Skip to content

Instantly share code, notes, and snippets.

@pishangujeniya
Created November 10, 2019 11:54
Show Gist options
  • Save pishangujeniya/fc16d704925e11ae832e2cdb90d255c3 to your computer and use it in GitHub Desktop.
Save pishangujeniya/fc16d704925e11ae832e2cdb90d255c3 to your computer and use it in GitHub Desktop.
ZeroOne.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "ZeroOne.ipynb",
"provenance": [],
"collapsed_sections": [],
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "TPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/pishangujeniya/fc16d704925e11ae832e2cdb90d255c3/zeroone.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9Gah2SOsnK3F",
"colab_type": "text"
},
"source": [
"# Why $x^0 = 0$ and $0^0 = 1 ?$\n",
"\n",
"*Lets, find out by computing...*"
]
},
{
"cell_type": "code",
"metadata": {
"id": "RDu7rXhBnQXP",
"colab_type": "code",
"colab": {}
},
"source": [
"import numpy as np\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"np.set_printoptions(suppress =True,precision = 15000)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "yMVFqHnt9qYd",
"colab_type": "text"
},
"source": [
"# Making decrementing list of numbers\n",
"- Here we make a list of numbers starting from 1 and decreasing it by `stepValue` and store it in `npList`\n",
"\n",
"So the list will be...\n",
"\n",
"Suppose `stepValue` = $0.00001$\n",
"\n",
"if we start from number 1 then maximum count of our numbers will be \n",
"\n",
"> $m = 1/stepValue = 1/0.00001 = 100000$\n",
"\n",
"> $x_1 = 1.000000$\n",
"\n",
"> $x_2 = x_1 - 0.00001$\n",
"\n",
"> $x_3 = x_2 - 0.00001$\n",
"\n",
"> $x_4 = x_3 - 0.00001$\n",
"\n",
"> $x_5 = x_3 - 0.00001$\n",
"\n",
"> $\\dots$\n",
"\n",
"> $\\dots$\n",
"\n",
"\n",
"> $x_m = x_{m-1} - 0.00001$\n",
"\n",
"- In such manner we are trying to go closer and closer to zero."
]
},
{
"cell_type": "code",
"metadata": {
"id": "v488axBCnR3O",
"colab_type": "code",
"colab": {}
},
"source": [
"myNumbers = []\n",
"prevNumber = 1\n",
"stepValue = 0.00001\n",
"maxNumbers = 1/stepValue\n",
"myNumbers.append(prevNumber)\n",
"while ((len(myNumbers) < maxNumbers) and (prevNumber > 0)):\n",
" currentNumber = prevNumber - stepValue\n",
" if (currentNumber < 0):\n",
" break\n",
" myNumbers.append(currentNumber)\n",
" prevNumber = currentNumber\n",
"\n",
"npList = np.array(myNumbers)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "prE1U5My-1lJ",
"colab_type": "text"
},
"source": [
"Printing first and last 10 numbers from our list."
]
},
{
"cell_type": "code",
"metadata": {
"id": "wU57kiyfp4B8",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 459
},
"outputId": "17e62491-cc0c-49b6-9623-a8f1d80df011"
},
"source": [
"print(\"\\n First 10 numbers : \\n\")\n",
"for i in range(0,10):\n",
" print(str(i) + \" ---> \" + str(npList[i]))\n",
"\n",
"\n",
"print(\"\\n Last 10 numbers : \\n\")\n",
"for i in range(npList.shape[0] - 10 ,npList.shape[0]):\n",
" print(str(i) + \" ---> \" + str(npList[i]))"
],
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"text": [
"\n",
" First 10 numbers : \n",
"\n",
"0 ---> 1.0\n",
"1 ---> 0.99999\n",
"2 ---> 0.9999800000000001\n",
"3 ---> 0.9999700000000001\n",
"4 ---> 0.9999600000000002\n",
"5 ---> 0.9999500000000002\n",
"6 ---> 0.9999400000000003\n",
"7 ---> 0.9999300000000003\n",
"8 ---> 0.9999200000000004\n",
"9 ---> 0.9999100000000004\n",
"\n",
" Last 10 numbers : \n",
"\n",
"99990 ---> 0.00010000000191624604\n",
"99991 ---> 9.000000191624604e-05\n",
"99992 ---> 8.000000191624604e-05\n",
"99993 ---> 7.000000191624605e-05\n",
"99994 ---> 6.0000001916246047e-05\n",
"99995 ---> 5.000000191624605e-05\n",
"99996 ---> 4.000000191624605e-05\n",
"99997 ---> 3.000000191624605e-05\n",
"99998 ---> 2.000000191624605e-05\n",
"99999 ---> 1.000000191624605e-05\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "PN1uwiZL_FKh",
"colab_type": "text"
},
"source": [
"# Calculating powers\n",
"\n",
"Making another list of name `npPowers`\n",
"\n",
"> $ z = x_i | i = 0 \\to m $\n",
"\n",
"> $ npPowers(i,value) = (z, z^z) $"
]
},
{
"cell_type": "code",
"metadata": {
"id": "S02-AbXIrscQ",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 187
},
"outputId": "cf62b992-74d1-4095-948d-5a82da47c65d"
},
"source": [
"npPowers = np.zeros((npList.shape[0],2))\n",
"\n",
"for i in range(0,npList.shape[0]):\n",
" npPowers[i][0] = npList[i]\n",
" npPowers[i][1] = np.power(npList[i],npList[i])\n",
"\n",
"print(\"\\n npPowers : \\n\")\n",
"print(npPowers)"
],
"execution_count": 6,
"outputs": [
{
"output_type": "stream",
"text": [
"\n",
" npPowers : \n",
"\n",
"[[1. 1. ]\n",
" [0.99999 0.9999900000999995 ]\n",
" [0.9999800000000001 0.9999800003999961 ]\n",
" ...\n",
" [0.00003000000191624605 0.9996876193876575 ]\n",
" [0.00002000000191624605 0.9997836278273304 ]\n",
" [0.00001000000191624605 0.9998848773523256 ]]\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AR-EqQY9CEKs",
"colab_type": "text"
},
"source": [
" # Plotting `npPowers` of $z \\to z^z$"
]
},
{
"cell_type": "code",
"metadata": {
"id": "62c0wI1it1Cc",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 655
},
"outputId": "6d777fef-6f57-44af-e5b3-fa2d0d30f53b"
},
"source": [
"print(\"\\n Plotting graph...\")\n",
"\n",
"fig, ax = plt.subplots(figsize=(20, 10))\n",
"\n",
"ax.plot(npPowers[:,0],npPowers[:,1])\n",
"\n",
"ax.set(xlabel='0 to 1 incrementing with stepValue', ylabel='powers of x',\n",
" title='Can you observe the change of power graph between 0.3 to 0.5')\n",
"\n",
"ax.grid()\n",
"\n",
"plt.show()"
],
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"text": [
"\n",
" Plotting graph...\n"
],
"name": "stdout"
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJUAAAJcCAYAAABAA5WYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd5hcZd3G8fu3fbM1ZbPJpiek90Yi\nNRQhdCnSBAERBAsWqojKCyqgKCCiKEqTTkAQQSIgoYWW3nuvm03Zkuxm2/P+cc7isOwms8nOninf\nz3XNxe7MmTP3zJyzF3PneZ4x55wAAAAAAACAlkgKOgAAAAAAAABiD6USAAAAAAAAWoxSCQAAAAAA\nAC1GqQQAAAAAAIAWo1QCAAAAAABAi1EqAQAAAAAAoMUolQAAaCNmdqmZvR90joNlZmvM7PgIP8at\nZvZEJB8j0sws08xeMbNSM3s+6DyxwMymmdk3w9x2kpltiHQmAADQPEolAECgzOxCM5thZhVmttnM\n/m1mRwSdCx4ze9TMfhF0jhh1jqRCSR2dc18NOgz+J1YKKf/v41oz221mL5lZh2a262RmH5jZdjPb\nZWYfmtnh+9jvQZ3XZpZuZg+bWZmZbTGzH+1j20vNrM7/G99wmXSgjw0AiC6USgCAwPgfRO6V9Ct5\nH757SvqjpDOCzBXLzCwl6Az4TC9Jy5xztUEHCcfBHjsce63LzIZK+rOki+X9fdwj7+9jUyokfUNS\ngaT2ku6S9EoE35NbJfWXd4wfI+kGM5u8j+0/dM5lh1ymRSgXAKCNUSoBAAJhZnmSbpP0Hefci865\n3c65GufcK8656/1tDvX/xX2XP4rpD2aWFrIPZ2ZXmdlyf5sHzMyaeKwuZrbHzDqGXDfGzLaZWaqZ\nJZnZLf6IgGIze9zP1+SIhn1N/zKzPP/+2/z93WJmSZ/fxP7gT4laYmbHhdxwqZmtMrNyM1ttZl8L\nue0bZrbYzHaa2VQz69XodfiOmS2XtNzM/mRmdzfK9XLDaAIzKzKzF/yMq83smmaey5WSvibvA2OF\nmb0ScvMoM5vnP49nzSwj5H6nmtkc/z2ZbmYjmtq/v+1QM3vDzHaY2VYzuznk5jT/tSw3s4VmNi7k\nfjeZ2Ur/tkVmdmaj1/F9M7vbf71Wm9lJIbf3MbN3/fu+6R83T4TcPtHPvcvM5u5rVIWZDTZvytYu\nP+Pp/vX/J+lnks7zX7vLm7jvrWY2xX/9ys1slpmNDGPfffzrkvzfHzKz4pD7/d3MfuD/nGdmfzPv\n/NloZr8ws+SQ1+kDM7vHzLbLKwoaZ8w0s8f813Gxmd0Qej7458KNZjZP0m4zSwnjvfmguXPA18vf\nptzM/mNmnZp7/f193mxmJX6W0HMm3T8G1vnH1oP+88mS9G9JRfa/kTNFZlbZ8Fhm9hMzqzWzXP/3\n283s3n3tN+Rxmz3+/YzXWTPnTiNfk/SKc+5d51yFpJ9KOsvMchpv6Jyrcs4tdc7VSzJJdfLKpS+M\nbLJmzuvmjrdmXCLpdufcTufcYkkPSbp0H9sDAOKVc44LFy5cuHBp84ukyZJqJaXsY5uxkiZKSpHU\nW9JiST8Iud1J+pekfHmjnLZJmtzMvl6TdHXI7/dIut//+RuSVkjqKylb0ouS/u7fNknShkb7WiPp\n+GYe53FJL0vK8TMvk3S5f9ul/nP+oaRUSedJKpX3wS9LUpmkgf62XSUN9X8+w8832H8tbpE0vdHr\n8Ia/n0xJR0laL8n829tLqpRUJO8flGbKKzzS/Oe8StKJzTyfRyX9oonn/4m/vw7++3KVf9toScWS\nJkhKlvfhc42k9Cb2nSNps6RrJWX4v0/wb7tVUpWkk/393CHpo5D7fjXk+ZwnabekriGvc42kK/z7\nXi1pU8jr8aGku/3nf4T/uj/h39ZN0nb/cZMkfdn/vaCJ/Kn++3Kzv69jJZWHvIe3Nuy3mdf2Vj/n\nOf6+rpO02v95f/teJ2ms//NS/z0cHHLbaP/nf8gb7ZIlqbP/vn2r0fH4PXnHVWYTGe+U9I68Y6i7\npHkKOR/893aOpB4N9w/jvWnyHPBvnyZppaQB8o7laZLubOb1m+Tv63eS0iUd7T9Ww2t0j6R/yjtG\ncyS9IumOfZzX70o62//5P36Ok0JuOzOM/e7z+Nc+zp0mnt/Lkm5sdF1Fw/vezH3mSaqW9zfhoX1s\n96hCzmvt53hrdN/2/v4LQ647R9L8Zh7rUv99KZH39/Cn2sfffS5cuHDhElsXRioBAILSUVKJ28fU\nIOfcTOfcR865WufcGnkfjo9utNmdzrldzrl1kt6WNKqZ3T0m6SJJ8kdqXCDp7/5tX5P0O+fcKueN\nCPixpPOthVNH/P2eL+nHzrlyP/Nv5U1faVAs6V7njcp6Vl4hcIp/W72kYWaW6Zzb7Jxb6F9/lbwP\nrYv91+tX8kYK9QrZ7x3OuR3OuUpJ78n70Hekf9s58qafbJI0Xl5Bcptzrto5t0reKIPzW/JcJf3e\nObfJObdD3ofqhtf9Skl/ds597Jyrc849JmmvvHKwsVMlbXHO/dZ5Iy3KnXMfh9z+vnPuNedcnbz3\n6rNRPM655/3Hr/dfx+WSDg2571rn3EP+fR+TV9IVmllP/zX4mf/835dXEDS4SNJr/uPWO+fekDRD\nXsnU2ER5JeSd/r7+K6/kvCCM16/BTOfcFOdcjbxyJMPf7/72/Y6ko82si//7FP/3PpJyJc01s0I/\n9w+cNxKwWF4hEvpeb3LO3e+fY5VN5DtX0q+cNyJlg6TfN7HN751z6xvuH8Z7s69zQJIecc4t8/f3\nnJo/pxv81Dm31zn3jqRXJZ1rZibvWPyhf16Uyztv9nWcN7ymKZJG+M/1aH8k0XhJ74ax33CO/+bO\nncay5RVuoUrlFVlNcs6NkPf+XyipJV8K0JJjOTskSzi53pU0TF6peba/z+tbkA0AEMUolQAAQdku\nqdO+ihszG2Bm/zJvIdgyeR/eGk+F2RLy8x797wNPYy9LGuJ/6P6ypFLn3Cf+bUWS1oZsu1beyI3C\nsJ+Np5O8f/FvvK9uIb9vdM65RrcXOed2yxu1cZWkzWb2qpkN8rfpJek+f1rKLkk75E1xCd3v+oYf\n/P0/o/99ILxQ0pMh+ypq2Je/v5sP4Lk297r3knRto/33kPcaN9ZD3miQcB8jo+F4MbOvh0wx2iXv\nQ2unpu7rnNvj/5jt59gRcp0U8tr5+b/aKP8R8kqpxookrXfelKMGjd/v/Ql93+olbfD3u799vyNv\ntM1R8j60T5NXuB4t6T3/fr3kHY+bQ57Ln+V9uP/C4zejqNE2TW3/uevCeG+aPAdCfg/3nJaknf65\n03hfBZLaSZoZkuN1//rmNLymYyTNlzf672h5hcsK59z2MPYbzvEf7vOrkFcQhcqVN4KoWX5B+7Sk\nmyxkOuV+tORYrgjJst9cflm/2i8Z58ub9nxOmLkAAFGOUgkAEJQP5f0L/lf2sc2fJC2R1N85lyuv\n/PjCmknhcM5VyRv1cJG8kUN/D7l5k7wPgw16yptWs1XetI12DTf4o5Ga+2BaIm86U+N9bQz5vZs/\n2iH09k1+xqnOuS/LKzCWyBtBJHkf2r/lnMsPuWQ656aHPsVGWZ6WdI4/mmmCpBdC9rW60b5ynHNN\njcRpar/7s17SLxvtv53/Ibepbfu2cP/yn9NDkr4r75vV8iUtUHjHxmZJHcysXch1PRpl+nuj/FnO\nuTub2NcmST3s82tmNX6/9+ezx/b3093f7/72/Y68kWiT/J/fl3S4vBLknZDnsldSp5DnkuucGxqy\nz/29v5v9TF/I29Q+wnxvmj0HDkB7f42kxvsqkTflc2jIc89zzjUUOE097+mSBko6U9I7zrlF/v5O\n1v9e0/3ttyXH//4sVMjoPDPrK2+a37Iw75+q5s+vxs8/7GPZObdT3nERWliN9POGw+kA/44DAKIP\npRIAIBDOuVJ56/o8YGZfMbN25i2afZKZ/drfLEfeejcV/qidqw/yYR+Xt77H6fp8qfS0pB+atwBy\ntrwRUc86b6rZMnkjZE4xs1R56xmlN/Oc6uQVV780sxz/A/aPJD0RsllnSdf4z/Wr8tZJes3MCs3s\nDP8D8l55owEaRg08KOnH5n0bVMPiy/v8inrn3Gx5H4D/Kmmqc26Xf9MnksrNW1w508ySzWyYmY1v\nZldb1bLi5yFJV5nZBPNk+a9dU1Nj/iWpq5n9wLzFj3PMbEIYj5El74PpNkkys8vkjYbZL+fcWnnT\n2W41szQz+5Kk00I2eULSaWZ2ov/aZJi3WHv3Jnb3sbyRJjf47+ckf1/PhJPFN9bMzvJHYP1A3nv/\n0f727ZxbLq/cuEheAVIm7706W34B4pzbLG9toN+aWa55C9L3M7PGU0j35Tl5x157M+smryzal3De\nmybPgRZkauz//PfySHlTKp/3R9w8JOkeM+vsZ+lmZif699kqqaP5C/JLn41omynpO/pfiTRd3ujB\nhtd0f/ttyfG/P0/KOxaP9P8u3CbpRX/K3eeYt7j8Ef7rkGlmN8obffhx421Dnn/oed3SY/lxSbf4\nx8UgeeuXPdrUhv7f9EL/50Hy1lR6eV9PHAAQOyiVAACBcc79Vl7pcou8D6Hr5X1ofcnf5Dp5U7fK\n5X1Ye/YgH+8DeUXNLL9caPCwvJLpXXkLJVfJW7y4ofz6trxyZqO8kUuf+za4Rr7nb7NK3uiRp/z9\nN/hY3ldxl0j6paRz/Gk1SfJei03yprcdLb9Ec879Q95XhD9j3jTABZJO0v49Jel4/78Nr0GdvA/e\no/zn2lA85TW1A0l/kzdtcJeZvdTMNp9xzs2Q9wHzD5J2ylv899Jmti2XNxXxNHlTgpbL+3ry/T3G\nInlrVX0o78PxcEkf7O9+Ib4m6UvypmD+Qt5xtdff93p5C6PfrP8dk9erif9ncs5V+9lPkvc6/lHS\n151zS1qQ5WV50x53yhtBd5a/1lA4+35H0nY/c8PvJmlWyDZfl7fw8iL/Maao6al8zblN3vG+WtKb\n/v33NrdxmO9Nc+fAgdgi73ltklfCXBXyGt0o7/j7yD9v3pQ3Ekn+Nk9LWuUf2w3T096RN8Lnk5Df\nc+T9bVAY+w37+N8f562pdpX/vIr9HN9uuN3M/m3/+7bEdEkPyDumN8obXXWK89ZRa8rnzusDOJZ/\nLm/q6lp5r9FvnHOv+7l6mvetcj39bY+TNM/MdssrD1+UV9wDAOJAw7egAACQEMzsv5Kecs79Negs\niA5m9qykJc65n7fx494q6RDn3EVt+bgHw8yulnS+c64lo51C73+ppG86545o1WAAACAQjFQCACQM\nf4rXGB3kiCfENjMb708DSzKzyfJGJu13FFYiMrOuZna4/1oNlHStpH8EnQsAAESHFn1VMgAAscrM\nHpO3KPj3m1qTBAmli7wpOB3lTe262l+DCl+UJu8b4/pI2iVvjZ0/BpoIAABEDaa/AQAAAAAAoMWY\n/gYAAAAAAIAWi5vpb506dXK9e/cOOkar2L17t7KysoKOAUQ9zhUgPJwrQHg4V4DwcK4A4YmXc2Xm\nzJklzrmCpm6Lm1Kpd+/emjFjRtAxWsW0adM0adKkoGMAUY9zBQgP5woQHs4VIDycK0B44uVcMbO1\nzd3G9DcAAAAAAAC0GKUSAAAAAAAAWoxSCQAAAAAAAC1GqQQAAAAAAIAWo1QCAAAAAABAi1EqAQAA\nAAAAoMUolQAAAAAAANBilEoAAAAAAABoMUolAAAAAAAAtBilEgAAAAAAAFqMUgkAAAAAAAAtRqkE\nAAAAAACAFqNUAgAAAAAAQItRKgEAAAAAAKDFKJUAAAAAAADQYpRKAAAAAAAAaDFKJQAAAAAAALQY\npRIAAAAAAABajFIJAAAAAAAALUapBAAAAAAAgBaLWKlkZg+bWbGZLWjmdjOz35vZCjObZ2ZjQm67\nxMyW+5dLIpURAAAAAAAAByaSI5UelTR5H7efJKm/f7lS0p8kycw6SPq5pAmSDpX0czNrH8GcAAAA\nAAAAraamrj7oCG0iYqWSc+5dSTv2sckZkh53no8k5ZtZV0knSnrDObfDObdT0hvadzkVV577dL0e\nXrA36BgAAAAAAOAA7Kmu1eR739W09TVBR4m4lAAfu5uk9SG/b/Cva+76LzCzK+WNclJhYaGmTZsW\nkaBt6b9L9urDTTVx8VyASKuoqOBcAcLAuQKEh3MFCA/nCrBvzyzZq5XbanVaFxf350qQpdJBc879\nRdJfJGncuHFu0qRJwQZqBYu0Qq+vWaoJhx2pzLTkoOMAUW3atGmKh/MeiDTOFSA8nCtAeDhXgObN\n31Cq/0x9XxdO6KlR7bfH/bkS5Le/bZTUI+T37v51zV2fEDq0S5Mk7dxTHXASAAAAAAAQrpq6et34\nwjx1yk7XTScNCjpOmwiyVPqnpK/73wI3UVKpc26zpKmSTjCz9v4C3Sf41yWEDlleqVRSwbpKAAAA\nAADEir++t1qLNpfptjOGKTcjNeg4bSJi09/M7GlJkyR1MrMN8r7RLVWSnHMPSnpN0smSVkjaI+ky\n/7YdZna7pE/9Xd3mnNvXgt9xpTA3Q5JUXEapBAAAAABALFhTslv3vrlMk4d20eRhXYKO02YiVio5\n5y7Yz+1O0neaue1hSQ9HIle0ayiVtpZXBZwEAAAAAADsj3NOP35xvtJSkvR/ZwwNOk6bCnL6G5rQ\nKTtNJmkrI5UAAAAAAIh6z8/YoA9XbdePTxr82UCRREGpFGVSkpOUk2YqLmOkEgAAAAAA0ay4vEq/\nfG2xDu3TQeeP77H/O8QZSqUo1D7DtJVSCQAAAACAqPZ/ryxSZU2d7jhruJKSLOg4bY5SKQrlpxvT\n3wAAAAAAiGJvLtqqV+dt1jXHHqJ+BdlBxwkEpVIUyk83FbNQNwAAAAAAUam8qkY/fXmBBnXJ0ZVH\n9Qs6TmAolaJQfrpp++5q1dTVBx0FAAAAAAA08pupS7WlrEp3nDVcaSmJW60k7jOPYu0zTM5JJRVM\ngQMAAAAAIJrMXLtDf/9orS49rLdG92wfdJxAUSpFofx0b3GvzaVMgQMAAAAAIFrsra3TjS/MV1Fe\npq47YWDQcQJHqRSFOmZ6b8vGnZUBJwEAAAAAAA3+NG2lVhRX6BdnDlNWekrQcQJHqRSFOmV6I5U2\n7qJUAgAAAAAgGizfWq4H3l6hM0YV6ZiBnYOOExUolaJQZoopLzNVG3buCToKAAAAAAAJr77e6aYX\n5ysrPUU/PXVI0HGiBqVSlOqWn8n0NwAAAAAAosCTH6/VzLU79dNThqhTdnrQcaIGpVKU6t4+k+lv\nAAAAAAAEbMPOPbrz30t0ZP9OOmtMt6DjRBVKpSjVrb03Usk5F3QUAAAAAAASknNOP35xvpykX505\nXGYWdKSoQqkUpbrlZ2p3dZ127akJOgoAAAAAAAlpyswNem95iW6cPEg9OrQLOk7UoVSKUt3bewcr\nU+AAAAAAAGh7xWVVuv1fizS+d3tdPLFX0HGiEqVSlOrePlOStIHFugEAAAAAaFPOOd3y0gLtra3X\nXWePUFIS096aQqkUpbrle6USI5UAAAAAAGhbr87frP8s2qoffXmA+hZkBx0nalEqRan8dqnKSkvW\nRkYqAQAAAADQZnbsrtbPX16oEd3zdPkRfYKOE9VSgg6AppmZurXP1Pqde4KOAgAAAABAwvi/Vxaq\nrKpGT54zQSnJjMXZF16dKNazQzut30GpBAAAAABAW3hz0Va9PGeTvnPMIRrUJTfoOFGPUimK9eqY\npbXb98g5F3QUAAAAAADiWmlljX7y0nwN6pKjb086JOg4MYFSKYr17thOlTV12la+N+goAAAAAADE\ntV+9uljbyvfq1+eMUFoKdUk4eJWiWK+OWZKkNduZAgcAAAAAQKS8t3ybnp2xXlcc1VcjuucHHSdm\nUCpFsV4d20mS1mzfHXASAAAAAADi0+69tbrphfnq2ylLPzx+QNBxYgrf/hbFuuVnKiXJtJZSCQAA\nAACAiPjN1KXaVFqp5771JWWkJgcdJ6YwUimKpSQnqXv7TK1l+hsAAAAAAK3u0zU79Oj0Nfr6xF4a\n37tD0HFiDqVSlGv4BjgAAAAAANB6qmrqdOOUeeqWn6kbJg8KOk5MolSKcr06ttOa7bvlnAs6CgAA\nAAAAcePeN5drVclu3Xn2cGWlszrQgaBUinK9OmapvKpWO/fUBB0FAAAAAIC4MHf9Lv3l3ZU6b1wP\nHdm/IOg4MYtSKcr15hvgAAAAAABoNVU1dbru+bnqnJOhm08ZHHScmEapFOV6+aUS3wAHAAAAAMDB\nu++t5VpeXKE7zh6uvMzUoOPENEqlKNe9fTuZicW6AQAAAAA4SLPX7dSf31mpc8d11zEDOwcdJ+ZR\nKkW5jNRkFeVlanUJI5UAAAAAADhQDdPeCnMzdMupQ4KOExdY3jwG9C3I0qptlEoAAAAAAByoe95c\nppXbduuxbxyq3AymvbUGRirFgH4F2Vq5rULOuaCjAAAAAAAQc2at26mH3l2l88f30NED+La31kKp\nFAP6dc7Wnuo6bSmrCjoKAAAAAAAxpWHaW5fcDP2Eb3trVZRKMaBfQZYkaWUxU+AAAAAAAGiJ372x\nTKu27dZd54xQDtPeWhWlUgw4pCBbkrRyW0XASQAAAAAAiB0z1+7QQ++t0gWH9tSR/Zn21toolWJA\nQU66ctJTKJUAAAAAAAhTVU2drn9+noryMpn2FiF8+1sMMDP17ZxNqQQAAAAAQJjunrpUq0p268lv\nTlB2OvVHJDBSKUb0K8hiTSUAAAAAAMLw6Zod+tsHq/W1CT11+CGdgo4TtyiVYkS/gmxtKatSxd7a\noKMAAAAAABC1KqvrdP3zc9UtP1M/Pplpb5FEqRQj+vmLda9iChwAAAAAAM36zdSlWrN9j359zgim\nvUUYpVKMOKRzliS+AQ4AAAAAgOZ8snqHHpm+WhdP7KXD+jHtLdIolWJEzw5ZSk4y1lUCAAAAAKAJ\ne6prdf2UuerePlM3nTQo6DgJgXFgMSItJUm9OrRjpBIAAAAAAE349etLtXb7Hj19xURlMe2tTTBS\nKYb0LcjWimJKJQAAAAAAQk1fUaJHp6/RpYf11pf6dQw6TsKgVIohAwqztbpkt6pr64OOAgAAAABA\nVCirqtF1z89V305ZunEy097aEqVSDBnYJUe19U5rtrOuEgAAAAAAknTbK4u0paxKd587UplpyUHH\nSSiUSjFkQGGOJGnplvKAkwAAAAAAELz/LNyiKTM36NuTDtGYnu2DjpNwKJViSN8C7xvglm2lVAIA\nAAAAJLbtFXt18z/ma0jXXF1zXP+g4yQklkOPIekpyerTKYuRSgAAAACAhOac00/+sUBllbV64psj\nlZbCmJkg8KrHmIGFOVrKSCUAAAAAQAJ7ac5Gvb5wi350wgAN6pIbdJyERakUYwYU5mjdjj3aU10b\ndBQAAAAAANrc5tJK/ezlhRrXq72uOLJv0HESGqVSjBnYJVvOSSuKK4KOAgAAAABAm3LO6YYp81RX\n7/Tbc0cqOcmCjpTQKJViDN8ABwAAAABIVE98tFbvLS/RzScPVq+OWUHHSXiUSjGmV8cspaUk8Q1w\nAAAAAICEsrpkt3712hIdNaBAX5vQM+g4EKVSzElOMvXvnK2lW5n+BgAAAABIDHX1Ttc+N0epyaZf\nnz1CZkx7iwaUSjFoYGGOljH9DQAAAACQIP787krNWrdLt39lmLrkZQQdBz5KpRg0oEuOtpRVqXRP\nTdBRAAAAAACIqMWby3TPG8t0yvCuOn1kUdBxEIJSKQYN9BfrXlbMaCUAAAAAQPzaW1unHz47R3mZ\nabr9K8OY9hZlKJVi0IAuXqm0ZHNZwEkAAAAAAIic+95criVbynXX2cPVISst6DhohFIpBhXlZSgv\nM1WLNjNSCQAAAAAQn2au3akH31mp88b10HGDC4OOgyZQKsUgM9OQrrlaxEglAAAAAEAcqthbqx8+\nO0dF+Zm65dTBQcdBMyiVYtSQolwt2Vym2rr6oKMAAAAAANCqbn9lkTbs3KN7zhulnIzUoOOgGZRK\nMWpI11ztra3Xmu27g44CAAAAAECrmbpwi56dsV5XT+qn8b07BB0H+0CpFKOGFOVKEusqAQAAAADi\nRnFZlW56YZ6GdcvV948bEHQc7AelUozqV5CttOQkLdrEukoAAAAAgNjnnNP1U+apsqZO9543Wmkp\nVBbRjncoRqWlJKl/YTaLdQMAAAAA4sLfP1qrd5Zt080nD9YhnbODjoMwUCrFsMFdcxmpBAAAAACI\neSuKy/XLVxfr6AEFunhir6DjIEwRLZXMbLKZLTWzFWZ2UxO39zKzt8xsnplNM7PuIbfVmdkc//LP\nSOaMVUO65qqkYq+Ky6uCjgIAAAAAwAGprq3XD56do3ZpyfrNOSNkZkFHQpgiViqZWbKkBySdJGmI\npAvMbEijze6W9LhzboSk2yTdEXJbpXNulH85PVI5Y9lni3UzWgkAAAAAEKPue2uZFmws0x1njVDn\n3Iyg46AFIjlS6VBJK5xzq5xz1ZKekXRGo22GSPqv//PbTdyOfRjcteEb4CiVAAAAAACx59M1O/Sn\naSt17rjumjysS9Bx0EIpEdx3N0nrQ37fIGlCo23mSjpL0n2SzpSUY2YdnXPbJWWY2QxJtZLudM69\n1PgBzOxKSVdKUmFhoaZNm9bqTyIIFRUVYT+XTpmmaXNWaIg2RDYUEIVacq4AiYxzBQgP5woQHs4V\ntJbKWqefflCpjhmmY/J3xN1xlQjnSiRLpXBcJ+kPZnappHclbZRU59/Wyzm30cz6Svqvmc13zq0M\nvbNz7i+S/iJJ48aNc5MmTWqz4JE0bdo0hftcxqyboRXbKsLeHognLTlXgETGuQKEh3MFCA/nClrL\ntc/N1Y6qDXr+qsM0tlf7oOO0ukQ4VyI5/W2jpB4hv3f3r/uMc26Tc+4s59xoST/xr9vl/3ej/99V\nkqZJGh3BrDFrSFGuVpfs1p7q2qCjAAAAAAAQltfmb9YLszbou8ccEpeFUqKIZKn0qaT+ZtbHzNIk\nnS/pc9/iZmadzKwhw48lPexf397M0hu2kXS4pEURzBqzhhblyTlpMesqAQAAAABiwJbSKt38j/ka\n2T1P3zuuf9BxcBAiVio55/ad1gcAACAASURBVGolfVfSVEmLJT3nnFtoZreZWcO3uU2StNTMlkkq\nlPRL//rBkmaY2Vx5C3jf6ZyjVGrCiO55kqR5G0oDTgIAAAAAwL7V1ztdP2Wu9tbU657zRik1OZJj\nXRBpEV1TyTn3mqTXGl33s5Cfp0ia0sT9pksaHsls8aIwN0Odc9I1n1IJAAAAABDlHvtwjd5bXqJf\nnjlMfQuyg46Dg0QlGAdGdM/T/I2USgAAAACA6LVkS5nu+PcSHTuosy48tGfQcdAKKJXiwLBueVqx\nrUK797JYNwAAAAAg+lTV1Omap2crNyNVvz5nhMws6EhoBZRKcWBEd2+x7oWbWKwbAAAAABB97nht\nsZZtrdDdXx2hTtnpQcdBK6FUigPDujUs1r0r4CQAAAAAAHzeW4u36rEP1+ryI/po0sDOQcdBK6JU\nigOdczLUNS+DdZUAAAAAAFGluKxK10+Zp8Fdc3XD5IFBx0Ero1SKE8O7sVg3AAAAACB61Nc7Xfv8\nXO2prtX9F4xSekpy0JHQyiiV4sSI7nlatW23yqtqgo4CAAAAAIAe/mC13lteop+dOlSHdM4JOg4i\ngFIpTgzvni9JWrCRxboBAAAAAMFasLFUd72+RCcOLdQFh/YIOg4ihFIpTgz3F+uev5HFugEAAAAA\nwdlTXatrnpmtjlnpuvOsETKzoCMhQlKCDoDW0SErTd3yMzVvA+sqAQAAAACCc/u/Fml1yW49efkE\ntc9KCzoOIoiRSnFkRPc8LWCxbgAAAABAQP49f7Oe/mS9rjq6nw47pFPQcRBhlEpxZHj3PK3Zvkel\ne1isGwAAAADQtjaXVuqmF+drZPc8/ejLA4KOgzZAqRRHRvmLdc/dwLpKAAAAAIC2U1fv9MNn56im\nrl73nT9aqcnUDYmAdzmOjOiRLzNp9jpKJQAAAABA23nwnZX6aNUO3XbGMPXulBV0HLQRSqU4kp2e\nogGdczR7/c6gowAAAAAAEsSc9bt0zxvLdNrIIp09plvQcdCGKJXizOie+Zq9bpecc0FHAQAAAADE\nuYq9tfr+M7NVmJuhX3xlmMws6EhoQ5RKcWZ0z3yVVtZodcnuoKMAAAAAAOLcz15aoPU79ui+80cp\nLzM16DhoY5RKcWZ0z/aSWFcJAAAAABBZL8zcoBdnb9Q1x/XXuN4dgo6DAFAqxZl+BdnKTk/RnPWU\nSgAAAACAyFi5rUI/fXmBJvbtoO8d2z/oOAgIpVKcSU4yjeyRx2LdAAAAAICIqKqp0/eemq2M1GTd\nd/5oJSexjlKiolSKQ6N7tNfizeWqrK4LOgoAAAAAIM7c8dpiLdpcpru/OkKFuRlBx0GAKJXi0Oie\n+aqrd5q/sTToKAAAAACAODJ14RY99uFaffOIPjp2UGHQcRAwSqU4NKpHviRp9jqmwAEAAAAAWsfG\nXZW6Yco8jeiepxsmDwo6DqIApVIc6pidrp4d2rFYNwAAAACgVdTW1ev7T89WXb3T/ReMVloKdQIo\nleLW6J75mr2OUgkAAAAAcPDufXO5ZqzdqV+dNVy9OmYFHQdRglIpTo3uka8tZVXaXFoZdBQAAAAA\nQAz7YEWJHpi2QueN66HTRxYFHQdRhFIpTo3u2V6SNGsto5UAAAAAAAdmW/le/eDZOepXkK2fnz4k\n6DiIMpRKcWpIUa4yUpM0Y+2OoKMAAAAAAGJQfb3Ttc/PVVlljf5w4Wi1S0sJOhKiDKVSnEpNTtKo\nHvmasYZvgAMAAAAAtNxD763Su8u26WenDdGgLrlBx0EUolSKY+N7d9DCTaWq2FsbdBQAAAAAQAyZ\ntW6nfjN1qU4e3kUXHtoz6DiIUpRKcWxc7w6qd9IcvgUOAAAAABCm0soaXfP0bBXmZuiOs0bIzIKO\nhChFqRTHxvTMV5JJn65hXSUAAAAAwP4553Tzi/O1pbRK9184WnmZqUFHQhSjVIpjORmpGtQlVzPX\nsq4SAAAAAGD/nvh4nV6dv1nXnjBQY/xvFQeaQ6kU58b3bq9Z63aqtq4+6CgAAAAAgCi2YGOpbn9l\nkSYNLNC3juobdBzEAEqlODe2dwftqa7T4s3lQUcBAAAAAESpsqoaffvJWeqYnabfnTtKSUmso4T9\no1SKc+N7e8MVWVcJAAAAANAU55xunDJPG3dV6v4LRqtDVlrQkRAjKJXiXNe8THXLz2RdJQAAAABA\nkx7/cK3+vWCLbjhxoMb17hB0HMQQSqUEML53e326Zoecc0FHAQAAAABEkXkbdukXry7ScYM664oj\nWUcJLUOplADG9e6g4vK9Wr+jMugoAAAAAIAoUVpZo+88NUudczL023NHso4SWoxSKQGM94cvsq4S\nAAAAAEDy1lG6Ycpcbd5VpfsvHK38dqyjhJajVEoA/TtnKzcjRTPWUioBAAAAAKSHP1ijqQu36qaT\nBmlMz/ZBx0GMolRKAElJpvG9O+jj1ZRKAAAAAJDoZq/bqTteW6wvDynU5Uf0CToOYhilUoKY2Lej\nVm3breKyqqCjAAAAAAACsmtPtb771Gx1ycvQ3eeMlBnrKOHAUSoliAl9vXWVPmK0EgAAAAAkJOec\nrnt+norLq/TAhWOU1y416EiIcZRKCWJI11zlpKfoo1Xbg44CAAAAAAjAX99brTcXb9XNJw/WyB75\nQcdBHKBUShApyUka36cDpRIAAAAAJKCZa3fqrteXaPLQLrr0sN5Bx0GcoFRKIBP7dvDWVSpnXSUA\nAAAASBQ7d1fre0/NUtf8DN11zgjWUUKroVRKIBP7dpQkfbyKdZUAAAAAIBHU1zv96Lk5Kqmo1h8v\nHKu8TNZRQuuhVEogrKsEAAAAAInlgbdX6O2l2/TTUwdrePe8oOMgzlAqJRDWVQIAAACAxPHe8m36\n3ZvL9JVRRbpoYq+g4yAOUSolmIl9O2gl6yoBAAAAQFzbtKtS339mjvp3ztavzhrOOkqICEqlBDOh\nD+sqAQAAAEA8q66t13eemqXq2nr96aKxapeWEnQkxClKpQQztChX2ekp+ng1U+AAAAAAIB796rXF\nmr1ul359zgj1K8gOOg7iGKVSgklJTtL43u31ESOVAAAAACDu/HPuJj06fY0uP6KPTh7eNeg4iHOU\nSgloYt+OWlFcoW3le4OOAgAAAABoJcu3luumF+ZpXK/2uumkQUHHQQKgVEpAE/t66ypNX1kScBIA\nAAAAQGuo2Furq56YqXZpyXrga2OUmszHfUQeR1kCGtYtT7kZKZq+gnWVAAAAACDWOed04wvztLpk\nt+6/YIwKczOCjoQEQamUgJKTTIf166T3V5TIORd0HAAAAADAQXh0+hq9Om+zrj9xkL7Ur2PQcZBA\nKJUS1OH9O2njrkqt3b4n6CgAAAAAgAM0c+0O/fLVxTp+cKGuOrpv0HGQYCiVEtQRh3SSJL2/gnWV\nAAAAACAWlVTs1XeenK2i/Ez99tyRMrOgIyHBUColqN4d26lbfqY+oFQCAAAAgJhTV+90zdOztXNP\ntf500RjlZaYGHQkJiFIpQZmZDj+ko6av3K66etZVAgAAAIBY8rs3lmr6yu26/SvDNLQoL+g4SFCU\nSgns8EM6qbSyRgs3lQYdBQAAAAAQpjcXbdUDb6/U+eN76NxxPYKOgwRGqZTADuvHukoAAAAAEEtW\nl+zWD5+do2HdcnXr6UODjoMER6mUwApy0jWoS47eX06pBAAAAADRbvfeWl35+AylJJsevGisMlKT\ng46EBEeplOCOOKSTZqzZqcrquqCjAAAAAACa4ZzTDVPmaeW2Ct1/wRh1b98u6EgApVKiO7x/J1XX\n1WvG2h1BRwEAAAAANOMv767Sq/M368bJg3RE/05BxwEkUSolvEN7d1BqsrGuEgAAAABEqQ9WlOiu\n15folOFddeVRfYOOA3yGUinBZaWnaHTP9qyrBAAAAABRaMPOPfruU7PUryBbvz5nhMws6EjAZyiV\noCMP6aSFm8pUUrE36CgAAAAAAF9VTZ2ufmKWauuc/nzxWGWlpwQdCfgcSiXo6IEFkqT3lm8LOAkA\nAAAAQPIW5r7lpQWav7FU95w3Sn0LsoOOBHxBREslM5tsZkvNbIWZ3dTE7b3M7C0zm2dm08yse8ht\nl5jZcv9ySSRzJrphRXnqkJWmd5ZSKgEAAABANHji43WaMnODrjmuv44fUhh0HKBJESuVzCxZ0gOS\nTpI0RNIFZjak0WZ3S3rcOTdC0m2S7vDv20HSzyVNkHSopJ+bWftIZU10SUmmo/p30rvLS1Rf74KO\nAwAAAAAJbebaHbrtlYU6ZmCBfnBc/6DjAM2K5EilQyWtcM6tcs5VS3pG0hmNthki6b/+z2+H3H6i\npDecczucczslvSFpcgSzJrxJAztrx+5qLdhUGnQUAAAAAEhYxeVVuvqJWSrKz9S9541WUhILcyN6\nRXKVr26S1of8vkHeyKNQcyWdJek+SWdKyjGzjs3ct1vjBzCzKyVdKUmFhYWaNm1aa2UPVEVFRZs/\nl6RqJ5P06NRPdHq/tDZ9bOBABXGuALGIcwUID+cKEB7OlciprXf69adV2rWnXt8bkanZn3wQdCQc\nhEQ4V4JeOv46SX8ws0slvStpo6S6cO/snPuLpL9I0rhx49ykSZMiELHtTZs2TUE8l78ue19rq5M0\nadJhbf7YwIEI6lwBYg3nChAezhUgPJwrkXPrPxdq2c41+v0Fo3X6yKKg4+AgJcK5Esnpbxsl9Qj5\nvbt/3Wecc5ucc2c550ZL+ol/3a5w7ovWd/SAAs1et1Ole2qCjgIAAAAACeXFWRv06PQ1+uYRfSiU\nEDMiWSp9Kqm/mfUxszRJ50v6Z+gGZtbJzBoy/FjSw/7PUyWdYGbt/QW6T/CvQwRNGligeie9v6Ik\n6CgAAAAAkDDmbyjVj1+cr4l9O+imkwYFHQcIW8RKJedcraTvyiuDFkt6zjm30MxuM7PT/c0mSVpq\nZsskFUr6pX/fHZJul1dMfSrpNv86RNDI7vnKzUjRO8uKg44CAAAAAAlhW/leXfn3GeqUna4HLhyj\nlORIjv0AWldE11Ryzr0m6bVG1/0s5OcpkqY0c9+H9b+RS2gDKclJOrJ/gd5Ztk3OOZnxLQMAAAAA\nECnVtfW6+omZ2rmnWi9cfZg6ZqcHHQloESpQfM7RAwq0tWyvlmwpDzoKAAAAAMS1W19ZqBlrd+o3\n54zU0KK8oOMALUaphM85emCBJOmdZdsCTgIAAAAA8euJj9bqqY/X6duT+uk0FuZGjKJUwucU5mZo\nUJccTVvKukoAAAAAEAkfr9quW/+5UMcMLNC1JwwMOg5wwCiV8AXHDOqsGWt2qrSyJugoAAAAABBX\nNu6q1LefnKWeHdvpvgtGKzmJtWwRuyiV8AXHD+6s2nqnd5kCBwAAAACtprK6Tlc+PkPVtfV66Ovj\nlJuRGnQk4KBQKuELRvVorw5ZaXpr8dagowAAAABAXHDO6cYX5mnR5jLdd8Eo9SvIDjoScNAolfAF\nyUmmSQML9PbSbaqtqw86DgAAAADEvD+/u0r/nLtJ150wUMcOKgw6DtAqKJXQpOMHF6q0skaz1u0K\nOgoAAAAAxLS3lxbrrteX6NQRXfXtSf2CjgO0GkolNOnI/p2UmmxMgQMAAACAg7BqW4WueXq2BnXJ\n1a/PGSEzFuZG/KBUQpNyMlI1oU9HvbWkOOgoAAAAABCTyqtqdMXjM5SanKS/XDxW7dJSgo4EtCpK\nJTTr2EGdtaK4Qmu37w46CgAAAADElPp6px88M0drtu/RAxeOUY8O7YKOBLQ6SiU06/jB3uJxby5m\ntBIAAAAAtMRv31iqt5YU6+enDdGX+nUMOg4QEZRKaFbPju3Uv3O2/ruEdZUAAAAAIFwvzd6oB95e\nqfPH99DFE3sFHQeIGEol7NOxgzvr41U7VFZVE3QUAAAAAIh6s9ft1A0vzNOEPh102xnDWJgbcY1S\nCft0/OBC1dY7vbesJOgoAAAAABDVNu2q1BWPz1SX3Az96aKxSkvhIzfiG0c49ml0j3zlt0vVW4uZ\nAgcAAAAAzdlTXasrHp+hqpo6/fWSceqQlRZ0JCDiKJWwTynJSTp2YGf9d2mxauvqg44DAAAAAFGn\nvt7p2ufmavHmMt1/wWgNKMwJOhLQJiiVsF8nDO2iXXtq9MnqHUFHAQAAAICoc++by/TvBVt088mD\ndcygzkHHAdoMpRL26+gBBcpITdLUhVuCjgIAAAAAUeWfczfp9/9doa+O7a7Lj+gTdBygTVEqYb8y\n05J1VP8CTV24VfX1Lug4AAAAABAV5q7fpeufn6vxvdvrF2fyTW9IPJRKCMuJQ7toS1mV5m0sDToK\nAAAAAARuS2mVrnh8hgpy0vXgRWOVnpIcdCSgzVEqISzHDe6s5CRjChwAAACAhFdZXacrHp+h3Xtr\n9bdLxqtjdnrQkYBAUCohLPnt0jSxbwdKJQAAAAAJzTmn66bM1YJNpbrv/NEa2IVvekPiolRC2E4c\n2kWrtu3WiuLyoKMAAAAAQCDue2u5Xp23WTdOHqTjhxQGHQcIFKUSwnbCkC6SpKkLtwacBAAAAADa\n3qvzNuveN5frrDHd9K2j+gYdBwgcpRLC1iUvQyN75DMFDgAAAEDCmbdhl659fo7G9mqvO84azje9\nAaJUQgudOLRQ8zaUatOuyqCjAAAAAECb2LirUpc/NkOdsvmmNyAUpRJaZPJQbwrcfxitBAAAACAB\nlFfV6PJHP1VVdZ0evnS8CnL4pjegAaUSWqRvQbb6d85mXSUAAAAAca+2rl7fe3q2lhdX6I8XjdGA\nQr7pDQhFqYQWmzysiz5evV0lFXuDjgIAAAAAEfOLVxdr2tJtuv2MYTqyf0HQcYCoQ6mEFjt5eFfV\nO7FgNwAAAIC49egHq/Xo9DW64sg+unBCz6DjAFGJUgktNqhLjvoWZOnVeZuDjgIAAAAAre7tJcW6\n7V+L9OUhhbrppMFBxwGiFqUSWszMdOrwrvpo1XZtK2cKHAAAAID4sWhTmb771CwN7pqr+84fpeQk\nCzoSELUolXBAThlRpHonvc4UOAAAAABxorisSpc/9qlyMlL1t0vGq11aStCRgKhGqYQDMqAwW/0K\nsvQaU+AAAAAAxIE91bW6/LEZKq2s0d8uHacueRlBRwKiHqUSDoiZ6ZQRRfp49XYVl1cFHQcAAAAA\nDlh9vdMPn52jhZtKdf8FozW0KC/oSEBMoFTCATt1hP8tcAuYAgcAAAAgdt01dYmmLtyqW04ZouMG\nFwYdB4gZlEo4YAMKc9S/c7b+xRQ4AAAAADHqmU/W6c/vrNLFE3vpssN7Bx0HiCmUSjgoJw/vqk/W\n7FBxGVPgAAAAAMSWD1aU6JaXFujoAQX6+WlDZMY3vQEtQamEg3LKiK5yfAscAAAAgBizdEu5rvr7\nTPUryNYfLhytlGQ+HgMtxVmDgzKgMEcDCpkCBwAAACB2bCmt0qWPfKJ26cl65LLxyslIDToSEJMo\nlXDQThlepE/X7NBWpsABAAAAiHIVe2t12aOfqqyyRg9fOl5F+ZlBRwJiFqUSDtqpI70pcK/M3RR0\nFAAAAABoVk1dvb795Cwt21quP140VkOL8oKOBMQ0SiUctH4F2RreLU//pFQCAAAAEKWcc7rlHwv0\n7rJt+tWZw3T0gIKgIwExj1IJreKMUUWat6FUq7ZVBB0FAAAAAL7ggbdX6NkZ6/W9Yw/ReeN7Bh0H\niAuUSmgVp40skpn08hxGKwEAAACILv+YvUF3/2eZzhrdTT/68oCg4wBxg1IJraIwN0Nf6ttRL8/Z\nKOdc0HEAAAAAQJI0fUWJbpgyT1/q21F3nj1CZhZ0JCBuUCqh1Zwxqkhrtu/RvA2lQUcBAAAAAC3d\nUq5vPTFTfTpl6cGLxyothY/AQGvijEKrmTysq9KSk/TSnI1BRwEAAACQ4LaWVemyRz5RZmqyHrns\nUOVlpgYdCYg7lEpoNXmZqTpmUIFembtZdfVMgQMAAAAQjIq9tbrskU+1q7JGD186Xt3yM4OOBMQl\nSiW0qq+M6qaSir36cOX2oKMAAAAASEA1dfX69pOztHRruR742hgN65YXdCQgblEqoVUdM6izctJT\nmAIHAAAAoM055/TTlxbo3WXb9IuvDNMxAzsHHQmIa5RKaFUZqcmaPKyLXl+wRVU1dUHHAQAAAJBA\nfv/WCj3z6Xp955h+uuDQnkHHAeIepRJa3Rmjuqlib63+u6Q46CgAAAAAEsQzn6zTPW8u01ljuum6\nEwYGHQdICPstlcwso4nrOkUmDuLBl/p1VOecdL04iylwAAAAACLvjUVbdfM/5uuoAQW66+wRMrOg\nIwEJIZyRSp+a2cSGX8zsbEnTIxcJsS45yXTm6G6atrRYJRV7g44DAAAAII7NXLtD331qloZ1y9Of\nvjZGqclMyAHaSjhn24WS7jez35jZk5KukHRsZGMh1p09trtq651enrMp6CgAAAAA4tSK4gpd/tgM\ndc3L0MOXjldWekrQkYCEst9SyTk3X9IvJV0l6RhJ33XObYh0MMS2AYU5GtE9Ty/M5FABAAAA0Pq2\nllXpkoc/UUqS6fFvTFCn7PSgIwEJJ5w1lf4m6QeSRki6TNK/zOw7kQ6G2Hf2mO5atLlMizaVBR0F\nAAAAQBwprazRJQ9/ol17qvXIpYeqZ8d2QUcCElI409/mSzrGObfaOTdV0gRJYyIbC/Hg9JFFSk02\nvTCL0UoAAAAAWkdVTZ2ufHyGVhRX6MGLx2p497ygIwEJK5zpb/c651zI76XOucsjGwvxoH1Wmo4b\nVKiX52xUTV190HEAAAAAxLj6eqdrn5urj1fv0N1fHakj+xcEHQlIaCyLj4g6e2x3lVRU652l24KO\nAgAAACCGOed0278W6dX5m3XzyYP0ldHdgo4EJDxKJUTUpIEF6piVxhQ4AAAAAAflwXdW6dHpa3T5\nEX10xZF9g44DQPsolczs7/5/v992cRBvUpOTdMaobnpz8Vbt3F0ddBwAAAAAMeiFmRt01+tLdNrI\nIv3k5MEys6AjAdC+RyqNNbMiSd8ws/Zm1iH00lYBEfvOHttNNXVOr8zbFHQUAAAAADFm2tJi3fjC\nPB1+SEfd/dURSkqiUAKixb5KpQclvSVpkKSZjS4zIh8N8WJoUZ4Gd83VlJlMgQMAAAAQvlnrdurq\nJ2ZpQGGOHrxorNJTkoOOBCBEs6WSc+73zrnBkh52zvV1zvUJuTCBFS1yztjumrehVEu2lAUdBQAA\nAEAMWLa1XJc98qk656br0W+MV05GatCRADSy34W6nXNXm9lIM/uufxnRFsEQX84c3U1pyUl65pP1\nQUcBAAAAEOXW79iji//2sdJTkvTE5RPUOScj6EgAmrDfUsnMrpH0pKTO/uVJM/tepIMhvnTIStMJ\nQwv1j9kbVVVTF3QcAAAAAFGqpGKvvv7wJ6qsrtPjlx+qHh3aBR0JQDP2WypJ+qakCc65nznnfiZp\noqQrIhsL8ej88T1VWlmjqQu3BB0FAAAAQBQqr6rRJQ9/os2llXrksvEa1CU36EgA9iGcUskkhQ4t\nqfOvA1rksH4d1aNDpp7+ZF3QUQAAAABEmaqaOn3zsRlauqVcf7porMb24kvHgWgXTqn0iKSPzexW\nM7tV0keS/hbRVIhLSUmm88b10Eerdmh1ye6g4wAAAACIErV19brm6dn6ePUO/fbckTpmYOegIwEI\nQzgLdf9O0mWSdviXy5xz94azczObbGZLzWyFmf0/e/cZHmWZt3/8vNJJI4QUAgmQQCD0FkpoAjaw\ng6CgoiDNjqu7lv27VV117UpRLKBUUUBFBBQBRXoJvYQQIBBa6ARIv/4vzD4Py2MJksmdzHw/x5GD\nzMw9yZkX9yRzcl2/+6mfeby2MWaRMSbVGLPRGHNdyf11jTHnjTHrSz7eubQfCxVVv+Q4eRnpk9UM\n7AYAAAAgWWv19MxN+mbrYf39xsa6uWUtpyMBKCWf0hxkrV0nad2lfGFjjLek0ZKulrRf0mpjzJfW\n2q0XHPaMpOnW2rHGmMaSvpZUt+SxXdbalpfyPVHxRYcGqEdSlD5bu1+PX9NAvt6lWSwHAAAAwF29\nOHe7Pl27XyOvTNSgTvFOxwFwCVz5jr6dpHRrbYa1Nl/SNEk3X3SMlfSfyWtVJR1wYR5UEP3b1tbR\nnDx9t+2I01EAAAAAOOid73fp3R8ydHdKHT16VaLTcQBcImOtdc0XNqavpJ7W2qEltwfqp6vIPXTB\nMTGSvpFUTVKQpKustWuNMXUlbZGUJum0pGestUt+5nsMlzRckqKjo9tMmzbNJT9LecvJyVFwcLDT\nMVymqNjq8e/Pq3aolx5rE+B0HFRi7n6uAGWFcwUoHc4VoHTK6lz5fn+Bxm/OV/sa3hrRwl9ehutB\nwb24y++V7t27r7XWJv/cY7+5/c0YEyTpvLW22BjTQFKSpLnW2oIyyDZA0gRr7avGmBRJE40xTSUd\nlFTbWnvMGNNG0ufGmCbW2tMXPtlaO07SOElKTk623bp1K4NIzlu8eLHc5Wf5JXcV7NCYxelq0LK9\naoZVcToOKilPOFeAssC5ApQO5wpQOmVxrszbfEgfzV+rrg0i9f7dyfLzYSwG3I8n/F4pzZn7g6QA\nY0wt/bSqaKCkCaV4XpakuAtux5bcd6EhkqZLkrV2uaQASRHW2jxr7bGS+9dK2iWpQSm+JyqJ25Lj\nVGyl6WsY2A0AAAB4kmXpR/XI1FS1iAvTO3e1plACKrHSnL3GWntOUh9JY6y1/SQ1KcXzVktKNMbE\nG2P8JPWX9OVFx2RKulKSjDGN9FOplG2MiSwZ9C1jTIKkREkZpfmBUDnUrh6oLokRmrZqnwqLip2O\nAwAAAKAcrN17QkM/XqP4iCCNH9RWgX6lunYUgAqqVKVSyda0OyXNKbnP+7eeZK0tlPSQpPmStumn\nq7xtMcb80xhzU8lhj0saZozZIGmqpEH2pyFPXSVtNMasl/SZpPustccv5QdDxXdXhzo6dDpXCxjY\nDQAAALi9LQdOafD4Mcqe4AAAIABJREFUVYoK8dfEoe0UFujndCQAl6k0tfBISU9LmlVSCiVIWlSa\nL26t/VrS1xfd99cLPt8qqdPPPG+GpBml+R6ovK5MilJM1QBNXrlXPZvWcDoOAAAAABfZlZ2juz9Y\npWB/H00a2l5RIVywB3AHv7pSqWQL2k3W2pustS9JkrU2w1r7SLmkg1vz8fbSHe1qa8nOo8rIznE6\nDgAAAAAX2Hf8nO56f6WMkSYNba/YaoFORwJQRn61VLLWFknqXE5Z4IFubxcnHy+jySsznY4CAAAA\noIwdOZ2ruz5YqbN5hZo4pL0SIiv/5dUB/K/SzFRKNcZ8aYwZaIzp858PlyeDR4gKCdC1TWvo0zX7\ndD6/yOk4AAAAAMrI8bP5uvP9lTp6Jk8f3dtOjWJCnY4EoIyVplQKkHRMUg9JN5Z83ODKUPAsAzvU\n0encQs3ecMDpKAAAAADKwJncAt3z4SplHj+n9+9pq1a1qzkdCYAL/Oagbmvt4PIIAs/VPj5ciVHB\nmrRyr25rG+d0HAAAAACX4Xx+kYZMWKNtB09r3N1tlFKvutORALjIb65UMsY0MMZ8Z4zZXHK7uTHm\nGddHg6cwxmhgSh1t3H9KG/addDoOAAAAgN8pr7BIIyat1Zq9x/VG/5bqkRTtdCQALlSa7W/vSXpa\nUoEkWWs3SurvylDwPL1b1VKgn7cmrtjrdBQAAAAAv0NhUbFGTl2vH9Ky9WKf5rqheU2nIwFwsdKU\nSoHW2lUX3VfoijDwXCEBvrqlVS3N3nBAJ8/lOx0HAAAAwCUoLrZ6YsZGzdtySH+5oTFjLQAPUZpS\n6agxpp4kK0nGmL6SDro0FTzSwA51lFdYrE9W73M6CgAAAIBSstbqb19u0cx1WXrs6gYa0jne6UgA\nyklpSqUHJb0rKckYkyXpUUn3uTQVPFKjmFB1SAjXx8v3qrCo2Ok4AAAAAH6DtVbPz9mmiSv2anjX\nBD3co77TkQCUo98slay1GdbaqyRFSkqy1na21jL4Bi4xuFO8sk6e1zdbDzsdBQAAAMCvsNbq5fk7\n9P6PuzWoY1093StJxhinYwEoR6W5+tsuY8xkSQMl1XZ9JHiyqxpFKy68isYv3e10FAAAAAC/4q3v\n0jVm8S4NaFdbf7uxMYUS4IFKs/2tsX7a/lZd0sslJdMs18aCp/L2Mronpa5W7zmhzVmnnI4DAAAA\n4GeMXbxLry9IU982sXr+lqYUSoCHKk2pVCSpoOTfYklHSj4Al7itbZyC/Lz1IauVAAAAgApn/p4C\nvTRvu25qUVMv3dpcXl4USoCnKk2pdFrSG5J2S7rHWptirR3h2ljwZKEBvurbJlazNxzQkTO5TscB\nAAAAUGLiir2auj1fvZrW0Gu3tZA3hRLg0UpTKg2Q9IOkByRNM8b8wxhzpWtjwdMN6hSvgiKrySsy\nnY4CAAAAQNInqzP1l883q2Wkt97s30o+3qV5OwnAnZXm6m9fWGv/JGmEpK8lDZL0lYtzwcPFRwSp\nR1KUJq/cq7zCIqfjAAAAAB5tVup+PTVzk65oEKkHW/nLz4dCCUDprv42wxiTLulNSUGS7pZUzdXB\ngMGd6upoTr6+2nDQ6SgAAACAx/pq4wE9Pn2DUhKq692BbeTLljcAJXxKccwLklKttSwXQbnqXD9C\niVHB+nDpbvVpXYsrSgAAAADlbP6WQxo5bb2S64Tr/XuSFeDr7XQkABVIadYsbpD0oDHms5KPh40x\nvq4OBhhjdG/neG05cForMo47HQcAAADwKIu2H9FDU9apeWxVfTi4rQL9SrMmAYAnKU2pNFZSG0lj\nSj5al9wHuFzvVrVUPchP7y3JcDoKAAAA4DF+SMvWiElrlVQjVBMGt1OwP4USgP+rNK8Mba21LS64\nvdAYs8FVgYALBfh6656OdfXat2lKO3xGDaJDnI4EAAAAuLUf0rI17OM1qhcZrIlD2qlqFTaqAPh5\npVmpVGSMqfefG8aYBEnMV0K5Gdihjqr4emvcD6xWAgAAAFzpP4VSQmSwpgxtr7BAP6cjAajASlMq\n/UnSImPMYmPM95IWSnrctbGA/1UtyE+3Jcfqi/VZOnQq1+k4AAAAgFtasvO/C6VqQRRKAH7db5ZK\n1trvJCVKekTSw5IaWmsXuToYcKGhXRJUVGw1ftlup6MAAAAAbmfJzmwN/einQmkyhRKAUvrNUskY\nEyDpQUl/l/Q3SfeX3AeUm7jwQPVqFqMpKzJ1JrfA6TgAAACA27i4UAqnUAJQSqXZ/vaxpCaS3pY0\nquTzia4MBfycEV0TdCavUNNW7XM6CgAAAOAWftx5VEM/WqP4iCAKJQCXrDRXf2tqrW18we1Fxpit\nrgoE/JLmsWHqkBCuD5fu1qBOdeXrXZpOFAAAAMDP+XHnUQ35aLXiI4I0ZVgHCiUAl6w078rXGWM6\n/OeGMaa9pDWuiwT8shFd6+ngqVzN3nDA6SgAAABApUWhBKAslKZUaiNpmTFmjzFmj6TlktoaYzYZ\nYza6NB1wkW4NI9UgOljjfsiQtdbpOAAAAEClQ6EEoKyUZvtbT5enAErJGKPhXevpj59u0KIdR9Qj\nKdrpSAAAAEClsTSdQglA2fnNlUrW2r2/9lEeIYEL3dyypmqFVdGohemsVgIAAABKaWn6Ud07YTVD\nuQGUGSYdo9Lx9fbSfVckaF3mSS3POOZ0HAAAAKDC+z4t+78KperB/k5HAuAGKJVQKfVLjlNkiL/G\nLNrldBQAAACgQvtu22EN+2iN6kUGa8qwDhRKAMoMpRIqpQBfbw3rEq8f049q/b6TTscBAAAAKqR5\nmw/pvklrlRQToinD2PIGoGxRKqHSurN9HYUF+mrUwnSnowAAAAAVzuwNB/TglHVqWquqJg1tr7BA\nCiUAZYtSCZVWkL+PBneM14Jth7X90Gmn4wAAAAAVxqzU/Ro5LVVtalfTxCHtFRrg63QkAG6IUgmV\n2j0d6yjIz1ujma0EAAAASJKmr96nx6ZvUIeE6ppwb1sF+/s4HQmAm6JUQqUWFuinu1LqaM7GA9p9\n9KzTcQAAAABHTVqxV0/M2KguiZH6cFBbBfpRKAFwHUolVHpDOyfI19tLYxczWwkAAACea/zS3Xrm\n8826MilK4wa2UYCvt9ORALg5SiVUepEh/urfNk4z12Vp3/FzTscBAAAAyt273+/SP2Zv1bVNojX2\nLgolAOWDUglu4b5u9eRljEYvYrUSAAAAPMuohTv1wtztuqF5jEbd0Vp+PrzNA1A+eLWBW4ipWkUD\n2sXps7X7Wa0EAAAAj2Ct1WvfpumVb9LUp1UtvXF7S/l68xYPQPnhFQdu44Hu9eXlZfT2wp1ORwEA\nAABcylqrF+Zu11vf7dRtybF6uV8L+VAoAShnvOrAbUSHBuiOdrU1Y12W9h7jSnAAAABwT8XFVv/v\n880a90OG7k6poxf7NJe3l3E6FgAPRKkEt/JAt3ry8TJ6eyGzlQAAAOB+CouK9dj09ZqyMlP3d6un\nf9zURF4USgAcQqkEtxIVGqC7OtTRrNQs7TnKaiUAAAC4j7zCIj0weZ0+X39Af7q2oZ7smSRjKJQA\nOIdSCW7nvivqydfb6C1mKwEAAMBNnMsv1NCP1uibrYf19xsb68Hu9Z2OBACUSnA/kSH+Gtihjj5P\nzVJGdo7TcQAAAIDLcjq3QHd/sEpL04/q5b7NNahTvNORAEASpRLc1Igr6snfx5vZSgAAAKjUjp/N\n1x3vrdCG/Sc16o7W6pcc53QkAPgflEpwSxHB/ro7pY6+WJ+lnYfPOB0HAAAAuGSHT+fq9neXa+fh\nHI0bmKzrmsU4HQkA/gulEtzWiCvqKdDPR698s8PpKAAAAMAl2Xf8nPq9s1wHTp7XhMHt1D0pyulI\nAPB/UCrBbYUH+Wl41wTN33JY6/eddDoOAAAAUCrpR3LU753lOnW+QJOGtldKvepORwKAn0WpBLd2\nb+d4VQ/y07/nbXc6CgAAAPCbthw4pdvfXa7C4mJNG95BrWpXczoSAPwiSiW4tWB/Hz3Yvb6W7Tqm\nH3cedToOAAAA8ItW7T6u/uNWyN/HS9NHpKhRTKjTkQDgV1Eqwe3d2aG2aoVV0b/nb5e11uk4AAAA\nwP/x3bbDGvjBSkWG+OvT+zsqITLY6UgA8JsoleD2/H289ehVidq4/5TmbT7kdBwAAADgv8xYu1/D\nJ65Vwxoh+nREimqFVXE6EgCUCqUSPEKf1rFKjArWy9/sUGFRsdNxAAAAAEnSBz/u1uOfblD7+HBN\nGdZB1YP9nY4EAKVGqQSP4O1l9Pg1DZWRfVYz12U5HQcAAAAezlqrV+bv0LNfbVXPJjU0fnBbBfv7\nOB0LAC4JpRI8xrVNotUiLkyvL0hTbkGR03EAAADgoYqKrf7f55s1alG6BrSL0+g7W8vfx9vpWABw\nySiV4DGMMXqyZ0MdPJWrj5btcToOAAAAPFBeYZEenrpOU1Zm6oFu9fSv3s3k7WWcjgUAvwulEjxK\nx3oR6pEUpVGL0nX8bL7TcQAAAOBBzuYVasiENfp60yE9c30jPdEzScZQKAGovCiV4HGe7pWks3mF\neuu7nU5HAQAAgIc4fjZfd7y/UsszjunVfi00tEuC05EA4LJRKsHjJEaHqH+72pq0Yq8ysnOcjgMA\nAAA3d+DkefV7Z5m2Hzytd+9qo1vbxDodCQDKBKUSPNIfrmogfx8vvTRvu9NRAAAA4MbSj5xR37HL\ndOR0nj6+t52uahztdCQAKDOUSvBIkSH+ur9bPc3fclirdh93Og4AAADc0Jo9x3Xr2OXKL7KaNqKD\n2idUdzoSAJQpSiV4rCGdE1QjNEDPz9mq4mLrdBwAAAC4kflbDunO91cqPMhPsx7oqCY1qzodCQDK\nHKUSPFYVP2/98dqG2rD/lL7adNDpOAAAAHATk1bs1f2T1qpRTKhm3N9RceGBTkcCAJegVIJH69Oq\nlhrHhOqluduVW1DkdBwAAABUYtZavfrNDj3z+WZ1bxilKcPaKzzIz+lYAOAylErwaF5eRs9c30hZ\nJ89r/NI9TscBAABAJVVQVKwnZ2zU2wvTdXtynN4d2EaBfj5OxwIAl6JUgsfrWD9CVzWK1qiFO3Xk\ndK7TcQAAAFDJnMsv1PCP12j6mv165MpEvXhrM/l481YLgPtz6SudMaanMWaHMSbdGPPUzzxe2xiz\nyBiTaozZaIy57oLHni553g5jzLWuzAn85YZGKiiyenHedqejAAAAoBI5lpOnAeNW6Pu0bP2rdzM9\ndnUDGWOcjgUA5cJlpZIxxlvSaEm9JDWWNMAY0/iiw56RNN1a20pSf0ljSp7buOR2E0k9JY0p+XqA\nS9SpHqQhXeI1c12WUjNPOB0HAAAAlUDmsXO6dewybT90Ru8OTNYd7Ws7HQkAypUrVyq1k5Rurc2w\n1uZLmibp5ouOsZJCSz6vKulAyec3S5pmrc2z1u6WlF7y9QCXebB7fUWF+OvvX25RcbF1Og4AAAAq\nsE37T6nP2KU6eb5AU4a119WNo52OBADlzljrmjfPxpi+knpaa4eW3B4oqb219qELjomR9I2kapKC\nJF1lrV1rjBklaYW1dlLJcR9Immut/eyi7zFc0nBJio6ObjNt2jSX/CzlLScnR8HBwU7H8EhLswr0\n3qZ8DWnqpy6xvk7HwW/gXAFKh3MFKB3OFZTWpuxCjV6fpyBfo8eTA1Qz2LPmJ3GuAKXjLudK9+7d\n11prk3/uMacvRzBA0gRr7avGmBRJE40xTUv7ZGvtOEnjJCk5Odl269bNNSnL2eLFi+UuP0tl07XY\nau2pZfpiz3k92reTQgIolioyzhWgdDhXgNLhXEFpTFuVqTdSN6tBdKgmDG6r6NAApyOVO84VoHQ8\n4VxxZaWeJSnugtuxJfddaIik6ZJkrV0uKUBSRCmfC5Q5Ly+jv9/URMfO5unthelOxwEAAEAFUVxs\n9fL87Xpq5iZ1qh+h6SM6eGShBAAXcmWptFpSojEm3hjjp58Gb3950TGZkq6UJGNMI/1UKmWXHNff\nGONvjImXlChplQuzAv+jeWyY+rWJ1filu5WRneN0HAAAADgsr7BIj36yXqMX7dKAdnH64J5kVrQD\ngFxYKllrCyU9JGm+pG366SpvW4wx/zTG3FRy2OOShhljNkiaKmmQ/ckW/bSCaaukeZIetNYWuSor\ncLE/XZukAB9v/fOrrXLV3DEAAABUfCfO5mvg+6v05YYDerJnkv7Vu5l8vT1rhhIA/BKXzlSy1n4t\n6euL7vvrBZ9vldTpF577vKTnXZkP+CWRIf569OoGevarrZq/5ZB6No1xOhIAAADKWeaxcxo0fpX2\nnzivtwe00o0tajodCQAqFCp24Bfck1JHSTVC9I/ZW3U2r9DpOAAAAChH6zJPqPeYpTp+Ll+Th7Wn\nUAKAn0GpBPwCH28vPd+7qQ6eytWb3+10Og4AAADKybzNBzVg3AoFB/ho5v0d1bZuuNORAKBColQC\nfkWbOuHq3zZOH/y4WzsOnXE6DgAAAFzIWqv3l2To/snr1KRmqGbe31EJkcFOxwKACotSCfgNT/ZM\nUmiAj575fJOKixnaDQAA4I6Kiq3+/uUWPTdnm3o1raEpwzqoerC/07EAoEKjVAJ+Q7UgPz3dq5FW\n7zmhGev2Ox0HAAAAZexsXqFGTFyjj5bv1fCuCRo1oLUCfL2djgUAFR6lElAKfdvEqk2danph7nad\nOJvvdBwAAACUkayT59X3neVatCNbz97cRH++rpG8vIzTsQCgUqBUAkrBy8vouVua6tT5Av17/g6n\n4wAAAKAMpGae0M2jlmr/8XP6cFBbDUyp63QkAKhUKJWAUmoUE6rBHetq6qpMrd173Ok4AAAAuAyz\nNxxQ/3ErVMXPSzMf6KgrGkQ6HQkAKh1KJeASPHp1A9UKq6InZ2xSXmGR03EAAABwiay1enPBTj08\nNVXNY6vq8wc6KTE6xOlYAFApUSoBlyDY30fP9W6q9CM5Grt4l9NxAAAAcAlyC4o0ctp6vb4gTX1a\n19Kkoe25whsAXAZKJeASdW8YpZtb1tToRenaefiM03EAAABQCtln8jTgvRX6csMBPdGzoV7t10L+\nPlzhDQAuB6US8Dv89YbGCvb30ZMzNqq42DodBwAAAL9i+6HTumX0Um07eFrv3NVaD3SrL2O4whsA\nXC5KJeB3qB7sr7/c0FjrMk9q4oq9TscBAADAL1i4/bBuHbNMhcXF+nRER/VsGuN0JABwG5RKwO/U\nu1UtdUmM0L/nbVfWyfNOxwEAAMAFrLV6f0mGhn60RvGRQfriwc5qFlvV6VgA4FYolYDfyRijf/Vu\npmIrPTNrk6xlGxwAAEBFkFdYpKdmbNJzc7bpmsY1NH1EimpUDXA6FgC4HUol4DLEhQfq8WsaaNGO\nbH254YDTcQAAADxe9pk83fHeSn2yZp8e6l5fY+5srUA/H6djAYBbolQCLtPgTvFqERemv3+5Rdln\n8pyOAwAA4LE27T+lm0b9qC0HTmnUHa30x2sbysuLgdwA4CqUSsBl8vYyeqVvc53NL9Izn7MNDgAA\nwAlfrM9S33eWycsYzbi/o25oXtPpSADg9iiVgDKQGB2ix69uoPlbDrMNDgAAoBwVFVu9NG+7Rk5b\nrxaxYfrioU5qUpOB3ABQHiiVgDIytEuCWtUO01+/2KIjp3OdjgMAAOD2TucWaNjHazR28S4NaFdb\nk4a2V0Swv9OxAMBjUCoBZcTby+iVfi2UW1CkP3M1OAAAAJfaffSseo9eqh/SsvXsLU31Qp9m8vPh\n7Q0AlCdedYEyVC8yWE/0TNKCbUc0Y12W03EAAADc0g9p2bp51I86fjZfE4e018AOdZyOBAAeiVIJ\nKGODO9ZVu7rh+sfsLTp46rzTcQAAANyGtVbvL8nQoPGrVDOsir58qLNS6lV3OhYAeCxKJaCMeXkZ\n/btvcxUWWT01g21wAAAAZSG3oEiPT9+g5+Zs0zWNa2jG/R0VFx7odCwA8GiUSoAL1I0I0lO9kvR9\nWrYmr8x0Og4AAECltu/4OfUZs0yz1mfpD1c10Jg7WyvI38fpWADg8XglBlxkYIc6WrDtsJ6bs1Up\n9aqrXmSw05EAAAAqnSU7s/Xw1FQVFVt9cE+yeiRFOx0JAFCClUqAi3iVXA2uiq+3Hp22XgVFxU5H\nAgAAqDSstRqzOF33fLhK0SEBmv1QZwolAKhgKJUAF4oODdALfZppU9YpvbEgzek4AAAAlUJOXqHu\nn7RO/563Q9c1i9GsBzuqbkSQ07EAABdh+xvgYj2bxui25FiNWbxLVzSIUrv4cKcjAQAAVFi7snM0\nYuJa7T56Vs9c30hDOsfLGON0LADAz2ClElAO/nZjE9UOD9QfPlmv07kFTscBAACokL7Zckg3j1qq\n42fzNXFIOw3tkkChBAAVGKUSUA6C/H30+u0tdeh0rv72xRan4wAAAFQoRcVWr36zQ8MnrlVCZJBm\nP9xZHetFOB0LAPAbKJWActK6djU93KO+ZqVm6csNB5yOAwAAUCGcPJeveyes1tsL03Vbcqymj0hR\nrbAqTscCAJQCM5WAcvRQ9/r6Pi1b/2/WJrWKC1NceKDTkQAAAByzOeuU7p+8VodO5er53k11R7va\nbHcDgEqElUpAOfLx9tJb/VtJkh6amqr8wmKHEwEAAJQ/a62mrspUn7HLVFhkNW14iu5sX4dCCQAq\nGUoloJzFhQfqpVuba8O+k3rlmx1OxwEAAChX5/OL9PinG/T0zE1qHx+uOY90UZs61ZyOBQD4Hdj+\nBjjgumYxuqtDbY37IUMpCdXVPSnK6UgAAAAul5Gdo/snrVPakTN69KpEPdwjUd5erE4CgMqKlUqA\nQ565vrGSaoTosenrdehUrtNxAAAAXGrOxoO6adRSHTmTq48Gt9OjVzWgUAKASo5SCXBIgK+3Rt/Z\nWnmFxXpkWqoKi5ivBAAA3E9+YbH+MXuLHpyyTonRwZrzSBd1bRDpdCwAQBmgVAIcVC8yWM/d0lSr\ndh/XWwvTnY4DAABQpg6cPK/bxy3X+KV7dG+neH0yPEU1w6o4HQsAUEaYqQQ4rE/rWC1NP6a3F+5U\nh/hwdawf4XQkAACAy/ZDWrYe/WS98guLNebO1rquWYzTkQAAZYyVSkAF8M+bmyghIkiPTEtlvhIA\nAKjUioqt3liQpnvGr1JUiL++fKgThRIAuClKJaACCPL30bsD2+hcfpEenLJO+YXMVwIAAJXPkdO5\nGvjBSr2xYKd6t6qlWQ90UkJksNOxAAAuQqkEVBD1o0L00q3NtXbvCb0wd5vTcQAAAC7JD2nZ6vXm\nEqVmntTLfZvr1X4tVMXP2+lYAAAXYqYSUIHc2KKm1mWe0Pile9SqdjXd1KKm05EAAAB+VWFRsV77\nNk1jFu9Sw+gQjbqjlRKjQ5yOBQAoB5RKQAXz5+saadP+U3pqxkY1qhHCH2UAAKDCyjp5Xo9MTdXa\nvSc0oF2c/npDE1YnAYAHYfsbUMH4entp9J2tFejnoxGT1upMboHTkQAAAP6Pb7ce1nVvLtGOQ2f0\n1oBWeqFPcwolAPAwlEpABRQdGqBRd7TS3mPn9MRnG2WtdToSAACAJCmvsEj/mL1Fwz5eo7jwKvrq\n4c5s2QcAD0WpBFRQHRKq68meDTV38yG9+0OG03EAAAC099hZ9R27XOOX7tHgTnU14/6OqhsR5HQs\nAIBDmKkEVGDDuiRow/5TemnedjWsEaLuDaOcjgQAADzU7A0H9PTMTfL2Mnp3YBtd26SG05EAAA5j\npRJQgRlj9HLf5mpUI1SPTE3VruwcpyMBAAAPcy6/UE9+tlEPT01Vg+hgfT2yC4USAEASpRJQ4QX6\n+ei9e5Ll5+2lYR+t0anzDO4GAADlY9P+U7rhrR81fe0+PdCtnj4ZkaJaYVWcjgUAqCAolYBKoFZY\nFY29q40yj5/TyGmpKipmcDcAAHCd4mKrd77fpT5jl+p8QZGmDO2gJ3omydebtw8AgP/FbwWgkmgX\nH65/3NxEi3dk69/ztzsdBwAAuKlDp3I18MOVenHudl3VKFpzR3ZRSr3qTscCAFRADOoGKpE729fR\ntoOn9e73GWpUI1S3tKrldCQAAOBG5m85pCdnbFReQbFeurWZbkuOkzHG6VgAgAqKUgmoZP56QxOl\nHc7RkzM2qm5EkFrGhTkdCQAAVHLn84v07JytmrIyU01rherN/q1ULzLY6VgAgAqO7W9AJePn46Wx\nd7ZWVKi/hn60RvtPnHM6EgAAqMQ2Z53SDW8v0ZSVmRpxRYJm3t+JQgkAUCqUSkAlVD3YX+MHtVVe\nYZHunbBap3O5IhwAALg0xcVW7y/JUO8xS3Umt1CThrTX070ayc+HtwgAgNLhNwZQSdWPCtG7d7VR\nRvZZPTh5nQqKip2OBAAAKomDp87r7g9X6bk529StYZTmPdpVnRMjnI4FAKhkKJWASqxj/Qj9q3cz\nLdl5VH/9YoustU5HAgAAFZi1Vl+sz9K1r/+gtXtP6PneTTVuYBuFB/k5HQ0AUAkxqBuo5G5rG6fd\nx85q7OJdio8I1PCu9ZyOBAAAKqCT5/L1/z7frDkbD6p17TC9dltL1Y0IcjoWAKASo1QC3MCfrmmo\nzGPn9MLc7aodHqSeTWs4HQkAAFQgi3cc0ROfbdTxs/n607UNNaJrgny82bQAALg8lEqAG/DyMnr1\nthY6cOq8Hv0kVVNCO6h17WpOxwIAAA47l1+of329TZNWZCoxKlgfDmqrprWqOh0LAOAm+O8JwE0E\n+HrrvbuTFR0aoCETVmtXdo7TkQAAgINSM0/o+rd+1OSVmRraOV6zH+5MoQQAKFOUSoAbiQj218f3\ntpO3l9HdH6zS4dO5TkcCAADlrKCoWK99s0N931mu/MJiTRnaQc/c0FgBvt5ORwMAuBlKJcDN1Kke\npPGD2unEuXwNGr9ap3MLnI4EAADKSfqRM+ozZpneWpiuW1rW0txHuyilXnWnYwEA3BSlEuCGmsVW\n1Tt3tdHOw2fseNwpAAAgAElEQVQ0/OM1yisscjoSAABwoaJiq3e+36Xr3vpRWSfP65272ujV21oo\nNMDX6WgAADdGqQS4qa4NIvVyv+ZakXFcj32yQcXF1ulIAADABdKP5OjWscv04tzt6tEwSvMf7cqV\nYAEA5YKrvwFurHerWGWfydO/vt6uyBB//e3GxjLGOB0LAACUgaJiq/eXZOjVb9MU5Oettwa00o3N\nY/hdDwAoN5RKgJsb3rWejpzO0/s/7lZ4kJ8euTLR6UgAAOAypR/J0R8/3aD1+07q2ibReu6WZooM\n8Xc6FgDAw1AqAR7gz9c10olzBXrt2zQF+ftoSOd4pyMBAIDf4cLVSYF+3nqzf0vd1KImq5MAAI6g\nVAI8gJeX0Uu3NtO5/EI9+9VWBft76/a2tZ2OBQAALkH6kRz96bMNSs08qWsaR+u53k0VFRLgdCwA\ngAdzaalkjOkp6U1J3pLet9a+eNHjr0vqXnIzUFKUtTas5LEiSZtKHsu01t7kyqyAu/Px9tIb/Vvq\n7Mdr9dTMTQr089GNLWo6HQsAAPwGVicBACoql5VKxhhvSaMlXS1pv6TVxpgvrbVb/3OMtfYPFxz/\nsKRWF3yJ89balq7KB3gifx9vvXtXG93z4Sr94ZP1CvL3Vo+kaKdjAQCAX5B2+Iye+Gyj1u87qasb\nR+t5VicBACoQLxd+7XaS0q21GdbafEnTJN38K8cPkDTVhXkASKri5633ByWrUUyo7pu0Tst2HXU6\nEgAAuEheYZFe+zZN17+1RHuPndUbt7fUuIFtKJQAABWKsda65gsb01dST2vt0JLbAyW1t9Y+9DPH\n1pG0QlKstbao5L5CSeslFUp60Vr7+c88b7ik4ZIUHR3dZtq0aS75WcpbTk6OgoODnY4BN3cm3+qF\nVed1/LzVH5MDVL+at9ORLhnnClA6nCtA6VSUc2XniSKN35ynA2etUmK8NaCRv0L92OqGiqOinCtA\nRecu50r37t3XWmuTf+6xijKou7+kz/5TKJWoY63NMsYkSFpojNlkrd114ZOsteMkjZOk5ORk261b\nt3IL7EqLFy+Wu/wsqNjadcjV7e8u1xvr8/XxkNZqXbua05EuCecKUDqcK0DpOH2u5OQV6uV52/Xx\nqr2KCQ3Q+MHN1L1hlGN5gF/i9LkCVBaecK64cvtblqS4C27Hltz3c/rroq1v1tqskn8zJC3Wf89b\nAlAGokMDNHV4B1UP9tM9H6zS+n0nnY4EAIBHWrT9iK557Xt9vGKv7kmpq28eu4JCCQBQ4bmyVFot\nKdEYE2+M8dNPxdGXFx9kjEmSVE3S8gvuq2aM8S/5PEJSJ0lbL34ugMsXU7WKpg7roGpBfhr4wUpt\noFgCAKDcHMvJ08hpqRo8YbUC/X302X0p+vtNTRTsX1E2FAAA8MtcVipZawslPSRpvqRtkqZba7cY\nY/5pjLnpgkP7S5pm/3u4UyNJa4wxGyQt0k8zlSiVABepGVZFU4d3UFigr+76YKU27qdYAgDAlay1\nmpW6X1e99r2+3nRQI69M1JxHOqtNnXCnowEAUGou/S8Qa+3Xkr6+6L6/XnT77z/zvGWSmrkyG4D/\nViusiqYNT1H/cct11/srNXloBzWLrep0LAAA3E7msXP6yxeb9X1atlrGhemlW5urYY0Qp2MBAHDJ\nXLn9DUAlUyvsp61woVV+WrG0af8ppyMBAOA28guLNXpRuq5+/Xut2XNcf7uxsWbc35FCCQBQaVEq\nAfgvsdUCNXVYB4UE+OiO91ZozZ7jTkcCAKDSW5lxTNe9tUQvz9+hHklR+u7xbhrcKV7eXsbpaAAA\n/G6USgD+j7jwQE0fkaKIEH8N/GCVlqYfdToSAACV0vGz+frTpxt0+7gVyi0o0oeDkjX2rjaqUTXA\n6WgAAFw2SiUAP6tmWBV9MqKDaocHavCE1Vq4/bDTkQAAqDSstZq+ep96vLpYs1KzdN8V9fTtH65Q\nj6Rop6MBAFBmKJUA/KKokABNG95BDaNDNGLiWn296aDTkQAAqPB2Hj6j299doSdmbFT9yGDNeaSL\nnuqVpCp+3k5HAwCgTFEqAfhV1YL8NHlYezWPDdNDU9Zpxtr9TkcCAKBCOp9fpH/P265eby5R2pEz\neunWZpo+IoVB3AAAt+XjdAAAFV9ogK8mDmmnYR+v0eOfbtC5giIN7FDH6VgAAFQI1lp9s/Wwnv1q\nq/afOK9bW8fqz9clqXqwv9PRAABwKUolAKUS6OejD+5pqwcnr9NfPt+sYzl5GnlloozhqjUAAM+V\nkZ2jf8zequ/TstUgOlhTh3VQSr3qTscCAKBcUCoBKLUAX2+9M7CNnpqxSW8s2KmjOXn6x01NuRwy\nAMDjnMsv1NsL0/X+kgwF+HjrLzc01t0pdeTrzXQJAIDnoFQCcEl8vb30Sr/migjx07vfZ+hYTr5e\nv72lAnwZPgoAcH/WWs3ZdFDPz9mmg6dydWvrWD3Zq6GiQgKcjgYAQLmjVAJwyYwxerpXI0UG++u5\nOdt04twqjbs7WaEBvk5HAwDAZXYePqO/fblFy3YdU+OYUL09oJWS64Y7HQsAAMdQKgH43YZ2SVD1\nYD/96dON6v/uCk24ty3/UwsAcDtncgv05oKdmrBsjwL9vPXszU10R/s6bP8GAHg8SiUAl6V3q1hV\nC/TT/ZPW6daxyzR+UDvVjwp2OhYAAJetuNhqVmqWXpy3XUdz8tS/bZz+eE1DruoGAEAJJgkCuGzd\nGkZp6vAOOpdXpFvHLtOKjGNORwIA4LKs3Xtcvccs1eOfblDNqgGa9UAnvdCnOYUSAAAXoFQCUCZa\nxoXp8wc7KSLYTwM/WKmZ6/Y7HQkAgEuWdfK8Hp6aqlvHLteh07l67bYWmvVAJ7WMC3M6GgAAFQ7b\n3wCUmbjwQM28v5Pum7RWj03foL3HzunRqxJlDDMnAAAV29m8Qs3cma/5CxZLkh7pUV8jrqinIH/+\nXAYA4JfwWxJAmaoa6KuP7m2nP8/apDe/26l9x8/phVubyd/H2+loAAD8H/+Zm/Tv+dt1+HSBbmxR\nU0/1SlKtsCpORwMAoMKjVAJQ5vx8vPRy3+aqWz1Qr3yTpqyT5/XuwDYKC/RzOhoAAP9j7d7j+ufs\nrdqw/5Sax1bV0EZGw3q3cjoWAACVBjOVALiEMUYP9UjUm/1bKjXzpG4evVRph884HQsAAO0/cU6P\nlMxNOngqV6/2a6HPH+ikxGqsqgUA4FKwUgmAS93cspbiwgM1YuJa9R69VG/0b6WrG0c7HQsA4IFO\nnSvQ6MXpmrB0j4yRHu5RX/cxNwkAgN+N36AAXK517Wqa/VBnjZi4RsMnrtHjVzfQg93rM8AbAFAu\n8gqLNHH5Xr29MF2ncwvUp1WsHr+mgWoyNwkAgMtCqQSgXNSoGqBPRqTo6Zmb9Mo3adp26Ixe7ttc\ngX68DAEAXKO42Gr2xgN6ef4O7T9xXl0bROqpnklqXDPU6WgAALgF3s0BKDcBvt567bYWahQTohfn\nbtfu7LN6755krrADAChzy3cd0wtzt2nj/lNqHBOqiUOaqUtipNOxAABwK5RKAMqVMUbDu9ZTYnSI\nHpmaqhvf/lFv9W+lzokRTkcDALiBtMNn9OLc7Vq4/YhqVg3Qa7e10C0ta8nLiy3XAACUNa7+BsAR\n3RtG6YsHOyky2F8DP1ypUQt3qrjYOh0LAFBJHTx1Xk/N2Kieb/yg1XuO66leSVr4x27q0zqWQgkA\nABdhpRIAxyREBmvWgx3155I5S+syT+r121qqaqCv09EAAJXEsZw8jV28Sx+v2CtrrQZ3itdD3eur\nWpCf09EAAHB7lEoAHBXo56PXb2+pNnXD9c/ZW3T920s09s42ahZb1eloAIAK7Exugd5bslsfLMnQ\n+YIi3do6ViOvSlRstUCnowEA4DEolQA4zhijgR3qqGnNUD04eZ1ufWeZ/nlTE93eNk7GsGUBAPC/\ncguK9PHyPRqzeJdOnivQdc1q6LGrG6p+VLDT0QAA8DiUSgAqjFa1q+mrR7po5LRUPTVzk1buPq5n\nb2mqYH9eqgDA0xUUFeuT1fv09sKdOnw6T1c0iNQfr2nIylYAABzEOzUAFUp4kJ8mDG6nUQvT9eZ3\naUrNPKG3B7TmTQMAeKiiYqsvN2Tp9W93KvP4OSXXqaa3+rdS+4TqTkcDAMDjUSoBqHC8vYxGXpWo\nlHrVNXJaqvqMXaoneybp3k7xXMEHADxEcbHV3M2H9OZ3aUo7nKNGMaEaP6itujWMZGs0AAAVBKUS\ngAqrXXy45o7soic+26jn5mzTj+lH9Uq/FooI9nc6GgDARS4uk+pFBuntAa10fbMY/mMBAIAKhlIJ\nQIUWFuindwe20cQVe/XcnG3q9eYSvXF7S3WqH+F0NABAGSoutpq35ZDeXLBTOw6fUb3IIL3Zv6Vu\naF5T3pRJAABUSJRKACo8Y4zuTqmr5DrhenjqOt35/koN6Ryv9lWs09EAAJfp4jIpgTIJAIBKg1IJ\nQKXRuGaoZj/cWS98vV0f/Lhbc4ONaiadUtNaDPEGgMqmuNhq/pZDevO7ndp+iDIJAIDKiFIJQKUS\n6OejZ29pqqsaR2vk5NW6ZfRSjbwyUfd3qycfby+n4wEAfkNRsdW8zYf09kLKJAAAKjtKJQCV0hUN\nIvV85yqafzRMr36bpu+2H9Frt7VQQmSw09EAAD+joKhYs1Kz9M7iXco4elYJEUF64/aWurEFZRIA\nAJUVpRKASivI1+itAa10deNoPfP5Zl331hI91TNJd6fU5QpBAFBB5BYU6ZPV+zTuhwxlnTyvxjGh\nGn1Ha/VsWoMyCQCASo5SCUCld2OLmmoXH64nPtuov8/eqq82HtRLfZurHquWAMAxp3MLNGnFXn34\n424dzclXcp1qeq53U3VrECljKJMAAHAHlEoA3EJ0aIAmDG6rGeuy9OxXW9XrzSUaeWWihndNkC+z\nlgCg3Bw/m6/xS3drwrI9OpNbqK4NIvVQ9/pqFx/udDQAAFDGKJUAuA1jjPq2iVXXBhH6+5db9PL8\nHfp600G9dGtzrhAHAC6WdfK8PliyW1NXZSq3sEg9m9TQA93qq1ksr78AALgrSiUAbicqJEBj7myj\neZsP6pnPt+jm0Ut13xUJerhHogJ8vZ2OBwBuZXPWKb23JENfbTwoSbqlZS3d3y1B9aNCHE4GAABc\njVIJgNvq2TRGHRKq67k52zR60S7N2XhQ/7y5qbo2iHQ6GgBUatZaLU7L1ns/ZGjZrmMK9vfRvZ3q\nalCneNUKq+J0PAAAUE4olQC4tbBAP73Sr4VuaVlLf/lis+7+cJWubx6jv1zfWDWqBjgdDwAqlbzC\nIn25/oDeW5KhtMM5qhEaoKd7JWlA+9oKDfB1Oh4AAChnlEoAPELnxAjNHdlF437I0KhF6fp+R7b+\ncHUD3ZNSRz4M8gaAX3XqfIEmr9yrCUv36MiZPCXVCNGr/VroxhY15efDaygAAJ6KUgmAxwjw9dYj\nVybq5pY19dcvtujZr7Zqxtr9eq53U7WuXc3peABQ4ew+elYfLdujT9fs09n8InWuH6GX+7VQ18QI\nGWOcjgcAABxGqQTA49SpHqQJg9tq3uZD+sfsreozZpn6tonVE9c2VFQoW+IAeDZrrZbsPKoJy/Zo\n0Y4j8vEyur5ZjIZ1TVCTmlzJDQAA/C9KJQAeyRijXs1i1KVBpN5euFPjf9yjuZsO6oHu9TWkczxX\niQPgcc7mFWpmapYmLN2tXdlnFRHsp4d7JOqu9rUp3AEAwM+iVALg0YL9ffR0r0a6o11tPT9nm16e\nv0PTVmfqz70aqWfTGmzvAOD29h0/p4+W7dEna/bpTG6hmtWqqtdua6Hrm8fI34eCHQAA/DJKJQDQ\nT1vixt2drGXpR/XPr7bq/snr1D4+XH+9sTHbPQC4HWutlu86pvHL9mjBtsPyMka9mtbQ4E7xal07\njEIdAACUCqUSAFygY/0IffVwZ01bvU+vfZumG97+UX1axeqxaxqoVlgVp+MBwGU5eS5fn63drykr\nM5Vx9KzCg/z0YLf6urNDbcVU5TUOAABcGkolALiIj7eX7upQRze2qKnRi9I1Ydkezd54QPek1NED\n3eqrWpCf0xEBoNSstUrdd1KTV2Tqq40HlFdYrNa1w/RKvxa6oXkMM+QAAMDvRqkEAL+gahVf/fm6\nRhrUsa7eWJCmD37crWmr9+m+K+rp3k7xquLHGzEAFVdOXqE+T83S5JWZ2nbwtIL8vNUvOVZ3tKuj\nxjVDnY4HAADcAKUSAPyGmmFV9O++LTS0S4L+PW+HXp6/Qx8v36ORVzZQv+RY+Xp7OR0RAP7H1gOn\nNXnlXn2emqWz+UVqFBOq53s31c0taynYnz/9AABA2eEvCwAopQbRIXr/nmSt3nNcL87drj/P2qR3\nvt+lh3rUV+9WtSiXADjmdG6BZm84oOmr92nD/lPy9/HSjS1q6s72tdUyjsHbAADANSiVAOASta0b\nrs/uS9GiHUf0+rc79cRnGzV6Uboe6v5TueRDuQSgHBQXW63YfUyfrtmvrzcdVF5hsZJqhOivNzRW\nn9a1FBbI/DcAAOBalEoA8DsYY9QjKVrdG0bpu21H9MZ3afrTZxs1inIJgIsdOHleM9bu16dr9yvz\n+DmFBPioX3KsbkuOU7NaVVmVBAAAyg2lEgBcBmOMrmocrSsbRWnBtiN6Y8FP5dLoRem674p66t26\nlvx9GOgN4PLkFRZpwdYj+mTNPi3ZmS1rpY71quuxqxuoZ9MaXMENAAA4glIJAMqAMUZXN47WVY2i\n9O3Ww3pr4U49NXOTXl+QpiGd4zWgXW2FBPg6HRNAJVJcbLU284RmrsvSnI0HdDq3UDWrBujh7vXV\nLzlOceGBTkcEAAAejlIJAMqQMUbXNKmhqxtH68f0oxq7eJf+9fV2jVqYroEpdTS4U7wigv2djgmg\nAtuVnaPPU7M0KzVL+0+cVxVfb13bJFq9W8eqc/0IeXuxvQ0AAFQMlEoA4ALGGHVJjFSXxEit33dS\n7yzepTGLd+n9Jbt1W3KchnaJV53qQU7HBFBBHM3J0+wNBzQrNUsb95+Sl5E61Y/QY1c30LVNaijI\nnz/ZAABAxcNfKADgYi3jwvTOwDbalZ2jcd9naNrqTE1auVdXJkXp3k7xSqlXncG6gAfKySvUd9sO\n6/PULP2w86iKiq2a1AzVM9c30k0taioqNMDpiAAAAL+KUgkAykm9yGC91Le5HrumgSat2KvJKzO1\nYNtKJdUI0aCOdXVLq1oM2wXc3Ln8Qn237YjmbDyoRTuOKK+wWDWrBmh41wT1blVLDaJDnI4IAABQ\napRKAFDOokMD9Pg1DfVg9/r6cv0Bfbh0t56auUkvzduuO9rX1l0d6iimahWnYwIoI+fzi7Rox09F\n0nfbDyu3oFiRIf4a0K62rm8eoza1q8mLOUkAAKASolQCAIcE+HrrtrZx6pccqxUZxzV+6W6NWbxL\nYxfvUo+kaN3Zvra6NohkKC9QCeUWFGnxjmzN2XRQ3207rHP5RYoI9lO/NnG6vnmM2tYN59wGAACV\nHqUSADjMGKOUetWVUq+69h0/pymrMvXpmn1asO2waoVV0e1t43R72zhFM18FqNBOnS/Q4h1H9M2W\nw1q844jO5hcpPMhPt7SqpRuaxah9QnWKJAAA4FYolQCgAokLD9STPZP0h6saaMG2w5qyMlOvfZum\nN7/bqSuTojSgfW11TWT1ElBRHD6dq2+2HtY3Ww5p+a5jKiy2igzx182taqlX0xpKSaguH28vp2MC\nAAC4BKUSAFRAfj5euq5ZjK5rFqO9x85q6qp9+mztPn2z9bCiQvzVu1Ut9Wkdq4Y1GOoLlLdd2Tma\nv+WQvtlyWOv3nZQkxUcEaUiX/9/evUfZWdf3Hn9/ZyYzyVySTGaSkDsJuRECEoiAoFxUEFwuqEdb\n8agVl0ePPdVWPfYcXdUji9Iuq+3x1FVPvbK0nha81qaCWosggnKTcAkJgRAg93syuUwyk5n5nj/2\nkzAMGTI7MLMnyfu11l77ufyeZ3/33vPL7Hzm9/z2TK5YcAqLpo11jiRJknRSMFSSpGFuRksDn7xq\nPh+/fC63r9jMDx9azzfvfoav3rWaMyaP5m3nTOXqsyfT2lhX6VKlE1JnVw8PPLuDO57Ywi9XbmH1\n1n0AnDV1DJ+4Yi5vOuMUZk9oJMIgSZIknVwMlSTpOFFbU8VVZ07iqjMnsX1vB0se2cCPHlrPDT9Z\nzl/etoJL547nmkVTeMP8CTTU+c+79HJs3n2AO57Ywh0rt3D3U9vY19lNbXUV588ax3tfcyqXL5jI\n5LF+S6MkSTq5+b8OSToOtTTW8b6LZvK+i2ayctMefrR0HT9eup7bn9jCyBFVvH7+BN5y1mQumzeB\nUbXVlS5XGva6e5KH1+7kl09s4Y4ntrJ8424AJo0ZyTWLpnDZvAlceFqLga0kSVIvfjKSpOPcvFOa\n+NRVp/M/3jSfB57dwa2PbuSnyzZy22ObqK+t5g2nT+QtZ03ikrnjGTnCgEkCyEye297O3au2cfdT\n2/jN09vYfaCL6qrg3OnN/M8r53PZ/PHMm9jkZW2SJEn9GNRQKSKuBP4OqAa+kZmf67P/i8BlxWo9\nMCEzxxb73gt8uth3Y2Z+ezBrlaTjXXVVcMGsFi6Y1cL1V5/Bfau385PHNvKzZZv4t0c20FBbzSXz\nxnP5golcNm8CY+trK12yNKS27+3gN09v555V2/j1U9tYv2s/AJPHjOTKhafwujnjuXjOeMbUj6hw\npZIkSceHQQuVIqIa+DJwObAOeCAilmTm8kNtMvNjvdp/BFhULI8DPgssBhL4XXHszsGqV5JOJNVV\nwYWzW7lwdis3XH0G967ewW3LNvIfyzdz22ObqK4KXn1qM288fSKXL5jIjJaGSpcsveL2HDjI757b\nyW+f3s7dq7bx+IbSJW1NI2u48LQWPnTJLC6a3crM1gZHI0mSJB2DwRypdB6wKjNXA0TELcA1wPJ+\n2r+TUpAE8CbgF5m5ozj2F8CVwM2DWK8knZBqqqt47ZxWXjunlRuvWcij69v4j+Wb+cXyzdx46wpu\nvHUFcyc28vr5E7l4biuLZ4yjtqaq0mVLZdvV3sn9z+wo3Z7dwbL1bfQkjKgOzp3RzCeumMtFs1s5\nc8oYaqr9GZckSXq5IjMH58QRbweuzMz/Uqy/Bzg/Mz98hLYzgHuBqZnZHRGfAEZm5o3F/s8A+zPz\nb/oc90HggwATJ04895ZbbhmU5zLU9u7dS2NjY6XLkIY9+8rLt6W9h6Vbulm6pYundvbQnVBXDfPH\nVbOwtZozW6uZWB+O4jjOnah9ZVdHD0/u7GHljm5W7uhm3d7SZ5qaKjhtTBXzxlUzr7ma2WOrqKvx\nZ1hHd6L2FemVZl+RBuZE6SuXXXbZ7zJz8ZH2DZeJuq8FfpCZ3eUclJlfA74GsHjx4rz00ksHobSh\nd+edd3KiPBdpMNlXXhl/UNzvOXCQe1fv4K4nt3LXU1v5pxXtAExtHsXFc1u58LQWzp/ZwvimusoV\nq2NyIvSVg909rNi4m6VrdrF0zU4eWrOLNTtKcyLV11Zz7owWrp05jvNmtnDW1DFOSq9jciL0FWko\n2FekgTkZ+spghkrrgWm91qcW247kWuCP+xx7aZ9j73wFa5Mk9dE0cgSXLyjNsQTw3PZ93PXUNu56\ncitLHt7AP9+3BoBZ4xs4f2YLF8waxwWzWpg4emQly9YJalPbAZau2cnStbt46LmdPLa+jY6uHgAm\nNNVxzvRm3nX+dM6bOY6FU8YwwsvZJEmShtxghkoPAHMiYialkOha4D/3bRQR84Fm4Le9Nv8c+KuI\naC7WrwA+NYi1SpL6mNHSwHtaGnjPBTM42N3DsvVt3PfMjtK3yj2ygZvvL4VMp7bUc/7MFs6d0czZ\n08cye3wjVVVeaqSByUw27+5g2fo2lm1oY9n63Sxb38am3QcAqK2uYuGU0bz7ghmcM72ZRdPHMmnM\nSC/JlCRJGgYGLVTKzK6I+DClgKgauCkzH4+IG4AHM3NJ0fRa4JbsNblTZu6IiL+gFEwB3HBo0m5J\n0tAbUV3FounNLJrezIcuOY2u7h5WbNzDvau3c98z2/npso1898G1ADTV1fCqaWNZNH0sZ08r3Voa\nvWROpQBp3c79PH4oPCrut+3tACACThvfyPmzxnH2tLEsmt7M6ZOaqKvxUjZJkqThaFDnVMrM24Db\n+mz7X33Wr+/n2JuAmwatOEnSMaupruLMqWM4c+oYPnDxLHp6ktXb9vHw2tJ8N0vX7OLLd6yip/hz\nwfRx9SycMpozJo9hwaTRnDF5NOOb6hxtcgLbvreDlZv38OSmPazcvJcni+U9HV0AVFcFcyY0cum8\n8SycPJqFU8Zw+qTRNNQNl+keJUmSdDR+cpMkvWxVVcHsCY3MntDI28+dCkB7ZxePrWtj6dpdPLJ2\nF8vW7+a2xzYdPqa1sZYFRci0YPJo5kxoZGZrgxMsH0cyky17Oli9dR/PbNtXCo6K27a9nYfbjRk1\ngnmnNPF7i6Yw75QmFk4Zw/xTmnyvJUmSjnOGSpKkQVFfW8P5s1o4f1bL4W27DxzkiY17eHxDG8s3\n7ObxDbv55tOrOdhdGtJUFaVRTaWAqulwUDV7QiONjmCpiMykbf9Bntm27/Bt9bZ9PLN1H89u30d7\n5/Nf3FpfW82ciU28fv4E5k5sYt4pTcyb2OSoNEmSpBOUn9AlSUNm9MgRnDdzHOfNHHd4W2dXD09v\n3ctTW/ayastent6yl6e27OFXT249HDZBaWTTtHH1zBhXz/Rx9Uwr7qe31DOxaaSTgx+jzGRn+0HW\n79zPup3trNu5n/W7ei3v3H/4kjUoXbY2tXkUM1sbOH/WOGa1NjCztZFTW+uZPGaU74MkSdJJxFBJ\nklRRtTVVnD5pNKdPGv2C7V3dPazZ0X44bFq7o501O9p58LmdLHlkw+H5mg6dY9KYkUwcPZJTRo/k\nlDHP39ASUuUAAA5hSURBVE8s7sc31lFbc/J87Xxmsrejiy17OlixvZu2h9ezZXcHW/YcYHNxv2V3\nB5t2H3jBaCOAxroapjaPYmrzKM6fOY6pzfXMbG1g5vgGpjXXn1SvoyRJkvpnqCRJGpZqqquYNb6R\nWeMbedMZL9x3sLuHDbv2s2ZHO89tb2ftjnY2tB1gc9sBHl67i02PH6Czq+dF52yqq2FcYy3N9bW0\nNNTS3FDLuOLWXD+CppEjaKyroaGuhqaRpfvG4lZdgRE4Xd097OvoZl9nF/s6utjb0UV7Zzd7O7rY\nvf8gu9oPsrO9k53tB9nV3snO9s4XbHvBa/DAwwCMHFHFhKaRTGiq4/RJo7lk3nimNtcztXkUU8aO\nYlpzPaNH1Xi5miRJko7KUEmSdNwZUV3FjJYGZrQ08Lo5L95/6JKuTW0H2Lz7ABvbDrB1Twc72zvZ\nsa8UvmzafYDlG3ezfV/nEQOovkaNqGZUbTW11VXU1hS3Xst1xXrfMKZvNpNZCsUO3Tq7k4Ndh5Z7\nONjVQ0dXD3s7uugYQF3VVcHYUSMYWz+C5vpapjbXc+aUMYcDs4mj69i4eiVXvO48xjeNZPRIAyNJ\nkiS9MgyVJEknnIg4PAJpweTRL9k2M9l/sJsd+zrZ21EaEbTnQNcLlvd1dLPnwEH2H+wuhT9dpQCo\nswiAOosQqLOrh+x1WV7285i11UFtTRUjqquory3d19YEI6pLy3U1VTTW1VBfW0NDXXVpua6Gxrpq\nGmqfH0k1tr6Wprqao85jdGfbKmZPaCrzVZQkSZJemqGSJOmkFhHU15YCHEmSJEkD50ybkiRJkiRJ\nKpuhkiRJkiRJkspmqCRJkiRJkqSyGSpJkiRJkiSpbIZKkiRJkiRJKpuhkiRJkiRJkspmqCRJkiRJ\nkqSyGSpJkiRJkiSpbIZKkiRJkiRJKpuhkiRJkiRJkspmqCRJkiRJkqSyGSpJkiRJkiSpbIZKkiRJ\nkiRJKpuhkiRJkiRJkspmqCRJkiRJkqSyGSpJkiRJkiSpbIZKkiRJkiRJKpuhkiRJkiRJkspmqCRJ\nkiRJkqSyGSpJkiRJkiSpbIZKkiRJkiRJKpuhkiRJkiRJkspmqCRJkiRJkqSyRWZWuoZXRERsBZ6r\ndB2vkFZgW6WLkI4D9hVpYOwr0sDYV6SBsa9IA3Oi9JUZmTn+SDtOmFDpRBIRD2bm4krXIQ139hVp\nYOwr0sDYV6SBsa9IA3My9BUvf5MkSZIkSVLZDJUkSZIkSZJUNkOl4elrlS5AOk7YV6SBsa9IA2Nf\nkQbGviINzAnfV5xTSZIkSZIkSWVzpJIkSZIkSZLKZqgkSZIkSZKkshkqVVBEXBkRKyNiVUR88gj7\n6yLiu8X++yLi1KGvUqq8AfSVj0fE8oh4NCJuj4gZlahTqrSj9ZVe7d4WERkRJ/RX3Er9GUhfiYg/\nKH63PB4R/zzUNUrDwQA+g02PiDsiYmnxOezNlahTqqSIuCkitkTEsn72R0R8qehHj0bEOUNd42Ay\nVKqQiKgGvgxcBSwA3hkRC/o0ez+wMzNnA18E/npoq5Qqb4B9ZSmwODPPAn4AfH5oq5Qqb4B9hYho\nAv4UuG9oK5SGh4H0lYiYA3wKuCgzzwA+OuSFShU2wN8rnwa+l5mLgGuB/zu0VUrDwreAK19i/1XA\nnOL2QeAfhqCmIWOoVDnnAasyc3VmdgK3ANf0aXMN8O1i+QfAGyIihrBGaTg4al/JzDsys71YvReY\nOsQ1SsPBQH6vAPwFpT9SHBjK4qRhZCB95QPAlzNzJ0BmbhniGqXhYCB9JYHRxfIYYMMQ1icNC5l5\nF7DjJZpcA/xjltwLjI2ISUNT3eAzVKqcKcDaXuvrim1HbJOZXUAb0DIk1UnDx0D6Sm/vB346qBVJ\nw9NR+0ox3HpaZt46lIVJw8xAfq/MBeZGxD0RcW9EvNRfoKUT1UD6yvXAuyNiHXAb8JGhKU06rpT7\n/5njSk2lC5CkV0pEvBtYDFxS6Vqk4SYiqoD/DVxX4VKk40ENpcsULqU0+vWuiDgzM3dVtCpp+Hkn\n8K3M/NuIeA3wnYhYmJk9lS5M0tBwpFLlrAem9VqfWmw7YpuIqKE0pHT7kFQnDR8D6StExBuBPweu\nzsyOIapNGk6O1leagIXAnRHxLHABsMTJunUSGsjvlXXAksw8mJnPAE9SCpmkk8lA+sr7ge8BZOZv\ngZFA65BUJx0/BvT/meOVoVLlPADMiYiZEVFLaWK7JX3aLAHeWyy/HfhlZuYQ1igNB0ftKxGxCPgq\npUDJeS90snrJvpKZbZnZmpmnZuaplOYfuzozH6xMuVLFDOQz2I8pjVIiIlopXQ63eiiLlIaBgfSV\nNcAbACLidEqh0tYhrVIa/pYAf1h8C9wFQFtmbqx0Ua8UL3+rkMzsiogPAz8HqoGbMvPxiLgBeDAz\nlwDfpDSEdBWlib+urVzFUmUMsK98AWgEvl/MZb8mM6+uWNFSBQywr0gnvQH2lZ8DV0TEcqAb+LPM\ndLS4TioD7Cv/Hfh6RHyM0qTd1/lHcJ1sIuJmSn+IaC3mF/ssMAIgM79Cab6xNwOrgHbgfZWpdHCE\nfV6SJEmSJEnl8vI3SZIkSZIklc1QSZIkSZIkSWUzVJIkSZIkSVLZDJUkSZIkSZJUNkMlSZIkSZIk\nlc1QSZIk9SsiroyIlRGxKiI+2U+b6yJicpnn/f2IeDwieiJicT9tJkfED46l7kqLiLER8d96rQ/Z\nc4mIxRHxpWL50oi4sNe+b0XE24/xvB+NiPpjPPaSiPhtn201EbH5pX52IuL6iPjEsTymJEkafIZK\nkiTpiCKiGvgycBWwAHhnRCw4QtPrgLJCJWAZ8J+Au/prkJkbMvOYApDeIqLm5Z7jGIwFDodKr9Rz\nGYjMfDAz/6RYvRS48CWal+OjwDGFSsCvgakRMaPXtjcCj2fmhpddmSRJqghDJUmS1J/zgFWZuToz\nO4FbgGt6NyhGvSwG/ikiHo6IURHxhohYGhGPRcRNEVHX98SZuSIzV77Ug0fEqRGxrFi+LiJ+FBE/\ni4inIuLzvdpdGREPRcQjEXF7se36iPhORNwDfCciqiPiCxHxQEQ8GhH/tWh3aUT8KiL+NSJWR8Tn\nIuJdEXF/Uf9pRbvxEfHD4vgHIuKiXo9zU0TcWRx/KMz5HHBa8Zp8oYzn8v6IeLJ4/K9HxN8f4XV5\nrBgJFRGxPSL+sNj+jxFxefGcfhIRpwIfAj5W1PG64hQXR8RvinpfFHRFRENE3Fq8nssi4h3F85oM\n3BERdxTtroiI3xav/fcjorHY/mxEfL6o8/6ImJ2ZPcD3gGt7PdS1wM3FMR8oXtdHitf5ReFV8Rov\nLpZbI+LZYvmI760kSRp8hkqSJKk/U4C1vdbXFdsOy8wfAA8C78rMs4EEvgW8IzPPBGqAP3qF6jkb\neAdwJvCOiJgWEeOBrwNvy8xXAb/fq/0C4I2Z+U7g/UBbZr4aeDXwgYiYWbR7FaXw5XTgPcDczDwP\n+AbwkaLN3wFfLI5/W7HvkPnAmyiFcJ+NiBHAJ4GnM/PszPyzAT6XycBngAuAi4rzHsk9xf4zgNXA\nobDoNcBvDjXKzGeBrxR1n52Zvy52TQJeC7yFUvjV15XAhsx8VWYuBH6WmV8CNgCXZeZlEdEKfJrS\n63sOpZ+Bj/c6R1vx/v898H+KbTdThEpF0Phm4IfFvh9l5quL93AFpfdroF7qvZUkSYOoEsPBJUnS\niWse8ExmPlmsfxv4Y54PFl6O2zOzDSAilgMzgGbgrsx8BiAzd/RqvyQz9xfLVwBn9RqZMwaYA3QC\nD2TmxuK8TwP/XrR5DLisWH4jsCAiDp179KGROcCtmdkBdETEFmDiMT6XVuBXh55DRHwfmHuEY38N\nXAw8B/wD8MGImALszMx9vWrsz4+LkUPLI+JItT4G/G1E/DXwk15hVG8XUArt7ikerxboPWfSzb3u\nvwily/IiojEi5lEK8O7r9X4tjIgbKV022Aj8/GhPopf+3ttnyjiHJEk6BoZKkiSpP+uBab3Wpxbb\nKqWj13I3R/8cs6/XcgAfycwXhBURcWmf8/b0Wu/p9RhVwAWZeaDP8cdS17Eec8hdlIK66cCfA28F\n3k4pbBqI3o/9ogQqM5+MiHMojSS6MSJuz8wb+jQL4BfFKLAjyX6WD41WOp3ngycojW77vcx8JCKu\nozQXVF9dPD/KfmSfWl703kqSpMHn5W+SJKk/DwBzImJmRNRSCgOWHKHdHqCpWF4JnBoRs4v19wC/\nGsQa76U0R9BMgIgY10+7nwN/VFyaRkTMjYiGMh7n33n+Ujgi4uyjtO/9mgzUA8AlEdEcpcnF33ak\nRpm5ltKopjmZuRq4G/gER570vOw6isvw2jPz/wFfAM45wrnuBS469D4X8zD1HlX1jl73fUcwvRt4\nPfCvvbY3ARuL9+dd/ZT2LHBusdx7LqiX+95KkqRjZKgkSZKOKDO7gA9T+k/7CuB7mfn4EZp+C/hK\nRDxMadTI+4DvR8RjlEb7fKXvARHx1ohYR2keoFsj4phGmWTmVuCDwI8i4hHgu/00/QawHHiomDD7\nq5Q3OuhPgMXFRNDLKc3B9FJ1bad0adiyiPjCQB4gM9cDfwXcT2nepGeBtn6a3wccusTw15Tmurr7\nCO3+DXhrn4m6j+ZM4P7i/fwscGOx/WvAzyLijuJ1vw64OSIepRQc9Z4DqrnY/qfAx3o9xxWURpD9\nMjN7jyT7TPGc7gGe6Keuv6EUHi2lFKod8nLfW0mSdIwiM4/eSpIkSYMuIhozc28xUulfgJsy818q\nXVc5im9lW5yZ2ypdiyRJGlyOVJIkSRo+ri9GCC2jNNH0jytcjyRJUr8cqSRJkiRJkqSyOVJJkiRJ\nkiRJZTNUkiRJkiRJUtkMlSRJkiRJklQ2QyVJkiRJkiSVzVBJkiRJkiRJZfv/IA0DFeb39dkAAAAA\nSUVORK5CYII=\n",
"text/plain": [
"<Figure size 1440x720 with 1 Axes>"
]
},
"metadata": {
"tags": []
}
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Lhnh3Hf8GtTE",
"colab_type": "text"
},
"source": [
"# Conclusion\n",
"\n",
"- As we move closer to $0$ from $1$ till somewhere around $0.3$ the power values presents a gradual decay; however, afterwards with the further decrement it starts increasing to reach the peak value $0.999999\\dots \\equiv 1.000$\n",
"\n",
"- Thus additionally, if we try for other numbers then we can also observe the behaviour of $\\frac{\\lim} {x \\to 0} x^x = 1$"
]
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment