Created
April 25, 2015 01:08
-
-
Save phobson/c4596e092a3bbdcd996d to your computer and use it in GitHub Desktop.
now with scales and trasformations
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"\n", | |
"import matplotlib.pyplot as plt\n", | |
"import matplotlib.transforms as mtrans\n", | |
"import mpl_toolkits.axes_grid1.inset_locator as inset\n", | |
"\n", | |
"import pandas\n", | |
"import seaborn\n", | |
"\n", | |
"seaborn.set(style='ticks')\n", | |
"%matplotlib inline\n", | |
"\n", | |
"def connect_spines(left_ax, right_ax, left_y, right_y, **line_kwds):\n", | |
" left_trans = mtrans.blended_transform_factory(left_ax.transData, left_ax.transAxes)\n", | |
" right_trans = mtrans.blended_transform_factory(right_ax.transData, right_ax.transAxes)\n", | |
"\n", | |
" left_data_trans = left_ax.transScale + left_ax.transLimits\n", | |
" right_data_trans = right_ax.transScale + right_ax.transLimits\n", | |
" \n", | |
" left_pos = left_data_trans.transform((0, left_y))[1]\n", | |
" right_pos = right_data_trans.transform((0, right_y))[1]\n", | |
" \n", | |
" bbox = mtrans.Bbox.from_extents(0, left_pos, 0, right_pos)\n", | |
" right_bbox = mtrans.TransformedBbox(bbox, right_trans)\n", | |
" left_bbox = mtrans.TransformedBbox(bbox, left_trans)\n", | |
"\n", | |
" connecter = inset.BboxConnector(left_bbox, right_bbox, loc1=3, loc2=2, **line_kwds)\n", | |
" connecter.set_clip_on(False)\n", | |
"\n", | |
" left_ax.add_line(connecter)\n", | |
"\n", | |
" return connecter\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAUQAAAEzCAYAAABJzXq/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGjNJREFUeJzt3XuwXXWZ5vHvGyTcJDgMSHNpLkLzFtqNKDRgBiRByIgj\nAwGmsRUUBlAYuwZ6pgZtuqY51ZZKidjQF50eiCXStC0J4dJNAzJgAh4R5Cbi5QUiQYiBBgTCNZDk\nnT/278DxeE5yLnuf39p7P5+qU+y1svbaT2VxnvzWZa9lmYmIiMCM2gFERJpChSgiUqgQRUQKFaKI\nSKFCFBEpVIgiIsVbOrFSd/8AcDywOfCliLi/E58jItJOnRohbhYRnwS+DMzr0GeIiLSVderCbHff\nAvgb4OyIeLojHyIi0kYT3mV29wOA8yJirrvPAL4K7A2sBk6NiGXuvg3wJeAvVIbTZ8S22Qf4a2At\nrW3z8Yj4t6oB+4S7zweOi4iPlekDgQuBNcB3IuIva+aTsU1ol9ndzwYuBjYps44GZkbEbOCzwAVl\n/gXAdsAX3f3YNmWV9Rhl21wI/ElEzAUWA5+pla2fuPtFwBcAGzb7a8AfR8RBwAHlHytpoImOEB8G\njgEuK9MHATcARMQd7r5fef2JtiWU8Rq5bT4SEU+U1xsDr1RJ1X8GgauATwG4+yxgk4h4pPz5jcBh\nwH114sn6TKgQI2Kxu+86bNaWwKph02vdfUZErJtKKHd/C7AT8HhErJnKuvrFyG0zVIbuPhv4NHDw\nZNarbTE6dz8FOGvE7JMi4gp3nzNs3ix+83fkBeAdk/g8bYdpMNXLblbRKsUhEy5Ddx8Azh3jj3cD\nlk8qmeDuxwPnAB+KiGfGsfwA2hbjEhELgAXjWHTk78gs4Ln1vUHboZ6pFuIgcCSwsBw4nvD1hhEx\nAAwMn1dGOo+MsriMk7ufAHwSmBMRz47nPdoW7RcRq9z9NXd/B62/x3mM+Dse5T0DI5fRdpgeky3E\noWt1rgIOd/fBMn3y1CPJFGU5+38R8Ciw2N0BlpZfNOm85M3fEYDTgcuBjYAbI+KHVVLJBnXsOsSp\nGPav4W4Rsbxumv6mbdEM2g7ToyNf3ZuscjB6DvC2uklEpB81qhAjYgmwpPxreGbdNCLSb3S3GxGR\nQoUoIlKoEEVEikYdQ9RJFRGpqVGFqJMqIlKTdplFRAoVoohIoUIUESkadQxRJ1VEpKZGFaJOqohI\nTdplFhEpVIgiIoUKUUSkUCGKiBSNOqmis8wiUlOjClFnmUWkJu0yi4gUKkQRkUKFKCJSqBBFRAoV\noohIoULsQe5+gLt/d9j0fHe/vGYmkW7QqMtudB3i1Ln72cAJwItl+iJgHnBvzVwi3aBRI8SIWBIR\nA8CFtbN0sYeBYwAr04PAGcOmRWQMjSpEmbqIWAysGTZ9RcU4Il2lUbvMUpe7DwDn1s4hUosKUd5Q\nDlcMDJ9Xvkb5SIU4ItNOu8y9K0e8zrEWFJEWjRB7UEQsB2YPm14KLK0WSKRLaIQoIlKoEEVEikbt\nMuvCbBGpqVGFqBvEikhN2mUWESlUiCIihQpRRKRQIYqIFCpEEZFChSgiUqgQRUQKFaKISKFCFBEp\nGvVNFX11T0RqalQh6qt7IlKTdplFRAoVoohIoUIU6RB3n+/ul4+Yd5a7f7FWJlm/Rh1DFOkV7n4R\nMA+4t0xvBlwC/CGwqGI0WQ+NEEU6YxA4A7AyvQnwDeDzw+ZJw2iEKDIF7n4KcNaI2SdFxBXlMjIA\nIuI54CZ3/8R05pOJUSGKTEFELAAWtHOd7j4AnNvOdcr4qBBFGiYiBoCB4fPKtbmPVIjTV1SIPcTd\nDwDOi4i57r4HrWNW64AHgE9HhB5WP72y/Iw2XxpIhdgj3P1s4ATgxTLrK8A5EXGru38NOAq4ula+\nfhQRS4GlI+ZdWimOjIPOMveOh4FjePMM5nsj4tby+nrgsCqpRLqICrFHRMRiYM2wWcMv7XgR2Gp6\nE4l0H+0y9651w15vCTy3oTfo7Kb0OxVi77rX3Q8px7GOAG7e0Bt0dlP6nQqx9wydwfyfwMXuPhP4\nKfq6mMgGNaoQdYPYqYmI5cDs8vohWn+XIjJOjSpE3SBWRGrSWWYRkUKFKCJSqBBFRAoVoohIoUIU\nESlUiCIihQpRRKRQIYqIFCpEEZFChSgiUqgQRUQKFaKISKFCFBEpVIgiIoUKUUSkUCGKiBQqRBGR\nQoUoIlKoEEVEio4Worsf6u4Xd/IzRETapWOF6O67A/sAm3bqM0RE2qljhRgRyyLiK51av4hIu03q\nMaTufgBwXkTMdfcZwFeBvYHVwKkRsayNGWWSykPqLwH2AF4H/ntE/KhuKpHmmvAI0d3PBi4GNimz\njgZmRsRs4LPABe2LJ1N0GvBy2TanAV+vnEek0Sazy/wwcAxgZfog4AaAiLgD2G/4whFx4lQCypS8\nkze3zYPAju4+q24kkeaacCFGxGJgzbBZWwKrhk2vLbvRUt99wIcB3P1AYFtgi/G+2cy2Wrly5cEd\nyibSOJM6hjjCKlqlOGRGRKwb75vdfQA4tw055Ld9HdjL3W8DBoEHgV+PtfCee+45YGbnDptm3bpx\nb0qRrteOQhwEjgQWllHI/RN5c0QMAAPD57n7rsAjbcjW7/YHbomI/+Hu+wH7R8Tq4QuY2b8D3gfM\nBO4Fds/MXwz9+dC2eOKJJ/YFlk9XcJEaplKIWf57FXC4uw+W6ZOnFknaKIBvu/s5wKvAaWY2g9b1\noTuXZZ4Dbs7M1WOsA4DM3NzMdsrMxzuaWKSiSRViRCwHZpfXCZzRxkzSJhHxa+BwM9ua1ijwD4Df\nB+7LzHsmsq7tt9/+thdeeGGumf1TZr7egbgi1bVjl7lt3H0OMAd4W90k3a2MAt8L7FRmPQvclJmv\nTXHVi4DjgG9NcT0ijdSoQoyIJcCSctzqzLppuouZbQMcSGubJnBPZt7Vzs/IzFfM7Idm9v7MvLWd\n6xZpgkYVooyfmW0E7AvsUGY9DdzY6d3ZzHzYzHY2s10y89FOfpbIdFMhdhEzeztwALARsA64OzPv\nnO4cmXmLmZ1gZivbsBsu0hgqxAYro8D9ge3KrKeAGxpyUmMh8F+Ay2sHEWmXRhWiTqqAmf0OrRKc\nAawF7srM2+um+m2ZudrMBs3s0My8pXYekXZoVCH240kVM3sLrd3gbcusJ4F/zcw1Y7+rGTJzuZnt\nambvGH4xt0i3alQh9gsz24HWTTCGRoF3Zubg+t/VTJm5xMw+ama/ysxXa+cRmQoV4jQws41pXRLz\n78uslcB1mbm2Xqq2WggcD/xD7SAiU6FC7BAz24nWZTFG6+5Ad2TmU3VTdUZmvm5mS83s8My8qXYe\nkclqVCF280kVM5tJaxS4dZn1OPDPmdkXt4vJzMfMbBcz+73MfKh2nprcfT5wXER8rEx/APgcrbuW\n/xvw8Yh4pWJEGUOjCrHbTqqY2c7Ae2iNAl8HfpCZz9RNVU9mfs/MPmJmKzLz5dp5anD3i4B5tO4c\nNOTvgIMj4il3/wJwKvA3NfLJ+jWqEJvOzDahdZOEoRHsY/TRKHCcFgF/DFxWO0glg7TuAPWpYfMO\niYihwyUbAxodNpQKcQPMbDfg3WXyNeD2zHy2YqRGy8w1ZnazmX0wM2+onadT3P0U4KwRs0+KiCvK\noZ83RMST5T3HAIcAfz4tIWXCVIgjmNmmtEaBW5VZy4FrMjPHfJP8hsz8VTmeuFdm/qx2nk6IiAXA\ngvEu7+5/SutZRB+MiPV+3VF3ka9HhQiY2e607hUIrRup3p6Zz1eM1PUy83Yz+yMzeywzX6ydpyZ3\n/3Nat2M7PCI2eK2m7iJfT6MKcbrOMpvZZrRucDv0LJhfoFFgJ1wJnGBm3+yzv9ssP7j7dsBfAHcD\n17s7wLcj4v/UiydjaVQhduoss5kZ8HvAu2j9j/oq8P3MXLXeN8qUZOZaM7sB+BBwXe080yUilgJL\ny+snefMZ5tJwjSrEdjKzLWiNAoceu/kQcHWfjVSqy8wnzewpM/v9zHygdh6R9emZQiyjQAf2ojUK\nfJnWscAXqgYTMvNOMzvOzH6pUbk0WVcXopm9ldYocPMyK9AosKkWAyf24fFE6SJdVYhlFPhOWscD\nAV4CBjPzpXqpZDwyc52ZXUfrGd7X1s4jMprGF6KZbUlrFLhZmfVTdEa4K2Xm02a2wszenZk/qp1H\nZKRGF+KKFSvmAcuA2/r1u7FT4e4zgEuAPWk9g+W0iIiamTLzbjObX44n6hs/0igzagcYzt3nlKv0\nzwLYcccdv5OZN6sMJ20esEVEHAT8JfD5ynmGXA0cVQ6BiDRGowoxIpaUq/QvrJ2lR7wCbOXuRuur\niI14Ql453HENcFTtLCLDNXqXWaZsENgU+Dmtu3UfWTfOmzLzWTN7xMzem5n31M4jAg0bIUrbnQ0M\nRoQD+wCXuvvMsRZ29wF3z+E/dPD7s+XEyu+a2Tad+gyRidAIsbdtAQxdCP0srXvxbTTWwpVuKnAt\n8HEzu0z3lZTaNELsbecDB7r7bcDNwJ817db15XjiVcD82llENELsYRHxHF1QNJm5yszCzP4wM39Y\nO4/0L40QpRHKjR/ebmZvr51F+pcKUZrkX4EjzGzM45windSoXeZufgypTF1mppldSetW+wtr55H+\n06gRoi7MlvK4gQfM7H21s0j/aVQhigCUB1NtZWbb184i/UWFKI1UHmF6mJk16rCO9DYVojTZlcBx\ntUNI/1AhSmOVuxzdY2YH1c4i/UGFKI2WmQ8Cm5nZ79bOIr1PhSiNl5k3AXPMbOPaWaS3qRClWyxE\nxxOlw1SI0hUy81XgDjM7pHYW6V0qROkamfkLYCMz27VyFOlRjbrGS1/dkw3JzFvM7KNmtjIzV9fO\nI72lUSNEfXVPxmkROp4oHdCoQhQZj8x8DfiemR1aO4v0FhWidKXMfBRYY2a7184ivUOFKF0rM28F\n9jezTWtnkd6gQpRup+OJ0jYqROlqmfk6sMTM5tXOIt1PhShdLzMfB14ysz1rZ5HupkKUnpCZg8B7\nzGzz2lmke6kQpZcsAo6tHUK6V6O+qSLt5e6fAE4qk5sB7wa2i4hV1UJ1UGauNbP/Z2YfLHfcFpkQ\nFWIPi4hLgUsB3P1vgUt6tQyHZOZKM9vFzN6ZmT+tnUe6i3aZ+4C77we8KyIuqZ1lOmTmD4B3mdmW\ntbNId1Eh9odzgIHaIabZlcB8M7PaQaR7aJe5x7n724A9I2LpOJYdAM7teKhpkJnrzOx64D8B/1I7\nj3QHFWLvez9w83gWLHcaGhg+z913BR5pd6jpkJlPmdkTZvYHmfnj2nmk+bTL3Pv2BJbVDlFLZt4F\n7GlmW9XOIs3XqBGibhDbfhHx5doZGuAq4EQz+2ZmZu0w0lyNGiHqBrHSCZm5jtZxxCNrZ5Fma1Qh\ninRKZj4DPGZm+9TOIs2lQpS+kZn3Arua2da1s0gzqRCl31wDHKnrE2U0KkTpK+WkyjXA0Z36DHef\n7+6XD5s+2N1/4O63u/t5nfpcmToVovSdzHwOWGZm+7Z73e5+EfAFYPgI9K+A4yPifcD+7q7jmA2l\nQpS+lJn3AzuY2bZtXvUgcAa/WYj7R8Sj7v5WYCvghTZ/prRJo65DFJlm/wJ83MwuK5fmjJu7nwKc\nNWL2SRFxRbme9g0Rsc7dDwS+BfwEWDGFzNJBKkTpW5mZZrYYmE/rZhDjFhELgAUTWP4HwG7u/jng\ns6znZhu99J3ybqNClL6WmS+Y2c/NbP/MvLPd63d3A24FjoyI54AXgZnre0+vfae8m+gYovS9zPwJ\nsI2ZbdeuVZYfIiKB84Hr3X0JrbuWX9Cmz5E20whRpOV6Wt93vjwz105lReVWa0uHTV8LXDvFfDIN\nNEIU4Y3rE69ED6nqaypEkSIzXwLuN7PZtbNIHSpEkWEy8+fAlma2Y+0sMv1UiCIjZOaNwKFmpmPs\nfUaFKDK6RcBxtUPI9FIhiowiM18B7jKzg2tnkemjQhQZQ2Y+DMw0s51rZ5HpoUIUWY/MvBl4v5mt\n99sl0hs6ctDY3WcDnyyTZ0bE8534HJFpspDW8cR/rB1EOqtTI8TTaBXiAuD4Dn2GyLTIzNXA7WY2\np3YW6axOFeJGEfEasBLYvkOfITJtMvMRADPbrXYW6ZwJ7zK7+wHAeREx191nAF8F9gZWA6dGxDLg\nZXefCewAPNHOwDIx7v5ntB6/uTHwtxFxaeVIXSszl5jZR83sV2XUKD1mQiNEdz8buBjYpMw6GpgZ\nEbNp3eNt6C4e/xf4e1q7zpe1J6pMVLlR6fvK9pkDvKNqoN6g6xN72ERHiA8Dx/BmyR0E3AAQEXe4\n+37l9T3Aye0KKZM2D/ixu18NzAL+V+U8XS8zXzOz28zsA+UMtPSQCY0QI2IxsGbYrC2BVcOm15bd\naGmGbYF9aY1oTgcuX//iMh6Z+UvgNTPbo3YWaa+pXnazilYpDpkRERN9NsUAul16pzwN/Cwi1gAP\nuvur7r5NRDw92sLaFuOXmbeZ2UfMbEX5Vov0gKkW4iCtA/YLy0N07p/oCnS79I76HnAm8BV33wHY\nAnhmrIW1LSZsEfAR4B9qB5H2mOzubZb/XgW86u6DtE6o/GlbUklbRMR1wL3ufietOzb/t3JLe2mD\nzFwDfNfM5tXOIu0x4RFiRCwHZpfXSesZtNJQEfGZ2hl6WWauMLNdzMwzM2rnkalp1P3eymUic4C3\n1U0iMn6Z+X0z+yMze7zcdVu6VKPOCEfEknIc68LaWUQm6ErgWDOz2kFk8hpViCLdqjyp7zvAEbWz\nyOSpEEXaJDOfAJ42s3fVziKTo0IUaaPMvBPYy8y23ODC0jg6qSLSfotpPfT+m+V5z9IlGjVC1EkV\n6QWZuQ64Dvhw7SwyMY0qRJFekZlPA78ys71rZ5HxUyGKdEhm3g3sbmY6BNQlVIginXU1cJSuT+wO\nOqki0kGZmWb2z8B/Bq6pnUfWr1EjRJ1UkV6Umb8GHjWz99TOIuvXqEIU6VWZeR+ws5ltXTuLjE2F\nKDJ9rgWONDP93jWUNozINCkXaV8NHFU7i4xOhSgyjTLzeeAhM9uvdhb5bTrLLDLNMvMBM/uwmW2b\nmU/VziNvatQIUWeZpY9cBxyh44nNoo0hUkE5nngVreecS0OoEEUqycwXgJ+Y2QG1s0iLClGkosz8\nGbC1mf1O7SyiQhSpLjOvB+aZ2Ua1s/Q7FaJIMywCjq0dot816rIbaT93vwd4vkz+IiJOqZlHRpeZ\nL5vZfWY2OzO/XztPv2pUIeo6xPZy900BImJu7SyyYZn5YHno/U6Z+XjtPP2oUbvMug6x7d4NbO7u\nN7r7ze6us5kNl5k3AXPNbOPaWfpRowpR2u4l4PyI+I/A6cDl7q5t3nwL0fHEKhq1yyxt9yDwMEBE\nPOTuzwDbAytGW9jdB4Bzpy2djCozXzWzH5rZwZl5W+08/USF2NtOBvYGPu3uOwCzgJVjLVwOVwwM\nn+fuuwKPdCyhjCozl5Xjibtk5qO18/QL7T71tgXALHe/Ffgn4OSIWFc5U89z9/nufvko889x92+N\ndz2ZeQtwkJnNbGtAGZNGiD0sItYAJ9bO0U/c/SJgHnDviPlHAB8CfjnBVS4CjgN0Kc400AhRpL0G\ngTOAN56y5+57AJ+kdXx2Qk/fy8zVwPdXrlx5YDtDyug0QhSZBHc/BThrxOyTIuKKcj3t0HJvBf6O\n1kj9nZP5rMxcPmvWLF0yNQ0aVYi6MFu6RUQsoHWMdkPmAdsB36b1//UO7n52RHxprDeMdrZ/++23\nn3xYGbdGFWJELAGWlDObZ9ZNIzJ1EbEYWAzg7ocAp6+vDMt7BtDZ/ip0DFGk/bL8jPVn0lCNGiGK\n9IKIWAosHe98aQ6NEEVEChWiiEihQhQRKVSIIiKFClFEpFAhiogUKkQRkaJR1yHqq3siUlOjClFf\n3RORmrTLLCJSqBBFRAoVoohIoUIUESlUiCIihQpRRKRQIYqIFCpEEZGiURdmS2e4+9uBu4EPRMSD\ntfOINJVGiD3O3TcG/h54qXYWkaZTIfa+84GvAStrBxFpOhViD3P3k4CnIuI7ZZZVjCPSeDqG2NtO\nBtLdDwP2AS5196Mi4snRFh7tAeki/USF2MMi4pCh1+7+XeBTY5VhWX4APSBd+ph2mUVEikaNEHWD\n2M6JiLm1M4g0XaMKUTeIFZGatMssIlKoEEVEChWiiEihQhQRKVSIIiKFClFEpFAhiogUKkQRkUKF\nKCJSqBBFRAoVoohIoUIUESlUiCIihQpRRKRQIYqIFCpEEZFChSgiUqgQRUQKFaKISNGxQnT3Q939\n4k6tX0Sk3TpSiO6+O60Ho2/aifWLiHRCRwoxIpZFxFc6sW4RkU4Z92NI3f0A4LyImOvuM4CvAnsD\nq4FTI2KZu38O2AM4IyKe60hiGTd33wi4GNgTSOD0iPhJ3VS9z93nA8dFxMeGTZ8PPFYWOTcibq2V\nT8Y2rkJ097OBE4AXy6yjgZkRMbsU5QXA0RHxvzsTUybpw8C6iDjI3Q8BPk9r20mHuPtFwDzg3mGz\n3wucHRGL66SS8RrvLvPDwDGAlemDgBsAIuIOYL/R3hQRJ041oExeRFwDfKpM7go8Wy9N3xgEzuDN\n3xWAfYH/6u63uvuXy8hdGmhchVj+ZVszbNaWwKph02vLbrQ0TESsdfdvAH8N/GPlOD3D3U9x9x+P\n+Nk3Iq4YZfGbgD+JiPcDbwVOn960Ml7jPoY4wipapThkRkSsm8yK3H0AOHeSOWQcIuIkd/8McIe7\n7xURr4y2nLbF+EXEAmDBOBf/ekQ8X15fAxy7voW1HeqZbCEOAkcCC939QOD+yQaIiAFgYPg8d38L\nsBPw+GTXK+DuJwI7RcQXgVeAdeVnVNoW7efuBvzI3f9DRKwADgPuWt97tB3qmWghZvnvVcDh7j5Y\npk9uXySIiDXA8naus08tAr7h7kuBjYEzI2L1RFagbTEpWX6IiHT3U4Ar3f1V4AFaZ/4nRNthelhm\nbngpEZE+oBMhIiKFClFEpFAhiogUKkQRkUKFKCJSqBBFRAoVoohIoUIUESlUiCIihQpRRKT4/3Sx\ncETU+YKZAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0xae33ef0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fig, (left_ax, center_ax, right_ax) = plt.subplots(ncols=3, figsize=(5,5))\n", | |
"\n", | |
"left_ax.set_yscale('log')\n", | |
"left_ax.set_ylim(0.1, 100)\n", | |
"\n", | |
"center_ax.set_ylim(3, 12)\n", | |
"right_ax.set_ylim(-15, -10)\n", | |
"\n", | |
"_ = connect_spines(left_ax, center_ax, 5, 9)\n", | |
"_ = connect_spines(center_ax, right_ax, 9, -14)\n", | |
"\n", | |
"seaborn.despine(fig=fig, bottom=True)\n", | |
"for ax in fig.axes:\n", | |
" ax.set_xticks([])" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.4.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment