I hereby claim:
- I am phreeza on github.
- I am tmco (https://keybase.io/tmco) on keybase.
- I have a public key whose fingerprint is CD4C 0BFB 64C8 D681 4227 561E 5924 70A9 0C46 A0EE
To claim this, I am signing this object:
| import tensorflow as tf | |
| node1 = tf.constant(3.0, tf.float32) | |
| node2 = tf.constant(4.0) # also tf.float32 implicitly | |
| with tf.Session() as sess: | |
| W = tf.Variable([.3], tf.float32, name='W') | |
| b = tf.Variable([-.3], tf.float32, name='b') | |
| x = tf.placeholder(tf.float32, name='x') | |
| with tf.name_scope("LinearModel"): |
| { | |
| "embeddings": [ | |
| { | |
| "tensorName": "Arxiv Titles", | |
| "tensorShape": [ | |
| 10000, | |
| 256 | |
| ], | |
| "tensorPath": "https://gist.githubusercontent.com/phreeza/e6a8f136fcda76bb7820f788e87e8681/raw/967badf2f7794a32e862c4ee2a8a65b59b118fb8/embeddings.tsv", | |
| "metadataPath": "https://gist.github.com/phreeza/e6a8f136fcda76bb7820f788e87e8681/raw/967badf2f7794a32e862c4ee2a8a65b59b118fb8/metadata.tsv" |
| 0.871428 0.818533 0.616601 -0.896398 0.750342 -0.0670242 -0.985361 -0.901136 -0.799989 0.661025 0.896552 -0.999996 -0.815607 -0.999946 0.210674 -0.795743 -0.936592 0.984476 0.415128 -0.640509 0.934588 0.483844 0.399479 0.215688 -0.992214 0.324514 0.454484 -0.800055 -0.999993 0.788731 -0.28611 -0.0720174 0.0251022 0.588688 0.598253 0.857084 0.999794 -0.953029 -0.865772 -0.289119 0.999546 -0.709774 -0.415915 0.0922971 -0.997911 -0.108204 -0.999999 -0.414267 -0.799834 -0.0698598 0.572549 0.410644 -0.790586 0.293573 0.999865 -0.476083 -0.678337 -0.662886 -0.999999 -0.136961 0.70228 0.05713 -0.96455 -0.715666 0.996947 -0.777469 0.999629 0.887067 0.506511 -0.691616 0.676756 -0.918784 0.835962 0.451829 -0.801001 0.0379395 0.999999 -0.096177 -1.0 0.977844 -0.771265 0.999997 0.97939 0.19234 -0.641295 -0.0612696 0.916226 0.447681 -0.651528 -0.844617 -0.661612 0.413032 0.989486 -0.897041 -0.685231 -0.335238 0.302788 -0.710447 -0.42624 0.914872 -0.312054 0.156264 0.983085 0.925359 0.916282 0.283454 0.371099 0.0488607 0.3 |
| import glob | |
| entries = [] | |
| for n,fname in enumerate(glob.glob('/Users/tom/Downloads/data/*/*.txt')): | |
| f = open(fname) | |
| s = f.readlines() | |
| x = [g.split('\t') for g in ' '.join(s).strip().split('\n ----------\n')][:-1] | |
| if n%1000 == 0: | |
| print n,fname | |
| for raw_entry in x: |
| # adapted from http://stackoverflow.com/a/12502560/379300 | |
| # Output should be valid markdown, so it can be turned into a nice pdf with pandoc | |
| import poppler | |
| import sys | |
| import urllib | |
| import os | |
| def main(): | |
| input_filename = sys.argv[1] | |
| # http://blog.hartwork.org/?p=612 |
| # This script is released 'as is' into the public domain | |
| from math import cos,sin | |
| import os | |
| from time import sleep | |
| def y(p): | |
| return (sin(p)**3) | |
| def x(p): | |
| return -(13*cos(p)-5*cos(2*p)-2*cos(3*p)-cos(4*t))/16 | |
| while True: | |
| for r in range(14): |
| # -*- coding: utf-8 -*- | |
| # -*- mode: python -*- | |
| # Adapted from mpl_toolkits.axes_grid2 | |
| # LICENSE: Python Software Foundation (http://docs.python.org/license.html) | |
| from matplotlib.offsetbox import AnchoredOffsetbox | |
| class AnchoredScaleBar(AnchoredOffsetbox): | |
| def __init__(self, transform, sizex=0, sizey=0, labelx=None, labely=None, loc=4, | |
| pad=0.1, borderpad=0.1, sep=2, prop=None, **kwargs): | |
| """ |
I hereby claim:
To claim this, I am signing this object:
| import urllib | |
| import datetime as dt | |
| from datetime import timedelta | |
| import pytz | |
| from PIL import Image | |
| import numpy as np | |
| import subprocess | |
| import socket | |
| import os |
| # Test the regularisation parameter on the convolutional Layer | |
| from keras.datasets import mnist | |
| from keras.models import Sequential | |
| from keras.layers.convolutional import Convolution2D | |
| from keras.layers.core import Dense,Flatten | |
| from keras.utils import np_utils | |
| from keras.regularizers import l2 | |
| import numpy as np |