Skip to content

Instantly share code, notes, and snippets.

@phobson
Last active August 29, 2015 14:09
Show Gist options
  • Save phobson/b0c0f999fd88bceeb398 to your computer and use it in GitHub Desktop.
Save phobson/b0c0f999fd88bceeb398 to your computer and use it in GitHub Desktop.
Water quality data and pandas
sampleloc watershed bmp position drainage_index analyte res qual
A2BMP0002 Outfall 009 Copper 2.4 =
A2BMP0002 Outfall 009 Lead 0.29 =
A2BMP0002 Outfall 009 Zinc 4.0 <
A2BMP0005 Outfall 009 Copper 8.7 =
A2BMP0005 Outfall 009 Lead 11.0 =
A2BMP0005 Outfall 009 Zinc 33.0 =
A2BMP0005 Outfall 009 Copper 5.4 =
A2BMP0005 Outfall 009 Lead 4.3 =
A2BMP0005 Outfall 009 Zinc 17.0 =
A2BMP0005 Outfall 009 Copper 3.9 =
A2BMP0005 Outfall 009 Lead 1.6 =
A2BMP0005 Outfall 009 Zinc 8.0 <
A2BMP0005 Outfall 009 Copper 4.4 =
A2BMP0005 Outfall 009 Lead 4.6 =
A2BMP0005 Outfall 009 Zinc 26.0 =
APBMP0001 Outfall 009 Copper 9.9 =
APBMP0001 Outfall 009 Lead 31.0 =
APBMP0001 Outfall 009 Zinc 69.0 =
APBMP0001 Outfall 009 Copper 3.3 =
APBMP0001 Outfall 009 Lead 6.5 =
APBMP0001 Outfall 009 Zinc 24.0 =
APBMP0001 Outfall 009 Copper 86.0 =
APBMP0001 Outfall 009 Lead 60.0 =
APBMP0001 Outfall 009 Zinc 290.0 =
A2BMP0003 Outfall 009 Copper 2.3 =
A2BMP0003 Outfall 009 Lead 0.85 =
A2BMP0003 Outfall 009 Zinc 4.0 =
A2BMP0003 Outfall 009 Copper 2.5 =
A2BMP0003 Outfall 009 Lead 0.65 =
A2BMP0003 Outfall 009 Zinc 4.0 <
A2BMP0003 Outfall 009 Copper 11.0 =
A2BMP0003 Outfall 009 Lead 22.0 =
A2BMP0003 Outfall 009 Zinc 75.0 =
A2BMP0003 Outfall 009 Copper 28.0 =
A2BMP0003 Outfall 009 Lead 68.0 =
A2BMP0003 Outfall 009 Zinc 220.0 =
A2BMP0003 Outfall 009 Copper 2.1 =
A2BMP0003 Outfall 009 Lead 0.8 =
A2BMP0003 Outfall 009 Zinc 4.6 =
A2BMP0003 Outfall 009 Copper 3.6 =
A2BMP0003 Outfall 009 Lead 0.79 =
A2BMP0003 Outfall 009 Zinc 4.2 =
A2BMP0003 Outfall 009 Copper 4.5 =
A2BMP0003 Outfall 009 Lead 2.5 =
A2BMP0003 Outfall 009 Zinc 11.0 =
A2BMP0003 Outfall 009 Copper 3.5 =
A2BMP0003 Outfall 009 Lead 1.9 =
A2BMP0003 Outfall 009 Zinc 14.0 =
A2BMP0004 Outfall 009 Copper 6.7 =
A2BMP0004 Outfall 009 Lead 4.2 =
A2BMP0004 Outfall 009 Zinc 19.0 =
A2BMP0004 Outfall 009 Copper 7.8 =
A2BMP0004 Outfall 009 Lead 10.0 =
A2BMP0004 Outfall 009 Zinc 45.0 =
A2BMP0004 Outfall 009 Copper 2.3 =
A2BMP0004 Outfall 009 Lead 0.78 =
A2BMP0004 Outfall 009 Zinc 11.0 =
B1BMP0001 Outfall 009 Copper 27.0 =
B1BMP0001 Outfall 009 Lead 11.0 =
B1BMP0001 Outfall 009 Zinc 110.0 =
B1BMP0001 Outfall 009 Copper 7.0 =
B1BMP0001 Outfall 009 Lead 5.9 =
B1BMP0001 Outfall 009 Zinc 56.0 =
B1BMP0001 Outfall 009 Copper 16.0 =
B1BMP0001 Outfall 009 Lead 15.0 =
B1BMP0001 Outfall 009 Zinc 90.0 =
B1BMP0007 Outfall 009 Copper 4.7 =
B1BMP0007 Outfall 009 Lead 1.1 =
B1BMP0007 Outfall 009 Zinc 19.0 =
B1BMP0007 Outfall 009 Copper 4.2 =
B1BMP0007 Outfall 009 Lead 1.0 =
B1BMP0007 Outfall 009 Zinc 28.0 =
B1BMP0007 Outfall 009 Copper 3.3 =
B1BMP0007 Outfall 009 Lead 3.0 =
B1BMP0007 Outfall 009 Zinc 19.0 =
B1BMP0007 Outfall 009 Copper 7.5 =
B1BMP0007 Outfall 009 Lead 2.7 =
B1BMP0007 Outfall 009 Zinc 58.0 =
B1BMP0004 Outfall 009 B-1 Influent AB Copper 5.2 =
B1BMP0004 Outfall 009 B-1 Influent AB Lead 5.0 =
B1BMP0004 Outfall 009 B-1 Influent AB Zinc 42.0 =
B1BMP0004 Outfall 009 B-1 Influent AB Copper 5.1 =
B1BMP0004 Outfall 009 B-1 Influent AB Lead 3.2 =
B1BMP0004 Outfall 009 B-1 Influent AB Zinc 68.0 =
B1BMP0004 Outfall 009 B-1 Influent AB Copper 8.4 =
B1BMP0004 Outfall 009 B-1 Influent AB Lead 9.6 =
B1BMP0004 Outfall 009 B-1 Influent AB Zinc 75.0 =
B1BMP0004 Outfall 009 B-1 Influent AB Copper 8.0 =
B1BMP0004 Outfall 009 B-1 Influent AB Lead 5.0 =
B1BMP0004 Outfall 009 B-1 Influent AB Zinc 41.0 =
B1BMP0004 Outfall 009 B-1 Influent AB Copper 2.8 =
B1BMP0004 Outfall 009 B-1 Influent AB Lead 1.3 =
B1BMP0004 Outfall 009 B-1 Influent AB Zinc 14.0 =
B1BMP0005 Outfall 009 B-1 Influent AB Copper 5.2 =
B1BMP0005 Outfall 009 B-1 Influent AB Lead 5.0 =
B1BMP0005 Outfall 009 B-1 Influent AB Zinc 42.0 =
B1BMP0005 Outfall 009 B-1 Influent AB Copper 5.1 =
B1BMP0005 Outfall 009 B-1 Influent AB Lead 3.2 =
B1BMP0005 Outfall 009 B-1 Influent AB Zinc 68.0 =
B1BMP0005 Outfall 009 B-1 Influent AB Copper 8.4 =
B1BMP0005 Outfall 009 B-1 Influent AB Lead 9.6 =
B1BMP0005 Outfall 009 B-1 Influent AB Zinc 75.0 =
B1BMP0005 Outfall 009 B-1 Influent AB Copper 8.0 =
B1BMP0005 Outfall 009 B-1 Influent AB Lead 5.0 =
B1BMP0005 Outfall 009 B-1 Influent AB Zinc 41.0 =
B1BMP0005 Outfall 009 B-1 Influent AB Copper 2.8 =
B1BMP0005 Outfall 009 B-1 Influent AB Lead 1.3 =
B1BMP0005 Outfall 009 B-1 Influent AB Zinc 14.0 =
B1SW0014-C Outfall 009 B-1 Effluent Copper 4.7 =
B1SW0014-C Outfall 009 B-1 Effluent Lead 1.8 =
B1SW0014-C Outfall 009 B-1 Effluent Copper 2.5 =
B1SW0014-C Outfall 009 B-1 Effluent Lead 1.1 =
B1SW0014-C Outfall 009 B-1 Effluent Copper 2.4 =
B1SW0014-C Outfall 009 B-1 Effluent Lead 1.4 =
B1SW0014-C Outfall 009 B-1 Effluent Copper 2.4 =
B1SW0014-C Outfall 009 B-1 Effluent Lead 1.3 =
B1SW0014-C Outfall 009 B-1 Effluent Copper 2.9 =
B1SW0014-C Outfall 009 B-1 Effluent Lead 3.0 =
B1SW0014-C Outfall 009 B-1 Effluent Copper 3.2 =
B1SW0014-C Outfall 009 B-1 Effluent Lead 2.3 =
B1SW0014-C Outfall 009 B-1 Effluent Copper 4.1 =
B1SW0014-C Outfall 009 B-1 Effluent Lead 0.52 =
B1SW0014-C Outfall 009 B-1 Effluent Copper 2.4 =
B1SW0014-C Outfall 009 B-1 Effluent Lead 1.9 =
B1BMP0004 Outfall 009 B-1 Influent B Copper 3.3 =
B1BMP0004 Outfall 009 B-1 Influent B Lead 2.2 =
B1BMP0004 Outfall 009 B-1 Influent B Zinc 36.0 =
B1BMP0004 Outfall 009 B-1 Influent B Copper 8.3 =
B1BMP0004 Outfall 009 B-1 Influent B Lead 3.0 =
B1BMP0004 Outfall 009 B-1 Influent B Copper 4.1 =
B1BMP0004 Outfall 009 B-1 Influent B Lead 3.3 =
B1BMP0004 Outfall 009 B-1 Influent B Copper 6.4 =
B1BMP0004 Outfall 009 B-1 Influent B Lead 6.2 =
B1BMP0004 Outfall 009 B-1 Influent B Copper 3.8 =
B1BMP0004 Outfall 009 B-1 Influent B Lead 8.5 =
B1BMP0004 Outfall 009 B-1 Influent B Copper 3.2 =
B1BMP0004 Outfall 009 B-1 Influent B Lead 2.5 =
B1BMP0005 Outfall 009 B-1 Influent A Copper 3.6 =
B1BMP0005 Outfall 009 B-1 Influent A Lead 3.2 =
B1BMP0005 Outfall 009 B-1 Influent A Zinc 28.0 =
B1BMP0005 Outfall 009 B-1 Influent A Copper 5.0 =
B1BMP0005 Outfall 009 B-1 Influent A Lead 0.56 =
B1BMP0005 Outfall 009 B-1 Influent A Copper 3.3 =
B1BMP0005 Outfall 009 B-1 Influent A Lead 0.45 =
B1BMP0005 Outfall 009 B-1 Influent A Copper 2.7 =
B1BMP0005 Outfall 009 B-1 Influent A Lead 1.0 =
B1BMP0005 Outfall 009 B-1 Influent A Copper 2.9 =
B1BMP0005 Outfall 009 B-1 Influent A Lead 1.9 =
B1BMP0005 Outfall 009 B-1 Influent A Copper 2.7 =
B1BMP0005 Outfall 009 B-1 Influent A Lead 0.59 =
B1BMP0005 Outfall 009 B-1 Influent A Copper 2.5 =
B1BMP0005 Outfall 009 B-1 Influent A Lead 1.8 =
B1BMP0003 Outfall 009 Copper 6.7 =
B1BMP0003 Outfall 009 Lead 5.8 =
B1BMP0003 Outfall 009 Zinc 65.0 =
B1BMP0003 Outfall 009 Copper 2.2 =
B1BMP0003 Outfall 009 Lead 0.94 =
B1BMP0003 Outfall 009 Zinc 6.9 =
B1BMP0003 Outfall 009 Copper 3.2 =
B1BMP0003 Outfall 009 Lead 1.8 =
B1BMP0003 Outfall 009 Zinc 16.0 =
B1BMP0003 Outfall 009 Copper 3.8 =
B1BMP0003 Outfall 009 Lead 2.8 =
B1BMP0003 Outfall 009 Zinc 68.0 =
B1BMP0003 Outfall 009 Copper 4.5 =
B1BMP0003 Outfall 009 Lead 3.2 =
B1BMP0003 Outfall 009 Zinc 19.0 =
B1BMP0003 Outfall 009 Copper 0.6 =
B1BMP0003 Outfall 009 Lead 0.2 <
B1BMP0003 Outfall 009 Zinc 17.0 =
B1BMP0003 Outfall 009 Copper 16.0 =
B1BMP0003 Outfall 009 Lead 5.0 =
B1BMP0003 Outfall 009 Zinc 78.0 =
B1BMP0003 Outfall 009 Copper 8.6 =
B1BMP0003 Outfall 009 Lead 5.6 =
B1BMP0003 Outfall 009 Zinc 48.0 =
B1BMP0003 Outfall 009 Copper 7.7 =
B1BMP0003 Outfall 009 Lead 1.7 =
B1BMP0003 Outfall 009 Zinc 21.0 =
B1BMP0003 Outfall 009 Copper 13.0 =
B1BMP0003 Outfall 009 Lead 7.3 =
B1BMP0003 Outfall 009 Zinc 66.0 =
B1BMP0003 Outfall 009 Copper 11.0 =
B1BMP0003 Outfall 009 Lead 1.4 =
B1BMP0003 Outfall 009 Zinc 28.0 =
B1BMP0003 Outfall 009 Copper 4.9 =
B1BMP0003 Outfall 009 Lead 1.4 =
B1BMP0003 Outfall 009 Zinc 23.0 =
B1BMP0003 Outfall 009 Copper 17.0 =
B1BMP0003 Outfall 009 Lead 1.5 =
B1BMP0003 Outfall 009 Zinc 37.0 =
B1BMP0003 Outfall 009 Copper 18.0 =
B1BMP0003 Outfall 009 Lead 6.3 =
B1BMP0003 Outfall 009 Zinc 46.0 =
B1BMP0003 Outfall 009 Copper 5.9 =
B1BMP0003 Outfall 009 Lead 1.3 =
B1BMP0003 Outfall 009 Zinc 20.0 =
B1BMP0003 Outfall 009 Copper 4.8 =
B1BMP0003 Outfall 009 Lead 2.1 =
B1BMP0003 Outfall 009 Zinc 17.0 =
B1BMP0003 Outfall 009 Copper 14.0 =
B1BMP0003 Outfall 009 Lead 4.9 =
B1BMP0003 Outfall 009 Zinc 73.0 =
B1BMP0003 Outfall 009 Copper 6.1 =
B1BMP0003 Outfall 009 Lead 1.3 =
B1BMP0003 Outfall 009 Zinc 27.0 =
A2SW0002-A Outfall 009 CM-1 Effluent Copper 6.8 =
A2SW0002-A Outfall 009 CM-1 Effluent Lead 4.5 =
A2SW0002-A Outfall 009 CM-1 Effluent Copper 1.8 =
A2SW0002-A Outfall 009 CM-1 Effluent Lead 0.96 =
A2SW0002-A Outfall 009 CM-1 Effluent Copper 5.8 =
A2SW0002-A Outfall 009 CM-1 Effluent Lead 3.1 =
A2SW0002-A Outfall 009 CM-1 Effluent Copper 3.4 =
A2SW0002-A Outfall 009 CM-1 Effluent Lead 1.2 =
A2SW0002-A Outfall 009 CM-1 Effluent Copper 1.8 =
A2SW0002-A Outfall 009 CM-1 Effluent Lead 1.8 =
BGBMP0001 Outfall 009 CM-1 Influent B Copper 2.6 =
BGBMP0001 Outfall 009 CM-1 Influent B Lead 0.65 =
BGBMP0001 Outfall 009 CM-1 Influent B Zinc 6.8 =
BGBMP0001 Outfall 009 CM-1 Influent B Copper 3.6 =
BGBMP0001 Outfall 009 CM-1 Influent B Lead 0.8 =
BGBMP0001 Outfall 009 CM-1 Influent B Zinc 4.0 =
BGBMP0001 Outfall 009 CM-1 Influent B Copper 2.3 =
BGBMP0001 Outfall 009 CM-1 Influent B Lead 0.53 =
BGBMP0001 Outfall 009 CM-1 Influent B Zinc 4.0 <
BGBMP0001 Outfall 009 CM-1 Influent B Copper 1.7 =
BGBMP0001 Outfall 009 CM-1 Influent B Lead 0.2 <
BGBMP0001 Outfall 009 CM-1 Influent B Zinc 4.0 <
BGBMP0006 Outfall 009 CM-1 Influent B Copper 2.9 =
BGBMP0006 Outfall 009 CM-1 Influent B Lead 2.0 =
BGBMP0006 Outfall 009 CM-1 Influent B Zinc 4.0 <
EVBMP0003 Outfall 009 CM-1 Influent A Copper 2.8 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 3.8 =
EVBMP0003 Outfall 009 CM-1 Influent A Zinc 15.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Copper 4.9 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 5.4 =
EVBMP0003 Outfall 009 CM-1 Influent A Zinc 22.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Copper 3.8 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 5.4 =
EVBMP0003 Outfall 009 CM-1 Influent A Zinc 24.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Copper 9.1 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 13.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Zinc 56.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Copper 10.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 12.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Zinc 61.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Copper 7.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 21.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Zinc 65.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Copper 12.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 6.3 =
EVBMP0003 Outfall 009 CM-1 Influent A Copper 24.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 52.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Copper 6.5 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 13.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Copper 9.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 9.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Copper 2.4 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 1.7 =
BGBMP0002 Outfall 009 CM-3 Influent Copper 19.0 =
BGBMP0002 Outfall 009 CM-3 Influent Lead 64.0 =
BGBMP0002 Outfall 009 CM-3 Influent Zinc 140.0 =
BGBMP0002 Outfall 009 CM-3 Influent Copper 1.6 =
BGBMP0002 Outfall 009 CM-3 Influent Lead 1.4 =
BGBMP0002 Outfall 009 CM-3 Influent Zinc 4.2 =
BGBMP0002 Outfall 009 CM-3 Influent Copper 1.0 =
BGBMP0002 Outfall 009 CM-3 Influent Lead 0.2 =
BGBMP0002 Outfall 009 CM-3 Influent Zinc 4.0 <
BGBMP0002 Outfall 009 CM-3 Influent Copper 1.6 =
BGBMP0002 Outfall 009 CM-3 Influent Lead 1.2 =
BGBMP0002 Outfall 009 CM-3 Influent Zinc 8.0 <
BGBMP0007 Outfall 009 Copper 2.2 =
BGBMP0007 Outfall 009 Lead 1.1 =
BGBMP0007 Outfall 009 Zinc 6.6 =
BGBMP0007 Outfall 009 Copper 1.5 =
BGBMP0007 Outfall 009 Lead 0.24 =
BGBMP0007 Outfall 009 Zinc 10.0 =
A1BMP0001 Outfall 009 Copper 5.3 =
A1BMP0001 Outfall 009 Lead 2.5 =
A1BMP0001 Outfall 009 Zinc 32.0 =
A1BMP0001 Outfall 009 Copper 4.1 =
A1BMP0001 Outfall 009 Lead 0.2 <
A1BMP0001 Outfall 009 Zinc 7.5 =
A1BMP0001 Outfall 009 Copper 4.2 =
A1BMP0001 Outfall 009 Lead 0.2 <
A1BMP0001 Outfall 009 Zinc 9.3 =
A1BMP0001 Outfall 009 Copper 4.0 =
A1BMP0001 Outfall 009 Lead 0.28 =
A1BMP0001 Outfall 009 Zinc 11.0 =
A1BMP0001 Outfall 009 Copper 4.6 =
A1BMP0001 Outfall 009 Lead 0.64 =
A1BMP0001 Outfall 009 Zinc 23.0 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 6.7 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 4.7 =
A1BMP0002 Outfall 009 CM-9 Influent Zinc 79.0 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 15.0 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 15.0 =
A1BMP0002 Outfall 009 CM-9 Influent Zinc 57.0 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 7.1 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 1.0 <
A1BMP0002 Outfall 009 CM-9 Influent Zinc 8.0 <
A1BMP0002 Outfall 009 CM-9 Influent Copper 15.0 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 1.0 <
A1SW0009-C Outfall 009 CM-9 Effluent Copper 6.5 =
A1SW0009-C Outfall 009 CM-9 Effluent Lead 2.3 =
ILBMP0003 Outfall 009 Copper 4.8 =
ILBMP0003 Outfall 009 Zinc 7.2 =
ILBMP0003 Outfall 009 Copper 3.1 =
ILBMP0003 Outfall 009 Lead 0.2 =
ILBMP0003 Outfall 009 Zinc 4.0 <
ILBMP0003 Outfall 009 Copper 3.9 =
ILBMP0003 Outfall 009 Lead 0.92 =
ILBMP0003 Outfall 009 Zinc 4.1 =
ILBMP0003 Outfall 009 Copper 3.9 =
ILBMP0003 Outfall 009 Lead 0.86 =
ILBMP0003 Outfall 009 Zinc 4.0 <
ILBMP0002 Outfall 009 CM-9 Influent A Copper 3.4 =
ILBMP0002 Outfall 009 CM-9 Influent A Lead 3.8 =
ILBMP0002 Outfall 009 CM-9 Influent A Zinc 20.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Copper 3.2 =
ILBMP0002 Outfall 009 CM-9 Influent A Lead 0.99 =
ILBMP0002 Outfall 009 CM-9 Influent A Zinc 4.5 =
ILBMP0002 Outfall 009 CM-9 Influent A Copper 11.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Lead 17.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Zinc 54.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Copper 7.6 =
ILBMP0002 Outfall 009 CM-9 Influent A Lead 9.8 =
ILBMP0002 Outfall 009 CM-9 Influent A Zinc 33.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Copper 59.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Lead 82.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Zinc 260.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Copper 28.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Lead 47.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Zinc 160.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Copper 26.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Lead 55.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Zinc 180.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Copper 8.9 =
ILBMP0002 Outfall 009 CM-9 Influent A Lead 7.3 =
ILBMP0002 Outfall 009 CM-9 Influent A Zinc 50.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Copper 10.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Lead 40.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Zinc 70.0 =
ILBMP0002 Outfall 009 CM-9 Influent A Copper 8.4 =
ILBMP0002 Outfall 009 CM-9 Influent A Lead 14.0 =
HZBMP0002 Outfall 008 Copper 2.3 =
HZBMP0002 Outfall 008 Lead 0.9 =
HZBMP0002 Outfall 008 Zinc 4.4 =
HZBMP0002 Outfall 008 Copper 1.4 =
HZBMP0002 Outfall 008 Lead 0.2 <
HZBMP0002 Outfall 008 Zinc 4.0 <
HZBMP0002 Outfall 008 Copper 2.2 =
HZBMP0002 Outfall 008 Lead 0.65 =
HZBMP0002 Outfall 008 Zinc 4.0 <
HZBMP0002 Outfall 008 Copper 0.94 =
HZBMP0002 Outfall 008 Lead 0.2 <
HZBMP0002 Outfall 008 Zinc 4.0 <
HZBMP0003 Outfall 008 Copper 2.2 =
HZBMP0003 Outfall 008 Lead 1.2 =
HZBMP0003 Outfall 008 Zinc 4.8 =
HZBMP0003 Outfall 008 Copper 1.4 =
HZBMP0003 Outfall 008 Lead 0.2 <
HZBMP0003 Outfall 008 Zinc 4.0 <
HZBMP0003 Outfall 008 Copper 4.1 =
HZBMP0003 Outfall 008 Lead 0.51 =
HZBMP0003 Outfall 008 Zinc 4.9 =
HZBMP0003 Outfall 008 Copper 2.0 =
HZBMP0003 Outfall 008 Lead 0.64 =
HZBMP0003 Outfall 008 Zinc 7.9 =
HZBMP0003 Outfall 008 Copper 1.3 =
HZBMP0003 Outfall 008 Lead 0.2 <
HZBMP0003 Outfall 008 Zinc 4.0 <
HZBMP0003 Outfall 008 Copper 1.8 =
HZBMP0003 Outfall 008 Lead 1.0 =
HZBMP0003 Outfall 008 Zinc 8.0 <
HZBMP0003 Outfall 008 Copper 2.2 =
HZBMP0003 Outfall 008 Lead 0.5 <
HZBMP0003 Outfall 008 Zinc 11.0 =
EVBMP0005 Outfall 009 ELV Influent Copper 9.0 =
EVBMP0005 Outfall 009 ELV Influent Lead 3.0 =
EVBMP0005 Outfall 009 ELV Influent Zinc 40.0 =
EVBMP0005 Outfall 009 ELV Influent Copper 4.2 =
EVBMP0005 Outfall 009 ELV Influent Lead 3.1 =
EVBMP0005 Outfall 009 ELV Influent Zinc 13.0 =
EVBMP0006 Outfall 009 Copper 15.0 =
EVBMP0006 Outfall 009 Lead 12.0 =
EVBMP0006 Outfall 009 Zinc 89.0 =
EVBMP0007 Outfall 009 Copper 5.5 =
EVBMP0007 Outfall 009 Lead 4.1 =
EVBMP0008 Outfall 009 ELV Effluent Copper 2.4 =
EVBMP0008 Outfall 009 ELV Effluent Lead 1.9 =
EVBMP0001 Outfall 009 ELV Influent Copper 2.5 =
EVBMP0001 Outfall 009 ELV Influent Lead 1.9 =
EVBMP0001 Outfall 009 ELV Influent Zinc 8.9 =
EVBMP0001 Outfall 009 ELV Influent Copper 2.3 =
EVBMP0001 Outfall 009 ELV Influent Lead 0.2 <
EVBMP0001 Outfall 009 ELV Influent Zinc 4.0 <
EVBMP0001 Outfall 009 ELV Influent Copper 11.0 =
EVBMP0001 Outfall 009 ELV Influent Lead 13.0 =
EVBMP0001 Outfall 009 ELV Influent Zinc 69.0 =
EVBMP0001 Outfall 009 ELV Influent Copper 3.8 =
EVBMP0001 Outfall 009 ELV Influent Lead 2.6 =
EVBMP0001 Outfall 009 ELV Influent Zinc 9.0 =
EVBMP0001 Outfall 009 ELV Influent Copper 5.8 =
EVBMP0001 Outfall 009 ELV Influent Lead 14.0 =
EVBMP0001 Outfall 009 ELV Influent Zinc 31.0 =
EVBMP0001 Outfall 009 ELV Influent Copper 5.2 =
EVBMP0001 Outfall 009 ELV Influent Lead 8.8 =
EVBMP0001 Outfall 009 ELV Influent Zinc 27.0 =
EVBMP0001 Outfall 009 ELV Influent Copper 15.0 =
EVBMP0001 Outfall 009 ELV Influent Lead 41.0 =
EVBMP0001 Outfall 009 ELV Influent Zinc 100.0 =
EVBMP0001 Outfall 009 ELV Influent Copper 2.6 =
EVBMP0001 Outfall 009 ELV Influent Lead 3.6 =
EVBMP0001 Outfall 009 ELV Influent Zinc 17.0 =
EVBMP0001 Outfall 009 ELV Influent Copper 3.5 =
EVBMP0001 Outfall 009 ELV Influent Lead 3.7 =
EVBMP0001 Outfall 009 ELV Influent Zinc 31.0 =
EVBMP0001 Outfall 009 ELV Influent Copper 2.9 =
EVBMP0001 Outfall 009 ELV Influent Lead 1.1 =
EVBMP0001 Outfall 009 ELV Influent Zinc 20.0 =
EVBMP0002 Outfall 009 Helipad Effluent Copper 4.0 =
EVBMP0002 Outfall 009 Helipad Effluent Lead 3.6 =
EVBMP0002 Outfall 009 Helipad Effluent Zinc 72.0 =
EVBMP0002 Outfall 009 Helipad Effluent Copper 5.2 =
EVBMP0002 Outfall 009 Helipad Effluent Lead 4.2 =
EVBMP0002 Outfall 009 Helipad Effluent Zinc 91.0 =
EVBMP0002 Outfall 009 Helipad Effluent Copper 4.3 =
EVBMP0002 Outfall 009 Helipad Effluent Lead 2.4 =
EVBMP0002 Outfall 009 Helipad Effluent Zinc 80.0 =
EVBMP0002 Outfall 009 Helipad Effluent Copper 4.9 =
EVBMP0002 Outfall 009 Helipad Effluent Lead 3.1 =
EVBMP0002 Outfall 009 Helipad Effluent Zinc 69.0 =
EVBMP0002 Outfall 009 Helipad Effluent Copper 4.3 =
EVBMP0002 Outfall 009 Helipad Effluent Lead 1.2 =
EVBMP0002 Outfall 009 Helipad Effluent Zinc 62.0 =
EVBMP0002 Outfall 009 Helipad Effluent Copper 13.0 =
EVBMP0002 Outfall 009 Helipad Effluent Lead 26.0 =
EVBMP0002 Outfall 009 Helipad Effluent Zinc 90.0 =
EVBMP0002 Outfall 009 Helipad Effluent Copper 3.7 =
EVBMP0002 Outfall 009 Helipad Effluent Lead 4.8 =
EVBMP0002 Outfall 009 Helipad Effluent Zinc 24.0 =
EVBMP0002 Outfall 009 Helipad Effluent Copper 3.6 =
EVBMP0002 Outfall 009 Helipad Effluent Lead 1.9 =
EVBMP0002 Outfall 009 Helipad Effluent Zinc 13.0 =
EVBMP0002 Outfall 009 Helipad Effluent Copper 3.4 =
EVBMP0002 Outfall 009 Helipad Effluent Lead 3.8 =
EVBMP0002 Outfall 009 Helipad Effluent Zinc 17.0 =
EVBMP0002 Outfall 009 Helipad Effluent Copper 7.7 =
EVBMP0002 Outfall 009 Helipad Effluent Lead 4.0 =
EVBMP0002 Outfall 009 Helipad Effluent Zinc 27.0 =
EVBMP0002 Outfall 009 Helipad Effluent Copper 2.6 =
EVBMP0002 Outfall 009 Helipad Effluent Lead 1.1 =
EVBMP0002 Outfall 009 Helipad Effluent Zinc 14.0 =
EVBMP0002 Outfall 009 Helipad Effluent Copper 4.6 =
EVBMP0002 Outfall 009 Helipad Effluent Lead 3.4 =
EVBMP0002 Outfall 009 Helipad Effluent Zinc 18.0 =
EVBMP0002 Outfall 009 Helipad Effluent Copper 5.5 =
EVBMP0002 Outfall 009 Helipad Effluent Lead 2.9 =
EVBMP0002 Outfall 009 Helipad Effluent Zinc 23.0 =
EVBMP0002 Outfall 009 Helipad Effluent Copper 4.1 =
EVBMP0002 Outfall 009 Helipad Effluent Lead 2.6 =
EVBMP0002 Outfall 009 Helipad Effluent Zinc 17.0 =
EVBMP0002 Outfall 009 Helipad Effluent Copper 3.0 =
EVBMP0002 Outfall 009 Helipad Effluent Lead 1.7 =
EVBMP0002 Outfall 009 Helipad Effluent Zinc 14.0 =
EVBMP0002 Outfall 009 Helipad Effluent Copper 3.8 =
EVBMP0002 Outfall 009 Helipad Effluent Lead 2.6 =
EVBMP0002 Outfall 009 Helipad Effluent Zinc 27.0 =
EVBMP0004 Outfall 009 ELV Influent Copper 5.4 =
EVBMP0004 Outfall 009 ELV Influent Lead 7.3 =
EVBMP0004 Outfall 009 ELV Influent Zinc 27.0 =
EVBMP0004 Outfall 009 ELV Influent Copper 3.0 =
EVBMP0004 Outfall 009 ELV Influent Lead 6.7 =
EVBMP0004 Outfall 009 ELV Influent Zinc 16.0 =
EVBMP0004 Outfall 009 ELV Influent Copper 3.0 =
EVBMP0004 Outfall 009 ELV Influent Lead 6.8 =
EVBMP0004 Outfall 009 ELV Influent Zinc 16.0 =
HZBMP0001 Outfall 008 Copper 3.7 =
HZBMP0001 Outfall 008 Lead 1.2 =
HZBMP0001 Outfall 008 Zinc 11.0 =
HZBMP0001 Outfall 008 Copper 4.6 =
HZBMP0001 Outfall 008 Lead 0.48 =
HZBMP0001 Outfall 008 Zinc 7.2 =
HZBMP0001 Outfall 008 Copper 2.9 =
HZBMP0001 Outfall 008 Lead 0.52 =
HZBMP0001 Outfall 008 Zinc 4.2 =
HZBMP0001 Outfall 008 Copper 5.4 =
HZBMP0001 Outfall 008 Lead 2.1 =
HZBMP0001 Outfall 008 Zinc 10.0 =
HZBMP0001 Outfall 008 Copper 9.2 =
HZBMP0001 Outfall 008 Lead 5.0 =
HZBMP0001 Outfall 008 Zinc 26.0 =
HZBMP0001 Outfall 008 Copper 15.0 =
HZBMP0001 Outfall 008 Lead 19.0 =
HZBMP0001 Outfall 008 Zinc 110.0 =
ILBMP0001 Outfall 009 Copper 4.4 =
ILBMP0001 Outfall 009 Lead 2.9 =
ILBMP0001 Outfall 009 Zinc 67.0 =
ILBMP0001 Outfall 009 Copper 11.0 =
ILBMP0001 Outfall 009 Lead 5.4 =
ILBMP0001 Outfall 009 Zinc 150.0 =
ILBMP0001 Outfall 009 Copper 18.0 =
ILBMP0001 Outfall 009 Lead 12.0 =
ILBMP0001 Outfall 009 Zinc 260.0 =
ILBMP0001 Outfall 009 Copper 9.9 =
ILBMP0001 Outfall 009 Lead 3.2 =
ILBMP0001 Outfall 009 Zinc 190.0 =
ILBMP0001 Outfall 009 Copper 8.0 =
ILBMP0001 Outfall 009 Lead 8.0 =
ILBMP0001 Outfall 009 Zinc 45.0 =
ILBMP0001 Outfall 009 Copper 9.3 =
ILBMP0001 Outfall 009 Lead 2.8 =
ILBMP0001 Outfall 009 Zinc 170.0 =
ILBMP0001 Outfall 009 Copper 21.0 =
ILBMP0001 Outfall 009 Lead 9.3 =
ILBMP0001 Outfall 009 Zinc 290.0 =
ILBMP0001 Outfall 009 Copper 9.4 =
ILBMP0001 Outfall 009 Lead 3.3 =
ILBMP0001 Outfall 009 Zinc 120.0 =
ILBMP0001 Outfall 009 Copper 17.0 =
ILBMP0001 Outfall 009 Lead 10.0 =
ILBMP0001 Outfall 009 Zinc 260.0 =
ILBMP0001 Outfall 009 Copper 4.2 =
ILBMP0001 Outfall 009 Lead 1.2 =
ILBMP0001 Outfall 009 Zinc 16.0 =
ILBMP0001 Outfall 009 Copper 13.0 =
ILBMP0001 Outfall 009 Lead 4.4 =
ILBMP0001 Outfall 009 Zinc 210.0 =
ILBMP0001 Outfall 009 Copper 19.0 =
ILBMP0001 Outfall 009 Lead 12.0 =
ILBMP0001 Outfall 009 Zinc 300.0 =
ILBMP0001 Outfall 009 Copper 12.0 =
ILBMP0001 Outfall 009 Lead 10.0 =
ILBMP0001 Outfall 009 Zinc 210.0 =
ILBMP0001 Outfall 009 Copper 5.5 =
ILBMP0001 Outfall 009 Lead 2.8 =
ILBMP0001 Outfall 009 Zinc 98.0 =
ILBMP0001 Outfall 009 Copper 12.0 =
ILBMP0001 Outfall 009 Lead 11.0 =
ILBMP0001 Outfall 009 Zinc 110.0 =
ILBMP0001 Outfall 009 Copper 6.6 =
ILBMP0001 Outfall 009 Lead 2.4 =
ILBMP0001 Outfall 009 Zinc 64.0 =
ILBMP0001 Outfall 009 Copper 27.0 =
ILBMP0001 Outfall 009 Lead 12.0 =
ILBMP0001 Outfall 009 Zinc 250.0 =
ILBMP0001 Outfall 009 Copper 13.0 =
ILBMP0001 Outfall 009 Lead 3.1 =
ILBMP0001 Outfall 009 Zinc 310.0 =
LPBMP0004 Outfall 009 Biofilter Effluent Copper 6.1 =
LPBMP0004 Outfall 009 Biofilter Effluent Lead 5.1 =
LPBMP0004 Outfall 009 Biofilter Effluent Copper 6.4 =
LPBMP0004 Outfall 009 Biofilter Effluent Lead 2.6 =
LPBMP0004 Outfall 009 Biofilter Effluent Copper 6.3 =
LPBMP0004 Outfall 009 Biofilter Effluent Lead 3.4 =
LPBMP0003 Outfall 009 Copper 12.0 =
LPBMP0003 Outfall 009 Lead 8.5 =
LPBMP0003 Outfall 009 Copper 14.0 =
LPBMP0003 Outfall 009 Lead 2.9 =
LPBMP0002 Outfall 009 Biofilter Influent Copper 15.0 =
LPBMP0002 Outfall 009 Biofilter Influent Lead 3.0 =
LPBMP0002 Outfall 009 Biofilter Influent Copper 11.0 =
LPBMP0002 Outfall 009 Biofilter Influent Lead 4.2 =
LXBMP0002 Outfall 009 LOX Influent Copper 14.0 =
LXBMP0002 Outfall 009 LOX Influent Lead 6.9 =
LXBMP0002 Outfall 009 LOX Influent Zinc 49.0 =
LXBMP0002 Outfall 009 LOX Influent Copper 5.3 =
LXBMP0002 Outfall 009 LOX Influent Lead 0.74 =
LXBMP0002 Outfall 009 LOX Influent Zinc 4.0 <
LXBMP0004 Outfall 009 Copper 12.0 =
LXBMP0004 Outfall 009 Lead 8.8 =
LXBMP0004 Outfall 009 Zinc 43.0 =
LXBMP0004 Outfall 009 Copper 9.9 =
LXBMP0004 Outfall 009 Lead 7.6 =
LXBMP0004 Outfall 009 Zinc 38.0 =
LXBMP0004 Outfall 009 Copper 11.0 =
LXBMP0004 Outfall 009 Lead 9.8 =
LXBMP0004 Outfall 009 Zinc 50.0 =
LXBMP0004 Outfall 009 Copper 15.0 =
LXBMP0004 Outfall 009 Lead 14.0 =
LXBMP0004 Outfall 009 Zinc 59.0 =
LXBMP0004 Outfall 009 Copper 7.0 =
LXBMP0004 Outfall 009 Lead 5.3 =
LXBMP0004 Outfall 009 Zinc 23.0 =
LXBMP0005 Outfall 009 Copper 12.0 =
LXBMP0005 Outfall 009 Lead 5.5 =
LXBMP0005 Outfall 009 Zinc 36.0 =
LXBMP0005 Outfall 009 Copper 5.6 =
LXBMP0005 Outfall 009 Lead 1.9 =
LXBMP0005 Outfall 009 Zinc 15.0 =
LXBMP0005 Outfall 009 Copper 7.3 =
LXBMP0005 Outfall 009 Lead 2.6 =
LXBMP0005 Outfall 009 Zinc 18.0 =
LXBMP0005 Outfall 009 Copper 11.0 =
LXBMP0005 Outfall 009 Lead 4.7 =
LXBMP0005 Outfall 009 Zinc 31.0 =
LXBMP0005 Outfall 009 Copper 8.4 =
LXBMP0005 Outfall 009 Lead 4.4 =
LXBMP0005 Outfall 009 Zinc 32.0 =
LXBMP0006 Outfall 009 Copper 26.0 =
LXBMP0006 Outfall 009 Lead 24.0 =
LXBMP0006 Outfall 009 Zinc 92.0 =
LXBMP0009 Outfall 009 LOX Effluent Copper 4.1 =
LXBMP0009 Outfall 009 LOX Effluent Lead 1.2 =
LXBMP0009 Outfall 009 LOX Effluent Zinc 28.0 =
LXBMP0003 Outfall 009 Copper 2.9 =
LXBMP0003 Outfall 009 Lead 0.9 =
LXBMP0003 Outfall 009 Zinc 6.6 =
LXBMP0003 Outfall 009 Copper 2.9 =
LXBMP0003 Outfall 009 Lead 0.72 =
LXBMP0003 Outfall 009 Zinc 4.5 =
LXBMP0003 Outfall 009 Copper 10.0 =
LXBMP0003 Outfall 009 Lead 0.25 =
LXBMP0003 Outfall 009 Zinc 7.4 =
LXBMP0003 Outfall 009 Copper 4.8 =
LXBMP0003 Outfall 009 Lead 2.5 =
LXBMP0003 Outfall 009 Zinc 14.0 =
LXBMP0003 Outfall 009 Copper 1.5 =
LXBMP0003 Outfall 009 Lead 0.2 <
LXBMP0003 Outfall 009 Zinc 4.0 <
LXBMP0003 Outfall 009 Copper 20.0 =
LXBMP0003 Outfall 009 Lead 18.0 =
LXBMP0003 Outfall 009 Zinc 91.0 =
BGBMP0003 Outfall 009 Copper 2.7 =
BGBMP0003 Outfall 009 Lead 0.69 =
BGBMP0003 Outfall 009 Zinc 4.0 <
BGBMP0003 Outfall 009 Copper 1.8 =
BGBMP0003 Outfall 009 Lead 0.2 <
BGBMP0003 Outfall 009 Zinc 4.0 <
BGBMP0003 Outfall 009 Copper 3.0 =
BGBMP0003 Outfall 009 Lead 0.25 =
BGBMP0003 Outfall 009 Zinc 4.0 <
BGBMP0003 Outfall 009 Copper 4.7 =
BGBMP0003 Outfall 009 Lead 1.6 =
BGBMP0003 Outfall 009 Zinc 4.8 =
BGBMP0003 Outfall 009 Copper 4.6 =
BGBMP0003 Outfall 009 Lead 2.8 =
BGBMP0003 Outfall 009 Zinc 15.0 =
BGBMP0004 Outfall 009 Copper 2.4 =
BGBMP0004 Outfall 009 Lead 0.91 =
BGBMP0004 Outfall 009 Zinc 4.0 <
BGBMP0004 Outfall 009 Copper 1.3 =
BGBMP0004 Outfall 009 Lead 0.2 <
BGBMP0004 Outfall 009 Zinc 4.0 <
BGBMP0004 Outfall 009 Copper 6.6 =
BGBMP0004 Outfall 009 Lead 7.6 =
BGBMP0004 Outfall 009 Zinc 28.0 =
BGBMP0005 Outfall 009 Copper 2.4 =
BGBMP0005 Outfall 009 Lead 0.84 =
BGBMP0005 Outfall 009 Zinc 4.0 <
LPBMP0001 Outfall 009 Biofilter Influent Copper 14.0 =
LPBMP0001 Outfall 009 Biofilter Influent Lead 15.0 =
LPBMP0001 Outfall 009 Biofilter Influent Zinc 91.0 =
LPBMP0001 Outfall 009 Biofilter Influent Copper 4.5 =
LPBMP0001 Outfall 009 Biofilter Influent Lead 4.5 =
LPBMP0001 Outfall 009 Biofilter Influent Zinc 28.0 =
LPBMP0001 Outfall 009 Biofilter Influent Copper 7.1 =
LPBMP0001 Outfall 009 Biofilter Influent Lead 2.0 =
LPBMP0001 Outfall 009 Biofilter Influent Zinc 14.0 =
LPBMP0001 Outfall 009 Biofilter Influent Copper 8.1 =
LPBMP0001 Outfall 009 Biofilter Influent Lead 1.6 =
LPBMP0001 Outfall 009 Biofilter Influent Zinc 13.0 =
LPBMP0001 Outfall 009 Biofilter Influent Copper 21.0 =
LPBMP0001 Outfall 009 Biofilter Influent Lead 22.0 =
LPBMP0001 Outfall 009 Biofilter Influent Zinc 100.0 =
LPBMP0001 Outfall 009 Biofilter Influent Copper 15.0 =
LPBMP0001 Outfall 009 Biofilter Influent Lead 32.0 =
LPBMP0001 Outfall 009 Biofilter Influent Zinc 100.0 =
LPBMP0001 Outfall 009 Biofilter Influent Copper 14.0 =
LPBMP0001 Outfall 009 Biofilter Influent Lead 1.7 =
LPBMP0001 Outfall 009 Biofilter Influent Zinc 21.0 =
LPBMP0001 Outfall 009 Biofilter Influent Copper 5.1 =
LPBMP0001 Outfall 009 Biofilter Influent Lead 3.1 =
LPBMP0001 Outfall 009 Biofilter Influent Zinc 15.0 =
APSW0014 Outfall 009 Copper 11.0 =
APSW0014 Outfall 009 Lead 4.2 =
B1BMP0001 Outfall 009 Copper 27.0 =
B1BMP0001 Outfall 009 Lead 11.0 =
B1BMP0001 Outfall 009 Copper 7.0 =
B1BMP0001 Outfall 009 Lead 5.9 =
B1BMP0004 Outfall 009 B-1 Influent B Copper 9.0 =
B1BMP0004 Outfall 009 B-1 Influent B Lead 5.9 =
B1BMP0005 Outfall 009 B-1 Influent A Copper 2.3 =
B1BMP0005 Outfall 009 B-1 Influent A Lead 0.63 =
B1BMP0005 Outfall 009 B-1 Influent A Copper 5.3 =
B1BMP0005 Outfall 009 B-1 Influent A Lead 2.3 =
B1BMP0005 Outfall 009 B-1 Influent A Copper 3.7 =
B1BMP0005 Outfall 009 B-1 Influent A Lead 1.6 =
B1BMP0005 Outfall 009 B-1 Influent A Copper 5.9 =
B1BMP0005 Outfall 009 B-1 Influent A Lead 3.9 =
B1SW0002 Outfall 009 Copper 3.3 =
B1SW0002 Outfall 009 Lead 1.6 =
B1SW0002 Outfall 009 Copper 10.0 =
B1SW0002 Outfall 009 Lead 12.0 =
B1SW0014 Outfall 009 B-1 Effluent Copper 5.9 =
B1SW0014 Outfall 009 B-1 Effluent Lead 6.9 =
B1SW0014 Outfall 009 B-1 Effluent Copper 3.5 =
B1SW0014 Outfall 009 B-1 Effluent Lead 2.4 =
B1SW0014 Outfall 009 B-1 Effluent Copper 4.1 =
B1SW0014 Outfall 009 B-1 Effluent Lead 6.7 =
B1SW0014 Outfall 009 B-1 Effluent Copper 3.3 =
B1SW0014 Outfall 009 B-1 Effluent Lead 1.8 =
B1SW0014 Outfall 009 B-1 Effluent Copper 4.0 =
B1SW0014 Outfall 009 B-1 Effluent Lead 3.0 =
A2SW0002 Outfall 009 CM-1 Effluent Lead 39.0 =
A2SW0002 Outfall 009 CM-1 Effluent Lead 12.0 =
A2SW0002 Outfall 009 CM-1 Effluent Lead 0.2 <
A2SW0002 Outfall 009 CM-1 Effluent Lead 0.5 =
A2SW0002 Outfall 009 CM-1 Effluent Lead 0.2 <
A2SW0002 Outfall 009 CM-1 Effluent Lead 2.9 =
A2SW0002 Outfall 009 CM-1 Effluent Lead 15.0 =
A2SW0002 Outfall 009 CM-1 Effluent Lead 3.7 =
A2SW0002 Outfall 009 CM-1 Effluent Lead 0.2 <
A2SW0002 Outfall 009 CM-1 Effluent Lead 3.1 =
A2SW0002 Outfall 009 CM-1 Effluent Lead 0.2 <
A2SW0002 Outfall 009 CM-1 Effluent Lead 1.3 =
A2SW0002 Outfall 009 CM-1 Effluent Lead 0.46 =
A2SW0002 Outfall 009 CM-1 Effluent Lead 0.44 =
A2SW0002 Outfall 009 CM-1 Effluent Lead 1.7 =
A2SW0002 Outfall 009 CM-1 Effluent Lead 6.3 =
A2SW0002 Outfall 009 CM-1 Effluent Lead 3.2 =
A2SW0002 Outfall 009 CM-1 Effluent Lead 14.0 =
A2SW0002 Outfall 009 CM-1 Effluent Lead 9.4 =
A2SW0002 Outfall 009 CM-1 Effluent Lead 3.7 =
BGBMP0001 Outfall 009 CM-1 Influent B Lead 0.65 =
BGBMP0001 Outfall 009 CM-1 Influent B Lead 0.8 =
BGBMP0001 Outfall 009 CM-1 Influent B Lead 0.53 =
BGBMP0006 Outfall 009 CM-1 Influent B Lead 17.0 =
BGBMP0006 Outfall 009 CM-1 Influent B Lead 1.6 =
BGBMP0006 Outfall 009 CM-1 Influent B Lead 0.31 =
BGBMP0006 Outfall 009 CM-1 Influent B Lead 1.5 =
BGBMP0006 Outfall 009 CM-1 Influent B Lead 0.3 =
BGBMP0006 Outfall 009 CM-1 Influent B Lead 0.2 <
BGBMP0006 Outfall 009 CM-1 Influent B Lead 2.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 55.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 2.9 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 4.1 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 5.1 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 36.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 21.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 3.4 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 40.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 3.8 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 5.4 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 5.4 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 13.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 12.0 =
EVBMP0003 Outfall 009 CM-1 Influent A Lead 21.0 =
BGBMP0002 Outfall 009 CM-3 Influent Copper 1.6 =
BGBMP0002 Outfall 009 CM-3 Influent Lead 1.4 =
BGBMP0007 Outfall 009 Copper 7.5 =
BGBMP0007 Outfall 009 Lead 16.0 =
BGBMP0007 Outfall 009 Copper 1.5 =
BGBMP0007 Outfall 009 Lead 1.0 =
BGBMP0007 Outfall 009 Copper 1.5 =
BGBMP0007 Outfall 009 Lead 0.46 =
BGBMP0007 Outfall 009 Copper 1.1 =
BGBMP0007 Outfall 009 Lead 0.3 =
BGBMP0007 Outfall 009 Copper 1.4 =
BGBMP0007 Outfall 009 Lead 1.6 =
BGBMP0007 Outfall 009 Copper 2.2 =
BGBMP0007 Outfall 009 Lead 1.1 =
BGBMP0007 Outfall 009 Copper 1.5 =
BGBMP0007 Outfall 009 Lead 0.24 =
LXSW0002 Outfall 009 CM-3 Effluent Copper 12.0 =
LXSW0002 Outfall 009 CM-3 Effluent Lead 27.0 =
LXSW0002 Outfall 009 CM-3 Effluent Copper 1.4 =
LXSW0002 Outfall 009 CM-3 Effluent Lead 0.25 =
LXSW0002 Outfall 009 CM-3 Effluent Copper 1.7 =
LXSW0002 Outfall 009 CM-3 Effluent Lead 0.47 =
LXSW0002 Outfall 009 CM-3 Effluent Copper 2.4 =
LXSW0002 Outfall 009 CM-3 Effluent Lead 0.52 =
LXSW0002 Outfall 009 CM-3 Effluent Copper 1.8 =
LXSW0002 Outfall 009 CM-3 Effluent Lead 0.25 =
LXSW0002 Outfall 009 CM-3 Effluent Copper 1.6 =
LXSW0002 Outfall 009 CM-3 Effluent Lead 0.28 =
LXSW0002 Outfall 009 CM-3 Effluent Copper 2.5 =
LXSW0002 Outfall 009 CM-3 Effluent Lead 0.24 =
LXSW0002 Outfall 009 CM-3 Effluent Copper 13.0 =
LXSW0002 Outfall 009 CM-3 Effluent Lead 0.34 =
LXSW0002 Outfall 009 CM-3 Effluent Copper 1.8 =
LXSW0002 Outfall 009 CM-3 Effluent Lead 1.2 =
A1SW0002 Outfall 009 CM-8 Influent Lead 8.5 =
A1SW0002 Outfall 009 CM-8 Influent Lead 11.0 =
A1SW0002 Outfall 009 CM-8 Influent Lead 0.74 =
A1SW0002 Outfall 009 CM-8 Influent Lead 1.1 =
A1SW0002 Outfall 009 CM-8 Influent Lead 9.4 =
A1SW0002 Outfall 009 CM-8 Influent Lead 0.28 =
A1SW0002 Outfall 009 CM-8 Influent Lead 0.22 =
A1SW0002 Outfall 009 CM-8 Influent Lead 0.2 <
A1SW0002 Outfall 009 CM-8 Influent Lead 0.42 =
A1SW0002 Outfall 009 CM-8 Influent Lead 0.4 =
A1SW0003 Outfall 009 CM-8 Effluent Lead 2.5 =
A1SW0003 Outfall 009 CM-8 Effluent Lead 2.3 =
A1SW0003 Outfall 009 CM-8 Effluent Lead 3.1 =
A1SW0003 Outfall 009 CM-8 Effluent Lead 0.2 <
A1SW0003 Outfall 009 CM-8 Effluent Lead 7.0 =
A1SW0003 Outfall 009 CM-8 Effluent Lead 0.28 =
A1SW0003 Outfall 009 CM-8 Effluent Lead 0.21 =
A1SW0003 Outfall 009 CM-8 Effluent Lead 0.2 <
A1SW0003 Outfall 009 CM-8 Effluent Lead 0.21 =
A1SW0003 Outfall 009 CM-8 Effluent Lead 0.29 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 5.3 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 0.96 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 4.4 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 0.2 <
A1BMP0002 Outfall 009 CM-9 Influent Copper 9.9 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 6.9 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 3.0 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 0.2 <
A1BMP0002 Outfall 009 CM-9 Influent Copper 14.0 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 11.0 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 2.6 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 0.2 <
A1BMP0002 Outfall 009 CM-9 Influent Copper 7.6 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 7.3 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 20.0 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 3.0 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 5.5 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 0.24 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 3.4 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 0.22 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 4.4 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 1.6 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 3.8 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 0.29 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 4.4 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 1.3 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 4.4 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 0.2 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 3.8 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 0.63 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 6.7 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 4.7 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 15.0 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 15.0 =
A1BMP0002 Outfall 009 CM-9 Influent Copper 7.1 =
A1BMP0002 Outfall 009 CM-9 Influent Lead 1.0 <
A1SW0005 Outfall 009 Copper 5.1 =
A1SW0005 Outfall 009 Lead 0.2 <
A1SW0005 Outfall 009 Copper 4.3 =
A1SW0005 Outfall 009 Lead 0.34 =
A1SW0005 Outfall 009 Copper 11.0 =
A1SW0005 Outfall 009 Lead 15.0 =
A1SW0005 Outfall 009 Copper 9.1 =
A1SW0005 Outfall 009 Lead 6.4 =
A1SW0005 Outfall 009 Copper 2.5 =
A1SW0005 Outfall 009 Lead 0.5 =
A1SW0005 Outfall 009 Copper 5.2 =
A1SW0005 Outfall 009 Lead 1.9 =
A1SW0005 Outfall 009 Copper 3.7 =
A1SW0005 Outfall 009 Lead 1.1 =
A1SW0005 Outfall 009 Copper 3.7 =
A1SW0005 Outfall 009 Lead 0.71 =
A1SW0005 Outfall 009 Copper 4.3 =
A1SW0005 Outfall 009 Lead 0.33 =
A1SW0005 Outfall 009 Copper 3.6 =
A1SW0005 Outfall 009 Lead 0.48 =
A1SW0009 Outfall 009 CM-9 Effluent Copper 7.9 =
A1SW0009 Outfall 009 CM-9 Effluent Lead 9.1 =
A1SW0009 Outfall 009 CM-9 Effluent Copper 6.1 =
A1SW0009 Outfall 009 CM-9 Effluent Lead 8.2 =
A1SW0009 Outfall 009 CM-9 Effluent Copper 22.0 =
A1SW0009 Outfall 009 CM-9 Effluent Lead 36.0 =
A1SW0009 Outfall 009 CM-9 Effluent Copper 9.8 =
A1SW0009 Outfall 009 CM-9 Effluent Lead 16.0 =
A1SW0009 Outfall 009 CM-9 Effluent Copper 6.1 =
A1SW0009 Outfall 009 CM-9 Effluent Lead 1.0 =
A1SW0009 Outfall 009 CM-9 Effluent Copper 9.9 =
A1SW0009 Outfall 009 CM-9 Effluent Lead 3.9 =
A1SW0009 Outfall 009 CM-9 Effluent Copper 5.8 =
A1SW0009 Outfall 009 CM-9 Effluent Lead 19.0 =
ILSW0003 Outfall 009 Lead 2.1 =
ILSW0003 Outfall 009 Lead 3.5 =
ILSW0004 Outfall 009 Lead 2.6 =
LFSW0002 Outfall 009 Copper 4.0 =
LFSW0002 Outfall 009 Lead 3.2 =
LFSW0002 Outfall 009 Copper 7.3 =
LFSW0002 Outfall 009 Lead 6.7 =
LFSW0002 Outfall 009 Copper 4.3 =
LFSW0002 Outfall 009 Lead 3.7 =
HZBMP0003 Outfall 008 Copper 2.4 =
HZBMP0003 Outfall 008 Lead 0.2 <
HZBMP0003 Outfall 008 Copper 13.0 =
HZBMP0003 Outfall 008 Lead 14.0 =
HZBMP0003 Outfall 008 Copper 19.0 =
HZBMP0003 Outfall 008 Lead 19.0 =
HZBMP0003 Outfall 008 Copper 1.9 =
HZBMP0003 Outfall 008 Lead 0.4 =
HZBMP0003 Outfall 008 Copper 1.5 =
HZBMP0003 Outfall 008 Lead 0.2 <
HZBMP0003 Outfall 008 Copper 2.1 =
HZBMP0003 Outfall 008 Lead 0.68 =
HZBMP0003 Outfall 008 Copper 1.7 =
HZBMP0003 Outfall 008 Lead 0.2 <
HZBMP0003 Outfall 008 Copper 1.5 =
HZBMP0003 Outfall 008 Lead 0.2 <
HZBMP0003 Outfall 008 Copper 1.4 =
HZBMP0003 Outfall 008 Lead 0.2 <
HZBMP0003 Outfall 008 Copper 4.1 =
HZBMP0003 Outfall 008 Lead 0.51 =
HZBMP0003 Outfall 008 Copper 2.0 =
HZBMP0003 Outfall 008 Lead 0.64 =
HZBMP0003 Outfall 008 Copper 1.8 =
HZBMP0003 Outfall 008 Lead 1.0 =
HZBMP0001 Outfall 008 Copper 13.0 =
HZBMP0001 Outfall 008 Lead 7.5 =
HZBMP0001 Outfall 008 Copper 13.0 =
HZBMP0001 Outfall 008 Lead 1.8 =
HZBMP0001 Outfall 008 Copper 6.9 =
HZBMP0001 Outfall 008 Lead 3.1 =
HZBMP0001 Outfall 008 Copper 6.9 =
HZBMP0001 Outfall 008 Lead 4.0 =
HZBMP0001 Outfall 008 Copper 5.7 =
HZBMP0001 Outfall 008 Lead 4.1 =
HZBMP0001 Outfall 008 Copper 2.6 =
HZBMP0001 Outfall 008 Lead 0.2 <
HZBMP0001 Outfall 008 Copper 3.5 =
HZBMP0001 Outfall 008 Lead 1.1 =
HZBMP0001 Outfall 008 Copper 4.6 =
HZBMP0001 Outfall 008 Lead 0.48 =
HZBMP0001 Outfall 008 Copper 2.9 =
HZBMP0001 Outfall 008 Lead 0.52 =
HZBMP0001 Outfall 008 Copper 9.2 =
HZBMP0001 Outfall 008 Lead 5.0 =
HZBMP0001 Outfall 008 Copper 15.0 =
HZBMP0001 Outfall 008 Lead 19.0 =
HZSW0008 Outfall 008 Lead 0.4 =
HZSW0020 Outfall 008 Lead 14.0 =
HZSW0020 Outfall 008 Lead 5.3 =
HZSW0014 Outfall 008 Copper 5.2 =
HZSW0014 Outfall 008 Lead 1.8 =
HZSW0014 Outfall 008 Copper 6.4 =
HZSW0014 Outfall 008 Lead 3.1 =
HZSW0014 Outfall 008 Copper 7.9 =
HZSW0014 Outfall 008 Lead 3.7 =
HZSW0012 Outfall 008 Lead 0.2 <
HZSW0011 Outfall 008 Copper 2.4 =
HZSW0011 Outfall 008 Copper 3.0 =
LXBMP0009 Outfall 009 LOX Effluent Copper 4.1 =
LXBMP0009 Outfall 009 LOX Effluent Lead 1.2 =
Outfall 008 Outfall 008 Copper 12.0 =
Outfall 008 Outfall 008 Lead 9.8 =
Outfall 008 Outfall 008 Copper 9.9 =
Outfall 008 Outfall 008 Lead 9.0 =
Outfall 008 Outfall 008 Copper 8.2 =
Outfall 008 Outfall 008 Lead 6.4 =
Outfall 008 Outfall 008 Copper 4.0 =
Outfall 008 Outfall 008 Lead 2.5 =
Outfall 008 Outfall 008 Copper 2.6 =
Outfall 008 Outfall 008 Lead 0.82 =
Outfall 008 Outfall 008 Copper 0.49 <
Outfall 008 Outfall 008 Lead 0.17 =
Outfall 008 Outfall 008 Copper 5.5 =
Outfall 008 Outfall 008 Lead 3.7 =
Outfall 008 Outfall 008 Zinc 22.0 =
Outfall 008 Outfall 008 Copper 15.0 =
Outfall 008 Outfall 008 Lead 13.0 =
Outfall 008 Outfall 008 Copper 3.2 =
Outfall 008 Outfall 008 Lead 1.4 =
Outfall 008 Outfall 008 Copper 2.9 =
Outfall 008 Outfall 008 Lead 0.18 =
Outfall 008 Outfall 008 Copper 14.0 =
Outfall 008 Outfall 008 Lead 120.0 =
Outfall 008 Outfall 008 Copper 12.0 =
Outfall 008 Outfall 008 Lead 20.0 =
Outfall 008 Outfall 008 Copper 7.6 =
Outfall 008 Outfall 008 Lead 4.4 =
Outfall 008 Outfall 008 Zinc 40.0 =
Outfall 008 Outfall 008 Copper 4.1 =
Outfall 008 Outfall 008 Lead 1.0 =
Outfall 008 Outfall 008 Copper 3.4 =
Outfall 008 Outfall 008 Lead 3.0 =
Outfall 008 Outfall 008 Copper 7.6 =
Outfall 008 Outfall 008 Lead 18.0 =
Outfall 008 Outfall 008 Copper 5.0 =
Outfall 008 Outfall 008 Lead 6.3 =
Outfall 008 Outfall 008 Zinc 19.0 =
Outfall 008 Outfall 008 Copper 3.8 =
Outfall 008 Outfall 008 Lead 4.5 =
Outfall 008 Outfall 008 Zinc 15.0 =
Outfall 008 Outfall 008 Copper 2.4 =
Outfall 008 Outfall 008 Lead 1.3 =
Outfall 008 Outfall 008 Zinc 2.5 <
Outfall 008 Outfall 008 Copper 4.1 =
Outfall 008 Outfall 008 Lead 2.6 =
Outfall 008 Outfall 008 Zinc 14.0 =
Outfall 008 Outfall 008 Copper 6.8 =
Outfall 008 Outfall 008 Lead 7.9 =
Outfall 008 Outfall 008 Zinc 47.0 =
Outfall 008 Outfall 008 Copper 13.9 =
Outfall 008 Outfall 008 Lead 10.0 =
Outfall 008 Outfall 008 Zinc 49.0 =
Outfall 008 Outfall 008 Copper 9.1 =
Outfall 008 Outfall 008 Lead 7.0 =
Outfall 008 Outfall 008 Zinc 33.0 =
Outfall 008 Outfall 008 Copper 1.3 =
Outfall 008 Outfall 008 Lead 0.38 =
Outfall 008 Outfall 008 Zinc 5.0 <
Outfall 008 Outfall 008 Copper 6.0 =
Outfall 008 Outfall 008 Lead 1.5 =
Outfall 008 Outfall 008 Zinc 17.0 =
Outfall 008 Outfall 008 Copper 9.07 =
Outfall 008 Outfall 008 Lead 6.7 =
Outfall 008 Outfall 008 Zinc 43.5 =
Outfall 008 Outfall 008 Copper 3.48 =
Outfall 008 Outfall 008 Lead 1.0 =
Outfall 008 Outfall 008 Zinc 15.7 =
Outfall 008 Outfall 008 Copper 2.69 =
Outfall 008 Outfall 008 Lead 0.87 =
Outfall 008 Outfall 008 Zinc 11.8 =
Outfall 008 Outfall 008 Copper 2.42 =
Outfall 008 Outfall 008 Lead 0.83 =
Outfall 008 Outfall 008 Zinc 22.2 =
Outfall 008 Outfall 008 Copper 9.33 =
Outfall 008 Outfall 008 Lead 3.8 =
Outfall 008 Outfall 008 Zinc 28.4 =
Outfall 008 Outfall 008 Copper 4.78 =
Outfall 008 Outfall 008 Lead 2.4 =
Outfall 008 Outfall 008 Zinc 14.3 =
Outfall 008 Outfall 008 Copper 18.0 =
Outfall 008 Outfall 008 Lead 10.0 =
Outfall 008 Outfall 008 Zinc 64.0 =
Outfall 009 Outfall 009 Copper 8.4 =
Outfall 009 Outfall 009 Lead 1.3 =
Outfall 009 Outfall 009 Copper 5.8 =
Outfall 009 Outfall 009 Lead 0.64 =
Outfall 009 Outfall 009 Copper 11.0 =
Outfall 009 Outfall 009 Lead 11.0 =
Outfall 009 Outfall 009 Copper 4.9 =
Outfall 009 Outfall 009 Lead 1.7 =
Outfall 009 Outfall 009 Copper 1.8 =
Outfall 009 Outfall 009 Lead 0.34 =
Outfall 009 Outfall 009 Copper 1.6 =
Outfall 009 Outfall 009 Lead 0.13 <
Outfall 009 Outfall 009 Copper 2.2 =
Outfall 009 Outfall 009 Lead 0.83 =
Outfall 009 Outfall 009 Zinc 6.3 =
Outfall 009 Outfall 009 Copper 9.5 =
Outfall 009 Outfall 009 Lead 10.0 =
Outfall 009 Outfall 009 Copper 3.9 =
Outfall 009 Outfall 009 Lead 0.62 =
Outfall 009 Outfall 009 Copper 1.8 =
Outfall 009 Outfall 009 Lead 0.13 <
Outfall 009 Outfall 009 Copper 3.2 =
Outfall 009 Outfall 009 Lead 1.1 =
Outfall 009 Outfall 009 Copper 39.0 =
Outfall 009 Outfall 009 Lead 260.0 =
Outfall 009 Outfall 009 Copper 6.4 =
Outfall 009 Outfall 009 Lead 3.3 =
Outfall 009 Outfall 009 Copper 3.0 =
Outfall 009 Outfall 009 Lead 0.78 =
Outfall 009 Outfall 009 Copper 3.1 =
Outfall 009 Outfall 009 Lead 0.5 =
Outfall 009 Outfall 009 Copper 22.0 =
Outfall 009 Outfall 009 Lead 33.0 =
Outfall 009 Outfall 009 Zinc 88.0 =
Outfall 009 Outfall 009 Copper 3.2 =
Outfall 009 Outfall 009 Lead 0.26 =
Outfall 009 Outfall 009 Copper 2.1 =
Outfall 009 Outfall 009 Lead 0.13 <
Outfall 009 Outfall 009 Copper 2.6 =
Outfall 009 Outfall 009 Lead 0.04 <
Outfall 009 Outfall 009 Copper 2.6 =
Outfall 009 Outfall 009 Lead 0.17 =
Outfall 009 Outfall 009 Copper 26.0 =
Outfall 009 Outfall 009 Lead 64.0 =
Outfall 009 Outfall 009 Copper 2.6 =
Outfall 009 Outfall 009 Lead 0.082 =
Outfall 009 Outfall 009 Copper 2.5 =
Outfall 009 Outfall 009 Lead 2.7 =
Outfall 009 Outfall 009 Copper 2.5 =
Outfall 009 Outfall 009 Lead 0.59 =
Outfall 009 Outfall 009 Copper 3.7 =
Outfall 009 Outfall 009 Lead 1.7 =
Outfall 009 Outfall 009 Zinc 51.0 =
Outfall 009 Outfall 009 Copper 9.9 =
Outfall 009 Outfall 009 Lead 8.6 =
Outfall 009 Outfall 009 Copper 2.4 =
Outfall 009 Outfall 009 Lead 0.47 =
Outfall 009 Outfall 009 Copper 5.8 =
Outfall 009 Outfall 009 Lead 2.3 =
Outfall 009 Outfall 009 Copper 4.6 =
Outfall 009 Outfall 009 Lead 1.3 =
Outfall 009 Outfall 009 Copper 4.7 =
Outfall 009 Outfall 009 Lead 6.0 =
Outfall 009 Outfall 009 Zinc 15.0 =
Outfall 009 Outfall 009 Copper 2.7 =
Outfall 009 Outfall 009 Lead 1.6 =
Outfall 009 Outfall 009 Copper 6.7 =
Outfall 009 Outfall 009 Lead 2.5 =
Outfall 009 Outfall 009 Copper 12.0 =
Outfall 009 Outfall 009 Lead 19.0 =
Outfall 009 Outfall 009 Copper 2.3 =
Outfall 009 Outfall 009 Lead 1.5 =
Outfall 009 Outfall 009 Copper 6.5 =
Outfall 009 Outfall 009 Lead 7.5 =
Outfall 009 Outfall 009 Zinc 22.0 =
Outfall 009 Outfall 009 Copper 7.6 =
Outfall 009 Outfall 009 Lead 20.0 =
Outfall 009 Outfall 009 Copper 5.3 =
Outfall 009 Outfall 009 Lead 2.2 =
Outfall 009 Outfall 009 Copper 5.7 =
Outfall 009 Outfall 009 Lead 5.7 =
Outfall 009 Outfall 009 Copper 6.4 =
Outfall 009 Outfall 009 Lead 9.3 =
Outfall 009 Outfall 009 Copper 4.1 =
Outfall 009 Outfall 009 Lead 3.5 =
Outfall 009 Outfall 009 Zinc 13.0 =
Outfall 009 Outfall 009 Copper 2.9 =
Outfall 009 Outfall 009 Lead 0.2 <
Outfall 009 Outfall 009 Copper 6.8 =
Outfall 009 Outfall 009 Lead 8.9 =
Outfall 009 Outfall 009 Copper 3.2 =
Outfall 009 Outfall 009 Lead 1.1 =
Outfall 009 Outfall 009 Copper 5.2 =
Outfall 009 Outfall 009 Lead 2.8 =
Outfall 009 Outfall 009 Copper 5.63 =
Outfall 009 Outfall 009 Lead 5.0 =
Outfall 009 Outfall 009 Copper 9.6 =
Outfall 009 Outfall 009 Lead 11.0 =
Outfall 009 Outfall 009 Copper 3.9 =
Outfall 009 Outfall 009 Lead 0.95 =
Outfall 009 Outfall 009 Copper 3.22 =
Outfall 009 Outfall 009 Lead 1.2 =
Outfall 009 Outfall 009 Copper 3.25 =
Outfall 009 Outfall 009 Lead 2.0 =
Outfall 009 Outfall 009 Copper 3.9 =
Outfall 009 Outfall 009 Lead 2.3 =
Outfall 009 Outfall 009 Copper 4.16 =
Outfall 009 Outfall 009 Lead 2.4 =
Outfall 009 Outfall 009 Copper 3.47 =
Outfall 009 Outfall 009 Lead 1.5 =
Outfall 009 Outfall 009 Copper 3.34 =
Outfall 009 Outfall 009 Lead 1.87 =
Outfall 009 Outfall 009 Copper 3.06 =
Outfall 009 Outfall 009 Lead 1.2 =
Outfall 009 Outfall 009 Zinc 6.0 <
Outfall 009 Outfall 009 Copper 3.17 =
Outfall 009 Outfall 009 Lead 0.94 =
Outfall 009 Outfall 009 Copper 2.77 =
Outfall 009 Outfall 009 Lead 0.2 <
Outfall 009 Outfall 009 Copper 3.24 =
Outfall 009 Outfall 009 Lead 0.42 =
Outfall 009 Outfall 009 Copper 4.92 =
Outfall 009 Outfall 009 Lead 5.1 =
Outfall 009 Outfall 009 Copper 6.5 =
Outfall 009 Outfall 009 Lead 2.7 =
Outfall 009 Outfall 009 Copper 3.5 =
Outfall 009 Outfall 009 Lead 1.5 =
Outfall 009 Outfall 009 Copper 2.8 =
Outfall 009 Outfall 009 Lead 2.4 =
Outfall 009 Outfall 009 Copper 1.6 =
Outfall 009 Outfall 009 Lead 1.1 =
Outfall 009 Outfall 009 Copper 2.3 =
Outfall 009 Outfall 009 Lead 1.3 =
Outfall 009 Outfall 009 Copper 1.7 =
Outfall 009 Outfall 009 Lead 0.48 =
Outfall 009 Outfall 009 Copper 4.2 =
Outfall 009 Outfall 009 Lead 4.0 =
Outfall 009 Outfall 009 Zinc 14.0 =
Outfall 009 Outfall 009 Copper 5.1 =
Outfall 009 Outfall 009 Lead 7.2 =
Outfall 009 Outfall 009 Copper 4.5 =
Outfall 009 Outfall 009 Lead 3.2 =
Outfall 009 Outfall 009 Copper 3.8 =
Outfall 009 Outfall 009 Lead 0.56 =
Outfall 009 Outfall 009 Copper 8.0 =
Outfall 009 Outfall 009 Lead 1.7 =
Outfall 009 Outfall 009 Copper 5.1 =
Outfall 009 Outfall 009 Lead 1.5 =
Outfall 009 Outfall 009 Zinc 9.0 <
Outfall 009 Outfall 009 Copper 8.2 =
Outfall 009 Outfall 009 Lead 9.6 =
Outfall 009 Outfall 009 Zinc 50.0 =
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "",
"signature": "sha256:999c6cb6ff3e0fb54f8e41f65b83a9feeffdc12b82589e853e77c579b447e6d9"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Compute water quality stats"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Load metals data"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline\n",
"import os\n",
"\n",
"import numpy as np\n",
"import matplotlib\n",
"from scipy import stats \n",
"import pandas\n",
"import seaborn\n",
"seaborn.set(style='ticks', context='talk')"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Database stuff that won't work"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# import sqlalchemy\n",
"\n",
"# # where the output will be saved (Portland Server)\n",
"# outputdir = r'path/on/my/network'\n",
"\n",
"# # where the database is\n",
"# engine = sqlalchemy.create_engine('mssql+pyodbc://remoteserver/projectDB')\n",
"\n",
"# # read the all the data from the database\n",
"# query = \"\"\"\n",
"# select \n",
"# sampleloc, watershed, bmp, position, \n",
"# drainage_index, analyte, res, qual \n",
"# from \n",
"# tidy_data\n",
"# \"\"\"\n",
"# data = pandas.read_sql_query(query, engine)\n",
"\n",
"# # list of analytes we want\n",
"# POCs = ['Lead', 'Copper', 'Zinc']\n",
"\n",
"# # keep on data at a BMP and where the analytes are in our list\n",
"# data = data.query(\"analyte in {}\".format(POCs))\n",
"# data.to_csv('WaterQualityData.csv', index=False)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Read in a CSV instead (`res` = \"concentration\", units are \u00b5g/L)"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"data = pandas.read_csv('WaterQualityData.csv')\n",
"data.head()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>sampleloc</th>\n",
" <th>watershed</th>\n",
" <th>bmp</th>\n",
" <th>position</th>\n",
" <th>drainage_index</th>\n",
" <th>analyte</th>\n",
" <th>res</th>\n",
" <th>qual</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> A2BMP0002</td>\n",
" <td> Outfall 009</td>\n",
" <td> NaN</td>\n",
" <td> NaN</td>\n",
" <td> NaN</td>\n",
" <td> Copper</td>\n",
" <td> 2.40</td>\n",
" <td> =</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> A2BMP0002</td>\n",
" <td> Outfall 009</td>\n",
" <td> NaN</td>\n",
" <td> NaN</td>\n",
" <td> NaN</td>\n",
" <td> Lead</td>\n",
" <td> 0.29</td>\n",
" <td> =</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> A2BMP0002</td>\n",
" <td> Outfall 009</td>\n",
" <td> NaN</td>\n",
" <td> NaN</td>\n",
" <td> NaN</td>\n",
" <td> Zinc</td>\n",
" <td> 4.00</td>\n",
" <td> &lt;</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> A2BMP0005</td>\n",
" <td> Outfall 009</td>\n",
" <td> NaN</td>\n",
" <td> NaN</td>\n",
" <td> NaN</td>\n",
" <td> Copper</td>\n",
" <td> 8.70</td>\n",
" <td> =</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> A2BMP0005</td>\n",
" <td> Outfall 009</td>\n",
" <td> NaN</td>\n",
" <td> NaN</td>\n",
" <td> NaN</td>\n",
" <td> Lead</td>\n",
" <td> 11.00</td>\n",
" <td> =</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 3,
"text": [
" sampleloc watershed bmp position drainage_index analyte res qual\n",
"0 A2BMP0002 Outfall 009 NaN NaN NaN Copper 2.40 =\n",
"1 A2BMP0002 Outfall 009 NaN NaN NaN Lead 0.29 =\n",
"2 A2BMP0002 Outfall 009 NaN NaN NaN Zinc 4.00 <\n",
"3 A2BMP0005 Outfall 009 NaN NaN NaN Copper 8.70 =\n",
"4 A2BMP0005 Outfall 009 NaN NaN NaN Lead 11.00 ="
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Compute the median for each analyte within watersheds"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"groups = data.groupby(by=['watershed', 'analyte'])\n",
"groups.median()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th></th>\n",
" <th>res</th>\n",
" </tr>\n",
" <tr>\n",
" <th>watershed</th>\n",
" <th>analyte</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">Outfall 008</th>\n",
" <th>Copper</th>\n",
" <td> 4.10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Lead</th>\n",
" <td> 1.40</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Zinc</th>\n",
" <td> 11.80</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">Outfall 009</th>\n",
" <th>Copper</th>\n",
" <td> 4.75</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Lead</th>\n",
" <td> 2.50</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Zinc</th>\n",
" <td> 27.00</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 4,
"text": [
" res\n",
"watershed analyte \n",
"Outfall 008 Copper 4.10\n",
" Lead 1.40\n",
" Zinc 11.80\n",
"Outfall 009 Copper 4.75\n",
" Lead 2.50\n",
" Zinc 27.00"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Pivot that data so that analytes are in columns "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"groups.median().unstack(level='analyte')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr>\n",
" <th></th>\n",
" <th colspan=\"3\" halign=\"left\">res</th>\n",
" </tr>\n",
" <tr>\n",
" <th>analyte</th>\n",
" <th>Copper</th>\n",
" <th>Lead</th>\n",
" <th>Zinc</th>\n",
" </tr>\n",
" <tr>\n",
" <th>watershed</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Outfall 008</th>\n",
" <td> 4.10</td>\n",
" <td> 1.4</td>\n",
" <td> 11.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Outfall 009</th>\n",
" <td> 4.75</td>\n",
" <td> 2.5</td>\n",
" <td> 27.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 5,
"text": [
" res \n",
"analyte Copper Lead Zinc\n",
"watershed \n",
"Outfall 008 4.10 1.4 11.8\n",
"Outfall 009 4.75 2.5 27.0"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Location at the (first 10) medians by sampling location"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"data.groupby(by=['sampleloc', 'analyte']).median().unstack(level='analyte').head(10)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr>\n",
" <th></th>\n",
" <th colspan=\"3\" halign=\"left\">res</th>\n",
" </tr>\n",
" <tr>\n",
" <th>analyte</th>\n",
" <th>Copper</th>\n",
" <th>Lead</th>\n",
" <th>Zinc</th>\n",
" </tr>\n",
" <tr>\n",
" <th>sampleloc</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>A1BMP0001</th>\n",
" <td> 4.20</td>\n",
" <td> 0.280</td>\n",
" <td> 11.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>A1BMP0002</th>\n",
" <td> 6.10</td>\n",
" <td> 1.000</td>\n",
" <td> 57.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>A1SW0002</th>\n",
" <td> NaN</td>\n",
" <td> 0.580</td>\n",
" <td> NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>A1SW0003</th>\n",
" <td> NaN</td>\n",
" <td> 0.285</td>\n",
" <td> NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>A1SW0005</th>\n",
" <td> 4.30</td>\n",
" <td> 0.605</td>\n",
" <td> NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>A1SW0009</th>\n",
" <td> 7.90</td>\n",
" <td> 9.100</td>\n",
" <td> NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>A1SW0009-C</th>\n",
" <td> 6.50</td>\n",
" <td> 2.300</td>\n",
" <td> NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>A2BMP0002</th>\n",
" <td> 2.40</td>\n",
" <td> 0.290</td>\n",
" <td> 4.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>A2BMP0003</th>\n",
" <td> 3.55</td>\n",
" <td> 1.375</td>\n",
" <td> 7.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>A2BMP0004</th>\n",
" <td> 6.70</td>\n",
" <td> 4.200</td>\n",
" <td> 19.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 6,
"text": [
" res \n",
"analyte Copper Lead Zinc\n",
"sampleloc \n",
"A1BMP0001 4.20 0.280 11.0\n",
"A1BMP0002 6.10 1.000 57.0\n",
"A1SW0002 NaN 0.580 NaN\n",
"A1SW0003 NaN 0.285 NaN\n",
"A1SW0005 4.30 0.605 NaN\n",
"A1SW0009 7.90 9.100 NaN\n",
"A1SW0009-C 6.50 2.300 NaN\n",
"A2BMP0002 2.40 0.290 4.0\n",
"A2BMP0003 3.55 1.375 7.8\n",
"A2BMP0004 6.70 4.200 19.0"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Aggregate data on something more complex"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def interquartile_range(group):\n",
" '''\n",
" Difference between the 75th and 25th percentiles\n",
" '''\n",
" pctl75 = stats.scoreatpercentile(group, 75)\n",
" pctl25 = stats.scoreatpercentile(group, 25)\n",
" IQR = pctl75 - pctl25\n",
" return IQR\n",
"\n",
"\n",
"(groups.agg({'res': interquartile_range}) \n",
" .rename(columns={'res': 'IQR'})\n",
" .unstack(level='watershed')\n",
")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr>\n",
" <th></th>\n",
" <th colspan=\"2\" halign=\"left\">IQR</th>\n",
" </tr>\n",
" <tr>\n",
" <th>watershed</th>\n",
" <th>Outfall 008</th>\n",
" <th>Outfall 009</th>\n",
" </tr>\n",
" <tr>\n",
" <th>analyte</th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Copper</th>\n",
" <td> 5.60</td>\n",
" <td> 5.2075</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Lead</th>\n",
" <td> 4.64</td>\n",
" <td> 5.3575</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Zinc</th>\n",
" <td> 19.25</td>\n",
" <td> 53.5000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 7,
"text": [
" IQR \n",
"watershed Outfall 008 Outfall 009\n",
"analyte \n",
"Copper 5.60 5.2075\n",
"Lead 4.64 5.3575\n",
"Zinc 19.25 53.5000"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Neat Trick: pandas' `describe` method can be applied and tranposed to a `groupby` object"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"(groups.apply(lambda g: g.describe().T))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th>count</th>\n",
" <th>mean</th>\n",
" <th>std</th>\n",
" <th>min</th>\n",
" <th>25%</th>\n",
" <th>50%</th>\n",
" <th>75%</th>\n",
" <th>max</th>\n",
" </tr>\n",
" <tr>\n",
" <th>watershed</th>\n",
" <th>analyte</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">Outfall 008</th>\n",
" <th>Copper</th>\n",
" <th>res</th>\n",
" <td> 77</td>\n",
" <td> 5.687013</td>\n",
" <td> 4.503969</td>\n",
" <td> 0.49</td>\n",
" <td> 2.3000</td>\n",
" <td> 4.10</td>\n",
" <td> 7.90</td>\n",
" <td> 19</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Lead</th>\n",
" <th>res</th>\n",
" <td> 79</td>\n",
" <td> 5.411139</td>\n",
" <td> 14.049663</td>\n",
" <td> 0.17</td>\n",
" <td> 0.5100</td>\n",
" <td> 1.40</td>\n",
" <td> 5.15</td>\n",
" <td> 120</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Zinc</th>\n",
" <th>res</th>\n",
" <td> 35</td>\n",
" <td> 19.794286</td>\n",
" <td> 22.036026</td>\n",
" <td> 2.50</td>\n",
" <td> 4.8500</td>\n",
" <td> 11.80</td>\n",
" <td> 24.10</td>\n",
" <td> 110</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">Outfall 009</th>\n",
" <th>Copper</th>\n",
" <th>res</th>\n",
" <td> 364</td>\n",
" <td> 7.027830</td>\n",
" <td> 7.442934</td>\n",
" <td> 0.60</td>\n",
" <td> 3.1925</td>\n",
" <td> 4.75</td>\n",
" <td> 8.40</td>\n",
" <td> 86</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Lead</th>\n",
" <th>res</th>\n",
" <td> 430</td>\n",
" <td> 6.592888</td>\n",
" <td> 16.149913</td>\n",
" <td> 0.04</td>\n",
" <td> 0.9425</td>\n",
" <td> 2.50</td>\n",
" <td> 6.30</td>\n",
" <td> 260</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Zinc</th>\n",
" <th>res</th>\n",
" <td> 191</td>\n",
" <td> 50.619895</td>\n",
" <td> 63.762495</td>\n",
" <td> 4.00</td>\n",
" <td> 13.0000</td>\n",
" <td> 27.00</td>\n",
" <td> 66.50</td>\n",
" <td> 310</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 8,
"text": [
" count mean std min 25% 50% \\\n",
"watershed analyte \n",
"Outfall 008 Copper res 77 5.687013 4.503969 0.49 2.3000 4.10 \n",
" Lead res 79 5.411139 14.049663 0.17 0.5100 1.40 \n",
" Zinc res 35 19.794286 22.036026 2.50 4.8500 11.80 \n",
"Outfall 009 Copper res 364 7.027830 7.442934 0.60 3.1925 4.75 \n",
" Lead res 430 6.592888 16.149913 0.04 0.9425 2.50 \n",
" Zinc res 191 50.619895 63.762495 4.00 13.0000 27.00 \n",
"\n",
" 75% max \n",
"watershed analyte \n",
"Outfall 008 Copper res 7.90 19 \n",
" Lead res 5.15 120 \n",
" Zinc res 24.10 110 \n",
"Outfall 009 Copper res 8.40 86 \n",
" Lead res 6.30 260 \n",
" Zinc res 66.50 310 "
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Some seaborn stuff"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# log data makes smoother densities\n",
"data['logres'] = np.log10(data['res'])\n",
"fg = seaborn.FacetGrid(data=data, row='watershed', col='analyte', margin_titles=True)\n",
"fg.map(seaborn.kdeplot, 'logres', shade=True)\n",
"fg.set_xlabels(r'$\\log_{10}$ conc.')\n",
"fg.set_ylabels('density')\n",
"fg.fig.tight_layout()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAo0AAAGqCAYAAABu7H5eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4nMW1+PHvqvdiWbbcu48rxvQaeigBUkgnyU0gJIEE\ncpOb3kgj+YWbCkmAmxBIJyEJLRCqMWCbYtzrcW+SJavY6rLa/v6Yd+X1qq0saXe1ez7Powfp3Xdn\nR8Boz87MOePz+/0YY4wxxhjTl6Rod8AYY4wxxsQ+CxqNMcYYY0y/LGg0xhhjjDH9sqDRGGOMMcb0\ny4JGY4wxxhjTLwsajTHGGGNMv1Ki3QEztETko8APVXVcGPcuAvJV9eVh79ix18wDvgpcB0wEyoCH\ncH1ujFQ/jAkWy+NGRDqBK1T12Qi93vPAK6r6nUi8nol9sTo+RGQqsKuPW6YC04ElQIaqtg53n+Kd\nzTQmtkeBOZF6MREpAF4DzgNuAeYCtwHvAR4XkeRI9cWYQYjouIkCv/dlzImI5PjYB5SEfE0G1gNr\ngFJgOVBiAePQsJlG44vga/0Q6AQuVdWj3rW9IrIT2AS8C3g4gv0x5kRFctwYM9JEZHyoaidwKPia\niPwUmAWcoqodQEfoPebEWdAYBSJyJvAj4DTcbO8q4GZV3Rg03X4d8P9wn5pWAjeo6g7v+VcB3wHm\n4wbEMuDjqloa8jpPAeWqekPQtR/jBlQeMAW4R0TOVNUbRGQOcBdwLlAB/An4rqq29/A7fBv4Vi+/\n4oWhSxMikg58EPhSUMAIgKqqiFwAbAi6/7PAZ3BL2BuALwTaFJEHgVrv383lwG6v3SfDedy758u4\n2c5CYDXwOVVd4z22B/ib199WYIGqNvfyu5oIScRxE+a/lz5fX0T+C/giMBNoBp4FblLVOu/xj3p9\nGgM8CCRjQfGIY+MDROStwGeBT6uqetcuJGh52tvu8V/A53CrXVuBT6jqSu/+yV5/LwYagd8DX1VV\nm33HlqcjTkRygf/gpswX4JZqk4GfhNx6O3ADcAZQjBvoiMg04BHc/8hzgCtxezZ6Gmh/At4hIqne\nc33Ae73r7wIOAF8CPisiGcAzwDpgkffa7wHu6OVX+V+6LwsEvl7t4f7pQC7wRk+NqeryoDexrwPf\nBL4MnAQsBf7jDeaATwLbgJOBPwOPiMj8cB4XkVuATwA3AqcALwFLRWRM0PM/BlwDXGcBY/Ql8Ljp\nU3+vLyLnAfcB38O9qb8PuBD4tPf4pcD/AT/AjYUk73F7gxxBbHyAiBThPvQ8qar39nUvbjx81etT\nPXCP10Y68BxuQu0c3Hj5CPA//bSXMGymMfKycAPmp94nlz0i8jvg2yH3fVdVlwOIyK+BL3jXk4HP\nBg2KfSLyMO4PfajHcG8YVwBPAOcDBcDjqnpURDqAOlWtF5EbgHpV/aL33B3ebN9jIvKV0E9ZXtLK\nQBJXCr1/1vZ1k/cH6L+Bb6vqv7zLXxKRt+A+QQYG7wZV/bL3/Q9E5HLgJu+5/T3+FdzM4vPe47d7\nb5434f7b+IG/quraAfx+Zngl6rjpzwf7eP2vAk3Ajar6N+/x/SLyHDDP+/mTwMOq+lsAEbkVeNsQ\n9s9Eho0P+K33zxv6vMu5S1WfARCR//X64wMuBSYBZ6nqYe/xTwH5J9inuGNBY4SpaoWIPADc5mWZ\nCe4T/uGQW7cFfV8PpHrP3yEizd7y6gLc9PpJwJs9vFajiDyG+7T0BPB+4F+hy8OeeYCISH3QNR+Q\nhstA2x18s4h8DfdJrSdXBP4wBany/lkYenOIYqAIeD3k+nKOvdEBvBLy+ErcrGKfj4tINm7J+w/e\nMnZAGrAj6Oe+MvJMhCXwuOlPX68/RVVXi0ijiHwL9zvP957zd+/eucADgSeqaoeIrBlgH0yUJfr4\nEJGPA28HrlLVqp7uCRH67wHcv4t5wK5AwAigqo+H0V7CsKAxwkRkPG4grgeeBv6IG6DfDLk1NNPL\n5z1/IbACeAp4Gfg1bhn1ol5e8k/A30UkC7ef5cO93JeC28NyYw+ve6CH++/BlcrpSVkP13YCNcCZ\nuL02xxGR+7zrf+2jf8HbKTp6eLw9jMcD/89fj/tvEOADGoJ+tiXpGJLA46Y/fb6+iFwGPI7borEE\nt/z3eY6NJT/d9y+2nUA/TBQl8vgQkZnAz4BfqurTvTw3VG+Z1JZh3Q8LGiPvA0CTql4RuCAiVxL+\nxvNPAK+p6vuCnv+5Pu5/HhcAfQX3BvF80GPBSwObgXcDBwKlCcQlp3yaHv4geJ/EQj/F9sqbwfgL\ncKuI/E5VW4L6vwC3h/BFb0njIHA2bnYw4ByO39NyashLnMHxs4s9Pq6qtSJSDkxQ1UeD+vAb3L+b\nv2FiUUKOmzD09/q3AX9S1ZsCTxCR2bgPceCSzM4KeiwJWExQUpoZERJyfIhICi6A3YNL9hqsbcA0\nEclX1VrvNT4NXKuqlw9B+yOeBY2RVwqM8/bYKW5fyE19P6Xb868TkbNxZQTeD1zttdWNqraLyN9w\ne1d+45UoCGgA5opIIW7gfQt4UES+j1sivh94vZdlhxPxHdwG6xe85bLduEy/H3N8wHYn8C0ROQBs\nxP37WQB8NKitC0XkS7iaYB/EbWi+PszH7wS+IyIVuFpeNwIfAn4xRL+nGXqJPG4ATvMCumCr+nt9\nESkFzvWWLFtwFQNOwv37AJcl+rKI3IaboboZt2xoRpZEHR9fxy3DXwUUikjo40cG2N4zuPel+733\nqBLccvmPB9nPuBGV7GkROcP7Y9bffZeISIc3BR4v/o7L8PoLLqPsfFwglScugw26Zy4GF9u9C7d8\n8B/cvr8JuMy1WUH/nkKf/xCQgVuiCvZLXMB0v6o24crTjMbN8P0DV5rj4yfyS/ZEVatxZRfW4jYt\nb8Rlsd0PvCtoU/RdwM9xQdxa3KzjZaq6Kej3exyXIbgWt3H/clXdHebjvwB+isss3ABcBlyjqhuH\n6nc1Qy5hx43n+7ilw8DXk8DZYbz+t3HLgMuBF3Fv6J/B2/+rqq/hAoRbcGNlLBBIQDMjR6KOjwtx\nSTzP4pavQ7/eS3jF6v3QVffxWlxi0UrgD7ig+OdD1N8Rz+f3R66ygped9DHcG3arqo7p495C3B+x\niUCu9z+fOQEi8i7cEVDdPoaNRN6Gb39wnbCBPG5MOOJt3BgzlGx8JKZIL09/DVej6fu4Gnx9uQeX\nFPGl4e5UvBJX0PUM3GzDfVHtzNDqb5+OFSY2JyyOx40xg2bjI7FFenn6flU9mR7S+IOJyPW4yvL3\nRKRX8Wsy8DtcKZm7o9yXodTfcoOdnWsGI17HjTFDwcZHAovo8nSAuGN9HlbV4h4em4zbe3Mubr/E\nLiDHlqeNMcYYY6InprKnvezA3wNfV9XyoA28YS83ijtKqCjkcjKQDmzs6bxLY+KdjQtjurNxYczA\nxFTQiEt6ORN3csc9HFs+PyAib1PVFWG0cSvufM1uXnjhhaHppTHRMZi9mjYuTLyycWHM8YZtX39M\nBY2qug+X6g6AiEzB1UyaMIDl6btxZQeCTcCdhmBMorJxYUx3Ni6MGYBoBo1dmym9WUVU9eaQe3wM\nMKHBqwVYHXxNROxoIJPQbFwY052NC2MGJipBo6ouBcYE/RwaLAau78HtLzHGGGOMMVEUlRNhjDHG\nGGPMyBJTexqNMcYYY8zwE5FU4BzcWeVXenW0+2RBozHGGGNMAvASjK/wvi7GrTgvx53A1y8LGo0x\nxhhj4pyIbAGmA8twFQL+F3hdVTvCbcP2NBpjjDHGxL99QAswCZgBzMKVmAqbBY3GGGOMMXFOVS8H\nCoHrgc3Au4G1IrJTRH4bThsWNBpjjDHGJABV7QQUFzRuAjYCU4Crw3m+7Wk0xhhjjIlzIvJT4ELg\nJGAP8ArwIHCjqm4Ppw0LGo0xxhhj4t/NQBrwEPBbYLmqDugEJAsajTHGGGPi3yjgUuAq3AxjkYi8\nAjwLPKuqm/prwIJGY4wxxpg4p6rNwBPeFyIyHxdAXgv8CDcL2ScLGo0xxhhjEoCITATGAmu8mcVN\nwP+KSG44z7eg0RhjjDEmzonIx4F7cZVzlorIW3H7HN8OfBio76+NqJTcEZEzRKS0j8dvEpFtIlIr\nIm+IyHmR7J8xxhhjTJz5JvBlXHHvscB7gceAo8DPwmkgokGjiPhE5AbcpsvUXu65CLgDeLeq5gO/\nBJ4QkVGR66kxxhhjTFwZA/xDVUtxZ02fq6r7gC/iEmT6FemZxq8BtwHfB3y93DMBuFNV1wOo6h+A\nDmBeRHpojDHGGBN/3gDme9+vB2Z737cCMbmn8X5VvUNELuztBlX9U/DPInIu7pfZPMx9M8YYY4yJ\nV18C/igiAOXAKSIy07u+O5wGIho0qmr5QO4XkXnAP4BvqmrN8PTKGGOMMSbu/RWYCvw76No2oBa4\nKZwGYjZ72svqeQj4sareOYDnFQFFIZcnDGXfjBlpbFwY052NC5NgvgeswiW++L1rHcABVT0aTgMx\nGTSKyMeAnwM3qerfB/j0W4Hbh75XxoxoNi6M6c7GhUkYqvpAT9dFJE9E7lPVj/bXRswFjSJyCfAr\n4DJVXX4CTdwN/CXk2gRgyWD7ZswIZuPCmO5sXJiEISJvAz4J5HB8MnIacLaITMXNQN6gqj3ucYxm\n0BiYGkVE7gH8qnoLbkNmKvC0t1kz4DpVfba/RlW1GqgOviYiAzqQ25h4Y+PCmO5sXJgE8wfcB6KN\nIdezgbOBV3Gx2Xx6SYyJStCoqktx9YICP98c9P3l0eiTMcYYY0wc2wvcoqqVwRdFpABYqKpf7a+B\nmFueNsYYY4wxQ0tVT/EOWbkcmAu048oZvqiqF4fThgWNxhhjjDFxTkQm4o4NnAscAGYAdcA2EXmn\nqpb110ZUzp42xhhjjDER9QugBpgMXAE0AcW4Wo13hdOABY3GGGOMMfHvMuBLqloVuKCq7cAdwFvD\nacCCRmOMMcaY+NfG8aV2AvJwy9T9sqDRGGOMMSb+PQ3cK0H1DEVkNvAz3F7HflnQaIwxxhgT//4b\naAXuxM04ZgFbcUkxXwqnAcueNsYYY4yJc159xvNEpAS3HH2pu9x/1nSABY3GGGOMMXFORC4MueQH\nZntL1IGDV/pkQaMxxhhjTPx7gZ4TYQAOASX9NWBBozHGGGNM/Mvs4efpwFdw+xr7ZUGjMcYYY0yc\nU9XWkEutwBoR+QqwBvif/tqw7GljjDHGmMSVBNwfzo1RmWkUkTOAR1R1Qi+PfwBXoXwM8CJwo6oe\nimAXjTHGGGPihojkAj8B9qrqHSJyAfA5YA/wzXDaiOhMo4j4ROQG4FkgtZd7TgLuAd4HjAbKgQci\n1kljjDHGmPhzF3AhsMoLIB8H8oFzgN+E00Ckl6e/BtwGfJ/eM3iuBx5V1ZWq2gJ8GbhCRIoj1Edj\njDHGmHjzNuBjqvo0cDWQBlwD3IA7l7pfkQ4a71fVk4E3+7hHgM2BH1S1BqjxrhtjjDHGmIHLAQ56\n318FLFXVBqCdXlZ/Q0U0aFTV8jBuywaaQq414Y67McYYY4wxA/cG8HkRORM3w/ioiEwB7gWWhNNA\nLJbc6SlAzAIawnmyiBQBRSGXe0y4MSZR2LgwpjsbFybBfBZ4ErgFWAH8HpiHW829NZwGYjFo3ELQ\nUrSIjAZGedfDcStw+zD0y5iRzMaFMd3ZuDAJQ1XXeTOL44EDquoHVgPvCreNWAwa/wq8JCK/A1YB\nPwSeUtXDYT7/buAvIdcmEObUqxmY3WW1rNFDnDx7DNMn5Ee7O6Z3Ni6M6c7GhUkYIWdPzxDpPVWk\nt3Oooxk0+gPfiMg9AKp6sxcJ3wT8DncO4svAx8JtVFWrgergayISWgXdDIFX1pTyv39+E78f0lOV\n2286i4UzRke7W6YHNi6M6c7GhUkwfZ09HarHnJeoBI1eBDsm6OebQx5/GHg4wt0yA9DW3smDT27C\n74X+R9s6+NEfVvKbr11GZnosTmAbY4wxCS307OlkYAauNvafcZN1fbJ3d3NCXlq9n0OHm/EBH7pi\nDn95VqltaOXxl3fyvsusOpIxxhgTS3o4expgo4h8BnhcVe/trw07e9qckNc2uupJc6aOYu60Is6c\nXwLAIy/tpKW1PZpdM8YYY0z4snAn8PXLZhrNgHV0+tm4swqA2ZMLAHjL4gm8tvEgjc1tLF9XxiWn\nT45mF40xxhgTRERup/uexnzgvcBz4bRhQaMZsN2ltTS2uNnE6eNdxnRedjpzpo5i8+4ann51jwWN\nxhhjTGy5nGNBYyAZuRlXteaOcBqwoNEM2PodlQDkZacxuuDYvtrT55aweXcNW/cepqyygfHFOdHq\nojHGGGOCqOo5g23DgkYzYNv3HwFgyrg8fL5jM90zJxWQnZlKY3MbL60+wAcunxOtLhpjjDEmhIhM\nAD6NOwmmHdgM/EpVK8J5viXCmAHbW14PQMmo4097TE7ycdJMt5d26eoD+P3+bs81xhhjTOSJyHmA\nApcBdcC1wCmAisjZ4bRhQaMZkLb2Tsoq3THgY0eFHhEOJ88qBqCsqpFdpbUR7ZsxxhhjenUn8H+q\nejrwbeCoql4NfA/4aTgNWNBoBqSssoGOTjeD2FPQOHFMDoW56QC8srY0on0zxhhjTK8WA/f1cP0R\nYFE4DVjQaAZkn7c0nZqSRGFuRrfHfT5f11GCy9aV2RK1McYYExuqgOk9XJ8P7AungbCCRhFZJyJf\nFJGJA+iciUN7y+sAKC7IJCmp5yMsF3r7GitqmrqSZowxxhgTVQ8CfxCR93k/J4vIJ3Czj78Op4Fw\nZxp/A7wD2CMiS0XkEyJSONDempHvgLefcUwPS9MB40dnU5TvZiFtidoYY4yJCd8C/g+4BFevMRX4\nIvA9Vb0rnAbCKrmjqr8EfikiU4D3AZ8E7hKRZ3CHXD+mqkcH3n8z0lRUNwIwKq/70nRAYIl66eoD\nLFtbyseunt/rrKQxxhhjhp+q+oGvA4iID8hS1baBtDGgOo2quhe4U0T+DHwK+B/gGqBeRH4P3K6q\nh3t7vogENmHOA7YDn1LV13u476vAzUAesBG4TVVXD6SvZnhU1DQBMKqH/YzBTprpgsaq2ha27Klh\n/vSiSHTPGGOMMb0QkbOA24CFQJKIbAbuU9Xnw3l+2IkwIlIiIreKyDLchsmrgG8AE4GLcLV+/t3H\n8zOAJ4D7cWcd3gU8LiLZIfddDHwBuFhVC7znPBxuP83waWxuo77JfSgpzEvv896SomxKitwS9our\n9g9734wxxhjTOxF5F/AykAb8Hvgd0Ao8JSIfDaeNsGYaRWQJ8BZcsPgX4CZV3RJ0S5mI/BwXEPbm\nIqBDVQPp3g+IyOdwwWdwUNjg/TNVRJKBTqApnH6a4RWYZYS+l6cDTp5VzNPVe1m2roxPvGMhaanJ\nw9k9Y4wxxvTuB8AXQvcvisiLuP2OD/bXQLgzjVtwQeMMVf1GSMAY8BKuBlBv5uCOqwmm3vVjF1Tf\nAH4FbAJagK8C14fZTzOMKmrcfsbkJB+52Wn93r9oVjE+3Azl6xvLh7l3xhhjjOnDZODpHq6/DIwJ\np4Fwg8Z5wGZvE2UXESkWkdUAqlqpqrv6aCOb7jOGTcBxabgi8m7gE8Bp3nN+DjziLW+bKCqvdv/5\nCnPTSfL1n9iSn5POrMkuyf6Z1/cMZ9eMMcYY07dHgZtFpCv281Z0/5swZhmhj+VpEbkaOAeXln0B\n8B0RaQy5bRYwJczONgKZIdeygPqQax8C7g1KfPmuiNwEXEofeyaD+l0EhGZdTAizj6YPgeXpwjCW\npgNOmzuWbfsOs257FWVVDYwfnTNc3TN9sHFhTHc2LkyCSQFuBa4RkTW4kjuLgUnAUhF5zrvPp6qX\n9tZAbzbhsqMDU0qn4TZMBvhx+w8/EmZntwCfCbkmuJI9wZqB0KikAwg3LfxW4PYw7zUDcOjwsZnG\ncM2dUkhOVioNTW08tXwPH3/7guHqnumbjQtjurNxYRLJRu8rWGCCzoeL6wLf96jXoFFVd+OSVxCR\nB3Flb+pOtKfAEiBdRD6DK7vzYdwa+jMh9z0E3C8ifwM24FLDk4BlYb7O3bhknWATvNc3g1B1pBmA\ngpzwg8bk5CTOnF/CCyv38/wbe7n+ijlkpg+o0pMZGjYujOnOxoVJGKr63cG20dfy9Gxgh6p2Aj8E\nSkSkpJeObOvvhVS1VUSuBO7FZfBsB65V1WYRuce752ZVfcx7nb/jlg3WAFeoaujSeG+vUw1Uh/wu\nrb3cbgag6kgLAHkDCBoBzphXwtJVB2hsaeeFlfu4+ryejr40w8nGhTHd2bgwZmD6mvLZCpQAh3BL\ny73xA2HVUlHVDcC5PVy/OeTn+3CzkSZGHG3roL7J/S3NDyNzOlhuVhqLZhWzWg/x2Ms7ufKcaSTb\nCTHGGGPMiNJX9vR0oCro+96+ZgxnB01sqK5t7vo+f4AzjQDnLRoPuAzs1zYeHLJ+GWOMMSYy+trT\nuKen7wFEJAeXcbPZm943ca7aW5oGyBvgTCO4E2JmTSpg+/4jPLp0B+eeNH4ou2eMMSaOtXd0smJ9\nGVv21JCdkcqlZ0ympCi7/yeaIRXuiTDzgD/hklI2Am8AM4EmEblGVV8cvi6aWFDlzTRmpqec8Mku\n5y0az/b9R9i69zBb99YwZ8qooeyiMcaYEepoWwfl1Y1kpadSXHh8db4NO6u4++9rOVh1LLXhsZd3\nctv7FnP+yVYh6USIyHjgflW9UkQKgEdV9cL+nhduGuvdwA7cCS43AHnAOOBG4E7g9BPptBk5ApnT\n+TkDn2UMmDmxgDGFWRw63MSTy3db0GiMMYate2v4/v2vU9vo9s3PnTqKCxZPoDAvg+Xrynh5bWnX\nvVNK8qioaaSltYOf/XU1E8fkMG18frS6PpJlAOd536fhTv3rV7gnwpwFfFlVK4G3A4+pagWuVMHC\nAXbUjEDVtW55Oj974PsZA3w+H2ctcAn4y9aWUdtwdEj6ZowxZmQqq2zg9v97tStgBNiyp4Z7H9nA\nD3+/sitgHDc6m0+/exGffOdCPv+BUyjISaOtvZOf/HkVHZ3+3po3QyzcoLEBKBKRYtwpMU9512cT\nUq7AxKfATGPeIGYaAU6eXUxaahLtHZ0seXP/UHTNGGPMCPWvpTtoamknOyOFj1+7gP+6ai4LZ44m\nMz0FHzB+dDbXnj+dW65bxIRid6JYTlYa771UANhbXs8raw5E8TdILOEuT/8TeBh3WksV8LSIXI87\nF/qPw9Q3E0Oq67wajVmDCxoz0lJYOGM0q7YeYunqA7zzwplD0T1jjDEjTENTKy+ucgHfBadMZPoE\nt8ws3tYlv9+Pz9dzebap4/KYO3UUW/bU8NBzyvmLJ1optwgId6bxNuAXwHPAxap6FMgFfgZ8aZj6\nZmLI4UDQeAKZ06FOnlUMwK7SWvZXhB49bowxJhEsWbWf1rYOUlOSOHXO2G6P9xYwBlxy2iQASisb\nWb21Ylj6aI4X1kyjqrbjZhWDr907LD0yMaej08/herf/MHeQM40A08bnk5uVRn1TK8vWlvKBy+cM\nuk1jjDEjy6othwCYN23UCR0vO744h6nj8thzsI6nX93L6fN6PLTO9M7fy/e9CrfkzmjgK7gs6VSO\nP8zar6rnhNtDM/LUNR6l09tonDsEM41JST7mTRvF65vKWbmlwoJGY4xJMO0dnWze7VIiZk4sOOF2\nzpg3lj0H63hzSzmVh5u7lesxPVPVXbhKOKjqIcI82S/c5ekHgQ8DbwLPAs+EfJk4VlN7rLD3UMw0\nAsiUQgC27z/C4fqWfu42xhgTT3bsP0JLawcA0wdRMmf+dJc00+mHpastuXK4hTsffDFuL+Nrw9kZ\nE5sCS9M+H+Rkpg5Jm9PH55OS7LKoV289xCWnTx6Sdo0xxsS+9TvcKcUFuekU5mWccDupKUksnFHE\nG5sreHlNKe+5ZPZQddH0INyZxkrApoMSVKBGY05mKklDlJ2WlprM9PF5gKv2b4wxJnFs8pamBzPL\nGLDIS67cc7COPQfrBt2e6V24M423A3eJyH8D24DW4AdVtbXHZ4UQkcXAfcA8YDvwKVV9vYf7zsdl\na88CdgOftaMKoyewfDxUS9MBU8blsW3/ETbvrhnSdo0xxsS23aW1AEwckzPotqaMy6MgJ50jDUd5\nec0Bpo6bN+g2Tc/CnWn8f7hTYd4E6nCzjoGv5nAaEJEM4AngfiAfuAt4XESyQ+4bDzwGfE9Vc4Ef\nAP8SkRM/isQMSo1XbmcokmCCTSlxM40HqxptX6MxxiSII/VHu7Y9jSvK7ufu/iX5fCyYUQTA8nVl\n+P12Qkx/RORkEblZRL7u/fPUcJ4X7kzj+wfRt4CLgA5Vvc/7+QER+RxwFa5weMBHgGdV9REAVX1I\nRLYSZjq4GXqBRJjBFvYONXFMDklJPjo7/WzZXcM5J40f0vaNMcbEnr1BS8hji7KGpM2FM0azbF0Z\nZVWN7DlYZ+dR90JEZgMPAGcDbcAhoADIFpHVwH+p6qbenh/WTKOqLlXVpcBLwF5gOfBq0PVwzAE2\nhzbtXQ+2GCgTkX+JSJWIrABSw10CN0NvuJan01KTGT/afcrcuvfwkLZtjDEmNu32gsbC3HQy0gZe\nn7EnE8fkkO8dc7t8XdmQtBlvRGQCsBSoB04DMlR1krequxC3bfAlEZnaWxthBY0ikiIiPwKagB3A\nZOCPIvJnEQm3KFK29/xgTUDox4wi4Cbg18BY3DGFT4rIiRdyMoPSVdg7e2gyp4MFzhIN7G8xxhgT\n33aXub/3JUOwNB3g8/lYMN0tUb+68eCQtRtnvgG8oapXqOpqVe1awVXVTar6AeAVXB5Lj8IN8b8F\nXAu8HfgXbqn4V7j9iT8BbgmjjUYgNMDMwkW8wVqAJ1X1ee/ne0Tki8C5wJP9vYiIFOECz2ATwuif\n6YHf7+dw3dCdBhMq8Edj98HaPs8ZNYNj48KY7mxcREcgw7lkiJamA+ZNK2L5+oPsK6+nrLKB8cWD\nT7KJM1fR/3bDO4F/9vZguIkwHwJuVtVn8fYWqupLwMeA68JsYwsgIdeEnpesQ4s2hVWp3HOr10bw\n15IBPN9j0rr1AAAgAElEQVQEaWhuo72jE4CczKEPGgOboGsbWrtmNM2wsHFhTHc2LiKss9PPgUMN\nAIwdNXQzjeCSK7My3FzYqxtstrEHxUBpP/eU4vY49ijcmcaxwIEerlcD4YbyS4B0EfkMruzOh4Ex\ndD9R5o/AqyJyFfA08GkgHQi35M7dwF9Crk3A/hCckMN1wafBDP3ydElRFj7cJ5HdZbWMGkSRV9Mn\nGxfGdGfjIsKqa1tobXMnwYwuGNq/90lJPuZOHcWqrYd4deNBrrt41pC2Hwf2ACcB+/q451Tvvh6F\nGzQuBz4JfDFwQUTScOvjy8NpQFVbReRK4F5cGZ3twLWq2iwi93j33Kyqa0XkWuBHwEO4T37XqGro\nfsjeXqcaF8x2ERFLojlBwbN/OcOwPJ2Wmsyo/Ayqa1vYXVbHqXPGDvlrGBsXxvTExkXklVU1dH1f\nlD/050TPm1bEqq2H2LbvMIfrWgZ12kwc+iPwQxFZpqpHQh8UkULgDuBPvTUQbtB4G/CMF/Rl4PYy\nBkL4y8PtrapuwO1NDL1+c8jPzwHPhduuGT6BoDEjLZnUlHB3MwxMSVE21bUt7C23Sv7GGBPPyipd\n0JiXnUZ66kB2noVnxoR8UlOSaGvvZOWWCt565pQhf40R7MfANcA2EfkJsBK3HF0InAd8DjfL+JPe\nGgi35M5WYLbX0M+BtcB3gdl91fMxI19geXo4kmACigvcp83AHxNjjDHxqayqEYCi/OGZAUxLTWbm\nRLcl741N5cPyGiOVqrbhamb/Fvg88Dwu32QFbiX5QeASVe01waDXmUYR2R1yyQ8Ep7a+A/iKiKCq\n00/kFzCxLzDTmDMM+xkDRntBY2llo2VQG2NMHCv1JgdGD8PSdMDcqaPYsqeGNdsqOdrWMSwzmiOV\nFxB+TUS+AUzHVQ+oAnYFl+DpTV/L098M+n4mbtryl7ijBNuAU4DP4tKzTZwarsLewQIzjY3NbdQ2\ntFKQaydGGmNMPAqsKAUmC4aDTCkEoLWtgw07qjhtru2VDxCRPGA+kMaxicBJ3tfS/p7fa9Coql0b\nIUXkTeAmVf170C3/FpH1wPdxSSsmDh0ZxhqNAcHLFKWVDRY0GmNMHOro6KS82uW0DtfyNLj3qwnF\nOZRWNrByc7kFjR4ReR/wO7rXzA7od8tiuJkNc4H1PVzfDkwLsw0zAtV0zTQO3/J0VkZqV22tUtvX\naIwxcanySDMdnW4FdDgyp4MFZhvf3FKB39/vqmui+CFuP+NYXFJz6Fe/ws2efh34nojcqKp10FVJ\n/07CmM40I9dwngYTrLggk71eFX9jjDHxp6L6WOW8wmFeUZLJhSx5cz+HDjezv6KeySV5w/p6I0QJ\n8HNVrTzRBsKdafwUbg/jQRHZKCKbcMW+JwGfONEXN7Gtrb2T+iZXsmw4ajQGC3zqDGTWGWOMiS/l\nNe7ve25WKmnDnJwyYUxO1wrW6hOPkeLNf4BLB9NAWDONqrpNROYClwHzcJnU64EXVLVjMB0wsetI\nUGHv4VyeBrpOggn+JGpMNPn9fhqa2wDIzkglKcmy+o0ZjMB+xkgU3E7y+Zg5sYD1O6pYo4d4xwUz\nhv01R4BVwE+8mtu7gPbgB1X1K/01EO7yNKraCjzpfZkEEMichuFfni7Mc0sVFTU202iiq6G5jX+9\nuJ1X1pZ2vckV5KZz1oJxvOvCmYwbPbTn5RqTKCpq3HgalRuZU1pmTypk/Y4qNu6sorWtY9hnN0eA\nS3EVcApwxwUGhJZU7FXYQaNJPIHC3klJPjIzhvd/lcAfkcaWdhqaWod9OdyYnry5pYKf/XU1dY3H\nnyR3pP4oT7+6h+de38s7LpjBBy+fY29AxgxQebWbFAhMEgy3mZPyAWht72TTrmoWy5iIvG6sUtWL\nB9uGBY2mVzXe8nRuZipJw1xwO/iPSHlNEzMtaDQR9uhLO/ndExvx+yE1JYmzFoxjzpRCkpJ87Cmr\nY8WGMuqb2vjnizt4Y3M5//PBU5nhnTxhjOlfYOZ+VITOg87LTmfsqCwqappYt70y4YNG6EpizuH4\nmcXRwBu4Yt9+Vd3b2/MtaDS9OuLNNEZi1i8nK42UZB/tHX4qapq6joEyJhIefmEbf3hqCwDjR2dz\n/eVzjtt3NaUkj7MXjmPJqv28sraU/RUNfOGul3nvpcK7L541bOeyGxMvmlrauhIrI7GnMWDGhHwq\nappYv6MqYq8Zq0Tkd8BH+7hll3ffe1T1nz3dYEGj6VXXTOMwJ8GA27RckJtB1ZFmS4YxEfXUit1d\nAeOsSQVc38vSc1pqMlecNZV5U0fxt+e3cbj+KH95ZisvrNzHdRfN5OyF47sK0zc0tbK3vJ7dZbUc\nrG6koamNjDR3Ju6pc8dGbKbFmFgR2M8IkZtpBBc0rthwkJ0HjtDQ3EZO5vC/n8WwDwLvB9aGXB8N\nLMPV5PYDvda+i2jQKCKLgftwGdjbgU+p6ut93H8J8CyQq6oWSURYYE/jcCfBBIzKTXdBoyXDmAh5\nfeNB7v2XO7dgxoR8PnTF3H5nDSeX5HHbe0/m2Tf28dqGg1TUNPHrf67n1/9cT1ZGCn6/n+ajvReV\nSElO4qpzpnL9FXPIykjoNzCTQAJL08lJPvIiuP1o2vh8fD7o9MOGHVWcvXBcxF47Bn0FeFJVj3uT\nFZFy4GOqqv01ELGgUUQygCeA7+Eqkn8EeFxEpof+At79hbjjbkyUHKmPTGHvgMCSRfAnUmOGy97y\nOn7851X4/TBudDbXXzEn7GXm9LQUrjlvOqfPHcvS1QfYsqeGtvZOmlqOq2BBXnYaxQWZZGWk0Hy0\nnX0V9bS2dfL4K7tYs62Sb9xwBuNH5wzHr2dMTAn8XS/ITY9o+aqM9BQmFuew/1ADG3YmfND4H2CS\niIReLwIeEJHXgDpVPdhbA5GcabwI6FDV+7yfHxCRzwFXAQ/3cP89wF+BL0WofyZE4AjBnAgsTwNd\nS3uVR5oj8nomcTW1tPGDB96gpbWDnKxUPnLlXDLSBv7nsKQom/dfJrS2dVBa2UBtQyvJyT5yMlMZ\nU5hFdshS2NG2Dl5ZW8rSVfvZX1HP1369nB995nzGjsoaql/NmJh06LBXo3GYT4LpybTx+ew/1MCm\nndURf+0Ys5m+S+tsARCRH6tqj7FXJHdvz8F1OJh6148jItcDebjA0URBZ6e/a3k6LzsyM40FOV7Q\neLjJzgo1w8bv9/Orf6yjrKqRpCQf118+h/ycwb2RpaUmM218PifPLmbhjNFMG5/fLWAESE9N5tLT\nJ/PRq+eTlpJEdW0L37pvRVcRcWPiVWCvemGEajQGmzbeHSG4+2AtDU2t/dwd16YBU3v4Ot17fDpw\nA3BLbw1EMmjMBkLXHZuA4z5ii8hk4Lu4jtsRDFFS39RKe4cL3CIWNHqfQJuPdtBob6JmmLy0+gAv\nrykF4IqzpjAlCmfSzpxYwIeunEtyko+yqkbu+tsa+6Bk4lo0ZxqnlOTh84HfD5t310T89WOFqu7r\n6QvYCnxbVffg8kh6TTWP5PJ0I5AZci0LqA/8ICJJwO+Br6tquYhM8x4KO3j0ahAVhVyeMPDuJraa\nusidBhNQEDTbU3mk2Qp8DyEbF05NXQv3PbIBgNmTCjj3pPFR68vMiQW87dxpPP7KLl7dcJD/vLqH\nq86Z1u/zzNCxcREZfr+/K8ExkuV2AjLSUxhXlE1ZVSMbdlZxxvySiPchFojbzPgL3P/jP1XVB0Tk\nQmCiqn4XQFXLcLOPPYrkTOMWIHT3pXD8kvVE4EzgHhE5zLG08AMick6Yr3Mrbtk7+GvJiXY6UVXX\nuqDRR2TqNIILTgMbpCsP277GIWbjAvjNoxtoaHblb9554Ux8w1y0vj9nzi9h/nQXszz4781U2X7e\nSLNxEQF1ja1dFQWisTwNbl8jwObdCb2v8X4gDXgI+KWInIYr9P0LEfliOA1EMmhcAqSLyGdEJFVE\nbgDGAM8EbvCmSrNUtVBVC4GTvIcmqOqKMF/nblwwGvw16KNzEk1N3bEkmOQIZbolJfnI95bCA0sZ\nZsgk/LjYsKOKZevKALji7KmD3sc4FHw+H28/fzqZ6S67+r5H1ke7S4km4cdFJAT/PY/UEYKhpoxz\n21B2Hqil5Wh7P3fHrVOAm1X1DlwVm3eo6r+BDwCfCKeBiC1Pq2qriFwJ3Av8AFen8VpVbRaRe7x7\nbg55mg9XaHIgr1MNHPdRQkQSeufriaiJcI3GgPycdA7XH7WZxiGW6OOio9PP/z3qlqUnFGdz2pyx\nUe7RMTlZaVx1zlT++eIOXttYzrptlSyaXRztbiWERB8XkRIot5OSnBS14tpTS3IB97dA9x1m0ayE\nHGPlQCBqXw1c432/BZgcTgMRLe6tqhuAc3u4HhosBq7vAbofzWCGXU1tZDOnAwpz09lz0MrumKG1\nfF0pew7WAXD1udMjWicuHItlDK9vKufAoQZ++/hGfv75CyM2w2/McDuWOZ0etS0hOVlpjM7PoKq2\nhc27axI1aLwb+JqIfAh4E/iad/1MoC6cBuzAVNOjrpnGCAeNgSVDW542Q6Wj089fn3UHHciUwq5l\nqliS5PPxtnNdEsyeg3W8tHp/lHtkzNAp92Yao3185lRv7G/elbD7GvOAdwD7cCUNZ4rIK8AfgH+E\n04AFjaZH1YEajRFeng6U3bGEADNUVqwv48Ahd5TqJadNinJvejelJI9500YB8NdnlfaOzij3yJih\nUVEdvczpYFPHuWSYrXtr6EjM8XUxLlj8Pe6s6R8BS4EbcUlh/Yro8rQZOQLL05GeaQyU3ampa6Gt\nvTPsY92M6c3jL+8EXImdiWNyo9ybvl16+mS27K6hvLqJF1bu5/KzpkS7S8YM2rGZxugmn00Z58Z/\nS2sHuw/WMXNiQVT7E2mqesFg27Cg0XTT3tHJYe8IwfzsyA7ywPK03w/Vtc2UFGVH9PVNfNm27zBb\n9x4G4NxF0avJGK6SomwWzBzNhh1V/GPJNi49fRLJyfbByYxcHZ1+DsXI8vSovAxyMlNpaG5j8+7q\nhAsaReQB+q977Qd8qvrRnh60v0amm5raFgKHU+TnRGd5GiwZxgzeE8t2AVBcmDli3iAuPGUiAOXV\nTaxYfzDKvTFmcKqPNNPR6d5Qoh00+ny+rj3NCXoyTLr3ldbHV+CeHtlMo+kmOFgriHAtu/TU5K6a\ndVZ2xwxGQ1Mry726jGcvGBf1Qt7hGleUjUwpRPce5h9LtnPeyeNHTN+NCRUotwPR39MIMLUkj027\nqtmyuxq/359QY0tVPzjYNixoNN0EklDSU5PJSI/8/yIFuekuaDxiGdTmxL20ppS29k5SkpNGXHmN\nCxZPRPceZldZLet3VI24/hsTUO4lwWRnpJKeGv0KeoF9jTV1R6moaUqoLVAicjthHsusqt/u6boF\njaabwExjtE7MKMhJ52BVo800mkF5/o29ACyYXkRmFD78DMaUklwmjsnhwKEGHnt5pwWNZsSKlSSY\ngHGjc0hLSaK1vZNNu6oTKmgELifMoBH4dk8XR9ZfUhMRgZnGggjvZwwIBKu2p9GcqL3ldew4UAvA\nqXPGRLk3A+fz+Tj3pPH87fltrNxcQWllAxOKc6LdLWMG7GBVbJTbCUhO8jG5JJcdB2rZtKuaS04P\n6yCUuKCq5wy2DUuEMd1URX2m0Tt/usaWp82JeWn1AQDys9OYNiE/yr05MQumF3WdyPTk8t1R7o0x\nJ6asytVIHV2QGeWeHBNIhtmUuEW+T5gFjaabaC9PBz6RHjrcjN8/oKPHjcHv9/PK2lIAFs4cTdII\n3eienJzEGfNLAHhh5T6aj7ZHuUfGDIzf76es0gsa82MnaAycDFNW1chh7yALEx4LGk03x2Yao7M8\nXeiV3Wlt66C2oTUqfTAj17Z9hyn3zrod6XsBT587luQkH00t7SxdZUcLmpHlSP1Rmo92ADC6IDaW\npwEmjcntOtt9406bbRwICxrNcZpa2qhrdIFacM3ESCrMPfbHpaKmMSp9MCPXK2tdmZ2i/AzGjx7Z\nm9xzs9KYP70IgKdW7LGZdzOilHqzjABFMTTTmJaazKSxLot6/c6qKPdmZIloIoyILAbuA+YB24FP\nqerrPdx3E/BFYCygwOdVdVkk+5qogmtqFeVFZ5BnZaR0ZbcdqmlG7CQ1E6bOTj/L17ug8aSZo+Oi\nBttZC8axfkcVew7WoXsPM2fqqGh3yZiwlFUdK7cTaxUMpo/PZ8/BOjbsSKygUUR8wPnA2cBEIAto\nAkqBFar6cl/Pj9hMo4hkAE8A9wP5wF3A4yKSHXLfRcAdwLtVNR/4JfCEiNhfyggI1NRKTvJ1bcKP\nNJ/PR4E321hx2JJhTPi27z/ctb1iwfTRUe7N0JhSksuYwiwA/vPqnqj2xZiB6NrPGENL0wHTJrh9\njaWVDVTXJkalDhGZAqwCngbeiQsas71/vhN4VkRWisjE3tqI5PL0RUCHqt6nqh2q+gBQAVwVct8E\n4E5VXQ+gqn8AOnCzk2aYHaxyQVphXgZJSdGbpSn0anpZBrUZiGXrji1NlxRlRbk3Q8Pn83GmlxCz\nbG0p9U22z9eMDIGZxlhamg6YPDaPlGT3HpdAs42/AQ4AY1X1LFV9p6q+3/vnmcAYYC9uRbhHkQwa\n5wCbQ66pd/3YBdU/qeqPAz+LyLlAbg/PNcMgMNMY7TNCA8kwNtNowuX3+1nhLU0vmB4fS9MBJ88u\nJtXbsvGiJcSYEWJ/RT0AxTFUbicgNSWJKSVutnHNtsoo9yZizgO+qqr1PT2oqnXAN4C39NZAJIPG\nbNy6ebAm3Hp6j0RkHvAP4JuqmpCni0fawZgJGr3l6WpLhDHh2XHgCIe8U4QWzCiKcm+GVmZ6Cgtn\nuOX2p1/dawkxJua1tnV0zTSOHRWbs/6zJhUAsEYPJcqYOgCc2889b8GtAvcokjtTG4HQjxtZQI8R\nr4i8FXgI+LGq3hnui4hIERD6jjFhAP1MaBVeqZKiKAeNRfle0FjTREdHJ8nJlug/GIkwLlasPwi4\nWeqRnjXdkzPmlbBaD7G/op7Nu2u6sqrNiUuEcREtpZUNdHa6QCxmg8bJhTz92l4O1x9lz8E6po0f\nmQcBDMA3gQdF5GzgFeAgcBRIB0pwCTIfBG7orYFIvhNvASTkmtDDsrOIfAx4GJdd/YMBvs6tuGXv\n4K8lA+5tAmrv6OTQ4dg4JzSwB6a9w2/HCQ6NuB4Xfv+xrOkF04viamk6YNLYHEq8N99nXtsT3c7E\nj7geF9G092AdAGkpSeRHqXxbf0pGZZGblQrAqq2Hotyb4aeqfwMuwE0Yfh14BHgeeBy4HTexd5Gq\n/qW3NiI507gESBeRz+A2WX4Yt+nymeCbROQS4FfAZaq6/ARe524g9BeegP0h6FdpZQMd3ifD4sLo\nfjIclZeBD/B7/UqwQ+WHQ1yPiz0H67rOuJ0fJ1nToXw+H6fPL+GJV3axbF0ZH3/7wqhVOIgjcT0u\nomlvuVtEHDMqK2ZPZfL5fMyeXMiqrYd4Y1M57754VrS7NOxU9Q1c/AWAiCSrake4z49Y0KiqrSJy\nJXAv8ANcncZrVbVZRO4B/Kp6C/AlIBV4WuS4icnrVPXZMF6nGjiuxLuIWLphGPYddIM8NSUp6nsa\nU1OSyM9J50jDUcoqGzl1Tv/PMb2L93ERyJrOz0lj4ticKPdm+CyeVczTr+6hrb2TJW/u5x0XzIh2\nl0a0eB8X0bS33M00xurSdMC8qaNYtfUQW/fWcLi+5bjDJeKRV+bwOoLqNIpIV51G4GFV7XV5L6LV\nNlV1Az1swlTVm4O+vzySfTLHBAb5mMLMqJbbCSjKz3BBY1VD/zebhHXcWdMzRu5Z0+HISE9h0axi\n3txSwX9W7Oba86fHxFg1JlRgpjHWg8YZEwtITUmirb2TNzZVcPlZ8XuahIgsAp7ClTFcAewAWoAM\nYDzwQ+AOEblCVTf11EZslWg3UbXnYOCTYWwsBY8uyGRnaW1XBp4xPdlVWtu1NB3IMI5nZ84v4c0t\nFZRVNbJ2eyWnyJhod8mY49Q1tnbV2B0X41uL0lKTmTWpgM27a1ixoSyug0bc1sAncfkinaEPikgS\n7uCVe3FJMd1YSqrpsi/GPhkGMqjLKm2m0fQuMMtYmJvOxDHxuzQdMKE4h8neublPLtsd5d4Y0932\n/YcB8OH+f411gdOj1m6r5Ej90Sj3ZlgtAn7WU8AI4F2/GziltwYsaDQANB9tp7wmtmpqBY5Oq6hp\novloe5R7Y2JRR6efl1YfAOLnrOlwnLVgHAArt5R3zbIaEyu27XVB4+jCTDJi7MzpnsybNoq0lCQ6\nO/0sW1ca7e4Mp224/Yx9eQ+wq7cHY/+/pokI3VtDoLZprHwyDGRM+/2wr7wOmWLHj5vjbdxRRVVt\nCwAnz06cZdoFM4r4z6up1De18djLO/nUu06KdpeM6bJt/xEAJo3JjXJPwpOWmsy8aUWs3V7Ji6v2\nc/V506PdpeHyOeBRr0pNaJ3GsbjC3mcC7+itAZtpNABs2uUO3CkuzCQ7MzXKvXFys1LJznB92V1W\nF+XemFi0xDtSb0JxdszMkEdCSnIS5ywcD8Bzb+yltiGul9TMCOL3+9m2z800jqTtIoulGIBt+46w\nu6w2yr0ZHqq6BFgALMMlJX8W+A7wP8CFwOvAfFV9rrc2bKbRALB5t6s6MdU7izMW+Hw+Soqy2Fla\n25WkY0xAY3Nb11nTiTTLGHDG/BJeXL2f1rZO/r1sN9dfYXWpTPSVVTVS1+iqFk0aOzJmGsFlUY/K\ny6CmroWnVuzh0+9eFO0uDQtV3Yc7GeaE2Eyjob2jE/X2oEwdFztBIxxborag0YRa8uZ+Wlo7SElO\nYvHs4mh3J+Iy01M4c14JAI+/spP6JisvaKJvrbqTVTLSkmM+czpYks/HGfPGArB01X4a4nQ8ichF\nIvK4iGwSkWdE5CLv+ltE5AsicmZfz7eg0bBueyVH21xB+Fg7ezPwR2dXaW3XaTXG+P1+nlrhModP\nmjmarIzY2FIRaeefPIG0lCSaWtp5ZOmOaHfHGNZsqwRg5sSCEVdD9LS5Y0lNSaKltYN/L4+/ygQi\n8g7gaaAcV36nFHhSRL4APAv8F/CKiFzfWxsWNBqWetmnk8bmUhBjZ4ROLnHLG81H29kTp/tMzMCt\n2VbJgUOuFNNZC0qi3JvoyclK4+yFLpP6sZd3dtXGMyYa2js6WbfDBY2zJhVEuTcDl5WRyhmB2fuX\nd8Zj1Y7bgdtU9ROqepeq3gB8A7gTuEpVFwK3eNd6ZEFjgms+2s5rGw4CsGhW7BVGLsrPIMdLzNm0\nq7qfu00i8Pv9PPSsAjB5bC4TR0iG5nB5y+KJZGek0NrWyW8f3xjt7pgEtnl3NS1H3arVzIkjL2gE\nOG/ReJKTfNQ3tcXj7P1MIDTJ5QXcCTEvej8/D0zqrQELGhPcP5dsp6W1g+QkX0yepuHz+Zg63u2z\n3GhBowHW76hiyx6X7X/xab3+bUsYmekpXHH2VABe3XCwKznImEh78U23ajWuKJvCvJF5hnN+TnrX\n7P2/XtxBdW2vxzCPRNuB0KOar8bFgoH6jR8GtLcGLGhMYDsOHOn6JHXOwnHkZqVFuUc9mzbO7bPc\nuLPa9jUmuI5OPw8+uRlw5TxG4hLYcFgsY7qS2O76+1oqbJnaRFhLazvL1rvC2IHyNSPVRadOIjM9\nhaNtHdz3yAb8/rh537kd+LmI3C8inxeRPwNfBT4O/FlEqryfv9JbAxY0JiC/38+rGw7yrftW0Nre\nSU5WKheeGrszNoHAoL6plY07qqLcGxNNT6/YzQ6vcPDlZ01JmBNg+pPk8/HeS2eTmZ5CY3Mb3/nt\na1a70UTUsrVltBztIMkHi2aN7KAxMz2FK4Nm7wNHlY50qvoEcBkwGrgRyAMuUdUHgMXArcC8mKnT\nKCKLcRk783DTpJ9S1dd7uO8DwB3AGNw6+42qXh6/GZR95XX85rGNrPUy3DLTU/jY1fPJjOGjnkYX\nZDJ+dDZlVY28tOYAixKwvIqB/RX1/P6pLQCcPKuYGRNsljFYQU46771kNn/8z2b2V9TzjXtX8LWP\nnsG40SOn7IkZmdraO/nb825Fc+7UophdtRqIU+eMYd32SnaW1nL339cybXz+iKo72RtVfRl4uYfr\nm4HN/T0/YjONIpIBPAHcD+QDdwGPi0h2yH0nAfcA78NFw+XAA5HqZ7xq7+jkr89s5bafLO0KGKeN\nz+OW604aEbW0Ap9cV6wvo7G5Lcq9MZHW0NTKHQ+8QfPRdrIzU7nynKnR7lJMkimFvOeS2fh8rrbp\nf/9sKQ+/sI0GGzNmGP3n1d2UVzfhAy45PXZXrQbC5/PxnktmkZOZSktrB9/57Wvxtr/xhERyeuki\noENV7/N+fkBEPgdcBTwcdN/1wKOquhJARL4MVIpIsapWRrC/caO8upEf/3lVVwHvgpx0rjpnKvOn\nF42Y5b2TZxfz/Mp9NLa0888Xt/ORq+ZFu0smQqprm/n2b16jtLKBpCQfH3yrxMVMxnBZNKuYrIxU\n/va80tTSzh+e2sJfntmKTBnF9An5FBdkkp+TRk5WGrmZaRTkplOUn0FaanK0u25GoF2ltTz4bzdB\ntWhWcdeBDPEgLzudD7xVeODfm6ioaeIrv1rGt248Ky5mHE9UJIPGOXSf+lTvejABVnTdoFojIjXe\ndQsaB6Cjo5OnX93Dg09t7iqDcOb8Eq48e+qIe4PIzUrjnIXjeWnNAR59aSenyBgWxGC2txk6be2d\nLHlzP79/chP1TW0k+eC6C2fGXAH6WDRrUgGffd9iXlx1gJWby2nv8LNpV3WfZatG5WUwcUwOk0ty\nmToun+kT8phckkf6CPtbYSJn3fZKfvSHN2lr76QgJ42rz5sW7S4NuWnj8/ng5XP489NbKa9u4nM/\ne4nrr5jDVedOS8ixEcmgMRsITelrArJO8D4Toq29g7rGVsoqG9mws4olb+7vyqLMzkjhXRfNYu7U\nUcFM9roAACAASURBVFHu5Ym7YPEE1u+o5HD9Ub79m9d454UzOXvhOEqKsshMTxkxs6bmGL/fT0en\nn5aj7TQ0t1FT10LpoQa27Klh5ZYKjtS7ZI701GTec8ks5k0rinKPR47crDSuPX86bz1jMlv3Hmb/\noXoO1TRR19RKU3M7zUfbCC5GUFPXQk1dC+uDks2SfDBudDaTxuYyfnQOY4uyKMrLID83ndysNDLT\nU0hPTSYtNZmUZJ+NwTjl9/tpa++ksbmNqtpmdpXWsmL9QVZ7qQaZ6Sl88PI5cXsy05wpo/j4tQv4\n0zNbaWxu43dPbOIfS7Zz9sJxzJtWxKSxOYzKyyA7I5X0tOS4HgeRDBobgcyQa1lAfci1ngLELKAh\nnBcRkSIg9J1lEkB5eXlYHR1uS1cf4F8v7qCjo3NQ7fj94CfwxttJb1UB5k0t4sJTSsjKaKGifGTX\ncLvmzFE89Nw2Gmrb+ONjlfzxMXfd54PkpCR8Ph8+7+fBmDgmhy986DRSU2KnwMAll1wyFf4/e/cd\nHmd1Jvz/OzPqvVjuvd22sQHTW+gsgSSUTdmwvOQNyZKE/CC7ySbZbBrZJIQ37KZBskCytBRIwib0\nHtMMBpti4367yras3nuf3x/PzFgejzQjaZpG9+e6dDF69Mw5R2iO555T7kOFqo76mIJE9Iv9lS3c\n9ZfNgTWo/ter89iLFy+Dg95hX7cALmDJ3GIuOGk6+dk9E/71mygzCmBGQRZwJHee1+ulp2+Azu5+\n2jp6aWrrobGlm7qWTuqauunudV5m5R2NlB+IrB6X24Xb3wch0BGH65NnrJrBdZctH8+vNuH6Raw9\n8dpeXlh/cFxpYgJ91etlMEw/LSvO5opzFpI+2EZNdfDbeerIcsG1F0zntY0VbN3fSEOnl6dequap\nEPe6/f0gSu9HJYXZfPXakyjMi+zEtvH0iXBc8co/JCIfBH6lqouGXNsMfFdVHxty7f8BZar6Wd/3\nU4AaYIqqNkVQz/dwchEZk4pWq+qm0T7J+oVJcdYvjDnamPpEOPEcaXwJyBSRm3DS7lyHk1Ln+aD7\nHgZeFZH7gHeB24BnIgkYfe4EHgq6thh4GrgY2Du25oe1AOd3vBCI5Unn8agnVeqIVz3xrGOsyfdS\nuV/Yayn56ohXPdYvUr+OeNWTanXEJFFr3IJGVe0VkcuAu4Ef4eRpvEJVu0TkLt89N6rq+yJyA3Af\nMB0nn9D1o6inAThqtbeI+B8eUtXy8f4uoYiIfzvn4VjVEa96UqWOeNUT5zoGxvL8VO4X9lpKvjri\nVY/1i9SvI171pGAdY+oT4cQ1o7OqbgHODnH9xqDvH+HoNDzGGGOMMSaBkmeVvzHGGGOMSVoWNBpj\njDHGmLAmS9DYAPwHQWtXJmAd8aonVeqIVz0TtY6J2u5E1BGvelKljnjVY/0i9euIVz1WRwTilnLH\nGGOMMcZMXJNlpNEYY4wxxoyDBY3GGGOMMSYsCxqNMcYYY0xYFjQaY4wxxpiwLGg0xhhjjDFhWdBo\njDHGGGPCsqDRGGOMMcaEZUGjMcYYY4wJy4JGY4wxxhgTlgWNxhhjjDEmrIQEjSJymogcjuC+i0Rk\nQERy4tEuY4wxxhgTWlo8KxMRF3A98FOgN8y9xcB98WiXMcYYY4wZWbxHGr8JfAn4IeAKc+9dwMMR\n3GeMMcYYY2Is3kHjvap6IvDOSDeJyLVAAU7gaIwxxhhjEiyu09OqWh3uHhGZC3wfOBvIinmjjDHG\nGGNMWHENGsMRETfwIPAtVa0WkQW+H0U8RS0ipUBp0GUPkAlsVdX+qDTWmAnE+oUxx7J+YczoJFXQ\nCMwGTgdOFJG7ODJ9XiEiH1LVdRGUcTNwS6gfrFmzJjqtNCYxxrO+1/qFSVXWL4w5Wsz2giRV0Kiq\nB4FAeh0RmQfsB2apameExdwJPBR0bRbwUlQaaczEZP3CmGNZvzBmFBIZNHr9D3yjiqjqjUH3uIbe\nFwlVbQAahl4TkRHT+xiT6qxfGHMs6xfGjE5CgkZVfQWYOuT74GDRf70cZ32JMcYYY4xJIDtG0Bhj\njDHGhGVBozHGGGOMCcuCRmOMMcYYE5YFjcYYY4wxJiwLGo0xxhhjTFgWNBpjjDHGmLAsaDTGGGOM\nMWEl1YkwZmLzer08+soeBr1w9XmL8HjsM4kxxhiTKixoNFGzs7yJ+5/aDoAeaOSbnz4NlytmR2Aa\nY4wxJo5sKMhEzWubKgKP39pazd6KlgS2xhhjjDHRZEGjiYqBQS9vvF951LUd5Y0Jao0xxhhjos2C\nRhMV5ZUtNLX1ADClKBuAnRY0GmOMMSnDgkYTFYdq2wHISHNzyrKpAOw4YEGjMcYYkyoSshFGRE4D\nHlXVWcP8/Abga8A0QIGvqOrrcWyiGaXDvqBxSlE282YUAFDX1EVDSxelhdmJbJoxxhhjoiCuI40i\n4hKRzwAvAOnD3HMBcCvwMVUtBH4JPCkiJfFrqRmtito2AMqKs5lRmnvkek17oppkjDHGmCiK9/T0\nN4EvAT8EhsvFMgu4XVU3A6jqb4EBYEVcWmjG5HCdExyWFeWQke6hIDcDgMp6CxqNMcaYVBDv6el7\nVfVWETl/uBtU9fdDvxeRs4F8YHuM22bGaHDQy+G6DuDIJpjSwixaO3qprO9IZNOMMcYYE4KIpANn\nAR8ELlPVE8M9J65Bo6pWj+Z+EVkB/C/wHVW1XRVJqr65i96+AcCZngYoLchif2UrVRY0GmOMMUlB\nRObhBIkfBC7EmXF+A3g4kucn7YkwIvJ3wB+B/1LV20fxvFKgNOhyyA03JjpqGjsDj0sLspz/+kYc\nbaQxOVi/MOZY1i/MZCIiO4CFwOvAS8B/AutVdSDSMpIyaBSR64GfAzeo6p9H+fSbgVui3yoznIbW\nbgCyMjxkpHuAI8FjdUMHg4Ne3G47TjDBrF8YcyzrF2YyOQjMBOYAi4AK39fBSAtIujyNInIR8Cvg\n8jEEjAB3AhL0dWH0WmiCNbZ0AQQ2v8CRkca+/kHqm7sS0i5zFOsXxhzL+oWZNFT1UqAYuBZnn8jH\ngE0isldE/ieSMhI50uj1PxCRuwCvqn4R+DpOOp7nRGTo/R9V1RfCFaqqDUDD0Gsi0huVFpuQGlqc\nkcaC3MzAtRLfSCNATVMnU0ty4t4uc4T1C2OOZf3CTDaqOigiCpQBU4BCnM0wH47k+QkJGlX1FWDq\nkO9vHPL40kS0yYzdkaDxyEhjZrqH7Mw0unr6qWvqHO6pxhhjjIkDEfkpcD5wPFAOrAUeAD6rqrsj\nKSMp1zSaiaWx9digEaA4P5Ounn5qm2x62hhjjEmwG4EMnE3G/wO8oaqjGllPujWNZuJpCLGmEaAo\n35murm20kUZjjDEmwUqAq4BWnBHGRhF5VkS+LCLHRVKAjTSacRkc9A470liY5wSNdbYRxhhjjEko\nVe0CnvR94QsULweuAH6MMwo5Igsazbi0dvTSP+DsaQo1PQ3YmkZjjDEmCYjIbGAasFFVtwHbgP8U\nkfxInm9BoxkX/ygjhJie9o80NnXh9XpxuSxXozHGGJMIIvJPwN04SxNf8R2iciNwJXAd0BauDFvT\naMalua0n8Dg3O/Saxt7+QZrbezDGGGNMwnwH+Dec5N7TgE8AjwM9wM8iKcCCRjMuLR1OMJidmYYn\n6NQX/0gjOKONxhhjjEmYqcD/quphnLOmz1bVg8DXgIsjKcCCRjMurR3Obv3crGNXOuRmp5PmcV5i\nthnGGGOMSagNgH+X9GZgqe9xL2BrGk3stfimnXOz04/5mcvloigvg/qWbtsMY4wxxiTW14Hf+U7b\nqwZOEpHFvuv7IynAgkYzLoGRxhBBIzjrGp2g0UYajTHGmAR6GJgPPDXk2i6gBbghkgIsaDTjEhhp\nzAodNFquRmOMMSYp/AB4F2fji9d3bQCoUNWIdqta0GjGpaXdGWnMGSZoDJwKY9PTxhhjTMKo6v2h\nrotIgYjco6qfDleGBY1mXI5MT4d+KQ3N1WiMMcaYxBCRDwGfB/KAoelOMoAzRWQ+zgjkZ1Q15BrH\nhASNInIa8Kiqzhrm59cAt+JsD38Z+Kyq1saxiSZCrR3Db4SBI0Fja0cv3b39ZGXY5xRjjDEmAX4L\nvARsDbqeC5wJvIkTNB7HMBtj4voOLiIu4HrgpzhbvEPdczxwF3AJsAW4E7gf+FCcmmkiNDAwSFtn\nHzD8mkb/9DRAfXMXs6dGtKvfGGOMMdF1APiiqtYNvSgiRcAqVf33cAXEe9jnm8DHgR/iZCUP5Vrg\nMVV9G0BE/g2oE5Gy4F/UJFZr55G4f7iRxsIhCb5rGy1oNMYYYxJBVU8SEZeIXAosB/qB7cDLqnph\nJGXEO7n3vap6IvDOCPcIzi8BgKo2Ao2+6yaJ+NczwvAjjWked+BM6hrbDGOMMcYkhIjMxom/HgW+\nCPwC+AvwlojMjKSMuAaNqlodwW25QHB00QnkRL9FZjyGBo05IU6E8QvsoG60oNEYY4xJkF/gDMLN\nBT6IE1uV4eRqvCOSApJxV0KoADEHaI/kySJSCpQGXQ654caMT7tvejrN4yYj3TPsfcX5mRysbrOg\nMYGsXxhzLOsXZpK5BDhPVetFpABAVftF5FacIwbDSsagcQdDpqJFZApQ4rseiZuBW2LQLhPEvwkm\nO3P4gBGgOD8LsOnpBLN+YcyxrF+YyaSPo1Pt+BUArZEUkIxB48PAqyJyH07m8tuAZ1S1KcLn3wk8\nFHRtFs42cxNF7YGgMfR6Rr9i3/R0jY00JpL1C2OOZf3CTCbPAXeLyHU4ASQishT4GfB4JAUkMmj0\nH2GDiNwFoKo3qur7InIDcB8wHXgNJ01PRFS1AWgYek1EQqb3MePT3uU/DWbkl1FxgTPS2NzWQ0/f\nAJkjTGWb2LB+YcyxrF+YSeZfcDbB3A58BWfp307gEeDrkRSQkKBRVV/BSdzt//7GoJ8/gvNLmCR2\nZKQxTNCYPzTtTidzplnaHWOMMSaefGkLzxGR6TjT0Rc7l7Uy0jKScXraTBBtvo0w4YLGwrxMXDhD\nyzUWNBpjjDFxJyLnB13yAkt9U9T+Ab0RWdBoxizSkcY0j5vC/Eya23qoqu+IR9OMMcYYc7Q1hN4I\nA1CLsyRwRBY0mjHzr2nMDrOmEaCkIIvmth6qGyxoNMYYYxIgO8T3C4FvABWRFGBBoxmztghHGgFK\nC7PYd7iFShtpNMYYY+JOVYM3efUCG0XkG8BG4F/DlRHvYwRNCmnvcoLGnEiCRt8OahtpNMYYY5KK\nG7g3khttpNGMycCgl46uyEcaSwqdUfHqhk4GBr143MMtqzDGGGNMtIlIPvAT4ICq3ioi5wFfBsqB\n70RSho00mjHp7O4LPI5oeto30tg/MEhDS1fM2mWMMcaYkO4Azgfe9QWQTwCFwFnAbyIpwIJGMyb+\ndDsQPrk3QElhVuBxVZ1NURtjjDFx9iHgelV9DvgwkAF8BPgMzrnUYVnQaMbEn24HIhtpzEz3kJ/j\nHDdYWd8es3YZY4wxJqQ8oMr3+HLgFVVtB/qBkc8D9rGg0YzJ0KAxKyOypbFTipx1jRV1FjQaY4wx\ncbYB+IqInI4zwviYiMwD7ibC89YjChpF5H0R+ZqIzB5zU01K8W+Cyczw4I5wU0uZL2g8XGtBozHG\nGBNn/wxcBbwJbAUeBEqBRuD/i6SASHdP/wa4BrhNRF4HHgIeUdWm0bbYpIZAYu8Ipqb9/CONlbam\n0RhjjIkrVX3fN7I4E6hQVS/wHvD3kZYR0Tu+qv4S+KWvsn8APg/cISLPA38AHlfVntH+Ambi8udo\nzI5wahqOBI01jR309Q+QnuaJSduMMcYYc7Sgs6cXiciw9w53DvWo8jSq6gHgdhH5A/AFnOzhHwHa\nRORB4JaRRh9FZDVwD7AC2A18QVXXh7jv34EbgQKcIdQvqep7o2mriS3/9HRWZuSBn396etALVfUd\nzJ1eEJO2GWOMMeYYI509HSzk8sWIN8KIyHQRudk3PX0QZ+fNt4HZwAXAScBTIzw/C3gSJ+t4IU6+\noCdEJDfovguBrwIXqmqR7zmPRNpOEx/to0js7VeUnxVI6n3YNsMYY4wx8ZQNZA35ygWOB94Avhj0\ns5AiescXkZeAc3GCxYeAG1R1x5BbKkXk54x8DM0FwICq3uP7/n4R+TJO8Dk0KPRHE+ki4gEGgc5I\n2mniZyxBo8ftorQwi9qmLg7VtHPmqli1zhhjjDFDhTh7GmCriNwEPKGqd4crI9J3/B04o4pv+hZO\nhvIqsHqEMpYB24Ouqe/6kQuqG0TkV8A2YABow8lgbpJIYHp6FGsaAcqKc6ht6qKiti0WzTLGGGPM\n6OQAUyK5MdJ3/BXA9uCAUUTKgOdV9SRVrQPqRigjl2NHDDt9jR1a5seAzwGn4Kxn/AbwqIgcp6rd\nEbbXxNhYRhrhyLrGQ5Z2xxhjjIkbEbmFY9c0FgKfAF6MpIxh3/FF5MM45xG6gPOA/xCR4FwpS4B5\nEba3A2c+fagcnJHEof4PcPeQjS/fF5EbgIsZYc3kkHaX4uQdGmpWhG00ERrLRhiAqcX+XI1teL1e\nXK5I1+Sa8bB+YcyxrF+YSeZSjgSN/kHALuBh4NZIChhpmGgbzu5ofwWnAEPnw7046w8/FWFjdwA3\nBV0TnJQ9Q3Vx7CLMAaCPyNwM3BLhvWaM/CfCjHqksdgZWO7qGaChpTuQhsfEnPULY45l/cJMGqp6\n1njLGPYdX1X342xeQUQewEl70zqOul4CMn0LLu8BrgOmAs8H3fdH4F4R+ROwBfgSzi7v1yOs506c\nzTpDzSLCI3JMeF6vl47u0edphCPT0wCHatosaIwf6xfGHMv6hZlURGQWzukvK3DOnN4O/EpVayJ5\n/kjT00uBPao6CNwGTBeR6aHuVdVd4SpS1V4RuQznjMMf4eRpvEJVu0TkLt89N6rq4756/owzbbAR\n+KCqRnSMiKo2AA1Bv0uoHUNmjLp6+hkcdEa2RzvSmJHuoSgvk+b2Hipq21ktU2PRRBPE+oUxx7J+\nYSYTETkHeA5n5ncH8EmcmV0VkctU9c1wZYz0jr8TmA7U+gofjheIaGGbqm4Bzg5x/cag7+/BGY00\nSaijqz/wOGuUQSNAWXE2ze09HLId1MYYY0y83A78WlW/IiILgatV9cMi8q/AT4EzwxUw0jv+QqB+\nyGNjgCPnTgNkj3IjDDhT1LsPNXPYdlAbY4wx8bIauD7E9UeBH0RSwEhrGstDPQYQkTxf5dt9w/tm\nEvHvnIbR52mEI5thDtXYSKMxxhgTJ/U4g4AadP04nMNbworoGEERWSEi74nIOSJSBLyHk8z7gIhc\nMIoGmxTgz9HocbtIT4v4JMoAf9qdpraeQFnGGGOMiakHgN+KyD/4vveIyOdwlgP+dyQFRPqOfyew\nByc6/QxQAMzA2dBy+ygabFLA0HQ7Y8mzOHQHtZ0MY4wxxsTFd4FfAxfhpFNMB74G/EBV74ikgEjn\nFs8AVqpqnYhcCTyuqjUi8pCvEWYS8a9pHO3Oab/c7HSyM9Po6umnoqadZfNKotk8Y4wxxgTxner3\nLQARcQE5qjqq6b5IRxrbgVLfsYFnAc/4ri8lKF2BSX2BkcassQWNLpcrkJ/xcJ1thjHGGGPiQUTO\n8A34bQY2icgjInJxpM+PNGj8C/AIzjrGeuA5EbkW5zSXP42yzWaCG+u500OVWdBojDFmnLxeL1v2\n1rNpVy29fQOJbk5SE5G/B14DMoAHgftwTvp7RkQ+HUkZkb7rfwnnCMAFOOdC94hIPvAzbE3jpDPW\nIwSH8o80VljaHWOMMWPQ0dXHD+5bz7Z9zoTn1OIcvnfDGcyZlp/gliWtHwFfDV6/KCIv4yw1fCBc\nARG966tqP/DzoGt3R9xMk1LaxrmmEY4EjVX1HQwMevG4R7+hxhhjzOR135PbAgEjQG1TJ9/41ev8\n7MvnMdWX2s0cZS7OiTDBXiMoxhtORO/6IjIF+AZwKs5um6Hv8N5oHIJtJo6OzrGdOz2Uf3q6f2CQ\nuqZOppfmRqVtxhhjUt/uQ028sP4AABeeMofFs4v47TPbae3o5bYH3+b2m84hPW30h0+kuMeAG0Xk\nX31HRCMiHuBfiGCUESKfnn4AJ2D8PRCcI8UbYRkmRQR2T49xIwxAaWEWLpwXT0VtuwWNxhhjIvbs\nunLAmbW64OQ5eNwuPnHxUn77zA72HGrmwad38E9XrkxsI5NPGnAz8BER2YgzCLgamAO8IiIv+u5z\nqWrIzTGRvutfCFyoqm+Ns8EmBURjI0yax01RfiZNbT1U1rcD06LUOmOMMamso6uP1zYeBuD0FdMD\ny5uWzSvh3BNn8dqmwzz+2l5WLCjhrONnJrKpyWar72uo93z/9Y/j+B+HFOm7fh3QPaqmmZTk9Xpp\ni8JGGIDSwmya2nqoquuIRtOMMcZMAuu3VdPTN4DH7WK1lB31s4tPm0t5VSsHa9r42cPvkZ+TwarF\nUxLU0uSiqt8fbxmRvuvfAtwhIv8C7MLZoj20Ib0hnxVERFbjHFezAtgNfEFV14e47wPAL4AlwH7g\nn1X15QjbamKoq6efwUHnw8j4g8Ys9lRAZYMFjcYYYyLz9vZqABbNKiQnK/2on6V53PzjpcJdf9lM\nS0cv3/31Oj545nxOP24682cUUpSfmYgmp4xI8zT+P5xTYd4BWnFGHf1fXZEUICJZwJPAvUAhcAfw\nhIjkBt03E3gc51ibfJwt4n8VEftLJ4GhZ0VHI2gEZwe1Mamgs7uPJ9fu4/bfvcPvn9vBgerWRDfJ\nmJTSPzDIRq0FQIY5TawgN5MbrlpFSUEm/QNennp9P9+5502u+95zfOXnr7LzQGM8m5xSIn3X/2QU\n6roAGFDVe3zf3y8iXwYux0kc7vcp4AVVfRRAVf8oIjuxDTdJwZ+jEaIzPQ1Q09hJ/8AgaZ5IP8MY\nk3z2VDTzvd+8SUv7kYmXR1/ew1f/zymcuWpGAltmTOrYWd5IR3c/ADKveNj7Sgqy+NInVvPapsNs\n3l1HfYuzwm73oWa+8cvX+cEXzmLVIpu2Hq1I8zS+AoGzCucDFYBbVXtGUdcyYHtw0b7rQ60GDovI\nX4FzcabD/znSKXATW/6d0xC9kcbBQS+1TZ3MnJI3rvKMSZTdh5r49t3r6Ozux+N2sWROEYfr2mnr\n7OO2Bzdwyz+dwcnLbLOXMeO1eU89AFMKsygpyBrx3ox0DxefOpeLT51LT28/+ytbeeqN/TS2dvOf\nv3uHX339QvJzMuLR7JQR0dCOiKSJyI+BTmAPToLI34nIH0QkO8K6cn3PH6oTCM7AWQrcAPw3zpba\n3wFPi0hRhPWYGPJvgknzuElPG9/IYElBVmCLVqVthjETVHtnL7c98Dad3f3kZqXxxY+ewKcuX8FN\nHz+R6SU5eL1w55830TFkaYcxZmy27nWSeS+YWTiq52VmpLFsfgmfunw56Wlumtp6ePqN/bFo4oQg\nIjNF5Fnf4yIReSWS50U6VPRd4ArgSuCvOFPFv8JZn/gT4IsRlNEBBAeYORyb97EbeFpV/+b7/i4R\n+RpwNvB0uEpEpBQn8BxqVgTtMxFo7XBGGnOzxzfKCE7gWZifSXNbj61rjDHrF7Hh9Xq585FN1DV3\nkeZxcf1HjmPGFGeZdn5OBp/8O+GXj2yioaWb+5/axk0fPzHBLTZDWb+YWHr7BlDfesQFMwvGVMbU\n4hxOWzGNNzZX8dTafVx9/mIy0ydlEvAs4Bzf4wycmd2wIh0q+j/Ajar6Ar61har6KnA98NEIy9gB\nSNA1IfSUdfCY82j+ojf7yhj69dIonm9G0NrhrEjIDdqxNlYl+c6fuqYxeBDaRJn1ixjYsK2adZur\nALj8rAXHLLGYWpzDRafOBeDF9QeoqA3+jGwSzPrFBLLrYBO9/YPA6Ecahzr7+Fm4XdDS0cuGrdXR\nat6kEGnQOA1nHWOwBiDShWgvAZkicpOIpIvIZ4CpwPNB9/0OuFRELhcRt4jcDGQCkabcuRMnGB36\ndWGEzzVh+Ecag9McjFVJgbMpvtrS7sSa9Yso6+0b4DePO3lyF8ws4PTjpoe87+zjZ1KYl8GgFx5+\nXuPZRBOe9YsJZEe5M8pYnJ9JYd7YE6oU5WcGgs43t1ZFpW2TRaRzjG8Anwe+5r8gIhnAt30/C0tV\ne0XkMuBunDQ6u4ErVLVLRO7y3XOjqm4SkSuAHwN/xPnk9xFVjWgoSlUbcILZABGxTTRREs3paSCw\nkNlGGmPL+kX0PfX6PmoaO3G74CPnLMTlCn2IQprHzYUnz+HRV/fy2qbDfOKSpcybPrapNRNd1i8m\nFn/QOG/G+PvPioWl7D3cwjs7aujrH7BzqiMU6Tv/l4DnfUFfFs5axiW+n10aaWWqugVnbWLw9RuD\nvn8ReDH4PpN40R5pLPYFjdUNHXi93mHfeI1JJt09/fz15T0AnLJ8Wtiz00+SqbzyXgVNbT389eU9\nfPmak+LRTGNShtfrZacvaJw7LX/c5a2YX8KTa/fR1dPPlr0NnCRTx13mZBDR9LSq7gSW4mx6+Tmw\nCfg+sFRVt8WueSbZBEYaoxQ0+tPudPcO0Nw+mgxOxiTOM+vKaenoxeN2cf5Jc8Le7/G4OecEZ3/F\nq+9VUNcU0ZkIxhgffworiM5IY2FeJtNKnOQtW/fWj7u8Cco7zONhDTvSKCLBe9G9HH2I9VXAN0QE\nVV0YcRPNhHZkpDG609MANQ2dFOePnHfLmETr6x/ksVedUcaTl02L+Fiyk5dNZc07B+ns7ufx1/by\nT1eujGUzjUkpO/Y7o4yZ6R6mFQdn6hubBTMLqGnsDKTxmUxUdR9Q4HtcS4QbjkcaafzOkK8HcdIS\nPAR8BWfH2f04xwHeM1wBJvW0+kYDc7OjM9KYnZlGZobzWq2yzTBmAnhjcyVNbT24gA+cODPi52Wk\newInwzy/vvyoIzmNMSPzr2ecMy0ftzs6y5j8m2F2H2qiu7c/KmWmumGHi1T19/7HIvIOcIOqaQ+I\nMgAAIABJREFU/nnILU+JyGbghzibVkyK6+kboLt3AIje9LTL5aIkP4uqhg5qbTOMmQCefn0f4Bxh\n5j8KM1JnHDeD1zYeprtngGfX7efjFy2NRRONSTmBTTDTx7+e0W++b5q7f8CLHmjihCVlUSs7VUWa\ncmc5sDnE9d3Agug1xySzto4jmwqjNT0NUOxLu2M7qE2y21PRzM4DTQBjOk86Nzs9cJzgk2v30dc/\nENX2GZOKWjt6qahtB2BuFDMP5OdkBNbV7zrYFLVyU1mkQeN64AciEvhr+TLp3w68EoN2mSTUOiRo\njNb0NBBYx2hBo0l2azYcBJwNXItmj+1k03NOmInLBU1tPax5+1A0m2dMStrpOwXG5YI50yJNDR2Z\nWWVOebsPNUe13FQV6XDRF4BngSrfBhkXsBBnpPGyGLXNJBn/aTAAOZnRH2mstqDRJLG+/gFe3eic\ncXCSTMU9xvRQJQVZHL94Cu/vrucvL+/mktPm4vGM7xx3Y1KZf6PK9NJcsjKi994DMGdqPpv31LN7\nko00isiJwJlACdAIbFDVd8M9L6L/+6q6S0SWA5cAK3B2Um8G1qiqza9MEs3tzkhjVoYnqm9y/qME\n65u7GBgYtDdQk5Te3l5DW2cfLmD10vHldDtv9Wze311PdUMna9+v5PyTZkenkcakoC2+lDgLx3F0\n4HBmT3VGGutbumls7T4qo0cqEpGlOBuZzwT6gFqgCMgVkfeA/ztSKsWIQ3ZV7QWe9n2ZSai5rRtw\n1oFEkz/B9+Cgl7rmrrCJko1JhJffdaaSF8wqjDjNznCml+aybF4xOw808ciaXZx74qyo7Qg1JpV0\ndvexr8KZOl44M/onKc2YkovbBYNe2H2widNXjn6t8kQhIrNwlhRuBk4BNqqq1/ez43BO+XtVRE5R\n1fJQZdiQjolYY6szPR31oHHIG3Btk01Rm+TT0dXHOztqAVi9NDo7LC842UkKfrC6jbfs/FtjQtq2\nr4FBr7Mmbn4MRhoz0j1M9eV93Hu4JerlJ5lv40xDf1BV3/MHjACquk1VrwHWArcMV4AFjSZiTa3O\nSGNeTvQ2wYDTaf0ba2oaLGg0yeetrVX0DwzicbtYsaA0KmXOmZbPYt9mmj+9uAuvN6IDGYyZVN7d\n6XxYm1mWS3YU19IPNWOKM7u1L/WDxssJnyLxdkY4HtqCRhOxJt/0dEFudEcaAUryLe2OSV5rNx0G\nYMmcoqi+cV1wsrOWcV9lS+DN0Rjj8Hq9bNheDYDMK4lZPTN9O6gnwUhjGXA4zD2HcdY4hmRBo4lY\nrKan4ci6xmobaTRJpq2zl0276gA4fvGUqJa9YGZhIMHwn/9mo43GDFVe1Ro4p335/BgGjb6Rxvrm\nLlrae8LcPaGVA8eHuedk330hxTVoFJHVIrJBRNpFZKOInB7m/otEZEBEonPQpBmXWE1Pw9BcjXaU\noEku67dWMTDoJc3jiskbl3/n9I7yRrbum3xn4BoznNc2OoNiBbkZgcAuFmYMKTvFp6h/B9wmIiFH\nEkWkGLgV+H2on0Mcg0YRyQKeBO7FObP6DuAJEQn5SvA1/r54tc+MrK9/IHBWbixGGkvsVBiTpN7Y\n7GxSWTKnmMwo54hzyi0KvCE+9sreqJdvzETU1z/IixsOAM7mM9cY86JGIisjLZBqJ8WDxv8C2oBd\nIvJvInKhOM4Qka8CW4Em4CfDFRDPkcYLgAFVvUdVB1T1fqAGZ2FmKHcBD+NsmjIJ1tR6ZMg+ltPT\nTW09dnC8SRrtXX1s2uWsNVy5KDobYIK5XC7OOWEmAG/vqKayrj0m9RgzkazdVEGLLzfwqSumx7y+\nmZNgM4yq9uHEYv8DfAX4G7ADWAd8DXgAuEhVh52jj2fQuAzYHnRNfdePIiLXAgU4gaNJAo2+TTAA\n+TGYnh6aULXWRhtNktiwrZr+AS8et4vlMVyIv3LRFApyM/B64Ym1+2JWjzHJauh63qbWbu57wskv\nvXx+SVwSbvuDxr2HU/s4QVXtUdVvAjOApThJvpcA01X1W6raPdLzY7N/PbRcIDga6ASOWq8oInOB\n7wNnA6mdmn0C8Y80etyumKQ9KMzNwOUCr9eZoo7mofTGjNUb71cCsHh2EVkxSvcBkOZxc+bKGTy/\n/gBr3jnI//3QipilFzEmmbR39vLA09t59b0KXC4XM0pzqWrooKunn/Q0Nx8+e0Fc2jFjirODurLe\nqTtV+5+IFADHARkcmcmd4/t6Jdzz4/l/pQPIDrqWgzO/DoCIuIEHgW+parWI+F8tEU9Ri0gpEDyP\nNGv0zTVDNbQ4O9gKcjNisrbE43FTlJdJU1uP7aCOAesXo9fe1cd7WgPAqkXR3TUdysnLpvLihoN0\n9wzw+qbDXHL6vJjXOdlZv0iswUEvP/7dO4HsBOCknwJIT3PzsQuXBJYuxdrMMmek0euF/ZUtUcvH\nmkxE5B9w9ooEx2J+YWef4xk07gBuCromwB+GfD8bOB04UUTu4sgvUCEiH1LVdRHUczMjZDM3Y1Pf\n7ASNhXnjOz5tJCUFWTS19VDVYDuoY8D6xSi9taXqyNT0gthNTfvl5WSwfEEJ2/Y18Pz6AxY0xof1\niwR67q3yQMB4zgkzmTklj/rmLjLS3axcNCWu50Dn52SQn5NOW2cfeytSM2gEbsNZz/hDYEyLN+MZ\nNL4EZIrITcA9wHXAVOB5/w2qepAh09UiMg/YD8xS1UiHn+4EHgq6NstXvxmj+mZnmUNhXvQ3wfiV\nFmaz93CLbQSIDesXo/T6+7FJ6D2SU5dPY9u+BvRAEweqW5lnyzRizfpFgni9Xp54zVm/u2pRKZef\nFZ9p6JHMKstj54Em9lSk7LrG6cDPVbUu7J3DiFvQqKq9InIZcDfwI2A3cIWqdvlGFVHVG4Oe5gJG\nle1WVRuAo5KdiUjvmBtuAKhvif1IY2mh86myqt5GGqPN+sXotLT3xCyh90gWzymiMDeDlo5eXn2v\ngk9dviJudU9G1i8SZ+veBg77Bgg+cGJyrAiYNTXlg8ZngYuB34y1gLiu9FTVLTgbXIKvBweL/uvl\ngCfGzTIRqPNPT+fGLmicUuhP8N3JwMAgHo8dWGQS49X3KhgY9JKR5mZ5HKep3C4Xxy+ewtr3K3l1\n42Guu2x5TPPTGZMoL797CHB2Lc+emp/g1jhm+44TrKhpS9XNMO8CP/EN4O0Djspvp6rfCFeAvSub\nsAYHvTQGRhpjOD1d5KzNHRj0Uus7OsqYRFjzjvOGtnLRFDLT4/u59YQlZYCTekoPNMW1bmPiwev1\nslF9+U8XJs/aQf8Z1IPelM3XeDHwDs7Z0ifj7CE5HTjN99+wUi6MNtHX0t5D/4CzSiCW09PF+VmB\n9QiV9e1HHe1kTLzsr2wJvGGcJFPjXv+MKbmUFWVT19zFqxsrWBbDM3eNSYRDNW3Utzjr5JfMLU5w\na47Iz8mgMC+DlvZedh1s4rgkCmijQVUvHG8ZFjSasPxT0xDboDE9zU1hfibNbT1U1nVw8jFp342J\nvWfXlQNQnJ/J/Jnx34ji8k1Rr3nnEOs2V3HDlatwu22K2qSO93z7MHKz0pJucGDutHy2tDewo7yR\nqxPdmBjwpZnK4+hUhlOADcBCwKuqB4Z7vk1Pm7D86XbSPC5ys2L7OaPMN0V9qKYtzJ3GRF9Lew9r\n3j4IwBkrZ+BO0HpC/whHY2s3uw7ZFLVJLdv3O3uPFs4uSlgfG44/Y8HO8sajTqlJBSJyH1CHk5Vm\n35CvDb5b9gH7ReSjw5VhQaMJq25IjsZYL8qfVuJkXDpoQaNJgGfe2E9v/yCZ6R5OXT4tYe2YVpIT\nyCbw5uaqhLXDmGjzer3sLG8EYN705NgAM9RcX5ua2nqoSb0jbf8R+CTO8c1Dv87x/Xy57/s3hyvA\npqdNWLVNTscpiuHUtJ8/aDxQ1YrX67WdoyZumtq6edx37vOpK6bF9NjAcFwuFysXlvLqxsOs21LJ\npz+8wvqCSQl1zV00tTnH0s5Jkl3TQ80ozSU9zU1f/yDb9zcwvTS5ps/H6RvA06p6VF47EakGrldV\nDVeABY0mrDrfTuai/PgFje1dfTS2dlNaONxpR8ZE172Pb6Ojq4/MDA/nnJD4vHHH+YLG6oZOyqta\nWTCzMNFNMmbc/BkB0jyupFvPCM6RtvOmF7CnoplNu+q48JS5iW5SND0LzBGR4OulwP0i8hbQqqrD\nTm/Y9LQJKzDSGIegsaw4cCAQB6ttitpE18Cgl87uPvr6B466/tTr+3h1YwUAl54+j4Lc2KWWitSs\nsrxAO97aWp3g1hgTHf6gceaUPNKSNBfvkjlFAGzcVZdq6xq3D/O11vfzHcBhEbl9uAJspNGEVdvo\njDQW58X+HNDMdA/F+Zk0tfVwoLqV1QlIeWJSj9fr5bk3y3nw6e10dPeT5nGzbH4xC2cWUtPYyfpt\nTlA2f0YBp62YntjG+rhcLlYsKOGtrdW8tbWKa/7umNEBYyYc/2krs6bmJbglw1s8pwjehOa2nlQb\n5R/urMYy4G2c3dPnA78Evh7qRgsazYi6e/pp63RO1YrHSCM4n0Cb2nrYfTBlj3Iycfbrx7bw1Ov7\nA9/3DwyydW8DW/ceOUFu4axCrrtseVKlt1mxoJS3tlaz73ALNY2dgeUbxkxEg4Ne9lc6OVBnTUne\noHF6SQ75Oem0dfaxYXt1ygSNqnow1HURaQC+p6rlIvICUD9cGRY0mhH5p6YhfkHjnGl5bNvfwM6D\nlmrEjN+WvfWBgHH5/BI+cOIsWtqdEYS6pi4yMzwsn1/CiUvLkm66bMGMArIyPHT3DvDW1iquPHdR\noptkzJjVNHbS2e2cXDejLPnWM/o5o/ylrN9WzeubKvmHi1NjlF+cxYy/AGYBP1XV+0XkfGC2qn4f\nQFUrgfnDlWFBoxmR/zg/lwsK47TOa840Z0ddbWMnzW09cQtWTeoZGBjknr9uBpwzbq+9dFlgJNF/\nXF8y83jcLJtfwqZddby5xYJGM7HtPezMHqV5XEwtSu5NjqsWT2H9tmrKq1o5WN3K3OnxT/QfA/cC\nvcAfgV+KyBacRN+/EJEZqvqf4QpIro/VJunU+UYaC3Iy8MRpFGZWWR7+GcJdNtpoxuH19ys54NtQ\n9ZEPLEyqqedIHbfASfS9fX8DTa3dCW6NMWPnP55zWklu3N5Pxmr+9ALyc5yBkhc3hJzVnYhOAm5U\n1VuB/wGuUtWngGuAz0VSQFz/aiKyWkQ2iEi7iGwUkZAHZIvIDSKyS0RafPefE+o+E3vVDU7QWFwQ\n+00wfhnpHqb5cmP5Tw4wZixeWO+chiVziwMnPUw0S+YUkZ7mxuuFt7bZLmozcfmDxmRMtRPM7XYF\nEvy/uP4AXT39CW5RVFQD/qm793ASeYOzazqi3EJxCxpFJAt4Emd4tBC4A3hCRHKD7rsAuBX4mKoW\n4uzieVJESuLVVnOEPyN+SRyDRoCFvjN/N+2ui2u9JnVU1XeweY+znvuUBJ7uMl4Z6R5kbjEA6zZX\nJrg1xoydfxPMRAgaAU5fOR2P20VHdz/PvVme6OZEw53AN0UkDXgHWOW7fjrQGkkB8RxpvAAYUNV7\nVHVAVe8HaoDLg+6bBdyuqpsBVPW3wACwIo5tNT41jU7i+OI4rytcPNvJk7XvcAst7T1xrdukhhc3\nOKOMudnpLJtXnODWjI//LOrNe+ppbrP+YCae5rYeGlud1+7MCXLKSn5OBif50r49smYX7V19CW7R\nuBUAVwEHgbuAxSKyFvgt8L+RFBDPoHEZThLJoZQjw6POBdXfq+p/+b8XkbOB/BDPNXHgH2mM5/Q0\nwIKZhXjcLrxe2Lx72N3/xoTk9XpZu+kwACctLUv69VPhLJ9fQkaam8FBL6+/fzjRzTFm1PyjjADT\nSydO6qiLTp1Depqbts4+Hn5+Z6KbM14X4gSLDwKvAz8GXgE+C9wcSQHx3D2dCwSf/t0JDPvqEZEV\nONHvd1S1MYZtMyF0dPXR1ul8sor3SGNGuoe50/PZX9nKe1rLB1Yn/lg3M3GUV7UG1uOuXDQlwa0Z\nv4x0DysWlrJpVx2vvFvBh89ZmOgmGTMq+yud2c+SgiwyMyZO4paC3EzOXT2LNW8f4qnX93HByXOc\n5N8TkKqeN94y4vmX6wCC99jnACHPihORv8PZFv5fqjrskTYhnleKc47iUBZxjIF/lBHiv6YRYOnc\nYvZXtvLuzhq8Xi8u18Tb+ZosJlu/eGuLc3RqYW5GUp88MRonLilj06469GATlXXtzCxLjd8rkSZb\nv0gk/0jjRBpl9Dtv9Wze31VHfUs3v/zfTfzkS+dOyNkLEbkfCPdG6gVcqvrpUD+M52+9AwjOkCmE\nmHYWkeuBR4AvqOqPRlnPzTjT3kO/Xhp1a01gPWOax0V+As7i9S/+b2rrCey6M2M2qfrFm1udoHH5\nglLcKfJhY9HsIvKy04Eju8LNuE2qfpFIe33/hk/EDztpHjdXnufkSN1b0cLT6/aHeUbSyvR9ZYzw\n5b8npHiONL4EZIrITcA9wHXAVOD5oTeJyEXAr4BLVPWNMdRzJ/BQ0LVZ2D8Eo1ZV74w0FuVnJeSN\nd1pJDoW5GbR09PLOzhoWzZ6YUwJJYtL0i+qGjsBU2HELUifpgsft4pTl03jlvQpeWH+Aay5dRma6\nJ9HNmugmTb9IpO7efg7XOpOKMyfIzulgi2YVsXppGRt31fHQ88p5q2dTmDexDp5Q1X8cbxlxCxpV\ntVdELgPuBn4E7AauUNUuEbkL8KrqF3EOyU4HnnNOvAn4qKq+EEE9DcBRyf1EpDdKv8akcriuHYAp\nhfGfmgbnKKelc4t5e0cNG7UuZY5ySoTJ1C82bHdyGWZnpjE/Rc6M9TvtuOm8trGCts4+1m6s4OLT\n5iW6SRPaZOoXiVRe1cqg13k8M4nPnA7n0jPms21/Ax1dffzpb7v43FWrwj8piYjILYSfngZAVb8X\n6npcV6Oq6hbg7BDXbxzy+NJ4tskMLxA0JvC4p8Vzinh7Rw16oJHO7j5ystIT1hYzMWzwJcBeOrcI\nzwQ8AWYkRXmZLF9QyrZ9DTz26l4uOGVuyv2OJvXsrXCmpvNz0ilIwFKnaCnIzeDc1bP524aDPLuu\nnL8/f3FC3x/H4FIiDBqB74W6OHG2MJm48weNZQnsFItmFeIC+ge8bN3XwGkrpiesLSb5dXT1sXWv\nM3C0bF7qTE0Pde6Js9i2r4ED1W28trGCC06ek+gmGTOivRXOmdMzJvAoo9/Zq2awbnMlnd39/OXl\n3Xz+6uMT3aSIqepZ4y1j4m3/MXHR0dUXSCJcmsCgMScrPbBwetMuOx3GjOw9rWVg0Ivbt7QhFc2Z\nls8K31rN3z+7k77+gQS3yJiR7T7kBI2zyibmesahMjPSOOf4mQC8uP4grR2TazWDBY0mJP8oIyR2\npBFg0WxnXdqWPZbk24xs/VZnanr+jAKyM1N3IuWS0+bhckFtUyd/eG7CJxw2Kayzu48D1c7GtLnT\n8hPcmug4feUMMtLc9PQN8OybE3Yn9ZhY0GhC8geNmemeQJqPRFno28xQXtVqRwqaYfX1DwQ2waxY\nmJpT037TSnICox1/fWUPm/fYKLxJTrsPNeP1bYKZPTU1gsbszDRO9p1n/8wb5fQPDCa4RfFjQaMJ\n6UCV88mwrDg74Um1580owO1b7O9fr2ZMsI276ujq6QfguAXB+ZpTzyWnz2N6SQ5eL9z2wNuBPmtM\nMtl1sAmA0sIschM8ABFNZ66cAUBjazdvbq5KcGviJ3Xnb8y47Knwr0FJ/MLlzHQPs6fmcbC6jff3\n1HH2CTMT3SSThNZtrgScNX8TLX/aWKR53Fzzd8I9j22hvauP79yzjlv+6QzLZ2qSyvb9zgnAc1Jk\nlNFvSlE2MrcYPdjEU2/smzBH3YqIC/gAcCYwG+dkvk7gMLBOVV8b6fk20miO4fV6AykSkiUR66JZ\nzhT1+7YZxoTQ1z8QWM+4cmHqjzL6lRXn8OkPrSAj3U1TWw/f+NXrvLV18ox6mOQ2MDDItn3O7NCC\nmQUJbk30neEbbdy+vzFwTGIyE5F5wLvAc8DVOEFjru+/VwMviMjbIjJ7uDIsaDTHqG3qor2rD0ie\nI58W+0ZPKus7qB1yJrYxAOu3VdPe1YcLWLlo8gSN4KwT+9yVq8jPSae7d4Bb79/Ab5/ZzoA/m7Ix\nCbK7ojmwZCQVR8CXzC2ipMA5/OLJtfsS3JqI/AaoAKap6hmqerWqftL339NxTuk7gHNqX0gWNJpj\n+KemPW4X00qS43D5OdPyyUhzXq6bdttooznaC285ZzEvnlNEcX5iTjBKpJlleXzxoycwe6rzIe+R\nNbv5/r1vBT78GZMI7/v+rS7OzwwEV6nE7XIF1ja+8l7FRNioeQ7w76raFuqHqtoKfBs4d7gCLGg0\nx9jum06YXppDmic5XiJpHjcLfFPU7+yoSXBrTDKpaewMfJA4xbejcTIqzMvkc1etCiTAf29nLV+7\n4zWqGzoS3DIzWb27oxY4srwoFZ28bCoZ6W76+gd59s3yRDcnnApCnMoX5Fxg2DdZ2whjjvHuTuf1\nsmROciVHXjG/BD3QxLs7a+nu6ScrhfPwmcg9sXYvXi/kZKWxfH5qp9oJJ83j5qrzFjGrLJfH1+6j\noradr92xlv/43JksTOE3bpN86pu72FHubIJZnsLZDLIy0zhl2TTWbaniidf2ceW5i5I5R+x3gAdE\n5ExgLVAF9ACZwHScDTL/CHxmuAKSYxjJJI2q+g4O1zkjE8l2osbyBaW4XNDbN8C7O2sT3RyTBOqa\nunjmjXIAzjp+ZtKMjCfaqSum8+kPrSAz3UNzew///t+vBzYkGBMP/mwGmRkelsxJvfWMQ33gxFl4\n3C7aOnt55o3kTfatqn8CzsMZMPwW8CjwN+AJ4BYgG7hAVR8argz7F9YcZf02Z+dlVoaHOUmWvT8v\nO50FM5zRkr+9fTDBrTHJ4OEXdtI/MEhOVhpnr5qR6OYklcWzi7jhypXkZqfT2d3Pd3+9zpZ2mLjw\ner28uMH5N3r5/JKU/zBXmJfJycumAvDIml1JvbZRVTeo6nWqukhVs4B0VU1X1fmqeo2qvjnS8+M6\nhioiq3F25awAdgNfUNX1Ie67BrgVZyfPy8BnVdWGlmJsYGAwsAPsuIWleNyJTeodyqkrprGvsoV3\ndtSwv7KFBTNtym2yenNLZeCN6fyTZpOZkbRTQgkzsyyPz1+1ivue3Epzey8/uG89N3/8RC4+bW6i\nm2ZS2KZddZT7ks2fftz0BLcmPi46dS6bdtfR0d3Pb5/Zwc2fODHRTQpJRHKBjzIkT6OIBPI0Ao+o\natdwz49b+C8iWcCTwL1AIXAH8ITvFxh63/HAXcA/AFOAauD+eLVzMntxw0Fqm5zXyjknJGei0lWL\nplBa6OzCu/uvm+nrnzzHN5kjdh1s4ud/3AjA3On5gR2M5lhTirL53NXHM7U4m8FBL7/400Z+89gW\n6zsmJgYGvYHz0OdOy2fe9NTLzxhKfk4GF5w8B4AX1h/gzS3Jly9VRE4AdgE/BIqBPcAG33+LgduA\nXSJy3HBlxPOj+QXAgKr68//cLyJfBi4HHhly37XAY6r6NoCI/BtQJyJlqmq5VmKgu7efdZur+PVj\nWwBYsaAkaVLtBHO7XVx6+jweekHZvr+Rb931BhedOof8nAxcLhcet4vszDSmluQwNQmOQDTR1ds3\nwHNvlfPgU9vp7XempT95ieBJ8emv8SrKy+TzVx/P75/bwf7KVp5Yu4/3d9fxuatXsWrRFOsnJmr+\n+vJu1Hd04IWnzElwa+LrnBNmsaO8kYPVbfzkD+/yvRvOYOWiKYlu1lD3AE/jzPIe86lRRNw4A3p3\n42yKOUY8g8ZlwPaga+q7PpTgDJE6N6g2ikij77oFjePk9XqpqG3nra1VbNlTz8GaNhpbuwMHyhfn\nZ3L1eYsT28gwVi6awgUnd/DyuxXsKG8M7NALVpibwSkrpnHu6tmcsHiKBRYThNfrpaunn+b2Hprb\nemhq7aGqoYN9h1vYtKuWtk4n92BRXgafunwFRZPgyMBoyM5M4zMfWckLb5Xz+vuVHKhu41t3rWPx\n7ELOWDWDJXOKmVqcTW52OukeN263C7fLRVqaG4/bZYGlGVFv3wCPrNnNH19UAFYvLUu6zZSx5nG7\nuOYS4e6/bqalo5fv3LOOT1y0lI+cu4i85Dh3+wTg+lABI4CqDorIncB7wxUQz6AxF+d8w6E6cc49\nHMt9k8KeiuYx73r0ep034P6BQTq7+6lt6mTXwSaqG0KfqCJzi/nIBxZOiEPlLzltHnOm5bNucyVV\n9Z309g/g9cKg18ug7ySMlo5e1rx9iDVvHyIvO50VC0qZWZZLXk466R4PbreLsb4PzpiSy6nLp036\nN1Kv18vbO2qoqj82F6DzQcQbeOz/+wwMDtLXP0hv3yDdPf10dPfR3tlHa0cPze29tLT3jDh16nLB\niUvK+OCZ88nPyYjRb5aaPG4Xl521gOMWlvLE2n1U1newp6KFPRUjH4HmcbvIyUojLyeD/Jx08nIy\nyMtOJycrnawMD5npHtLT3Hg8btwup18d6Rqh+9mUwmzOWDUjKddOT2b7K1vYvKc+5M/8fXpw0OnL\nfX0DtHf3UV3fybZ99XR0O6e/zJtewBXnLopfo5NIYV4mn71iJQ8+s52Glm4eekH585rdLJlTxOyp\neRTmZZKV4SHN98HM6Rvh34tOXFLGvBnjnurfhbOe8Ycj3PNxYNjjbeIZNHbgbOceKgcIzkweKkDM\nAdojqURESoHgpFBzAKqrqyNqaLIYHPTy1Z++QrfvGKZoyslKZ8HMAqaX5FCYn8nUohxyc9Lp7Wyk\neoKc0leUCZefWgIcnZuvr3+AxtZuDlW3sfNAMzWNHTR1whsN0d05+t3Pns7cOK7Xueiii+YDFao6\n6hdErPrFwepWvn/vMXvZoirN46YgN4OSwixmT81j8ewiCvMy6Witp6M1plWnrAzgo+eCEvwwAAAM\nZUlEQVSUcagmmx3lDRysbqO1o3fY+/uA7nYIPaY/dv/yydXjnr5Lxn4xUXm9Xv7t56/R2jn8a2Ek\nLhecsKSMc1cX0RTlf28nmo+dU8a6zVW8v6eOrgEvm7fXszl4rnUUCvMy+K8vnRvRQMUIfeLLwGMi\nchHH5mmchpPY+3TgquHKjmfQuAO4KeiaAH8IcZ8EbhCZghMV7Iiwnptx8g0d49prr42wiMlhW6Ib\nMMFd/1Lcq9wPrAY2jeG51i9M0vnn6PQh6xdJZN8aJ/mfib6Ln4j41pB9QlVfEpGVwA04J8PMxhmU\n68E5LeZN4DOqWj5cwfEMGl8CMkXkJpzFmNfhpNR5Pui+h4FXReQ+4F2c3TzPqGpThPXcCQQnplyM\ns/jzYmDv2Jof1gKc3/FCnD9YrMSjnlSpI171xLOOsSYAS+V+Ya+l5KsjXvVYv0j9OuJVT6rVEbJP\nqOpBnJNhxiRuQaOq9orIZTi7cn6Ek6fxClXtEpG7fPfcqKrvi8gNwH04x9q8Blw/inoagKMWAYoE\nBi4PjRRBj4eI+BdXHY5VHfGqJ1XqiFc9ca5jYCzPT+V+Ya+l5KsjXvVYv0j9OuJVTwrWEbJPiMiH\ngMWq+gsRceEcGXgNTry1D/iZqr48XPlxzYarqlsIcVi2qt4Y9P0jHJ2GxxhjjDHGjJGIfAnn4JT/\n9F36MXAj8Buc0fWzgL+JyCdU9S+hyrAjFIwxxhhjUt+/Ap9Q1WdFJB34Z+ByVV3j+/nPROTrwPeA\nkEGjJa4zxhhjjEl9/lNgAIoAD/BK0D2PAvOHK2CyBI0NwH8QtHZlAtYRr3pSpY541TNR65io7U5E\nHfGqJ1XqiFc91i9Sv4541TMZ6ngZ+L6IpPlO2Hsd+Puge/4ReGe4wl1e/1EgxhhjjDEmJYnIPGAN\nzgjjszg7rG8E/gYcAI4HVgIXqGrIFFYWNBpjjDHGTAIikgl8CrgIWATkA71APfAG8N+qWjXc8y1o\nNMYYY4wxYU2WNY3GGGOMMWYcLGg0xhhjjDFhWdBojDHGGGPCsqDRGGOMMcaEZUGjMcYYY4wJa9Ic\nI+jbZv4z4GNABk4W9C+qamUM6vo2cANQAGwCblLVbdGuZ0h9vwB6VfVrUShrNXAPsALYDXxBVdeP\nt9wR6jsNeFRVZ0W53HOAnwCCk0rgdlX9dTTr8NXzCZxEqrNx8lx9S1Ufj3Y9vrqmAVuA61X16SiV\nGZd+Ee8+4atzQvaLWPUJX9kx7xfx7BO++qxfRF7fhOwTvvqsX0ReV9T7hN9kGmn8DrAMWAqU4WRL\nvzPalYjIp4HrgPOAKThJM58WEVcM6ioVkQeAm4Fx504SkSzgSeBeoBC4A3hCRHLHW3aIulwi8hng\nBSA9ymUXA08AP1PVIuDjwG0iclGU61kK3IfTMfNxzvH8k4iURLOeIe4FSojC33qImPeLePYJX30T\nsl/Esk/4yo95v0hAnwDrF5HUNSH7hK8u6xejF4s+AUyuoPG7OAdzN+N8qisE6mJQTyn/f3v3HyNH\nWcdx/H1pa2lRSFBbTKTYRPKVWkOsTQgkBos1kSqlfxCl0dqIEcEaf8USUaEaMDEpNKURkUhbWpVU\nQvkDFDxAiSimhrZKgm0/1dBTqaGleOQK5Udszz+eWdnu3t3sXGfnenOfV3K53dmZ5zubvc/keeaZ\nnYObJPVJOkoK0yyg9NER8HvSTTm3AmUcaBYARyXdIemopI3AAWBRCW23+hbwZeAmytn3ZrOAByRt\nAZD0Z9K/T7qwzCKS9gIzJG2LiMnAmcAA6TMpVURcDbwE/KvkpqvIRZWZgPGbi25mAirIRZWZAOei\ngPGaCXAuCuliJoCaTU9HxCTS3c1bHZM0ALwaEatIB4T9pBFe2XVuaVm2GDgk6dmS6wwAF0t6LiI2\nFm17GO8BdrUsU7a8bOslfT8iPlR2w5KeApY3nmcjyQ8Cm7pQ60hEzCZNz/SQpmheKrNGNkr9OnA+\nsHMU23c9F1VlooNa4zkXXcsEVJeLKjIBzkWBOuM5E+BcdOxEM9GJup1pXAD8Z4if5v+h+APgVOA+\noDfr9XejDhFxEXA7aZQ0GiPWkfTcKNsdzqnAkZZlR4DpJdfpxr4PKSJOJ02jbJf0QJfK/BOYCiwE\n1kTEgrIazv4+N5OudeofZTNV5KKqTOTWGq+5qCoTUEkuupYJcC6K1hmvmQDnolMlZSJXrc40SnqU\nnI6wpNcAImIl6R91z6UlwGXUiYhlwG2kD3BLkfaL1CnZy8C0lmXTgcMV7kNpslHdL0kju092q042\ntQTwWERsBZaQpjfKcD3wF0kPNy0rNEVTRS6qykSntUrmXBTU5UyAc1G4TslqlQmoRS5OOBOdqNuZ\nxmFFxIZsrr9hCun9v9iFWtcDa4DFkjaX3X4X7SZ9e6xZ0D4NcdKLiHnANuAhSUsaB/+SayyKiEda\nFk8FyhzlfQK4IiL6I6KfdP3Nloi4tozGq8rFOM4EOBdF2q8iE+BcjLXaZAJqk4uuZqKhVmcac/wJ\nWBkRD5EuaL4VeFxSX5lFIuKzwFeBC7KLX6tQ1mjit8DUiPgS6VYKy4AZQG9J7Vci0u0Gfg2slrS6\ni6V2APMj4tPA3cBHgUuAVWUVkHRu8/OI2AeskPRgSSW6nosxygQ4F8epKBddzwQ4FyfAmWhRl1xU\nkAlgAp1plHQH6cLWJ4A+4BTSV+vL9k3gzcCOiDic/QxEROuorEyDlPDVekmvk/6Ql5JuMbGCNAJ+\n5UTbzlH2bQE+R7qFxQ1Nn8HhiLixzCKSDgCXkm6f0A98F7is4o7RCakoF2ORCRjfuSj9VhlUkIs6\nZAJqnYvxnAlwLsZcz+BgNz4DMzMzM6uTCXOm0czMzMxGz51GMzMzM8vlTqOZmZmZ5XKn0czMzMxy\nudNoZmZmZrncaTQzMzOzXO40mpmZmVkudxrNzMzMLJc7jWZmZmaWy53GGomInoj48Fjvh9nJwpkw\na+dc2Gi501gvZwOPjPVOmJ1EnAmzds6FjYo7jWZmZmaWa/JY74DVR0TMAtYBFwMvA5uA6yQNRsQ7\ngJuBjwBTgPuBr0h6Mdv2GLAc+BpwLrAHuErSk3ltV/cOzYpxJszaORfjlzuNNRURF5GCcw4pVN+R\n9GDT6wuBNaTQTcoW3yXpylHWm0qa7vgbcCFwBrAFOBQRa4HfAM+SDgTTgNuAnwEfb2rmRuALwD7g\nTuB2YP5IbZMOLma5nAmzds6FFeHp6RqKiJmk0dl6UtDXAfdExPuz198E3AesBt4F/AK4u/kgEBFz\nC5ZdCJwFLJP0tKTHgauBA8AlwGxgqaSnJG0DPgUsaqmzTlKvpL3Zvs2LiJ6cts1yORNm7ZwLK8pn\nGutpOfA7Seuy53dFxDzgKuAa0in/U4C/A/8GngdOa2wcEbcCVwJvyZ5PBjYAc4DtwDVDnOqfAzwj\nqb+xQNL92fbXAvskvdD02p6I6M+2ezpbvLepvcPZ7ykjtW3WIWfCrJ1zYYX4TGM9zQJ2tSzbA7wT\nQFLjOo8ngNdIo7PvNa37Y1LgGz4P/FXSfGA/cPkQNV8fYX9eHWb5JN6Y7hipjZHaNuuEM2HWzrmw\nQtxprKc+4H0ty+YDuwEi4jTg0mydsyTNkbSvsaKk3S3bng9szh5v5PhrS/6/GTA7Ik5vLIiIFRHR\nm9WdHRFvb3rtvaQRqzp4P3tHaNusE304E2at+nAurABPT9fTJuDbEfENYCvpguLLeePgcA4phFOA\naRHxNkmHRmjvTOBg9vggMGOIdR4mXZS8PiJuyLa5jnTx8aOk0ezPI2Il6eLmHwF/lLSzg/fTO0Lb\nRMQZwH8lDXTQlk1MzoRZO+fCCvGZxvoZlPQ8aXS4lDRy+yKwRNI/snV2AUeAncAzwMGI2BMRZw/T\n5gvAzOzxTNK1LceRdAxYDEwHniSNNn8iaW12TctlpNsf/AH4FbAD+Fjee8lrO1tvK7B2yBbMnAmz\noTgXVljP4KBvXTTRRMQqYC7pAuZXSOG+F7hX0i3ZOo9JWpA9/gwwQ9LN2bb7Jd05NntvVj5nwqyd\nc2GtfKZxYjqPNJJ7K+n2BBcA7yaN6BqaRxM/Bc6LiJ2k6YoNFe2nWVWcCbN2zoUdx2caJ6CI+ADp\nW29zSbcr2A78sPmGrmYTiTNh1s65sFbuNJqZmZlZLk9Pm5mZmVkudxrNzMzMLJc7jWZmZmaWy51G\nMzMzM8vlTqOZmZmZ5XKn0czMzMxyudNoZmZmZrncaTQzMzOzXP8DI50cCISljUoAAAAASUVORK5C\nYII=\n",
"text": [
"<matplotlib.figure.Figure at 0xb7ea2b0>"
]
}
],
"prompt_number": 13
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment