Last active
March 8, 2017 09:59
-
-
Save pilipolio/0f620e98c18a400383543f8d052a7ab1 to your computer and use it in GitHub Desktop.
201703_PandasToDictToVectorizer
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from sklearn.feature_extraction import DictVectorizer\n", | |
"from sklearn.preprocessing import LabelEncoder\n", | |
"\n", | |
"import numpy as np\n", | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>category</th>\n", | |
" <th>id</th>\n", | |
" <th>level1_location</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>10</td>\n", | |
" <td>IID1</td>\n", | |
" <td>01</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>11</td>\n", | |
" <td>IID2</td>\n", | |
" <td>02</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>12</td>\n", | |
" <td>IID4</td>\n", | |
" <td>03</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" category id level1_location\n", | |
"0 10 IID1 01\n", | |
"1 11 IID2 02\n", | |
"2 12 IID4 03" | |
] | |
}, | |
"execution_count": 14, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"item_features_df = pd.DataFrame(\n", | |
" [{\"id\": \"IID1\", \"category\": \"10\", \"level1_location\": \"01\"},\n", | |
" {\"id\": \"IID2\", \"category\": \"11\", \"level1_location\": \"02\"},\n", | |
" {\"id\": \"IID4\", \"category\": \"12\", \"level1_location\": \"03\"}])\n", | |
"\n", | |
"id_encoder = LabelEncoder()\n", | |
"id_encoder.fit([\"IID1\", \"IID2\", \"IID3\", \"IID4\"])\n", | |
"\n", | |
"item_features_df" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>category</th>\n", | |
" <th>level1_location</th>\n", | |
" <th>feature_dict</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>id</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>10</td>\n", | |
" <td>01</td>\n", | |
" <td>{'category': '10', 'level1_location': '01'}</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>11</td>\n", | |
" <td>02</td>\n", | |
" <td>{'category': '11', 'level1_location': '02'}</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>12</td>\n", | |
" <td>03</td>\n", | |
" <td>{'category': '12', 'level1_location': '03'}</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" category level1_location feature_dict\n", | |
"id \n", | |
"0 10 01 {'category': '10', 'level1_location': '01'}\n", | |
"1 11 02 {'category': '11', 'level1_location': '02'}\n", | |
"3 12 03 {'category': '12', 'level1_location': '03'}" | |
] | |
}, | |
"execution_count": 21, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"encoded_ids_to_features = item_features_df\\\n", | |
" .assign(id=lambda df: id_encoder.transform(df['id']))\\\n", | |
" .set_index('id')\\\n", | |
" .assign(feature_dict=lambda df: df.to_dict('records'))\n", | |
"\n", | |
"encoded_ids_to_features" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 1., 0., 0., 1., 0., 0.],\n", | |
" [ 0., 1., 0., 0., 1., 0.],\n", | |
" [ 0., 0., 1., 0., 0., 1.]])" | |
] | |
}, | |
"execution_count": 22, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"v = DictVectorizer()\n", | |
"\n", | |
"sparse_features = v.fit_transform(encoded_ids_to_features['feature_dict'])\n", | |
"\n", | |
"# problem, we squeezed the row for missing IID3\n", | |
"# as DictVectorizer uses the list of dict index as row index so we sq\n", | |
"sparse_features.toarray()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 116, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([{'category': '10', 'level1_location': '01'},\n", | |
" {'category': '11', 'level1_location': '02'}, {},\n", | |
" {'category': '12', 'level1_location': '03'}], dtype=object)" | |
] | |
}, | |
"execution_count": 116, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# Solution 1: building a dense numpy array of copies of the same empty {} (easy on memory)\n", | |
"n_items = id_encoder.classes_.shape[0]\n", | |
"dense_feature_dicts = np.repeat({}, n_items)\n", | |
"\n", | |
"# replace the non empty dict within this array\n", | |
"dense_feature_dicts[encoded_ids_to_features.index.values] = encoded_ids_to_features['feature_dict']\n", | |
"\n", | |
"dense_feature_dicts" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 117, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 1., 0., 0., 1., 0., 0.],\n", | |
" [ 0., 1., 0., 0., 1., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0.],\n", | |
" [ 0., 0., 1., 0., 0., 1.]])" | |
] | |
}, | |
"execution_count": 117, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"sparse_features = v.fit_transform(dense_feature_dicts)\n", | |
"\n", | |
"sparse_features.toarray()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 127, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"[0 0 1 1 2 2]\n", | |
"Int64Index([0, 0, 1, 1, 3, 3], dtype='int64', name='id')\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 1., 0., 0., 1., 0., 0.],\n", | |
" [ 0., 1., 0., 0., 1., 0.],\n", | |
" [ 0., 0., 0., 0., 0., 0.],\n", | |
" [ 0., 0., 1., 0., 0., 1.]])" | |
] | |
}, | |
"execution_count": 127, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# Solution 2: correct the row indexes of the 1st sparse features matrix\n", | |
"import scipy.sparse as sp\n", | |
"\n", | |
"zero_indexed_sparse_features = v.fit_transform(encoded_ids_to_features['feature_dict']).tocoo()\n", | |
"\n", | |
"print(zero_indexed_sparse_features.row)\n", | |
"print(encoded_ids_to_features.index[zero_indexed_sparse_features.row])\n", | |
"\n", | |
"correct_row_indexes = encoded_ids_to_features.index[zero_indexed_sparse_features.row].values\n", | |
"sparse_features = sp.coo_matrix(\n", | |
" (zero_indexed_sparse_features.data, (correct_row_indexes, zero_indexed_sparse_features.col)))\n", | |
"\n", | |
"sparse_features.toarray()" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.0" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment