAWZtms/Snaso1TJAZ9WpRXuu6TWc\nQR37O131OtTO9i8JdqlcH/4p2/U1Aii31r4S+Hq8MeYX+O9N+qCikTGmFf7gywrBOeUc3Dy8F9mH\nT7JodXTdT+TxwEN3DqVd65ieH5OQ2je/gHuG3s6tA29m/talzNm8iNyC2J0ME2rJniQGduzPNb2u\nokvLi+JyZY+zhVDniFXh1wPYVOWYDRyv7BL8i6lOCczO2wr8KhaXC4o1Ho+He74ziG17jnI4J3ou\nMN88vDd9u7V1XYbUQ5OGGdx08TWM7jOS1Xs3MGvTfLYe3um6LGeaNMxguLmSkT2Gcn56fL+5qjGE\ngrhAH2rhmDWgAAAR2ElEQVSN8a9LV1kBZ87KSwOWAL8BtgP3AtOMMT2stYdrO4kxJhPIrHK4XZ0q\nTkANU1O459uDeOr1Oa5LAaBV8wy+c3Uf12VIiCQnJXNZx/5c1rE/u4/tY9am+SzbtZoyb2IsK9W+\neTuu7fUNLu90KakpsXuT7LmIpoHFfPyTHSpLp8oWEtbaScCkSodeNsb8J/7hvPeDOM9DwGP1qDPh\n9e3elt5d25C1/ZDrUvjutRdr1es41bFFe+7/xg+4deAY5tpFzNm8iNPF8blxc//2fbiu93B6tOka\nl0NuZxNNv72b8U9+qMwA737tgDG34Z8N90Glww2BQoLzAv6VHiprB0THW/sY8c0RvZ2HUIvzG3Nl\n/4uc1iDhd156U759yQ3c2PdqluxYybSNczh86qjrsuotJSmFod0GcX3vEbEwxTpsoimE5gBpxpgH\n8U/T/iH+CQgzqrRLA/5sjNmIfzju5/hDaGYwJ7HW5gA5lY8ZY0rqV3ri6d21Na0zm3A4p7q9DiNj\nxKAuJCVpIdJEkZqSynBzJd/odgWr927gsw2z2XVsr+uyzlmj1EZc3WMYV/caRrNGms0ZNSFkrS0x\nxowGXgaexH+f0BhrbaExZmygzQPW2reNMW3xb7SXCawERltrg+0JSQh4PB6u6NeBT+e4m6Q4uF9H\nZ+cWd5KSkhjYsR+XXnQxWQcsk9bNZOvhHa7LqlVGWmOu6z2cUT2HkZ5a9cpD4jqn/YTilVZMqJut\ne47y+5eC6oCGXNuWTXn21zc7ObdEF5/Px+aD2/hozVS2H4mu2wcAGqemM7rvSEb1HJbIu9HWe8UE\nkTN0bZ9Jo4YNKCyK/E2Gfbq1ifg5JTp5PB56XdCdnm27sS57E/9eOYkDJ9xPmmmQ3IBre13FDX1H\n0TituqU3BRRCUg9JSUl0v6gF62zkt3fu2SlxL+RK9TweD/3b96Zvux7M37qUj1ZPJc/RbLorOg/g\n1kvHkJlxvpPzxxKFkNRLtw4tnYRQt4taRPycEhsq9jUa1OkSPlw5hXlbl0Ts3G2bteauK2+jR5uu\nETtnrFMISb106VD1vt/wO69JQ5o30/CGnF1GWmN+NOR7DO5yKa8veo+jp3Nqf1IdeTwebup7DTf3\nuzZhbjINFc1vlXrpfGHkQ6jzhZkJd0Of1J1p05X//eZvGNp1UFhev0VGcx694WfccumNCqA6UAhJ\nvTRpnEar5pFdTt5F70tiW6MGDblv2J3cPeT7pCSFYr1lv77tevL7Mb+Kxp1MY4ZCSOqta4RDoUt7\nXQ+Surmq+2B+fd1PaZxa/+HcUT2G8Yurf0xGWuMQVJa4FEJSb90uahmxc3k8/qnhInVl2nThd6Mf\npEk9wuOmi6/hB1fcohU7QkDfQak30ylyIdSh7fmkN0qN2PkkPrVv3o5fXfefNExJO+fnXtvrKm4Z\ncKOuS4aIQkjqrUOb88lIj0ww9OrSOiLnkfh3UeaFPDD8rnN6Tv/2ffj+oG8pgEJIIST1lpTkoXfX\nyKxg0FcrJUgI9Wvfmxv6jgqqbfP087h/2J0kefRnM5T03ZSQuKRH+PcFTG2QrJ6QhNy3+o+mTdPa\nV+D44eBbtfxOGCiEJCQu6dmOpKTwDlFc3L2tNrCTkEtNacD3B33zrG36tutJ//a9I1RRYtFvtIRE\nk8Zp9OrSmo3bwrdw5OUXdwjba0ti69++D//3xl+Qm3/8jMeSk5LpdUF3XQcKE4WQhMyQSzqGLYTS\nUlO4tHf7sLy2CEDXVh2Bjo6rSDwajpOQuaxPB9IahO5u9K+/dnsapuo9k0i8UQhJyKQ3bMDl/S4K\ny2uPuKxLWF5XRNxSCElIjbq8W8hfs12rpvTorP2DROKRQkhCqmuHTDpeENqNvK4erIvCIvFKISQh\n5fF4uG6oCdnrNUpLYdilnUP2eiISXRRCEnKD+3WkaUbDkLzW8Mu6kt5Qe7SIxCuFkIRcaoNkrhlc\n/2tDHo+Ha4d0D0FFIhKtFEISFlcP7k6DlPr9eF3W50JaZzYJUUUiEo0UQhIWzTIaMnRA/a7l3PCN\nniGqRkSilUJIwuaGYT3q/NyuHVrQPYKb5YmIGwohCZt2rZvRz7St03PrE2AiEjsUQhJW1w899zBp\n3iydgX20TpxIIlAISVj17db2nCcXXH1FN1KS9aMpkgj0my5hlZTk4epzmK6dnORhxCCtEyeSKBRC\nEnbDLu0UdM/m0t4X0qxJozBXJCLRQiEkYde0cUMG9Apu+++rBqoXJJJIFEISEUMHdKq1TZPGafTt\nXrfZdCISmxRCEhH9zAU0qmUNuEF9O2hCgkiC0W+8RESDlGQu6XHBWdsM0rRskYSjEJKIGdDzwhof\na5iaQk9tXCeScFJcF1CZMeYS4BWgF7AN+Im1dlk17W4HngBaAXOBe621RyJZq5y7vt3b4vGAz3fm\nY727tSElJTnyRYmIU1HTEzLGNAQmA28AzYC/A5OMMY2rtLsYGAt8D2gBHALGR7ZaqYsmjdPo0Lb6\nXVd7d2kd4WpEJBpETQgBI4Bya+0r1tpya+144DBwQ5V2dwKfWGtXWGuLgN8C1xtjtNplDDAdq//f\n1L2G4yIS36IphHoAm6ocs4HjlZnK7ay1uUBu4LhEua4dWpxxrEFKco09JBGJb9F0TagxUFDlWAGQ\nXsd21TLGZAKZVQ4Hdyel1FvHds3PONah7Xmami2SoKIphPKBquu1pAOnqxyrLnDSgbwgz/MQ8Ng5\nVych0bZFE1KSkygr9355rEPb8xxWJCIuRdPbz82cOaT2taG36toZY1oAzQPHg/FC4PmVP0bWoV6p\ng+TkpDM2qzOdNDVbJFF5fNXNl3XAGJMK7ASexj9N+4fAk0Ana21hpXb9gPnAjcAq/KHSxlp7cz3O\n3RHYFTjX7lqaR8c3LIblFRSzacdhvD4fTdLT6Nm5NUlJHtdliUj41PgLHjU9IWttCTAauB3IAX4K\njLHWFhpjxhpjxgbarQPuB8bhnz3XBrjbTdVSFxnpaQzq24ErLr6I3l3bKIBEEljU9IRcUk9IRCSs\nor8nJCIiiUchJCIiziiERETEGYWQiIg4oxASERFnFEIiIuKMQkhERJxRCImIiDMKIRERcUYhJCIi\nziiERETEGYWQiIg4oxASERFnFEIiIuKMQkhERJxRCImIiDMKIRERcUYhJCIiziiERETEGYWQiIg4\noxASERFnFEIiIuKMQkhERJxRCImIiDMKIRERcUYhJCIiziiERETEGYWQiIg4oxASERFnFEIiIuKM\nQkhERJxRCImIiDMKIRERcUYhJCIizqS4LqCCMebnwK+AJsAk4D+stQXVtGsBHAHyKx1+21r7nxEp\nVEREQiYqQsgYcxP+ABqOP2AmAM8AP62m+SXARmvtxRErUEREwiJahuN+CLxurd1urT0F/A/wQ2OM\np5q2lwDrIlqdiIiERcR6QsaYZPxDbVV5AQNMrHRsK5ABtAOyq7S/BOhojNkMNAOmAr+01p4MedEi\nIhJWkewJjQByq/lYBzQGKl//qfg8vZrXOQHMAa4A+uMPqpfDU7KIiIRTxHpC1trZ1BB6xph1QKNK\nhyrCJ6+a13mgynMfBRYGW4cxJhPIrHK4XbDPFxGR0ImKiQnAZqBHpa8NcMJae6Byo8A1oqeBf1hr\n9wQONwJKzuFcDwGP1aPW6q5TiYhIHURLCL0DvGyMmYj/GtD/Au9WbWSt9RljBgJPGWPuA5oCTwHj\nz+FcLwDvVTmWDKRx5vUnEREJI4/P53NdAwDGmIeA/wLOA6YA91triwKPnQaut9YuNsa0AV7Ef43J\nhz9QfmmtLXVTuYiI1FXUhJCIiCSeaLlPSEREEpBCSEREnFEIiYiIMwohERFxRiEkIiLORMt9QpJg\njDEpwIWu6xCpRba1tsx1EfFMISSu9AHWuC5CpBaXAGtdFxHPFELiSnHgvyOBXS4LEalGJ/wLJRfX\n1lDqRyEkrpQH/rvfWrvbZSEiVRljUgOflp+1odSbJiaIiIgzCiEREXFGISQiIs4ohMSVHOAPgf+K\nRBv9fEaIVtEWERFn1BMSERFnFEIiIuKMQkhERJxRCImIiDMKIRERcUYhJCIiziiERETEGS1gKhFh\njLke+DXQD/AAK4BHrbWrnBYmCcsY4wUKAS/gC3wsBX5prc0yxvwI+J61drS7KuOfekISdsaY+4Hx\nwLNAa+ACYCYwxxjTy2VtkvAus9Y2sdY2BTKBDcA0Y4z+NkaIVkyQsDLGpAMHgduttVOrPPYksAp4\nCPjAWvtS4PiDwC3W2hGRrlcSR6An1Mdau6nSsd74g6gFMAa4D8gGrgf2AT+x1i52UG7cUtpLuA3B\nP+w7veoD1tpHrLUT+WooRCTSPBWfGGPOBx4GNlhrcwOHrwQmA83x9+SnBNpJiOiakIRbC+C4tdbr\nuhCRaiwJ9IjAv4vqF8AtlR5fbK19N/D5m8aYnwE3Au9EsMa4phCScDsENDfGJFtrv7ZLpTGmGZDv\npiwRAAZXHo6rxt4qX2cDbcJYT8LRcJyE21KgBLihmsfGAa/j30I5rdLxzAjUJRKMC6p83RHYHfky\n4pd6QhJW1toiY8x/A68aY+7FPyuuEfALYBT+MfcHgeuNMf8A2gE/wH8RWMS1YcaY24CPgR8D5wNT\nz/4UORfqCUnYWWvHAv8FPAYcAXYBg4DhgaGQp/G/IToM/Bt4002lkmBqmwzjwz+h5h4gF7gdGG2t\nLQh3YYlEU7RFRMQZ9YRERMQZhZCIiDijEBIREWcUQiIi4oxCSEREnFEIiYiIMwohERFxRiEkIgAY\nYzKMMXe7rkMSi0JIRCr8Ev/SNCIRoxASkQqe2puIhJaW7REJkcC+NPcAj+Bffflz4MfW2sOBxy8H\n/gQMxP8GcBXwgLV2ozFmOPA+8C5wL/CGtfaXxphf4++ddABOAR8CD1lry4wxvwd64N9u4D/wb4vx\nOyAH+BvQCvgEuLtiG43AcFtFfVnAf1trPzfG/Aj/quYAPmttsjGmAfAk8EP8q5wvAh621u6q9O/9\nI/ATYJe19orQfTclUagnJBJaT+Af1roS/4rLHwMYY5oA04DFQB9gKJCMf7fOCq2AC4FLgH8YY36A\nP1R+CnQFHgDuAm6t9JxvBV6nP/6Aehl4NNDmTuA2Apu0GWNuAP4M/AboC7yFf6fQPvgD8FlgNdC2\n0r9lOPBt4Ar827TPNcZU3nbjNuAq/Ntgi5wzbeUgElpPWmsnAwR6F9uNMf3wb+73BPCctdYH7DbG\njAN+X+X5T1fqabQH7rLWzgw8ti+ws2evSu1PA7+y1vqMMS/j3xbjcWvtGmCNMWYt0DPQ9nfAn6y1\nHwe+ftEYcyXwM2vt/caYfKDUWnvEGNMIeAgYZq1dGajnJ8Ae4Lv4e2wAr1prt9Tj+yUJTiEkEloL\nKz6x1u40xuQCfay164wx44GHA6FkgAHA8SrP31np+fOMMQONMY/jH3bri79HtLBS+z2BUAMoqPoa\nQCFfbRjYC7jMGPNYpcdT8W9pXVWXwPPmGWMqj9k3BLpXV69IXSiEREKrrMrXyUC5MeYCYCWwHv8e\nNW/j76H8T5X2hRWfBK7fvIh/99nJ+PdjGlulfWk1NXhrqC0Z+BX+YcEKHqC4mrYVfxuG499Lp3L7\nE9XVK1IXCiGR0BoIbAIwxnQHmgHr8G+IVmCtvb6ioTFmNGefkfZf+If3ngi0T8HfE1pcx9o2Ax2t\ntV/2XowxT+AfKnyBr2/yth1/oLauNByXAkwAXgLm1bEGka9RCImE1uPGmGz8w2wvAbOstZsDQ3Bt\njTHXARa4Hri/ltfaD4wyxnyIf2jsEaA5/iGxYFUOuT8D7xljLDAXuAH/JIUbA4+fBtoYYzpZa3cF\ntlt/0RhTin833EeAEfivO4mEhGbHiYTWG8Br+HsK2/lqJlvFtuXv4e8ZDQNGA02NMZ0CbareL/Ez\n/Nds1uCfar0MeAr/taSK9lWfU+PX1tpPAq/5G/zTs38C/LDSxIeJ+If3NhhjWgXafYx/Ft0aoBNw\nbcWUc5FQ0H1CIiESuG9muLV2getaRGKFekIiIuKMQkhERJzRcJyIiDijnpCIiDijEBIREWcUQiIi\n4oxCSEREnFEIiYiIMwohERFx5v8DItV6eM5U9VIAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x109806da0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"df2['logres'] = np.log10(df2['final_data'])\n", | |
"seaborn.violinplot(data=df2, x='parameter', y='logres')\n", | |
"seaborn.despine(trim=True, offset=10)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"## Basic Stats" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "fragment" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <th>parameter</th>\n", | |
" <th colspan=\"2\" halign=\"left\">Cu</th>\n", | |
" <th colspan=\"2\" halign=\"left\">Pb</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th></th>\n", | |
" <th>final_data</th>\n", | |
" <th>res</th>\n", | |
" <th>final_data</th>\n", | |
" <th>res</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>count</th>\n", | |
" <td>15.000000</td>\n", | |
" <td>15.000000</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>20.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>mean</th>\n", | |
" <td>9.402092</td>\n", | |
" <td>10.055333</td>\n", | |
" <td>9.783981</td>\n", | |
" <td>10.169500</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>std</th>\n", | |
" <td>5.489774</td>\n", | |
" <td>5.200170</td>\n", | |
" <td>5.979342</td>\n", | |
" <td>5.716263</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>min</th>\n", | |
" <td>2.000000</td>\n", | |
" <td>2.000000</td>\n", | |
" <td>3.915496</td>\n", | |
" <td>4.200000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25%</th>\n", | |
" <td>6.537552</td>\n", | |
" <td>7.145000</td>\n", | |
" <td>5.328965</td>\n", | |
" <td>5.637500</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>50%</th>\n", | |
" <td>7.500000</td>\n", | |
" <td>8.710000</td>\n", | |
" <td>7.075000</td>\n", | |
" <td>8.500000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75%</th>\n", | |
" <td>10.120000</td>\n", | |
" <td>11.125000</td>\n", | |
" <td>12.880000</td>\n", | |
" <td>12.880000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>max</th>\n", | |
" <td>20.180000</td>\n", | |
" <td>20.180000</td>\n", | |
" <td>22.970000</td>\n", | |
" <td>22.970000</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
"parameter Cu Pb \n", | |
" final_data res final_data res\n", | |
"count 15.000000 15.000000 20.000000 20.000000\n", | |
"mean 9.402092 10.055333 9.783981 10.169500\n", | |
"std 5.489774 5.200170 5.979342 5.716263\n", | |
"min 2.000000 2.000000 3.915496 4.200000\n", | |
"25% 6.537552 7.145000 5.328965 5.637500\n", | |
"50% 7.500000 8.710000 7.075000 8.500000\n", | |
"75% 10.120000 11.125000 12.880000 12.880000\n", | |
"max 20.180000 20.180000 22.970000 22.970000" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"summary = (\n", | |
" df2.drop('logres', axis=1)\n", | |
" .groupby(by='parameter')\n", | |
" .describe()\n", | |
" .unstack(level='parameter')\n", | |
")\n", | |
"summary.columns = summary.columns.swaplevel(0, 1)\n", | |
"summary.sort(axis=1)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"## Probability Plots are likely better" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "fragment" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<seaborn.axisgrid.FacetGrid at 0x109998748>" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABNQAAAEYCAYAAACUWqvhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8nHWZ8P9POiWVpikihabWGqEr31rwgIfVdWtF3XWL\nXavro+uhuhVdXAVZfqu4gj6CeKAI4gGUVVlly4oiuo9aQLu6Hn4V91FRwQPIhRTIltoUW2ibptA0\nkzx/3DNlmibpTJOZuZN83q9XXp37MPf3Sm+YuXrd30PL4OAgkiRJkiRJkqozrdkBSJIkSZIkSROJ\nBTVJkiRJkiSpBhbUJEmSJEmSpBpYUJMkSZIkSZJqYEFNkiRJkiRJqoEFNUmSJEmSJKkG05sdgCQ1\nWkppFvCqiLiqyXG0Au8AVgLHAVuB64H3R8TWZsYmSZIaIw95SUrph8DSil0DwB/J8pJ3RMSulNL7\ngT+PiL9sfISSlD/2UJM0Fb0TeEszA0gpHQZ8l6yY9l7gBGAV8CzgByml9iaGJ0mSGqfpeQkwCFwO\ndJR+Hge8FlgOfKKJcUlSbtlDTdJU1NLsAMh6pi0CnhQRD5T23ZtSOgW4B3grcEmzgpMkSQ2Th7wE\noDci7q/Y7k4pXQacA/x9k2KSpNyyoCapZimlAeBNwHuAxwLfA94SEVtKx58NfAR4JllP2F8Ab4uI\n36aUTgauBa4B3gx8PiLemVJ6F9nT2ccDO4GvAWdGRH9piMEi4H+AfwB6yZK7bcAngWOAbwCnRkSx\nFMOpFfHdBpwbEd9LKb0ROK90TjEiCqXeYhcCbwBmADcB/xgR91T8vh8kK3LdExHPGfL38UbgCyP8\ndb0xIq4eZv+bgC9UFNMAiIgHUkovAu4tXfvfgBkR8dqK9rqBd0fEmhHalCRpyjAvGZe8ZCRFYE/F\ndmtK6V+B15R+34si4l9quJ4kTRoO+ZR0qD5MNkThucCRwNcBSkMVvw38GDgRWAIUgEsr3nsM2VCC\nk4ArUkqvJ0tEzwD+BHgb2fDHV1W85+Wl6zyNLKn9DNlQyVeRDZv8W+B/lWJ4CXAx8M/Ak4GrgRtS\nSieSJc2XAr8E5lX8LicDfwM8B9hMNuxyRkX7fws8n+Gf0F7LI0Mkhv5cN/TklNLhwBOBnw1zLSLi\n5xVzqA2WfioNt0+SpKnMvOQRNeUlFfb1lEspTUspPQM4E/hmxTnPIyuyPZ2sqPeJlNILR7mmJE1a\n9lCTdKgujIjrYd+T0LtSSk8FuskSwY9FxCDZMMYvAO8f8v6LKp60LgBWRcR3Ssc2ppTOAhZXnN8D\nnB0RgymlzwBvBz4UEbcAt6SUbgWeVDr3HOAjEfH10vanUkrPBc6KiNNSSr3A3oi4v1TcOhN4XkT8\nvBTPW4Eu4JVkT6wBPhcRdwz3FxERDwMPV/sXR5boA+yo4twW8jMURJKkvDIvKTmEvASyXOMdKaW3\nl7bLxbvryQqBZV1kvfsGgDtTSktKv/v3a2xPkiY8C2qSDtWPyi8i4u6U0gPAiRHxq5TSVcA/lhLZ\nRPYU88Eh77+74v0/TCk9M6X0IbIhFE8meyL8o4rzu0qJMMDuodcAHuKR5G8x8KyU0vkVx1uBnwzz\neywsve+HKaXKXl+PAo4fLt6hUkoryZ5MD+ctEfHlIfu2lf48cujJkiTpkJiXlBxCXgJZz/fPAx8t\nbe8FtkRE35Dzfl4qppX9Ejh9pFgkaTKzoCbpUPUP2S4AxZTSY4GfA78G1gH/TvaE9n1Dzn+o/KI0\nr8ingH8lexJ6PjB0Po69w8QwMMy+cixnkw3xKGth/zlAysqfgycDlfOZtQDbh4t3GN8E/u8Ix+4f\nuiMi9qSUfg08G/iPocdTSh8ge1L9QYYf2ulntyRJ+zMveURNeUmF7RExYqGuZOjvOI3hfw9JmvT8\nR5mkQ/VM4HaAlNLxwBHAr8iWWN8dEcvKJ5ZWrhxt2OI7yIZqfLh0/nSyJ8E/PsTYfgc8oTIpTCl9\nmGzYx+XsX6S6iywJn1sxtGI68GXg08APD9ZYROwCdtUY49XAuSmlj0REuccaKaV5ZEMnLi7t6iOb\n26V8/Ejs2SZJ0lDmJSWHmJdU66lDtv+M0t+7JE01FtQkHaoPpZTuIxsy8WnguxHxu9Jwinkppb8C\nAlgGnHaQa20CXpRS+hrZMIf3AI8hG95QrcrE+GLgSymlAH4AvIRs/o/lpeM9QEdK6diIuCeldAXZ\nfCZ7gXtK7b+ArLBVL5eTTSi8PqV0LvAbsifmF5diuKx03s+A16eUlpGt/PkhsiKbJEl6hHnJ2FQ7\nZ+ufpJQuI+ux95fAK8gWTpCkKaehBbXSpJWXks1dsBW4OCI+l1J6JvBTHpl/AODDEXFRI+OTVJPP\nA1cCc8iGFpSTvOvIVoD6EtlnzA3AKcCPU0rHls4ZOozxrNL1buGRp7W/A15Ycf5wK10Oux0R3yhN\nHvzPZEM2NgBvqJhc+D/Ilpr/TUrpuNJ5A2S9xmaRDQ15cURsqeYv4lBExN6U0l+QJcmXAvPJfvdv\nAh+IiPLn4b+TJarXkT1tvhh4bL3ikiRpgjIvGZtqVhAfBP4PcBTwC7LC48qI+EUd45Kk3GoZHDzY\n5+b4KA1T2gCcHhHXppROAv6LrIfGccBLI2JFQ4KRNCYppQHg5IhY3+xYJEnS1GZeIklqhmkNbOvx\nwPURcS1AaUnpHwDPBZ5GNseBJEmSJEmSlGsNG/IZEb8CVpW3Sz3WnkfWlfkU4OGU0t1kq+BcB7x3\nmGWaJUmSJEmSpKZq2JDPSimlI4AbgR3AXwPfIOut9lmgA/gq2USi51Z5vaPIxvJXKpBNIvrbiBi6\njLYkSVJdmJdIkiRNfg1f5bM0+ecNwO+BV0fEIPCyilPuSSldCFwIVFVQA84Ezh/uwPe+970xRCtJ\nkqaQala4q4Z5iSRJGg/jlZuoDhq9yufTgW8D/x4RZ5f2PRo4DzgvInaVTj0ceKiGS19OtnJPpfnA\n98cWsSRJUs3MSyRJkia5hhXUUkpzgXXAJRFxScWhncBLgYGU0jnAE4D3kA3/rEpEbAO2DWnP+dck\nSVLDmZdIkiRNfo3sofZmYA5wXkrpvIr9nwCWA58CtgK7gc9ExGUNjE2SJEmSJEmqSiNX+SzPizaS\nFzcqFkmSJEmSJOlQTWt2AJIkSZIkSdJEYkFNkiRJkiRJqoEFNUmSJEmSJKkGFtQkSZIkSZKkGlhQ\nkyRJkiRJkmpgQU2SJEmSJEmqgQU1SZIkSZIkqQbTmx2AJEmSJEnSRHTuFTftt91fHKBYHKRQaGF6\nYf8+TKtPX9LI0FRnFtQkSZIkSZIOUblQtnlrL2vXb6Cru4fOjnZWLF3IvDltwIGFN018DvmUJEmS\nJEkag41belhz4+10dfcA0NWdbW/c0tPkyFQvFtQkSZIkSZIO0eatvVyz7g529vbtt39nbx/XrLuD\nzVt7mxSZ6smCmiRJkiRJ0iHoLw6wdv2GA4ppZTt7+1i7fgP9xYEGR6Z6s6AmSZIkSZJ0CIrFwX3D\nPEfS1d1DsTjYoIjUKBbUJEmSJEmSDkGh0EJnR/uo53R2tFMotDQoIjWKBTVJkiRJkqRDML0wjRVL\nFzK7rXXY47PbWlmxdCHTC5ZfJhvvqCRJkiRJ0iGaN6eNlcsWHVBUm93Wyspli5g3p61JkameLKhJ\nkiRJkiSNwYK57axavnjf8M/Ojmx7wdzRh4Nq4pre7AAkSZIkSZImqnOvuGnf6/7iAMXiIHdt2s5l\n193SxKhUbxbUJEmSJEmSDsHq05c0OwQ1iUM+JUmSJEmSpBpYUJMkSZIkSZJqYEFNkiRJkiRJqoEF\nNUmSJEmSJKkGFtQkSZIkSZKkGlhQkyRJkiRJkmpgQU2SJEmSJEmqgQU1SZIkSZIkqQYW1CRJkiRJ\nkqQaWFCTJEmSJEmSamBBTZIkSZIkSarB9GYHIEmSNJxzr7hpv+3+4gDF4iCFQgvTC/s/E1x9+pJG\nhiZJkqQprqEFtZTSEuBSIAFbgYsj4nMppSOBLwAvAHYAF0TEFxoZmyRJyp9yoWzz1l7Wrt9AV3cP\nnR3trFi6kHlz2oADC2+SJElSvTVsyGepaLYW+HhEPBp4FbA6pfQi4EpgJ3AM8Erg4pTSsxsVmyRJ\nyq+NW3pYc+PtdHX3ANDVnW1v3NLT5MgkSZI0VTVyDrXHA9dHxLUAEXEL8APgucDLgPMjoi8ibga+\nBPxdA2OTJEk5tHlrL9esu4OdvX377d/Z28c16+5g89beJkUmSZKkqaxhQz4j4lfAqvJ2qcfa84Bf\nA3sj4t6K0+8E/qZRsUmSpPzpLw6wdv2GA4ppZTt7+1i7fgP9xYEGRyZJkvLOuVhVb01ZlCCldARw\nPfBzsl5qZw05ZTcws4brHQUcNWT3/LHEKEmSmqtYHNw3zHMkXd09FIuDDYqoOuYlkiTlg3Oxqp4a\nOeQTgJTSscB/ky1K8AqgF3jUkNNmArtquOyZQAz5+f6Yg5UkSU1TKLTQ2dE+6jmdHe0UCi0Niqhq\n5iWSJOWEc7GqXhpaUEspPR34CfDtiHh5ROwBfg+0ppQWVJ4K3FbDpS8vvafy54XjE7UkSWqG6YVp\nrFi6kNltrcMen93WyoqlCw8YtpED5iWSJOWAc7Gqnho25DOlNBdYB1wSEZeU90dET0rpm2Qrfp4G\nnAi8Fjil2mtHxDZg25D2hp9wRZIkjSpPc47Mm9PGymWLDkiGZ7e1snLZon3DNfLEvESSpJE1Ks9w\nLlbVWyPnUHszMAc4L6V0XsX+TwCnAZ8B7iMb6nl2abVPSZLUBHmac2TB3HZWLV88YhySJGliaUSe\nMVHnYtXE0chVPi8ELhzllFc3KhZJknRwG7f07NczrDznyMpli1gwd/S5zcZLZTJdfoJ916btXHbd\nLQ1pX5Ik1Ue984zyXKyjFdU6O9q5a9P2Mbelqakpq3xKkqR8O9icI6uWL657DC5hL0nS5NSIPKM8\nF+uaG28fdthneS5WH9LpUOVuFl9JktRczjkiSZLqpZF5Rnku1qELHOV5LlZNHBbUJEnSfpxzRJIk\n1Uuj84zyXKydHdkw0s6ObLtR01do8nLIpyRJ2o9zjkiSpHppZJ7hXKyqJwtqkiRpP845IkmS6qVR\neYZzsareHPIpSZIO4JwjkiSpXswzNBlYUJMkScNyzhFJklQv5hma6BzyKUmSDuCcI5IkqV7MMzQZ\nWFCTJCkHKhNLeCS5LBRamF7Yv0N5vecEcc4RSZJUL+YZmiwsqEmSlBPlBHPz1l7Wrt9AV3cPnR3t\nrFi6cN9cIkMLb5IkSZIazznUJEnKkY1belhz4+37lpLv6s62N24ZeWl5SZIkSY1lQU2SpJzYvLWX\na9bdccAS8jt7+7hm3R1s3trbpMgkSZIkVbKgJklSDvQXB1i7fsMBxbSynb19rF2/gf7iQIMjkyRJ\nkjSUBTVJknKgWBzcN8xzJF3dPRSLgw2KSJIkSdJIalqUIKXUUnpPS+X+iBj+cbokSapKodBCZ0f7\nqEW1zo527tq0vYFRSZIkSRpOVT3UUkrPSin9HCgCe4CHK34eql94kiRNDdML01ixdCGz21qHPT67\nrZUVSxcyvWDnckmSJKnZqu2h9jmgB3hZ6U9JkjTO5s1pY+WyRQcsTDC7rZWVyxYxb05bE6OTJEmS\nVFZtQW0R8NSIuLOewUiSNNUtmNvOquWLWbt+A13dPXR2tLNi6UKLaZIkqa7OveKm/bb7iwMUi4MU\nCi0H9JBfffqSRoYm5VK1BbXfAccCFtQkSaqTykS2nMTetWk7l113SxOjkiRJU0W5ULZ5a++ID/eG\nFt6kqaragtrHgc+mlC4jK6rttwhBRHxnvAOTJGkq8UmvJEnKg41bevabfqKru4c1N97OymWLWDC3\nvcnRSflRbUFtTenPj45w3BmSJUmSJEmawDZv7T1gLleAnb19XLPuDlYtX9ykyKT8qaqgFhEWzCRJ\nkiRJmqT6iwOsXb/hgGJa2c7ePtau30B/caDBkUn5VG0PNQBSSicCi4ECEBHxy7pEJUmSJEmSGqZY\nHKSru2fUc7q6eygWBxsUkZRvVRXUUkqPBr4IvAR4kKygNjul9N/A8ojYUb8QJUmSJElSPRUKLXR2\ntI9aVOvsaOeuTdsbGJWUX9UO5fwkMA9YHBFHRcSjgScDMxl5XjVJkiRJkjQBTC9MY8XShcxuax32\n+Oy2VlYsXcj0gjNCSVB9QW0FcEZE3FHeERG3AacDr6hHYJIkSZIkqXHmzWlj5bJFBxTVZre1snLZ\nIubNaWtSZFL+VFtQ2ws8NMz+h4Dhy9eSJEmSJGlCWTC3nVXLF9PZ0Q5kwzxXLV/MgrntTY5Mypdq\nFyX4LnBJSum1EbENIKV0NHAJ8F/1Ck6SJEmSJDXGuVfctO91f3GAYnGQuzZt57LrbmliVFI+VVtQ\nOxv4HnBfSume0r5jgduBN9UjMEmSJEmS1BirT1/S7BCkCaWqglpEbE4pPRVYBjwJeBi4A/huRLhm\nriRJkiRJkqaMEedQSym1DnndAvwn2YqfnwF+CBxWeZ4kSZIkSZI02Y3WQ+3hlFJHRNxP1iNtJINA\noZZGU0p/Cnw9IuaXtp8J/BTYXXHahyPiolquK0mSJEmSJNXbaAW1FwIPVrweSdVDPlNKLcCpwMeA\nvopDJwE3RsSKaq8lSZIkSdJUULlYADyyYECh0ML0wv4Dz5wLTWqMEQtqEfHDis2lwKUR0Vt5Tkpp\nNnAB8P9X2d57gFcBHwLeXbH/JOBXVV5DkiRJkqQppVwo27y1l7XrN9DV3UNnRzsrli5k3pw24MDC\nm6T6GbGgllJ6MjCPbO609wORUnpwyGknAv8A/FOV7X0+Ij6cUjp5yP6TgIdSSneTDR+9DnhvRPQN\nvYAkSZIkSVPRxi09XLPuDnb2Zv9U7uruYc2Nt7Ny2SIWzG1vcnTS1DLakM+jgHUV218e5pxdwCXV\nNhYR3SMcuh/4AfBZoAP4KlnPt3OruW5K6ahSvJXmVxuXJEnSeDEvkSTVw+atvfsV08p29vZxzbo7\nWLV8cZMik6amgw35nAaQUroXeGZEbK1HEBHxsorNe1JKFwIXUmVBDTgTOH/cA5MkSaqdeYkkaVz1\nFwdYu37DAcW0sp29faxdv4H+4kCDI5OmrtF6qO0TEU8Y6VhK6diIuOdQA0gpHQm8DzgvInaVdh8O\nPFTDZS4HvjRk33zg+4calyRJ0iEyL5EkjaticZCu7p5Rz+nq7qFYrHrNQEljVFVBLaV0InApcAJZ\nr7WW0s8MYDbZvGeHagfwUmAgpXQO8ASyxQs+W+0FImIbsG1IzM6/JkmSGs68RJI03gqFFjo72kct\nqnV2tHPXpu0NjEqa2qYd/BQA/gVoJ1uc4Ejgg8DVpWN/fohtDwJExACwHHgKsBVYD3wlIi47xOtK\nkiRJkjRpTC9MY8XShcxuax32+Oy2VlYsXcj0QrX/xJc0VlX1UAOeASyJiF+mlE4FfhcRV5RW5TwT\n+EktjZbmZzumYvtO4MW1XEOSJEmSpKli3pw2Vi5bdMDCBLPbWlm5bBHz5rQ1MTpp6qm2fD0APFB6\nHcBTS6/XAX893kFJkiRJkqT9LZjbzqrli+nsaAeyYZ6rli9mwdz2JkcmTT3V9lD7OXBaSul/A78C\nTgE+ASSgv06xSZIkSZIk4Nwrbtr3ur84QLE4yF2btnPZdbc0MSpp6qq2oPZu4NtkvdSuAt6dUroL\nmAf8W31CkyRJkiRJq09f0uwQJA1RbUHtN0AnMDMiHkgpPRN4LbAJuK5ewUmSJEmSJEl5U0tB7X9F\nxK0AEfEH4NK6RSVJkiRJkiTlVLWLEgy/Nq8kSZIkSZI0xVTbQ+1LwHdSSl8G7gYeqjwYEZ8b78Ak\nSZIkSZKkPKq2oPZqYDewYoTjFtQkSZIkSZI0JVRVUIuIJ4x0LKU0d9yikSRJkiRJknKuqjnUUkrF\nlNIxw+w/Ftgw7lFJkiRJkiRJOTViD7WU0qnAW0qbLcC3Ukp7h5zWAfyhTrFJkiRJkiRJuTPakM+v\nAo8nK6Y9G/gB0FtxfBDYBXytbtFJkiRJkiRJOTNiQS0idgEXAKSU7gWujYiHGxOWJEmSJEmSlE/V\nLkrwbymlE1NKzwQOI+u1VnncVT4lSZIkSVPKuVfctN92f3GAYnGQQqGF6YX9pyxfffqSRoYmqc6q\nKqillM4BLgQeAHqGOcWCmiRJkiRpyikXyjZv7WXt+g10dffQ2dHOiqULmTenDTiw8CZp4quqoAb8\nE3BORFxcz2AkSZIkSZpoNm7p4Zp1d7Cztw+Aru4e1tx4OyuXLWLB3PYmRyfBS9/5zR9We+71l77s\n5PpFUj8ppZnArIi4vxHtVVtQm0m2SIEkSZIkSSrZvLV3v2Ja2c7ePq5Zdwerli9uUmTS/qoplNVS\neDuYlNIPga9GxKfH65oHsR44D/hWrW9MKa0DvhwRa6p9z7SDnwLA14E31BqQJEmSJEmTVX9xgLXr\nNxxQTCvb2dvH2vUb6C8ONDgyKRcGSz+NchRD5vyvQc2xVttDbQfw3pTSK4E7gb2VjUbE62ppVJIk\nSZKkia5YHKSre7hpxh/R1d1DsdjImoKUKy0ppfOBxwPHACcDvwfeBrwfWALcBrwyIu5LKf0bsA34\nC+A44L+Bv4+IjSmlNwJnRMSzAFJKs4CdwLHAJ0ptfDWl9M8R8amU0iuADwDzgV8Ab4uI35fe+8LS\ne44Dvg20U2Mxrtoeau3Al4FfAruAPUN+JEmSJEmaUgqFFjo7Rp8jrbOjnULhUDvNSJPGSmA1cCSw\nHfgecAFwNPAQ8I8V554KvAWYA9wHXHeQaw9GxN8A/0NWmPtUSulPgc8Df1+6zvXAjSmlQkrpaOAb\nwEeA2cA3gedSjx5qEfHGWi4qSZIkSdJkN70wjRVLF7LmxtuHHfY5u62VFUsXctl1tzQhOilXfhwR\n/w2QUroJ6I+In5S21wOLKs69MiJ+Wjr2TuCBlNITamzvTcCachvAJ1NKZwEvBB4H/D4irikd+2JK\n6Yxaf6Fqh3ySUjoROAs4nqyy+DdARMR3am1UkqS8GLqMfX9xgGJxkEKhhemF/Ttyrz59SSNDkyRJ\nh6iR3+/z5rSxctmiAxYmmN3Wyspli5g3p21M15cmiQcrXg+QTS1WNsgjwy0HgbvKByJie0qpF5hb\nY3uPB05OKa2q2HcYsKB0rU1Dzr+HGod8VlVQSym9CLiBbHGC5wAzgA7gYymlN0TEtbU0KklSnpQT\n6c1be1m7fgNd3T10drSzYunCfUnw0MRckiTlWyO/3xfMbWfV8sUjtiOppuGUjyu/SCkdBbSRDf08\nHmitOO+oUa7xB+CSiDi/4lrHApuBvwU6h2mzLosSrAbeVRqH2kM2PvW9KaVu4H2ABTVJ0pjs2LWH\nXbv7mDWzlSNmzWh4+xu39Oz3ZLmru4c1N97OymWLWDB39LlRJElSPjXi+72yKFfuCXfXpu0O85Rq\n01Lx52kppeuAu4GPAt+LiE0ppTuB41NKi4B7gXPYvwi2Bzii9Ppq4NqU0jeAW4GXk60N8GSy+dQ+\nllI6DbiqdOzPgX+tJeBqC2onAN8aZv+3gEtqaVCSpKFGe3LcqPaHDtOAbKn7a9bdwarlixsWiyRJ\nk1kjh2I24vvd6SCkgxoc8mf59Ujbg8CPyApiC4HvAq8BiIifppQ+BXy/dO4lZCuClq0BrkwpHRcR\nH04pvQP4d7Lhn/cCf1uxyudLgCuAjwM/JlvpsybVFtT+ADyVrDpY6QVkqyhIknRImt0zrL84wNr1\nG4adSBiypHvt+g30FwfqHoskSVNBI4Zi+v0uHeil7/zmDxvZXkS8YIT9F4y2DfwqIl49wnvfBbyr\nYtfHK46tJhthWd6+lhFGVEbEz4Bnjhb/wVRbULsQ+FxKaWHpPaeUVlg4g2yhAkmSalbNk+N691Qr\nFgfp6u4Z9Zyu7h6KxZqmVJAkSaOo9wM1v9+l/V1/6ctObnYMNahpcYBmmXbwUyAirgJWASuAXuBD\nZONLXxcRV9YvPEnSZLVj156qnhzv2LWnrnEUCi10doyeuHd2tFMoTIjvdUmScu9gD9Q2b+0dcxt+\nv0sT2oSodFdVUAOIiG8BL4mIORFxJPCmiPhG/UKTJE1mu3b3VfXkeNfu4Qtu42V6YRorli5kdlvr\nsMdnt7WyYunCA+Z1kSRJtWvUUEy/36WJKSJOjYgLmx1HNar69EgpLUwp/ZZsRc+yH6WUfplSWlCf\n0CRJk9msma1VPTmeNXP4RHg8zZvTxspliw5Iume3tbJy2SKXvJckaZw0ciim3++S6qnacvwVwO+A\nSyv2HQ9sAD493kFJkia/I2bNqOrJ8RGzZjQkngVz21m1fPG+Il9nR7bdiIURJEmaKho9FNPvd0n1\nUu2iBM8FToqI+8s7IuLBlNL/Bm6utdGU0p8CX4+I+aXtI4EvkK0augO4ICK+UOt1JUkTS/nJ8dB5\nVBr95LhyJbH+4gDF4iB3bdrOZdfd0pD2JUmaKspDMdfcePuwwz7LD9TG4zvY73dJ9VRtQe1B4EnA\nXUP2P4FskYKqpJRagFOBjwGVn55XAjuBY4CnAt9OKd0WET+t9tqSpImp/OR47foNdHX30NnRzoql\nCxtWTFt9+pKGtCNJUp5VFp/gkQJUodBywDxjY/3ubMQDNb/fJdVbtQW1K4F/TSmdzyM90p4OnE/W\ns6xa7wFeRbZK6LsBUkqzgJcBT4yIPuDmlNKXgL8DLKhJ0hQwb04br3lxYtfuPmbNbG3YME9JkvSI\nchFq89beER90DS28HapmP1CTpLGqtqD24dK5HwDmlPbdD3wc+GgN7X0+Ij6cUjq5Yt8Tgb0RcW/F\nvjuBv6nhupKkCe6IWTMspEmS1GQbt/Ts13Osq7uHNTfezspli8Zt3jGHYkpN17bpj7vO2/3Q3qfM\nPPywX88/etYHqGH0oTJVFdQiYgA4P6X0frKCWl9E7Ki1sYjoHmZ3G/DQkH27gZnVXjeldBRw1JDd\n82uLTpKmph279tgzTBpH5iWS6qme39ubt/YeMAwTYGdvH9esu4NVyxePuQ2HYkpN97i7N+248qob\nbnvMrXfhsXrqAAAgAElEQVT+cffTjj/65FP/+oSnHDf/iNOA++rRYErphcB7gWcCReA3wKURsXaE\n8/8F2BoR7zvIdc8FFkXEqjHE9gTgbmBWROyu5b3V9lAjpXQC8CzgMKAlpbTvWER8rpZGh9gNPGrI\nvpnArhqucSbZ8FNJUg1GG9Ih6ZCZl0iqi3p+b/cXB1i7fsOwCwVAVlRbu34D/cWBcWlPUlM87s7/\neXDNR7/4i8M3b+vdDXDrnX/cfdGam484+/XPWHP8449cxTgX1VJKrwMuB95FNt3XQ8BLgc+llI6N\niE8OfU9EvK2aa0fE6vGMtVZVFdRSSucAFwIPAD3DnDKWgtrvgdaU0oKI2FhuErithmtcDnxpyL75\nwPfHEJckTWqNGNIhTVHmJZLGXb2/t4vFQbq6h/un3iO6unsoFgfH3Jakpmi7e9OOK0vFtD2VBzZv\n693z0S/+4vBzVj3ryuPmH/FKxmn4Z0rpcLK86LSI+D8Vh76RUtoOrCvNob8FuAJ4HXAxsAj4Y0S8\nK6X0WLK5+/8MCGA98IyIeEFpFOUJEfGqlNK/kS12+TTgJOAO4C0RcUtKaRpwAfBKspxsO/ChMXYO\nq7qH2j8B50TExWNpbDgR0ZNS+iawOqV0GnAi8FrglBqusQ3YVrkvpTT8oxVJUlVDOuypJh0a8xJJ\n460R39uFQgudHe2jFtU6O9q5a9P2MbUjqTk2/XHXeVfdcNtjyj3Thtq8rXfPVTfc9pi3vuIp75t/\n9KxzxqnZ55KNQPzm0AMR8cOU0mbgJaVdM4BjyEYwXg6Uq/fXkhXHVpDVi/6TbMhoWWWV//XA88k6\nbl0FrAaWASvJ5ul/fkTcX+o1968ppS+O5ZertqA2E/jqWBoaRuUvfRrwGbKuhbuAsyPi5mHfJUmT\nQDPnLduxa09VQzpe8+JU19hqWSXM+VYkSVNVo763pxemsWLpQtbcePuwbc1ua2XF0oUuHCBNULsf\n2vuUW+/846hzhN165x93735o71PHsdm5wLaIKI5wvBvoKL2+NiL6gV3lKcZSSo8HlgAvjYg+4Jcp\npSvJequVtVS8/mZE/Kb03q8Al5b2fwP4DvDHlNLjgD1khbvHjOWXq7ag9nXgDWSrfI5ZRPyQrPJY\n3n4QePV4XFuS8q7Z85bt2t1X1ZCOXbv76l7sq6ZQVkvhTZKkyaaR39vz5rSxctmiA3rDzW5rZeWy\nRfZelyawmYcf9uunHX/0yaMV1U5KR7fNPPywn45js1uAuSml6aVi2VCdZEU1Kv4sawHmAbuGLIr5\nP+xfUKu0teJ1PzCt9LqVrNfbi0rvv7W0fxpjUO2bdwDvTSn9OqX0tZTSlyt+hs4RIkkawcYt2Xwn\n5cS4PP/Jxi2jJ8rjadbMVjo7Rp9rpbOjnVkzWxsUkSRJGkmjv7cXzG1n1fLF+9rs7Mi2nV9Vmtjm\nHz3rA6f+9QkPzDuqbdjK+7yj2ma8cfkJ2+YfPeuD49jsTcCDZEMx95NS+iuyHmLfLu0aOkHjILAR\nmJVSenTF/scNc95w769UXrxgXkScxDgtHlVtD7V24MsjHHNWSkkH1cwhjnmI49wrbqJvb5Hubbsp\nDrM61m82bKXjqJm0Hlao+/DGi66+edRYCoVp7Nnbz0VX3+xQS0mSmuyIWTOqGoo5HnlNZa/w/uIA\nxeIgd23a7jBPaXLoPW7+Eaed/fpnrBm6MMG8o9pmnP36Zzx03PwjTmOcFiQAiIg9KaXTyVb0nAZ8\njazn2CnAp4H3lOY0G/rWltL7/5BS+i/g4pTSmcATgb8Hbh96LvsP/RyqnWyYZzGldBTw0dL+w4CR\nhqMeVFUFtYh446E2IEnNHuKYhzj6iwMcv+BIZhw28sduIyf6vfSs5x+wWhg8MqRjwdx2h1pKkpQT\njRiK6UM0aUq47/jHH7nqnFXPuvKqG257zK13/nH3SenotjcuP2FbqZh233g3GBFfSyndD7yHrJA1\njWzI5T9ERHmxguF6p5W9mWyBga1khbT/AuZUnDc4zOuh1zkPuJps0ai7S3E8qfTz22HeV5Vqe6iV\nJ4M7C1hM9hcQwGcj4rZDaVjS1FDvJd4nShx5XIq+PKQjD8VOSZI0Or+3JY2T+46bf8Qr3/qKp7xv\n90N7nzrz8MN+WhrmOW4904aKiPXA+lGOF4Zsn1qxeTzwV+WFDVJKH6k474IR3kNE3ADcUHr9ew6c\nd61y+rICh6CqglpKaSnZuNbfAD8uve+5wGkppb+MCLsxSDpAI5Z4nyhx5HUp+nlz2njNi1MuhuNK\nkqTR+b0taZz0zj961jnNDqJKnwI+Xlrd84nA64BzmxtSptpFCT4KfDoinhMR74yIsyLiWWS/2EX1\nC0/SRFXtEu87du0Z9vhki6O8FP3stuEnDC7PfzK9MKaFZg7JEbNmMP+YdpNySZImAL+3JU0xrwPe\nCGwHvgd8JiK+2NSISqod8vlkYOUw+68Ezhi/cCRNFo1c4n0ixAEuRS9JkiRJtYiIW8hGSOZOtV0h\n7iMrqg11ItmkbpK0n0Yv8Z73OMpcil6SJEmSJr5qe6h9imyZ08cCPy3t+zOylRI+UY/AJE1sjVzi\nfSLEUcn5Tx7hSqKSJEmSJqKqCmoR8cmU0izgfOCo0u7NwAeBy+oUm6QJLi9DHPMSR6UjZs2Y0oU0\ngNWnL2l2CJIkSZJ0SEYtqKWUCsArgP+MiA+nlC4EjgZeC9wPfCUiBusfpjSx7Ni1Jze9j5oVS2XP\no769RbZuf5g9ff3MaJ3Onr2P4or/+NW+4/UsrOQlDkmSNLnVK+eqpTe3uYwkNc6IBbWUUhuwFnh+\n6efHpeLZ/SmlxcAlwBtSSq+IiIcbEq00AWze2sva9Rvo6u6hs6OdFUsXNm2y+WbHUpnUjZRkNmLI\nX17iyNPwxjzFIknSRFfvnKuaQpnf7ZLUWKP1UDsXeBxwQkRE5YGI+IeU0uXAt4B3AxfUL0Rp4ti4\npWe/YYVd3T2sufF2Vi5b1PBJ5/MUC+RniGOz4sjTE+M8xSJJ0kSXt5xLktQYo63y+Rrgn4YW08oi\n4rfA2cDr6hGYNNFs3tp7wBxdADt7+7hm3R1s3to7JWORJEmarMy5JGnqGq2g9ljgtoO8/+fAgvEL\nR5qYduzaw9r1G4ZdRRKypGrt+g3s2LVnSsUiSZI0WZlzSdLUNlpB7T7giQd5/7HAlvELR5qYdu3u\no6u7Z9Rzurp72LV7+IRrssYiSZI0WZlzSdLUNtocav8BnJ9S+lFEHPBYJaX0KOADZPOoaYrLy6qW\nzYrjE1+5hfsfeIg9ff0jnjOjdTqf+MotXHLm0ikTiyRJ0mQ1a2YrnR3toxbVOjvamTWztYFRSZIa\nZbSC2mrgJ8AvSgsQ/AzYARwJPBs4s/R+FySY4pq9kmQe4phemMZFZyxhzY23D9vtf3ZbK6uWL+ay\n626ZUrFIkiTlQT0eul509c307S3SvW03xeLAAccLhWns2dvPRVff7IJAkjQJjTjkMyJ2As8FfgRc\nDPwCuAu4maxn2neB50TE/Q2IUzm1cUu2ilH5yVx5VaONW0bv/j4Z45g3p42VyxYxu23/p5Cz21pZ\nuWxRQ4uMeYpFkiSpmTZv7eXa7wSf/tqvufY7Ma4LBVx61vO56IwlPO34Yzhu/qP3/Tzt+GO46Iwl\nXHrW88etLUlSvow2hxoRsT0i3gYcA5wALAEWAXMj4h8jYlsDYlRO5WVVo7zEAbBgbjurli+msyNb\nIr2zI9tuxpLpeYpFkiSpGRrx0NWcS5KmptGGfO5TmkPtd3WORRPIuy5ff9B5un537wMc85jD6zpP\nV17iqDRvThuveXHKxZxyzY7l3Ctuamh7I8lLHJIkqXEO9tB11fLF49Zrv945l7mMJOVPVQU1aahi\ncZD5R8866HkPj1LomkxxDHXErBlNLaRValYseZkrJC9xSJKkxtmxaw9r128Ydj5ZyIpqa9dv4DUv\nTuOWJ9Ur5zKXkaR8GnXIpzSSQqFlX7f2kXR2tFMotEyJOCRJkpQfu3b3jbr6JmTDP3ftHr7gJknS\nwVhQ0yGZXpjGiqULD5j0vmx2Wysrli5keqG+/4nlJQ5JkiTlx6yZrVU9dJ01c/gcUpKkg7HKoEOW\nl5Uk8xKHJEmSarNj1x423d/Djl17xvW6F119M3dufJCu7p3cvWn7AT9d3Tu5c+ODXHT1zePariRp\n6nAONY1JeVWjtes30NXdQ2dHOyuWLmx4ESsvcUiSJNXTjl17GrLYUL3aqZxcv29vka3bH2ZPXz8z\nWqcz59GPovWwwr7jY5077NKzns/GLT0HLExQfui6YG67k/1Lkg6ZBTWNWbNXksxLHHlKyPIUiyRJ\nU8FEL0A1stC1+vQl+wpdMw575J8j9Sh0+dBVklQvFtQ0LvKyquVUX9ES8hWLJEnN1ogeXZu39ta1\nYNOoAlSj2tm8tfeAXmOQrbx5zbo7WLV88ZjbqFTPh64+xJSkqcuCmiRJkialehe6gAOGFHZ197Dm\nxtv3FaDGQ6MKUI1op784wNr1Gw5oo7Kttes30F8cGHNblerx0NWHmJI0tbkogSRJkiadjVuywlZX\ndw/wSKFr45aecWvjYAWozVt7x9xGowpQjWqnWBzcd09G0tXdQ7E4OKZ2JEmqN3uo6ZDlpYt7XuKQ\nJEn5UE1Pq7H2VNuxa09VBajXvDiNqWdUowpQjWqnUGihs6N91LY6O9q5a9P2MbUjSVK95aqgllI6\nG7gQqFw3e1lE/LhJIeVao1Z5Gk5eurjnJQ5JklS7euQyjSp07drdV1UBatfuvjG106gCVKPamV6Y\nxoqlC1lz4+3D3qPZba2sWLqQy667ZUztSJJUb3kb8vk04JyIaK/4sZg2jM1be7n2O8Gnv/Zrrv1O\njMuQAkmSpEapVy5TS6FrLGbNbKWzY/Q50jo72pk1s3VM7ZQLULPbhr9OuQA1vTC2tL5R7UC2SMDK\nZYsOaKu8+IErcEqSJoK8FdROAn7V7CDyrhFzgkiSJNVLPXOZRhW6jpg1o6oC1Hj0vGtUAaqRha4F\nc9tZtXzxvnvV2ZFtj9dCDpIk1VtuhnymlGYCCTgrpfRF4EHgkoi4qrmR5Usj5gSRJElTWz2nlah3\nLnPR1TfTt7dI97bdFIeZQL9QmMaevf1cdPXNY5o6ojyH656+Ilse2L+tQmEacx8zc9+wxfGYoqJc\ngKr3qqWNageyAt5rXpzq9t+a8+xKkuopNwU14BjgR8AVwH8BzwGuTyltjoh1o70xpXQUcNSQ3fPr\nEmUTNWpOEEmSdOgmel6yeWtv3YopjcplLj3r+Wzc0nNA4a7c02rB3PZxKbaUC2Wj/Z2NZ1Gn3gWo\nRrXTiEKX8+xKkuotNwW1iLgXeEHFrptSSv8OvBwYtaAGnAmcX6fQcqNRk99KkqQxmbB5ydAiVHko\nZrkINVaNzGXsaZXPdix0SZImi9wU1FJKzwBeHBGrK3YfDuyq4u2XA18asm8+8P1xCi8XynOCHGz1\npbHOCSJJksakbnnJRB6KCfCJr9zC/Q88xJ6+/hHPmdE6nU985RYuOXPpmNqCxvXogmxOtXpcv1EF\nKAtdkiTVJjcFNWAn8L6U0p3A18l6q70aOGg2FRHbgG2V+1JKY1u6KYfKk98ebJlxe6dJktQ89cpL\nJsNQzOmFaVx0xpJRc5lVyxfvm3tsPNSr0CVJkqa23KzyGRG/B14JnEdWXLscWBURtzY1sJxxmXFJ\nkqaeeq/wXctQzLEyl5EkSZNBnnqoERHfAr7V7DjyrpFzgkiSpOY594qbRl2x8jcbttJx1ExaDyuM\nacheo4dimstIkqSJLlcFNVWvkXOCSJKk5ugvDnD8giOZcdjIKVtnRzt3bdo+pnaaMRTTXEaSJE1k\nuRnyqdodMWsG849pNwGVJGmSKhYHqxqKWSwOjrmtZgzFNJeRJEkTlQU1SZKknCoUWujsaB/1nM6O\ndgqFlnFprzwUs9xmZ0e2vWDu6DFIkiRNNQ75lCRJyqnphWlVrfDtUMz9nXvFTZOqHUmSlD8W1CRJ\nknKsPBTzmnV37FdUq/dQzIlYSAPGtDhDHtuRJEn5ZEFtAqnlKahJniRJk4erYkqSJOWLBbUJpppC\nmcMPJEmafCbDUEwwT5EkSZODBTVJkqQJYiIPxQR70EuSpMnDVT4lSZIkSZKkGthDTZIkKcdcsVKS\nJCl/LKhJkiTllCtWSpIk5ZNDPiVJkiRJkqQaWFCTJEmSJEmSamBBTZIkSZIkSaqBc6hVaehEvf3F\nAYrFQQqFFqYX9q9LOg+JJEmSJEnS5GVBrQblQtnmrb2sXb+Bru4eOjvaWbF0IfPmtAH1XyHLFbgk\nSZIkSZKay4JajTZu6eGadXews7cPgK7uHtbceDsrly1iwdz2urZtzzdJkiRJkqTmcw61Gmze2rtf\nMa1sZ28f16y7g81be5sUmSRJkiRJkhrFglqV+osDrF2/4YBiWtnO3j7Wrt9Af3GgwZFJkiRJkiSp\nkSyoValYHKSru2fUc7q6eygWBxsUkSRJkiRJkprBglqVCoUWOjtGnyOts6OdQqGlQRFJkiRJkiSp\nGSyoVWl6YRorli5kdlvrsMdnt7WyYulCphf8K5UkSZIkSZrMrP7UYN6cNlYuW3RAUW12Wysrly1i\n3py2JkUmSZIkSZKkRrGgVqMFc9tZtXzxvuGfnR3Z9oK5ow8HlSRJkiRJ0uQwvdkBTCTnXnHTvtf9\nxQGKxUHu2rSdy667pYlRSZIkSZIkqZEsqFVp9elLmh2CJEmSJEmScsAhn5IkSZIkSVINLKhJkiRJ\nkiRJNbCgJkmSJEmSJNXAgpokSZIkSZJUAwtqkiRJkiRJUg1ytcpnSukk4LPAYuD3wFsj4qfNjUqS\nJEmSJEl6RG56qKWUHgVcD3weOAK4DFibUmpramCSJEmSJElShdwU1IAXAMWI+GxEFCPiKmAL8JIm\nxyVJkiRJkiTtk6eC2iLg9iH7orRfkiRJkiRJyoU8zaHWBuwesm83MPNgb0wpHQUcNWT3AoDu7u5x\nCU6SJE1uL3rRi54A3BcR/WO5jnmJJEkaD+OVm6g+8lRQ6wUOH7JvJtBTxXvPBM4f7sDKlSvHGJYk\nSZoi7gFOAm4d43XMSyRJ0ngYr9xEdZCngtrvgLcP2ZeAa6p47+XAl4bs+xPgRuAvgA1jjk71cCzw\nfeCFZB8Uyh/v0cTgfco/71H+le/RnnG4lnnJxOT/pxOD9yn/vEf55z2aGMYzN1Ed5Kmg9n1gRkrp\n7cBngTcAxwD/ebA3RsQ2YFvlvpRS+eXGiLh3XCPVuEgptZZebvIe5ZP3aGLwPuWf9yj/Ku5RcazX\nMi+ZmPz/dGLwPuWf9yj/vEcTw3jmJqqP3CxKEBF9wCnAa8mS0DOAFRHxUFMDkyRJkiRJkirkqYca\nEfEb4M+bHYckSZIkSZI0ktz0UJMkSZIkSZImgslcUNsGXMCQOUyUK96j/PMeTQzep/zzHuVfve+R\n/w3kn/doYvA+5Z/3KP+8RxOD9ynnWgYHB5sdgyRJkiRJkjRhTOYeapIkSZIkSdK4s6AmSZIkSZIk\n1cCCmiRJkiRJklQDC2qSJEmSJElSDSyoSZIkSZIkSTWwoCZJkiRJkiTVwIKaJEmSJEmSVAMLapIk\nSZIkSVINpjc7gHpIKZ0EfBZYDPweeGtE/LS5UU1tKaUlwKVAArYCF0fE51JKRwJfAF4A7AAuiIgv\nNC9SAaSU5gK/AU6NiBu9T/mRUnoc8BngecBOsv+XLvce5UdK6aXAauDxwB/I7sWXvUf5kFL6U+Dr\nETG/tD3qfUkprQbeTJYzXQ28IyIGamzTvCSHzE0mDvOS/DIvmRjMTfKrGXmJxs+k66GWUnoUcD3w\neeAI4DJgbUqpramBTWGlD4W1wMcj4tHAq4DVKaUXAVeSffkeA7wSuDil9OymBauyzwOPAQZL296n\nHEgptQDfAG4juz9/Bbw/pfRneI9yIaU0E/gqcF5EzAb+HliTUurEe9RUKaWWlNKbgO8Ah1UcGvG+\npJTeDrwEeDLwJODPgXfW2K55SQ6Zm0w45iU5ZF4yMZib5FOz8hKNr0lXUCOr5BYj4rMRUYyIq4At\nZP/hqTkeD1wfEdcCRMQtwA+A5wIvA86PiL6IuBn4EvB3TYtUpJTeCuwCNpa2Z+F9yotnA/OAc0qf\nb7cDzyF70ug9yodBoAc4rPQPjUFgD1DEe9Rs7wH+EfgQ0AJVfb69gazgsiUitpA93X9jje2al+ST\nuckEYV6Sa+YlE4O5ST41Ky/ROJqMBbVFwO1D9kVpv5ogIn4VEavK26Wnws8j++DYGxH3Vpx+J96r\npkkpHQ+8A3hbxe4n4n3Ki6eTPQW+JKW0OaUUwJ+RPRX2HuVARDwErAKuAvqA9cDbgaPxHjXb5yPi\nacDPK/Yd7PMtsX9OcWdpXy3MS3LI3GRiMC/JPfOSCcDcJLealZdoHE3GglobsHvIvt3AzCbEoiFS\nSkeQDX35OdmT4IeGnOK9apKUUnkc/tsj4sGKQ214n/LiMWS9Xf4ILCB7InU53qPcSCk9Afgy2XCK\nw4GXAp8E2vEeNVVEdA+ze6T/dw6vOL57yLFpKaXWGpo2L8k5c5N8Mi+ZEMxLJgBzk3xqYl6icTQZ\nFyXo5ZH/4MpmknVzVROllI4FbiCbkPnVwAnAo4acNpOsW78a733ArRHxnVJ3cMie1O/G+5QXe4AH\nIuIjpe3/m1L6D+ADeI/y4uXALRHxpdL2t1JKNwAX4D3Ko4N9vlUmseVj/RHRV0Mb5iU5Zm6Sa+Yl\n+WdeMjGYm0wcjchLNI4mYw+133Fgt8ehXSPVYCmlpwM/Ab4dES+PiD1kyWtrSmlB5alkXcfVeH8L\nvCal9CDwANn8MteSzfPjfcqHO4DpKaXKz+7pwC/xHuXFQxyYCBWBX+A9yqORvofKOcPv2H/oy6Hk\nE+YlOWVuknvmJflnXjIxmJtMHI3ISzSOWgYHBw9+1gRS6u54N3AR2RL1bwAuBI4tjR9Xg1UsdX5J\nRFwy5NjXgIeB04ATgW8Dp5QmYFQTpZTuAc6IiG95n/KhtFrg78mW0v4A2WTA64C/AP4Z71HTpZQe\nB/wW+P+ANcBSspUEX0A2+az3qMlSSicDX42Io0vbI36+lVbTegtwCtAP3Ah8OSIuraE985IcMjeZ\neMxL8se8ZGIwN8m3RuclGl+TrodaqbvjKcBrgW3AGcAKk9amejMwBzgvpdRT8fNBsg+Kw4D7gK8B\nZ/sBnkvepxyIiIeBk4E/Be4HvgicGRE/w3uUCxFxH/DXZBNoP0g2l8zfRcQv8R7lSeXTxNHuyxXA\nN4GfkT2x/xHwsVoaMi/JLXOTic17lAPmJRODucmE0LC8RONr0vVQkyRJkiRJkupp0vVQkyRJkiRJ\nkurJgpokSZIkSZJUAwtqkiRJkiRJUg0sqEmSJEmSJEk1sKAmSZIkSZKk/9fe3YVqVtVxHP8ez6QZ\nFpYlFRFq2D+7sEyLJJoLCxpQMZC0IcPIslDMClFMqS6C3qyEwpe5UFBGkUh0VPClsJBmcsyU0NGf\nM01WZDrjRc5M4jieOV2sfXR7Zs4w+/G8DX4/cOB59tprP+t5Lg4/1t7rvzSAE2qSJEmSJEnSAE6o\nSZIkSZIkSQMsWegBSHp9qaongff2Dr0E/Ae4Ebg0yUsjXvOSJCtH6HsYsBF4T5Kn9tD+gSRPVNVO\nYFmSu6vq98DqJN+pqv2Bs5JcOXQMkiRp4ZhNJEmjcEJN0nybBC4EruveLwE+ClwPbAN+MOI1J2dl\ndLv6J/BO4NndtH0WeLF7vRz4LmBolSRp32I2kSQN5oSapIWwJcmm3vtbq2olcCqjhdY5k2QnsGmG\ntv/23o7Nz4gkSdIcMJtIkgZxQk3SYjEBvFhV1wLjwFHA4cDJwF+AS4EvAocCa4DzkzzS6390VV3Q\n9fsz8PUkjwJUVQE/Bz4BvBFYB3wryR96/U+vqm8DBwOrgHOSPDd9WUV/wN2yijXAncA13bEJ4OPA\n/cDhSf7RHX8b8DTwsSQPv7afSpIkzQOziSRpRm5KIGkhvHzHtKrGq+oE4Azglu7wF4DLgE8DDwK/\n6o59BTgW+Ddwd1W9uXe9c4GfAscATwGrumuPAbcBzwDHAR8B/gWsmDamrwGfBz4FHA38ci++x9Ry\njtXAN4HNtCUYDwIbgNN6554KrDewSpK0KJlNJEmDOKEmab6NAZdX1daq2gq8ANwB/Br4Wdf+SJKb\nuoD3JuBLwDeS/DbJY8BZtILBZ3bXnAQuT3Jjksdp4fYdwInAgcDVtLvGG5KsowXSI6tqvDeuc5P8\nMcla4DxgeVW9dW++UJIdwBZgZ5LN3VKMlbQQPGU5cMOA30mSJM0Ps4kkaTAn1CTNt0laLZIPdX+H\nAQcl+WqSqSK6G3vnv5+2zOL+qQNdSHwA+GDvvD/12rcC64GjkjxPK8a7vKpWdEshbu7GMb67/rRl\nHOPdZ4/qBuCYqnpfVb0L+CSGVkmSFiOziSRpMGuoSVoIm5Ns3EP7CzO87lvCq0PnxLT2/YDtVXUQ\nLZBuoS3b+A3tzvDN086fmNYXYPsexrhHSdZX1VrgdGAr8ECSv496PUmSNKfMJpKkQXxCTdJiM32L\n+b8BO4Djpw5U1f60miPpnffhXvshtDu4jwGfAY4Alib5SZK7gHd3p47trn/3WTtotUZGHTe0pRUn\nAyd1ryVJ0r7HbCJJ2oVPqElabF61xXuS/1XVFbTaJs/TivpeDBzAK0FwDLioqtbTguyPgSeS3FVV\nx9N2z/pcVa2mBdJLun4H9D5qRVWdDbyBVsfkqiTbqurteznWbcBbul27NiSZAG6i1V7ZTitcLEmS\n9j1mE0nSLnxCTdJiM7U7Vd9FwK20Oh9raUV9lyZ5ptfnh8D3afVLxoFTAJKsAb5H25p+HS08LqMF\nyWN7/X9BW2pxO3APcOG0Mc001im/Ax4FHqLt5kWSTcC9wH1Jnt2L7y5JkhYfs4kkaRdjk5Mz/S+W\nJOxxIIgAAACJSURBVL1WVfVX4EdJLPorSZIWnNlEkmaHSz4laQ5U1TJgKXAordiwJEnSgjGbSNLs\nckJNkubGebTixF9OMvKOXJIkSbPEbCJJs8gln5IkSZIkSdIAbkogSZIkSZIkDeCEmiRJkiRJkjSA\nE2qSJEmSJEnSAE6oSZIkSZIkSQM4oSZJkiRJkiQN8H9BdkfwC78AnAAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x10997b198>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fg = seaborn.FacetGrid(data=df2, col='parameter', size=4, aspect=2)\n", | |
"fg.map(probabiity_plot, 'res', 'final_data')\n", | |
"fg.set_axis_labels(y_var='Concentration', x_var='Probability')\n", | |
"fg.add_legend()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"## Benefit of `wqio`: legit probability scales" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "fragment" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<seaborn.axisgrid.FacetGrid at 0x1099869e8>" | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABNQAAAEYCAYAAACUWqvhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt4nGWZ+PFvOyGVpmlFCk231iBVnlpdhfW4LlY8rFut\nVNz1gNbdii6u4ul3eVrAS11cBQRxFZSfioJFUWTdVQrVrkeuiv50UcETcgNVYq1NpVVommLTTPL7\n451ppzl1ZjKnJN/PdeVq5p33fZ47mWly536fw6zh4WEkSZIkSZIklWd2swOQJEmSJEmSphILapIk\nSZIkSVIFLKhJkiRJkiRJFbCgJkmSJEmSJFXAgpokSZIkSZJUAQtqkiRJkiRJUgXamh2AJDVaSmke\n8OKIuKrJcbQDbwHWAscDO4EbgH+LiJ3NjE2SJDVGK+QlKaWbgJUlh4aAe8nykrdExJ6U0r8BfxMR\nf9v4CCWp9ThCTdJM9FbgNc0MIKV0BPANsmLaO4FHA+uAJwLfSSl1NjE8SZLUOE3PS4Bh4DKgq/Dx\nUOBlwGrgw02MS5JaliPUJM1Es5odANnItOXAoyLij4Vj96SUngv8BngtcHGzgpMkSQ3TCnkJQH9E\n/KHkcW9K6VLgbOCfmxSTJLUsC2qSKpZSGgJeBZwL/AXwLeA1EbGj8PyTgQ8ATyAbCftj4HUR8YuU\n0inAtcA1wKuBT0fEW1NKbye7O/swYDfwJeCNETFYmGKwHPgt8C9AP1lytwv4CHAs8BXgjIjIF2I4\noyS+XwLnRMS3UkqvBN5dOCcfEbnCaLHzgX8E5gA3A2+KiN+UfL3/Tlbk+k1EPGXE9+OVwJXjfLte\nGRFXj3H8VcCVJcU0ACLijymlZwH3FNr+DDAnIl5W0l8v8K8RsX6cPiVJmjHMS2qSl4wnD+wredye\nUvoUcHrh670wIv5vBe1J0rThlE9J1Xo/2RSFpwJHAV8GKExV/BrwPeAxwMlADrik5NpjyaYSnARc\nnlJ6BVki+nrgEcDryKY/vrjkmtMK7ZxIltR+nGyq5IvJpk2+BPiHQgzPAy4C3gH8JXA1cGNK6TFk\nSfMlwE+AxSVfyynAC4GnANvJpl3OKen/JcDTGfsO7bUcnCIx8uO6kSenlI4EHgn87xhtERE/KllD\nbbjwUWqsY5IkzWTmJQdVlJeUODBSLqU0O6X0eOCNwPUl5zyNrMj2V2RFvQ+nlJ45QZuSNG05Qk1S\ntc6PiBvgwJ3Qu1NKjwN6yRLBD0XEMNk0xiuBfxtx/YUld1qXAusi4uuF57amlN4MrCg5vw94W0QM\np5Q+DrwBeF9E3ArcmlK6DXhU4dyzgQ9ExJcLjz+aUnoq8OaIODOl1A/sj4g/FIpbbwSeFhE/KsTz\nWqAHeBHZHWuAT0bEHWN9IyLiz8Cfy/3GkSX6APeXce4sWmcqiCRJrcq8pKCKvASyXOMtKaU3FB4X\ni3c3kBUCi3rIRvcNAXemlE4ufO3frrA/SZryLKhJqtZ3i59ExK9TSn8EHhMRP00pXQW8qZDIJrK7\nmH8acf2vS66/KaX0hJTS+8imUPwl2R3h75ac31NIhAH2jmwDeICDyd8K4IkppfeUPN8O/GCMr2NZ\n4bqbUkqlo74eBJwwVrwjpZTWkt2ZHstrIuILI47tKvx71MiTJUlSVcxLCqrISyAb+f5p4IOFx/uB\nHRExMOK8HxWKaUU/Ac4aLxZJms4sqEmq1uCIxzkgn1L6C+BHwM+ATcBnye7QvmvE+Q8UPymsK/JR\n4FNkd0LfA4xcj2P/GDEMjXGsGMvbyKZ4FM3i0DVAioo/B08BStczmwXcN1a8Y7ge+H/jPPeHkQci\nYl9K6WfAk4H/Gvl8Sum9ZHeq/52xp3b6s1uSpEOZlxxUUV5S4r6IGLdQVzDya5zN2F+HJE17/lEm\nqVpPAG4HSCmdACwAfkq2xfreiFhVPLGwc+VE0xbfQjZV4/2F89vI7gR/r8rYfgUcV5oUppTeTzbt\n4zIOLVLdTZaELyqZWtEGfAH4GHDT4TqLiD3AngpjvBo4J6X0gYgojlgjpbSYbOrERYVDA2RruxSf\nPwpHtkmSNJJ5SUGVeUm5Hjfi8V9T+L5L0kxjQU1Std6XUvod2ZSJjwHfiIhfFaZTLE4p/R0QwCrg\nzMO0tQ14VkrpS2TTHM4FHkI2vaFcpYnxRcDnU0oBfAd4Htn6H6sLz/cBXSmlh0fEb1JKl5OtZ7If\n+E2h/2eQFbbq5TKyBYU3p5TOAX5Odsf8okIMlxbO+1/gFSmlVWQ7f76PrMgmSZIOMi+ZnHLXbH1E\nSulSshF7fwv8PdnGCZI04zS0oFZYtPISsrULdgIXRcQnU0pPAH7IwfUHAN4fERc2Mj5JFfk0cAWw\nkGxqQTHJu45sB6jPk/2MuRF4LvC9lNLDC+eMnMb45kJ7t3Lwbu2vgGeWnD/WTpdjPo6IrxQWD34H\n2ZSNLcA/liwu/F9kW83/PKV0fOG8IbJRY/PIpoY8JyJ2lPONqEZE7E8pPZssSb4EWEL2tV8PvDci\nij8PP0uWqF5Hdrf5IuAv6hWXJElTlHnJ5JSzg/gw8N/A0cCPyQqPayPix3WMS5Ja1qzh4cP93KyN\nwjSlLcBZEXFtSukk4JtkIzSOB06NiDUNCUbSpKSUhoBTImJzs2ORJEkzm3mJJKkZZjewr4cBN0TE\ntQCFLaW/AzwVOJFsjQNJkiRJkiSppTVsymdE/BRYV3xcGLH2NLKhzM8F/pxS+jXZLjjXAe8cY5tm\nSZIkSZIkqakaNuWzVEppAbARuB94PvAVstFqnwC6gP8kW0j0nDLbO5psLn+pHNkior+IiJHbaEuS\nJNWFeYkkSdL01/BdPguLf94I3AW8NCKGgReUnPKblNL5wPlAWQU14I3Ae8Z64lvf+tYkopUkSTNI\nOTvclcO8RJIk1UKtchPVQaN3+fwr4GvAZyPibYVjDwbeDbw7IvYUTj0SeKCCpi8j27mn1BLg25OL\nWJIkqWLmJZIkSdNcwwpqKaVFwCbg4oi4uOSp3cCpwFBK6WzgOOBcsumfZYmIXcCuEf25/pokSWo4\n8xJJkqTpr5Ej1F4NLATenVJ6d8nxDwOrgY8CO4G9wMcj4tIGxiZJkiRJkiSVpZG7fBbXRRvPcxoV\niyRJkiRJklSt2c0OQJIkSZIkSZpKLKhJkiRJkiRJFbCgJkmSJEmSJFXAgpokSZIkSZJUAQtqkiRJ\nkiRJUgUsqEmSJEmSJEkVsKAmSZIkSZIkVaCt2QFIkiRJkqTp45zLbz7k8WB+iHx+mFxuFm25Q8f1\nXHDWyY0MTaoZC2qSJEmSJKmmioWy7Tv72bB5Cz29fXR3dbJm5TIWL+wARhfepKnEKZ+SJEmSJKnm\ntu7oY/3G2+np7QOgpzd7vHVHX5MjkybPgpokSZIkSaqp7Tv7uWbTHezuHzjk+O7+Aa7ZdAfbd/Y3\nKTKpNiyoSZIkSZKkmhnMD7Fh85ZRxbSi3f0DbNi8hcH8UIMjk2rHgpokSZIkSaqZfH74wDTP8fT0\n9pHPDzcoIqn2LKhJkiRJkqSayeVm0d3VOeE53V2d5HKzGhSRVHsW1CRJkiRJUs205WazZuUy5ne0\nj/n8/I521qxcRlvOkoSmLt+9kiRJkiSpphYv7GDtquWjimrzO9pZu2o5ixd2NCkyqTYsqEmSJEmS\npJpbuqiTdatXHJj+2d2VPV66aOLpoNJU0NbsACRJkiRJ0vRyzuU3H/h8MD9EPj/M3dvu49Lrbm1i\nVFLtWFCTJEmSJEk1c8FZJzc7BKnunPIpSZIkSZIkVcCCmiRJkiRJklQBC2qSJEmSJElSBSyoSZIk\nSZIkSRWwoCZJkiRJkiRVwIKaJEmSJEmSVAELapIkSZIkSVIFLKhJkiRJkiRJFbCgJkmSJEmSJFXA\ngpokSZIkSZJUAQtqkiRJkiRJUgXamh2AJEk66JzLbz7k8WB+iHx+mFxuFm25Q++DXXDWyY0MTZIk\nSVJBQwtqKaWTgUuABOwELoqIT6aUjgKuBJ4B3A+cFxFXNjI2SZJaRbFQtn1nPxs2b6Gnt4/urk7W\nrFzG4oUdwOjCmyRJkqTGadiUz0LRbAPwHxHxYODFwAUppWcBVwC7gWOBFwEXpZSe3KjYJElqNVt3\n9LF+4+309PYB0NObPd66o6/JkUmSJElq5BpqDwNuiIhrASLiVuA7wFOBFwDviYiBiLgF+DzwTw2M\nTZKklrF9Zz/XbLqD3f0Dhxzf3T/ANZvuYPvO/iZFJkmSJAkaOOUzIn4KrCs+LoxYexrwM2B/RNxT\ncvqdwAsbFZskSa1iMD/Ehs1bRhXTinb3D7Bh8xYG80MNjkySJDWD66tKrakpmxKklBYANwA/Ihul\n9uYRp+wF5lbQ3tHA0SMOL5lMjJIkNUM+P3xgmud4enr7yOeHGxSRKmVeIkmqNddXlVpPI6d8ApBS\nejjwfbJNCf4e6AceNOK0ucCeCpp9IxAjPr496WAlSWqwXG4W3V2dE57T3dVJLjerQRGpCuYlkqSa\nc31VqbU0tKCWUvor4AfA1yLitIjYB9wFtKeUlpaeCvyygqYvK1xT+vHM2kQtSVLjtOVms2blMuZ3\ntI/5/PyOdtasXDZqiodainmJJKmmXF9Vaj0Nm/KZUloEbAIujoiLi8cjoi+ldD3Zjp9nAo8BXgY8\nt9y2I2IXsGtEf2MvPiNJmvam+lojixd2sHbV8lGJ8/yOdtauWn5gaodak3mJJE1/jcw1XF9Vak2N\nXEPt1cBC4N0ppXeXHP8wcCbwceB3ZFM931bY7VOSpKpM9bVGli7qZN3qFePGLkmSmqtRuYbrq0qt\nqZG7fJ4PnD/BKS9tVCySpJlh646+Q0Z5FdcaWbtqOUsXTbxOWTOVJt/FO953b7uPS6+7tYlRSZKk\nkRqRaxTXV52oqNbd1cnd2+6rSX+SytOUXT4lSaq3w601sm71iiZFNrFWnIIqSZJGa1SuUVxfdf3G\n28ec9llcX9Ubb1JjuaKxJGnaca0RSZJUT43ONYrrq47ctMj1VaXmsaAmSZp2XGtEkiTVUzNyjeL6\nqt1d2VTS7q7scSsvYyFNZ075lCRNO641IkmS6qnRuYbrq0qtx4KaJGnaca0RSZJUT43MNVxfVWpN\nTvmUJE1LrjUiSZLqyVxDmtksqEmSpi3XGpEkSfVkriHNXE75lCRNS641IkmS6slcQ5rZLKhJkuqm\nNNGEg8lmLjeLttyhg6RruT6Ia41IkqR6MteQZEFNklRXxYRz+85+NmzeQk9vH91dnaxZuezA2iIj\nC2+SJEmS1MpcQ02SVHdbd/SxfuPtB7aW7+nNHm/dMf5W85IkSZLUqiyoSZLqavvOfq7ZdMeoLeV3\n9w9wzaY72L6zv0mRSZIkSVJ1LKhJkupmMD/Ehs1bRhXTinb3D7Bh8xYG80MNjkySJEmSqmdBTZJU\nN/n88IFpnuPp6e0jnx9uUESSJEmSNHkW1CRJdZPLzaK7q3PCc7q7OsnlZjUoIkmSJEmaPAtqkqS6\nacvNZs3KZczvaB/z+fkd7axZuYy2nL+OJEmSJE0d/gUjSaqrxQs7WLtq+aii2vyOdtauWs7ihR1N\nikySJEmSqtPW7AAkSdPf0kWdrFu9gg2bt9DT20d3VydrVi6zmCZJkurunMtvPuTxYH6IfH6YXG7W\nqFHyF5x1ciNDkzSFWVCTJNVVaRJbTGDv3nYfl153axOjkiRJM0mxULZ9Z/+4N/hGFt4kaSIW1CRJ\ndeNdXkmS1Cq27ujjmk13sLt/AMh2Gl+/8XbWrlrO0kUTb6IkSSO5hpokSZIkaVrbvrP/kGJa0e7+\nAa7ZdAfbd/Y3KTJJU5UFNUmSJEnStDWYH2LD5i2jimlFu/sH2LB5C4P5oQZHJmkqs6AmSZIkSZq2\n8vlhenr7Jjynp7ePfH64QRFJmg4sqEmSJEmSpq1cbhbdXROvkdbd1UkuN6tBEUmaDiyoSZIkSZKm\nrbbcbNasXMb8jvYxn5/f0c6alctoy/nnsaTy+RNDkiRJkjStLV7YwdpVy0cV1eZ3tLN21XIWL+xo\nUmSSpioLapIkSZKkaW/pok7WrV5xYPpnd1f2eOmiiaeDStJY2podgCRJkiRJ9XTO5Tcf+HwwP0Q+\nP8zd2+7j0utubWJUkqYyC2qSJEmSpGnrgrNObnYIkqYhp3xKkiRJkiRJFbCgJkmSJEmSJFWgKVM+\nU0pPAr4cEUsKj58A/BDYW3La+yPiwmbEJ0mSJEmSJI2noQW1lNIs4AzgQ8BAyVMnARsjYk0j45Ek\nSZIktabSjQTg4GYCudws2nKHTrZynTRJjdboEWrnAi8G3gf8a8nxk4CfNjgWSZIkSVILKxbKtu/s\nZ8PmLfT09tHd1cmalctYvLADGF14k6RGaPQaap+OiBOBH404fhLwNymlX6eUelJKF6eU2hscmyRJ\nkiSpxWzd0cf6jbfT09sHQE9v9njrjr4mRyZpJit7hFpK6bnAW4ATgKcDrwZ+GxFXlNtGRPSO89Qf\ngO8AnwC6gP8EzgPOKTO2o4GjRxxeUm5ckiRJtWJeIkm1s31nP9dsuoPd/QOHHN/dP8A1m+5g3eoV\nTYpM0kxXVkEtpXQ6WbHrY8DJQA64F/hISmluRHxkMkFExAtKHv4mpXQ+cD5lFtSANwLvmUwMkiRJ\nNWJeIkk1MJgfYsPmLaOKaUW7+wfYsHkLg/mhBkcmSeVP+TwXeH1EnAsMAsMRcSnZKLU3TSaAlNJR\nKaUPpZTmlRw+EniggmYuA9KIj2dOJi5JkqQqmZdIUg3k88MHpnmOp6e3j3x+uEERSdJB5U75fATw\nvTGO38LkpzDcD5wKDKWUzgaOIyvgfaLcBiJiF7Cr9FhKaezbGJIkSXVkXiJJtZHLzaK7q3PColp3\nVyd3b7uvgVFJUqbcEWp3k62bNtLfA1Fl38MAETEErAYeC+wENgNfLIyAkyRJkiTNQG252axZuYz5\nHWPvVze/o501K5fRlmv0XnuSVP4ItXOBa1NKTwCOAM5MKT0COA14caWdRsRNwLElj+8EnlNpO5Ik\nSZKk6Wvxwg7Wrlo+amOC+R3trF21nMULO5oYnaSZrKxSfkTcCPw1MB/4BbAK2A88OSK+Ur/wJEmS\nJEkz2dJFnaxbvYLurk4gm+a5bvUKli7qbHJkkmaycnf5vAS4PCL+qc7xSJIkSZIEwDmX33zg88H8\nEPn8MHdvu49Lr7u1iVFJUvlTPl8NfLSegUiSJEmSVHTBWSc3OwRJGle5BbVPAxemlC4Efg08UPpk\nRLhzlSRJkiRJkmaEcgtqa8k2ERhrA4JhIFeziCRJkiRJkqQWVm5B7fS6RiFJkiRJkiRNEWUV1CLi\nJoCU0gIgkY1IuysidtYvNEmSJEmSJKn1lLvL5xzgQ8BrODi9cyil9EXgDNdQkyRJkiRJ0kwxu8zz\nPgA8FzgVeDBwNPAC4KnA++oTmiRJkiRJktR6yl1D7WXAyyPiWyXHNqaU9gGfBd5R88gkSZIkSZKk\nFlTuCLV24PdjHN8GLKhdOJIkSZIkSVJrK7egdjNwbkrpiOKBlFI78E7g+/UITJIkSZIkSWpF5U75\nfAtZUe2elNJtwCzgRGAI+Ls6xSZJkiRJkiS1nLIKahFxV0rpUcBa4FHAA8CXgWsiYm8d45MkSZIk\nTUHnXH7zIY8H80Pk88PkcrNoyx06WeqCs05uZGiSNGnljlADWAbcGhGXAaSU3gWsAH5Uj8AkSZIk\nSVNbsVC2fWc/GzZvoae3j+6uTtasXMbihR3A6MKbJE0FZRXUUkprgSuBfyWb+gnZSLV3ppReHhH/\nXaf4JEmSJElT2NYdfVyz6Q529w8A0NPbx/qNt7N21XKWLupscnTSzHDqW6+/qdxzb7jkBafUL5L6\nSSnNBeZFxB8a0V+5I9TeDfxLRHymeCAiXp5SehXwXsCCmiRJkiTpENt39h9STCva3T/ANZvuYN3q\nFU2KTJp5yimUVVJ4O5yU0k3Af0bEx2rV5mFsJqtffbXSC1NKm4AvRMT6cq8pd5fPh3JwZFqpzWRT\nQSVJkiRJOmAwP8SGzVtGFdOKdvcPsGHzFgbzQw2OTFKDDBc+GuVosk00q1FxrOWOUPs5cAbwzhHH\nTwfuqKRDSZIkSdL0l88P09PbN+E5Pb195PON/HtbUoPNSim9B3gYcCxwCnAX8Drg34CTgV8CL4qI\n36WUPgPsAp4NHA98H/jniNiaUnol8PqIeCJASmkesBt4OPDhQh//mVJ6R0R8NKX092SzKpcAPwZe\nFxF3Fa59ZuGa44GvAZ1UWIwrd4Ta2cDbUko/SCldllL6aErpe2QFtndU0qEkSZIkafrL5WbR3TXx\nGmndXZ3kctUOKJE0hawFLgCOAu4DvgWcBxwDPAC8qeTcM4DXAAuB3wHXHabt4Yh4IfBbssLcR1NK\nTwI+DfxzoZ0bgI0ppVxK6RjgK8AHgPnA9cBTqXCEWlkFtYi4CXgs8F2y6t1fFD5fHhHfqKRDSZIk\nSdL015abzZqVy5jf0T7m8/M72lmzchltuXLHeUiawr4XEd+PiEGyJcW+HxE/iIg/ky0n1l1y7hUR\n8cOI2Ae8FXhySum4Cvt7FbC+0Ec+Ij5CNkvzmcDzgbsi4pqIGIqIzwE/rPQLKnfKJxERwNsBUkqz\ngKXAtko7lCS1jpHb1A/mh8jnh8nlZo1Kbovb3kuSpJllMvnC4oUdrF21fNTGBPM72lm7ajmLF3bU\nL3BJreRPJZ8PAfeXPB7m4HTLYeDu4hMRcV9KqR9YVGF/DwNOSSmtKzl2BFktaxGj61m/ocIpn2UV\n1FJKS4DLgPcBtwPfJBsO9/uU0uqI+GklnUqSWkcx8d2+s58Nm7fQ09tHd1cna1YuO5DkjkykJUnS\nzDKZfGHpok7WrV4x7nWSZoRKplM+tPhJSulooINs6ucJQOmQ16MnaOP3wMUR8Z6Sth4ObAdewqEj\n4op91mVTgo8BDyZbGG4d8Bjgr4F/BD5CtqicJKnB7t+zjz17B5g3t50F8+ZU3c7WHX2H3Dnu6e1j\n/cbbWbtqOUsXTbz2iSRJmhmqyRdKi2zFkW13b7uPS6+7tSExS5oyZpX8e2ZK6Trg18AHgW9FxLaU\n0p3ACSml5cA9ZOv9lxbB9gELCp9fDVybUvoKcBtwGvAF4C/J1lP7UErpTOCqwnN/A3yqkoDLLag9\nE3hSRPSklE4DboiIH6aU7gV+UUmHkqTamOgOcaXtjJyGAdlW9tdsuoN1q1fUKmRJktREk5m6WU2+\n4HIRkjhY8BoecWy8x8Nka/ZfDSwDvgGcDlCoQ30U+Hbh3IvJBn4VrQeuSCkdHxHvTym9Bfgs2fTP\ne4CXlOzy+TzgcuA/gO+R7fRZkXILavuBtsKWpKeQLe4GsBjYU2mnkqTJqdWIssH8EBs2bxmVHBft\n7h9gw+YtDOaHahK3JElqrmqmbpovSNPDqW+9/qZG9hcRzxjn+HkTPQZ+GhEvHefat1NY37/gP0qe\nu4BsJ9Hi42uBa8dp53+BJ0wU/+GUW1D7BnAl0A8MADemlFYBlwIbJxOAJKky5dwhLnekWj4/TE9v\n34Tn9PT2kc9XtJyAJElqYZXemDNfkKa+Gy55wSnNjqECFW0O0Czl7k/8GuD7ZLswrImIPuDxwE3A\nm+oTmiRppPv37CvrDvH9e/aV1V4uN4vurolHtHV3dZLLTYnfaZIk6TAOd2Nu+87+UdeYL0hqsClR\nnS+roBYRuyPi/0TEacCWlFIuIt4fEa8pFNckSQ2wZ+9AWXeI9+wdu+A2UltuNmtWLmN+R/uYz8/v\naGfNymWj1lWRJElTT7VTN80XJDVKRJwREec3O45yVPMT71eM3l5UktQA8+a2l3WHeN7csRPesSxe\n2MHaVctHJcnzO9pZu2q5W9pLkjRNTGbqpvmCJB3KWwiSNIUsmDenrDvEC+bNqajdpYs6Wbd6xYFi\nXXdX9riSDQ4kSVJrm+zUTfMFSTqo3E0Jaiql9CTgyxGxpPD4KLJND55Btk7beRFxZTNik6RWV7xD\nPHL9k2rvEJfu5DWYHyKfH+bubfdx6XW31ixmSZLUfMWpm+s33j7mtM/ijbmxcgDzBUk61LgFtZTS\nw4BtEZEf8dTNwJ8L5zwIeElEXF1OZymlWcAZwIfIdgstugLYDRwLPA74WkrplxHxw3K/EEmaSYp3\niMfb7r5cF5x1cp0ilCRJ9VRa4IKDRa5cbtaotcxKf99Xc2POfEGSRptohNo9wK0ppZdHRBQPRsRz\nS855MPAZoKyCGnAu8GLgfcC/AqSU5gEvAB4ZEQPALSmlzwP/BFhQk6RxLF7YwenPSezZO8C8ue0V\nT/OUJElTW7HQtX1n/7g32UYW3qB2N+YkaSY73JTPHPCTlNJbI+LjNejv0xHx/pTSKSXHHgnsj4h7\nSo7dCbywBv1J0rS2YN4cC2mSJM1gW3f0HTLarKe3j/Ubb2ftquVjrm3m1E1JQMe2e/e8e+8D+x87\n98gjfrbkmHnvBfqbHdRUc7iC2vOBtwAfSyk9D3hVROystrOI6B3jcAfwwIhje4G55babUjoaOHrE\n4SWVRSdJjXP/nn2OLJOmKfMSSbVQTq6wfWf/qKmbALv7B7hm0x2sW73ikONO3ZQEPPTX2+6/4qob\nf/mQ2+68d++JJxxzyhnPf/Rjj1+y4Ezgd/XoMKX0TOCdwBOAPPBz4JKI2DDO+f8X2BkR7zpMu+cA\nyyNi3SRiOw74NTAvIvZWcu3hCmoDEfGWlNImsqmdP0spvSoiNlUV6dj2Ag8acWwusKeCNt4IvKdm\nEUlSHU00LUPStGBeImlSyskVBvNDbNi8ZczNBSArqm3YvIXB/FAjQpY0NTz0zt/+af0HP/fjI7fv\n6t8LcNud9+69cP0tC972isevP+FhR62jxkW1lNLLgcuAt5Mt9/UAcCrwyZTSwyPiIyOviYjXldN2\nRFxQy1grVdYunxHx9ZTSXwKfAr6aUvoo2TejFu4C2lNKSyNia+FYAn5ZQRuXAZ8fcWwJ8O0axCdJ\nNVPptAxJU5J5iaSqlZsr5PPD9PT2TdhWT28f+fxwXeOVNGV0/Hrb/VcUimn7Sp/Yvqt/3wc/9+Mj\nz173xCuybft1AAAgAElEQVSOX7LgRdRo+mdK6UiyvOjMiPjvkqe+klK6D9hUWEN/B3A58HLgImA5\ncG9EvD2l9BfAlcBfAwFsBh4fEc9IKf0b8OiIeHFK6TNkm12eCJwE3AG8JiJuTSnNBs4DXkSWk90H\nvC8iPjmZr2/24U/JRMSuiHgh8BqynTp/BDxmMp0X2u0DrgcuSCkdmVJ6IvAy4JoKY7uz9AP4zWRj\nk6RaOty0jO07XbZAmg7MSyRVq5JcIZebRXfXxDfjurs6yeVm1SVWSVPLtnv3vPuqG3/5kJHFtKLt\nu/r3XXXjLx+y7d49E06zrNBTyWYgXj/yiYi4CdgOPK9waA5wLPBRYLjwAXAt8FvgGOC1wLqS5xjx\n+SuA1xfOvRsojmBbS7ZO/9MjYj5wNvDhlFLZS42NpawRaqUi4lMppZuAzwFf5dDgK1F63ZnAx8mG\nFu4B3hYRt1TZriTVVTXrn92/Z19Z0zJOf06asM2xduoaj+ukSJI0dVSaK7TlZrNm5TLWb7x9zGvm\nd7SzZuUyNxuQBMDeB/Y/9rY7751wjbDb7rx3794H9j+uht0uAnZFRH6c53uBrsLn10bEILAnpQRA\nSulhwMnAqRExQLZp5hVko9WKSu8aXB8RPy9c+0XgksLxrwBfB+5NKT0U2Ee29NhDJvPFTVRQOx4Y\ncwOCiLg7pXQy2aJyp1TaaaESeWzJ4z8BL620HUlqtGrXP9uzd6CsaRl79g4ctkhXTqGsksKbJElq\nvmpyhcULO1i7avmoUW3zO9pZu2q5a7RKOmDukUf87MQTjjlloqLaSemYjrlHHvHDGna7A1iUUmor\nFMtG6iYrqlHyb9EsYDGwJyLuLzn+Ww4tqJUqrWENcnBWZjvZ1NNnFa6/rXC87FmbYxn34oi4JyLG\nXcEyIgYj4ryIeMZkApCkqWLrjmwNk2KyW1zTZOuOiZNfgHlz28ualjFvbntNYpUkSVNLtbnC0kWd\nrFu94sC13V3ZY9dmlVRqyTHz3nvG8x/9x8VHd4x5937x0R1zXrn60buWHDPv32vY7c3An8imYh4i\npfR3ZCPEvlY4NHL24zCwFZiXUnpwyfGHjnHeWNeXKk79XBwRJ1GjzaMqnvIpSc1SzVTLWrRxzuU3\nM7A/T++uveTH2Cnr51t20nX0XNqPyI07euzCq2+ZsI1cbjb79g9y4dW3OFVTkqQZaMG8OWVN4SzN\nX0pHpA/mh8jnh7l7231O85Q0lv7jlyw4822vePz6kRsTLD66Y87bXvH4B45fsuBMarQhAUBE7Esp\nnUW2o+ds4EtkI8eeC3wMODci/lCc4lliVuH636eUvglclFJ6I/BI4J+B20eey6FTP0fqJJvmmU8p\nHQ18sHD8CGC86aiHZUFN0pRQ7VTLWrQxmB/ihKVHMeeI8X9kdnd1cve2+yZs55I3P33Uzl1wcFrG\n0kWdTtWUJGkGq2QKpzfgJFXhdyc87Kh1Z6974hVX3fjLh9x25717T0rHdLxy9aN3FYppv6t1hxHx\npZTSH4BzyQpZs8mmXP5LRBQ3KxhrdFrRq4GryKZz3g58E1hYct7wGJ+PbOfdwNXALuDXhTgeVfj4\nxRjXlcWCmqSWV+728fVqo5bb0henZUy2OChJkqYncwVJdfa745cseNFr//6x79r7wP7HzT3yiB8W\npnnWbGTaSBGxGdg8wfO5EY/PKHl4AvB3xY0NUkofKDnvvHGuISJuBG4sfH4Xo9dd+3zJ5zmqYEFN\nUks73Pbx61avOGyCOdk2itvST1RUK2eEWtHihR2c/pw06emrkiRpejJXkFRn/UuOmXd2s4Mo00eB\n/yjs7vlI4OXAOc0NKTOpHQ0kqZ7K3T7+/j37xny+Vm0Ut6Wf3zH2hgHFNU3acuX/SF0wbw5Lju00\nQZYkSWMyV5AkICugvRK4D/gW8PGI+FxTIypwhJqkllXN9vH1aAPcll6SJEmSGi0ibgWe2uw4xuII\nNUktq9rt42vdRpHb0kuSJEmSwBFqklpYNdvH16ONUq2wpok7gUqSJElSc1lQk9TSajHVstbTNRfM\nm9O09UwuOOvkpvQrSZIkSTrIgpqkCd2/Z19NRmNV007pSKyB/Xl23vdn9g0MMqe9jX37H8Tl//XT\nA8+PV2iqRRuSJEmTUU4eVMkIdHMWSWo+C2qSxrV9Zz8bNm+hp7eP7q5O1qxcVtXi+5NppzRhHC8Z\nPVwCWos2ajHN0qmakiTNPJXkQeUUyswnJKk1WFCTNKatO/oOmSLZ09vH+o23s3bV8ooW4a9VO1Cb\nqZbVtFGLu8DeSZYkaeapZR4kSWot7vIpaZTtO/tHrTcGsLt/gGs23cH2nf0NbUeSJGmqMQ+SpOnN\ngpqkQ9y/Zx8bNm8Zc0dMyJLADZu3cP+efQ1pR5IkaaoxD5Kk6c+CmqRD7Nk7QE9v34Tn9PT2sWfv\n2AlirduRJEmaasyDJGn6cw01qcFqtWtmvdr/8Bdv5Q9/fIB9A4PjnjOnvY0Pf/FWLn7jyrq3I0mS\nNNXMm9tOd1fnhEW17q5O5s1tb2BUkqRasqAmNVCtds2sZ/ttudlc+PqTWb/x9jGnKczvaGfd6hVc\net2tDWlHkiSplZRz8/LCq29hYH+e3l17yeeHRj2fy81m3/5BLrz6FjcukqQpyimfUoNs3ZHt6lS8\nU1nc5WnrjomnAzSj/cULO1i7ajnzOw69azq/o521q5aXXaSrVTuSJEmtYPvOfq79evCxL/2Ma78e\nE24scMmbn86Frz+ZE084luOXPPjAx4knHMuFrz+ZS9789AZGLkmqNQtqUgPUe5enerS/dFEn61av\noLsr29K9uyt7XOkW77VqR5IkqZmquXlpHiRJ05dTPqU6e/tlmw+7ltiv7vkjxz7kyKrWEqtn+4sX\ndnD6c9Kk13ybTDvnXH5zVX3Wug1JkjRzHe7m5brVK8YdeV9JHmTOIklThwU1qc7y+WGWHDPvsOf9\neYKCWDPbXzBvTk02T6imnVqsKeK6JJIkaTLu37OPDZu3jLkmLGRFtQ2bt3D6c9K4uU45eZA5iyRN\nLU75lOosl5t1YJj/eLq7OsnlZrVk+5IkSTPZnr0DE+7WCdn0zz17xy64SZKmJwtqUp215WazZuWy\nUQvzF83vaGfNymW05ar771jv9iVJkmayeXPby7p5OW/u2LmYJGl68i9sqQHqvdulu2lKkiRV7v49\n+9j2hz7u37Nv3HMuvPoW7tz6J3p6d/PrbfeN+ujp3c2dW//EhVff0sDIJUnN5hpqUoMUd3nasHkL\nPb19dHd1smblspoVu+rdviRJUiPcv2dfVRsZlXNd6aL/A/vz7Lzvz+wbGGROexsLH/wg2o/IHXi+\ndE2zS978dLbu6Bu1MUHx5uXSRZ1uKCBJM4wFNamBarVrZr3br1VCaGIpSdLMU2lBrNoiV7XXXXDW\nyQeKY3OOOPjn0OGKY968lCSVsqAmNVitds2sV/u12mHKnaokSZpaqh0ZVmr7zv6qCk7VFrmquW77\nzv5RI80g263zmk13sG71inHjrOTmpTcWJWl6s6AmSZIkzXDVFsJKjZwS2dPbx/qNtx8obB2u/2qK\nXJVeN5gfYsPmLaPOL71uw+YtDOaHxo21nJuX3liUpOnPTQkkSZKkGWzrjqzw1dPbBxwshG3d0Vd2\nG4crbG3f2T/utdUWuaq5Lp8fPvB1jqent498fnjCcyRJcoSa1AD1HvLvlAJJklSNckZ4HW6k2v17\n9pVV2Dr9OWnMkV3VFrmquS6Xm0V3V+eE13V3dXL3tvsmbFeSpJYqqKWU3gacD5TuW70qIr7XpJA0\njdVinZBy1HvIv1MKJEmaeWqRx0y2EFa0Z+9AWYWtPXsHxmyn2iJXNde15WazZuUy1m+8fcyve35H\nO2tWLuPS626d8OuRJKnVpnyeCJwdEZ0lHxbTVHPbd/Zz7deDj33pZ1z79ZhwGoIkSVIrqVUeU0kh\nbCLz5rbT3TXxGmndXZ3Mm9s+5nPFItf8jrGfLxa52nKza3Ld4oUdrF21fNR1xY0M3LVTklSOViuo\nnQT8tNlBaHqrxTohkiRJzVDLPGayhbCiBfPmlFXYmmiUW7VFrmqvW7qok3WrVxz4+ru7sseH2zxB\nkqSilpnymVKaCyTgzSmlzwF/Ai6OiKuaG5mmk1qsEyJJkjSWei8nUes85sKrb2Fgf57eXXvJj7Gr\nZS43m337B7nw6lsmXGKiuJbrvoE8O/54aFu53GwWPWTugSmUE7VTLHJVuttotdctXtjB6c9JZb1m\nrlcrSRqpZQpqwLHAd4HLgW8CTwFuSCltj4hNE12YUjoaOHrE4SV1iVJTVq3WCZEkaSLmJTPT9p39\nFRd0KlGvPOaSNz+drTv6RhXqiiO8li7qLKuYVCyUTfR9KKedSopc1V5XaXHM9WolSWNpmYJaRNwD\nPKPk0M0ppc8CpwETFtSANwLvqVNomiYmu2CuJEllMi+ZYUYWpIrTMIsFqVqoZx5T7QivsVRbEKt2\nBJjFMUlSs7RMQS2l9HjgORFxQcnhI4E9ZVx+GfD5EceWAN+uUXiaBorrhBxuJ6jDrRMiSdJhmJfU\nQKN2456sRi0n8eEv3sof/vgA+wYGxz1nTnsbH/7irVz8xpUVt19tIWwsC+bNqej6aotcFsckSc3U\nMgU1YDfwrpTSncCXyUarvRQ4bEYQEbuAXaXHUkoTb0ekGae4YO7htklv5aRdktT6zEsmr97TJ2ul\nkctJtOVmc+HrT54wj1m3esWBtcqqUWkhTJKkmaxldvmMiLuAFwHvJiuuXQasi4jbmhqYphW3SZck\nqbVNpd24K5mGWQvmMZIktY5WGqFGRHwV+Gqz49D0Vst1QiRJUm2cc/nNE+44+fMtO+k6ei7tR+Ra\nZqpfvadhjsU8RpKk1tBSBTWpUWq5TogkSZq8wfwQJyw9ijlHjJ+ednd1cve2+xoY1cQaMQ1zLOYx\nkiQ1X8tM+ZQabcG8OSw5ttMkVJKkFpDPD5c1fTKfH25QROVp1jRM8xhJkprLgpokSZKaLpebRXdX\n54TndHd1ksvNalBE5StOwyzG392VPV66aOKvR5IkTV1O+ZQkSVLTteVml7Ubd62nT9bKVJ2Gec7l\nN7dUO5IkTRUW1CRJktQSitMnr9l0xyFFtamyi+WCeXOmTCENqNnmDq2ySYQkSY1kQU0zRiV3Tk0M\nJUlqDnexlCRJU4EFNc0o5RTKnLIgSVJzTdXpk/VmjiJJUuuwoCZJkqSWM9WmT9abo+clSWot7vIp\nSZIkSZIkVcARapIkSWoJU3FK41SMWZIkTZ4FNUmSJDXdVJzSOBVjliRJteGUT0mSJEmSJKkCFtQk\nSZIkSZKkClhQkyRJkiRJkirgGmqqyMiFdwfzQ+Tzw+Rys2jLHVqfdV0RSZIkSZI0HVlQU8WKhbLt\nO/vZsHkLPb19dHd1smblMhYv7ABad8erVo1LkiRJkiRNHRbUVJWtO/q4ZtMd7O4fAKCnt4/1G29n\n7arlLF3U2eToxuaIOUmSJEmSVAuuoaaKbd/Zf0gxrWh3/wDXbLqD7Tv7mxSZJEmSJElS/VlQU0UG\n80Ns2LxlVDGtaHf/ABs2b2EwP9TgyCRJkiRJkhrDgpoqks8P09PbN+E5Pb195PPDDYpIkiRJkiSp\nsSyoqSK53Cy6uyZeI627q5NcblaDIpIkSZIkSWosC2qqSFtuNmtWLmN+R/uYz8/vaGfNymW05Xxr\nSZIkSZKk6cmqhyq2eGEHa1ctH1VUm9/RztpVy1m8sKNJkUmSJEmSJNWfBTVVZemiTtatXnFg+md3\nV/Z46aKJp4NKkiRJkiRNdW3NDkBTzzmX33zg88H8EPn8MHdvu49Lr7u1iVFJkiRJkiQ1hgU1VeSC\ns05udgiSJEmSJElN5ZRPSZIkSZIkqQIW1CRJkiRJkqQKWFCTJEmSJEmSKmBBTZIkSZIkSaqABTVJ\nkiRJkiSpAi21y2dK6STgE8AK4C7gtRHxw+ZGJUmSJEmSJB3UMiPUUkoPAm4APg0sAC4FNqSUOpoa\nmCRJkiRJklSiZQpqwDOAfER8IiLyEXEVsAN4XpPjkiRJkiRJkg5opYLacuD2EceicFySJEmSJElq\nCa20hloHsHfEsb3A3MNdmFI6Gjh6xOGlAL29vTUJTpIkTW/PetazjgN+FxGDk2nHvESSJNVCrXIT\n1UcrFdT6gSNHHJsL9JVx7RuB94z1xNq1aycZliRJmiF+A5wE3DbJdsxLJElSLdQqN1EdtFJB7VfA\nG0YcS8A1ZVx7GfD5EcceAWwEng1smXR0Y3s48G3gmWRv9HprdH/VasU4WzGmw2l2zNP1/T3d+mlW\nf63WfzVaMeZWjGks0/H9XexjXw3aalZeAtPztZmsVoyxFWM6nFaIeTq+v81Lpmf/1WjVmFs1rlLT\n9f1dy9xEddBKBbVvA3NSSm8APgH8I3As8D+HuzAidgG7So+llIqfbo2Ie2oa6cE+2gufbqtXH83s\nr1qtGGcrxnQ4zY55ur6/p1s/zeqv1fqvRivG3IoxjWU6vr9L+shPtq1m5SWFfqbdazNZrRhjK8Z0\nOK0Q83R8f5uXTM/+q9GqMbdqXKWm6/u7lrmJ6qNlNiWIiAHgucDLyJLQ1wNrIuKBpgYmSZIkSZIk\nlWilEWpExM+Bv2l2HJIkSZIkSdJ4WmaEmiRJkiRJkjQVTOeC2i7gPEasYTIF+2hmf9VqxThbMabD\naXbM0/X9Pd36aVZ/rdZ/NVox5laMaSzT8f1d7z782dM8rRhjK8Z0OK0Q83R8f/uzYXr2X41WjblV\n4yo1Xd/fU+F7P6PNGh4ebnYMkiRJkiRJ0pQxnUeoSZIkSZIkSTVnQU2SJEmSJEmqgAU1SZIkSZIk\nqQIW1CRJkiRJkqQKWFCTJEmSJEmSKmBBTZIkSZIkSaqABTVJkiRJkiSpAhbUJEmSJEmSpAq0NTuA\nyUgpnQR8AlgB3AW8NiJ+OMZ5NwLPBPKFQ8MRMb+GcTwJ+HJELKlVm2P0cTJwCZCAncBFEfHJevVX\nrZTS24DzgX0lh1dFxPeaEMshr0tK6SjgSuAZwP3AeRFxZaPjGst4r28jY04pvQQ4D3go0AO8MyKu\nr2cMKaVFwM+BMyJiY637Gu/9CNxe434eCnwceBqwm+z1u6we37uU0tpCX6U6gE8CZwNX1bK/cWI4\nFbgAeBjw+0I/X2jx/2PPAj4ILAN+AfyfiPjfZsY8QUxPAH4I7C05/f0RcWEj4hppgjiXA5cDJwEP\nAJ8h+7kxXKf+jgc+BjwFuBd4X0Rc3Yj2Kvnd1gq5iXnJQeYl1Wt2btKMvKTQr7lJZf00PS8pxGFu\nUt+YZmxuUuu8pFZtttLvt5ls1vDwpPLepkkpPQi4G/h34FPAPwEXAsdHRP+Ic38HrImIn9Q4hlnA\nGcCHgIGIOLaW7Zf0cxSwBTgrIq4tJOvfBF4SEd+qR5/VSil9DvhJRHyoiTGM+bqklL4E9ANnAo8D\nvgasHusPnUaa6PUFXkcDYk4pnQD8BHh2RPyg8EN+I7CE7A/DusRQ+INyFdn/z6/W+jUa7/1Yy34K\n77dbgG8B55L94fFd4PnAW2v59YzT/7PJkoUnAZc2oL+5wB+Bl0fEfxf+4Po28EiyP7xa8f/YcWTJ\nypvIvlcvBK4AHkWWtDQ85sPEtAY4NSLW1DOGchwmzv8ke++/HVgMbAb+LSI+W4f+HgNsIkvm3wA8\nAvgG8OqI+Fq92yv3d1uzcxPzktHMS6rT7NykWXlJoW9zk0lodF5S6NPcpP4xzcjcpNZ5SS3bbIXf\nb5raUz6fAeQj4hMRkY+Iq4AdwPNKT0opHQscC/yyDjGcS/Yf4X3ArDq0X/Qw4IaIuBYgIm4FvgM8\ntY59Vusk4KdNjmHU65JSmge8AHhPRAxExC3A58n+2Gm2iV7fhsQcEXcCxxaS1jagi+xu5kC9Ykgp\nvRbYA2wtPK7HazTq/ViHfp5M9gv77MLPotvJ7ir9vsb9jFL4Wj4DnEX2ejXi/TIM9AFHFBL2YbI7\nY/kG9V+N5wI/i4grI2IoIv6LbPTBS2hezOPF9GLgRJr/c7Roojh3A0cAObKftUMceue6lv39A9mI\nrzdFxL6I+CVZ8vnqBrVX7u+2Zucm5iWjmZdUp6m5STPyEjA3mawm5SVgblLvmGZyblLrvKSWbbbC\n77cZbyoX1JaTDY0uFYXjpU4i+wF7Y0rpDymlm1NKT6lRDJ+OiBOBH9WovTFFxE8jYl3xceGu4dOA\n2+rZb6UKd4cS8OaU0vaU0u0ppTOaEMpYr8sjgf0RcU/JsTsZ/X5puAle31k0MOaI2JtSejjwZ+Bq\n4J1kd0ZqHkPhzvNbyO5yF9X0NZrg/Vjr98Jfkf1RfHGhnwD+GnhIjfsZyzuAn0bEBhr0Ho+IB4B1\nZFM4Bsju/L0BOKYR/VdpNtmw/1LDwN+SjRa5p+R4o2IeL6ZHkv3e+puU0q9TSj0ppYtTSu0NiGks\n48X5COD1ZEn/XuC3wHcLSWE9+jsNGCR7z5Uef2S926vwd1uzcxPzkhLmJdVrhdykkXkJmJtU2c9I\nDc9LwNykATHN5Nyk1nlJTdpsod9vM95ULqh1MLravBeYO+LYHOD7ZHcGlwCfA76WsvURJiUieifb\nRqVSSguAG4AfRcQNje7/MI4lG05+ObAUeA3woZTSqkYGMc7r0sHoH1xjvV+aqvT1JbsT3OiYf0v2\nf+bZZFNTnl/rGAp3mq8G3hARfyp5qtav0ZjvR2B1jft5CNmolHsL/bwSuIw6v+cKd4HfQLa+DPXu\nr6Tf44AvAP8MHAmcCnwE6GxE/1X6H+DJKaV/SCm1pZROI7tT30H2h1qpRsU8XkwPAv4AbAAeDZxC\n9v46b7yGmhTnkYUYryd77R8NrEwpvaZO/d1T+LggpTQnpfRosil0cxrQXiW/25qam5iXjGJeUgNN\nzk3qnpeAuckk+jmgWXlJoe/jMDepZ0wzOTepdV5SqzZb4vebpvamBP1k/2lKzSW743tA4Q7JhpJD\nH08pnUX2Q+DaukZYY4W7dDeSLXL80iaHM0rhTsozSg7dnFL6LFm1fVNTgjpoL9kvg1JzyYb1t4Qx\nXt9H0+CYI6K4OPZ3Ukr/BTyhDjG8C7gtIr5eGJYP2R3vmr5GE7wfV9ayH7IpBX+MiA8UHv+/wvfu\nvTXuZ6TTgHsi4n8Ljxv1Hj8NuDUiPl94/NWUrTdzXoP6r1hE3J1SeinZwq0fJ1uH53rgwTQp5gli\n+lNE/EvJqb9JKZ1fOO+cesdVQZzHka1V8oSI2A/8KqV0IfBasoWoa93fvWR3nD8KbCOb4nA18Jx6\nt1fh77YZlZuYl0xKy+cl0PzcpEF5CZib1OL1a1ZeUuzb3KR+Mc3Y3KTWeUmt2mzx328zylQeofYr\nsmGOpRIjplqklF6SUnrxiPMexOi7FS0tpfRXwA+Ar0XEaRGx73DXNFpK6fEppZE/VI+kNb7XdwHt\nKaWlJccS9Vlbr2LjvL4Nizml9LyU0jdGHJ5DtiBxrWN4CXB6SulPZAvIPozsD8jn1bKvCd6Pv61l\nP8AdQFtKqfTnaRvZYsr1fP1OBa4redyo98sDjE708sCPG9R/xQp3zX8bEY+LiGMi4pVkUyc+S5Ni\nniCm21JKHyo8X9S0n6MTxPkdsj82S6d75IH9dejvUWRJ5Tzg7yJiYUQ8i+yPjgkX9K9FexX+bpsx\nuYl5yaS1dF4Czc1NGpyXgLlJLV6/ZuUlYG5S75hmbG5S67ykVm22+O+3GWUqj1D7NjAnpfQGst1+\n/pFs6OP/jDhvDnBRSukXZDtv/R+yH7hfb2Csk5KyKSCbgIsj4uJmxzOB3cC7Ukp3Al8mq5q/lOyu\nW1NFRF9K6XqyIbRnku2i8jKyRSGbarzXt8Ex/xh4QkrpFWQLn64q9PMksqSyZjFExKNKH6eUfgO8\nPrKdtE6sYV8TvR8fXMN+vkF2F/Y9KaX3ki0EfBrZ9JTjatjPSE8hG+YNNPT9shH4QErplcB6su/n\naWTf3+Ma0H81FgLfTyk9jaywcRZwNPDfZLE3I+bxYtpAtkPkUErpbLLv6blkv+eaYbw4LyVb/PeS\n/9/e/cdaXddxHH/eLqa1oqgoYc1J/7xTSBezmllba7EQV5rlGlkJNZhYQi3CzASMyiQchC3mrLQ0\nynJZlrNfqHPh6BeD0OKt8qMinSkREoiyOP3x+WKHu3vvOYd7zj38eD62u3vv+X6/n8/n3HPuva99\nvt/P+xsRs4GxlDvH3dCB/l5GOXO7HlgSETdQ3m8fBN4+DO218r/tmMgm5pKhO5xzCRwW2WTYcgmY\nTYbQT71u5RIwm3R6TMdyNml3LmlXm4ft/7djzRF7hVpmPkv5wzIV2E4pQPjuzHw6IlZExIpqv5uB\npZRQsINSo+DsqnhlO9Xa3F69j1J+8eZHxK66j0Ud7LNlmfkw8D5gPuWX/DrgoszsZpHi+tdlBuWu\nL9uA24C5We6c022Dvb7DMubMfJxyZnEO5fdkIXBulrtsDefPrW19NXg/trOfvZRaEm+k1Je4Bbi0\nWvLQkZ9dRPRS6i491mdTx1+rzNxGqWEzi/JeuQ74cGauHY7+D0V1WfzFlJD6BOXW75Mycw9dGnOD\nMZ0DnAY8SSmsfGtmLu/0mA5hnOdR7rz3KHAvpX7NkMbZoL/3U/5e7gSWAdOy3Hmw7e1FxIXVZFdL\n/9sOs2xiLjGXDEVXs8lhlEtoZ39HazbpZi4Bs8kwjemYzCbtziVDafNQs4k6q6dW62TekiRJkiRJ\nko4uR+wVapIkSZIkSVI3OKEmSZIkSZIktcAJNUmSJEmSJKkFTqhJkiRJkiRJLXBCTZIkSZIkSWqB\nE2qSJEmSJElSC5xQkyRJkiRJklowotsDkHT0iIiRwOXAe4FXA48C3weuzszd3RxbIxHxIuCCzLxx\nCG28DdiemRuqr+8GTsjMZ9szSkmS1AqzidlEkjrFK9QktUVEvBRYA7wFuAQ4BZgNXADcERG9XRxe\nM6EV1kcAAAUCSURBVD4FzBxiG3cDY6qvVwMnGlglSeoOswlgNpGkjvEKNUntcjWwH3hHZj5TPfbX\niNgEPAicD/ywW4NrQk8728nMfcA/29SmJElqndmkrh2ziSS1V0+tVuv2GCQd4SLieEpAm5eZ1/ez\n/SxgQ2Y+FRFzgI9Tll1sAOZm5n3VfjcBu4CXAO8B9gBLM/PL1fbnAVcAM4BRwP3AJZm5qdo+Hfgs\nMJYSlC/PzFWN2o6IacC3quHWMrM3IrYCtwIfAJ4FXld9XAOcQbnC94/ArMx8oNr/pKqNhcB91C2r\niIgxwBJgEnAccAcwJzP/XY1vP3AR8EnKGfSNwMzM/H1TL4IkSXqO2cRsIkmd5pJPSe3wGuDFwO/6\n25iZq6vAegVwJXAZcBpwL3BXRJxUt/tM4JFq+7XAlyJifLVtASXwfgx4PfAU8BOAiJgCLAbmUcLl\nd4CfRcSEBm1PoNRSuRZYy/+XRQBMB95FqbvSC9xFWS4xgbJ8pLc6DkqQBZha9xjV2I4DVgGjKaH1\n7KqNW/r8qBZR6rycTgnYK5AkSYfCbGI2kaSOckJNUjuMqj7vHGiHiOgBPgEszMwfZebDmTmPciZ4\nTt2umZmfz8wtmbkY+Bfwhur4WcCCzPxpZj5CCa93VkV7PwNck5m3Z+bmzPwacHsTbZ+RmXuB3cC+\nzDywFKIGfC8z12XmOuCFwBeBz2Xm1sxcSzlzPL5q+MnquB39FDmeDIwDpmbm+sxcA1wITOkTqpdn\n5i8y8yHgK8DE6nlLkqTWmE3MJpLUUdZQk9QOBwLbqEH2GQ28HPhtn8dXA6fWff9Qn+27KMsQXlF9\nPLfMoAqYlwFExKmUcLug7tjnU4oRN2p7IJvr+no8Im4EZkfE6UAAE4EdgxwPpW7JKcCWzNxe197G\niNhBee4P9DO+XdXnEcC+Bn1IkqSDmU0GZjaRpDZwQk1SO2yinFF9E6V2x0Ei4nrgzwMcO4KDr5bt\nL6D1UGqFDKYXmEtZ+lB/3DN13w/U9kCePvBFRIwF/gD8Cfg5cDMljF7ZYFw1YO8gY66/w1h/z9Gz\nwJIktc5sMjCziSS1gUs+JQ1ZZv4XWAlcGhEn1G+rlg1MpxQGfgw4s8/hbwayiT52Vm1MrGt7VEQ8\nERGvBf4CnFwtqdicmZuBj1CK/Daj0R1apgJ7MnNyZi7LzHuAk2kuVG4ExkXE6LqxjwdG0sRzlyRJ\nrTGbNGQ2kaQh8go1Se1yFaWg7aqImA9soRTDXQL8mnJXqlcC8yNiG2UpwQxKAdxpTfaxFFgQEX8D\ntgJfAP5eLVFYDKyMiATuAaZQigCf02Tb/wFOjIhxmbmln+3/AMZExDspQXNyNf6+bUyIiDV9Hv8V\n5Sz4dyPi08ALgK8D91f1TiRJUvuZTcwmktQxXqEmqS2qGhxnAeuAb1BC6SLgm8D5mbkfWA4sA75a\n7XcmMCkzH6yaqTH42dglwLeBmyj1So4Hzq36/zGlyO88ym3pLwY+lJm/bLLt2yjLLjZExKv62f6D\nqt+VwHrgrZSQPjIixlX7LKUE6avq+8vMWjXO3cBvgDspy08aBepGZ6YlSdIAzCaA2USSOqanVvNv\noiRJkiRJktQsr1CTJEmSJEmSWuCEmiRJkiRJktQCJ9QkSZIkSZKkFjihJkmSJEmSJLXACTVJkiRJ\nkiSpBU6oSZIkSZIkSS1wQk2SJEmSJElqgRNqkiRJkiRJUgv+B4eoQZGGeqYeAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1099810b8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fg = seaborn.FacetGrid(data=df2, col='parameter', size=4, aspect=2)\n", | |
"fg.map(probabiity_plot, 'res', 'final_data')\n", | |
"fg.set_axis_labels(x_var='Concentration', y_var='Z-score')\n", | |
"fg.set(xscale='prob', xlim=(0.5, 99.5))\n", | |
"fg.add_legend()" | |
] | |
} | |
], | |
"metadata": { | |
"celltoolbar": "Slideshow", | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.4.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment