Skip to content

Instantly share code, notes, and snippets.

using Base.Test
Base.hcat(Xin::Union{SparseVector, SparseMatrixCSC}...) = hcat(map(SparseMatrixCSC, Xin)...)
Base.vcat(Xin::Union{SparseVector, SparseMatrixCSC}...) = vcat(map(SparseMatrixCSC, Xin)...)
Base.hcat(Xin::Union{Vector, AbstractSparseVector}...) = hcat(map(sparse, Xin)...)
Base.vcat(Xin::Union{Vector, AbstractSparseVector}...) = vcat(map(sparse, Xin)...)
function Base.hcat(Xin::Union{Matrix, Vector, SparseMatrixCSC}...)
X = SparseMatrixCSC[issparse(x) ? x : sparse(x) for x in Xin]
hcat(X...)
julia> using Plots
INFO: Precompiling module Plots...
WARNING: Base.writemime is deprecated.
likely near /home/pkm/.julia/v0.5/Plots/src/backends/gadfly.jl:696
WARNING: Base.writemime is deprecated.
likely near /home/pkm/.julia/v0.5/Plots/src/backends/gadfly.jl:696
WARNING: Base.writemime is deprecated.
likely near /home/pkm/.julia/v0.5/Plots/src/backends/gadfly.jl:696
WARNING: Base.writemime is deprecated.
likely near /home/pkm/.julia/v0.5/Plots/src/backends/gadfly.jl:696
using CUTEst
patho_problems=[ "ARGTRIGLS"
"BENNETT5LS"
"BOXBODLS"
"BROYDN3DLS"
"BROYDNBDLS"
"CHWIRUT1LS"
"CHWIRUT2LS"
"CKOEHELB"
"DANWOODLS"
+- Any << abstract immutable size:0 >>
. +- Cycle = Base.Cycle{I} << concrete immutable size:8 >>
. +- Tuple = Tuple{Vararg{Char}} << concrete immutable size:0 >>
. . +- Union{AbstractArray{A<:AbstractArray{Int64,1},1},AbstractArray{Range{Int64},1},AbstractArray{UnitRange{Int64},1},Tuple{Vararg{Union{AbstractArray{Int64,1},Range{T}}}}}
. . . +- RangeVecIntList = Union{AbstractArray{A<:AbstractArray{Int64,1},1},AbstractArray{Range{Int64},1},AbstractArray{UnitRange{Int64},1},Tuple{Vararg{Union{AbstractArray{Int64,1},Range{T}}}}}
. . +- Chars = Union{AbstractArray{Char,1},Char,Set{Char},Tuple{Vararg{Char}}}
. +- AbstractCmd = Base.AbstractCmd << abstract immutable size:0 >>
. +- NewvarNode << concrete immutable size:8 >>
. +- TopNode << concrete immutable size:8 >>
. . +- ExprNode = Union{Expr,GlobalRef,GotoNode,LabelNode,LineNumberNode,QuoteNode,SymbolNode,TopNode}
using BenchmarkTools
A = rand(10000)
B = Vector[rand(10) for i = 1:1000]
C = rand(10,1000)
D = rand(10000)
E = Vector[rand(10) for i = 1:1000]
F = rand(10, 1000)
function fast!(a, c)
using BenchmarkTools
A = rand(10000)
B = Vector[rand(10) for i = 1:1000]
C = rand(10,1000)
D = rand(10000)
E = Vector[rand(10) for i = 1:1000]
F = rand(10, 1000)
function fast!(a, c)
julia> using Optim
julia> function rosenbrock(x)
N = length(x)
fval = 0.0
for i in 1:div(N, 2)
fval += 100(x[2i-1]^2 - x[2i])^2 + (x[2i-1] - 1.0)^2
end
fval
end
function LearnBase.learn!(solver::CrossEntropyMethod, env::AbstractEnvironment, doanim = false)
# !!! INIT:
# this is a mappable function of θ to reward
cem_episode = θ -> begin
π = cem_policy(env, θ)
R, T = episode!(env, π; maxiter = solver.options[:maxiter])
R
end
K = 5
N = 3
z = [rand(20000, K) for i =1:N]
P = [rand(20000) for i = 1:N]
Pm = rand(20000, N)
Pv = [@view Pm[:, j] for j = 1:N]
cache = zeros(20000, K)
function test1(P, z)
for i in eachindex(P)
using BenchmarkTools
K = 5
N = 3
z = [rand(20000, K) for i =1:N]
P = [rand(20000) for i = 1:N]
cache = zeros(20000, K)
function test1(P, z)
for i in eachindex(P)
cache .= P[i].*z[i]