Commit(s): pkofod/julia@a4daf3b21f1a98dd208f50bc1b785d4d92f24d3b vs JuliaLang/julia@83007fb8c4c748fb23d38759daafd77fa1d56c2b
Triggered By: link
Tag Predicate: ALL
| using Optim, Calculus | |
| # Let's try with a polynomial. It has very simple Hessian, as there are no cross | |
| # products, only quadratic terms. Hence the Hessian is a diagonal matrix where | |
| # diag(H) = [2, 2, ..., 2]. Let's try to see if that's what we get! | |
| function large_polynomial(x::Vector) | |
| res = zero(x[1]) | |
| for i in 1:250 | |
| res += (i - x[i])^2 | |
| end | |
| return res |
| intersect at /home/pkm/julia/julia/src/subtype.c:1628 | |
| intersect_ufirst at /home/pkm/julia/julia/src/subtype.c:1032 [inlined] | |
| intersect_var at /home/pkm/julia/julia/src/subtype.c:1100 | |
| intersect at /home/pkm/julia/julia/src/subtype.c:1628 | |
| intersect_ufirst at /home/pkm/julia/julia/src/subtype.c:1032 [inlined] | |
| intersect_var at /home/pkm/julia/julia/src/subtype.c:1100 | |
| intersect at /home/pkm/julia/julia/src/subtype.c:1628 | |
| intersect_ufirst at /home/pkm/julia/julia/src/subtype.c:1032 [inlined] | |
| intersect_var at /home/pkm/julia/julia/src/subtype.c:1100 | |
| intersect at /home/pkm/julia/julia/src/subtype.c:1628 |
| julia> Profile.print() | |
| 11 ./event.jl:68; (::Base.REPL.##3#4{Base.REPL.REPLBackend})() | |
| 11 ./REPL.jl:95; macro expansion | |
| 11 ./REPL.jl:64; eval_user_input(::Any, ::Base.REPL.REPLBackend) | |
| 11 ./boot.jl:234; eval(::Module, ::Any) | |
| 11 ./<missing>:?; anonymous | |
| 11 ./profile.jl:16; macro expansion; | |
| 11 /home/pkm/.julia/v0.5/MDPTools/src/solution/solve.jl:39; solve!; | |
| 11 /home/pkm/.julia/v0.5/MDPTools/src/solution/solve.jl:40; #solve!#58; | |
| 11 ./<missing>:0; (::MDPTools.#kw##solve!)(::Array{Any,1}, ::MDPTools.#solve!, ::MDPTools.LinearUtility{Float64}, ::MDP... |
| pkm@pkm:~/.julia/v0.6/RemPiO2$ julia6 -O3 test/runtests.jl | |
| Testing speed and accuracy of rempio2 in [-pi*9/4, pi*9/4] | |
| ---------------------------------------------------------- | |
| Numbers below are elapsed time returned from @belapsed | |
| Every number is checked between the two implementations | |
| using a @test such that any difference results in termi- | |
| nation of the program. |
Commit(s): pkofod/julia@a4daf3b21f1a98dd208f50bc1b785d4d92f24d3b vs JuliaLang/julia@83007fb8c4c748fb23d38759daafd77fa1d56c2b
Triggered By: link
Tag Predicate: ALL
| Pkg.add("BenchmarkTools") | |
| using BenchmarkTools | |
| function inplace_sq_mat(m::Array{Float64, 2}, n::Array{Float64, 2}) | |
| s = size(m, 1) | |
| t = s+1 | |
| v = zeros(t) | |
| @inbounds for i=1:s | |
| for j=1:s | |
| v[j] = m[j, i] |
| function tauchen(ρ, σₛ, m, N) | |
| const Φ = normcdf # CDF of standard normal | |
| s̃₁, s̃ₙ = -m*σₛ, m*σₛ # end points | |
| s̃ = linspace(s̃₁, s̃ₙ, N) # grid | |
| w = (s̃[2]-s̃[1])/2 # half distance between grid points | |
| F = zeros(N, N) # empty transition matrix | |
| F[:, 1] = Φ.((s̃[1]-ρ.*s̃+w)/sqrt(σₛ)) | |
| F[:, N] = 1-Φ.((s̃[end]-ρ.*s̃-w)/sqrt(σₛ)) | |
| for j = 2:N-1 | |
| for i = 1:N |
| pkm@pkm:~/.julia$ mkdir fakepkg | |
| pkm@pkm:~/.julia$ julia | |
| _ | |
| _ _ _(_)_ | A fresh approach to technical computing | |
| (_) | (_) (_) | Documentation: https://docs.julialang.org | |
| _ _ _| |_ __ _ | Type "?help" for help. | |
| | | | | | | |/ _` | | | |
| | | |_| | | | (_| | | Version 0.6.0 (2017-06-19 13:05 UTC) | |
| _/ |\__'_|_|_|\__'_| | Official http://julialang.org/ release | |
| |__/ | x86_64-pc-linux-gnu |
| # Adapted from https://tpapp.github.io/post/log1p/ | |
| # consistent random numbers | |
| T = Float32 | |
| srand(UInt32[0xfd909253, 0x7859c364, 0x7cd42419, 0x4c06a3b6]) | |
| """ | |
| err(x, [prec]) | |
| Return two values, which are the log2 relative errors for calculating | |
| `log(x)`, using `Base.log` and `Base.Math.JuliaLibm.log`. |
| Benchmarking 0.0 | |
| BenchmarkTools.Trial: | |
| memory estimate: 0 bytes | |
| allocs estimate: 0 | |
| -------------- | |
| minimum time: 3.992 ns (0.00% GC) | |
| median time: 4.586 ns (0.00% GC) | |
| mean time: 4.647 ns (0.00% GC) | |
| maximum time: 18.766 ns (0.00% GC) | |
| -------------- |