Skip to content

Instantly share code, notes, and snippets.

package main
import (
"fmt"
"time"
)
func feedChannel(c chan int) {
//aqui vamos feedar nosso canal
for i := 0; i < 10; i++ {
package main
import (
"fmt"
"sync"
)
func feedChannel(c chan int, wg *sync.WaitGroup) {
//aqui vamos feedar nosso canal
for i := 0; i < 10; i++ {
package main
import (
"fmt"
"sync"
"time"
"webmotor_crawler/crawl_functions"
)
func main() {
package crawl_functions
import (
"fmt"
"sync"
"webmotor_crawler/query_handler"
)
func CrawlRoutine(wg *sync.WaitGroup, c chan int) {
/*
package query_handler
import (
"net/http"
"net/url"
"golang.org/x/net/proxy"
)
type QueryClient struct {
package query_handler
import (
"compress/gzip"
"fmt"
"io/ioutil"
"net/http"
"os"
)
import torch
from torch import nn
from blitz.modules import BayesianLinear
class BayesianRegressor(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
self.linear = nn.Linear(input_dim, output_dim)
self.blinear1 = BayesianLinear(input_dim, 64)
self.blinear2 = BayesianLinear(64, output_dim)
@variational_estimator
class BayesianRegressor(nn.Module):
def __init__(self,):
super().__init__()
#self.linear = nn.Linear(input_dim, output_dim)
self.blinear1 = BayesianLinear(input_dim, 512)
self.blinear2 = BayesianLinear(512, output_dim)
def forward(self, x):
x_ = self.blinear1(x)
iteration = 0
for epoch in range(100):
for i, (datapoints, labels) in enumerate(dataloader_train):
optimizer.zero_grad()
loss = regressor.sample_elbo(inputs=datapoints,
labels=labels,
criterion=criterion,
sample_nbr=3)
loss.backward()