Last active
August 16, 2022 00:29
-
-
Save pmineiro/0557eb069f113fdd3a4d47cfc7e98eca to your computer and use it in GitHub Desktop.
This is an improvement over empirical Bernstein based OPE confidence sequence. The nonstationary generalization of a betting e-process provably dominates the empirical Bernstein e-process and does not require finite variance.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"id": "4a67f31e", | |
"metadata": {}, | |
"source": [ | |
"# E-process (Nonstationary Generalization of a Betting Martingale)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "daea3ae7", | |
"metadata": {}, | |
"source": [ | |
"Realizations $X_t \\geq 0$ bounded below with finite $\\mathbb{E}_{t-1}\\left[X_t\\right] \\leq 1$. We use a (predictable) predictor $\\hat{X}_t \\leq 1$ and a predictable bet $\\lambda_t \\in [0, 1)$.\n", | |
"$$\n", | |
"\\begin{aligned}\n", | |
"Y_t &\\doteq X_t - \\mathbb{E}_{t-1}\\left[X_t\\right], \\\\\n", | |
"\\delta_t &\\doteq \\hat{X}_t - \\mathbb{E}_{t-1}\\left[X_t\\right], \\\\\n", | |
"E_t(\\lambda) &= \\exp\\left(\\sum_{s \\leq t} \\lambda_s \\hat{X}_s - \\sum_{s \\leq t} \\lambda_s \\mathbb{E}_{s-1}\\left[X_s\\right] \\right) \\prod_{s \\leq t} \\left(1 + \\lambda_s \\left(X_s - \\hat{X}_s\\right) \\right) \\\\\n", | |
"&= E_{t-1}(\\lambda) \\exp\\left(\\lambda_t \\delta_t\\right) \\left(1 + \\lambda_t \\left(Y_t - \\delta_t\\right)\\right), \\\\\n", | |
"\\mathbb{E}_{t-1}\\left[E_t(\\lambda)\\right] &= E_{t-1}(\\lambda) \\exp\\left(\\lambda_t \\delta_t\\right) \\left(1 - \\lambda_t \\delta_t\\right) & \\left(\\mathbb{E}_{t-1}[Y_t] = 0 \\land \\delta_t, \\lambda_t \\text{ predictable}\\right) \\\\ \n", | |
"&\\leq E_{t-1}(\\lambda). & \\left( e^{x} (1 - x) \\leq 1 \\right)\n", | |
"\\end{aligned}\n", | |
"$$ With this supermartingale we can construct a lower bound on $\\sum_{s \\leq t} \\lambda_s \\mathbb{E}_{s-1}\\left[X_s\\right]$; with a constant bet we can lower bound the running sum." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "00895159", | |
"metadata": {}, | |
"source": [ | |
"**Dominates Bernstein**: Consider constant $\\lambda$ for simplicity (analogous statement holds for predictable $\\lambda$). The wealth is $$\n", | |
"\\begin{aligned}\n", | |
"\\log\\left(E_t(\\lambda)\\right) &= \\lambda \\sum_{s \\leq t} \\hat{X}_s - \\lambda \\sum_{s \\leq t} \\mathbb{E}_{s-1}\\left[X_s\\right] + \\sum_{s \\leq t} \\log\\left(1 + \\lambda \\left(X_s - \\hat{X}_s\\right) \\right) \\\\\n", | |
"&= \\lambda \\sum_{s \\leq t} Y_s - \\sum_{s \\leq t} \\left( \\lambda \\left(X_s - \\hat{X}_s\\right) - \\log\\left(1 + \\lambda \\left(X_s - \\hat{X}_s\\right) \\right) \\right) \\\\\n", | |
"&= \\lambda \\sum_{s \\leq t} Y_s - \\psi_E(\\lambda) \\sum_{s \\leq t} \\frac{\\psi_E\\left(-\\lambda \\left(X_s - \\hat{X}_s\\right)\\right)}{\\psi_E(\\lambda)} & \\left( \\psi_E(x) \\doteq -x - \\log\\left(1 - x\\right) \\right) \\\\\n", | |
"&\\geq \\lambda \\sum_{s \\leq t} Y_s - \\psi_E(\\lambda) \\sum_{s \\leq t} \\left(X_s - \\hat{X}_s\\right)^2 & \\left(\\text{Fan 2015}\\right), \\\\\n", | |
"\\end{aligned}\n", | |
"$$ thus this wealth process dominates the empirical Bernstein e-process. In particular, we inherit any width guarantees provided by the empirical Bernstein e-process." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "39494e37", | |
"metadata": {}, | |
"source": [ | |
"**$(1 + \\delta)$-th moment**: We show the e-process is lower bounded as long as a $(1 + \\delta)$-th moment is bounded. Let $1 < q < 2$ be an unknown moment such that $E_t\\left[X_t^q\\right]$ is bounded. Define $x^*(q) > 1$ and $c(q) > 1$ such that $$\n", | |
"\\begin{aligned}\n", | |
"q &= \\frac{x^*(q)^2}{(1 + x^*(q)) (x^*(q) - \\log(1 + x^*(q)))}, \\\\\n", | |
"c(q) &= x^*(q)^{2 - q}. \n", | |
"\\end{aligned}\n", | |
"$$ For example, when $q = \\frac{3}{2}$, $x^*(q) \\approx 1.82$ and $c(q) \\approx 1.35$. Then $$\n", | |
"\\begin{aligned}\n", | |
"\\lambda z - \\log\\left(1 + \\lambda z\\right) &\\leq \\psi_E(\\lambda) \\left(1_{z < 0} z^2 + 1_{z \\geq 0} \\min\\left(z^2, \\lambda^{q-2} c(q) z^q\\right) \\right) \\\\\n", | |
"&\\leq \\psi_E(\\lambda) \\left(1_{z < 0} z^2 + 1_{z \\geq 0} \\lambda^{q-2} c(q) z^q \\right),\n", | |
"\\end{aligned}\n", | |
"$$ implying the variance process is upper bounded and therefore $$\n", | |
"\\begin{aligned}\n", | |
"\\log\\left(E_t(\\lambda)\\right) &\\geq \\lambda \\sum_{s \\leq t} Y_s - \\psi_E(\\lambda) \\sum_{s \\leq t} \\left(1_{X_s < \\hat{X}_s} \\left(X_s - \\hat{X}_s\\right)^2 + 1_{X_s \\geq \\hat{X}_s} \\lambda^{q-2} c(q) \\left(X_s - \\hat{X}_s\\right)^q \\right)\n", | |
"\\end{aligned}\n", | |
"$$ the wealth is lower bounded. If the moment is known, a stitching argument indicates the $(1 + \\delta)$-th analog to the LIL rate can be constructively achieved." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "9faa8125", | |
"metadata": {}, | |
"source": [ | |
"## (Discrete) Numerical Mixture" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "edba78ad", | |
"metadata": {}, | |
"source": [ | |
"Since we have not found a conjugate betting prior for $E_t$, we consider a numerical mixture against betting distribution $f$, $$\n", | |
"\\begin{aligned}\n", | |
"E'_t &\\doteq \\int_0^1 E_t(\\lambda) df(\\lambda) = \\int_0^1 e^{\\lambda S_t - V_t(\\lambda)} df(\\lambda), \\\\\n", | |
"S_t(\\lambda) &\\doteq \\sum_{s \\leq t} Y_s, \\\\\n", | |
"V_t(\\lambda) &\\doteq \\sum_{s \\leq t} \\left( \\log\\left(1 + \\lambda \\left(X_s - \\hat{X}_s\\right) - \\lambda \\left(X_s - \\hat{X}_s\\right) \\right) \\right) = \\sum_{s \\leq t} g\\left(\\lambda, X_s - \\hat{X}_s\\right),\n", | |
"\\end{aligned}\n", | |
"$$ discretized as in [Theorem 2 of Howard et. al.](https://arxiv.org/abs/1810.08240). Note direct numerical integration, e.g. via [scipy quad](https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html), works slightly better in practice; but we use a countably discrete mixture here due to presumed superior numerical stability.\n", | |
"\n", | |
"For ease of comparison with the empirical Bernstein process, we use the same prior distribution (in practice: an inverse power law prior works better, and is the same cost to compute).\n", | |
"\n", | |
"Computing the mixture naively would require keeping around the entire history of observations and paying $O(t)$ space and time." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "734c6375", | |
"metadata": {}, | |
"source": [ | |
"### Summarizing History Concisely" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "d3fae39f", | |
"metadata": {}, | |
"source": [ | |
"To avoid $O(t)$ computation, note if we can upper bound $g(\\lambda, x) \\leq \\tilde{g}(\\lambda, x)$, then $$\n", | |
"\\begin{aligned}\n", | |
"\\tilde{E}'_t &\\doteq \\int_0^1 e^{\\lambda S_t - \\tilde{V}_t(\\lambda)} df(\\lambda) \\geq E'_t, \\\\\n", | |
"\\tilde{V}_t(\\lambda) &\\doteq \\sum_{s \\leq t} \\tilde{g}\\left(\\lambda, X_s - \\hat{X}_s\\right).\n", | |
"\\end{aligned}\n", | |
"$$ \n", | |
"\n", | |
"Fortunately, we can accurately upper bound $g(\\lambda, x)$ to $O(\\lambda^3)$ based upon a small set of sufficient statistics from history, as follows." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "d217f89a", | |
"metadata": {}, | |
"source": [ | |
"#### $-1 < x \\leq 0$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "e64251ce", | |
"metadata": {}, | |
"source": [ | |
"$$\n", | |
"\\begin{aligned}\n", | |
"g(\\lambda, x) &\\leq \\frac{\\lambda^2 x^2}{2 \\left(1 + \\lambda x\\right)} \\leq \\frac{\\lambda^2}{2 \\left(1 - \\lambda\\right)} x^2 \\doteq \\tilde{g}(\\lambda, x), \\\\\n", | |
"\\tilde{g}(\\lambda, x) - g(\\lambda, x) &= \\frac{1}{2} \\left(x^2 + x^3\\right) \\lambda^3 + O\\left(\\lambda^4\\right),\n", | |
"\\end{aligned}\n", | |
"$$ with sufficient statistic $\\sum_{s \\leq t} 1_{\\left(X_s - \\hat{X}_s\\right) \\leq 0} \\left(X_s - \\hat{X}_s\\right)^2$." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "1f7b80ff", | |
"metadata": {}, | |
"source": [ | |
"#### $0 < x \\leq 1$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "481a7d42", | |
"metadata": {}, | |
"source": [ | |
"$$\n", | |
"\\begin{aligned}\n", | |
"g(\\lambda, x) &\\leq \\frac{\\lambda^2 x^2}{2 + \\lambda x} \\leq \\frac{\\lambda^2}{2} x^2 \\doteq \\tilde{g}(\\lambda, x), \\\\\n", | |
"\\tilde{g}(\\lambda, x) - g(\\lambda, x) &= \\frac{1}{4} x^3 \\lambda^3 + O\\left(\\lambda^4\\right)\n", | |
"\\end{aligned}\n", | |
"$$ with sufficient statistic $\\sum_{s \\leq t} 1_{\\left(X_s - \\hat{X}_s\\right) \\in (0, 1]} \\left(X_s - \\hat{X}_s\\right)^2$." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "74bdc335", | |
"metadata": {}, | |
"source": [ | |
"#### $x > 1$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "eb69d706", | |
"metadata": {}, | |
"source": [ | |
"We can upper bound the variance process by an evaluation on a geometrically spaced histogram. Note $g(\\lambda, x)$ is strongly convex in $x$ on $[x_1, x_2]$, so letting $x = \\alpha x_1 + \\left(1 - \\alpha\\right) x_2$, $$\n", | |
"\\begin{aligned}\n", | |
"g\\left(\\lambda, \\alpha x_1 + \\left(1 - \\alpha\\right) x_2\\right) &\\leq \\alpha g(\\lambda, x_1) + \\left(1 - \\alpha\\right) g(\\lambda, x_2) - \\frac{1}{2} m(\\lambda, x_2) \\alpha (1 - \\alpha) \\left(x_2 - x_1\\right)^2 \\doteq \\tilde{g}(\\lambda, x), \\\\\n", | |
"m(\\lambda, x_2) &= \\frac{\\lambda^2}{\\left(1 + \\lambda x_2\\right)^2}.\n", | |
"\\end{aligned}\n", | |
"$$ Assuming $k x_1 = x_2$ for $k > 1$, we have $$\n", | |
"\\begin{aligned}\n", | |
"\\tilde{g}\\left(\\lambda, x\\right) - g\\left(\\lambda, x\\right) &= \\lambda^3 \\frac{\\left(k - 1\\right)^3 x^3 \\alpha \\left(1 - \\alpha^2\\right)}{3 \\left(k + \\alpha - k \\alpha\\right)^3} + O\\left(\\lambda^4\\right).\n", | |
"\\end{aligned}\n", | |
"$$ Thus we can find $n = \\left\\lfloor \\log_k(x) \\right\\rfloor$ and then accumulate 3 sufficient statistics: fractional counts at $k^n$ and $k^{n+1}$ and a strong convexity correction." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "b082bcb0", | |
"metadata": {}, | |
"source": [ | |
"## OPE Specialization" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "50daecb2", | |
"metadata": {}, | |
"source": [ | |
"**Policy value** For an OPE-CS on the policy value , we have $x = w r$ with $E[w] = 1$, $w \\geq 0$ a.s., and $r \\in [0, 1]$ a.s. The yields a lower CS only. However an upper CS for $x$ can be derived from a lower CS for $x' = w (1 - r)$ via $E[x] = 1 - E[x']$.\n", | |
"\n", | |
"**Policy improvement** Similarly for an OPE-CS on (half the amount of the) policy improvement over the logging policy, we have $x = (w - 1) \\frac{r}{2}$ with $X \\geq -\\frac{1}{2}$ a.s., $E[w] = 1$, $w \\geq 0$ a.s. and $r \\in [0, 1]$ a.s. If we clip the predictor $\\hat{X}$ to be in $[-\\frac{1}{2}, \\frac{1}{2}]$ we again get a lower CS; and we can get an upper CS from a lower CS on $x' = (w - 1)(\\frac{1 - r}{2})$ via $E[x] = -E[x']$.\n", | |
"\n", | |
"**Policy difference** More generally we can use $X = w_1 r - (1 - w_2 (1 - r))$ to compute policy value differences." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "af2b1e6a", | |
"metadata": {}, | |
"source": [ | |
"# Code" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"id": "b4a57ce3", | |
"metadata": { | |
"code_folding": [ | |
1, | |
2, | |
12, | |
26, | |
44, | |
68 | |
] | |
}, | |
"outputs": [], | |
"source": [ | |
"# Empirical Bernstein conjugate mixture\n", | |
"class EmpBernConjMix(object):\n", | |
" def __init__(self, rho=1):\n", | |
" super().__init__()\n", | |
" \n", | |
" self.rho = rho\n", | |
" self.sumXlow = 0\n", | |
" self.sumXhigh = 0\n", | |
" self.t = 0\n", | |
" self.sumvlow = 0\n", | |
" self.sumvhigh = 0\n", | |
" \n", | |
" def addobs(self, w, r):\n", | |
" assert w >= 0\n", | |
" assert 0 <= r <= 1\n", | |
" \n", | |
" Xhatlow = (self.sumXlow + 1/2) / (self.t + 1)\n", | |
" Xhathigh = (self.sumXhigh + 1/2) / (self.t + 1)\n", | |
" \n", | |
" self.sumvlow += (w * r - min(1, Xhatlow))**2\n", | |
" self.sumvhigh += (w * (1 - r) - min(1, Xhathigh))**2\n", | |
" \n", | |
" self.sumXlow += w * r\n", | |
" self.sumXhigh += w * (1 - r)\n", | |
" self.t += 1\n", | |
"\n", | |
" def logwealth(self, *, s, v, rho):\n", | |
" from math import log\n", | |
"\n", | |
" def loggammalowerinc(*, a, x):\n", | |
" import scipy.special as sc\n", | |
"\n", | |
" return log(sc.gammainc(a, x)) + sc.loggamma(a)\n", | |
" \n", | |
" assert s + v + rho > 0\n", | |
" assert rho > 0\n", | |
"\n", | |
" return (s + v\n", | |
" + rho * log(rho)\n", | |
" - (v + rho) * log(s + v + rho)\n", | |
" + loggammalowerinc(a = v + rho, x = s + v + rho)\n", | |
" - loggammalowerinc(a = rho, x = rho)\n", | |
" )\n", | |
"\n", | |
" def lblogwealth(self, *, t, sumXt, v, rho, alpha):\n", | |
" from math import log\n", | |
" import scipy.optimize as so\n", | |
"\n", | |
" assert 0 < alpha < 1, alpha\n", | |
" thres = -log(alpha)\n", | |
"\n", | |
" minmu = 0\n", | |
" logwealthminmu = self.logwealth(s=sumXt, v=v, rho=rho)\n", | |
"\n", | |
" if logwealthminmu <= thres:\n", | |
" return minmu\n", | |
" \n", | |
" maxmu = min(1, sumXt/t)\n", | |
" logwealthmaxmu = self.logwealth(s=sumXt - t * maxmu, v=v, rho=rho)\n", | |
" if logwealthmaxmu >= thres:\n", | |
" return maxmu\n", | |
" \n", | |
" res = so.root_scalar(f = lambda mu: self.logwealth(s=sumXt - t * mu, v=v, rho=rho) - thres,\n", | |
" method = 'brentq',\n", | |
" bracket = [ minmu, maxmu ])\n", | |
" assert res.converged, res\n", | |
" return res.root\n", | |
" \n", | |
" def getci(self, alpha):\n", | |
" if self.t == 0:\n", | |
" return [0, 1]\n", | |
" \n", | |
" l = self.lblogwealth(t=self.t, sumXt=self.sumXlow, v=self.sumvlow, rho=self.rho, alpha=alpha/2)\n", | |
" u = 1 - self.lblogwealth(t=self.t, sumXt=self.sumXhigh, v=self.sumvhigh, rho=self.rho, alpha=alpha/2)\n", | |
" \n", | |
" return l, u" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"id": "4dc5dd19", | |
"metadata": { | |
"code_folding": [ | |
0, | |
1, | |
11, | |
28, | |
37, | |
57, | |
87, | |
107, | |
112, | |
123, | |
149, | |
158, | |
159, | |
180 | |
] | |
}, | |
"outputs": [], | |
"source": [ | |
"class CSBase(object):\n", | |
" def __init__(self):\n", | |
" super().__init__()\n", | |
" \n", | |
" def addobs(self, w, r):\n", | |
" raise NotImplementedError\n", | |
" \n", | |
" def getci(self, alpha):\n", | |
" raise NotImplementedError\n", | |
"\n", | |
"class CountableDiscreteBase(CSBase):\n", | |
" def __init__(self, *, lambdabar, eta=2, earlystop=1e-2, **kwargs):\n", | |
" from math import sqrt\n", | |
" \n", | |
" super().__init__(**kwargs)\n", | |
" \n", | |
" assert 0 < lambdabar <= 1\n", | |
" assert 1 < eta\n", | |
" assert 0 < earlystop < 1e-1\n", | |
" \n", | |
" self.lambdabar = lambdabar\n", | |
" self.eta = eta\n", | |
" self.earlystop = earlystop\n", | |
" \n", | |
" # always take the first 10 terms\n", | |
" self.lambdas = [ self.lambdabar / (self.eta ** (n + 1/2)) for n in range(10) ]\n", | |
" self.weights = [ self.lambdabar * (self.eta - 1) * self.prior(l * sqrt(self.eta)) / (self.eta ** (n + 1)) for n, l in enumerate(self.lambdas) ]\n", | |
" \n", | |
" def getci(self, alpha):\n", | |
" if self.t == 0:\n", | |
" return [0, 1]\n", | |
" \n", | |
" l = self.__lblogwealth(lower=True, alpha=alpha/2)\n", | |
" u = 1 - self.__lblogwealth(lower=False, alpha=alpha/2)\n", | |
" \n", | |
" return l, u\n", | |
" \n", | |
" def __logwealthmix(self, lower, mu):\n", | |
" from math import sqrt\n", | |
" from scipy.special import logsumexp\n", | |
" \n", | |
" def shouldContinue(l, m, es):\n", | |
" return l > max(m, es) \n", | |
" \n", | |
" logwealths = [ self.logwealth(lower, mu, l) for l in self.lambdas ]\n", | |
" maxlogwealth = max(logwealths[:-1])\n", | |
" weights = self.weights.copy() if shouldContinue(logwealths[-1], maxlogwealth, self.earlystop) else self.weights\n", | |
" n = len(logwealths)\n", | |
" while shouldContinue(logwealths[-1], maxlogwealth, self.earlystop):\n", | |
" maxlogwealth = max(maxlogwealth, logwealths[-1])\n", | |
" l = self.lambdabar / (self.eta ** (n + 1/2))\n", | |
" weights.append(self.lambdabar * (self.eta - 1) * self.prior(l * sqrt(self.eta)) / (self.eta ** (n + 1)))\n", | |
" logwealths.append(self.logwealth(lower, mu, l))\n", | |
" n += 1\n", | |
" \n", | |
" return logsumexp(a=logwealths, b=weights)\n", | |
" \n", | |
" def __lblogwealth(self, *, lower, alpha):\n", | |
" from math import log\n", | |
" import scipy.optimize as so\n", | |
"\n", | |
" assert 0 < alpha < 1, alpha\n", | |
" thres = -log(alpha)\n", | |
"\n", | |
" minmu = 0\n", | |
" logwealthminmu = self.__logwealthmix(lower, minmu)\n", | |
" if logwealthminmu <= thres:\n", | |
" return minmu\n", | |
" \n", | |
" maxmu = 1\n", | |
" logwealthmaxmu = self.__logwealthmix(lower, maxmu)\n", | |
" if logwealthmaxmu >= thres:\n", | |
" return maxmu\n", | |
"\n", | |
" res = so.root_scalar(f = lambda mu: self.__logwealthmix(lower, mu) - thres,\n", | |
" method = 'brentq',\n", | |
" bracket = [ minmu, maxmu ])\n", | |
" assert res.converged, res\n", | |
" return res.root\n", | |
" \n", | |
" def prior(self, l):\n", | |
" raise NotImplementedError\n", | |
" \n", | |
" def logwealth(self, lower, mu, lam):\n", | |
" raise NotImplementedError\n", | |
"\n", | |
"class CountableUFuncBase(CountableDiscreteBase):\n", | |
" def __init__(self, *, k=3/2, **kwargs):\n", | |
" from math import log\n", | |
" \n", | |
" assert 1 < k\n", | |
" \n", | |
" self.k = k\n", | |
" \n", | |
" self.logk = log(k)\n", | |
" self.sumXlow = 0\n", | |
" self.sumXhigh = 0\n", | |
" self.sumvlow = 0\n", | |
" self.summidvlow = 0\n", | |
" self.sumvhistolow = {}\n", | |
" self.sumvhigh = 0\n", | |
" self.summidvhigh = 0\n", | |
" self.sumvhistohigh = {}\n", | |
" self.t = 0\n", | |
" \n", | |
" super().__init__(**kwargs)\n", | |
"\n", | |
" def __histovariance(self, *, hist, lam):\n", | |
" from math import log1p\n", | |
" return sum( c * ((lam * (self.k - 1) * x / (1 + lam * self.k * x))**2 if strongterm else lam * x - log1p(lam*x))\n", | |
" for ((n, strongterm), c) in hist.items() for x in (self.k**n,) )\n", | |
"\n", | |
" def __histoinsert(self, *, hist, x):\n", | |
" from math import log, floor\n", | |
" \n", | |
" n = int(floor(log(x) / self.logk))\n", | |
" x1 = self.k**n\n", | |
" alpha = (self.k * x1 - x) / ((self.k - 1) * x1)\n", | |
" # TODO: Kahan summation\n", | |
" hist[(n, False)] = alpha + hist.get((n, False), 0)\n", | |
" hist[(n + 1, False)] = 1 - alpha + hist.get((n + 1, False), 0)\n", | |
" hist[(n, True)] = -(1/2) * alpha * (1 - alpha) + hist.get((n, True), 0)\n", | |
"\n", | |
" def addobs(self, w, r):\n", | |
" assert w >= 0\n", | |
" assert 0 <= r <= 1\n", | |
" \n", | |
" Xhatlow = (self.sumXlow + 1/2) / (self.t + 1)\n", | |
" Xhathigh = (self.sumXhigh + 1/2) / (self.t + 1)\n", | |
" \n", | |
" errorlow = w * r - min(1, Xhatlow)\n", | |
" if errorlow <= 0:\n", | |
" self.sumvlow += errorlow**2\n", | |
" elif errorlow <= 1:\n", | |
" self.summidvlow += errorlow**2\n", | |
" else:\n", | |
" self.__histoinsert(hist=self.sumvhistolow, x=errorlow)\n", | |
" errorhigh = w * (1 - r) - min(1, Xhathigh)\n", | |
" if errorhigh <= 0:\n", | |
" self.sumvhigh += errorhigh**2\n", | |
" elif errorhigh <= 1:\n", | |
" self.summidvhigh += errorhigh**2\n", | |
" else:\n", | |
" self.__histoinsert(hist=self.sumvhistohigh, x=errorhigh)\n", | |
" \n", | |
" self.sumXlow += w * r\n", | |
" self.sumXhigh += w * (1 - r)\n", | |
" self.t += 1\n", | |
"\n", | |
" def logwealth(self, lower, mu, lam):\n", | |
" if self.t == 0:\n", | |
" return 0\n", | |
" \n", | |
" sumXt, v, vmid, vhisto = (self.sumXlow, self.sumvlow, self.summidvlow, self.sumvhistolow) if lower else (self.sumXhigh, self.sumvhigh, self.summidvhigh, self.sumvhistohigh)\n", | |
" s = sumXt - self.t * mu\n", | |
" \n", | |
" return lam * s - (1/2)*(lam**2)*(v / (1 - lam) + vmid) - self.__histovariance(hist=vhisto, lam=lam)\n", | |
" \n", | |
"class GammaPriorNSBet(CountableUFuncBase):\n", | |
" def __init__(self, *, rho=1, **kwargs):\n", | |
" from math import log, exp\n", | |
" import scipy.special as sc\n", | |
" \n", | |
" assert 0 < rho\n", | |
" \n", | |
" self.rho = rho\n", | |
" # (Gamma[\\[Rho]] - Gamma[\\[Rho], \\[Rho]])/\\[Rho]^\\[Rho]\n", | |
" self.normprior = exp(-rho*log(rho) + sc.loggamma(rho) + sc.logsumexp(a=[0, log(sc.gammaincc(rho, rho))], b=[1, -1], return_sign=False))\n", | |
" \n", | |
" kwargs['lambdabar'] = 1\n", | |
" super().__init__(**kwargs)\n", | |
"\n", | |
" def prior(self, l):\n", | |
" from math import exp\n", | |
" \n", | |
" if l <= 1e-3:\n", | |
" return self.normprior * exp(-self.rho) * (1 + l + (1 - self.rho/2) * l**2 + (1 - 5*self.rho/6) * l**3)\n", | |
" else:\n", | |
" return self.normprior * exp(-self.rho * (1 - l)) * (1 - l)**(self.rho - 1)\n", | |
" \n", | |
"class InvpowPriorNSBet(CountableUFuncBase):\n", | |
" def __init__(self, *, priorpow=-1/4, **kwargs):\n", | |
" from math import log, exp\n", | |
" import scipy.special as sc\n", | |
" \n", | |
" assert -1 < priorpow <= 0\n", | |
" \n", | |
" self.priorpow = priorpow\n", | |
" self.normprior = (1/2)**(1 + priorpow) / (1 + priorpow)\n", | |
" \n", | |
" kwargs['lambdabar'] = 1/2\n", | |
" super().__init__(**kwargs)\n", | |
"\n", | |
" def prior(self, l):\n", | |
" return self.normprior * (l**self.priorpow)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "69c79d4f", | |
"metadata": {}, | |
"source": [ | |
"# Simulation with support on $(0, 1, w_\\max) \\times (0, 1)$" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"id": "e3ca176d", | |
"metadata": { | |
"code_folding": [ | |
0, | |
47 | |
] | |
}, | |
"outputs": [], | |
"source": [ | |
"class DataGen(object):\n", | |
" def __init__(self, *, wmax, expwsq, truemu, seed):\n", | |
" import numpy as np\n", | |
" import scipy.optimize as so\n", | |
" import random\n", | |
" \n", | |
" if False:\n", | |
" # { 0, 1, wmax } \\times { 0, 1 } -> 6 values -> we need 6 constraints\n", | |
" # 1 = sum_i p_i\n", | |
" # 1 = sum_i w_i p_i\n", | |
" # E[w^2] = sum_i w_i^2 p_i\n", | |
" # logging policy value = sum_i r_i p_i\n", | |
" # evaluated policy value = sum_i w_i r_i p_i\n", | |
" # we need 1 more constraint to be unique ...\n", | |
" # SURPRISE: just the above 5 constraints can be infeasible ...\n", | |
" # instead just minimize the logging policy value subject to other constraints\n", | |
" # this makes the distribution very difficult to lower bound\n", | |
" pass\n", | |
" \n", | |
" self.gen = random.Random(seed)\n", | |
" self.wmax = wmax\n", | |
" self.expwsq = expwsq\n", | |
" self.truemu = truemu\n", | |
" self.population = [ (w, r) for w in (0, 1, wmax,) for r in (0, 1,) ]\n", | |
" \n", | |
" c = [ r for (w, r) in self.population ] \n", | |
" A_eq = [\n", | |
" [ 1 for (w, r) in self.population ],\n", | |
" [ w for (w, r) in self.population ],\n", | |
" [ w**2 for (w, r) in self.population ],\n", | |
" [ w*r for (w, r) in self.population ],\n", | |
" ]\n", | |
" b_eq = [ 1, 1, expwsq, truemu, ]\n", | |
" \n", | |
" res = so.linprog(np.array(c), A_eq=A_eq, b_eq=b_eq)\n", | |
" assert res.success, res\n", | |
" self.probs = res.x\n", | |
" self.logmu = res.fun\n", | |
" \n", | |
" ewwm1r = self.probs.dot([ w * (w - 1) * r for (w, r) in self.population ])\n", | |
" ewm1sq = self.probs.dot([ (w - 1)**2 for (w, r) in self.population])\n", | |
" self.kappalowstar = -ewwm1r/ewm1sq if ewm1sq > 0 else 0\n", | |
" ewwm11mr = self.probs.dot([ w * (w - 1) * (1 - r) for (w, r) in self.population ])\n", | |
" self.kappahighstar = -ewwm11mr/ewm1sq if ewm1sq > 0 else 0\n", | |
" \n", | |
" self._expOp = lambda func: sum(p * func(w) for p, (w, _) in zip(self.probs, self.population))\n", | |
"\n", | |
" def genobs(self):\n", | |
" w, r = self.gen.choices(population=self.population,\n", | |
" weights=self.probs,\n", | |
" )[0]\n", | |
" return w, r, self._expOp" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "803508a3", | |
"metadata": {}, | |
"source": [ | |
"## Constant Mean" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"id": "afe55716", | |
"metadata": { | |
"code_folding": [ | |
0 | |
], | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6wAAAGiCAYAAADjrksdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXQUVdrH8e9NCAkk7ARkkUSQnUCAsAlIEEQUBXcEFBg20Zlxxl3UUfHFERUVF1wQlaCIKG64IerIIoIQMICACAKRsG8BEtYk9/2jKrEJ2QjpdCf8Puf0oavq1q2nqi7pfvreqjLWWkRERERERET8TYCvAxARERERERHJiRJWERERERER8UtKWEVERERERMQvKWEVERERERERv6SEVURERERERPySElYRERERERHxS0pYRURERERExC8pYRWREsMY08cY86MxJtkYs9MYM8UYU8HXcRU1Y0x3Y8wPxpiDxpgtOSyPdJcfMcb8ZozpmUddU40x47wasI8YY+5028EhY8xbxpjgXMpFGmOsMSbF4/WfYoivh3t+jrjnKyKPsv9njFltjEkzxjyWT715to8cypc3xrxijNnrrrOgsHXls52yxphZxpgt7vGOzbbcGGOeMsbsc19PGWNMHvUNNMYkGmNSjTGfGmOq5lHWuuUyz++UPMpWNcZ84pZPNMYMzKPsncaYTW4b226Med4YU8ZjebQxZqF7/JKytytjzAhjzEY3pjnGmNp5bOsfxph4Y8xxY8zU3Mpli+209m+MqWGMmeHGe9AYs8gY0yG/+vLYTn5/j86k7RZZG8jreBWgLRZZuxcR71PCKiIlSSVgHFAbaArUAZ7xaUTekQq8Bdyby/IZwC9ANeAhYJYxJrwwG/L88l2SGGMuAx4AegARQH1gbD6rVbbWhrmv//NyfNWBj4H/AFWBeGBmHqtsBO4DvixA9fm1j+wmuzE0df+98yzqys+PwM3AzhyWjQKuBloBLYGrgFtzqsQY0xx4HbgFqAkcAV7JZ9utPM7viDzKTQJOuPUOAl51t5eT2UAba21FoIUb+x0ey98DFuAc127A7caYvu4+xAL/Bfq5yzfj/N/NzXacv29v5bWTbt15tf8wYBnQ1t1uHPClMSYsv3pzkV8bOZO2W5RtIL/jlVdbLOp2LyLeZK3VSy+9StALJ1n7CNiD8wXoDnd+VSAJuMqdDsP5IjHYnZ4KvAZ8CxwG5gMR7rKxwEvu+yCcD/Nn3OlywDG3/hDgXWAfkIzzpaimW+4Ct87D7jZeBt718rG4Flidy7K/AZ97TG8APvSY3gpEu+8tcLtb5jDwf0AD4CfgEPABUNYtWwX4wj3+B9z3dQtyDgqxfz2BLdnmNQKOAxU85i0ERuew/ijgJM6X85TM4wFsAe4HVrl1lXGPwYUe604FxnlMXwkkuOf9J6Clx7ItOF/8Vrlt502cL5hfu8fzO6CKWzYWSMoW5xag5xkem/eA/3pM9wB25lI20t2/MgWsewswBljrnuO3gZAzjG8U8JPHdChwFGiSz3rvAo8Vtn3kUKaJ24YrFqYud/1vgf3AeuDGAsaWBMRmm/cTMMpjejiwJJf1/wu85zHdwG3HFXIpf0r7zSOuULeeRh7z3gHGF2Ddam5bfsVj3hGgmcf0h8AY9/0EYJLHstpunA3y2c44YGpRtX93+SGgrcf0MGCd276/wf0sOJv2VpC26402kN/xyqktFnSf9NJLL/94qYdVpAQxxgQAnwMrcXoXewD/NsZcZq3dj/Ml5A1jTA3geSDBWjvNo4pBOMlYdZzkY7o7fz5OIgHQDucX6Yvd6U7Aerf+ITi9nOfjfHkbjfMlHJwvUMvduv/PLZvbftQzzrDe3F65DtHL5mJgTS7L5gNdjTEB7jC8su6+YIypj5NMrvIofxlOj0RHnN6CyTi/zp+P07MywC0XgJPARAD13P1/GSC/c2CMeSCv/S7gPjcHNllrD3vMW+nOP4W1djLOOX7aOr1OV3ksHgD0wel1TMtrg8aY1ji9EbfinPfXgdnm1CG41wGX4iTUV+Ekqw8C4TjHzLNXKq9tDcynbdTzOA4rsx2DmsaYanlUn+gO23zb7QHNyyCcNtHA3aeH3fgK2nZPic9amwr8QQ7nycvaA4nAWOMMCV5tjLmuICsaY0JxktX3gBrATcArxphmhYwlp3OW2/HIfvz+wE0086h/gTtE9mNjTGQuZRoBadba3wsYR2abPATsxekZfN1j8URgsDEmyBjTGOdvzHeeq+fwvkUe+1BQBW7/xphonL9/G93pfjj/N6/F+f+5kLx7fouSt9uAiJRCSlhFSpZ2QLi19nFr7Qlr7SbgDZwvklhr5+L8wv89cAWnD7X60lq7wFp7HGcoaSdjzPnAYqCh+2XnYpwesjruELJuOMkfOL111XB6MtKttcuttYfcJKId8B9r7XFr7QKcxDpH1to/rbWV83i9l9+BMMZcipMUP5LLNjbh9O5Fu/v0DbDdGNPE3aeF1toMj1WettYestauAX4F5lprN1lrD+IkX63devdZaz+y1h5xk8Yn3Poyt5vrObDWjs9rv/PbZ1cYcDDbvIPAmV7L+6K1dqu19mj+RRkFvG6t/dk973E4PbMdPcq8ZK3dZa3dhvMF+Gdr7S/W2mPAJ7jHLz/W2vfyaRt/ukWzH4fM9zkdh7047TMC50eJCvz1Y01uXnaPz36cczzAja+gbbeoztPZqouTIB3E6eH7BxBnjGlagHWvxOl9ettam2at/QVndMcNhYwlp3MWlss1jGd6/Lrh9KQ3wRkq+kUuw93DcHobC1pvZpusiJMovQbs8lj8BXA9zg9XvwFvWmuXucvmADcaY1oaY8rh/K2yQPnctnUGCtT+jTEVcXqQx7p/y8D5ofFJa+0698eq/wLRJo9rrIuQN9uAiJRSSlhFSpYIoHa2XrkHcYZfZpqM8wV1qrV2X7b1t2a+sdam4Azzq+0mLfE4X/ouxklQfwI6c2rC+g5O4ve+cW7o8bQxJgjni/ABtxcpU2KR7HEOjDEdcXp9rs/WU5JdZs9x5j7Nw9kfz33K5Pkl9GgO02HutssbY153bwRyCOf6tcrGmECP8nmdg7OVAlTMNq8iTnJ+JrbmXyRLBHB3tnZ3Ps55z1Sg41eEsh+HzPenHQdrbYq1Nt5NunbhJG29TN437PI8Pomcuq+FiS8zxjM9T2frKM4PTePcH7nmAz8AvQqwbgTQIdt5HwSc5/Y0Z93EqoCx5HTOUqy1tgBlM8vnePzcH+JOWGuTgX/hXKKQU1Je6PNird2AM6LjFXBu3oSTlD6Oc7nE+cBlxpjb3fLfAY/iJPlb3NdhnCGqZyvf9u8myZ/jDLl90qNsBPCCxzndj9P7W8cY86DHeX2tCOIsSNxF0gZEpPRSwipSsmwFNmfr0algrb0CwE2aJgPTcG7+cWG29c/PfOP2nlbF6Y0AJ4G7BKcnbJk7fRnOkMIFANbak9basdbaZsBFOD0wg4EdQBV3CGGmeuQi+5fdHF6D8li3Nc6NUIZZa7/P82j9lbB2dd/PJ/eEtaDuBhoDHdxel8yh08aNL9dzkO3L4GmvAm5/DVA/W7LVityHRuf0RTCn+Uc4tefnPI/3W4EnsrW78tbawgwjTPXcjnu8wj2mB+XTNjLb1Rqc/c7UCthVwB8IMvc9r8/A8z3e18P9f3IGbfeU+Nz/Gw3I/Tx5y6oc5uXWJrLbCszPdt7DrLW3uT3NmTc4KuiPETmds9yOR/bjVx8IBvL6gcqT5dThuJl+B8oYYxoWMI7syuCcR3BudJRurZ3m/hiSBLyPM7LCCcLaSdbahtbamjiJaxmcERxnK8/2b5zh+p/iJMfZR9psBW7Ndl7LWWt/stb+1+O8ji6COAsSt7fagIiUEkpYRUqWpcBhY8z9xphyxphAY0wLY0w7d/mDOF/UhuHcPXdatp6/K4wxXYwxZXGuM11irc3sSZqPk3yutdaewOmNHIGTIO+BrEcBRLl1HsLpucmw1ibi9NCONc7jBLrgXMeYo+xfdnN45Thc0xjTAqdH45/W2lyHHHuYD3QHyrlfJhcCvXGGNf9SgPVzUgGn1yrZ7WF5NNvyXM9Bti+Dp7089jPAGBOCcwMsY4wJcc8Zbo9yAvCoO/8anLttfpRLvLtwvljnJwEY6Lap3ngMc8YZdj7aGNPBOEKN84ihwgzN+x0IcdcPwrk2NOtaWGvt9HzaRuaQ4GnAcGNMM2NMZbeeqTlt0I27sXtcqwEvAvM8hkjm5O/GmLruOX4I9w6/Z9B2PwFaGGOuc8/lI8Aqa+1vucQY5JYLwEmoQjLbjfnrsTyR7nSu7SMHC4A/gTHGmDLGmM44/ye+KUBdXwCNjDG3uPEFGWPamTyGExtjgt36AMq69WUmjtOAu4wxdYxzXfndeJwz4zyCZKg7OR24yhjT1U32Hwc+tqdeu525XnPjPF4m0Dg/xD0LbMO5qRDGmKHGfXSJOwrkY+Bxtx13xrmL7zu57M8I41yPjnGu3R2DM9wfnLZsjHONa4Ax5jygP+6PBO6+t3D/z9TD+SHrBWvtgexxudNl3GMXCAS66+d2F+9c27/7/2oWzt+pIfbUSx/AGdY8xrh3RjbGVDLG5DrMO7/2diZtl3zaQDZ5toH8jldebfEM/w+JiK9ZP7jzk1566VXwF87QxBk4N0Y6ACzBudNhW3f6QrdcILAIeMidnspfdwlOwfkie4FHvWE4Ceij7rQBdgOvepQZgHOn0FScROhF3Duv4iRFC926vXKXYJybHWW428h8rclnnR3A2x7T8cDX2cpkv0Puj8BQj+lxwBSP4z/P3fbvOL0XFqfnJM9zcAb7GevW6fma57E80o3hqHs+cr3DLtCQv+7u+6k7b0v2dYAYnB6Nwzhf3mdw6l2Ce+P0vCe7x/RD3Lt1Zq+PbHcLxfnh4zuP6aFuHbuBe3KKp4DH6S63HR5y20awx7I1wCCPdrvZbbc7cL40n5dHvVv46y7ByTiPBSlfiPh64lzXeNQ9X5Eey14DXvOYnprDOR/qLuvqxhRUwPaRte/udHOc69RT3X265gzaWmOcx5Xswbk7+P9w766dx7HLXl+kx9+Up3GGoO533xt3WVm37TXxqGsgTrKdCnwGVPVY9jXwoPv+Ev76u7Qbp2exoUfZ/wDTPaarumVS3foHeizrijNE1fNvzi637BacH6FCPJZfgvP/4iDO3+Q3MtsKUJm/7py9E3gSCMwjrsdyOHaPucvq4fzNqZdf+8f5scnijJrw/FvZ1WPdW4DV7rpbgbfO4u/R1ByW59Z2c20D7vLscebVBnI9XgVoi3nuk1566eVfr8wPChEp5YzzYPUka+3DxbS9x3ASt5uLY3siRcXt9RphnWsQfc4Y8zCwx1r7er6FSyjjjMr4u7V2QL6Fz7zuucC/rLXrirrus+GvcRWlc6Htioj3lcgHxouIiJwrrLXjfB2Dt1lrf8QZ2eCNugtyg6li569xFaVzoe2KiPfpGlYRERERERHxSxoSLCIiIiIiIn5JPawiIiIiIiLil5SwioiIiIiIiF9SwioiIiIiIiJ+SQmriIiIiIiI+CUlrCIiIiIiIuKXlLCKiIiIiIiIX1LCKiIiIiIiIn5JCauIiIiIiIj4JSWsIiIiIiIi4peUsIqIiIiIiIhfUsIqIiIiIiIifkkJq4iIiIiIiPglJawiIiIiIiLil5SwioiIiIiIiF9SwioiIiIiIiJ+SQmriIiIiIiI+CUlrCIiIiIiIuKXlLCKiIiIiIiIX1LCKiIiIiIiIn5JCauIiIiIiIj4JSWsIiIiIiIi4peUsIqIiIiIiIhfUsIqIiIiIiIifkkJq4iIiIiIiPglJawiIiIiIiLil5SwioiIiIiIiF9SwioiIiIiIiJ+SQmriIiIiIiI+CUlrCIiIiIiIuKXyvg6gIKoXr26jYyM9HUYIiJSSixfvnyvtTbc13GUZPpsFhGRopTbZ3OJSFgjIyOJj4/3dRgiIlJKGGMSfR1DSafPZhERKUq5fTZ7bUiwMaaxMSbB43XIGPNvY0xVY8y3xpgN7r9VvBWDiIiIiIiIlFxeS1itteuttdHW2migLXAE+AR4APjeWtsQ+N6dFhERERERETlFcd10qQfwh7U2EegHxLnz44CriykGERERERERKUGK6xrWm4AZ7vua1tod7vudQM1iikFERERERHzs5MmTJCUlcezYMV+HIj4QEhJC3bp1CQoKKlB5ryesxpiyQF9gTPZl1lprjLG5rDcKGAVQr149r8YoIiIiIiLFIykpiQoVKhAZGYkxxtfhSDGy1rJv3z6SkpK44IILCrROcQwJvhxYYa3d5U7vMsbUAnD/3Z3TStbaydbaGGttTHi4njwgIiIiIlIaHDt2jGrVqilZPQcZY6hWrdoZ9a4XR8I6gL+GAwPMBoa474cAnxVDDCIiIiIi4ieUrJ67zvTcezVhNcaEApcCH3vMHg9caozZAPR0p0VERERERIpFYGAg0dHRWa/x44smJYmMjCQqKoro6GiioqL47LOi7ZubNm0aLVq0ICoqitatWzNhwoRC1RMfH88dd9wBwNSpUzHG8N1332Ut//TTTzHGMGvWLABGjBjB2rVrz34HCsGr17Baa1OBatnm7cO5a7CIiIiIiEixK1euHAkJCV6p+4cffqB69eqsX7+eXr160a9fvwKvm56eTmBgYI7Lvv76ayZOnMjcuXOpXbs2x48fZ9q0aYWKMSYmhpiYmKzpqKgo3n//fXr27AnAjBkzaNWqVdbyKVOmFGo7RaG4HmsjIiIiPmCMecsYs9sY82suy40x5kVjzEZjzCpjTJvijlFExF9ERkYyZswYoqOjiYmJYcWKFVx22WU0aNCA1157DYB58+Zx8cUX06dPHxo3bszo0aPJyMg4ra5Dhw5RpUqVrOl3332X9u3bEx0dza233kp6ejoAYWFh3H333bRq1YrFixcTFhbGQw89RKtWrejYsSO7djm3AnryySeZMGECtWvXBiA4OJiRI0cCkJCQQMeOHWnZsiXXXHMNBw4cACA2Npb777+f9u3b06hRIxYuXJi1D1deeWVWbF27dmXp0qWcPHmSlJQUNm7cSHR0dNby2NhY4uPjSUxMpGHDhuzdu5eMjAy6du3K3Llzi+z456S4HmsjIiIivjEVeBnI7Wf4y4GG7qsD8Kr7r4iI1439fA1rtx8q0jqb1a7Io1c1z7PM0aNHT0nIxowZQ//+/QHnCSUJCQnceeedDB06lEWLFnHs2DFatGjB6NGjAVi6dClr164lIiKC3r178/HHH3P99dcD0L17d6y1bNq0iQ8++ACAdevWMXPmTBYtWkRQUBC3334706dPZ/DgwaSmptKhQweeffZZAFJTU+nYsSNPPPEE9913H2+88QYPP/wwv/76K23bts1xfwYPHsxLL71Et27deOSRRxg7diwTJ04EIC0tjaVLl/LVV18xduzYU4b+ZjLG0LNnT7755hsOHjxI37592bx582nlIiIiuP/++7ntttto3749zZo1o1evXnke67OlhFVERPzesZPp7Dl8nPOrlvd1KCWOtXaBMSYyjyL9gGnWWgssMcZUNsbU8nhmuohIqZPXkOC+ffsCzjDZlJQUKlSoQIUKFQgODiY5ORmA9u3bU79+fQAGDBjAjz/+mJWwZg4J/uOPP+jRowexsbF8//33LF++nHbt2gFOwlyjRg3AuZ72uuuuy9p+2bJls3o/27Zty7fffpvnvhw8eJDk5GS6desGwJAhQ7jhhhuyll977bVZdW3ZsiXXem666SZefPFFDh48yLPPPst///vfHMuNGDGCDz/8kNdee81rw6o9KWEVERG/Zq3lvlmr+HHjXn64O5ZK5Qv2oHEpsDrAVo/pJHeeElYR8br8ekJ9ITg4GICAgICs95nTaWlpwOl3us3pzrcNGjSgZs2arF27FmstQ4YM4cknnzytXEhIyCnXrQYFBWXVFxgYmLXN5s2bs3z5ci655JJC7Y9nXTlp3749q1evpnz58jRq1CjXckeOHCEpKQkgK6H3Jl3DKiIifu2l/21k9srtDO9ygZJVHzPGjDLGxBtj4vfs2ePrcEREfGbp0qVs3ryZjIwMZs6cSZcuXU4rs3v3bjZv3kxERAQ9evRg1qxZ7N69G4D9+/eTmJh4RtscM2YM9957Lzt37gTgxIkTTJkyhUqVKlGlSpWs61PfeeedrN7WMzV+/Phce1Yz3X///QwaNIjHH3886xpab1IPq4iI+K0vVm3nuW9/59o2dbg9toGvwymttgHne0zXdeedxlo7GZgMEBMTY70fmoiId2S/hrV3795n9Gibdu3a8Y9//IONGzfSvXt3rrnmmqxl3bt3JzAwkJMnTzJ+/Hhq1qxJzZo1GTduHL169SIjI4OgoCAmTZpEREREgbd5xRVXsGvXLnr27Im1FmMMw4YNAyAuLo7Ro0dz5MgR6tevz9tvv51vfTn1Cl9++eV5rjN//nyWLVvGokWLCAwM5KOPPuLtt9/mb3/7W4H340wZ55IV/xYTE2Pj4+N9HYaIiBSjhK3J9H99MVF1KjF9ZAeCy+R8m//CMMYst9bG5F+ydHCvYf3CWtsih2V9gH8AV+DcbOlFa237/OrUZ7OIFNa6deto2rSpr8MotHnz5jFhwgS++OILX4dSaB999BGzZ88mLi7OJ9vPqQ3k9tmsHlYREfE725OPMnJaPDUqBvP6LW2LNFk91xhjZgCxQHVjTBLwKBAEYK19DfgKJ1ndCBwBvPczuYiI+Nzs2bN56KGHeOutt3wdSoEoYRUREb+SejyN4XHxHDuRzvQRHagWFpz/SpIra+2AfJZb4O/FFI6ISIkXGxtLbGysr8MotL59+2bdCbkkUMIqIiJ+Iz3D8q/3E1i/8xBvDW1Ho5revfOgiIiI+DfdJVhERPzGU3N+47t1u3j0qubENq7h63BERETEx9TDKiIiXrNh12GSj54sUNkViQeYvGATgztFMOSiSO8GJiIiIiWCElYREfGK6T8n8tAnv57ROl0bVueRK5t5KSIREREpaZSwiohIkftxw14e+WwNsY3DGdGlfoHWCQiAmIiqlAnU1SoiIuJdu3bt4s4772TJkiVUqVKFsmXLct99953yPFVfiI2NZceOHYSEhBAWFsZbb71F48aNTys3YsQI7rrrLpo1K/iPvLGxsaSkpJD5SLL4+Hjuuece5s2bx5EjRxg5ciSrVq3CWkvlypWZM2cOYWFhBAYGEhUVhbWWwMBAXn75ZS666KJct5OcnMx7773H7bfffuYHIAdKWEVEpEht3J3CbdOXc2F4GC8NaE2FkCBfhyQiIpLFWsvVV1/NkCFDeO+99wBITExk9uzZPo7MMX36dGJiYpg8eTL33nvvaXGlp6czZcqUM6ozPT0dgN27d/P1119z+eWXn7L8hRdeoGbNmqxevRqA9evXExTkfH6XK1eOhIQEAL755hvGjBnD/Pnzc91WcnIyr7zySpElrPoZW0REisyB1BMMj1tGcJkApgyJUbIqIiJ+53//+x9ly5Zl9OjRWfMiIiL45z//yZYtW+jatStt2rShTZs2/PTTTwDMmzePbt260a9fP+rXr88DDzzA9OnTad++PVFRUfzxxx8ADB06lNtuu42OHTtSv3595s2bx7Bhw2jatClDhw7N2t5tt91GTEwMzZs359FHH80xzosvvpiNGzcCEBYWxt13302rVq1YvHgxsbGxWT2lM2bMICoqihYtWnD//fdnrZ99HYB7772XJ5544rRt7dixgzp16mRNN27cmODg0x8rd+jQIapUqZI1/cwzz9CuXTtatmyZtR8PPPAAf/zxB9HR0dx77715nImCUQ+riIgU2tRFm/kgPilrel/qcQ4cOcmMkR05v2p5H0YmIiIlwtcPwM7VRVvneVFw+fhcF69Zs4Y2bdrkuKxGjRp8++23hISEsGHDBgYMGJCVGK5cuZJ169ZRtWpV6tevz4gRI1i6dCkvvPACL730EhMnTgTgwIEDLF68mNmzZ9O3b18WLVrElClTaNeuHQkJCURHR/PEE09QtWpV0tPT6dGjB6tWraJly5anxPL5558TFRUFQGpqKh06dODZZ589pcz27du5//77Wb58OVWqVKFXr158+umnXH311Tmu06lTJz755BN++OEHKlT469Fxw4YNo1evXsyaNYsePXowZMgQGjZsCMDRo0eJjo7m2LFj7Nixg//9738AzJ07lw0bNrB06VKstfTt25cFCxYwfvx4fv3116xe2bOlHlYRESmUzxK28djnawkMMNSuXI7alcvRsm5lXr+5LW0jquRfgYiIiB/4+9//TqtWrWjXrh0nT55k5MiRREVFccMNN7B27dqscu3ataNWrVoEBwfToEEDevXqBUBUVBRbtmzJKnfVVVdhjCEqKoqaNWsSFRVFQEAAzZs3zyr3wQcf0KZNG1q3bs2aNWtO2c6gQYOIjo5m0aJFTJgwAYDAwECuu+6602JftmwZsbGxhIeHU6ZMGQYNGsSCBQvyXOfhhx9m3Lhxp8yLjo5m06ZN3Hvvvezfv5927dqxbt064K8hwb/99htz5sxh8ODBWGuZO3cuc+fOpXXr1rRp04bffvuNDRs2FOIM5E09rCIicsZW/HmAe2etov0FVXl3eAfKltHvnyIiUgh59IR6S/Pmzfnoo4+ypidNmsTevXuJiYnh+eefp2bNmqxcuZKMjAxCQkKyynkOkQ0ICMiaDggIIC0t7bRynmU8y23evJkJEyawbNkyqlSpwtChQzl27FhWucxrWD2FhIQQGBh4RvuZ2zqXXHIJDz/8MEuWLDllflhYGNdeey3XXnstAQEBfPXVVzRt2vSUMp06dWLv3r3s2bMHay1jxozh1ltvPaWMZ/JeFPQNQ0REzkjSgSOMmhbPeRVDeO3mtkpWRUSkRLnkkks4duwYr776ata8I0eOAHDw4EFq1apFQEAA77zzTtbNiorSoUOHCA0NpVKlSuzatYuvv/660HW1b9+e+fPns3fvXtLT05kxYwbdunXLd72HH36Yp59+Omt60aJFHDhwAIATJ06wdu1aIiIiTlvvt99+Iz09nWrVqnhxJNIAACAASURBVHHZZZfx1ltvkZKSAsC2bdvYvXs3FSpU4PDhw4Xep+zUwyoiUgocOnaS79buIi3den1bby3azPG0DN4fFUPV0LJe356IiEhRMsbw6aefcuedd/L0008THh5OaGgoTz31FG3atOG6665j2rRp9O7dm9DQ0CLffqtWrWjdujVNmjTh/PPPp3PnzoWuq1atWowfP57u3btjraVPnz7069cv3/WuuOIKwsPDs6b/+OMPbrvtNqy1ZGRk0KdPn6zhxJnXsIJzh+W4uDgCAwPp1asX69ato1OnToDTQ/vuu+/SoEEDOnfuTIsWLbj88st55plnCr1/AMZa73+5OVsxMTE282JnERE51bGT6Qya8jPLEw8Uy/bKlgngzSExdG0Ynn9hP2WMWW6tjcm/pORGn80iUljr1q07baipnFtyagO5fTarh1VEpASz1jLm49UsTzzAsze0omODal7fZlhwGSqV0+NqRERExPuUsIqIlGCTftjIJ79s4+5LG3Fd27q+DkdERESkSOlOGSIiJdSXq3YwYe7vXB1dm39ccqGvwxEREREpcuphFREpAQ4dO8mwt5exZvuhrHnH0tJpG1GF8de1xBjjw+hEREREvEMJq4iIn0tLz+Dv01eQsDWZmztGZD1GJiQokKEXRRISdGbPZRMREREpKZSwioj4uf/7Yi0LN+xl/LVR3NS+nq/DERERESk2uoZVRMSPTVu8hbjFiYzseoGSVRERkSISFhbm6xCyPPbYY9SpU4fo6GhatGjB7Nmzcyz32muvMW3atDOuu3z58uzevTtrnue+P/HEEzRv3pyWLVsSHR3Nzz//DEBsbCyNGzcmOjqapk2bMnny5Hy3NXHiRI4cOXJG8RWEelhFRPzUgt/3MPbztfRsWoMHLtfz6kREREqrO++8k3vuuYd169bRtWtXdu/eTUDAX32LaWlpjB49+ozqTEtLA6B69eo8++yzPPXUU6csX7x4MV988QUrVqwgODiYvXv3cuLEiazl06dPJyYmhv3799OgQQOGDh1K2bJlc93exIkTufnmmylfvvwZxZkf9bCKiPihDbsO8/fpK2hYI4wXbmpNYIBuqiQiIlLU5s2bR2xsLNdffz1NmjRh0KBBWGuZM2cON9xwwynlrrzySsDpobzzzjtp3rw5PXr0YM+ePQAkJCTQsWNHWrZsyTXXXMOBAwfYvXs3bdu2BWDlypUYY/jzzz8BaNCgwWk9kk2bNqVMmTLs3buX2NhY/v3vfxMTE8MLL7zAY489xoQJE3LdFnDaOgDDhg1j5syZ7N+//5Rt7dixg+rVqxMcHAw4iW3t2rVPO0YpKSmEhoYSGOjcM2Pu3Ll06tSJNm3acMMNN5CSksKLL77I9u3b6d69O927dz+LM3I69bCKiPiZfSnHGRa3jOCgQN4c2o7QYP2pFhGR0umppU/x2/7firTOJlWbcH/7+wtc/pdffmHNmjXUrl2bzp07s2jRInr27MmoUaNITU0lNDSUmTNnctNNNwGQmppKTEwMzz//PI8//jhjx47l5ZdfZvDgwbz00kt069aNRx55hLFjxzJx4kSOHTvGoUOHWLhwITExMSxcuJAuXbpQo0aN03ojf/75ZwICAggPDwfgxIkTxMfHA87w3ky5bSundcLCwhg2bBgvvPACY8eOzaqjV69ePP744zRq1IiePXvSv39/unXrlrV80KBBBAcHs2HDBiZOnEhgYCB79+5l3LhxfPfdd4SGhvLUU0/x3HPP8cgjj/Dcc8/xww8/UL169TM4W/lTD6uIiB85npbO6HeXs/vQcd4Y3JY6lcv5OiQREZFSrX379tStW5eAgACio6PZsmULZcqUoXfv3nz++eekpaXx5Zdf0q9fPwACAgLo378/ADfffDM//vgjBw8eJDk5OSvhGzJkCAsWLADgoosuYtGiRSxYsIAHH3yQBQsWsHDhQrp27ZoVw/PPP090dDT33HMPM2fOzHpcXeZ2POW1rdzWueOOO4iLi+Pw4cNZ88LCwli+fDmTJ08mPDyc/v37M3Xq1Kzl06dPZ9WqVfz5559MmDCBxMRElixZwtq1a+ncuTPR0dHExcWRmJhYqONeUPrZXkTET1hrefDjX1m25QAvDWhN63pVfB2SiIiIV51JT6i3ZA6JBQgMDMy69vOmm27i5ZdfpmrVqsTExFChQoUc18/vWegXX3wxCxcuJDExkX79+vHUU09hjKFPnz5ZZTKvYc0uNDT0jPcnp3UqV67MwIEDmTRp0inzAwMDiY2NJTY2lqioKOLi4hg6dOgpZcLDw2nTpg0///wz5cqV49JLL2XGjBlnHFdhqYdVRMRPvDr/Dz5akcSdPRtxVavTryERERGR4tOtWzdWrFjBG2+8kTUcGCAjI4NZs2YB8N5779GlSxcqVapElSpVWLhwIQDvvPNOVg9o165deffdd2nYsCEBAQFUrVqVr776ii5duhQqrry2lZe77rqL119/PSshX79+PRs2bMhanpCQQERExGnrHTlyhF9++YUGDRrQsWNHFi1axMaNGwFnePTvv/8OQIUKFU7pwS0q6mEVEfEDc37dwdNz1tO3VW3u6HGhr8MRERE55wUGBnLllVcydepU4uLisuaHhoaydOlSxo0bR40aNZg5cyYAcXFxjB49miNHjlC/fn3efvttACIjI7HWcvHFFwPQpUsXkpKSqFKl8COpcttWXqpXr84111zD888/Dzg3U/rnP/9JcnIyZcqU4cILLzzl8TWDBg2iXLlyHD9+nKFDh2bdPGrq1KkMGDCA48ePAzBu3DgaNWrEqFGj6N27N7Vr1+aHH34o9L5lZ6y1RVbZaZUbUxmYArQALDAMWA/MBCKBLcCN1toDedUTExNjMy8cFhEpbVYnHeSG13+iaa2KzBjZkZCgQF+HVOoZY5Zba2N8HUdJps9mESmsdevW0bRpyX1cW1hYGCkpKb4Oo0TLqQ3k9tns7SHBLwBzrLVNgFbAOuAB4HtrbUPge3daROSctPPgMUZMW0a10GAm3xKjZFVERETEg9cSVmNMJeBi4E0Aa+0Ja20y0A/I7FOPA672VgwiIv7syIk0Rk6LJ+VYGm8OjSG8QnD+K4mIiIhPqXe1eHmzh/UCYA/wtjHmF2PMFGNMKFDTWrvDLbMTqJnTysaYUcaYeGNMfObDeEVESouMDMtdM1eyZvtBXhrYmibnVfR1SCIiIiJ+x5sJaxmgDfCqtbY1kEq24b/WuYA2x4torbWTrbUx1tqYzAfnioiUFs9+u545a3byUJ9mXNIkx9/tRERESi1v3kdH/NuZnntvJqxJQJK19md3ehZOArvLGFMLwP13txdjEBHxOx8tT2LSD38woH09hnWO9HU4IiIixSokJIR9+/YpaT0HWWvZt28fISEhBV7Ha4+1sdbuNMZsNcY0ttauB3oAa93XEGC8++9n3opBRMTXjqel88ufyWS4H8q7Dx3ngY9XcVGDajzer3m+DxsXEREpberWrUtSUhK67O/cFBISQt26dQtc3tvPYf0nMN0YUxbYBPwNp1f3A2PMcCARuNHLMYiI+MSJtAxueXMpSzfvP2V+/eqhvDqoLUGB3r5Ru4iIiP8JCgriggsu8HUYUkJ4NWG11iYAOT3nroc3tysi4mvWWh76ZDVLN+/nkSub0az2XzdValGnEmHB3v69UERERKTk0zcmEREvmLxgEx8uT+KOHg0Z1kW/IouIiIgUhsajiYgUsW/W7GT8nN/o07IW/+7R0NfhiIiIiJRYSlhFRIrQmu0H+ff7CbSsW5lnb2hFQIBuqiQiIiJSWEpYRUSKyO5DxxgRF0/l8kG8cUtbQoICfR2SiIiISImma1hFRIrA0RPpjJwWz8GjJ/lwdCdqVCz488VEREREJGdKWEVEzlJGhuXuDxNYte0gk2+JoXntSr4OSURERKRUUMIqIpKPg0dP8s2vOzmZkZHj8tVJB/lq9U4evKIJlzarWczRiYiIiJReSlhFRPJw7GQ6Q99eyi9/JudZbmCHeozsWr+YohIRERE5NyhhFRHJhbWW+2at4pc/k5nYP5qLGlTLsVxAgKF6WHAxRyciIiJS+ilhFRHJxUv/28jsldu597LGXN26jq/DERERETnn6LE2IiI5+GLVdp779neubVOH22Mb+DocERERkXOSElYRkWwStiZz9wcriYmowpPXRmGM8XVIIiIiIuckJawiIh62JR9lRFw84RWCef2WtgSXCfR1SCIiIiLnLF3DKiLiSjmexvCpyzh+Mp33Rnagmm6kJCIiIuJTSlhFRID0DMu/3/+F33cd5q2h7WhUs4KvQxIRERE55ylhFZFzUsLWZD5fuT1rOnFfKt+t283Yvs2JbVzDh5GJFD1jTG/gBSAQmGKtHZ9teT0gDqjslnnAWvtVsQcqIiKSjRJWETnnrN95mJun/MyJtAzKlnEu5TfA6G4NGHJRpE9jEylqxphAYBJwKZAELDPGzLbWrvUo9jDwgbX2VWNMM+ArILLYgxUREclGCauInFP2phxneNwyypcN5Nu7LqZWpXK+DknE29oDG621mwCMMe8D/QDPhNUCFd33lYDtiIiI+AHdJVhEzhnHTqZz6zvL2XP4OG8MjlGyKueKOsBWj+kkd56nx4CbjTFJOL2r/8ypImPMKGNMvDEmfs+ePd6IVURE5BRKWEXknGCtZczHq1meeIDnboym1fmVfR2SiD8ZAEy11tYFrgDeMcac9h3BWjvZWhtjrY0JDw8v9iBFROTco4RVRM4Jr8z7g09+2cbdlzaiT8tavg5HpDhtA873mK7rzvM0HPgAwFq7GAgBqhdLdCIiInlQwioipd5Xq3fwzDfr6Rddm39ccqGvwxEpbsuAhsaYC4wxZYGbgNnZyvwJ9AAwxjTFSVg15ldERHxOCauIlGortyZz1wcJtKlXmaeua4kxxtchiRQra20a8A/gG2Adzt2A1xhjHjfG9HWL3Q2MNMasBGYAQ6211jcRi4iI/EV3CRaRUmvHwaOMnBZPtdBgJg+OISQo0NchifiE+0zVr7LNe8Tj/Vqgc3HHJSIikh8lrCLiVz6I38qcX3cWSV0bdh/myIl0PrqtA9XDgoukThEREREpPkpYRcRvfLV6B/fNWkVEtfJUDAk66/rCw4J58pqWND6vQhFEJyIiIiLFTQmriPiFzGtN20ZUYfqIDhq+KyIiIiK66ZKI+N725KOMmBZP9bBgXr+lrZJVEREREQHUwyoiPrA66SD7j5wAwFrL03PWc/REOu8O17WmIiIiIvIXJawiUqymLd7CI5+tOWVegIE3h7TTtaYiIiIicgolrCJSbOb/voexn6+lR5Ma3N79wqz5NSoEc37V8j6MTERERET8kRJWESkWG3Yd5h/TV9CwRhgvDmhNaLD+/IiIiIhI3nTTJRHxun0pxxkWt4zgoEDeHNpOyaqIiIiIFIi+NYrIWVuyaR9jP1/LsZPpOS4/ePQkKcfTmDmqI3Uqlyvm6ERERESkpFLCKiJnZdOeFEZNi6dy+bJEn185xzLGwHVt6tK6XpVijk5ERERESjKvJqzGmC3AYSAdSLPWxhhjqgIzgUhgC3CjtfaAN+MQEe9IPnKC4XHxBAUGMH1EB904SURERESKVHFcw9rdWhttrY1xpx8AvrfWNgS+d6dFpIQ5kZbBbe+uYNuBo7x+S1slqyIiIiJS5HwxJLgfEOu+jwPmAff7IA4ROQOrkw6yPHF/1vTPm/ezeNM+nu/fipjIqj6MTERERERKK28nrBaYa4yxwOvW2slATWvtDnf5TqBmTisaY0YBowDq1avn5TBFJC8JW5Pp//pijqdlnDL/Xz0ack3ruj6KSkRERERKO28nrF2stduMMTWAb40xv3kutNZaN5k9jZvcTgaIiYnJsYyIeN+25KOMiIunRsVgpg/vSIUQ589GYKChYkiQj6MTERERkdLMqwmrtXab++9uY8wnQHtglzGmlrV2hzGmFrDbmzGISOGlHk9jRFw8x0+mM2NkB+pV03WqIiIiIlJ8vHbTJWNMqDGmQuZ7oBfwKzAbGOIWGwJ85q0YRKTw0jMs/3o/gfU7D/HyoDY0rFnB1yGJiIiIyDnGmz2sNYFPjDGZ23nPWjvHGLMM+MAYMxxIBG70Ygwi4kpLz+Bf7yfw5eod+Rf2MLZvc7o1CvdSVCIiIiIiufNawmqt3QS0ymH+PqCHt7YrIjkb9+U6vly9g4Ed6hEeFlygdeqHh9Ivuo6XIxMRERERyZkvHmsjIsXsnSWJTP1pC8O7XMB/rmzm63BERERERArEa9ewioh/WLhhD4/NXsMlTWrw4BVNfR2OiIiIiEiBKWEVKcU27k7h9ukruDA8jBduiiYwwPg6JBERERGRAlPCKlJKHUg9wfC4ZZQNDGDKkBgq6JmpIiIiIlLC6BpWkVLoRFoGt767nB0HjzFjZEfOr6rnp4qIiIhIyaMeVpFSxlrLQ5+sZunm/TxzfUvaRlTxdUgiIiIiIoWiHlaREi71eBq7Dh3Lmv5y1Q4+XJ7EHZdcqEfSiIiIiEiJpoRVpARLOnCEa175iT2Hj58yv0/LWvy7ZyMfRSUiIiIiUjSUsIqUUCnH0xg+NZ5jJ9N5+rqWBAc5I/yDywTSvUk4AbojsIiIiIiUcEpYRUqg9AzLHTN+YeOeFKb+rR1dG4b7OiQRERERkSKnmy6JlED//Wod//ttN4/1ba5kVURERERKLSWsIiXMez//yZs/bmboRZHc0jHC1+GIiIiIiHiNElaREuSnjXt55LNf6dYonIf7NPV1OCIiIiIiXqVrWEVKiE17Uhj97nLqh4fy8sDWlAnU700i4kMpu2DhswUomM8N4MJqQIvrIKhckYQlIiKlixJWkRIg+cgJhsfFExQYwJtD2lEhJMjXIYnIue7Qdvj+8aKp6/vHofO/IeZvSlxFROQUSlhFvGTj7sMk7jtSJHW9sXAT2w4c5b2RHTi/avkiqVNE5KzUioaHf8q7jLX517MtHuaNh2/GwKKJ0Plf0PZvUFZ/60RERAmriFcs2riXIW8tJS2jAF/WCuj5/q2IiaxaZPWJiJwVY6BM8NnXE9kFhn4BWxbB/PHwzYPw40TofAfEDIOyoWe/DRERKbGUsIoUsT/2pHCbe63pU9e1JDAgn+u3CqBK+bLqWRWR0i2yM0R+DomLncR17sOw6AW46A5oN1yJq4jIOUoJq0gRSj5yghEe15oqyRQROUMRnWDwZ/DnEmeo8Lf/cRLXzndAuxFKXEVEzjG6zahIETmRlsFt765g24GjvH5LWyWrIiJno15HGPwpDJsLtVrCt4/AxCj48Xk4nuLr6EREpJioh1WkkOK37OfeWas4mZ4BwPG0DPYcPq5rTUVEilK9DnDLJ7B1Kcx/Cr57DBa9CBf9E9qPhOAKvo5QRES8SAmrSCH9vHk/m/emcm3rOlmPGexUvxrXtK7r28BERIrBztSdPLX0qRyXGZPztfsmh2eyVgmpQt8GfalRvkbeGzy/Pdz8ESS5dxX+fiz8lJm4jlLiKiJSSilhFSmkfSknCC0byHP9o30diohIsUs+nsynGz89bb4l57uj21wecXMk7QiTfpnEpRGXMqjZIFpWb5lrwgtA3Ri4eRYkLXduzvT94/DTS9Dp79D+VgipWKj9ERER/6SEVaSQ9qUep1pYETzSQUSkBEo/VpvkdY/mWy6v3BOgUoVD1IlYwfykeXy95WtaVGvBwKYDuSzyMsoGls19xbptYdCHsG05zH8a/jcOfnoZOv0DOoyCkEpnuEciIuKPlLCKFNL+1BNUDc3jy5SISClWNbQst3SKyLNMbr2qnjbtSWV+QhhptCcyYi3bDv3Igz8+yLPxz9K/cX9uaHwD1ctVz72COm1h4EzYtsJJXH8YB4tfchPXW5W4ioiUcEpYRQppb8oJ6lQO8XUYIiI+UatSCA9e0bRI6tqbcpzPErbz0fJw1m5uRXCFjaTXXcYrK19h8urJ9I7szaCmg2hRvUXuldRpAwPfh+0JbuL6BCx+GTreDh1GQ7nKRRKriIgULyWsIoW0P/U4UXV0rZSIyNmqHhbM8C4XMLzLBazdfoiPVjTgs4QWpJzYRsUaPzNn03d8sekLWoW3YlDTQfSM6ElQQFDOldWOhgHvwY6VTuI670lY/Ap0vM15KXEVESlRlLCKFIK1lv2pJ3QNq4hIEWtWuyLNajfjgcubsOD3PXy0IorvfuuFDVvKr+lLuG/PfVQLCWdAE2e4cNWQXB4jVqsV3DQddqxyHoczfzwsecXpbe10O5SrUrw7JiIihaKEVaQQDh1L42S6pZquYRUR8YqgwAB6NK1Jj6Y1ST4SxecrW/PhiitYc2Ap6VUX8XLCy7y28nUuv+Bybml2M02r5TI8uVZLJ3HdudrpcV3wNPz8mnN9a8fbobyemy0i4s+UsIoUwr6U4wBUC1PCKiLibZXLl+WWTpHc0imSjbujmbW8Dx+tjudQ2fl8nj6HzzfNplGlloyKHkyPej0oE5DD15vzoqD/O7DzVydpXfAMLHET105/V+IqIuKnAnwdgEhJtC/1BADVQjUkWET8nzGmtzFmvTFmozHmgVzK3GiMWWuMWWOMea+4YyyoC2tU4IHLm7DknkG8ccV/6RryAml7ruS3PVu5Z/49dHmvJ88ve43kY8k5V3BeC7hxGtz2E1zYAxY+CxOj4LuxkLqveHdGRETypR5WkULYl+IkrHqsjYj4O2NMIDAJuBRIApYZY2Zba9d6lGkIjAE6W2sPGGNq+CbaggsMMFzcKJyLG4Vz6FgHvliZxLSVX5OYNpe31k7i7TWTaVOtB3e1H0bLmjkMF67ZHG6Mg93rnKHCPz4PSydD+5HQ6Z8QWq34d0pERE6jHlaRQtiX6gwJrq6bLomI/2sPbLTWbrLWngDeB/plKzMSmGStPQBgrd1dzDGelYohQQzscAFzRt3O1zdO5+rqz1HmaAzxe79n0Jwb6fbOjby27FPS0tNOX7lGU7jhbbh9CTS6DH6c6PS4fvsopO4t/p0REZFTKGEVKYT9bg9rldBcHqsgIuI/6gBbPaaT3HmeGgGNjDGLjDFLjDG9c6rIGDPKGBNvjInfs2ePl8I9O5HVQ/m/PpcSf+vrPNfpQxqWuYl9x3cwae1/aBvXg+GfPMPanTtPX7FGE7j+Lfj7z9DkClj0AkxsCXP/Ayn+ua8iIucCDQkWKYR9qSeoEFKG4DKBvg5FRKQolAEaArFAXWCBMSbKWnvKhaDW2snAZICYmBhb3EGeiYAAQ68mDejV5CEOHr2bFxd/xheJH7D00DRu/HoGVTM6cVPjgQxu14GwYI+vQ+GN4bopcPF9zo2ZFr8My6ZAu+Fw0b8gLNx3O1VapB2HXWtg+y+wfQUcSITILtCsn9PjLSLiwesJq3vtTDywzVp7pTHmApzhSNWA5cAt7hAlkRJjX+oJDQcWkZJiG3C+x3Rdd56nJOBna+1JYLMx5necBHZZ8YToXZXKhfCfS/rzH/ozf0sCLy2byvrU+bz6xwImrW5Im0pXMqpdHzo3qEFAgHFWCm8E170B3TIT10mw1E1cO/8Lwvz+Ml//kJ4Ge377Kznd/ouTrKa7X/3KVYVKdWDeeJj3JFRv5CSuzfpBzRZgjG/jFxGfM9Z69wdSY8xdQAxQ0U1YPwA+tta+b4x5DVhprX01rzpiYmJsfHy8V+MUORMD31jC8bQMPrrtIl+HIiKFYIxZbq2N8XUcZ8IY0xlIsNamGmNuBtoAL1hrE/NZrwzwO9ADJ1FdBgy01q7xKNMbGGCtHWKMqQ78AkRba3O9bW5J/2zef3Q/Ly59hy8TP+KYPUDGiaqUO9qNaxtezYB2jbmgeuipK+zdCAsnwKqZEBgMMcOcxLVCTd/sgD/KyIB9G09NTnesgrSjzvLgilA7GlurNbsrNGVVRgMW7j/B5kNb6VM7givLrCRs01ew5UewGVC1/l/Ja61oJa8ipVxun81eTViNMXWBOOAJ4C7gKmAPcJ61Ns0Y0wl4zFp7WV71lPQPRSl9ek9cQL2q5Zk8uER93xURVwlNWFcBrYCWwFRgCnCjtbZbAda9ApgIBAJvWWufMMY8DsRba2cbYwzwLNAbSAeesNa+n1edpeWz+WTGSeZs+pbXE6aRmLoGm1GWk8ltaRhyGQPbtKNPy1pUKudxv4J9f8CCzMQ1yCNxPc93O+ELGemQnAjbE9zkNMF5nTjsLA8qD7VakX5eNDtCm7DKNmDRgSBW7F7Dn6m/kV72TwJDthIQ5JS3GUGkpzThgnKdGNgghr5lf6Xipq9g03yw6VC5HjTtC82uhjptIUC3YREpbXyVsM4CngQqAPcAQ4El1toL3eXnA19ba1vkVU9p+VCU0iNm3Hdc2qwGT17b0tehiEghlNCEdYW1to0x5hGcy2zezJzni3hK42fzmn1reHPlO3y/9RsySCMtpRH2YBd6RHTl+ph6dL2wOmUC3URp3x/OM1xXvu8krm3/Bl3+XfoS16PJTq/p3g2wb4P770Zn/9OdO+YTWBbOi+Lk/7N33+F1XVXi97/73K6r3rvV3LvlmuqQSrqTEAiQocPAwDADDLxkmNCZQAYGGCAwTOAHJCSkxyFxEqfaiZ249yJbtmT1dlXu1dVt5+z3jyPLdtzkKsten+c5zy2n3CW5HC3tvdfKm05T0kQ2muW81ZvM+o5dNIZrwDOYnHoOVF3OchczKXMyC4pnUpRSwPO73mB58+sMWD128to/jlLPAu6qnMci7w7S9r4Ata+BFYfUosHk9RYomSfJqxDnibOesCqlbgSu11p/QSm1kBNMWJVSnwU+C1BaWlpdX3/MGU9CnDWWpRn7rSV8/vJKvnbt+JEORwhxEkZpwvom8CLwCeAyoB17Wc3UkYjnfExY9+sc6OSJmid4aNsj9MYCEM8m0rWAdPMibptRye3VxYzLS7EPDuyxQ6NoOQAAIABJREFUE9cNj4DhhOqP24lrauGIfg0nxIxDd92BpLRrtz0FumsX9B9UIdlwQkYZOquKUEo5Lc5iNpllLO/NZn3HXloiNRjeRhzeRhzeFlAmACnOTCZlTWFOwXSm5UxlcvZkUt2ph4dhmaxrX8dj25/nzcZXB5NXJ4n+cZS6F3Bn5TxuT9pNRt0S2P2KnTAn58PEm+zkdcxFYEgxRCFGq5FIWP8TuBtIAF4gFXgauBaZEixGse7+GDO/v5R7b5zEJy8pH+lwhBAnYZQmrPnAh4HVWuvlSqlSYKHW+s8jEc+FcG+Om3Fern+Zh7Y9zJauzRh4iQaqiQYWMCW3kjuqi7l5eiEZfjcE9g6OuD4CygHVH4NL/vXcSVy1tvvKDo2S7jqQlHbXgXVQj9qkbHT2WCKp5XS4S6k3Ctkey2d9KI3arn72BetIOFswPK04fA04fU1g2KOtHiOJiZmTqM6fztTsqUzJnkKe/8TX+ZqWyYaODTy+/Xleb3iVsBUYTF7HUuSaz52VF3N7ci3Z+16EmpftdbL+nIOS10vAIc0whBhNRmRK8EEfvhD42mDRpceBJw8qurRJa/2bY51/IdwUxeixuz3IVT9bxi8+NINbZry3laEQYjQYjQnrueZCuzdv6tjEX3f8lZf2vkRCm3jjkwm0zMWIjON9E/K4fVYxV0zIxdW3D5b/DDY8DMqA/KmAsp8rdehzNTiVdei5es/zI52jhnnc4D4zZo8Cd+2CSO+BL8jhhsxKYhkVBLxjaDSK2GXmsy6cw/Yeg7rOIGHdhuFpw/C04vS24fa1Yzo7APtnR4dyMjZ9PDNypzI1ZypTsqZQllaGoU7vFF1LW2zs2Mjj25/ntYZX6De70JYDs38s+c55LKq4lA+m7CWv8SWoeQni/Xb14Yk32slr+eX2tG0hxDntXEpYK7Db2mRiVyH8qNY6eqzzL7Sboji3vbuniw/+7zs8/Ol5XFyVPdLhCCFOwmhKWJVSQfZnCEegtT58buVZcKHemzvCHTxW8xiP7XyMQCRAqqOIcMd8utunkZWUws0zCrl9VjGTk7pRK39tr/VE2yOc2jrouR58bh3+/JDjTuYcfeC5Mkikl9KbVEaLs5g9VgGbIrms70umtitCTziKcvXYSamnjeSUTgxvGzHVioU96mpgUJJSwtiMsVSmV1KVUcXY9LGUppbiMs5uImhpi00dm3hyxwu8sm8pIbNzMHkdR7aayy3ll/Ch9HqKWpaidr5oF4HypsOEweS1YiE43Wc1ZiHE8IxownqqLtSbojg3vbC5hS88vI4lX76UiQUj8nOiEOIUjaaEdT+l1PeBFuAvgAI+AhRore8diXgu9HtzzIzxUt1LPLT9IbZ1bcPr8JNpXcLe2pnEoulMyE/hjupiJhWkErc0CdMibmoSlkV8//Oh1/b+hKWJmxYJUxO37MeEaQ2db79/6LUS5uA5R3rfshiImXSGYoBGOYMYnlbS07pISu4EVwv9upm4jgx9XQX+AqrSq4aS0qr0KsrTyvE6vSP3zT4KrTWbOjfx1M7nebl+KaFE59Ca1wxrNjeWX8JdGY2Uty9F7VwC0T5w+SGt2G5HlJx/4DE579D3PKnSRkeIs0wSViFOk7+8U89/PLOFVf9+Jbkp594NXAhxfKM0Yd2otZ5+vPfOFrk327TWbOzYyMPbH2Zp/VIsbVHpn0t/x3xq6vOxf7dwYpTSuBwalzOBw2ENPTocCRwOE4dhYjhMHEYCZSQwDBM19DwByt6USqCNAWJGK72JBgbM0NBnZHmzDklKqzKqqEyrJNmdfBq/O2fP/pHXZ3a9wMt1LxNMdNnJa2g8yYlqri+7hA9nNTEutAoj2Ayhdgi2QqgNEpHDL+j02WtikzLAd/CW+Z7XGZCUZW++dCn6JMQpONq9eVir0ZVSucDFQCEwAGzB7t1mndYohRgFukL2DPaMJJlSJIQ4q/qVUh/BXlajgbuA/pENSSilmJE7gxm5M2jtb+WxnY/xeM3j9CS9y+Q5FYxJnkhCxzCtOKaOk9Ax4pb9mLBixKwYcct+L2ZGiZn2e/tpIHb0jz8yDUorPA4PPsNHeVo5l6VfT2V65dC03kxv5un8Now4QxlDfw73XvT/sbFjI4t3LeHFupcIJf7MUz1/5bHGCbhj08jxTCXbl01ObjbZ5T7yvTEKHH3kqW6ydDdpVjfJsU680S6MSA8MdENvk/040G33hT0iZSetQwlspv2YPRamf+j8a3kkxFlyzBFWpdQVwP/HgfWm7dgVf8cBlcATwE+11n1nMkj5La44l9z77BYWb2xmw73XjHQoQoiTNEpHWMuAX2D/AlkDbwP/orWuG4l45N58dJFEhCV7l/C3nX+jPdyO2+HG7XDjcXgOPBqHvnfIc+M9xx603+Pw4DJcQ8+Pdm2n4UTJlFYsbbG+fT1/r13CS3uXEkwEDj3A9GPGk9GJVHQiBSuRgt6/mck48OEx/CQ5k/E5/fidTrJcMbKd/WQ5wmSpftJVkHQdJI0+Uqw+/GYvSYlevPFePLEA3oE2u3L0uGth1sdg7NUyEivEEZzsCOv1wGe01vuOcEEncCNwNfDkaYlSiFGgKxQj0y+jq0KIs2swMb1lpOMQx+d1elk0dhGLxi4a6VAueIYyqM6rpjqvmm/N/yY13TW0hdvoGOigc6CTznAnbeEO2vrb6RhooifahakTh10nPLh1azfN+FDaB5YXbXqxEh4SCQ+JhBtt+dFWFphetOVBW14KLZN/9m3jxj2v49v5AqQUwsyPwqy7Ib30wIfE+qFjB7Rvt7fOGkgrgcr3Qfml4E079W9IfABaN0PzersYVel8Owb55YY4hx0zYdVa/5tSylBK3am1fuw9+xLAM2c0OiHOQZ2hKNl+z0iHIYS4wCilcoDPAGUcdP/WWn9ypGISYjRxGA4mZk1kYtbEox6jtaY32kvHQAfdkW6C8SChWIhQPEQw9p7n8dDg6yCheAuhWIhwInzYNXuAH5tlfKv9Li6NaL4UX820ZffDsvtRFQvB5YP2bXY/3EFx5abBKKTQWoZ3zYNo5YCi2ajKK6DyCsiqgu56CNRCYA+6q5Z4x250NIhKysaRko0jOQeSssGbhtlRQ3TfGryBnRjvScgHfPnokvkkVV4MnhR7TW8iCmbUrj7tywR/9oFpzvEwRHpgoMdulZRSYLdvSsk/euJrmdDbYBezSjq/pqOLM++4a1i11pZS6uvAY8c7VogLQaA/RlXu6CxKIYQY1Z4FlgOvAEdbRCeEOAVKKdK96aR700/qfNMyCSfCQ4ltKB5iY/tGnq19lt2O51iNk48PTMHV+SXujjfwoYZ3SSg3O6wi1iWq2ejIoMbjIJoygC+5g0R0Dhndbq6IdHN9Qw1TGn+M8eZ9h3ymhaJFZ7ND59BupFIY6KZA7yNb9ZGuQhhoenUSS1xjWJ40lz1+B71JQRyWk5yQi1mRfm7Ys4zqmmeGSoRpIKYggSJJ6yOWDjOBoGGQbFk4gQF3JvHsSRjelP3fTXQ8gurZiy/UgEMnsHAQLlqAf+YdqIk32YmwEMcxrCrBSqn7gE7gbxxU4EFrHTjqSaeRrJMR55JZ31/K+6fk88NFU0c6FCHESRqla1g3aK1njHQc+8m9WYjh01qzI7CDxbWLeX7P83RHu3GrVGI903A5DLzJLURUw1CLIZfhojytnJZQC8F4EIAklYcjXEJBNxQl4tS5XfT5NXF/hISjjbDuHPo8Aycu5ceJD8NyElYdmNhFI3N9uUzPnU4oFmJz52ZCcbt6tAsfDu0koeKYRNGD7Z8VBi7twW25cJkOEoZJ1IgRUxFQYGgHaTEfJVGYHAvj1yYasBQMKINap4dGt4OAO47XVFzVH+YD4Q4mxuKEMybirboUZ8WlkDvJngItfXIvWKdUJRj44ODjPx30ngYqTjUwIUYT09J0h2NkJcuUYCHEWfd3pdT1WusXRjoQIcSJUUoNTUf+yuyv8FbjWzy35zneUG/gNJxUZoxnQuatTMqaxMSsiVSmVeJyuDAtk5ruGla3rmZ122rWtq2lxhekZvC6HoeH8rRyytPmUJlWSYY3g2AsSF+sb+gxFA9Rlno5M3JmMD1nOvn+/KGCXJa22NOzh02dm9jSuQVLW/icPnxOH0muJBzKMXSd3mgvwXiQJGcSmd5M0j3ppHnSaOtvo6a7hh2BGjZFQxzaykmT6vJRnlbGRRkV1Pc28lT7ap7MyMcfdzN1IMLV2x5h/voHKU4kUCiivjyslAKMlFzcqXkYaUX2Otu0Ens6sdsP7mR7Da5jMJWJR6Cn3q7ibMbs1+FOu20Ryu6zm5QFDpdd8KpnH3TstK815iLImwJOr73PMsGKQywMiQEwXPbU6MAee+trtqdNZ5ZDyTx7OrQ4o6QPqxAnoDMUZfYPXuG7N0/mYxeVjXQ4QoiTNEpHWIOAH4gCceyfCrXWOnUk4pF7sxCnbiAxgNtw4xhm1WDTMtnVs4v2cDvlaeUU+guHfe7Z0BvtJW7FMZSBgYHL4cLv8h9yTE+kh9cbXueV+tdZ27aW/oTdbMTQBslxF9kJRU7CJNeKU2AOUGaGKUokKEwkSLMsvINTlDWKhDsN7fDgGmgnpjRBwyCBIqIU3Q6DLocDBWSbJpmmhVtrHGianE52uTykWibVkQhZ1vE7dXYbBvtcTpodLsKGg8p4hLGxOM7CeXjKF9iVoMsuhvLLob/TTo5lve4JOdU+rG8Bb2KvnXlbax08zfEJMSoE+u1ueFnJMl1FCHF2aa1Tjn+UEGI08Tl9J3S8w3AwIXMCEzInnKGITk2a5/iVjNO96UNVtLXW7Ondw/r29TT0NVDX20h9XwM7I12sjfeQ0ADv+R5pcGoHXtNBsmng0pqurGTCrvhJx+1LuHFYBoZ9eUylSSgL07AwtIFGk3AcXj3aaRlcG9zHgvVbUVjMWfHf5FkKpRNoFJHsaXjK5+HIrrJHcK04RIPEgx1Euhoxg22opEyULwOHL5Wk8nnoRBQz2IYrfzJUXG4nvhe44U4Jvhu4FLgduF8pFQWWa63/9YxFJsQ5qDNkr//IkirBQoizTCl12ZHe11ovO9uxCCHE6aCUojK9ksr0ysP2aa0JJ8K09bfR3N9Mc6iZYCxIOD5Ad6SPjnA3neEAUTPK/JQixmWVke3LxOVw4TJcZHozyfJlYWmLzoFOuiPdxK04CStBXlIe5Wnl9MZ6Wdm0iu2dtcSsOKZlYigDl+Eg2e0nyeUlatqDFWMzx1CWWka+Px+3w01DsIFnal5gScNLPH9QSpUZ9dDnSmBomDbQy/ydj1O5NYJba6JKETQMWh1u9jp8tDrdZAQbSetNkKpjTN/+/4gYBh0Og/J4gkmqgOSZd4FS+EumodKKIRoCpwcKpl8w7YiGlbBqrfcqpSJAbHC7Ajh6TXAhzlNdIRlhFUKMmH876LkXmAusBd43MuEIIcSZo5TC7/JTkV5BRfqZK5szPWf6SZ1XnlbOZcWX0Rv9Jj3RHqJmlFfqXmNVy3qqMsbQGw2xsnkla+IWcPgEmSRHKhmebOoSIaJmmKgZ4c8c2oWiMBbjhq2/AqBiXZxc0yRo2KPK48nHTC3DVTqHzIqZGE4PwfY6BgItZFbNxkrECHU2Ybi9+LOLcOdNgrRiO8ndvyR0lCS8w50SXItdJfivwIPAl7TWx5/sLcR5ZmhKsF8SViHE2aW1vung10qpEuDnIxSOEEII7GnQ+6dCj8sYxxdmHrq/N9pLc6iZhJXA7XCT4k4hy5eFx3HobL24GWdn9068Di95/jzWtq3lByt+wu/djRgYWO/pZpZkanITtczYs4mxO+M40DQ7nXQ4HIzf/TuiyqDd4cCFJss0KY/FKUo4AQdRFcGJF5+RgVZOXJmTyJpxM2nTrgd30oEPifWjA3vpb9uLw5uEr2yu3av3LBvulOBfApcAdwEzgTeVUsu01rVnLDIhzkFdoShKQXqSJKxCiBHXiMx2EkKIc9rBCe2xuBwupmRPGXq9sGQhl995ORqNqU329e2ja6ALv8tPx0AHS+teoynYyotdm3jGsruOOnGR5ExhScLuPJrsSMXUJgNW/3s+bX+tPhMwyU2s4bKVy7jy1W+QotLos1rxqBQ6jSD1LgeNTicerZkSjZFl+UhzFQOKtKIFpJZMIXPeXSjDOPVv1lEMd0rwL4BfKKWSgU8A3wGKgXOnLJkQZ0FXf4zMJDcOY3RMoRBCnD+UUv8D7C/tbwAzgHUjF5EQQogzSSmFQmEo47C1vgtLFgL2Wt/eaC+mNkn3pOMwHPTF+vA5fbgMu2BT1Iyyu3s3+4L7sLRFqjuVnmgPfbE+4mactxrWsLh9BU+kxrGL0GcNfkoWaEhzpBG1Ijw+2MsX7IS4qO8ZStc/zW/n3cWZ/Ml4uFOCf4o9wpoMrADuxa4YLMQFpSsUI1OmAwshRsbBPWQSwCNa67dHKhghhBAjTylFujf9kPdS3Yd2O/M4PEzOnszk7MlHvMbHp3ycgcQAD297lISVoDp/Bq39rZSmljI+Yzxep5eElaClv4W63jr29TUQScRYVreSYKwf4wyOrsLwpwSvBH6itW47k8EIca4L9Mek4JIQYkRorf+klHID4wbf2jmS8QghhDh/+Jw+Pj3tE0fd7zSclKSUUJJSMvTep6Z9/CxEZk8pOiqlVBmA1vqJIyWrylZ8ZkIT4tzT2R8lK1la2gghzj6l1EJgF/Br4DdAzdFa3QghhBDni+ONsN6vlDKAZ7FL53dgl9Kvwm5tcyXwbezCD0Kc9wL9MakQLIQYKT8FrtFa7wRQSo0DHgGqRyKYnrYwHQ1BckpSaNgeYM0LdYcds/Aj48nI97N3Uycblu47bP9Vn5hESqaXXWva2PJm02H7r/vcFHzJbravaGHHypbD9t/4pem43A42v9HI7rXth+1f9NVZAKx/eR91mzsP2ed0G9z0pRkArH5+L407ug/Z70128f7PTQVg5dO1tO7pPWR/coaHqz9pT69b/lgNnQ2hQ/an5yVxxUcnAPD6QzvoaQsfsj+7JJlL77QHy5f+YSuh7ugh+/Mr0liwyF6vtuR3m4mE4ofsL56QwZwbygF47n82kIgd2ryhbGo2M68pBeDpnx6+1LmqOpepC4uJx0z+/j8bD9s/YUEBEy8qYCAU48XfbTls/5TLixg7O49gIMIrf9x22P4ZV5dSPi2b7tZ+3nj48MkAs68vo2RiJh0NQd56bNdh++ffWklBZRottb2888zhNT4vuXOs/N1D/u7J372R/7u3//POpGMmrFrrDyilJgEfAT4JFAADwHbgeeCHWuvIGY9SiHNA3LToCcfJ8ssIqxBiRLj2J6sAWusapZRrJAMSQgghzjSl9zeOPYfNnj1br1mz5vgHCnEGtfQOsOA/X+P7t07h7vljRjocIcQpUEqt1VrPHuk4ToRS6g+ABTw0+NZHAIfW+pMjEY/cm4UQQpxOR7s3D7dKsAO4ASg7+Byt9c9OV4BCnMssS/PtZ7diKJhefPxeWkIIcQZ8Hvgn4J8HXy/HXssqhBBCnLeGWyX4OSACbMb+7a4QF5T7X97Jy9vauPfGSUwrTj/+CUIIcZppraNKqV8Br2Lfi3dqrWMjHJYQQghxRg03YS3WWk87o5EIcY56fE0DD7xRy4fnlfKJi8tGOhwhxAVKKXUD8FugFlBAuVLqc1rrJSMbmRBCCHHmDDdhXaKUukZr/fIZjUaIERY3LWraguxf2t0QCHPP05u5uCqL7948GaXUyAYohLiQ/RS4Qmu9G0ApVYldAFESViGEEOet4Sas7wBPD7a4iWP/ZldrrVPPWGRCnGXRhMndD65i1d7AIe9XZPv5zYercTmO2bZYCCHOtOD+ZHXQHiA4UsEIIYQQZ8NwE9afAQuAzXo0lBUW4gRprbnnqS2s2hvgm++fQHm2f2jf3PJM0pKkc4QQYmQopW4bfLpGKfUC8BiggQ8Aq0csMCGEEOIsGG7C2gBskWRVnK9+++YenlzXyL9cNZbPXV450uEIIcTBbjroeRtw+eDzDsB79sMRQgghzp7hJqx7gDeUUkuA6P43pa2NOB+8uKWVH7+4g5umF/LlK8eOdDhCCHEIrfUnRjoGIYQQYqQMN2HdO7i5Bzchzlmvbm/jd8v2YFnDmxCwpbmXGSXp3H/HNCmqJIQQQgghzphVLav407Y/ERgIMC1nGleNuYrqvGpiZoz/2/x/vN30NgOJARaNXcQHx38Qr1Mm0gwrYdVaf/dMByLE6bChoYcvPLyOvFQvJZm+YZ1z5cQ8vn3TJLwuxxmOTgghhBBCnC8SVoLFtYtRKK4ccyWpbrsebcyMETEjpLpT2dO7h/reeuYXzud3G3/Hg1seJMubRXlaOU/teoq/7vgrmd5MPA4PLf0tzM6bjcvh4r/W/Bcv7n2Rb83/FmmeNPwuPxneDLoj3fRGeylLKyNuxXEZx66zEjfjxK04PqcPpRR7evawPbCdl+tepqW/hYr0Csamj6U6r5qcpBziZpyYFSPTm8mTNU8ykBhAo6nvqyfbl02OL4cFhQuwtMXatrWEE2G+NPNLZ/T7rIazLFUp9Tp2gYdDaK3fdyaCeq/Zs2frNWvWnI2PEqNYc88AN//qbXxug2e+cDFZyZ6RDkkIcY5SSq3VWs8e6ThGM7k3CyHOd1prdgR2sKJ5BVu7ttIcaibdk05OUg6FyYW8vu91tge2A+AyXCwoXEBpSil/3/N3eqI9pLhTCMbsYu5eh5eIGeGOrFl8o7kOb38X4YKpvJ5fyQoVpTnUwmeiiovqN0AsxKsTruCbwS0MmAND8UzPmc6enj0E40HGZoyltqeWKVlTuKXqFi4puoS+WB9vN72NoQwUinXt61jZvJKIGWFcxjhyknJY0bQCjSbZ6WdCSinNsR6a+1sAcBpOTMtED6Z9CoXDcGBaJkXebPrMAYLx/qH9APneLF6+8/XTMkvxaPfm4Sas1Qe99AK3Awmt9ddPObJhkJuiOJ7+aII7fruSxkCYJ79wEePyUkY6JCHEOWw0JqxKqVrsNnPLgeVa660jGY/cm4UQ56uOcAdP1DzB07ufpmUwmStOLqY0pZTeWC/t4XY6BjrI9mZyj6ecfIePF/w+Xg9spSXcyhW5c5jqy6dRR6myDMbEYyxWYSo66/hczTtE0sfSkzKOnO51OEMtgAKnF8tKUJt5OaZpMr5nOc2ZRWydcQdhw0mHOcDirvUUuFKZ7s1lRbSdKUmFvNNTw56+vUf8Ogr9BVyWWkWOcrEkWEtMJ7jOkcH7+8Pk1a0iJR4GYHNWKa05VbzliJNsWUzQLtocBpfueZdxA/1ElcI7mDO2OZ1sza3CtBLMbt9DsjMV1z31p+X7fkoJ61EuuEprPfeUIxsGuSmKYzEtzef+spbXdrTxh4/PYeH43JEOSQhxjhulCasHmAdcClwMjAc2aa0XjUQ8cm8WQoxmpmXSHGqmIdhAU38T7eF2moJN1HTXUNtTS0InuDhvDte6srks0EpWy2borgNvGvhziKQW4Wxah3Mw6cOKo5PziWSU4mtYddTPfTjlU3yr4wo0BgqL69MbuS19N6nRFv697XJqrGJcDsUUq4Y/+X9BaiJw4OSkbPRAAKUtcHjAjKK9adSMu4qNGXnoWIhrOptxo0iYcVKa1mFE+wDQygBloKwETe4K1saKWRafSL7q5ib3OgqMACmJbhLKRciRRmoiwFKrmvVmJR7i7NAlJDPAGKONOe59aG3xZmwC+1zlPHDvv6EM45T/TI52bx7WGlalVOZBLw1gNpB2ylEJcRr85MUdvLK9je/cNEmSVSHE+cwE4oOPFtA+uAkhhDgBNd01fO3Nr7G398DIpEKRm5TL2PQqLksewy2t9Yx592nQFiTnQ/FsmHQLREMQasXbs494yQL+mPxJ+pyZ3OzbwJjOt/AGdrNn6lfY7aqiwGrn3VAO64OpfDTpXZ7al8RLwdl868ZxVI/JYHNjD0u35/HPdeX0x0w+flEZf7tyLIZS/ObNcha8WUyZasNDjAJHL59gDTtJY2W8gps8O1kWLeFqazcXbV3CeNNOnDs8JYSVF601r8fn8mxsJi06ixudq/Aok6fj8wgmTWRSSSoXVWbT1hfhyzvaae2LkBvdQ8LwEfYX0xmLcM3kfGaVZpCwNB/OTyEcM2kIhPlbSx+GUsyvyOSG/FQ4w0VLhzsleC/2GlaFfbOsA76ntX7rGOd4gWWABzsxfkJr/W2lVDnwKJAFrAXu1lrHjvX58ltccTR/W72Pbzy5mX9YMIbv3TJlpMMRQowSo3SENQxsBn4GvKK17hrJeOTeLIQ4VzWFmlhcu5gX9rxA3Iozv2A+M3Jn4HF4aOtv41cbfkWKy8/ni66kPG5SNNBHTrATV/deaN8BVhySsmDm3QyMv5nlfYW8s7ebXe1BXA6DJLeDLL+bl7e10doXwVAK09KkeJyk+100BA6sO/W6DEoyktjVHiIv1cNfPjXvsKVrlqUJxRKkeg8toLR8Vwfr9/VgWpqecIwXtrRSkuFjTlkmK2q7mFWaztp93dQ0dVGpmlFoGjyV+FxOHIZiRkk6V0/Koyjdx9JtbcRNi5umFzK7LJMj2dbch9/jYEyWH631We+ecaprWO8EXtRa9yml/gOYBXxfa73uGOcowK+1DimlXMBbwJeBrwBPaa0fVUr9FtiotX7gWJ8vN0VxJCtru7j7wXdZUJnFHz8+B6fj1KciCCEuDKM0Yb0FuASYC8SAFcAyrfWrIxGP3JuFEOcarTV/3PpHfrHuF2itmZs/F7/Lz+rW1QTjwaHj5qWN5b5d68nuH5xu6/RCWjFklEHeFCicyVrPPP7f6lZe2dbGQNzE4zSYkJ+CqTX9UZOuUJSSzCR+cOsUKnKSWb6rg7d3d9HYHeb2WcVcVJlFW1+U8hw/yR4ntR0h0nwuss9AUdDmngE2N/XiUIqF43NYJrB3AAAgAElEQVRG7c/EpzQlGPiW1voxpdQlwPuA/wIewF5Lc0TazoRDgy9dg5sePP/Dg+//CfjO4LWEGLa6zn4+//BayrL9/OrDs0btP0whhBgurfWzwLNKqQnA+4F/Ab4ODK+HlxBCnMdiZozvrvwui2sXc23BxXxVp1OwdTEkIiRKF9BUUoWpDFRfM2PWP4qRNwVu/yNkj4eUfPpjJjta+1hT181Lb7aybt860pNc3DariBumFVA9JgOP8+gtEG+cVsiN0woPeS839UAP1cqc5DP2tRem+yhMP39vBcNNWM3BxxuA32utn1dK/eB4JymlHNjTfquAXwO1QI/WOjF4SCNQdGIhi/NBJG7yTw+vY0NDz0md3x9L4HM5ePBjs0nzHbv/lBBCnA+UUk8C07HvpcuAfwDeHdGghBDiDGoONVPfV09XpIuugS7awm20hFroHOikMLmQSVmTyPBmsL59PSubV9IUauILGTP4xxWP2tNZq66CpGyc9W8xZsffD1x41j+wZtI3Wbqzlx1vNLCrbRvNvZGh3ZU5fr5782TunF2Cz330JFWcHcNNWJuUUr8DrgZ+PFip8LhDWlprE5ihlEoHngYmDDcwpdRngc8ClJaWDvc0MQporfna4xt5bWc7t88qxus68dFRQynunF3CmCz/GYhQCCHOSf8JrB+8twohxDlDa83Gjo0s2buEDG8G07KnMSVnCqnuVJpCTaxtW8u6tnW4HW6uLL2S6rxqnIZz6NxAJEA4ESZuxhkwB1jVsoqX6l5ia9eh3bt8Th/5/nyyvFmsaVvDC3tfACDZlczs3Jl8w0zhinWLYcodcM0PILXgwMmRPlAGlnLyq+UN/PeD63EZBpW5ycwtz6QqN5lxeSnMGpNxRqbtipM33IT1TuA64L+01j1KqQLg34b7IYPnvA4sANKVUs7BUdZioOko5/wv8L9gr5MZ7meJc9/PX9nF3ze18I3rJvD5hZUjHY4QQowKWus1SqkpSqlJ2D3R97//5xEMSwgxysStOCubV6JQTMmeQoY346Sv1R/v5/k9z/PYzsfY2b0Tj8NDzIyhsX90z/Bk0B3tBiDFnULcjPPIjkfI8GQwO382beE29vbuJRgLHnbtKVlT+Mqsf2VqWgVZ8QSZsTCpfa2o7jrobYDUOXSVltJlKCrbduHYshR69sEV36J3zpd5an0Tj65aRjASZ3JRGhU5fgZiJjtagqyqC7BoZhE/XDSFJPdw0yExUob1J6S1DgNPHfS6BWg51jlKqRwgPpis+hgcnQVeB+7ArhT8MeDZkwtdjEaLNzbzi1d3cUd1Mf94ecVIhyOEEKOGUurbwEJgEvAC9jrWtwBJWMWotq9vH/n+fNwO90iHMmpFzSjNoWbiVpzSlFK8Tu9hxzQEG3hq11M8vetpuiIHiowXJRcxOWsyU7KnUJhcSKY3c2hL86RhqAMz4RJWgq1dW3m35V1Wtaxifft6YlaMCZkTuHfBvdxQfgOmNtnSuYXNnZvZ17ePSVmTqM6rZqzyENEWbwdrWVq3lE2dmyhKLuL68uspSy0j1ZOK23DjMpyMj5sU734TXv4JBN+Tcjh9kFYEu18hKx4mC8Dlh7JL4P0/4dmBaXzzvtcIx0yml6QzPj+Frc29vLGzHb/HSbrPxfdumczd88ec9Sq44uQMq0rwSV1YqWnYRZUc2NOHH9Naf08pVYGdrGYC64GPaq2jx7qWVCIcHbTWPLWuiaaegSPuj5sWv1u2hxnF6Tz06Xm4nVIoSQgxMkZpleDN2GtY12utpyul8oCHtNZXj0Q8cm8Wp8PfdvyNH7z7A1yGi4lZE5mWPY3pOdOZmjOVQn+hJBQH0VrTFm5ja9dWdnXvojHYSGOokcZgI+3h9qFRTYWiKLmIivQKKtIqyPfn80bDG7zT8g6GMris6DJuG3sbye5ktnRuYUvnFrZ2baUpdMRJjwAYykCh0GgsbQEwPmM8cwvmcm3ZtUwznai1f4DNj4M3HQqmQf50SC2EhndhzxvQU29fLH8qjHs/lM6zR0TbtkHHDhjogVgIIr0wEACHG8ZeA6UL7Km9KYV2Fd+UfLvvp2XZ1xwIQN5ULMPFz1+p4Zev7WZuWSb/ceMkphanneE/FXE6nVJbm5EmN8XR4dev7+b+l3Ye85gJ+Sn89TPzyfTLb1GFECNnlCasq7TWc5VSa4ErgCCwXWs97PoQp5Pcm8Wp2tu7lzufu5PJ2ZOZmj2VTR2b2Na1jYhpF7/J8mYxLWca03LsJHZy1mSSXEkjHPXZ0xvtZVPHJrZ0bWFb5za2dG2hc6BzaH+uL5filOIDW3IxLsPFnt49Q1tdbx1xK06Bv4BFYxexqGoR+c5k2F+AKH8qZI8Dh4veaC/t4XYCkcDQ1hftw8LC0hb7c4bxmeOZmz+XjEQcdr8K6/4M+1aAwwOTbgYrAS2bIFBrf4Yn1R79LL8cEhGoedFOYgcTX9wpkDsB/DngTga3Hwpn2tfyHTpduT+aoKYtyN7OftKTXBSm+zCUYllNBy9uaWVNfTcfqC7mh4umysDIKHSqbW2EOKYXNrdw/0s7uWVGIT/9wPSj/kbUUMhvS4UQ4uSsGSxi+HvsCvwhYOXIhiTEyYlbce5Zfg9uh5ufXPYTcpNyh97f1b2LTR2b2NSxic2dm3m94XXAHuWrSq+yk9jBkdiytLJDpqyeL95oeINvLPsG4UQYhaI8rZwFBQuYnG1P3R2XMQ6f86A2JmYC+hohEYXiheCypwQnrAQd4Q5yk3JxtG6C1+6zR0FjoQPnOtyQO5G0vKmkpRaCL90eJfWlQ2qxnVhq0x7RTAzAzmWw5HvQtsU+P6PcLnA04yOQlHngupE+6GuGrCpwHJRyXPIv0N9ln59ZDmkl9ojpe/SEYyxZtY+tzb3Ud4XZ29lPY/eRZ/EBVOUmy1Tf85SMsIpTtqmxhzt/t5JJBan89TPz8bqk/LcQ4tw22kZYlf3TV7HWumHwdRmQqrXeNMzzrwN+gb1M5/+01vcd5bjbgSeAOVrrY9545d4sTsUDGx7gNxt/w/2X3891Zdcd89ieSA+bOzezqfNAEru/SE+OL4dbq25l0dhFlKSUnLb4ApEALf0tjM8YP1TN9mzQWvPnbX/mp2t+ysSsiXy1+qtMyppEsjsZtIa+JmjdbE+h7a47sPU02EklAArSiiGzArIqITkPdr4ALRvt9Z9TboNZH7MT0pZN0LrJvmbbFujvBI6TGzg8MGYBVCy0R00LZoBx7F8aROImq+sCJCxN9ZgMUr0HWhJqrWnujdARjBLoj9IRjPLq9nZe39lO3NSk+VyUZfsZk5nE2NxkxuenUJGTTF8kTnPPAOGYyYKKLEoyL5zR9/OVTAkWJy0SN4kmrCPuC/TH+ODvVuJyGDz7xYulDLgQYlQYbQkr2GtYtdZTT+I8B1CDXfywEVgN3KW13vae41KA5wE38EVJWMWZsrljM3cvuZvryq/jvgXfg5ol9khe7gR7OuhxWNqirq+Oje0beXXfqyxvWo6lLeYVzOP2sbdzZemVJ1XAKWElWNG8gqd2PcWbDW+S0AlS3CnML5jPRYUXcXHhxRQkFxz/QicpbsX50bs/4omaJ7h6zNX8cMo/4mveCK0b7YSyZZO9XnO/pGx7TefBm9MDgT3QVWs/BmphoBvypkL1x2DqB+xE9WgsC6J9EOk5sKZUGaAcYDjAcELOeHD5DjktmjB5flMLT61rwuVQFGckUZzhI8ntYPmuTt7a3Uk4ZifUhoKJBamMz0uhPhBmZ2uQUDRxyPVyUjzcMr2QRbOKmFSQKiOmFwiZEixOSl1nP1f/95vEzaP/YiPZ4+TJz8+TZFUIIc6sdUqpOVrr1Sd43lxgt9Z6D4BS6lHgFmDbe477PnY1/2G3rRPiRA0kBrjnrXvI9mVzz7x74JVvwzu/Gdyr7FHBvMmHbullh4zgGcqgIs0uKLRo7CJa+1t5dvezPL37ab6+7Ouke9K5seJGbh97O1UZVceNqb6vnmd2P8Pi3YtpH2gn05vJRyZ+hIlZE1nVuoq3mt5iaf1SACrSKuzktehiqvOqD52W+x4xM0YoHsLr8B537W1vtJevvvFV3m19l89M/Qxf1GkYv7kIrPjglN1JMPFGyJ9mb7kTwZt63K8NgGjI/kXAcJI+w7ATWl86DKPbTXtfhIff3cfD7+6jMxSlLCuJJLeTtfXd9EXsJLQwzctts4q4ckIebqfBqr0BVtcFeGt3J2XZfm6bVcS4vBQK071kJLnJ9LspSvfhdJx/U73FyZGEVRxTbUeIuKn5zKXl5Kcd+T/liyqzGJ+fcpYjE0KIC8484CNKqXqgH1CA1lpPO855RUDDQa8bB681RCk1CyjRWj+vlJKEVZwxP1vzM+r66vj9Nb8nde8KO1md9TEYezW0bT2wbX+OoampLr+doOVNhrwpkDfJTuAG10vm+/P53PTP8Zlpn+Gdlnd4atdTPLrzUR7a/hDTc6Zz+9jbubbs2kOSxnA8zNL6pTy9+2nWtq3FUAaXFl3KPVX3cFnJZbgMe8rqDRU3oLWmtqeWt5vfZkXzCh6veZyHtj+E23AzM3cmXqeXUDxEf7yfUGzwMR4ibsUBO8GekDmBOXlzmJ0/m1l5s0h1H0g26/vq+eKrX6Qx1MgPL/oeN9eugnf+AyqugGu+DzkTwHFgCu0J8ySf/LlH0BAI89LWVl7e1saaugCWhvdNyOXjF5VxSVU2hmEnxr0DcfoG4hRn+A4ZIb24Kvu0xiPOfzIlWBzTY2sa+PoTm1j+9StkbYAQ4rwxSqcEjznS+1rr+uOcdwdwndb604Ov7wbmaa2/OPjaAF4DPq61rlNKvQF87UhTgpVSnwU+C1BaWlpdX3/MjxbiEG83vc0/vvKPfHTiR/nGhLvhgYvtfpqfemWoSNCQWD+074D2g5LYti329Nb9UougeDZMud1uf3LQNNVAJMBztc/x1K6n2NO7B7/Lz/Xl13NJ0SUsa1zGi3Uv0h/vZ0zqGG6tupWbK28eKvxE8wZY8yB07ravX3YJlM4Hr90iJZKIsLZtLW83v82aVvufid/lJ9mVjN89+Og68BiIBFjTtoZNHZuIW3EUivGZ45mdN5vytHJ+uf6XKBQ/v+gHVL/5C6h9FeZ93i5k5Dj9Y0sbG3r4v7f20jcQJyfFQ3ayZ/DRjaEUCcsibmripsVAzKQzFKMzZK8tbeoZYHe7XbBpQn4K10zOZ9HMIsqzjz+VW4jjkTWs4qQ88EYtP35xB9u+dy1JbhmQF0KcH0ZjwnqylFILgO9ora8dfP1NAK31fw6+TgNqsasOA+QDAeDmY61jlXuzOBE9kR5uW3wbqe5UHr3+YbwP3wnN6+Fzb0L22OFdRGsIth5IXtu2wJ43ob/dbo0y8SaYejuULxxK9LTWbOjYwJM1T/JS3UtEzAg+p4+rx1zNbWNvY1buLHv0LxaGrU/B6geheZ1dnCh3or121Irb6zjzp8KYiwe3iw6tiHskZtxOsB0u8GUQSUTY3LmZNa1rWNO2ho0dG4maUSrSKvjVzK9Rsvhf7QJKN/zUXm96mr27p4tfvb6b5bs6SfU6GZPlH0pEE9bR8wGXQ5EzmNTmpHiYW57JtZPzGZMlSao4vWQNqzgpgf4oXpchyaoQQoxeq4GxSqlyoAn4EPDh/Tu11r3A0By9Y42wCnEytNZ8/53v0x3t5tdX/hrvyl9D/Vtw6wPDT1bBXoOZWmBvY6+y3zMTULccNj9hTyPe+Fe7n+ekW2HqB1Alc5mZO5OZuTP5xtxvsKljE9NzpttVdwE6d8GaP8CGhyHSC9nj4f0/gWkftNdxxsLQtAbq3ob6t+1j96+5zZ1kj7wqh10MKRywE9SBAIS7YbCSMQBZY/EWz2FOyRzmFF8K0z5LTJvs6tlFeWc9SY98xC5o9LHFdjJ8grr7Y6yuC9DcM4Db6cDjNHA7DTxOg2jC4i8r61lVFyDL7+br143n7vljSBms1GtZmt6BOF39UbQGl8PA6VC4HQYel4NUr1OKHokRJVmIOKauUIwsvxRTEkKI0UprnVBKfRF4CbutzR+01luVUt8D1mitF49shOJ89/ze53m5/mX+eeY/MzHUDW/8J0y9E6bfdeoXdzih8gp7u+GnsPsVu8/o+r/A6t9DWqndxmXqB0jJm8zFRRfbI59bn7ZHU+uWg+GyR2fnfMoePT04OXMnQfll9gZ2n9OmdXbCXb/CTpQNB/gywZcBybn2mlNfhj0C68uwq+42rIZdL9kJNYA7BXfRLCZnjIH1D0HORLjrEcg44sz/w7T2Rnh3bxer6wKs2hugpi10zOML0rx8+6ZJfGhOKT73oe0HDUOR4XeT4T/xyspCnA2SsIpj6uqPkZUs/4EJIcRoprV+AXjhPe/de5RjF56NmMSFobW/lR+98yNm5MzgExW3wP8utNuv3Piz4VWtPREur11Jd+KNEA3CjufthHLF/8DbP7cTydIFdk/SUJudzF55L8y82040h8M52IN0zIITj09r6N5rJ6+Nq6BhlT1qO+EGuPW3xyyOFE2YrN7bzRs77f6ktR39gN2poXpMBrfMKGJueSYV2X4SliYat4gm7LaECUszsSAFj9Nx1OsLcS6ThFUcU1d/lBxpVyOEEEKIE2Rpi2+99S0SOsGPLvkhzuf+BULt8Oml4DnD3QU8KTD9Q/bW3wnbnoHNT8K6P0PVVfZoatVV9ujo2aIG2/ZkVsD0D9rvWeZRY2jri/DqdjtBfXuwj6nbaTC/Iou75pYyvyKLCfkp0v5FnPckYRXH1BWKMT5vmH2+hBBCCCEGPbz9Yd5tfZfvLPgOJTtegp3PwzU/hMKZZzcQfzbM+bS9WdYhPV1H3FGS1Ve2tfHFR9YRiVsUpfu4bVYRV4zPZUFlltQVERcc+RsvjkprTVd/jGyZEiyEEEKIE1DbU8vP1/6chcULuS1lLPztKrv1zPwvjGxg51KyehSPrtrHPU9vZkpRGvffMZ1xeclS9Ehc0CRhFUcViiaIJSxZwyqEEEKIYYubcb65/Jv4XX6+PfvfUH++zS4+dOsDoyJhHClaa3756m7++5UaLh+Xw28+Mgu/R35UF0L+FYijCvTHAMiUKsFCCCGEGKYHNj7A9sB2fn7Fz8l+/cfQtRv+4Vl7aq44ooRp8R/PbuWRVfu4fVYx990+FZesTRUCkIRVHENnyE5YZYRVCCGEEMOxoX0DD255kFurbuXKngBseAgu/RpUXD7SoZ2zInGTLz2ynqXb2vjCwkr+7drxMgVYiINIwiqOav8Ia5b05RJCCCHEcYTjYb65/JsU+Av4RtUH4cHroGQ+LPzmSIc2ItqDETY29NIVipLmc9lbkv2YnuTG73bQOxDnU39aw7p93Xz35sl87KKykQ5biHOOJKziqLpCUQCypK2NEEIIIY7jJ6t/QlOoiT9e/XuSn/2ivV719t+DY/T9uBlLWDR2h/F7nKR4nfhcjmOOeoaiCTY39rKxsYeNDfbW3Bs55mc4DYXTobAs+PWHZ3H91ILT/WUIcV4Yff+DiLOmS0ZYhRBCCDEMbza8yZO7nuSTUz5J9ebF0Lwe7vwLpJeOdGgnxLQ0z25o4qcv19DUMzD0vsNQJA8mr8keJ6leF8leJ16Xwe72ELvaQ2htH1uamUR1WSafLE5jRkk6Bek++gbi9ITj9A7E6R2IDT0PRRPcMqOQ6jGZI/QVC3Huk4RVHFVXKIbf7cDrOotNtYUQQggxqgQiAe5dcS/jMsbxT8kT4LkPwexPwaSbRzq0YdNa80ZNBz9esoMdrUGmFKXypfdVYWpNMJIgFEkQjMQJRhNDr9uDEcJRkzFZSVw/tYDpJelML04n8wi/6C9K943AVyXE+UESVnFUgf4omVJwSQghhBBHobXmuyu+SzAW5PcX34f7rx+F3Mlw7Q9HOrRhW7+vm/uW7ODdvQHGZCXxy7tmcuPUAgxDCh8JcS6QhFUcVVd/jCxpaSOEEEKIo3i29llea3iNr1V/hXGv/ghi/fCBP4Lr3B9RrO0Icf+LO3lxayvZyW6+d8tkPjSnFLdT2skIcS6RhFUcVWcoRlG6d6TDEEIIIcQ5qDHYyH2r7mNO/hzu7uqEvcvg5v+BnPEndB3T0oSiCUJRe9ptKJI4ZOptKBonGEkMbaFofPDYBIZSFKR5KUjzUZjupTDdR0Ga/ZiT7DniKGlrb4RfvFrDY2sa8ToN/vWqcXz60nL8HvmxWIhzkfzLFEcV6I8ytSh1pMMQQgghxDmmL9bHv7/17ygUPyi/A+ORj8Lk22Dm3Sd0ndd3tPNPf11HOGYe8zilsIseeZwke52keF1kJLkxLc3OtiBv7OxgIH7oNZyGIi/Ve1Ai6yOaMHlk1T5MS3P3/DF88X1VZEs3BCHOaZKwiiPSWhPoj0lLGyGEEEIM2RHYwaM7HuWFvS8wkBjgR3P/ncLnvw5pxXDTz+3McpgaAmG+/Oh6SjOT+MDskqFkdH81Xrsir12NN8nlOOaaUq01vQNxmnsitPQO0NwboblngJYe+/m6fd209raQsDS3TC/kq9eMpyQz6XR8S4QQZ5gkrOKI+iIJ4qaWljZCCCHEBS5mxni5/mX+tuNvbOjYgNfh5fqK6/nguDuZ9Op9EGyBT74M3rRhXzMSN/n8w2vRwP/ePZvSrFNLHpVSpCe5SU9yM6nwyLPDLEsTSZgkueXHXyFGE/kXK46oKxQFIEuqBAshhBAXpOZQM4/XPM5Tu54iEAkwJnUMX5/zdW6uvJk0TxqsfhC2L4arvwfF1Sd07e8+t40tTX38/h9OPVkdLsNQkqwKMQrJv1pxRIH+GACZUiVYiP+/vTuPj6o8+z/+ubIAgbBlAdnXAKKASEAQURGr+FSLRcW1tVZF/XW3tdVuam2fau1qn9ZHcMOqRauAuLcV+riiIGAAWRIQgQhCErYkkEky1++POcEYgiQmk5kk3/fr5SszZ86cc83hNsk3933uW0Sk1Qh7mLc+eou56+byav6rAJze+3QuHnYx43uMJ8ESoGgT/Oc38M5sGDQFJnyrXud4+t1t/P2dLVx/2iC+MLx7ND6GiLQgCqxSq4LiSGDVkGAREZGWb2/ZXhbkLeCJ9U+wdf9W0tqlcfXxVzNj6AyO6XAMhMOQ+69ISM37N1gCHHsefPF3kFD3ZWDW7djHTxas4qQBafzgrCFR/EQi0lIosEqtqnpYNSRYRESk5VpTsIa56+fy4gcvUlZZxondTuRbo7/FmX3PJDkxGUqL4I17YNkDsHszpHaH034IY74GnXrW61z7D5Zzw6PL6dgumT9fNpqkRK13KiJHp8Aqtaq6hzVNPawiIiItysGKg7y8+WXmrpvL6sLVpCSlMG3QNGYMncHQtGAN1Y9WwDv3w+qnoOIg9D0Zpvwchp0HSfX/3cDd+eFTOWwpKuXxa06iW0et8y4idaPAKrUqLAnRsV0SbZMSY12KiIiINIKt+7by5IYnmZ83n71lexnYeSC3jLuF8wadR8c2HaGiDN6bGxn2m78MktvDqEth7DVwzPENOveDb2zmxdU7uOWcYZw0ML2RPpGItAYKrFKrwpKQ7l8VERFp5irDlbye/zpz18/ljfw3SLAEzuh7BpcOu5Ts7tmYGezZCq/+HpY/AqUFkD4Ypt4ZCaspXRpcw7LNRfz6hbWcNbw7M08d2AifSkRaEwVWqVVhcRnpqZohWEREpDkKVYaYnzufh9Y8RH5xPpkpmdww6gYuGHIB3dp3i0yitGlxZNjvhhcjbxpyDoy7BgacXq+JlD5LQXEZ33h8Ob26pnD3RaMiAVlEpB4UWKVWRSUh+qQ1zbpoIiIi0jiqgursVbP5uPRjTsg8gRvH3MjkvpNJTkiGg3thyb2w9H4ozIP26TDxu5B9FXTp26i1VIad78xdwZ7Scub9v7F0Tklu1OOLSOugwCq1KigOMbpvw4cBiYiISPSFKkMsyFvA7FWz2VGygxMyT+COiXcwvsf4SK/mx2si96bmPAnlJdArG748C447H5KiM6Lqj//ewBt5hfzmgpEc17NzVM4hIi1f1AKrmfUBHgG6Aw7Mcvc/mVka8ATQH9gMzHD33dGqQ+ovHHZ2l4Y0Q7CIiEicK68sZ37e/ENBdVTmKG4/+XYm9JiAhSthzfxIUN3yJiS1g+MvjAz77Tk6qnUtXreTPy/KY0Z2b2aM7RPVc4lIyxbNHtYK4PvuvtzMOgLvmtm/gK8Br7j7nWZ2M3Az8KMo1iH1tPdAOZVhJ72D7mEVERGJR1VB9f5V97O9ZDsjM0dy+4TbmdBzAuYO7y+ARb+Cwlzo2h++cAeMvgLap0W9tq1FpXz3iZUc26MTv5jWsNmFRUSiFljdfTuwPXi838zWAr2AacDpwW5zgP+gwBpXCktCAKSnqodVREQknpRXlrNg4wJm58w+FFRvm3BbJKgC5P4LFv0CdqyCzGEw4xEYdi4kNM0ydWUVlXzj8eWEw869l59Iu2QtjyciDdMk97CaWX9gNPA20D0IswA7iAwZru09M4GZAH37Nu4kAPLZCovLANTDKiIiEifKK8t5ZuMzzM6ZzUclHzEyYyS3TriVk3ueHLlHdfMb8MovYOsS6NIPvnwfjLioyYJqlTuee5+cbXu57ytj6J/RoUnPLSItU9QDq5mlAk8D33X3fdWnM3d3NzOv7X3uPguYBZCdnV3rPhId6mEVERGJD7UF1Z9N+BkTe06MBNX85bDoDti4CFKPgS/+HkZ/BZKa/mf4ghX5PLpkC9edOpCzjzumyc8vIi1TVAOrmSUTCauPufu8YPPHZtbD3bebWQ9gZzRrkPo7FFg16ZKIiEhMlIfLWZi3kNmrZpNfnM+IjBGfDqo718HiX8LaZyElLXKP6rhrITklJvVu+Hg/t8xbxbgBadx09tCY1CAiLVM0Zwk24AFgrbv/vtpLC4ErgTuDr89Eqwb5fKqGBHdVYBUREWlSNaqWhzoAACAASURBVIPq8enH85OTfsIpvU6JBNWiD+A/d0LOE9AmFU6/Bcb/P2jXKWY1F5dVcP2j79KhbRL/c+lokhITYlaLiLQ80exhnQh8BVhlZiuDbT8mElSfNLOrgQ+BGVGsQT6HopIQnVOSSdYPHBERkSZRHi7n2Y3PMitn1qGg+uOTfsykXpMiQXXfdnj1blg+BxKS4ORvwsTvQYf0mNbt7vzo6Rw2F5Tw2DXj6dapXUzrEZGWJ5qzBL8O2BFenhKt80rDFRaHdP+qiIhIEygPl/Pcxue4L+c+8ovzOS79uE8H1ZJCeOMPkbVUwxVw4pVw6k3QqUesSwfg4Tc383zOdn40dRgTBsU2PItIy9QkswRL81JYUqb7V0VERKLoqEH14D5Y8ld4838gVAwjL4bTb4a0AbEu/ZB3P9zNr55fy5nHdue6UwfGuhwRaaEUWOUwhcUhBmWmxroMERGRFqcqqM7KmcW24m0MTx/OLeNu4dTep0aCavmBSG/q63+AA0Vw7Hkw+SfQ7dhYl/4puR/v55uPL6dHl3b87qJRJCQcaVCdiEjDKLAK9/3fRp5Z+dGh5x8UlDB2QFoMKxIREWlZKsIVh+5R3Va8jWPTjuXPZ/yZ03qfFgmqFSFY8bfIfar7t8OgKXDGT6HXibEu/VPCYeehNzdz10vrSG2bxOyvjqNz++RYlyUiLZgCayv35NKt/PrFdYzq04XM1LYA9O6awvTRvWJcmYiISPNXEa7guU2RHtWt+7ceHlTDlZDzD/jPr2H3ZugzHi64H/qfEuvSD5O/5wA3/eM93txYyJRh3fj1BSPo1lGTLIlIdCmwtmJLNhXy4/mrmJSVwYNfG6tZgUVERBpJaXkpL37wIg+sfuBQUL1n8j2c3uf0SFB1j6yhuuiXsGsdHDMSLn8KBp8JFl/Da92dBSvz+fkza6gMO3dOH8HFY/tEPoeISJQpsLZSmwtKuP7Rd+mX3p7/uexEhVUREZEGcndyCnKYnzufFz94kdKKUoalDeNPk//E5D6TPwmqea/AojvgoxWQngUXPQzHToOE+PtZvLskxE8WrOKFVTvI7teV380YRb/0DrEuS0RaEQXWVmhvaTlfn7MUAx782lg6p+jeExERkc9r98HdPLvxWebnzSdvTx4pSSmc3f9spmdN54TMEz7pidyyBF65Az58HTr3hWl/jcz+mxifv44tXr+THz2Vw+7SED+cOpTrTh1EoiZXEpEmFp/fISVqyivDfOPx5WwtKuXRq0/SX0lFREQ+h7CHWfLREp7OfZpFWxdREa5gRMYIbp1wK1P7TyW1TbXZ9rfnRIb+5r4MHbrBOXfDmCshqW3sPsBnKA1V8Kvn1/LY21sY0j2Vh64ay3E9O8e6LBFppRRYWxF357aFa3g9r4C7LxzJSQO1wLeIiEh9bC/ezoK8BczPm8/2ku10btuZS4ZewpezvsyQrkM+vfOu9ZHJlNbMh3Zd4MzbYNxMaBO/fyxevmU3Nz6xkg+LSrl20gC+f9ZQ2iUnxrosEWnFFFhbkYff3Mxjb2/h+tMGcVF2n1iXIyIi0iyEKkMs3rqY+bnzefOjN3GcCT0mcOOYGzmj7xm0SWzzyc6VFbDhJVg6Gzb9B5I7wKk3wYRvQkqXmH2GoymvDHPPK7n8ZXEePTqn8PdrxzNef9gWkTigwNpKLF6/kzuee5+zhnfnh2cPjXU5IiIicS9vdx7z8ubx3Mbn2F22m+7tu3PdqOs4f/D59Eqtsfxb8S5YPgeWPQT7tkGnXpF1VMdcBR0yYvMB6ij34/1878mVrM7fx4VjenPrecPp2E7zW4hIfFBgbYFKQxVcM2cZK7bsObStrKKSY3t04o+XnECCJkwQERGpVWl5KS9tfomnc58mZ1cOSQlJTO4zmelZ05nQYwKJCdWGx7rDtqXwzmx4fwFUhmDAaXDOnTDknLidTKlKOOw89OZm7nppHaltk/jfK8Yw9fhjYl2WiMinxPd3Uqm3cNj53hMrWbKpkMtP6kdKm8gP1rZJCXxlQj/at9E/uYiISHXuznu73mN+XmQ5mgMVBxjYeSA/yP4B5w48l/SUGkNjQ6Ww+ml4ZxbsyIE2HSM9qWOvgcwhtZ8kzny05wA/+Md7vLmxkCnDuvHrC0bQrWO7WJclInIYpZcW5u5/ruflNR/zs3OHc/UpA2JdjoiISNwqOlgUWY4mdz4b924kJSmFqf2nMj1rOqMyR32yHM2hN2yCpQ/Aikfh4B7IPBa++LvI0jRtO8bmQ9STu7NgZT4/f2YNlWHnzukjuHhsn8M/q4hInFBgbUGeencb9/5nI5ed1JevT+wf63JERETiTmW4kiXbI8vRLN66mIpwBSMzRnLbhNuYOmAqHZJrzOAbroS8f0eG/eb9GxISYdi5MO5a6DcRmlHQ210S4qcLVvP8qu2M6deV388YpeXtRCTuKbA2E+Gw8/g7W9i2+0Ctr5dXhnnkrc1MHJzO7V86Tn8pFRGRQ8xsKvAnIBG4393vrPH6jcA1QAWwC/i6u3/Y5IVG0UfFHx1ajmZHyQ66tO3CJUMvYXrWdLK6Zh3+htIiWPG3SI/qng8h9Rg47Ucw5mvQqUeT199Q/1m/kx8+lcPu0hA/nDqU604dRKLmtBCRZkCBtZn44783cM+iPNokJsARfr4M79mZv142huTEhKYtTkRE4paZJQJ/Ab4AbAOWmtlCd3+/2m4rgGx3LzWzG4DfABc3fbWNK1QZYtHWRczPnc9bH70FwISeE/h+9vc5o0+N5Wiq5C+HpfdH7lGtOBjpRT3zNjj2PEhsfjPnloYq+O8X1vLoki0M6Z7KQ1eN5bienWNdlohInSmwNgPPrMznnkV5XDSmN7+5cKR6T0VEpD7GAXnuvgnAzOYC04BDgdXdF1fbfwlwRZNW2Mhyd+cyL3cez216jj1le+jRoQfXj7qe8wefT8/Unoe/ofxgZJbfd2ZD/rLI2qknXBaZRKn7cU3/ARooHHbe376P13ILeGLpFj4sKuXaSQP4/llDaZecePQDiIjEEQXWOPfuh7u56akcxg1I41dfHqGwKiIi9dUL2Frt+TbgpM/Y/2rgxahWFAUl5SW89MFLzMudR05BZDmaM/qcwfSs6YzvMf7Ty9FU2bMFlj0Iyx+B0kJIz4Kpd8EJl0K75tULuXP/QV7bUMBrubt4Pa+AguIQAMf17MTj14xnwqD0oxxBRCQ+KbDG2N4D5RwIVdb6WlFJiOv+towendtx3xVjaJOkob4iIhI9ZnYFkA2cdoTXZwIzAfr27duEldWuajmaebnzeGnzSxyoOMCgzoP4QfYPOG/QeaS1Szv8TeEwbFocGfa74aXItqH/FelNHXh6s5lE6WB5Jcs27+a13F3834ZdrNuxH4D0Dm2YlJXBqUMyOWVwBt06aakaEWneFFhj6Pmc7Xxn7goqwn7EfTq1S2LuzLF07VDLfTYiIiJHlw/0qfa8d7DtU8zsTOAnwGnuXlbbgdx9FjALIDs7+8g/vKKsajmaebnz2LR3EylJKZwz4BymZ01nZMYRbp05sAdWPh4JqkUboX0GnPK9yPqpXfocvn+ccXfydhbzfxt28VpuAW9/UMjB8jBtEhPI7t+VH00dxqSsDIb36ESCJlMSkRZEgTVG3tu6hxufXMmI3p2ZkX3kH5TjBqQxKDO1CSsTEZEWZimQZWYDiATVS4DLqu9gZqOB+4Cp7r6z6Us8uspwJW9tf4t5ufM+WY4mcyS3n3w7Z/c/+/DlaKrsWBW5N3XVP6C8FHqPg9NvhuHTIKlt036IetpdEuL1vMgw39dyC9i+9yAAgzI7cMnYvpw2JJOTBqbRvo1+nRORlkvf4WLgoz0HuOaRZWR2bMvsr2aTkRrfPzBFRKT5cvcKM/sm8DKRZW0edPc1ZvYLYJm7LwTuBlKBfwS9k1vc/UsxK7qa/OJ8FuQtYEHeAnaU7KBr265cOuxSpg+ezuCug2t/U0UI1i6M9KZueQuSUmDEhZFhvz1PaNoPUA/llWFWbNnDqxt28VruLnLy9+IOnVOSOWVwBpOyMpg0JJNeXVJiXaqISJNRYG1iJWUVXDNnGQdClTx2zUkKqyIiEnXu/gLwQo1tP6/2+MwmL+ozhCpDLNqyiHm581iyfQkAJ/c8mZuyb2Jyn8kkH2l5mX0fwbKH4N2HoWQndB0AZ/0STrgc2tdyP2sc2FxQEtyHWsCSTYUUl1WQmGCM7tOF7505hElZGYzs3UVrpopIq6XA2kD7D5Zz54vrKCiu9Xafw2wpOsD6Hft48GtjGdK9Y5SrExERaT5qW47mhlE3cP7g8+mR2qP2N7nD5tciw37XPQ8ehqyzYNy1MGgKJMTXhIX7DpbzZl7hoWG+W4pKAeiTlsK0E3oyKSuTkwen06ld81vzVUQkGhRYG6Ay7Hz77yt4NbeArG51u8/UzLjrgpGcPrRblKsTERGJnsLiMh5+44PP3KcuszKFwqVsKH6dVfv+xfaD60kgiWGdJjCt51QGdxpNckIS722GVbaDxAQ79F9yRQndP5jPMRseI2VPLhVtu7B7xDXsGf4Vwl36k5gACYWln3pPohkJ1b4mBdsTrOorjb58XGXYydm2h9dyC3h1wy5WbN1DZdjp0CaRCYMyuHbSACZlZdIvvb2WrhMRqYUCawP86vm1LF6/i1+efzxXjO8X63JERESazI4Dm7l7zdcbfBxL3osllFN5sDvle86lYt9o3q7swNsA5By2/2DbxlcT/8X0xNdItYO8Fx7I3yqv49mDEyh7pw28swXY8rnrSTAOD7g1wm71EFy1f4IZSYk1QrEZ6z/ez94D5ZjByF6dueG0QUzKyuDEfl1JToyv3l8RkXikwPo5Pfb2hzz4xgdcNbG/wqqIiLQ6ndp14KzBYxp+nDZdmNL3HIZ2Hk6YSI9kOAwV4TBhdyrDUFkRIvWDl0l7fw6p25cQTmhDYf9z2TTkCvalj+TcsPNfVfuGw5Gv7oTDTmXYDz2uCHtwzMh/VccPu1NR+cl+1d9b/T2fvDd4T/jwc1RWO35l2DlreHdOHZLJxMEZpGmJOhGRelNgrUU47KzctoeDocpaX9+25wA/f2YNk4dm8tMvDm/i6kRERGKvT8fe/OGM30b3JPs/jkyg9O5DsH87dO4LU24l4cSvktkhg8zonl1EROKAAmst3thYwFceeOcz9xnavSP3XDpas/aJiIg0JnfYsgSWzob3n4FwBQw6A774exhyNiQkxrpCERFpQgqstcjffQCAey8/8YjDd0b07qyFukVERBpLqARynoysnfrxamjbGcbNhOyrIeMI662KiEiLp8RVi8KSEACTh3WjXbL+kisiIhI1BXmRkLrycSjbC91HwHl/ghEXQZsOsa5ORERiTIG1FoXFITq0SVRYFREROZLt78EdjXAXaWUIEpJh+LTI2ql9TgIt7yIiIgEF1loUlZSRlqqZ/ERERI6oQyZMmNnw47RPhxEzoGP3hh9LRERaHAXWWhSWhEjv0DbWZYiIiMSvTj3hzNtiXYWIiLRwUVux2sweNLOdZra62rY0M/uXmeUGX7tG6/wNUVAcIkM9rCIiIiIiIjEVtcAKPAxMrbHtZuAVd88CXgmex52ikjIt7i0iIiIiIhJjUQus7v4qUFRj8zRgTvB4DnB+tM7/ebk7RSUh0lM1JFhERERERCSWotnDWpvu7r49eLwDOOIMC2Y208yWmdmyXbt2NU11wL6DFZRXOunqYRUREREREYmppg6sh7i7A/4Zr89y92x3z87MbIRp8+uosLgMgHTdwyoiIiIiIhJTTR1YPzazHgDB151NfP6jKioJAZCmWYJFRERERERiqqkD60LgyuDxlcAzTXz+oyoojgRWDQkWERERERGJrWgua/N34C1gqJltM7OrgTuBL5hZLnBm8DyuVPWwakiwiIiIiIhIbCVF68DufukRXpoSrXM2hqp7WLWsjYiIiIiISGzFbNKleFVYEqJjuyTaJiXGuhQREREREZFWTYG1hsKSkO5fFRERERERiQMKrDUUFpeRnqoZgkVERERERGJNgbWGopKQ7l8VERERERGJAwqsNRQUh8jQDMEiIiIiIiIxp8BaTTjs7C5VD6uIiIiIiEg8UGCtZu+BcirDTnoH3cMqIiIiIiISawqs1RSWhABI15BgERERERGRmFNgraawuAxAPawiIiIiIiJxQIG1miL1sIqIiIiIiMQNBdZqCqoCqyZdEhERERERiTkF1mqqhgR3VWAVERERERGJOQXWaopKQnROSSY5UZdFREREREQk1pTMqiksDun+VRERERERkTihwFpNYUmZ7l8VERERERGJEwqs1RQWh7SkjYiIiIiISJxQYK2mqCREmoYEi4iIiIiIxAUF1kBl2CkqDZGhIcEiIiIiIiJxQYE1sKc0hDukKbCKiIiIiIjEBQXWQGFJCID0VN3DKiIiIiIiEg8UWAMFxWUAWtZGREREREQkTiiwBoqqelg1S7CIiIiIiEhcUGANFBZXDQlWD6uIiIiIiEg8UGANFJaEMIOu7RVYRURERERE4oECa6CwuIyu7duQmGCxLkVERERERERQYD2kqCSkJW1ERERERETiiAJroLA4RLoCq4iIiIiISNxQYA0UlpRpwiUREREREZE4osAaKCwJaUkbERERERGROJIU6wJiIVQR5rq/LWPx+l2f2p6RqsAqIiIiIiISL1pdYHV3fjJ/FYvX7+LKCf3oEixjk5hgzMjuE+PqREREREREpEqrC6yzXt3EP97dxrenZHHjF4bEuhwREZGoM7OpwJ+AROB+d7+zxuttgUeAMUAhcLG7b27qOkVERGpqVfewvrxmB3e+tI5zR/bge2dmxbocERGRqDOzROAvwDnAcOBSMxteY7ergd3uPhj4A3BX01YpIiJSu1YTWFfn7+W7c1cysncXfnvRKMws1iWJiIg0hXFAnrtvcvcQMBeYVmOfacCc4PFTwBTTD0oREYkDrSawLtlUSFqHNsz+6hjaJSfGuhwREZGm0gvYWu35tmBbrfu4ewWwF0iveSAzm2lmy8xs2a5du2q+LCIi0uhiEljNbKqZrTezPDO7uSnOec2kgbz03Ul069iuKU4nIiLS4rj7LHfPdvfszMzMWJcjIiKtQJMH1jreSxMVHdslN8VpRERE4kk+UH0a/N7Btlr3MbMkoDORyZdERERiKhY9rHW5l0ZEREQax1Igy8wGmFkb4BJgYY19FgJXBo8vBBa5uzdhjSIiIrWKRWCty700IiIi0giCe1K/CbwMrAWedPc1ZvYLM/tSsNsDQLqZ5QE3Ak1yu46IiMjRxO06rGY2E5gJ0Ldv3xhXIyIi0ny5+wvACzW2/bza44PARU1dl4iIyNHEooe1LvfSaGIHERERERGRVi4WgbUu99KIiIiIiIhIK9fkQ4LdvcLMqu6lSQQedPc1TV2HiIiIiIiIxLeY3MNa2700IiIiIiIiItXFYkiwiIiIiIiIyFEpsIqIiIiIiEhcUmAVERERERGRuKTAKiIiIiIiInFJgVVERERERETikrl7rGs4KjPbBXzYCIfKAAoa4Titga5V3eg61Z2uVd3oOtVdQ65VP3fPbMxiWhsz2wvk1mHXzsDez3i9pbf5o33+5n7+xjh+Q45R3/fWZ/+67qs23nLbeGMdW228bmr92dwsAmtjMbNl7p4d6zqaA12rutF1qjtdq7rRdao7XavYMrNZ7j6zofu19H/Hul6n5nr+xjh+Q45R3/fWZ3+18bppyW28sY6tNt4wGhIsIiIin8ezjbxfSxXrzx/t8zfG8RtyjPq+tz77q43XTaw/fzTP31jHVhtvAPWwSq10repG16nudK3qRtep7nStWgb9O0pLpzYuLZ16WBvXrFgX0IzoWtWNrlPd6VrVja5T3elatQz6d5SWTm1cWrqotvFW1cMqIiIiIiIizUdr62EVERERERGRZkKBVUREREREROJSqwmsZjbVzNabWZ6Z3RzreuKFmfUxs8Vm9r6ZrTGz7wTb08zsX2aWG3ztGuta44WZJZrZCjN7Lng+wMzeDtrWE2bWJtY1xpqZdTGzp8xsnZmtNbMJalO1M7PvBf/vrTazv5tZO7WpCDN70Mx2mtnqattqbUcWcU9wzXLM7MTYVS4iIiKNpVUEVjNLBP4CnAMMBy41s+GxrSpuVADfd/fhwHjgG8G1uRl4xd2zgFeC5xLxHWBtted3AX9w98HAbuDqmFQVX/4EvOTuw4BRRK6X2lQNZtYL+DaQ7e7HA4nAJahNVXkYmFpj25Ha0TlAVvDfTODeJqpRGpmZdTCzOWY228wuj3U9Io3NzAaa2QNm9lSsaxGJBjM7P/ge/oSZndXQ47WKwAqMA/LcfZO7h4C5wLQY1xQX3H27uy8PHu8nEix6Ebk+c4Ld5gDnx6bC+GJmvYEvAvcHzw04A6j6odPqr5WZdQZOBR4AcPeQu+9BbepIkoAUM0sC2gPbUZsCwN1fBYpqbD5SO5oGPOIRS4AuZtajaSqVo6mttzzYXtvop+nAU+5+LfClJi9W5HOoTxsPfh9trX+IlGaqnm18QfA9/Hrg4oaeu7UE1l7A1mrPtwXbpBoz6w+MBt4Gurv79uClHUD3GJUVb/4I/BAIB8/TgT3uXhE8V9uCAcAu4KFg6PT9ZtYBtanDuHs+8FtgC5Gguhd4F7Wpz3KkdqTv8/HtYWr0ln/G6KfefPJvWdmENYo0xMPUvY2LNEcPU/82/tPg9QZpLYFVjsLMUoGnge+6+77qr3lk7aNWv/6RmZ0L7HT3d2NdS5xLAk4E7nX30UAJNYb/qk1FBPdfTiMS8nsCHTh8CKwcgdpR83GE3vIjjX7aRiS0gn5PkWainm1cpNmpTxsP5pW4C3ixaiRnQ7SWHwT5QJ9qz3sH2wQws2QiYfUxd58XbP64ajhd8HVnrOqLIxOBL5nZZiL/Q55B5F7NLsFwTlDbgsgvm9vc/e3g+VNEAqza1OHOBD5w913uXg7MI9LO1KaO7EjtSN/nm58j9YrPAy4ws3uBZ2NRmEgjqbWNm1m6mf0vMNrMbolNaSKN4kjfx79F5HecC83s+oaepLUE1qVAVjDzZhsik5osjHFNcSG4B/MBYK27/77aSwuBK4PHVwLPNHVt8cbdb3H33u7en0gbWuTulwOLgQuD3Vr9tXL3HcBWMxsabJoCvI/aVG22AOPNrH3w/2LVtVKbOrIjtaOFwFeDv+qOB/ZWGzoszYi7l7j7Ve5+g7s/Fut6RBqbuxe6+/XuPsjdfx3rekQam7vf4+5jgnb+vw09XtLRd2n+3L3CzL4JvExkFs4H3X1NjMuKFxOBrwCrzGxlsO3HwJ3Ak2Z2NfAhMCNG9TUHPwLmmtkvgRUEkw21ct8CHgv+QLQJuIrIH8jUpqpx97eDWSKXE5mxewUwC3getSnM7O/A6UCGmW0DbuXI35teAP4LyANKibQ5iW/qFZeWTm1cWromaeMWuQVIREREJHqCif2eC5ZwIhj2voHIyIJ8IqOhLtMflKW5UhuXli5Wbby1DAkWERGRGAl6y98ChprZNjO7OpgJu2r001rgSf0iL82V2ri0dLFs4+phFRERERERkbikHlYRERERERGJSwqsIiIiIiIiEpcUWEVERERERCQuKbCKiIiIiIhIXFJgFRERERERkbikwCoiIiIiIiJxSYFVRERERKSezKy/ma1upGM9ZWYD67H/r8xsq5kV19je1syeMLM8M3vbzPpXe+2WYPt6Mzs72NbGzF41s6TG+Bwi0aDAKiIiIiISI2Z2HJDo7pvq8bZngXG1bL8a2O3ug4E/AHcF5xgOXAIcB0wF/mpmie4eAl4BLm7ARxCJKgVWEREREWlWzOwKM3vHzFaa2X1mlmhmY80sx8zamVkHM1tjZsebWaqZvWJmy81slZlNC47R38zWmdnDZrbBzB4zszPN7A0zyzWzccF+t5nZ38zsrWD7tbXUk2hmd5vZ0qCG64LtPYIezJVmttrMJtXycS4Hngn27xecI8PMEszsNTM7q+Yb3H2Ju2+v5VjTgDnB46eAKWZmwfa57l7m7h8AeXwSeBcENYjEJXX/i4iIiEizYWbHEukRnOju5Wb2V+Byd3/EzBYCvwRSgEfdfXUw3PXL7r7PzDKAJcF+AIOBi4CvA0uBy4BTgC8BPwbOD/YbCYwHOgArzOz5GmVdDex197Fm1hZ4w8z+CUwHXnb3X5lZItC+lo80Efg7gLt/aGZ3AfcC7wDvu/s/63F5egFbg2NVmNleID3YvqTaftuCbQCrgbH1OIdIk1JgFREREZHmZAowBlga6TwkBdgZvPYLIsHzIPDtYJsB/21mpwJhIkGte/DaB+6+CsDM1gCvuLub2Sqgf7VzPuPuB4ADZraYSO/kymqvnwWMNLMLg+edgayglgfNLBlY4O7V31OlB7Cr6om7329mFwHXAyfU+ap8Tu5eaWYhM+vo7vujfT6R+lJgFREREZHmxIA57n5LLa+lA6lAMtAOKCEy3DUTGBP0yG4OXgMoq/becLXnYT79e7LXOE/N5wZ8y91fPqzYSFD+IvCwmf3e3R+pscuBavVgZu2B3sHTVKA+ITIf6ANsC3qWOwOF1bZX6R1sq9KWSMgXiTu6h1VEREREmpNXgAvNrBuAmaWZWb/gtfuAnwGPEUw4RCS07QzC6mSgX80D1sG04N7YdOB0Ij2n1b0M3BD0pGJmQ4L7aPsBH7v7bOB+4MRajr2WyNDkKncF9f8cmF3POhcCVwaPLwQWubsH2y8JZhEeQKT3952g1nSgwN3L63kukSahHlYRERERaTbc/X0z+ynwTzNLAMqBb5jZaUC5uz8e3C/6ppmdQST8PRsM810GrPscp80BFgMZwB3u/lH1JWOIhNH+wPJgkqNdRO5/PR24yczKgWLgq7Uc+/lgv38Hn2EskftzK83sAjO7yt0fqv4GM/sNkfttuz5bkgAAAL9JREFU25vZNuB+d78NeAD4m5nlAUVEZgbG3deY2ZPA+0AF8A13rwwONzmoQSQuWeSPLiIiIiIiUpOZ3QYUu/tvo3T8FCJheGK1ENlkzGwecLO7b2jqc4vUhYYEi4iIiIjESDCZ0618MmtvkzGzNkQmg1JYlbilHlYRERERERGJS+phFRERERERkbikwCoiIiIiIiJxSYFVRERERERE4pICq4iIiIiIiMQlBVYRERERERGJSwqsIiIiIiIiEpf+P98x47KmHxqgAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 1152x432 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6wAAAGiCAYAAADjrksdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeVwV1fvA8c+57IILm/uC4g4oIm4pi2nuZVamRqVfU8t2NbPFSv1ZWWlaaZn1NTXXsm9mpWUboOSSGu57bqSpuAOCLOf3xwx4QUAw4F71eb9e85LZzjyzXO8895w5o7TWCCGEEEIIIYQQ9sZi6wCEEEIIIYQQQoj8SMIqhBBCCCGEEMIuScIqhBBCCCGEEMIuScIqhBBCCCGEEMIuScIqhBBCCCGEEMIuScIqhBBCCCGEEMIuScIqhBBCCCGEEMIuScIqhLBLSqlqSqnlSqljSimtlPLLM99FKTVbKXVBKfWPUmqkbSItXUqpWUqpPUqpLKXUoHzmjzD3/4J5PFwKKMfPPI6OpR50GTP37TelVIpSardSqnMhy85RSl1WSiVZDQ6lHF+Rr1Vz2anmdX9WKfWhUsqpCNt42Dy/QwpZxksp9bVSKlkpdVgp9YDVvI5KqW1KqXNKqdPmcjWKv7c55f2fWV6GUmpcPvMfMGNIVkotU0p5FVBOQ6XUN0qpU0qpM0qpH5VSjQrZboHHWinlrJRaqpQ6ZB6ryOvdP7O8wo6nUkq9rJQ6YsayWClVoZCyCj1eeZbtaF7v55VSh/7NPpjldTI/NylmuXWs5tUwj/8ZpVSCUuqxa5RVpPNqLhuslNpkbneTUirYat44pVR6ns9pPXvbrhCibEjCKoSwV1nAD8C9BcwfBzQA6gAdgeeVUt3KJrQytQV4HNicd4ZSqivwAtAJ4zjUA8Zf74bUjZvMLgL+BLyBl4GlSinfQpZ/W2vtYTVklnJ84yj6tfoCEAoEAg2BEGBsYYUrpTyBl4Ad14hjBnAZqAJEAR8ppQLMeTuBrlrrSkB1YB/w0TXKK8x+4Hng+3ziDQA+Bh4yY0kBPiygnErAcqCRuewG4JtCtjuOwo/1GuBB4J+i70qBCjueD2PsX3uM4+kGfFBIWQUer3wkA7OB0dcX9hVKKR/gf8ArgBewEVhitch84CDGPvYE3lBKdSygrCKfV6WUM8Z5nA94AnOBb8zp2Zbk+Zz+ZU/bFUKUIa21DDLIYKcDxo3OV8ApjJuGp83pXkACcKc57oFxw/OwOT4HmAn8BFwEYoA65rzxwAfm304YNz/vmONuQKpZvivGl/pp4BzwB1DFXK6uWeZFcxvTgfmldAwcAQ345Zl+DOhiNf5/wOICyjgMtDT/jjLLCzDHHwGWmX+PA7409/sisA0jaXgROAkczbPN/wC7zGX/Ah61mjcGWA84muPDMRIK1+s8DmuAQXmmLQTesBrvBPxTwPpHzP1OMod2wCAgDphqnueJ5jGYb7Wen7le9n5UBP4LHAf+NtdxMOdZl3fOPCa3mdOPmsdwoFXZ0cAQq/FBwJpiHpeGQBpQ3mraauCxApafA0wsYtnZ+zMdOA/sBjpdx7krzrW6EehrNf4AcPQa5c/E+FEj1/HMs4w7RnLV0Gra58CkfJZ1Ad4EdlpNK/C8XyO2+cC4PNPeABZajfubsZUvQnle5vXo/W+ONcb/n5H57Pdk87NywjyubtdzPIGlwGirebdh/N9arrjHq5BlOwOH8pneGOP/5TPAHuD+QsoYBvyeZ78umWV4mMfa12r+LODzAsoq8nkFupjXkbKadgToZv49jiJ+p9hquzLIIEPZDVLDKoSdUkpZgG8xathqYCQjzyqlumqtzwCDgU+UUpUxEoR4rfU8qyKiMG7WfIB4YIE5PQaINP9uhVHTEG6OtwP2mOUPxLhJrYVRc/UYxo0MGInSJrPs/zOXLWg/apvNDAsaHiho3ULK9ASqmccm2xYgIP81cu1zBEYiFW41HmO17J0YN56eGLV2P2K0RqkBTMD4JT/bSaAXUAEjeZ2qlAox572DkUiNVUo1wLipelBrnWruQ2HH5IUiHoqAfI5BFaWUdz7LZu9vJW3UGqw1x9uYx6MK8HoRtjkHyADqAy0wbgCtm6G2AbZiXDMLgcUY11l9jJqt6UopjyJsB6XU1kKOUXYNSgDwl9b6otWqhV0LAI+bTRw3KaUKqsG33p8DGNf6a8D/spsbKqO5bkHxbTWXKe61CqDy/F1TKVUx3wWVao1RIzvzGvvREMjQWu8tKI7szyrG5/w54G2rZedQ+HkvjlzXrdb6AGbyV4R1wzF+lDmdd8Z1Hmtrk8wYgjH2swbwagHLXvN4cvV5dMGo/S01Sil3jGR1IVAZ6A98qJRqWsAqec9FMsb1HsCV+PPuR2ARyyrsvAYAW7XW2mraVnIfvzvNz+kOpdTwArZpy+0KIcqIJKxC2K9WGL9sT9BaX9ZGs6RPMG5A0FqvwqgN/AXoATyaZ/3vtdaxWus0jGaS7ZRStYC1QAMzqQnHqDWpYSYR1slbOkbSUV9rnam13qS1vqCUqm3G9orWOk1rHYuRWOdLa31Ea12pkGHhdRyb7ITnvNW080D5ApaPMfcNIAyj9ih7PG/Culpr/aPWOgPj+Ppi1JqkYyRffkqpSua+fa+1PqANMcAqs3y01lkYzQKfxmjS+LbW+s/sjVzjmEwqxnHIewwo5Djk55jW+gOtdYbW+lJhCyqlqmBca89qrZO11icxfizpb7XYQa31Z9poZrsE4wePCea1sgrjRrJ+UQLTWjcr5Bg9bi6W9xhA4dfC+xhJQ2WMZpBzlFLtCwnjJDBNa52utV6CUWPV04zv8ULia2YVX3ZMRYnvB+AZpZSvUqoqxvUDUC7vgsp49vZD4EnzeiuMB3Ahz7RccWR/VjGS87EYNcpFPe/FUdxzhhlHTYxmuAU9A1zcY21dtsKobRyhtT5j/gDyBgXv47WO5w/AEGU8X10Ro8UF5HMeS1gvjFrXz8zP9J8YrXT6FrB8gefCPAZxwCtKKVfzx7h7KXgfinNer7XsF0ATjP9/hwKvKqUG2Nl2hRBlRBJWIexXHaC6da0NxnNqVayWmYXxa/ecfGocjmb/obVOwmgeVt1MSjZiJGrhGMna7xjPWlknb59j1C4uVkYHMG8ro/OX6sBZ85f4bIdLZI+LLsn817oTkwoYTXPzEwOEKaWqAQ4YNyXtldGRU0WMGuhsJ6z+vgQk6ivPOGYndB4ASqnuSql15q/x5zBu6n2yV9ZaHwJ+w2hWO6Pou1dkSVx9DKDg45Cfo9deJEcdjGbkx62uyY8xkr9seY8fWuu804pUw1pEeY8BFHItaK03a61PmzfzKzBaHtxTSPl/56mNOYzxGShOfNkxXTM+jFruPzGuyd+BZRg/Hp3IZ9nHMWqL1hUxjiIdJ7OFRfazfY5c47ybNVHZHdSElWQs2cxnklcBH2qtFxVSbnZZRSrXii9GIrbJah9/MKejlFpptY9RRdiH2RjPVkdjPArwmzk9oQix/Bt1gDZ5vjeigKpmDXpOZ0Lm8tfajyiMR0COYjzTPL+QfSjOeS10Wa31Tq31MfPH0t+B94D77Gy7QogyIgmrEPbrKEZtlXWtTXmtdQ/IqV2ZBczDaOKYt9aqVvYfZu2pF8bzXWAkcLdjNO37wxzvCrQGYgHMGqXxWuumGM9f9cKoMTwOeJpNz7LVLmgn8t4k5TNEFffAaK3PmnE0t5rcnAI6ndFa78foiOMpIFZrfQGjKfQwjGcmr1U7ld9+uWDUXEzGeLa3ErACq+ZzSqmeGM2sf8FoImy9fmHH5KUihrGDq4/BifyaS2I8i5afvNOTyV2DUtXq76MYzZx9rK7JClrroja5zKuwbeVNhPIO2U1gdwD1lFLWtSkFXgv50ORu8phXDbP2LVttzM+RUmpmIfHtgOu6Vi9prZ/UWtfQWtfDeLZ4UwHXaCegjzJ6w/0H43M6RSk1PZ9l9wKOymiefs04MJ4dr4xxM1/oeddaB+grHdSsLqA8a7muW2X0wupixngVs6nvKmC51rrAZuvFPdZ5JGL8mBJgtY8VtdYeZtndrfZxAdc4nlrrLK31a1prP611TXP63+ZQmo4CMXm+Nzy01sPNGvSczoTM5fOeC3eMZ0Cz9+Ow1rqX1tpXa90G4we5DQVsuzjndQfQLM9nqxkFn6vCPqe22q4QoqxoO3iQVgYZZLh6wKgJ3IzRlMzNHA8EWpnzX8GogXHAqHn9nSud38zBaK7WAXDGaL4XZ1V2F3P+L+Z4gDm+w2qZjkCQWb4XxjNC/zHnrcNI1JzNbVygFDqqwOj4yR3jpqERVh0WYTxvFoPxrGljjBvVboWUtdCM8yFz/B1z3LpjlHHk7nAoV6cmXOkAqiZGE7JMjFppBXTHSIonmsv6mDH1wGhafQzocR3HwNk8DnEYTdRcAYs5rxtG4t0UozfVX8mnEx1z2XJmvNadxAwiTydHwB0YN++1MWqfvyF3p0vfYNQ6VMD40dMfiMivPIymvzpP+QlAB/Pv1zFqoMqZy+7LG08Rj1H29egK9MHo8Mm3gGXvw6jhtWB8Di6Sp/OdPMcnA3gGo4axr3nN5NvhTyHxFflaxXhusrp5TbXl6o6+5mC0qMA851Wtht8xmstWLKDsxRi1fu4YLSrOc6XzsXswPmMWjFrFL4DNVusWeN4L2JaTeT4WYnTQ5MqV/5+y/78JM2OZj1XHSHn2sQJGgjS9JI41RiLjal6HXcy/lTnvPXO/K1udi66FbKuw4+llHiOF8fncDgzL839NdFGOVz7btZjzu2PU+LsCzua88ua0h8wynTAe4WhSQFm+Ztz3muW8Bayzmt/ELNMZ4xn0RHJ3wnQIszO4a53XfP5fO4zx2XIBnjTHs/ejt3kOFcYPqX+Tu8M2m2xXBhlksM1g8wBkkEGGggeMG9dFGEnJWYwb885AS3O8vrmcA0ZC87I5PocrvQQnYdSa1rUq1wOjmeFr5rjCeFbvI6tlBmA8r5eM0Rzxfa4kLfUwemJNohR7CcZIlHINVvNcMJrdXTDjG3mNsh41y6hjjvcyx9tYLTOOIias5vgT5rbPYTShXsyVhPV/wEyrdbtjJK3FTXai8zkOkVbzR5oxXAA+A1wKKWsCRo/T5zCSoUHkkyBiNF8+h9Hz9FCu7iX4I4wb/vMYzVf7m/Nylce1E1YfjJqz7GflxuUXTxGOkZ95nC6Z12xnq3lR5P4hZrUZ9wWMH2H6F1LuIHL3ErwXq+SxGPEVeK1i/DCQBNQ2x8MxbsZTzH2JylPWL8DQQq4V616XXwJWWo17YTQxTsboGfUBq3lPYfREnozx/81izM/Ktc57AbHMyee6HWQ1/wEzhmSMZNgrv33E6NBNm8slWQ3Zxyvv+S30/wXz2OaNy8+c54rx3Opf5vq7MHtmL2AfCzueDc3zl4KREOWN47/A60U5XhiJWJLVspH5LBttNb8RxutxTmHU0P8KBBeyH50xnle+ZF5DflbznjXLScboqTzUap4zxme3cRHP60rgJavxFhid913C+HG2hdW8RWbsSWZsT9t6uzLIIIPthuxfFYUQNxGl1BwgQWtd6PsbS3B74zCS5wfLYntClAWl1CCMBLCDrWOBnHdIbgGaaaMTsJvOrbCPAEqpeIxXJOXXfP+GoJTqADyhtS7TTolstV0hhO3cqC+JF0IIIW4pWuvLGE00b1q3wj4CaK2DbR3Dv6W1XoNR63pLbFcIYTvS6ZIQQgghhBBCCLskTYKFEEIIIYQQQtglqWEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXJGEVQgghhBBCCGGXHG0dQFH4+PhoPz8/W4chhBDiJrFp06ZErbWvreO4kcl3sxBCiJJU0HfzDZGw+vn5sXHjRluHIYQQ4iahlDps6xhudPLdLIQQoiQV9N0sTYKFEEIIIYQQQtglSViFEEIIIYQQQtglSViFEEIIIYQQQtilG+IZViGEEEIIIcTNIT09nYSEBFJTU20dirABV1dXatasiZOTU5GWl4RVCCGEEEIIUWYSEhIoX748fn5+KKVsHY4oQ1prTp8+TUJCAnXr1i3SOtIkWAghhBBCCFFmUlNT8fb2lmT1FqSUwtvbu1i165KwCiGEEEIIIcqUJKu3ruKee0lYhRBCCCGEELcUBwcHgoODc4ZJkyaVSLl+fn4EBQURHBxMUFAQ33zzTYmUm23evHkEBgYSFBREixYtmDx58nWVs3HjRp5++mkA5syZg1KKn3/+OWf+smXLUEqxdOlSAIYMGcLOnTv//Q5cB3mGVQghhBBCCHFLcXNzIz4+vlTK/u233/Dx8WHPnj106dKF3r17F3ndzMxMHBwc8p23cuVKpk2bxqpVq6hevTppaWnMmzfvumIMDQ0lNDQ0ZzwoKIjFixfTuXNnABYtWkTz5s1z5n/66afXtZ2SUOo1rEopB6XUn0qp78zxukqp9Uqp/UqpJUop59KOQQghhLhVKaVmK6VOKqW2FzBfKaXeN7+XtyqlQso6RiGEsBd+fn68+OKLBAcHExoayubNm+natSv+/v7MnDkTgOjoaMLDw+nZsyeNGjXiscceIysr66qyLly4gKenZ874/Pnzad26NcHBwTz66KNkZmYC4OHhwahRo2jevDlr167Fw8ODl19+mebNm9O2bVtOnDgBwJtvvsnkyZOpXr06AC4uLgwdOhSA+Ph42rZtS7NmzejTpw9nz54FIDIykjFjxtC6dWsaNmzI6tWrc/ahV69eObGFhYWxYcMG0tPTSUpKYv/+/QQHB+fMj4yMZOPGjRw+fJgGDRqQmJhIVlYWYWFhrFq1qsSOf37Koob1GWAXUMEcfwuYqrVerJSaCTwCfFQGcQghhBC3ojnAdKCgn+G7Aw3MoQ3Gd3KbMolMCHHLG//tDnYeu1CiZTatXoHX7gwodJlLly7lSshefPFF+vXrB0Dt2rWJj49nxIgRDBo0iLi4OFJTUwkMDOSxxx4DYMOGDezcuZM6derQrVs3/ve//3HfffcB0LFjR7TW/PXXX3zxxRcA7Nq1iyVLlhAXF4eTkxOPP/44CxYs4OGHHyY5OZk2bdowZcoUAJKTk2nbti2vv/46zz//PJ988gljx45l+/bttGzZMt/9efjhh/nggw+IiIjg1VdfZfz48UybNg2AjIwMNmzYwIoVKxg/fnyupr/ZlFJ07tyZH3/8kfPnz3PXXXdx8ODBq5arU6cOY8aMYfjw4bRu3ZqmTZvSpUuXQo/1v1WqCatSqibQE3gdGKmMJ2xvBx4wF5kLjEMSVnETSs/M4vyldFuHIcRNxaucMxaLdNRRHFrrWKWUXyGL9Abmaa01sE4pVUkpVU1rfbywctMuX2L/kXwrbYvF2dmDch7V/nU59qqCqxPOjtJliBD2prAmwXfddRdgNJNNSkqifPnylC9fHhcXF86dOwdA69atqVevHgADBgxgzZo1OQlrdpPgAwcO0KlTJyIjI/nll1/YtGkTrVq1AoyEuXLlyoDxPO29996bs31nZ+ec2s+WLVvy008/Fbov58+f59y5c0RERAAwcOBA+vbtmzP/nnvuySnr0KFDBZbTv39/3n//fc6fP8+UKVN444038l1uyJAhfPnll8ycObPUmlVbK+0a1mnA80B5c9wbOKe1zjDHE4AapRyDEDYxcPYGfj9w2tZhCHFTiX/1DiqVkydJSlgN4KjVePZ3c6EJ6/6Lf9HntwH/euNKaxqmZeGXXBHHi/4cTQtge1Y9zuPxr8u2B65OFtrW8ya8gS/hDX3x93WX3lGFsHKtmlBbcHFxAcBiseT8nT2ekWGkMXk/x/l9rv39/alSpQo7d+5Ea83AgQN58803r1rO1dU113OrTk5OOeU5ODjkbDMgIIBNmzZx++23X9f+WJeVn9atW7Nt2zbKlStHw4YNC1wuJSWFhIQEgJyEvjSVWsKqlOoFnNRab1JKRV7H+sOAYWBUywtxozmYmExI7Ur0aSG/yQhRUlyd8u+IQpQN6+/mKrUqEuXY6l+XmZx1kZ3Oh/jRNQm8t1A9fRP9Ui7RJtOd2m5NuFAhkDMVmnC6QhPSnSpcu0A7ooEDJ5NYvS+RCXuM3jVrVHIjvKEP4Q18ua2+DxXdnGwbpBDiumzYsIGDBw9Sp04dlixZwrBhw65a5uTJkznLeHh40Lt3b0aMGEHlypU5c+YMFy9epE6dOkXe5osvvsjo0aP5/vvvqVq1KpcvX2bevHkMGTIET09PVq9eTVhYGJ9//nlObWtxTZo0CVdX10KXGTNmDFFRUdSpU4ehQ4fy3XffXde2iqo0a1jbA3cppXoArhjPsL4HVFJKOZq1rDWBv/NbWWs9C5gFEBoaqksxTiFKRVJaBs1qVuKhdn62DkUIIQrzN1DLarzI380vRM0usSBOpZwi9uAPRP+1kq/P7mSRzsRd7+G2c38SeewSXVMu4VmpLlRvYQ7BUK05uJTuL/sl5eiZFGL3nSJ27ym+23KcRRuOYlEQXKsS4Q2N2tfmNSvhIE3ehSgTeZ9h7datW7FebdOqVSuefPJJ9u/fT8eOHenTp0/OvI4dO+Lg4EB6ejqTJk2iSpUqVKlShYkTJ9KlSxeysrJwcnJixowZxUpYe/TowYkTJ+jcuTNaa5RSDB48GIC5c+fy2GOPkZKSQr169fjss8+uWV5+tcLdu3cvdJ2YmBj++OMP4uLicHBw4KuvvuKzzz7jP//5T5H3o7iU8chK6TJrWJ/TWvdSSn0JfGXV6dJWrfWHha0fGhqqN27cWOpxClFStNb4v7SC4ZH+jO7a2NbhCCHyUEpt0lqHXnvJm4P5DOt3WuvAfOb1BJ4EemB0tvS+1rr1tcosze/m1IxU1h9fT3RCNLFHojmZmogFRbByIyIpiciz/1A3PQOFAp8GVklsC6gaBM7upRJXSUnPzCL+6Dli954idl8iWxPOoTVUdHOiQ30fwhv6ENbAl+qV3GwdqhClYteuXTRp0sTWYVy36OhoJk+eXOo1i6Xpq6++Yvny5cydO9cm28/vGijou9kW72EdAyxWSk0E/gT+a4MYhChVqelZZGlwd5FXHQshbEsptQiIBHyUUgnAa4ATgNZ6JrACI1ndD6QApfczeRG5OroSUSuCiFoRZLV9hV1ndhF9NJqYozFM1buY6l6dWq7eRDpXJjLlEi0OxuK0dYmxsrKAT6M8SWwgONlP8ufkYKGVnxet/LwY1aURZ5Mvs2Z/opnAnuL7bcbjw/Ure5jPvvrQpq43bs7SJF4I8e8tX76cl19+mdmzS66VTGkqkxrWf0tqWMWN5tTFNFq9/jMTegfwsDQJFsLu3Go1rKXBVt/N/yT/Q8zRGKITotlwfAOXsy5T3rk8HSq3JNK1Ou1TL1Pxnx1w7E9IPmmspBygchOjGXF2Els5AJwKf07LFrTW7D2RxOp9p4jZe4oNB8+QlpGFs6OF1n5exvOvDX1pVKW8dN4kblg3eg2r+PfsvYZViJtecprRA5u7s3zEhBCiJFV1r0q/xv3o17gfKekprD2+luij0cQmxLIyNRoH5UBIlRAig18hslITal88aSSvx/6EPSvhz/lGQRZHqNw0d01s5abgaNteqJVSNKpankZVyzMkrB6p6ZmsP3iG2L2nWL3vFG+s2M0bK3ZTpYILYWbPwx3q++DlLr1nCyFuTnI3LUQpSL5sJqwu0nxLCCFKSzmncnSq3YlOtTuRpbPYlriN6KPRRB+N5p2N7/AOULdiXSJrRhIR8BLNfZrhePE4HIu/ksTu/AY2m89wOThDlYDcSaxvY3CwXU++rk4ORDT0JaKhLwDHz19i9d5EYvad4qedJ1i6KQGlIKhGxZxX57SoXQknB3n3qxDi5iAJqxClIDktE5BnWIUQoqxYlIXmvs1p7tucZ0KeIeFiAjEJMUQfjebzXZ/z2Y7PqORSibAaYUTUiqB9+Cg8nD1Aazh7yEhej5uJ7LavYKP5bJeDi9GRk3US69MQHGzz/3u1im7c36oW97eqRWaWZmvCOWL3JrJ63yk+ijnA9N/2U97FkXb+3oQ19CWyoS+1vMrZJFYhhCgJcjctRCnIaRIsCasQQthEzfI1iWoSRVSTKJIuJxF3LI6YozHE/h3Lt399i6PFkVZVWhFRK4LIWpHUCLwHAu8xVs7KgrMHr9TCHouHLYvgj0+M+Y5uUK1Z7iTWuz5YyrZVjYNF0aK2Jy1qe/JM5wacv5TO2gOJxOw1OnBatfMEAINu8+OlHk1wdpRaVyHEjUfupoUoBUlmwuohCasQQtich7MHXf260tWvKxlZGWw5tSWn46ZJGyYxacMkGng2MJoO14ogyCcIi7c/ePtD0H1GIVlZcHp/7prYzfNg/UxjvrMHVM2TxHrVA0vZJYkV3ZzoFliNboHV0FpzMDGZeWsPM+f3Q2xJOMeHUSFUq2g/vSULYUsnTpxgxIgRrFu3Dk9PT5ydnXn++edzvU/VFiIjIzl+/Diurq54eHgwe/ZsGjVqdNVyQ4YMYeTIkTRt2rRYZSclJZHdYd7GjRt57rnniI6OJiUlhaFDh7J161a01lSqVIkffvgBDw8PHBwcCAoKQmuNg4MD06dP57bbbitwO+fOnWPhwoU8/vjjxT8A+ZC7aSFKgdSwCiGEfXK0ONKySktaVmnJyNCRHL5w2HhlTkIMs7fP5pNtn+Dl6kV4zXAia0vw/HoAACAASURBVEXSrlo7yjmVMxJP34bG0LyfUVhWJiTuzV0Tu/G/kJFqzHepAMFR0O1NKOMefZVS1PP1YNxdAbSu68XzS7fS8/01vNc/mLAGvmUaixD2RmvN3XffzcCBA1m4cCEAhw8fZvny5TaOzLBgwQJCQ0OZNWsWo0ePviquzMxMPv3002KVmZlpPK528uRJVq5cSffu3XPNf++996hSpQrbtm0DYM+ePTg5Gc/vu7m5ER8fD8CPP/7Iiy++SExMTIHbOnfuHB9++GGJJazSNkSIUpBTwyq9BAshhF2rU6EOAwMGMrvrbGL6xTApbBJtqrbhl8O/8OxvzxK2OIzhPw9nye4l/JP8T+6VLebrcoIfgB7vwJCf4MW/4bE4uGs61O8E6z+CuGm22TlTj6BqfPNke3w8nHl49gbe/2UfWVn2/1pDIUrLr7/+irOzM4899ljOtDp16vDUU09x6NAhwsLCCAkJISQkhN9//x2A6OhoIiIi6N27N/Xq1eOFF15gwYIFtG7dmqCgIA4cOADAoEGDGD58OG3btqVevXpER0czePBgmjRpwqBBg3K2N3z4cEJDQwkICOC1117LN87w8HD2798PgIeHB6NGjaJ58+asXbuWyMjInJrSRYsWERQURGBgIGPGjMlZP+86AKNHj+b111+/alvHjx+nRo0aOeONGjXCxcXlquUuXLiAp6dnzvg777xDq1ataNasWc5+vPDCCxw4cIDg4GBGjx5dyJkoGrmbFqIUZHe6VE56CRZCiBtGRZeK9KzXk571epKelc7mE5tzal8nrp/IxPUTaeLVxHjutWYkTbybYFF5fvt3cISqgcbQ4kFAwc/jjVfmNOxqk/0C8Pf1YNkT7Xn56+28+9NeNh85y9T7g/GU1+EIW1v5AvyzrWTLrBoE3ScVOHvHjh2EhITkO69y5cr89NNPuLq6sm/fPgYMGJCTGG7ZsoVdu3bh5eVFvXr1GDJkCBs2bOC9997jgw8+YNo048eps2fPsnbtWpYvX85dd91FXFwcn376Ka1atSI+Pp7g4GBef/11vLy8yMzMpFOnTmzdupVmzZrliuXbb78lKCgIgOTkZNq0acOUKVNyLXPs2DHGjBnDpk2b8PT0pEuXLixbtoy7774733XatWvH119/zW+//Ub58uVzpg8ePJguXbqwdOlSOnXqxMCBA2nQoAEAly5dIjg4mNTUVI4fP86vv/4KwKpVq9i3bx8bNmxAa81dd91FbGwskyZNYvv27Tm1sv+W1LAKUQpSLmfg7GiR1woIIcQNysniRJtqbRjTegzf9/meZb2X8WzIs7g6ujJr6yz6f9+fO768g/FrxxNzNIbU7GbA1pSC3jOMm+evhsCpPWW/I1bKOTvy7v3NmXh3IL/vP02vD9aw5eg5m8YkhD144oknaN68Oa1atSI9PZ2hQ4cSFBRE37592blzZ85yrVq1olq1ari4uODv70+XLl0ACAoK4tChQznL3XnnnSilCAoKokqVKgQFBWGxWAgICMhZ7osvviAkJIQWLVqwY8eOXNuJiooiODiYuLg4Jk+eDICDgwP33nvvVbH/8ccfREZG4uvri6OjI1FRUcTGxha6ztixY5k4cWKuacHBwfz111+MHj2aM2fO0KpVK3bt2gVcaRK8e/dufvjhBx5++GG01qxatYpVq1bRokULQkJC2L17N/v27buOM1A4qWEVohQkpWVIh0tCCHGTUErhX8kf/0r+PBL0CGdSz7A6YTUxCTGs+GsFS/cuxdXBlbbV2+Z03OTj5mOs7FwO+i+ETzrCogEw9Bdw8yx8g6W8Lw+2rUOzmhUZPn8zfWeu5ZU7m/Jgm9qoMn7OVgig0JrQ0hIQEMBXX32VMz5jxgwSExMJDQ1l6tSpVKlShS1btpCVlYWrq2vOctZNZC0WS864xWIhIyPjquWsl7Fe7uDBg0yePJk//vgDT09PBg0aRGrqlR+9sp9htebq6oqDQ/Fa7hW0zu23387YsWNZt25drukeHh7cc8893HPPPVgsFlasWEGTJk1yLdOuXTsSExM5deoUWmtefPFFHn300VzLWCfvJUGqf4QoBclpGbhLc2AhhLgpebl60bt+b96NfJfV/VfzceePubv+3ew5s4dxa8fR8YuODPhuAB9v+ZhjScegUi3oNx/OHYGlj0BmxrU3Usqa1azEd0914Lb63ryybDsjv9hCymXbxyVEWbj99ttJTU3lo48+ypmWkpICwPnz56lWrRoWi4XPP/88p7OiknThwgXc3d2pWLEiJ06cYOXKldddVuvWrYmJiSExMZHMzEwWLVpERETENdcbO3Ysb7/9ds54XFwcZ8+eBeDy5cvs3LmTOnXqXLXe7t27yczMxNvbm65duzJ79mySkpIA+Pvvvzl58iTly5fn4sWL171PeUkVkBClICktE3fpcEkIIW56zg7O3FbjNm6rcRsv6ZfYe3YvMQkxRB+NZnr8dBbtXsSXd36Jb+220HMKfPs0/PwadL2605Oy5unuzOyBrZjx237e/XkvO46d56MHW+Lv62Hr0IQoVUopli1bxogRI3j77bfx9fXF3d2dt956i5CQEO69917mzZtHt27dcHd3L/HtN2/enBYtWtC4cWNq1apF+/btr7usatWqMWnSJDp27IjWmp49e9K7d+9rrtejRw98fa/0GH7gwAGGDx+O1pqsrCx69uyZ05w4+xlWMHpYnjt3Lg4ODnTp0oVdu3bRrl07wKihnT9/Pv7+/rRv357AwEC6d+/OO++8c937B6C0tv9e4kJDQ3X2w85C3AgGzFpHemYWS4cX/I4qIYTtKKU2aa1Dr72kKIh8N1/bnjN7eHDFgwT6BPJJl09wtDjCitGwYRbcPROCB9g6xBxr9iXy9OI/SUvP5J2+zekRVM3WIYmb2K5du65qaipuLfldAwV9N0uTYCFKQfLlDHkHqxBC3OIaeTXilXavsPHERmbEzzAmdn0D/MLg22cgwX4S/g4NfPj+6Q40qlqexxdsZsK3O0nPzLJ1WEIIIQmrEKVBOl0SQggBcJf/Xdzb4F4+3fYpsQmx4OAE98+D8lVhcRRcOG7rEHNUq+jG4mHtGHSbH7PjDtJ/1jr+OZ9P78dCCFGGJGEVohRIp0tCCCGyvdD6BRp7NealNS9xPOk4lPOCAYsg7SIsiYJ0+0kKnR0tjLsrgA8GtGD38Qv0fH81cfsTbR2WEOIWJgmrEKUgJS2TctLpkhBCCMDV0ZUpEVPIyMrguZjnSM9MhyoBcM/H8Pcmo3mwnfUpcmfz6nzzZAe83J156L/rmf7rPrKy7CtGIcStQRJWIUqY1prky9IkWAghxBW1K9Tm/9r/H1sTtzJl0xRjYpM7IfIl2LoY1k63bYD5qF/Zg2VPtOfO5tWZvGovQ+Zt5FzKZVuHJYS4xUjCKkQJu5SeSZZGOl0SQgiRyx117uDBJg+yYNcCfjz0ozExfDQ0uQt+ehX2/WzbAPPh7uLItH7B/F/vAFbvO0WvD9awLeG8rcMSQtxCJGEVooQlpRkvXveQZ1iFEELkMbLlSJr5NuO131/j0PlDYLFAn5lQOQCWDobEfbYO8SpKKR5q58cXj7YjK0tz70e/s3D9EW6EVyMKURAPD/t53/C4ceOoUaMGwcHBBAYGsnz58nyXmzlzJvPmzSt22eXKlePkyZM506z3/fXXXycgIIBmzZoRHBzM+vXrAYiMjKRRo0YEBwfTpEkTZs2adc1tTZs2jZSUlGLFVxSSsApRwpLTMgGpYRVCCHE1JwcnJodPxtHiyKiYUaRmpIKzOwxYCA6OsGgApNpnDWaL2p5893QYbf29eenrbYz6YgsplzNsHZYQN4URI0YQHx/Pl19+yeDBg8nKyv1aqYyMDB577DEefvjhIpeZkWF8Pn18fJgyZcpV89euXct3333H5s2b2bp1Kz///DO1atXKmb9gwQLi4+OJi4tjzJgxXL5c+CMBkrAKcYNINmtYJWEVQgiRn2oe1Xizw5vsPbuXNze8aUysVBvu/xzOHoSlj0BWpm2DLICXuzOfDWrFs50b8HX83/R4bzWbDp+xdVhCXLfo6GgiIyO57777aNy4MVFRUWit+eGHH+jbt2+u5Xr16gUYNZQjRowgICCATp06cerUKQDi4+Np27YtzZo1o0+fPpw9e5aTJ0/SsmVLALZs2YJSiiNHjgDg7+9/VYLXpEkTHB0dSUxMJDIykmeffZbQ0FDee+89xo0bx+TJkwvcFnDVOgCDBw9myZIlnDmT+7N6/PhxfHx8cHFxAYzEtnr16lcdo6SkJNzd3XFwMFoPrlq1inbt2hESEkLfvn1JSkri/fff59ixY3Ts2JGOHTv+izNyNbmjFqKEXWkSLB8vIYQQ+QurGcbQoKF8su0TQiqH0Lt+b/BrD93fhu9Hwi/j4Y4Jtg4zXw4WxbOdG9Kmrjejl27hvplrGRZWjxF3NMTVSR6HEcXz1oa32H1md4mW2dirMWNajyny8n/++Sc7duygevXqtG/fnri4ODp37sywYcNITk7G3d2dJUuW0L9/fwCSk5MJDQ1l6tSpTJgwgfHjxzN9+nQefvhhPvjgAyIiInj11VcZP34806ZNIzU1lQsXLrB69WpCQ0NZvXo1HTp0oHLlypQrVy5XLOvXr8diseDr6wvA5cuX2bhxI2A0781W0LbyW8fDw4PBgwfz3nvvMX78+JwyunTpwoQJE2jYsCGdO3emX79+RERE5MyPiorCxcWFffv2MW3aNBwcHEhMTGTixIn8/PPPuLu789Zbb/Huu+/y6quv8u677/Lbb7/h4+NTjLN1bVLDKkQJkxpWIYQQRfFE8BO0rtqaiesmsvfsXmNiq0cgdDDEvQdbv7BtgNfQzt+bH54NZ0Dr2nwc+xd3SodM4gbVunVratasicViITg4mEOHDuHo6Ei3bt349ttvycjI4Pvvv6d3794AWCwW+vXrB8CDDz7ImjVrOH/+POfOnctJ+AYOHEhsbCwAt912G3FxccTGxvLSSy8RGxvL6tWrCQsLy4lh6tSpBAcH89xzz7FkyRKUUgA527FW2LYKWufpp59m7ty5XLx4MWeah4cHmzZtYtasWfj6+tKvXz/mzJmTM3/BggVs3bqVI0eOMHnyZA4fPsy6devYuXMn7du3Jzg4mLlz53L48OHrOu5FJXfUQpSw5MvmM6zO8iuzEEKIgjlYHHgr/C36ftuXUdGjWNxrMe5O7tDtLTi1B5Y/Bd71oUaIrUMtkIeLI2/0CaJL0yq88NU27v4wjic61ufJjvVxdpR6EXFtxakJLS3ZTWIBHBwccp797N+/P9OnT8fLy4vQ0FDKly+f7/rZyWVBwsPDWb16NYcPH6Z379689dZbKKXo2bNnzjIjRozgueeeu2pdd3f3Yu9PfutUqlSJBx54gBkzZuSa7uDgQGRkJJGRkQQFBTF37lwGDRqUaxlfX19CQkJYv349bm5u3HHHHSxatKjYcV0v+Z9EiBImNaxCCCGKysfNh7fD3+bIxSOM+32c0fOuozPcPw/cK8PiKLj4j63DvKbIRpX5cUQ4vYOr8/4v+7h7Rhy7/7lg67CE+FciIiLYvHkzn3zySU5zYICsrCyWLl0KwMKFC+nQoQMVK1bE09OT1atXA/D555/n1ICGhYUxf/58GjRogMViwcvLixUrVtChQ4friquwbRVm5MiRfPzxxzkJ+Z49e9i370rP5PHx8dSpU+eq9VJSUvjzzz/x9/enbdu2xMXFsX//fsBoHr13r9FCpHz58rlqcEuKJKxClDBJWIUQQhRHq6qteKrFU/xw6AcW71lsTHT3MXoOTj0HSx6EjDTbBlkEFd2cePf+YGY91JKTF1O584M1zPhtPxmZWddeWQg75ODgQK9evVi5cmVOh0tg1GBu2LCBwMBAfv31V1599VUA5s6dy+jRo2nWrBnx8fE50/38/NBaEx4eDkCHDh2oVKkSnp6e1x1bQdsqjI+PD3369CEtzfj/JCkpiYEDB9K0aVOaNWvGzp07cz0nGxUVRXBwMC1btmTQoEG0bNkSX19f5syZw4ABA2jWrBnt2rVj927jGeRhw4bRrVu3Eu90Sd0I79AKDQ3V2Q8OC2Hvpv28l2k/72P/691xdJDfhISwR0qpTVrrUFvHcSOT7+aSlaWzePKXJ1l7fC2fd/+cQJ9AY8aOZfDlQAiOgt4z4BpND+3FmeTLvLJsO99vO05wrUpMub85/r72895LYVu7du2iSZMmtg7junl4eJCUlGTrMG5o+V0DBX03l9rdtFLKVSm1QSm1RSm1Qyk13pw+Ryl1UCkVbw7BpRWDELaQnJaBq5NFklUhhBBFZlEW3ujwBr5uvoyKHsX5NLPzooC7IWIMxC+AdR/ZNshi8HJ3ZkZUCB8MaMGh08n0eG81n67+i6ws+68oEULYl9K8o04DbtdaNweCgW5KqbbmvNFa62BziC/FGIQoc0lpmfJKGyGEEMVWybUSUyKmcPLSScauGUuWNpvSRrwAjXvBqpfhwK+2DbKY7mxenVXPhtOhvg8Tv99F/0/WceR0yrVXFMKOSe1q2Sq1hFUbss+mkznIz2rippecliHPrwohhLguQb5BPBf6HNEJ0czZMceYaLFAn4/BtzF8+R84fcCmMRZX5QqufDowlHfua8auYxfo9l4s89cd5kZ4LE0IYXul2mZRKeWglIoHTgI/aa3Xm7NeV0ptVUpNVUq5FFKEEDec5LQM3J0lYRVCCHF9Hmj8AF3qdOH9ze+z8R/zOWEXD+i/0HiGddEASL2xeuBVStE3tBY/jggnpLYnY5dt5+HZGzh27pKtQxM2Ij9Y3LqKe+5LNWHVWmdqrYOBmkBrpVQg8CLQGGgFeAH5vnxJKTVMKbVRKbXx1KlTpRmmECUq+XIG7i7yDlYhhBDXRynF+NvGU7N8TZ6PfZ7ES4nGDK+60HcunN4P/xsGWTde77vVK7nx+SOt+b+7A9l0+Cxdp8aydFOCJC+3GFdXV06fPi3n/Rakteb06dO4uroWeZ0y6yVYKfUqkKK1nmw1LRJ4Tmvdq8AVkZ4IxY3lzg/W4O3hzJz/tLZ1KEKIAkgvwf+efDeXvj1n9hC1Iopg32A+vuNjHCzmj6HrZ8HK0RA2Cjpd+1UW9urw6WRGf7mVDYfOENbAhwm9A6nr427rsEQZSE9PJyEhgdTUVFuHImzA1dWVmjVr4uTklGt6Qd/NpdZuUSnlC6Rrrc8ppdyAO4C3lFLVtNbHlVIKuBvYXloxCGELyWkZ1PYuZ+swhBBC3OAaeTXi5TYv8+rvr/LRlo94ssWTxozWQ+HENlg9BaoEQOC9tg30OtXxdmfRsLbMX3eYyT/uoeu0WB6P9OexCH9cnaSl0s3MycmJunXr2joMcYMozSbB1YDflFJbgT8wnmH9DliglNoGbAN8gImlGIMQZS4pLQMPeYZVCCFECejToA+9/Xsza+ss4v6OMyYqBT2mQK22sOwJOHbjvnDBwaIYeJsfv4yKoFtAVab9vI9u02JZvU8eBxNCGEqzl+CtWusWWutmWutArfUEc/rtWusgc9qDVj0JC3FTkF6ChRBClKSX275Mfc/6vLj6Rf5J/seY6OgM/T6Hct6w+AFIOmnbIP+lyhVceX9AC+Y/0galFA/9dwNPLtzMiQvSZFSIW12pdrokxK0mK0uTfDkTD+l0SQghRAlxc3RjSsQU0jLTGB0zmvSsdGOGR2XovwBSzsCShyAjzbaBloAODXxY+UwYIzo3ZNXOE3SaEsNncQfJzJLOeYS4VUnCKkQJSknPBJAaViGEECWqbsW6jL9tPPGn4pm2adqVGdWD4e4ZcHQdrHgOboJeV12dHHimcwNWPRtOSB1Pxn+7k94z1rDl6DlbhyaEsAFJWIUoQclpGYAkrEIIIUpet7rd6N+oP/N2zuOXw79cmRF4r9Fj8OZ5sOET2wVYwvx83Jn7n1bMeCCEUxfTuPvDOMYu28b5S+m2Dk0IUYbkrlqIEnQlYZUmwUIIIUre6Faj2Z64nbFxY2no2ZBaFWoZMzqOhRM74YcXwLcR1IuwbaAlRClFz2bVCG/ow7s/7WXu74f4Yfs/vNyzCXcH18B46cTVsrI0Jy+mcfRsCkfPpHD0zCWOnk3hxIVUvN2dqe1Vjlpe5ajtVY7a3uWoUt4ViyX/soQQtiUJqxAlKDnNbBIsvQQLIYQoBc4OzkyOnMz9397PqJhRfN7jc1wcXMBigXtmwX/vgC8HwtDfwOvmeW1IeVcnXrszgHtDajJ22XZGLNnCF38k8ETH+py7dDknIT16JoWEs5f4++wlLmdm5SqjSgUXqlZw5WBiMsu3HMP6sVhnRwu1PN2MBNarHLW93WlStTzt/L0LTIqFEGVD7qqFKEFJZg2rhzQJFkIIUUpqeNTgjQ5v8OSvT/LWhrd4td2rxgzXCtB/IXxyOywaAEN+Apfytg22hAXWqMj/ht/Goj+O8NbK3Tz43/U58zzLOVHLqxxNq1WgS0AVanmWo6anG7W8ylGjkluud7tezsji2LlLHDmTwuEzRqJ75LTx94aDZ0i+bPwAHdbAhwm9A6nr417m+yqEMMhdtRAlSJ5hFUIIURYiakUwOHAws7fPJqRKCL3q9TJmePtD389g/r3wv0eh33yj9vUmYrEootrUoVtAVbYmnKdaJVdqepYr1o/Fzo4W/Hzc8csnEdVaczYlneXxfzN51V66Tovlicj6PBZZDxdHeeRHiLJ2c/0PJoSNJV+WhFUIIUTZeKrFU7Ss0pIJaydw4NyBKzP8b4cur8Oe7yH6TdsFWMq8PVzo2LgyjatWKNGWTUopvNydGdS+Lr+MiqBL0ypM/Xkv3aet5vf9iSW2HSFE0UjCKkQJkibBQgghyoqjxZG3w9/GzdGNkdEjSUlPuTKz7XAIjoLYt2HB/bBlCaResF2wN6gqFVyZ/kAIcwe3JlNrHvh0PSOWxHPq4o3/zlshbhSSsApRgqSXYCGEEGWpcrnKvBX+FgfPH2TCugno7PewKgW9pkKHkXBiB3w9DCY3gCUPwY6v4XJK4QWLXCIa+vLjs+E8fXt9vtt6jE5Tolmw/jBZWTf+e2+FsHeSsApRgpLMXoLLSS/BQgghykjbam15PPhxvv/re77c++WVGY4u0Pk1eHYbDP4RQgbCkXXw5SB4pz58NQT2rIQMqS0sClcnB0Z2acTKZ8IJqF6Rl7/ezr0zf+dgYrKtQxPipiYJqxAlKCUtAzcnBxzkXW5CCCHK0LBmw2hfvT2TNkxi5+mduWdaLFC7LfR4G0bthoeXQ9B9sP9nWNTfqHn95gnY/wtkZthmB24g9St7sHBoG6b2a87BxGQemftHTgsrIUTJk4RViBKUfDlDOlwSQghR5izKwpthb+Ll6sXI6JFcuFzA86oWB6gXAXe9D8/tg6il0KgH7PgG5t8DUxrBdyPhUBxkZeVfhkApRZ8WNfkoqiWHEpN5Zdn2K82xhRAlShJWIUpQUlomHvL8qhBCCBvwdPVkcsRkTiSf4JU1r1w7gXJwggZ3QJ+ZMHq/8QqcuuEQvxDm9ICpAfDDS5CwCSQZy1c7f2+e6dSQ//35N19uSrB1OELclCRhFaIEJadJDasQwv4opboppfYopfYrpV7IZ35tpdRvSqk/lVJblVI9bBGn+PeCKwczouUIfj36K/N2ziv6ik6u0ORO4x2uo/fDvf+F6i3gj0/g09vhvebw8zj4Z5skr3k8eXt9bvP35tVvtrP3xEVbhyPETUcSViFKUJIkrEIIO6OUcgBmAN2BpsAApVTTPIuNBb7QWrcA+gMflm2UoiQ91PQhOtXuxLRN04g/GV/8Alw8jGdcByw0mg3f/RH4NIC492FmB5jRGqInwam9JR/8DcjBopjWPxgPF0eeWLCZlMvyPKsQJUkSViFKUHJahryDVQhhb1oD+7XWf2mtLwOLgd55ltFABfPvisCxMoxPlDClFBPaT6Cqe1VGxYxizd9rSMu8zp6A3SpB8APw4FdG8tprKnhUMRLWGa1gRhv46TU4sh6yMkt2R24glcu7Mq1fC/afSmLc8h22DkeIm4rcWQtRgqRJsBDCDtUAjlqNJwBt8iwzDlillHoKcAc651eQUmoYMAygdu3aJR6oKDkVnCvwbuS7PLLqEYb/PBw3RzfaVWtHRK0IwmqE4VvOt/iFuntD6GBjuHAcdi2HPStg7XSImwblfKBhN2jUHfw7grN7ye+YHevQwIcnO9bng1/3087fmz4tato6JCFuCnJnLUQJSr6cibuzdLokhLjhDADmaK2nKKXaAZ8rpQK11rm6idVazwJmAYSGhsqDjHauiXcTfu37K3/88wcxCTHEJMTw69FfAQj0DiS8VjgRNSNo4tUEpYr5OrYK1aDNo8aQet54Rc6elbD7W4ifDw4uRm/EjbobSWyF6qWwh/bnmU4NWP/XGV7+ejtBNSpRv7KHrUMS4oYnCasQJUhqWIUQduhvoJbVeE1zmrVHgG4AWuu1SilXwAc4WSYRilLj6uhKWM0wwmqG8bJ+mb1n9xKbEEt0QjQfxX/Eh/EfUtmtck7y2qZaG9wc3Yq5kYoQeK8xZKbDkbVG8rpnBexbBYwwOnBq2N1IYKsGQXET5BuEo4OF9we0oMf7q3ly4WaWPdEeVyf5IVuIf0PurIUoIVlZmpTLmZKwCiHszR9AA6VUXYxEtT/wQJ5ljgCdgDlKqSaAK3CqTKMUpU4pRSOvRjTyasTQZkM5fek0a/5eQ0xCDCv+WsHSvUtxcXChTbU2RNSMILxmOFXdqxZvIw5Oxqtx6oZD1zfg1B4jcd2zEqLfhOg3oEJNI3Ft1B38OoCjS+nscH5SL0DyKbh0Fi6dM/5NPZd7PHuaxRFC/wNN7zbeX1tEVSu68u79zRn02R+M/3Ynb94TVIo7JMTNT+6shSghyWavgPIeViGEPdFaZyilngR+BByABfwDlQAAIABJREFU2VrrHUqpCcBGrfVyYBTwiVJqBEYHTIP0NV/iKW503m7e9K7fm971e5Oemc7GExuN2tej0cQmxALQ2Ksx4TWN2tdAn0Asqhj9dSoFlRsbQ9hISDoJe380ktf4BcYrc5zLQ/3bjdrXBneAu0/J72hmurHdzfNg/0+Qu6X7Fc7ljU6m3CqBayW4eByWDgavidD+WWjev8jJdWSjyjwW4c/MmAO0redF7+AaJbhDQtxa1I3wfRQaGqo3btxo6zCEKNQ/51Np++YvvN4nkP9n777Doyy2B45/ZzfZ9IT0QAoJvffeO4iIFZRiARSVH7aL/aKiXr0W4KJYsTdUbIiKoPQOCb33FgiQAimbZDe7O78/3oAUwUCy2QDn8zx5krz17Bqc9+zMnBnSuqqnwxFCXIBSarXWuoWn47icSdt85dJaszd776l5r2uPrcWlXYT5hp1KXttWaUuAdymKKhUVwN5Fxb2vsyDvCKAgvhXU6m3Me42qV7qhw5m7jSR13VSwHoOgykbSGVkX/EKLk9NQIzn1q2T0Dp/O5YJtv8KSiXB4rXF+29HQ/C5j6Z9/eolOF7dNWcHq/cdJDPenRWIYLRNDaZEYRrWIgIufNyzEFe58bbMkrEKUkV3H8ugxcSFv3NZEPkkVooKThLX0pG2+emTbsk8NHV5yaAm59ly8Td60jGl5KoGNCypFRVyXC46s/6v3Na147diQhL+S18QO4O37z9cqKoAtM4xEdf8SUGbj/GZ3QI0eYL6EwYVaw575sHgi7FtsJLmt74NWI8E/7IKnnsi3My3lIMn7jpOyL4vj+UUAhAVYaFE1lJaJYfSsF01ixNVVUVmIvyMJqxButv7gCa5/eykf3tGCHvWiPR2OEOICJGEtPWmbr05FriLWHVt3aujwvpx9AFQPqX6qcFPjyMZ4mUox6ywnzSjWtGO2kSgW5YO3P1TrCrX7QM1eEHTW3Nq0DUaSumEa2LIhNMlIUpsMPvfY0jiYbPS4bp8J3gHGHNeOY/4xcQWj53p3upWUfVmk7DcS2H2Z+ZgUXN8klv/rWkOqCourmiSsQrjZsl0ZDP5wJV/f04a21cM9HY4Q4gIkYS09aZsFwIGcA6eqDq8+shqHdhBsCaZDbAc6x3WmfWx7QnxCLv0GRQWwbwnsmGUMHc5JNbZXaWr0nPqFGfNh09YZS+nUu95IVKu2B9NFzLe9WEe3wJL/waYfoHJjGPZ7yXqAz5KWXcAnS/fxxfL9FDqcXNuwMg90q0ntmCA3BC1ExSYJqxBu9ueWo9zzeQozRrenUVwlT4cjhLgASVhLT9pmcbY8ex7LDi9jYepCFqcu5rjtOGZlpklUEzrHdaZzXGeSQpIufe6m1nBsizFseMdsSE0GNETVh+Z3QsMBJerpLFNbf4Fvh0LjwXDDO5c85zYzz8aHS/by+bJ9WO1OrmkQw+huNahfpRTJvhCXGUlYhXCz6WsP8fC365g7pjPVI2VIjxAVmSSspSdts7gQp8vJpsxNLDy4kEWpi9h+fDsAcYFxdI43lsxpGd0S77MLHV0Ma4bxFVn7ohJFh8tBVmEW6fnppBekcyz/GOkF6ad+P/ndpV1cX/16BtcdfOHlfRa8YizZ0/u/0HbUpb8e4LjVzidL9/LJ0n3k2hx0rxPFqK7VaV61nBNxITyg3BPW4kXHFwE+GMvnfK+1fq54HbhvgHBgNXC71tp+oWtJoyguB1+u2M/Y6ZtY+XR3ooMvfliQEKL8SMJaetI2i4txxHqERamLWJi6kJVpK7E5bfh7+dOuSjs6xXWiS3wXQn1D3Xb/9Px0pu2Yxi+7fyHNmobrrKVtFIow3zCi/KOI9I8k0i+SbFs28w7OQ6HoWbUnt9e7nUaRjc69uMsF02435rUO/RGqdy11vNkFRXy2bB+fLN3L8fwiWiWFcX+X6nSpFSnVhcUVyxMJqwICtNZ5SilvYAnwEPAv4Eet9TdKqfeA9Vrrdy90LWkUxeXg/YW7+e/v29j0fG8CfWSJYyEqMklYS0/aZnGpChwFrEpbdWrZnGP5xzApEy2iW9A9oTvdErpduEezhLTWrE9fz9RtU/lz3584tZN2se1oEN7ASEz9Ik8lp+F+4X9bKOpw3mGmbp3KDzt/IK8oj8aRjbm93u10T+h+5vG2XPiwp7F268j5EFat1PED5NsdfLPqIB8s3kNadiF1Kwdzf5fqXNuwMmaTJK7iyuLRIcFKKX+MhPV+4Dcgpngh87bAOK117wudL42iuBxM/GM7b87bxZ6X+2KSRkSICk0S1tKTtlmUBa01W7O2MvfAXObsn8Oe7D0ANIpoRPeq3emR0IOE4ISLuqbdaWfWvllM3TqVzZmbCfQO5IYaNzCozqCLvtZJ1iIr03dN58stX5Kal0qVgCoMrjuYm2reRJCluEBS1h6Y0hWCq8CIP0u0VmuJX5PDxc/rDvHewt3sTrdSLSKACQMb0zTBfb3SQpQ3jySsSikzxrDfGsDbwOvACq11jeL98cDvWusGF7qONIqiItp5NJdbp6ygwO4EjAXCfb3NbHr+gp+/CCEqAElYS0/aZuEOe07sMZLXA3PYkrkFgFqhteiR0IPuVbtTs1LN8w6JPWo9yrQd0/h+x/dkFWaRFJLE4DqD6V+9P/7e/mUSn9PlZEHqAr7Y8gWrj67G38ufsW3Gcl3164wDds+DL2+G2n1h4BdlXqnY5dL8seUIL/66laM5hfyrVy3u61RdPigXVwRP97BWAn4CngE+LUnCqpQaCYwESEhIaL5//363xynExfh1w2FGT13LgOZxhAZYAKhXOZgbmsZ6ODIhxD+RhLX0JGEV7nY47/Cpnte1x9ai0SQEJZzqeW0Q0QCFYl36OqZuncqc/XNwaied4zozqO4g2lZu69b5npszN/PaqtfYkL6BKb2m0DKmpbFj+dsw+2no8jR0ecIt984uKOLpHzfy28Y02tcIZ+LAJlI/Q1z2PF4lWCn1LFAAPIEMCRZXgGnJB3n8hw0sfrwr8WFl88mtEKJ8SMJaetI2i/KUUZDBvAPzmHtgLqvSVuHQDqL8o6jkU4kdx3cQ5B3EjTVv5LbatxEfHF9uceXacxkycwhZhVl83fdr495aw0/3wYZv4NavoG4/t9xba820lIOMm7EFP4uZ8QMa0a1O9Kn9DqeLtOxC0rILqV8lmACpryEquPO1zW77y1VKRQJFWusTSik/oCfwKjAfuAWjUvCdwM/uikEId8qzOQCkwJIQQgjhZhF+EQysPZCBtQeSbctmUeoi5uyfQ3pBOs+0eYZ+1fqV2bDfixFkCeKtbm8xeOZgRs8bzZd9vzTmtF43CTJ2wE/3QvgciKpb5vdWSnFrywSaVw3jga/XMvzTFHrUjaagyMHBrAIOnSjA6TI6purEBPHV3a0JD/Qp8ziEcDd3VgluBHwGmAETME1r/YJSqhpGshoGrAWGaq1tF7qWfIorKqLJc3cy4c8d7PjPNVi8ynaOihDCvaSHtfSkbRbiL8lHkhn5x0haV27NW93fMioIZx+CKV3AUQhhSeAfAQERxd/D//q9chMIKd10osIiJ6/P3s7MjWlEB/uSEOZPfJgfCWH+KBTP/LyJpIgASVpFhVbuPaxa6w1A07/Zvgdo5a77ClFe8uwOLGaTJKtCCCHEVa5lTEv+3ebfPL/8eSakTOCJVk8YSejtP8KK98B6DKwZkLkTrJlQZD3zAgltof5NUP8GCIy66Pv7ept5pl89nulX72/3x4b6MeKzZAZ/sJKv7mlNhCSt4jIiYxmFuERWm4MAH7OnwxBCCCFEBXBLrVvYfWI3X279kmqVqjGg1gCIaQg3vH3uwfZ8yM+AvHTYMw82/Qi/PwaznoDEjtDgZqh7HfiHlUls7WtE8PGdLRn+WTKDP1jB1HvaSNIqLhvSNSTEJbLanFLAQAghhBCnjGkxhvax7Xl5xcusSlt1/gMt/lApAeKaQ6fHYNRyuH85dBwD2QfhlwdhfE1jiZzVnxqJbSm1K05aD2TlM/iDFWTkXXBGnhAVhiSsQlyiPJtDCi4JIYQQ4hQvkxevd3qdhOAEHlnwCAdyDpT85Oh60G0sPLAGRi6ENqMgcxf88hBMqAWf9IUV78KJg5ccX7saEXx8l5G03vnxqlNryQtRkUnCKsQlstoc+FtkSLAQQggh/nKycrBJmRg9bzQ59pyLu4BSUKUJ9HoRHlwH9y0xemELjsOsJ2FSA/iwJ+xbcknxtasewbtDmrMlLYcnf9xAeS1xKcSlku4hIS6R1e4k2Ff+CQkhhBDiTPHB8UzsMpGRf4xk+Kzh1A6rjcVswcfsc+q7j9kHi8lC9UrVaRnTEovZcu6FlDLmwcY0hK5PQ8Yu2PYLrPoQPr3WmOfa80WjCvFF6Fonikd71eb12dtpUCWEezpVK6NXLkTZk6dtIS6R1eagSoivp8MQQgghRAXUMqYlL3V4iSkbprD66GpsThs2pw27047Neeb8UX8vf9rHtqdrfFc6xXUixCfk7y8aUQM6PAKt74Nlb8GSibBjNrT9P2P+q0+QcVxhjtEDu2c+HFgBtfpAl6fA9NfgylFdqrP5cDb//X0rdSoH0bFm5Bm3OppTSPK+LLrXicZPRpQJD5KEVYhLZFQJln9CQgghhPh7fav1pW+1vuds11pT5CqiwFHA+vT1zD84nwUHF/Dn/j8xKzPNopvRJa4LXeO7Eh8cf+6Fvf2g82PQdAjMfQGW/A/WfgUNB8ChFEhNAe0Eb3+IqAmLXoNjW+CmKWAJAEApxeu3NGb3MSujp67ll9EdSAj3JzPPxvuL9vDZsn3YHC4Sw/159eZGtK4W7u63S4i/pS6HceuyOLmoiBqOm83NzeIY17++p0MRQlyk8y1OLkpO2mYhypZLu9icsZn5B+cz/+B8dp3YBUBSSBKdYjvROb4zTaKa4G3yPvfk1NXG/NbUZKjSFKp3hWpdIb4VmC2w8j2Y/bQxtHjQtxBc+dSp+zOt9H9rKZVDfOlZL5qPl+yloMjJDU1j6V4nmldnbTOKNLWtyuN96siH9cJtztc2S8IqxCXQWlP96Znc36U6j/Wu4+lwhBAXSRLW0pO2WQj3Oph7kEWpi1iUuojkI8kUuYoI8g6iXWw7uid0p1fVXphNpw3V1RqcdvA6z/qqO2bD98PBJxgGfW0Udiq2aEc6d32yCpeGaxtV5pEeNakRZQwvzrc7eH32dj5dto/YSn68cVtTmlcNdedLF1cpSViFKEMFdid1n53F431qM6pLDU+HI4S4SJKwlp60zUKUH2uRlRWHV7DokJHAZhRkUDu0No+3fJxWlVuV/EJHNsHUW6EgC275GGpfc2rXij2ZhPh5U7dy8N+emrIvi39NW8+x3ELeG9qcLrWjSvuyhDjD+dpmWdZGiEuQZ3MAyDqsQgghhHC7AO8AulftzvPtnmfugLm83ul1cu25jPhjBA/Pf5iDOeeuzWpz2lh6aCmTVk8i+UiysTGmAdwzDyJrw7Q7YM/CU8e3qRZ+3mQVoEViGD+Oake1iEDu+TyFX9YfLrPXl2dz4HRV/E404RnytC3EJci3Gwmrv0X+CQkhhBCi/JiUiT5JfegS34UvtnzBBxs/YGHqQobWHcqNNW9kzdE1LExdyMq0lRQ4CgD4bPNnPNfuOW6ocQMERcPtP8EnfeGbwXDXb2cMD76QiEAfvrm3DSM+TebBb9aSW+jg1pbxbEg9wdJdGazad5ym8ZW4v0t1fL1LVll40Y50Rn21hrhQP8YPaEyD2PNUSBZXLRkSLMQl2Hw4m2vfXMJ7Q5vRp0Hlfz5BCFGhyJDg0pO2WYiKIT0/nclrJzN913Q0xnN9lYAqdIzrSOe4ztQLr8dTi59iedpyRjUZxX2N7kMpBTmH4aPe4CiA4bMhvPpfFy3Mhnn/gc3TofFtxpI5fpVO7S6wO7n/q9Us2J5OkI8XucUjz6pFBLAnw0pSRAAv3dCAdjUiLhj716sOMHb6JqpHBnAiv4hMq537Olfjwe418fGSpXSuNjKHVYgytGpvFgPfX84XI1qds26ZEKLik4S19KRtFqJi2ZK5hfXp62kZ3ZLqlaobSWmxIlcR45aNY8buGdxU8ybGthlrVBvO2Akf9wZLIIz4AwKjYcvP8PsTkHcUqraH/UuNZLXzk9BiOHhZALA7XPxvzg4y82x0qBlJ++rhhAf6sGRnBv+evpH9mflc36QKDWND8DIpvMwmLGYT3l4Kb7OJtQdO8NGSvXSuFclbg5vicsGLv23h+9WpNI6vxKd3tSQ0wOKpt1N4gCSsQpSh+duOMezTZH4c1Y5mCVIpT4jLjSSspSdtsxCXF601b697m/c3vE+H2A5M6DwBf29/OLQaPr0OwqoZy93s/ANiGsF1kyC2OaSthz/Gwt5FxjHXvQlJHS94r8IiJ5Pn7WTKoj0UOc+fawxuncAL/evjZf6rrM6sTWk8+M06ksID+GJEK6KCfcvsPRAVmySsQpShX9Yf5oGv1/LHI52oFR3k6XCEEBdJEtbSk7ZZiMvT9zu+5z8r/kOjyEZ80OsDfMw+sHsefDXQWLO121hoNRLMp9Xp0Bp2/gmzn4Lj++DaidD8zn+8l93hotDhxOHUOJwu7E4XDqemyOnCbFIkRQSgADZ8C2HVIb4lAEt3ZXDP5ylEBvnw2bBWJEYEuOW9EBXL+dpmqRgjxCWwFs/VkMWzhRBCCHE5uaXWLQRaAnls4WOMXTKWVzu9iql6N7h3IfiFGb2sZ1MKavWChNbw3TD45UHI3Ak9noeTa8FaM2HXHIiqC5UbAWDxMmHxusCiJC4X/P44JH8AKGPIcY/naF8jgi9GtGbYJ6voOmEBzRJC6VM/ht71Y0gI9y/7N0VUaPK0LcQlOLWsjVQJFkIIIcRlpk9iHw7nHeZ/q/9HfFA8DzZ7EKLrn3HMybVfO8R1MHphAXxDYPA0mPUkLJsMmbuNtVw3/2QskaOdgIKmQ6H7sxB4gbVaHXaYfj9s+h7ajgbtgpXvwfaZ0H8yzWv25LcHO/LjmkPM3nyEl2Zu5aWZW6kdHUSv+tEMb58kc1yvEvK0LcQlsNqcAPj7SAU7IYQQQlx+htUfxoGcA3yw8QPig+K5seaNp/YtPbSU55c/T5o1jbjAOB5v+Thd4rsYhZzMXnDteIioBbOeMBLM0ERo/xDU7gtbphuJ5+bp0OEhCE0Chw0cheC0g7MIXEWwZ4ExL7bH89DhYePGDW+Bnx+AqQOh/2Timw7loR41eahHTQ5m5fPHlqP8sfkIb8/fxbqDJ/h8eKszikuJK5MkrEJcgny7A4uXCW/zBYa5CCGEEEJUUEop/t3m36RZ03hh+QvEBMRQL7weryW/xozdM0gKSeLZts/y5ZYveXD+g7Sr0o4nWj5BtUrVjAu0HmkUX3IUQuUmxrBhMOahNh8Gf/zbWBrnfLx8of9kaHbHX9timxvVir8dCj//HxQch3YPGJcN82dEhyRGdEji8+X7ePbnzXy3OpWBLeLd8waJCkOKLglxCf7900Z+33SENc/09HQoQohLIEWXSk/aZiGuDLn2XO74/Q6OWI/gY/Yh25bNsAbDuLfxvfiYfShyFfHttm95Z907FDgKGN10NMMbDC9Zz2bmbnA5wcvH+DJbwOxtfDd5g8n44H971nbC/cKJ8Ctet9Vhgx9HGr219W+Euv2helfwM1ZmcLk0t01ZwdYjOcz5V2eig33Jtzswm1SFXb/1YFY+DpcmSQpInZcUXRKiDFltDgJkOLAQQgghLnNBliDe6f4OQ38fSrhvOO/1fI86YXVO7fc2eTO03lCuSbqGl1e+zKQ1kziYe5CxbcbiZfqHVCK8+j/e/9c9v/LvJf/Gz8uP+xvfz+C6g/H28oFbPoY5CbDmM2OOrDJBbAuo3g1T9W68enND+ryxmAe/Xkt4oIW5W48R6OPFx3e1pHF8JQAW7kjnRL6d65vEluo9ulQbUk9wICufbWm5TFm0B19vE78+0FEKR10k6WEV4hLc/VkKqcfzmfVwJ0+HIoS4BNLDWnrSNgtxZbE77XibvC/Yc+rSLiavncyHGz+kfWx7JnSeQIB3AA6Xg2WHl/Hn/j+pUakGg+oMwmL+54JIP+/6mWeWPkPz6Ob4evmy5NASqoVUY1y7cTSNamoc5HQYa8XummMsv3N4jVGgqd2DfOg3jP/8tpWIQAvXNKjM/O3HyMyz8+otjViw7Rg/rj0EwN0dkni6b11MprKb72orXq7n71aMOJZTyOuzt/Pd6tRT24bVtrNhfwYFoXX4bHgrIoN8yiyWK4WswypEGRo0ZQVFThff39/O06EIIS6BJKylJ22zEFev73Z8x0srXqJmaE1ax7Tmt72/kVGQgb+XP/mOfGIDY/lX83/Rs2rPcxJgrTUFjgJm7p3JC8tfoHXl1rzZ7U18zb4sTF3IK6te4Wj+UV5s/yL9qvU79+b5WfDHWFg3FT1sJjt8GlI9MgAvs4ljuYUM+ySZzYdz8DIpRnWtQXa+nc+W76d/4yr896aG512SUGtNTqGDYF+v8ybtTpdm+e5Mfl53iFmbj2B3uPi/rjVoEl+J2ZuPkJFnIzPPzuoDxzEpxWOt/egXm0/QsWRCUibjMFnol/8s23UCPepG879bmxAoSySeIgmrEGWo/1tLCPW38NnwVp4ORQhxCSRhLT1pm4W4ui1OXcyjCx/F7rTTKa4T/Wv0p1NsJ5KPJjM+ZTw7j++kfnh9wv3CybZlk23LJseeQ449B4fLWB6wfWx7JnWZhK+X76nr5thzeHj+wyQfSeahZg8xosGIcxNIWx682xZMXnDfUrD4Gz2xJjN5didTFu2hV71oGsSGoLXm3YW7eW3WdqKCfHi0d21ubhaH+bTe1iyrnWemb+K3jWnEVvKjZWIoJqWw2h3k251YbQ4KilwczSkky2on0MeLXvWjKbA7+X3TEQACfbyIC/XDz2KmU40w7nRNJ2zVBKMiMkCDm2HfUoqUN9PjHmXc+hBqxkbx4Z0tiAiU3laQhFWIMtVtwgLqxgTz9pBmng5FCHEJJGEtPWmbhRDZtmy01lTyrXTGdqfLyfRd05m6bSpmZSbEJ4QQnxCCLcHGl08wkX6R9Ers9dcar6exO+2MXTqW3/f+TpvKbWhXpR1No5pSL7zeX0ON9y6Gz/pBkyFGMaZ1U8HbD26bClWaGMWelk0Gazp0f5bVh/J58dctrDt4ghA/b1olhZEQ5k9OQRELiue6Dm1TlbQThaw7eAIvsyLA4oW/jxl/ixk/by8q+XvTvU4UXasF4Lv9Z8jPYHXkjWQWWejstwef3ANGoakN30L2Qah3A7QaaaxHG1ETUlfDFzeALYdC3yhuzf0X+yzVebZfPW5uHlce/8kqNElYhShDrV+eQ+dakbx2S2NPhyKEuASSsJaetM1CCHdyaRcfbvyQGbtnsD9nPwAWk4X6EfVpEtWEO+rdQcS8VyD5A6OntXZfOLwW8jOhz39h/bdwYJlxsYS2cOtXuPzC+GPLUeZtO8rKvVmk59qo5OdN1fAAnulXj3pVgs8fkMMOx7bAms9hwzSw5xrbfSuBXyU4vq/4QGVUNG55txGTUhzKO8S4ZeMwKROTO7yC5eAq+PURXAXZvO93N68fa8Ho7rXpUTeKxIgAgn293fa+VmSSsApRhho+N5ubm8cxrn99T4cihLgEkrCWnrTNQojyklGQwbpj61h3bB1r09eyJWMLDSIa8Gn39zBvnwnVOhu9mLlH4ZvBcCgFLIFw7QRjGZ3poyAwGq55DWr1/mvN2JO0huVvw8r3ISwJohuALRtyj0BOGuSmQUGWcayXr9Fz2vwusATAgv9CUT40GQpxzSEgEnyCyCjIYHzKeHYc30FqrlF8qcBRwIBaA3i27bOQcxi+GwYHV7Dfty63nBhNOqHEBPvy+YhW1IoOKt83uQIo92VtlFLxwOdANKCBKVrrN5RS44B7gPTiQ5/WWs90VxxClDWtNVa7QybJCyGEEEKUgwi/CHpU7UGPqj0AYymcpxY/xac7vmFEoxF/HRgUDXf9CimfGInpyWV1KlWFH0bA17caS+M0GQQxjY2e0RMHYNUU2DELEtpBYTakfGT0nAbFQGhViG8FQZUhJA5qXwP+YX/dc9DXZ8SaX5TP7zt+4M21b2ItshrDmSObMrzhcL7b/h0fbfqItcfW0jepLyOGzcS06UcSfnmIJaHPY/WL5bcT8dz2biGPXtOQW1vGnzHX9mrlziduBzBGa71GKRUErFZK/Vm8739a6/FuvLcQblNQ5MSlOW+VOSGEEEII4T7XJl3LvAPzeGvdW3SI7UC0fzTf7/werTXDGwzH3HYUABvSN5BVmEWX+C4wOsWY57poPPw25swLmi1wzevQ6p5ze1/PYnfa+WPPr3yz7RsyCjIY3mA4Uf5R/LTzJ/bn7Oew9TAFjgLqhtXl5Q4vUyO0xqlzH2j6AJH+kcw9MJc3177JzhM7+U/7/2CJqInPH2Pxcdi4PWsGjS0HGTX9Tr5aWYMXrm9A86qhZf0WXlbKbUiwUupn4C2gPZB3MQmrDDsSFcmx3EJavTSXF6+vz+1tEz0djhDiEsiQ4NKTtlkI4UnHC49z4883YlZmcuw5FDoLAWhfpT2vdnqVH3b+wJtr3sSpnQytO5QxLcbgZfIyhv9mH4S0DWDPg0oJEFELAiJwupyYTeYz7pNrz+Vw3mEO5x1mU+YmftjxA5mFmSQGJxLsE8yG9A0ARPpF0jiyMVH+UfRO7E3TqKbnXR5Ha81Hmz7ijTVvkBCUwNOtn6Z9bHtj55ov0DMfRTudfG/qxfiC63hqQEdubHrlF2Uq9yHBZ908EWgKrMRIWEcrpe4AUjB6YY+XRxxClAWrzQlID6sQQgghhKeE+obyQvsXeHrJ01xb7VqG1h3KuvR1vLTyJXp+35MCRwG9qvYiyj+KL7d+yc7jOxnbZiyJIYlGklop4dQZmu0DAAAgAElEQVS1HC4Hb66eyBebvyA6IJrE4ESyCrNIzUsl92RxpWIdYzsytO5Q2lRpg0Kx7PAyCp2FdIrrhLepZMWSlFLc3fBu6obV5dXkV7l/zv083vJxmkc3J67BDQTV6I5a8AoD1n5Jb98lDJv2CBbzbVzbqHJZvoWXDbf3sCqlAoGFwEta6x+VUtFABsa81heBylrr4X9z3khgJEBCQkLz/fv3uzVOIUpq06Fs+k1ewvu3N6d3/RhPhyOEuATSw1p60sMqhKiI1h5by8srX+b66tczpO4QlFJM3zWdl1a8hN1lp3fV3vRO7E1SpSQsJgv7cvbx8aaPST6STO/E3igU+3P2E+4XTmxgLHGBcVQJrEKVwCrEBsYS6lu2w3MLHYU8tugxFhxcABjzdd/r8R61w2rDsa24vh6M4/hBRjif4l/3DKdpwl/333Qom21Hcgny9aJ51VC3rueamWcjed9xetSNwstsosDuZNbmNPrUr4yfxfzPFygBj1QJVkp5A78Cs7XWE/9mfyLwq9a6wYWuI42iqEhW7Mnktikr+Oru1rSvEeHpcIQQl0AS1tKTtlkIcTnJKMjgiy1f8M22b8h35J+xz9fsyzNtn6F/9f4eic3hcjD/4HxsThuTVk8i157L/Y3vZ3DdwVgKc3F81Jv8rDQGO5/n4UHX0aV2JBP+3EHKwt9oaNqLFV82uKrhiqjD6B516Neo8nmHI5dUbmERBXYnX648gL/FzPLkZBKPL+MP2lK7WhK+zlwS93/P9tgbmTSsOyF+pV+Kp9wTVmW8S58BWVrrh0/bXllrnVb88yNAa631bRe6ljSKoiKZu/UoIz5LYfr/tadJfKV/PkEIUeFIwlp60jYLIS5H+UX57Mnew57sPdiddpJCkqhRqQYhPiGeDg2AI9YjvLD8BRYfWkxsYCxPtHyCroGJOD/sSUFBPqNsD5AZ2ZpbMt9jmNfsM87NVYG8Zb+OvGYjee76Jli8TOdc3+XS7Mu04uttpkolvzP2TfxjO4t3ZRDk683h3Zvxd+UyxDyXfHzoY06hssoEYLerMjYs1DPtZ785gZCRM6kUHV/q1+6JOaztgduBjUqpdcXbngYGKaWaYAwJ3gfc68YYhChzVnvxHNYyGv4ghBBCCCHKh7+3Pw0iGtAg4oIDPD0mJiCGd3q8w7LDy5iQMoEH5z/Iw80eZvg9c/GfehufpL/GrhOx1PY6CG1GQcdHofAEHFpD4IZpPLXra+av28JNu8bQqXFtNODvbaZhXAhBvt7879c1mA+tpAAfIut3oXvdaOpVCWb2xiPEL3qUKd6bsJoCSfQ+AIDL7GsUTg6Mga4vQ/o2qi/5nxFs5ydJSE1BhYa79T1xW8KqtV4C/F1ftKy5Ki5rVpsDkKJLQojLh1KqD/AGYAY+1Fq/8jfHDATGYXygvF5rPbhcgxRCCHFKuyrtaHFtC8YuHcukNZPw8/Jj8N1/oH+6l1q75kH/D6HRAOPggHAIr45qNABSPqHLb2NoVXgfC5Y2QilNnsuXuTqJHO3PS94/UNVyFIBNO6cya0tTZugkepmSGeC1CFdcWyL9QyF+OPiHY0rsAGHVyCrMYu3RtXRqeDPeVdtz3C+YbzLXMLDNFMIt/m59L+SJW4iLJAmrEOJyopQyA28DPYFUIFkpNUNrveW0Y2oCTwHttdbHlVJRnolWCCHESRazhVc6vkJBUQGvJb9GTEAM3W79CooKcHhZ+HrLF2zK2ISflx/1I+rTLKoZ1VsMQyW0JWDJRPoeWAEmL3RhNgPzFwLgDIiB/t/AiQPUX/8NDQ5/B4A2W9C1rsM04DMoXtrH7rTz086f8M5cx1dbv2LH8R0oFO1i25Fjy2FjxkZ+2f0LH/f+mJgA9xUilSduIS5S3smEVYYECyEuD62AXVrrPQBKqW+A64Etpx1zD/D2yWXmtNbHyj1KIYQQ5zApE690eoW7Z9/NIwse4fGWj9OvWj8enfMQK9JWUCWgCnlFefyw8wcAuid055k2zxB+05RTQ12V1pCdCvY8zKFJ4O1rbG99L6Sth6y9qNrXsCBtOavXTMLb5M3ve38n25ZNbpGxrI+P2YeHmj3Elswt/Ln/TywmCw80fYBtWdsI8w1z63sgCasQF8lqc+DrbcLLfO5EdiGEqIBigYOn/Z4KtD7rmFoASqmlGMOGx2mtZ519obOWnHNLsEIIIc4U4B3AR70/4onFT/DKqld4d/275Bfl80K7F7ix5o1orUnNS2Xmnpl8uPFDhswcwovtX6RlTEvjAkpBJaMo0rwD8/h+x/dYzBYG1RlEw4iG+MU0Yvvx7Ty+6HEKHAWYlImmUU1pGtWU7gndqRlak3C/cAK8AwCYu38usUGx1AmrUy6vXxJWIS5Sns1JoAwHFkJcWbyAmkAXIA5YpJRqqLU+cfpBWuspwBQwqgSXd5BCCHG18vf2Z1KXSUxaM4m5B+byVre3aBLVBAClFPFB8dzb+F7aVWnHIwseYfjs4YT5hmF32rGYLdSsVBMvsxdLDy0lLjAOa5GVuQfmEuAdQIx/DLuzdxPkHcSsm2cR5ReFt/n8y9R0r9q9vF42IAmrEBfNanPI/FUhxOXkEHD6egNxxdtOlwqs1FoXAXuVUjswEtjk8glRCCHEPzGbzIxpMYYxLcac95iGkQ359cZfmbF7BhszNuJr9sXmtLHz+E5sNht31LuDh5o9RJGriFVpq/hlzy8czjvMk62epGNsR2IDY8vxFZWMPHULcZHy7Q4CLPJPRwhRvpRS7YF1WmurUmoo0Ax4Q2u9/x9OTQZqKqWSMBLV24CzKwBPBwYBnyilIjCGCO8p0xcghBCiXPh6+TKw9kAG1h543mMsZgtdE7rSNaFrOUZ2aWQSnhAXKc/mIMBHCi4JIcrdu0C+UqoxMAbYDXz+TydprR3AaGA2sBWYprXerJR6QSnVv/iw2UCmUmoLMB94TGud6Y4XIYQQQlwM6SYS4iJZbU7CAy2eDkMIcfVxaK21Uup64C2t9UdKqRElOVFrPZOz1kHXWj972s8a+FfxlxBCCFFhSA+rEBdJ5rAKITwkVyn1FDAU+E0pZQLOXxVDCCGEuAJIwirERcqzOQiUOaxCiPJ3K2ADRmitj2AUT3rdsyEJIYQQ7iVP3UJcJOlhFUJ4QnGSOvG03w9QgjmsQgghxOVMnrqFuAgul8ZqdxIoRZeEEOVEKZULnHfNU611cDmGI4QQQpQrSViFuAj5RU4A6WEVQpQbrXUQgFLqRSAN+AJQwBCgsgdDE0IIIdxO5rAKcRHybQ4A/CVhFUKUv/5a63e01rla6xyt9bvA9Z4OSgghhHCnEj11K6WigPZAFaAA2ASkaK1dboxNiAonrzhhlSHBQggPsCqlhgDfYAwRHgRYPRuSEEII4V4X7GFVSnVVSs0GfgOuwRh6VA8YC2xUSj2vlJK5M+KqYbUVDwmWKsFCiPI3GBgIHC3+GlC8TQghhLhi/dNTd1/gnuJKhGdQSnkB/YCewA9uiE2ICuevHlZJWIUQ5UtrvQ8ZAiyEEOIqc8Gnbq31Y0opk1JqoNZ62ln7HMB0t0YnRAVjLU5YpeiSEKK8KaUigXuARE5rv7XWwz0VkxBCCOFu//jUrbV2KaUeB6b907FCXOmsdklYhRAe8zOwGJgDOD0cixBCCFEuSvrUPUcp9SjwLacVeNBaZ7klKiEqKBkSLITwIH+t9ROeDkIIIYQoTyV96r61+Pv/nbZNA9XKNhwhKra/hgRLlWAhRLn7VSnVV2s909OBCCGEEOWlRAmr1jrJ3YEIcTk4WSXYX6oECyHK30PA00opG1AEKEBrraVavxBCiCtWSddhXQIsxJg7s1RrnevWqISooKw2B37eZswm5elQhBBXGa11kKdjEEIIIcpbSbuJbgc6AjcDrxd/urtYa/2I2yITogKy2h1ScEkI4RFKqU5/t11rvai8YxFCCCHKS0mHBO9VShUC9uKvrkBddwYmREWUZ3MSKPNXhRCe8dhpP/sCrYDVQDfPhCOEEEK4X0mHBO8GMoCpwEfAA1prlzsDE6Iistqkh1UI4Rla6+tO/10pFQ9M8lA4QgghRLkwlfC4N4EDwCDgQeBOpVR1t0UlRAWVJwmrEKLiSEVGOwkhhLjClXRI8BvAG0qpQGAYMA6IA2RspLiqWG0OooN9PR2GEOIqpJSajLGkHBgfODcB1nguIiGEEML9SjokeALQAQgElgHPYlQMvtA58cDnQDRGAztFa/2GUioM+BZIBPYBA7XWxy8xfiHKlQwJFkJ4UMppPzuAr7XWSz0VjBBCCFEeSvrkvRx4TWt99CKu7QDGaK3XKKWCgNVKqT+Bu4C5WutXlFJPAk8CT1xM0EJ4itXuJMAiAwuEEOVPa/2ZUsoC1CretN2T8QghhBDl4YJzWJVSiQBa6+//LllVhri/O1drnaa1XlP8cy6wFYgFrgc+Kz7sM+CGSw1eiPImPaxCCE9RSnUBdgJvA+8AO8631I0QQghxpfinJ+/XlVIm4GeM0vnpGKX0a2AsbdMdeA6j8MN5FSe+TYGVQLTWOq141xGMIcOigrI7XAz/NJljuYWeDqVCyLc7JWEVQnjKBKCX1no7gFKqFvA10NwTwZw4mk/6wVwi44M4uDWLlJn7zjmmy5DahMYEsHdDBuv+PHDO/h7D6hEU5svOlKNsWnjonP197m2AX6CFrcvS2LY87Zz9/R5ojLfFzMYFqexafeyc/TeOaQbA2j8OsG9jxhn7vCwmrnugCQDJv+0ldduZs5N8A7255t6GACz/aTdH9mSfsT8w1Ieew+sDsHjaDjIO5p2xv1K0P12H1gFg/pfbOHE0/4z9EfGBdBxodJb/+fFm8o7bztgfUy2Etjca9S1/f38jhXlFZ+yPqxNKy2uTAPhl8joc9jMXb0hsGEHTXgkA/DTh3KnONZpH0bBLHEV2J79OXn/O/jptK1O3XWUK8uzMen/TOfsbdI6lZotocrMKmfPJlnP2N+mZQFKjCI4fsbLgq3MHA7Tom0h83TDSD+ayZNrOc/a3uaE6lauHkLY7mxXTd5+zv8PAmvK3h/ztyd+e5//2Tt7PnS745K21HqCUqgcMAYYDlYECjN7S34CXtNYXzGSKCzX9ADystc5RSp1+fa2U0uc5byQwEiAhIaHEL0iUrSPZhSzZlUGjuBBiK/l5OhyPqxkdRN+GMZ4OQwhxdfI+mawCaK13KKW8PRmQEEII4W5K67/NF8vm4kZD+iswW2s9sXjbdqCL1jpNKVUZWKC1rn2h67Ro0UKnpKRc6BDhJlsO59D3zcW8O6QZ1zSs7OlwhBCiTCilVmutW3g6jouhlPoYcAFfFm8aApi11sM9EY+0zUIIIcrS+drmklYJNgPXYlT2PXXOyST0POco4CNg61nHzQDuBF4p/v5zSWIQnmG1OwBkGKwQQnje/cD/YayHDka1/nc8F44QQgjhfiXNQn4BCoGNGJ/ulkR74HZgo1JqXfG2pzES1WlKqRHAfmBgycMV5c1qO5mwSmVcIYTwJK21TSn1FjAXoy3errW2ezgsIYQQwq1KmrDGaa0bXcyFtdZLAHWe3d0v5lrCc6w2JyA9rEII4WlKqWuB94DdGO1rklLqXq31756NTAghhHCfkmYhvyulemmt/3BrNKLCOdXDapGEVQghPGwC0FVrvQtAKVUdowCiJKxCCCGuWCXNQlYAPxUvcVOE8cmu1loHuy0yUSHkFSesgdLDKoQQnpZ7MlkttgfI9VQwQgghRHkoaRYyEWgLbNTuLCssKpy/5rBKwiqEEJ6glLqp+McUpdRMYBqggQFAsscCE0IIIcpBSbOQg8AmSVavPnl2BxazCYuXydOhCCHE1eq6034+CnQu/jkd8C3/cIQQQojyU9KEdQ+wQCn1O2A7ufFCy9qIK4PV5pAKwUII4UFa62GejkEIIYTwlJImrHuLvyzFX+IqkW9zynBgIYQQQgghhEeUKBPRWj/v7kBExZRnc0iFYCGEEEIIIYRHlCgTUUrNxyjwcAatdbcyj0hUKFa7DAkWQgghhBBCeEZJu84ePe1nX+BmwFH24YiKJs/mJNhXeliFEMLTlFK7MZaZWwws1lpv9nBIQgghhNuVdEjw6rM2LVVKrXJDPKKCsdocVAmRIpRCCFEB1ANaAx2B15VStYENWusbPRuWEEII4T4lHRIcdtqvJqAFEOKWiESFYlQJlh5WIYSoAJxAUfF3F3Cs+EsIIYS4YpU0E1mNMYdVYTSW+4ARbopJVCB5NgeBkrAKIURFkANsBCYCH2itMz0cjxBCCOF2phIe9wTQRGudBHwBWIF8t0UlKgStNfl2pxRdEkKIimEQsAgYBXyjlHpeKdXdwzEJIYQQblXShHWs1jpHKdUB6AZ8CLzrvrBERWBzuHC6tAwJFkKICkBr/bPW+jHgXmAmcBfwq0eDEkIIIdyspAmrs/j7tRjDkH4DLO4JSVQUeTajELSswyqEEJ6nlPpBKbULeAPwB+4AQj0blRBCCOFeJc1EDiml3gd6Aq8qpXwoebIrLlPWkwmr9LAKIURF8F9grdba+Y9HCiGEEFeIkmYiA4E+wHit9QmlVGXgMfeFJSqCkz2sgTKHVQghPE5rnaKUaqCUqoexJvrJ7Z97MCwhhBDCrUq6Dms+8ONpv6cBae4KSlQMVpvxIb70sAohhOcppZ4DumCsxzoTuAZYAkjCKoQQ4oolw3rFecmQYCGEqFBuAboDR7TWw4DGyJroQgghrnCSsIrzstpPDgmWhFUIISqAAq21C3AopYKBY0C8h2MSQggh3EoyEXFe0sMqhBAVSopSqhLwAbAayAOWezYkIYQQwr2kh1WcV17xHNZAWdZGCCE8SimlgP9qrU9ord/DqNp/Z/HQ4JKc30cptV0ptUsp9eQFjrtZKaWVUi3KKHQhhBAVVI49hwM5B867f1vWNnLtueTac5m2fRqr0ladc4zT5f7C9ZKJiPM62cPqL1WChRDCo7TWWik1E2hY/Pu+kp6rlDIDb2MkualAslJqhtZ6y1nHBQEPASvLKm4hhBAVi9Pl5I21bzDvwDyyCrIocBQwpsUYbq1zK94mbwC+2voVq4+u5s/9f5IQlECobyjr09cDcHu92xnTfAwO7eCDDR8we99svrvuO3y9fC9021KRhFWcl9XmwOJlwtssHfFCCFEBrFFKtdRaJ1/kea2AXVrrPQBKqW+A64EtZx33IvAqsmydEEK4jbXIyrhl41iRtoIalWowqskoWsa0BGD10dXYnXbaVG6DMbCm7L2a/Cpfb/ua1jGtaRjRkOO247ya/CrvrHuHxJBEkkKSmLF7BoHegfRO7M2mjE1szdzKuLbj2HliJ19s+YL1x9bj0A62ZG6hV9Ve5BXlScIqPCPP5pCCS0IIUXG0BoYopfYDVkBhdL42+ofzYoGDp/2eWnytU5RSzYB4rfVvSilJWIUQwg0O5BzgwXkPsi9nH70Se7EhfQMj/xjJiIYjUErx/vr30WgaRTbilQ6vEB/8V1295YeXUyesDqG+oSW+n0u7mLV3Fm+tewu7006X+C58u/1bhtQdwpOtjNkhWmsWpS5iUeoi9uXsY+aemcQHxfND/x/wU95g9qKoqADv1GSo3oT64fV5d/27AIzvPJ7ecV3By1K2b9RZJBsR52W1OQiQ4cBCCFFR9HbHRZVSJmAicFcJjh0JjARISEhwRzhCCHFZ0VqTXpDOEesR6oTVwWL+++RtZdpKHlnwCCZl4v2e79O6cmty7bk8tfgp3t/wPgA9q/akbZW2vLHmDW777TYmd5tMs+hm/LjzR55b9hy1QmsxqeskAEJ8QpiQMoGEoARurX0rgZbAM+6XfCSZ8Snj2ZK5hdqhtakcUJnvd3xP1eCqPFh7KGyfBUc2oo7vpXOv/9A5vjMAx/KP4ZWxE7/109BzxkFie0wmH9j8PVqZuK7HOK678Tdw2GDBf3H99CimUcvB58z7lyVJWMV5We1OAqTgkhBCVAha6/2XeOohzlz+Jq5420lBQANgQfEQtBhghlKqv9Y65awYpgBTAFq0aKEvMR4hhLgiHM47zJgFY9iUuQmAZlHNmNJrCvMPzGdz5mZGNRmFn5cfmzM388C8B4gNjGVyt8nE+YZDxi6CQhN5q/tbHC88TmZBJtUqVcOkTLSJacOouaMYPXc0g+sO5qNNH1E3rC47j++k7499ASNhzbXn4tIuftn9C5/0+YRVR1bx484fKXQUsubYGmICYni5w8tcW+1aTMpEkasIjm1HfdAD8tIAcGKCnXMxNx0EoYlEhcTh+PZOKMojTYcTvfU3zLj40HENMSqLfn8+i941D1dhNua0tcxUnemUm0ewJKzCE6wyJFgIIa4EyUBNpVQSRqJ6GzD45E6tdTYQcfJ3pdQC4NGzk1UhhBB/WZW2ikcXPkqRq4hHWzwKwPiU8Qz4ZQB7s/cCsCJtBd3iuzFtxzQq+VRiSs8pRGanwcfXwvF94OULXZ4itP1DhFpCYMV7UJRPfMu7ea/newydOZT3N7xP+9j2vNbpNbZnbWdTxiac2smCgwsY3XQ0Lu1i9NzRdJnWBZd2ERcYh7+3Pw81e4ihdYcac0sPr4WiQrxjm1Hw9Z1Y8/J5zP4YR1QkweYiHsn7mlZL3sCECwCH9uauoqc4Ed6M7BMZ+Duy6de9O0uzC1i95gMe2PcrRXjxH8eDRLYeRMeAcLe+15KNiPOy2hxU8nfvmHQhhBDupbV2KKVGA7MBM/Cx1nqzUuoFIEVrPcOzEQohRMVnc9pYnLqYUN9QNmdsZuLqiSQGJzKp6yQSQxJPHTc+ZTy31b6NdlXa8e8l/+bd9e9SI7QGr3V8jcgdc+DXh7F5hzA/YQz1C9cQP+c52DEbzF6wd5FxkaVvEnvju3zZ90vS89NpEt4Alr1Jy5o9adnAWM3s7oZ3n7rn293fZlHqIppENaFHQg/MpuIpfVl70H8+h9pq/G/e5ROMny2HcT5jeWzkvUQH+5Bb6ODNuR14eOcRvKxH6GpaywmvKJ4afT91YoIpLHKSZ3MQHWwUVfqp2pMMWjAQL7PiiT516FQr0u3vvdLaPSN6lFIfA/2AY1rrBsXbxgH3AOnFhz2ttZ75T9dq0aKFTkmRD3rLW/cJC6gTE8zbQ5p5OhQhhChTSqnVWmtZa7QUpG0WQlwtjliP8PD8h9mcufnUtm7x3Xi548sE5B6DPQsg+yDUv4nMkMqE+4WD1hQ6bbi0C38vP5gzDpZO4nClFlx/dASZhODSmkeD/uSugOV4F6QzsaAfi4vq8E7QpyTad0CfV6H1veiZj6GSP8DpG4q5z3+NAMKrw4wHIDQJuj4FlRsb251FYM+Dha/jWjUFm8vMu0X9SCOMFmoH+4ih58hXaJZwbvEmm8PJ/G3pRARaaJEY5v439izna5vd2cP6KfAW8PlZ2/+ntR7vxvuKMmK1OfG3SNElIYQQQghx9SlyFTFj1wwmr51MgaOAVzq+QohPCEXOIjrHd8a06UcjaSzKN05I+ZjwId/Dkgfh8Dp8b/kIEtrA0jdg6SRWhl3P4MO30LthLOMHNGbz4RwemOrH+CO9AGgQG0yP2lHcsCSeiabJdJv1BGz6AZW6immOzvQoXEfY9PtOxZepQvHOTCNgb1/M/d+A3fPR66eC1mjgO0dnvvQfyvDr29IuxI/V+49TL8z/b5NVAB8vM30axLj7bb1obktYtdaLlFKJ7rq+cD+jSrCMGhdCCPH/7N13fBR1/sfx1ze9kASSQEJogRBq6FWKgqBg74q9cOednnen97s79VQQTrHLWbBg73qWUxQbYgNEBKTX0Elo6WVTd/P9/TErBggSIMmmvJ+Pxz6SnZ2d+cwwZPPOt4yISNOyNW8rN351I2mFaaTEpPDv4f+mc4vOzoseN8yZBD88Ae2GUnL6Y+zIKSF59kWY58eA8YeIeHj5DIhIgLwdLA4fxYRdF3HDqGT+fmpX/PwMgxKj+eKWE1m6PZuCEjen9IgjLCiAs/smcOMrIYQVTqXX7g1Md1/OxsQreXJnGtFlu/DHwxj/ZXwacibGwDNl/6LN+xMpJ5B33KPJI5yv/IYz5uQxvDuyEyGBTgPU0E61O9a0tvgijdxkjLkKWAL8n7U2p6qVNHW+b1lrcZVp0iURERERaVqyS7K58asbKXIXMWPMDEa2GYnJ2gQf3wyhzSH9Z9j6HeX9J/L3gkv45IkteCos57e+iwdbfcBbQRfyZXYrnmj7Ec39ivkq6lxu3DiAO89MYeKIjgfsKyo0kJO7xR2wrHOrCF7+/Ugufvpu9uS5OLt/B549txcZBX3YnFlIkL8f3288jZnDEgkK8OP6p4KJyF3L5qAuXDy6D9HhQTzbI45W3nGnDV2tjWEF8LawflJpDGsckAlY4N9Aa2vtdUfajsbJ1L3iMg/dJ33OreO7ccOoJF+XIyJSozSG9fjps1lEGqOi8iJ+P+f3bMjewIvjXqR3y96QOgfemwieMqgoB+NP/pj7uWxpMmt35XPNsI7ERQbzwOfriQwNJLeonPAgfzzWEhMeTHpuMVcO7cC/z005qloyCkrJLSojOS7iN9crKClnc4aL7q0jCA5ouMP5fDGG9RDW2r2VCnoO+KQu9y/VV1jqBqBZcMO96EVEREREqmtf0T5umnsTG3I28MhJj9DbLxze/z2sehfiU2DCmxCRQOqebK55bTU5RS6ev3rg/hbS2GbB3PXRau4+qwen927NtNnrKHVX8MdRSVw6qN0R9n6olhHBtIwIPuJ6ESGB9G3X/Ki331DUaWA1xrS21u72Pj0PWF2X+5fqc3kDq8awioiIiEhDll6YzvSl07ms22X0j3PufrEjfwfZJdn0btkbP+PHgvQFTP5hMgVlBTxx8hOcWFwKM4aAXwAM/wvz2kzk/le3E+C/ky0ZhYQE+vPfP5xASpuo/fu5YEBbzu3XBn8/A8B/JjudXY8AACAASURBVPTzyfE2NrWWRowxbwGjgFhjTBowGRhljOmL0yV4G/CH2tq/HJ9CBVYRERERaeAqbAV3LbiLxXsWM2f7HCamTCSvNI/3U9/HYz20i2hHXFgcS/YuoV1EO1457RW6lZXDu+OhVXe4/D3e3VDGba+vokN0GG1aBDGkYwyTz+pBu+iwQ/b3S1iVmlObswRfWsXiF2prf1Kz9rewBimwioiIiEjD9O6Gd1m8ZzH/GPgPNuRs4LlVzxFgArik6yX0iOnBh5s+ZEfBDv456J9M6DqBwLw0eOM8CIli1xmvcM+sND5dtYeRybE8dXl/IkICfX1ITY7SiFTJVfZLC6vGsIqIiIhIw5NWkMYjSx/hhNYncGWPKzHGcHbS2cSHx9MhsgMA53Q+p9IblsKbF4P1sPqU17lw5gYAbhnbhRtGJREU4OeLw2jyFFilSoWlHgDd1kZEREREGgxPhYfX173ONzu/YUXGCoL9g5nS/xbMV5Oh35UMaT3EWXHfOsjfBYkjneeLn4O5/4Zmrdh79htc/cYeEqJCee13Q2jTPNR3ByQKrFI1TbokIiIiIg3NE8ue4IXVL9AtuhtX9riSMzqeQeuvH4DV78OiZ2HUbZCzDZa+AlgIbQEhUc6ypDG4zpjBxDc2UeauYOZVAxVW6wGlEamSAquIiIiINCSfbf2MF1a/wEVdLmLSCZOchetnO2F16J+cUPrV3c7Mv0NvcFpXV78PeTvhtAfJazOaa15ZzNpd+Tx31UA6t2rmy8MRL6URqZLL2yU4PEhjWEVERESk/rLW8tOen5i0YBL9W/Xn9sG3Oy8U58Inf4O4FDhlihNUN30FzTtAyy7OOt1OB2BndhG/f+5HtmS4eOryAYzpHuejo5GDKbBKlVxlbkIC/Qjw1+ByEREREalfPBUeft73M3N3zOXrHV+z27Wb+PB4Hhn1CIGZG2HNh7Dmf+DKYOdpL/GPF5YwYVB7zuk7lrzich7+cBVbM12M6tIKd4XlsbkbCfDz48VrBjEiOdbXhyeVKLBKlQpL3ZpwSURERETqFU+Fh+lLp/Pxlo/JLskm2D+YExJO4IY+N3By+5OJ2vYDvHUpGAPtT6Bi9B3c8j0s2Z7Nj1uyeXPRDrZkFpJTVE7H2HDu/XQdAGO7t2LqOSkkaMxqvaNEIlVylboJ0z1YRURERKQeeXL5k7yy9hVO6XAK4xLHMbLNSMICw5wXszbDB9dD695wxQcQHsubP25nyfbVPHBBL8o8lgc/X0+n2HBevW4IPRIiScspIrOwjD5tozDG+PbgpEpKJFIlV6lbEy6JiIiISL3xzY5veH7V81yQfAF3D7v7wBdLC+Hty51xqpe8DuGx7M0v4YHP1jMsKYaLB7bDGMNFA9oSHOC3P5y2bRFG2xZhdX8wUm1KJFIlp0uwJlwSEREREd/bkb+DO+bfQY+YHtw+5PZfX8hLh9XvwbI3ICsVrviAtUXN+WD+Wmat2EWZp4Jp5/XaH1BDAvX7bUOjwCpVKirzEB0e5OsyRERERKSJKfeU813ad3y0+SM2526msKyQgrICwoPCeXTUowS7y2DV+7DiLdg6D7DQZiBc+BLflPfkuufnEeBnGNW1FdcOTyQxNtzXhyTHQYFVqlRY6qZdtLpHiIiIiEjdsNby0pqXeHn1y+SU5tAytCUD4wcSGRRJs8BmjEscR5tyNzzVF4oyoUVHGHUb9LoIYpLYmV3EzU/Mp1t8JG/+bggt1PjSKCiwSpVcpW6aadIlEREREakjTy5/kpkrZzKyzUgu7XYpJyScQIBfpd9H3aXw4njwlMM1s6HDcGc2YKCk3MONb/xMRYXl6cv7K6w2IkokUiVXqUeTLomIiIhInXhmxTPMXDmTC5IvYNIJk/Azfoeu9OVdsOtnZ1KlxBEAlLkr+GrdXl5asJVV6Xk8e+UAdQFuZJRI5BDWWlxlmnRJRERERGrfi6tfZMbyGZyddPaBYdVaKMqGgt2wbT789CwM/RN0P4utmS7e/mkH7y1NI8tVRkJUCPecm8K4nvG+PRipcQqscoiiMg/WQphaWEVERESkFr21/i2mL53OaR1PY+qwqU5YLcyAZa/Ckpchb8evK7cdTMmou7jplcV8tW4f/n6Gsd1bMWFwe05Mbom/n+6j2hgpkcghXKVuAHUJFhEREZFa89Gmj5i2aBqj243m3hH34o+Bz/8FP82EinJIHAlDb4DIBIiIh4R+TJm1ga/W7ePmsclcNrg9rSJDfH0YUsuUSOQQrjIPgLoEi4iIiEit+Gr7V0z6YRJDWw/loZMeItAEwOy/wZIXod8VMOyv0LLLAe/5cFk6b/20kxtHJXHz2C6H2bI0Ngqscoj9LayaJVhEREREasCW3C18kPoB2/O3sy1/GzsKdtArthePjX6MYL8g+Px2J6yOuAXGTN4/++8vNmcU8q//rWJQYgv+dorCalOiRCKHKPQG1mbqEiwiIiIix6nUU8qf5v6JvUV76RDZgaTmSYxLHMdVPa8iLCAU5k6BRU/DkBv2h9W8onLeWbKDJdty2J5VxLYsF2FB/jx+aT8C/KuYQVgaLSUSOYTGsIqIiIhITXl1zaukFabx7CnPMixh2IEvfvcQzJ8OA66F8feRllvM8/O28t8lOykq85DUMpyOseEM7xzL+f3b0Doq1DcHIT6jRCKHKFRgFREREZGjVF5RTqBf4AHL9rj28Nyq5xjTfsyhYXXhDPjmHuhzKZzxKKn7Crn42YUUlro5q08CE0d0pGdCVB0egdRHSiRyCFfpL5Mu6fIQERERkSPLLM5kwicTaBfRjvtG3kd8uHM/1OlLp+Op8PD3gX//dWVrnfGqX/wLepwLZz/JztwSrnhhEf5+fnxx84l0atnMR0ci9Y0SiRzily7BYZolWERERESOwFrLXQvuIqckh/yyfC6YdQFTh02lRUgLPt36KX/o/Qfa5u6GOVMhcyNkbYbSfEgeB+c/xz6XmyteWERJeQXv/GGowqocQIFVDuEq0yzBIiIiIlI9b65/k/np8/nXkH8xLGEY//z+n9z87c1EBkUSHx7PxM4XwjMjnXurtu4DvS+BuB7Q5zLyygxXvfgTGQWlvP67IXSLj/T14Ug9o0Qih3CVugkN9Mffzxx5ZRERERFpsjZkb+CRJY9wUtuTmNB1AsYYXj/tdZ5Y9gSvrn2Vu4fdTej3D0NRJvz+a0jot/+9xWUeJr6yiC0ZLl68ZhD927fw4ZFIfaU5oeUQhaUeTbgkIiIiIr+pxF3Crd/fSlRwFFOHT8XsWwuFGQT6B/K3gX/jx8t+5JSAaFj8PAz6/QFhtdxTwU1v/szSHTlMv6QvI5JjfXgkUp8plcghXKVummn8qoiIiNRDpZ5SluxZwvz0+RS7i7mx7420Cmvl67KaDGstaQVprMpcxeyts9mct5lnT3mW6IzN8NJ4CI6AM6dDz/MI8QuET/4GzVrByXfs38aevBIe/Hw9c9fv49/npnBG79Y+PCKp72otsBpjXgTOBPZZa1O8y6KBd4BEYBtwsbU2p7ZqkGPjKnWrhVVERETqje3525mfPp/56fNZsmcJJZ4SgvyCMMbw1Y6vuHPonYxPHF9j+9uQvYEFuxYwut1oOkZ1rLHt+kq5p5yt+VtJzUklNSeVTbmbKK8op1VYK1qGtiQuLM75PqwlMSExxITGEOQfBDiz/67JXMOqzFWszlrN6szV5JXmARDiH8Kf+/2ZYc27OWNUIxMgLBbevQbWz4aWXWH3crjgBX7eV8Hz85aybEcuu/NKALhlbBeuHNrBV6dFGojaTCUvA08Cr1Zadhsw11p7vzHmNu/zW2uxBjkGhQqsIiIi4kNF5UUs2buEeWnzWLBrATsLdgLQIbIDF3S5gOEJwxkYP5A9rj3cMf8O/vHdP/h6x9fcMeQOooKP/b6d7go3L695mRnLZ+CucDN96XSGxA/hoq4XcXK7kwn0DzzyRnzIWstu124nmOamsjFnI6k5qWzL24bbOpNqBpgAEqMSCQ0IZVPuJrKKs/BYzyHbigiMIDggmMziTAD8jB9JzZMY034MKbEp9I7tTVLzJALwg7cuAdc+uO4LiO8N8x6B7x+ECjd0Go0r+RxuePQ73B7L8M6x9GvfnIEdounVVvdYlSOrtVRirf3eGJN40OJzgFHe718BvqUeBtaScg+3f7CKvOJyX5fiE2t35zMoMdrXZYiIiEgTYa1la95W5qXPY0H6ApbuXUpZRRmhAaEMjh/MlT2uZETCCNpFtjvgfR2jOvLqaa/y/KrneXbFsyzdu5R/D/s3w9oMO+oatudv5475d7AiYwXjEsdxY58b+Xrn17y74V3+/t3fiQmJ4fzk87mwy4UkNEuoqUM/Zq5yF6k5Tij95ZGak0pheeH+dRLCE0hukcyodqNIbp5McotkEiMTDwjengoPWSVZ7CvaR2ZxJlnFWWSVZJFZnElReRHJLZJJiU2he3R3wgLDDi1k3qOQ+iWc/jC06e8sG3UrdDkVFj4FJ9/BU99tZm9+Ke/fMIwBHTSxkhwdY62tvY07gfWTSl2Cc621zb3fGyDnl+dVvPd64HqA9u3bD9i+fXut1XmwVWl5nPXkfBJjwogIqd9/SastVw7twMWD2h15RRGRBsgYs9RaO9DXdTRkAwcOtEuWLPF1GdLAlXpK+c/S//D1jq/Z5doFQFJUEsPbDGdEmxH0j+tPsH9wtba1JmsN/5r3L7bkbWFC1wncMuCWqgPWQay1vLPhHR5d+iiBfoHcOfROTut42v7XPRUeFuxawH83/Jfv077HGMPINiO5uOvFDE8Yjr9f7c778Uur6frs9WzI3uB8zdlAemH6/nUiAiNIbuEE0i4tupDcIpnOzTsTERRRm4XBlm/h9fOhx7lw4YtgDr3DxI6sIsZO/44zerVm+iV9a68eafAO99nss36f1lprjDlsWrbWzgRmgvOhWGeF4XSJBZh2fi+GJWnGMhEREZHa8NzK53h93euMbjea3/X+HcMThh9z62XPmJ68c+Y7PL7scV5b+xoLdy/k3hH30qdln8O+Z49rD5N/mMwPu35geMJwpgybQlx43AHr+Pv5c2LbEzmx7YnsKtzFexvf44PUD/gu7TsSwhM4p/M5nNHpDDpEHv9YTHeFm615W1mXvY51Wev2h9OCsgIADIYOkR1IiU3hguQL6NKiC11adCE+PB5TRViskrWQux3KSyC8JYS2AL9q3DikYC/sWnbgw7UPYjrD2Y9jgelzNpIQFcLFA9vh57094j2z1xLgZ7h1fLdjPCvS1NV1YN1rjGltrd1tjGkN7Kvj/VeLyxtYm2kcp4iIiEit2JSziRdWv8BZnc5i2shpNbLNkIAQ/jnon4xqO4o7F9zJVZ9dxe96/Y4/9v7jAd1grbXM3jqbaYum4a5wc9fQu7ioy0VHDH0JzRL4S/+/cEPfG/h6x9e8u/FdnlnxDE+veJresb05o9MZjO84nuiQIw+tKveUk5qbytqstazLWse67HVszNlIqafUORb/ELq06MJpiafRNbor3aK70bl552q1Gu9X4YHMjbB7BexeCXu8j5K8X9cxfhAW40yWFB7rBNiwGAiLBv8g2LPKCaf56b+uH9sVOo+FhL5O62pwBG/8uJ3H56YC8NbindxzTgp5xeV8uXYv/xjXlfiokOrXLVJJXSeyWcDVwP3erx/V8f6rxVXmBFZNPCQiIiJS8ypsBXcvvJtmgc34+6C/H/0GirJh+wJwl0LP8+CgbrmDWw/m/bPf54GfHmDmypnMS5vHfSPvI6l5EjklOfz7x38zZ/sc+rbsy70j7qV9ZPuj2n2gXyDjEscxLnEce1x7+GzrZ8zeMpv7frqPBxc/yLCEYZzZ6UxGtx9NaEAongoP2/K3sTrTmWV3TdYaNmRvoKyiDIBmgc3oHtOdS7peQveY7vSI7kGHyA5H1924ogKyUr2tn8udr3tWQnmR83pACMT1hJ7nQ+s+zu1nirLAlQmuDOdRlO0E3KIs53vrgegk6DDMuYdqQj9nUqXgZgfsektGIffOXsfI5FjO79+Ge2ev5+wZ82keGkj76DAmjmj4My2L79TmbW3ewplgKdYYkwZMxgmq/zXGTAS2AxfX1v6PR6FaWEVERERqzbsb3mVFxgqmjZhWrdZISgthx0LY+h1s/d5pLcQ7YmzhDDj7CYhPOeAtEUER3DPiHka3G82UhVO4+OOLmdBtArO3zCa/LJ9bBtzC1T2urjoUbp0HGz+HpNHQcRT4H/53wvjweK5NuZZrU65lY85GZm+ZzadbP+XWebcSGhBKlxZdSM1JpcjtBMfQgFB6xPTg0m6XkhKbQo+YHrSNaIufqUa33Mryd0H6UueRtsQJqd6uwwSGOcGy/1XQuq/TEhqT/JvHcYiKCvCUQeBvt4y6PRXc8t8VBAX48dCFfYiPCuHkbnFMn7ORNxft4OGL+hASWLvjfKVxq9VJl2pKXU/sMPP7zUz7dD2rp4xTaBURaYQ06dLx06RLcqz2uvZy7kfnkhKbwsxTZlbdDbe8BNJ+csLp1u+dUFbhdrqoth0MHU90Hvnp8PltUJwDw/8KJ/6zyoCVWZzJlIVT+Hbnt3Rp0YVpI6bRNbrrofstLYA5k2HJC4ABrDPOs+d50OsiaDuoyomFDlZhK1i6dymzt8xmS94WurToQkpsCikxKXSM6nj0EzW5S51uvTsXwc6fIG0xFOx2XvMLdMJ6mwGQ0N+ZqTe2yyGtzrXlsa9Smf7VRp68rB9n9j5w/LHbU0GA/1EGcWmy6t2kS/WZq9S5F1WY/hokIiIiUqPu++k+yivKmTR00q9h1VMO6T97A+p3TijzlILxdwLYsL84AbXdEAg6aAxn0snw5Z3OvT/XfgRnPQ6Jww9YJTY0lsdHP86arDV0adGFIP+gQwvb8i189GfI2wlD/wQn/QO2LYBV78LPr8JPM6F5Bye49roIWh1+EiE/48eg+EEMih90bCepMMNpUf4loO5e7rR2glND4ghoM9AJqfG9jtgKWltW7Mzl8a9TObdvwiFhFVBYlRqhwFoFV6mbsCD//bObiYiIiMjxm7t9LnN3zOXm/jc791QtyYOPboJNc6Hc5awU3wsG/94JqO1PgJDI395oWDSc+5QTIj/+K7x8Ogy4Fk6ZAiFR+1czxpASm3Lo+0vyYc4kWPqSM+PtdV9A+yHOa93PdB4l+bD+Eye8zn8U5j0Mcb2g90XQ/WyIPs4xmrk7YPsPzmPHQmccKYB/sNOdd8gfnLDedjBExP32tmpZQUk5323M4Ms1e/l6/T5aRQQz5ZwqzqtIDVFgrYKrzK0Jl0RERERqUGFZIdMWTaNri65c1fMqZ+GcSU4QHHAtdDoJOoyA8Jhj20HSaLhxIXx7nzOudcNncMYjTuA8nE1zYdZfoGAXDPszjL4DAkMPXS8kEvpe5jwK98HqD5zwOmeS82jZDbqMh66nOd2Gf6s7rrWQsw22zYNt851W3Pw057XgKCcs97n014mOAqp3H9ralFVYylfr9vL56j0s2JRFmaeCmPAgzujVmokjOxIVGnjkjYgcI6WyKhSWejR2VURERKQGPfbzY2QUZ/DYyY8R6BfodP9d+rITFE+9p2Z2EhTubKvn+TDrz/DO5U4L6OkPQUT8r+uV5DndiH9+1Rnved2X0K6a3XebtYKhf3Qe2VudYLzxM1j4JCz4j3NLmORTnQCbdLITdnN3OgF16zzna95OZ1vhLaHDcOjwFyegtupRJ2NPrbWUuisoLa+gxO2huMyz/2txuYeScg/FZRXszitmztq9LN6WTYWFdtGhXHlCB8b1jGdAhxb4qzei1AGlsiq4St2EB2v8qoiIiEhNWL5vOe9seIfLu1/udMstK3JaNlt0hFH/qvkdtukP138LPzwO3z7gjIs99R7od6XTqvrxX5xJi4bfDKNuP/YxoNEd4YQbnUdxLmyeCxs+d0LsirecCZEi4n8NqKHRzvjT4X+FxJHQsmu1JnGqCW5PBT9tzebzNXv4cs1e9uSXVOt9XeKacdPozoxLiadH68gj3qtWpKYpsFahsNRNeJBOjYiINA7GmPHAY4A/8Ly19v6DXv8b8DvADWQA11lrt9d5odIolXvKmbJwCnHhcdzU7yZn4bfTIGcrXP3xoZMo1RT/QBj5f9D9HCegzvozLHgMsjY5XXgvfg3aDqi5/YU2h5QLnIfH7UyYtPFzZ3zqCX9yAmqrHuBXdxMRlZR7mJ+ayedr9vDVur3kFpUTEujHSV1acmXbDoQE+hMS6EdIgD8hgf6EBTlfQ4P8CQ30Jyo0kPgo30zoJPILpbIquErdxEfqP6eIiDR8xhh/YAZwCpAGLDbGzLLWrq202jJgoLW2yBhzA/AgcEndVyuN0UtrXmJT7iZmjJlBeGC4c4uahTOg/9XOxEq1LbYzXP0JLHsVvnsIRvwNTrq1dmfW9Q9wZio+aLbiulBS7uHbDRl8tno3c9fto7DUTURIAGO7xzGuZxwndmlJmBpmpAHR1VoFp0uwTo2IiDQKg4FN1totAMaYt4FzgP2B1Vr7TaX1fwSuqNMKpdHalreNZ1c8y7jEcZzY9kRwlzm3jmkWB6dMrbtC/PxgwDXOoxEqKffwzfp9zF61m6/X76OozEPzsEDO6NWa03rFMywplqAA3WJGGialsiq4yjwawyoiIo1FG2BnpedpwJDfWH8i8FmtViRNgrWWqT9OJdg/mNsG3+YsXPAY7FsDE95yutDKMSt1e/h+YyafrNzFV2v34irzEBMexLn92nB6SmuGdIomUPdBlUZAgbUKLo1hFRGRJsgYcwUwEDjpMK9fD1wP0L59+zqsTBqiDzd9yOI9i5l8wmRiQ2Nh33r4/kFnBt9up/u6vAbJ7algweYsZi3fxZdr91BQ4qZ5WCBn903gjF4JDO0UTYBCqjQySmUHqaiwFJV51CVYREQai3SgXaXnbb3LDmCMGQvcAZxkrS2takPW2pnATICBAwfami9VGovM4kweXvIw/Vv15/zk86HC40x6FBQOpz3o6/IaFGstP+/IZdbydGav2k1mYRkRIQGc2iOes/q0ZnjnWLWkSqOmVHYQV5kbQPdhFRGRxmIxkGyM6YgTVCcAl1VewRjTD3gWGG+t3Vf3JUpj8+DiByl2FzN52GT8jB8segbSfoLznoVmLX1dXoOQureAj5bv4qMV6ezMLiY4wI+x3eM4u28Co7q2JDhAw9ekaVAqO4ir1AOgFlYREWkUrLVuY8xNwBc4t7V50Vq7xhgzFVhirZ0FPAQ0A9713mNxh7X2bJ8VLQ3avLR5fLb1M27seyOdojpBznaYOxU6j4Xemnz6t2QWljJr+S4+WJbG6vR8/AyMSG7JzWO6cGrPOCJCAn1dokidUyo7SGGp08KqSZdERKSxsNZ+Cnx60LJJlb4fW+dFSaNUVF7EPT/eQ6eoTkxMmQjWwic3gzFw5nTnqxygpNzDnLV7+d+ydL7bmIGnwpLSJpJJZ/bgrD4JtIwI9nWJIj6lwHoQV6m6BIuIiIgcixnLZ7DLtYtXxr9CkH8QLH8TNn8Npz8MzRvORF27cov5bPUe2jQPoXOrCDrEhNXoONFfxqW+u2Qns1fupqDUTXxkCL8f2Ynz+7ehS1xEje1LpKFTKjuIa38Lq06NiIiISHWtyVrD6+te5+IuF9M/rj8U7IXPb4d2Q2HgRF+XV20r03K57uUlZBb+OvdYoL+hY2w4ya0iSGrVjORWzUiOa0bH2PCjGku6r6CED35O590lO9mc4SI00J/TUuK5YEBbhnaKwd9PLdAiB1MqO4irzDuGVbe1EREREakWd4WbKT9MISYkhr8O+Kuz8LN/QHkxnPMk+DWMWWy/WruXP7+1jOjwIGbdNByA1L2FpO4rZNO+AtbsyuPT1bux3jmy/Qy0bRFGhxjnkRgTTvvoMBJjna8hgf6Ueyr4ev0+3l2yk282OF1+B3ZowYMXJHF679bq1SdyBPofchCXxrCKiIiIHJXX177Ouux1PDrqUSKDImHdx7D2Izj5LohN9nV51fLqwm3cPWsNKW2ieP7qgbSKCAGgd9vmB6xXUu5hS4aL1H0FbNpXyLasIrZnuZi1fBf5Je4D1o2PDKHMU0G2q4xWEcFcf2InLhzQlqSWzerqsEQaPAXWgxRqDKuIiIhItaUVpDFj+QxGtRvF2PZjoTgHZv8fxPWC4X/1dXlHVFFhmfbpOp6fv5Wx3Vvx+KX9CPuNnnYhgf70SIikR0LkIa/lFpWxPauIbVkudmQVsS2rCE9FBWf3TeDE5JYE6H6pIkdNqewgGsMqIiIiUj3WWu758R78jB93DLkDYwx8eRe4MuGy/4J/7d2G5ZsN+1i2I5ex3VvRq00U5hhmIC4p93DLO8v5bPUerj6hA5PO6nlc40ibhwXRPCyIPu2aH3llEakWpbKDuErdGANhQeoSLCIiIvJbZm+dzYJdC7h98O3Eh8fDlm9h2Wsw/GZI6Fsr+0zPLWbqx2v4Ys1eAB6fm0qnluGc27cN5/ZtQ/uYsGptJ7OwlN+/uoTlO3O568weXDc88ZhCr4jULgXWgxSWeggPCtAPLBEREZHfkFuSy4M/PUjv2N5c0vUSKHPBrL9AdBKMuq3G91fuqeDF+Vv5z1epWCy3ju/GRQPb8pX3HqaPztnIo3M20r99c87r14YzeicQHR5U5ba2ZBRyzUuL2ZtfwtOX92d8Susar1dEaoYC60FcpW5NuCQiIiJSibUWV7mLgrIC8svyyS/L5+31b1NQVsDkYZPx9/OHb6ZB7na45lMIDK3R/f+0NZs7P1zFxr2FnNIjjsln9aBtC6cldcLg9kwY3J703GJmLd/Fh8vSueujNUz5eC0ndmnJuf3acEr3OEK9ved+2prN9a8twd8Y3rp+KP3bt6jRWkWkZimwHqSwzK3xqyIiItLolHnK9ofNgrICJ3yW5u8PoZXD6P7nZs4sGAAAHPxJREFUpfkUlDvrVtiKQ7b5h95/oEuLLpC2BH58CgZeB4nDa6zmrMJSpn26nvd/TqNN81Cev2ogY3vEVblum+ah3DAqiRtGJbFudz4fLk/no2W7+Hr9PsKD/BnXM54u8RE8+uVG2rYI5aVrB9EhJrzGahWR2qFkdpCiUrfuwSoiIiINUoWtYEvuFlZkrGBFxgrWZK0hpySHgrICSjwlv/neYP9gIoMiiQiKIDIokpiQGBIjE/cviwqO2v9aRFAELUJakNw8Gdxl8NFNENEaxk6pmeOosLy1eAcPfr6BojI3N45K4qaTO//m7L2VdW8dSffWkdw6rhuLtmbz4bJ0Pl21mw+WpTM4MZqZVw2geVjV3YVFpH5RMjuIq9SjLsEiIiLSIBSUFbAqY9X+gLoyYyUF5QUARAVH0Su2F71iex0QNCt/Hxkcuf/7YP/gYyti/qOQsc6ZFTjk0Fu9HK3V6Xnc8eFqVuzMZWinaO45N4XOrSKOaVt+foYTkmI4ISmGKef0ZP2eArq3jiA4QL/riTQUCqwHKSx1k9A8xNdliIiIiBzAWsu2/G2syFjB8n3LWZGxgs25m7FYDIbOLTozruM4+rbsS5+WfegQ2aH2J5Hctw6+fxh6XQRdxh3XpgpKynnky428unAb0eFBTL+kD+f2bVNjxxAS6E9f3W5GpMFRYD2IS2NYRUREpB4oKi9iVeaq/QF1ZeZK8krzAIgIiqB3y96cmngqfVr2oXdsb5oFNavbAis8TlfgkEgYf/8xb8Zay8crd3PPJ2vJKCzliiEd+Pu4rkSF1t49XEWk4fBJMjPGbAMKAA/gttYO9EUdVXFmCVZgFRERkbpjrWVnwc79XXtXZKxgY87G/RMddYrqxJj2Y+jTsg99WvahY1RH/Iyfb4te9AykL4ELXoDw2GPaRFGZmz+8tpR5qZn0ahPFc1cNpI9aQUWkEl8ms9HW2kwf7r9KhaVumimwioiISC0qdhezJnMNyzOW7x97ml2SDUB4YDi9Yntxfe/r6dOyD71iexEVHFW7BblLoSgbirIOevzGMncxJI+DlAuOebfPz9vKvNRMJp3Zg6uHJeLvV8tdmEWkwVEyq8TtqaCkvEKzBIuIiEiNsdayy7WLFftW7A+oG7M34rZuABIjExnRZgR9Wvahb6u+JEUlOfc1PV4l+bBvLRTuO3IALSs4/HZCoiAsxnlEJkB8LwiLhmZx0O8KOMYxppmFpTz73WbG9YzjuhEdj/EgRaSx81Uys8CXxhgLPGutnXnwCsaY64HrAdq3b18nRbnKPACaJVhERESOi7WWL7Z/wRdbv2B5xnIyi51OZaEBofSK7cW1Kdc6Y09b9qZFSIvj32FxDuxeCbuXw+4VsGs5ZG8+dL2gZk7Y/CWAxiZ7v6+0rPIjtAX4185Y0ifmplLiruCf47vVyvZFpHHwVWAdYa1NN8a0AuYYY9Zba7+vvII3xM4EGDhwoK2LoorKnL90agyriIiIHKvdhbuZ+uNU5qfPp3V4a4a2Hrp/7Glyi2QC/I7z94yibCeY7lr+a0DN2fbr61HtoHUf6HMptO7ttIqGxUBoNATWjzshbM108caiHVwyqB1JLet4sigRaVB8ksystener/uMMf8DBgPf//a7ap+rVIFVREREjk2FreCdDe/wn6X/wWK5ddCtXNrt0uPr3luY4Q2lvwTUlZC349fXWyQ64bT/1c7X1n0hPOa4j6W2PfzFBoIC/Lh5bLKvSxGReq7Ok5kxJhzws9YWeL8/FZha13VUpbDU6RLcTF2CRURE5ChsydvClB+m8PO+nzmh9QlMOmESbSPaHt1GCvZ4Q+mKXwNqwa5fX49OgrYDYfDvvOG0j9Nlt4FZtiOH2at285cxybSKqB8tviJSf/miKTEO+J/3JtABwJvW2s99UMch9rewatIlERERqYbyinJeXv0yT694mtCAUO4Zfg9nJ52N+a2JiKyF/F2VWk29AbVwr3cF44wtTRzutJgm9HUmOgqp5ZmC64C1lvs+W09ssyCuP7GTr8sRkQagzpOZtXYL0Keu91sdheoSLCIiItW0JmsNkxdMZkPOBk7tcCq3D7md2NCD7kdqLeTu+DWU/jIhUpH3zn7GD2K7QtLJv3bpjU+B4Ii6P6A68PX6ffy0NZt/n9NTtxEUkWrRT4pKfmlh1Q9QEREROZxidzFPL3+aV9a+QkxIDP8Z/R/GtB9z4Eo52+Hb+2Hj51Ds3F8V4w+tukOX8U6raes+EJcCQWF1fxA+4PZUcP9n6+kYG86EwXVzBwgRafiUzCrRpEsiIiLyWxbvWczdP9zNjoIdXJB8AX8b+DcigyJ/XaEoG+Y9Aj/NdFpPUy6ANgOcltO4nvVmll5feP/nNFL3FfL05f0J9PfzdTki0kAomVWi+7CKiIhIVQrKCnh06aO8t/E92jZry/OnPs+Q1kN+XaG8GBY9A/OmQ2k+9L0cRt8OUUc58VIjVVzm4dE5G+nXvjnjU+J9XY6INCAKrJW4St34GQgNVGAVERERxzc7vuGeH+8hsySTa3pew419byQ0INR5scIDK96Cb6ZBfjokj4Oxd0NcD1+WXO+8uGAre/NLeeLS/r89IZWIyEEUWCspLHUTHhSgH6QiIiJCZnEm9/90P19s+4LkFsk8dvJjpMSmOC9aC6lz4KvJsG8tJPSH856FjiN9W3Q9lO0q45lvNzO2exyDO0b7uhwRaWAUWCtxlbo1flVERKSJs9by8ZaPeXDxgxSVF3FT35u4LuU6Av0DnRXSl8KcybBtHkR3gotehh7ngv7gXaUnvk7FVebm1vFdfV2KiDRASmeVuEo9Gr8qIiLShO0q3MXUhVNZsGsBfVv2ZcqwKXRq7r1faPYWmDsV1vwPwmLhtIdgwDUQEOTTmuuzHVlFvP7jdi4Z1I7kuMZ5qx4RqV0KrJUUlrp1SxsREZEmyFPh4e0Nb/PYz48BcPvg25nQbQJ+xg8KM+D7B2HJi+AfBCf+E4b9GUIij7BVeejLDfj7GW4e28XXpYhIA6V0Vom6BIuIiDQ9m3M3M/mHyazIWMHwNsOZNHQSCc0SoMwFC5+CBY9BeRH0vwpG3QYRmuW2Olam5fLxil3cNLozcZFN93Y+InJ8lM4qKSx10y68ady8W0REpKkr95TzwuoXmLlyJmGBYUwbMY0zO52JqfDAkpfg2/uhcA90OxPGTIaWaiWsLmst9326nujwIP5wUidflyMiDZgCayVFZR7CgzSGVUREpLFbnbmaST9MIjUnlfGJ47lt8G3EhETD+tkwdwpkboR2Q+DiV6D9UF+X2+B8uzGDhVuyuPusHkSEBPq6HBFpwBRYK1GXYBERkcat2F3MjGUzeG3da8SGxPL46McZ3X407FgEc+6CnYsgtgtc8gZ0O0Mz/x4DT4Xlgc/W0yEmjMuGdPB1OSLSwCmdVaJJl0RERBqvRbsXcfcPd5NWmMZFXS7ilgG3EJG3G96+HNZ/As3i4Mz/QL8rwV+/Dxyr/y1LZ/2eAp68rB9BAX6+LkdEGjj9NPZyeyoodVeohVVERKSRyS/L55Elj/BB6ge0j2jPi+NeZFB4O/jiTvj5NQgMg9F3wgk3QlC4r8tt0ErKPTzy5Qb6tI3ijF6tfV2OiDQCSmderlIPgAKriIhIIzJ3+1zuXXQv2SXZXJdyHTd0u5KQRc/CwifBUwaDfgcn/RPCY31daqPw8g/b2J1XwqMX98WoO7WI1AClM6/CMjcAzYI16ZKIiEhDl1mcybRF05izfQ7dorvx5Kjp9Ni6CGYMgaJM6Hk+jLkLojWDbU3JcZUx45tNnNytFSckxfi6HBFpJBRYvVylTmBVC6uIiEjDZa3lo80f8dDihyhxl/DXfn/hatOcwLeuhpytkDgSTpkCbQb4utRGZ8Y3m3CVurl1fDdflyIijYjSmVehAquIiEiDllaQxtSFU1m4eyH9W/Xn7vZn0XHBDNj1M7TqAZe9C8mnaObfWrAzu4hXF27nwgFt6Rof4etyRKQRUTrzKvplDGuQTomIiEhD4qnw8Ob6N3li2RMYDHf2mMhFGxbgt2giRLaBc56CPhPAT8N+asujczZiDNxyShdflyIijYzSmdevLaz6MBMREWkoNuVsYvIPk1mZuZIT4wZzVxHEfzoFgiJg7BQY8gcIDPV1mY3a6vQ8/rcsnRtHJdE6SudaRGqWAqvXL2NYdR9WERGR+q/cU87zq55n5qqZRASGc3/zQZy+5BOMrYChN8LI/4OwaF+X2SQ88Pl6WoQF8sdRSb4uRUQaIaUzL1eZxrCKiIg0BCszVjL5h8lsyt3E6RGduXXTcqKLVkPvS+DkO6B5e1+X2GR8vzGDeamZ3HVmDyJDAn1djog0QkpnXoVqYRUREanXisqLeGLZE7yx7g1aBUYwowBO3Po1JJ3sdP9t3dvXJTYpFRWW+z9bT7voUK4Yqj8SiEjtUDrzcpW68fczBAf4+boUEREROcjCXQuZsnAK6YXpXOIO4uZta2gW1wuufBySRvu6vCbpoxXprN2dz2MT+hIcoDlARKR2KLB6uUo9hAf5YzTVvYiISL2RV5rHw0se5sNNH5JIIC/v2suA0Dg47zlIuQD89IfmulRRYVm7O5/5mzJ5cf5WerWJ4qzeCb4uS0QaMQVWr8JSt7oDi4iI1CNzts/h3oVTyS3N5Xe5efyxxJ/gUXfDoIkQEOzr8pqMndlFzN+UyfxNmfywKZOconIAusVHcO95Kfj56Y/9IlJ7lNC8isrchCmwioiI+FxGUQb3/jCZuenz6F5WzjPZBXQbcD2MuBlConxdXqOXW1TGws1ZzNuUyYJNmWzPKgIgLjKYk7vFMSI5huFJsbSKDPFxpSLSFCiheRWWejRDsIiIiA9Za/nfhnd4ePFDlHlKuSUnj6s6nk3AJXdApLqd1pZSt4el23OYn+oE1JXpeVjrTEQ5tFM01wxLZGRyLEktm2nolIjUOZ8kNGPMeOAxwB943lp7vy/qqMxV6qZZsCYMEBGRxudIn7vGmGDgVWAAkAVcYq3dVpc17szbxpSvbmJR4XYGFpdwd0RPOlx+H7TqXpdlNAkVFZZ1e/JZsCmTeamZLN6WTUl5Bf5+hn7tmvPXMcmM6BxLn3bNCfTXGGER8a06D6zGGH9gBnAKkAYsNsbMstauretaKnOVuokJD/NlCSIiIjWump+7E4Eca21nY8wE4AHgkrqoz+Nx8/q8u3hy2ycE2AruqojkwnFP4ddxZF3svslIzy1mQWom87zjULNcZQAkt2rGhEHtGZkcy+CO0UToXqoiUs/4ooV1MLDJWrsFwBjzNnAOUKuBdcXOXD74Oe2wr6fnFNOjdWRtliAiIuIL1fncPQe42/v9e8CTxhhjrbWH2+jOzI389bkxx13cDpPFpkAPw0otA4OvYE3MmaxZaWDl6uPetkBxuYcl23LYkukCoGVEMCd1acnwzrEM7xxLfJTGoYpI/eaLwNoG2FnpeRow5OCVjDHXA9cDtG9//DejTssp5qMVuw77eoC/YWBi9HHvR0REpJ6pzufu/nWstW5jTB4QA2RWXqnyZ3N4hxCW+O857uLCKmDYvr4sKbqMRSYQduw+7m3KrwL8DL3bNufyoR0YmRxLciuNQxWRhqXezjJkrZ0JzAQYOHDgYf/CW11n9G7NGb1bH3ddIiIiTdXBn80Lrlvi44pERKSx88VI+nSgXaXnbb3LREREpOZV53N3/zrGmAAgCmfyJREREZ/yRWBdDCQbYzoaY4KACcAsH9QhIiLSFFTnc3cWcLX3+wuBr39r/KqIiEhdqfMuwd6xMTcBX+BMr/+itXZNXdchIiLSFBzuc9cYMxVYYq2dBbwAvGaM2QRk44RaERERn/PJGFZr7afAp77Yt4iISFNT1eeutXZSpe9LgIvqui4REZEj0d2gRUREREREpF5SYBUREREREZF6SYFVRERERERE6iUFVhEREREREamXFFhFRERERESkXlJgFRERERERkXpJgVVERERERETqJQVWERERERERqZcUWEVERERERKReMtZaX9dwRMaYDGB7DWwqFsisge00BTpX1aPzVH06V9Wnc1U9x3OeOlhrW9ZkMU2NMSYPSK3GqlFA3m+83tiv9yMdf0Ovoaa2fazbOZb3Vfc9NbWervGGvf+a2P7xbONo33s069e3a7zKz+YGEVhrijFmibV2oK/raAh0rqpH56n6dK6qT+eqenSefMsYM9Nae/3xrtfY/x2re54aag01te1j3c6xvK+mrt3qrqdrvGHvvya2fzzbONr3Hs36DeUaV5dgERERORYf1/B6jVV9OP7arKGmtn2s2zmW99X0tVsf/o19ydfHX9v7r4ntH882jva9R7N+g7jG1cIqVdK5qh6dp+rTuao+navq0XlqHPTvKI2drnFp7NTCWrNm+rqABkTnqnp0nqpP56r6dK6qR+epcdC/ozR2usalsavVa7xJtbCKiIiIiIhIw9HUWlhFRERERESkgVBgFRERERERkXqpyQRWY8x4Y8wGY8wmY8xtvq6nvjDGtDPGfGOMWWuMWWOM+at3ebQxZo4xJtX7tYWva60vjDH+xphlxphPvM87GmMWea+td4wxQb6u0deMMc2NMe8ZY9YbY9YZY07QNVU1Y8wt3v97q40xbxljQnRNOYwxLxpj9hljVldaVuV1ZByPe8/ZSmNMf99VLiIiIjWlSQRWY4w/MAM4DegBXGqM6eHbquoNN/B/1toewFDgT95zcxsw11qbDMz1PhfHX4F1lZ4/AEy31nYGcoCJPqmqfnkM+Nxa2w3og3O+dE0dxBjTBvgLMNBamwL4AxPQNfWLl4HxBy073HV0GpDsfVwPPF1HNUoNM8aEG2NeMcY8Z4y53Nf1iNQ0Y0wnY8wLxpj3fF2LSG0wxpzr/Rn+jjHm1OPdXpMIrMBgYJO1dou1tgx4GzjHxzXVC9ba3dban73fF+AEizY45+cV72qvAOf6psL6xRjTFjgDeN773AAnA7986DT5c2WMiQJOBF4AsNaWWWtz0TV1OAFAqDEmAAgDdqNrCgBr7fdA9kGLD3cdnQO8ah0/As2NMa3rplI5kqpay73Lq+r9dD7wnrX298DZdV6syDE4mmvc+/toU/1DpDRQR3mNf+j9Gf5H4JLj3XdTCaxtgJ2Vnqd5l0klxphEoB+wCIiz1u72vrQHiPNRWfXNf4B/AhXe5zFArrXW7X2uaws6AhnAS96u088bY8LRNXUIa2068DCwAyeo5gFL0TX1Ww53HennfP32Mge1lv9G76e2/Ppv6anDGkWOx8tU/xoXaYhe5uiv8Tu9rx+XphJY5QiMMc2A94GbrbX5lV+zzr2Pmvz9j4wxZwL7rLVLfV1LPRcA9Aeettb2A1wc1P1X15TDO/7yHJyQnwCEc2gXWDkMXUcNx2Fayw/X+ykNJ7SCfk+RBuIor3GRBudornHvvBIPAJ/90pPzeDSVD4J0oF2l5229ywQwxgTihNU3rLUfeBfv/aU7nffrPl/VV48MB842xmzD+Q95Ms5Yzebe7pygawucXzbTrLWLvM/fwwmwuqYONRbYaq3NsNaWAx/gXGe6pg7vcNeRfs43PIdrFf8AuMAY8zTwsS8KE6khVV7jxpgYY8wzQD9jzO2+KU2kRhzu5/ifcX7HudAY88fj3UlTCayLgWTvzJtBOJOazPJxTfWCdwzmC8A6a+2jlV6aBVzt/f5q4KO6rq2+sdbebq1ta61NxLmGvrbWXg58A1zoXa3Jnytr7R5gpzGmq3fRGGAtuqaqsgMYaowJ8/5f/OVc6Zo6vMNdR7OAq7x/1R0K5FXqOiwNiLXWZa291lp7g7X2DV/XI1LTrLVZ1to/WmuTrLX3+boekZpmrX3cWjvAe50/c7zbCzjyKg2ftdZtjLkJ+AJnFs4XrbVrfFxWfTEcuBJYZYxZ7l32L+B+4L/GmInAduBiH9XXENwKvG2MuQdYhneyoSbuz8Ab3j8QbQGuxfkDma6pSqy1i7yzRP6MM2P3MmAmMBtdUxhj3gJGAbHGmDRgMof/2fQpcDqwCSjCueakflOruDR2usalsauTa9w4Q4BEREREao93Yr9PvLdwwtvtfSNOz4J0nN5Ql+kPytJQ6RqXxs5X13hT6RIsIiIiPuJtLV8IdDXGpBljJnpnwv6l99M64L/6RV4aKl3j0tj58hpXC6uIiIiIiIjUS2phFRERERERkXpJgVVERERERETqJQVWERERERERqZcUWEVERERERKReUmAVERERERGRekmBVUREREREROolBVYRERERkaNkjEk0xqyuoW29Z4zpdBTr32uM2WmMKTxoebAx5h1jzCZjzCJjTGKl1273Lt9gjBnnXRZkjPneGBNQE8chUhsUWEVEREREfMQY0xPwt9ZuOYq3fQwMrmL5RCDHWtsZmA484N1HD2AC0BMYDzxljPG31pYBc4FLjuMQRGqVAquIiIiINCjGmCuMMT8ZY5YbY541xvgbYwYZY1YaY0KMMeHGmDXGmBRjTDNjzFxjzM/GmFXGmHO820g0xqw3xrxsjNlojHnDGDPWGLPAGJNqjBnsXe9uY8xrxpiF3uW/r6Ief2PMQ8aYxd4a/uBd3trbgrncGLPaGDOyisO5HPjIu34H7z5ijTF+xph5xphTD36DtfZHa+3uKrZ1DvCK9/v3gDHGGONd/ra1ttRauxXYxK+B90NvDSL1kpr/RURERKTBMMZ0x2kRHG6tLTfGPAVcbq191RgzC7gHCAVet9au9nZ3Pc9am2+MiQX+v717Ca2ziMMw/rxKrY2VgvGCWEkFdVnEUhAq2iq4EVQ0BXGhqBul1J2g4qUoChVxK9J4RwUX4oUuGqxdKaUVFWujiKBiFWxVKFaqpsnfxTfB4zGLpNB4As9vlbl8M3POKm/mm8nu1g/gQmAjcAewF7gFuBy4DngAuKH1Ww1cBpwGfJJke9+y7gQOV9XaJEuBD5KMAzcCO6rq8SQnA0OzfKR1wOsAVfVdkq3AM8AeYKKqxufx9ZwHfN/GOpbkMDDc6nf39DvQ6gA+B9bOYw5pQRlYJUmStJhcDawB9nabhywDDra2R+mC5x/APa0uwBNJrgCm6YLaOa3tm6raB5BkP7CzqirJPmBVz5xvV9VR4GiSXXS7k5/2tF8DrE4y2sorgIvaWp5PsgR4q6p6n5lxLnBoplBVY0k2AncBl8z5WzlOVTWV5K8kp1fVbyd6Pmm+DKySJElaTAK8VFX3z9I2DCwHlgCnAr/Tve56FrCm7ch+29oA/ux5drqnPM2/f0+uvnn6ywE2V9WO/yy2C8rXAi8mebqqXu7rcrRnPSQZAla24nJgPiHyB+B84EDbWV4B/NJTP2Nlq5uxlC7kSwPHM6ySJElaTHYCo0nOBkhyRpKR1vYs8BDwKu3CIbrQdrCF1Q3ASP+Ac3B9Oxs7DKyn2znttQO4u+2kkuTido52BPipqrYBY8Cls4z9Bd2ryTO2tvU/DGyb5zrfAW5rP48C71dVtfqb2y3CF9Dt/u5pax0Gfq6qyXnOJS0Id1glSZK0aFTVRJIHgfEkJwGTwKYkVwKTVfVaOy/6YZKr6MLfu+0134+AL49j2s+AXcCZwGNV9WPvv4yhC6OrgI/bJUeH6M6/rgfuTTIJHAFunWXs7a3fe+0zrKU7nzuV5KYkt1fVC70PJHmS7rztUJIDwFhVbQGeA15J8jXwK93NwFTV/iRvABPAMWBTVU214Ta0NUgDKd0fXSRJkiT1S7IFOFJVT52g8ZfRheF1PSFywSR5E7ivqr5a6LmlufCVYEmSJOl/0i5zeoR/bu1dMElOobsMyrCqgeUOqyRJkiRpILnDKkmSJEkaSAZWSZIkSdJAMrBKkiRJkgaSgVWSJEmSNJAMrJIkSZKkgWRglSRJkiQNpL8BmAy+2G/cTOQAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 1152x432 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6wAAAGiCAYAAADjrksdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXwV1f3/8de52RcICSFhTwABEQIBA0LZglJEtFJrrQtW+FrXfmu/X9tatfVn1a9WrVixamutraBSxWqrWDesFaGIsijILoiAYQ+EkD03957fHzMJNyG55MbcLPB+Ph7zSGbmzJkz273zuefMGWOtRURERERERKSt8bR2AURERERERETqo4BVRERERERE2iQFrCIiIiIiItImKWAVERERERGRNkkBq4iIiIiIiLRJClhFRERERESkTVLAKiIiIiIiIm2SAlYRaVXGmG7GmIXGmD3GGGuMyawzP8YY8xdjzFFjzD5jzE9ap6ThY4wZYIx5zRhz0Bhz2BjzjjFmYJ00N7vbf9TdHzEN5JXp7sfIlil9y3G37X1jTKkxZrMxZnKQtHONMZXGmOKAISLM5WvSuWqMea/uMTPG7DDGlAWUfVGQ5b9njPnQ3S+LQyjvX9z1nhZQ/j8bY3YaY4qMMWuMMec1Nr968h/insv5xpjjXvpujEkxxvzDGFPirvOKIHkZY8yDxphD7vCgMcY0kDbXGOOvc+xnBsk72xiz2t1/q40x2UHSNlhmY8z5xpj/GGOOuMf/aWNMhzrLTzbGfOIun2eM+Z47PdUYs8zdtiPGmOXGmLFBytHoY36iz9hg5QrVidYV6jXS2M89N+057udCqfs5kREwb7YxZqt7Xm82xlwVMC/ovjfGPFnnXKowxhQ1Zf+ISNMoYBWR1uYH3gYubmD+XUB/IAOYBPzcGDO1ZYrWYjoBC4GBQDqwAniteqYx5lzgNuAcnP3QF7i7qSsz7TeYfQH4FOgM/BJ42RjTJUj631hrEwMGX5jLdxchnqvGmBlAVAOzvxVQ9ilBsjkMzAEeaGxBjTHjgH51JkcCXwETgSTgDuCl+gKcRvICLwE/aGD+E0Alzjk/A/iDMWZwA2mvA74NDAOGAt8Crg+y7j11jv28+hIZY6JxrrXngWRgHvCaOz3UMicB9wLdgUFAD+ChgHWdAfwV59xNcrdltTu7GLga6OKW40Hg9SDXaijHPOhn7AnKFapm+zwP5XPPGJMK/B34f0AKsApYEJCkBOecSQJmAo8aY77hzgu67621NwSeSzifQ38LuhdEpHlZazVo0NDKA84NzivAQeBL4Mfu9BQgD+fGFSAR2AZc5Y7PBZ4E3gWKgA+ADHfe3cBj7v9ROF/YD7njcUC5m38szs3aIeAIsBJId9P1cfMsctfxOPB8mPZBJGCBzDrT9wBTAsb/D3ixgTx2Ame6/89w8xvsjv8AeNX9/y6cG47n3W1bBwwAbgcO4Ny0B67zv4BNbtrtwPUB824FPgYi3fEbgQ1A7NfYFylu2Tu7438Ffh0w/xxgXwPL7nKXLXaHMcAsYBnwiHuc73X3wfMBy2W6y1VvRxLwZ2AvsNtdJsKdF5jfEXeffMOd/pW7D2cG5L0YuCZgfBbwnxD3yQCgAugQMG0pcEMD6ecC9zYy7+rteRwoBDYD5zThuDX6XA3Yx58DowP3vTtvBzA5xPVfAyxu5LX2KU7gZ4HTgqT9DLg4YPwCYI173D8EhjZifacBts60BJzAb0DAtOeABxrI40PguoDxHwAfNZA2F8hr5D6b4p7fps41NLWetKGW+TvAuoDxvwL/14gyeXCCKwukNccxDzju9X3GBi2Xe35+6B7ztUDu11hXKJ/noXzuXQd8WOdYlQGnN5B+IfDTUPe9m28RMLEx+1yDBg3NM6iGVaSVGWM8wOs4NwI9cL6U/9cYc6619jDOL79/Msak4QQIa6y1zwZkMQPnSz8V50Zyvjv9A5wbN4CRwD5ggjs+Btji5j8T58a5F07N1Q04X/Tg3DCsdvP+PzdtQ9vR221O1dDQYHO/IHkmA93cfVNtLdBQLUzgNk/ECaQmBIx/EJD2Wzg3m8k4N+/v4Nys9ADuAf4YkPYAzo16R5zg9RFjzAh33kM4gdQdxpj+wK+BK6215e42BNsntzWwHRNwbswOueOD69kH6caYzg0sC9DJOjUCy93xs9z9kQ7c18B6A80FqnCCjeE4N/bXBMw/CyeY6YxznryIc56dBlwJPG6MSWzEejDGfBZkH/3eTTYY2G6tDWyKF+xcAPihcZpYrzbGNFTjE7g9X+Cc678C/m6MSXHL9/sg5fvMTRPquQrOufIHnGuzPvON00x8kTFm2AnKH4qbgSXW2s+CJTLGpOP8ULDBHR8O/AWnZrMzzjWyMFgzzSAGAFXW2s8DpgXbX/VdA8H2bZoxZr8x5ktjzCPGmIQg+X5mrQ1ssvxZA3mHWuYJuPvONRrAGLPOGLPXGPN89TlWzT2fynECqqettQca2sBm1GC5jDE9gDdwfrBKAX4GvHKClg31asI1EsrnXq201toSnOv5uLyNMXE4n1Ub6kxvzL6/GOeH5SUNlFlEwkABq0jrGwl0sdbeY62ttNZuB/4EXAZgrV2EUxv4HjCN45vBvWGtXWKtrcBp0jXGGNMLWA70d7/cJ+DUlvVwg4jA4M2Lc/N5mrXWZ61dba09aozp7Zbt/1lrK6y1S3AC63pZa3dZazsFGf7ahH1THfAUBkwrBDrUkxZ3mya6/48H7g8YrxuwLrXWvmOtrcLZv11wakq8OMFXpjGmk7ttb1hrv7COD4BFbv5Ya/3AVcCPcW50fmOt/bR6JSfYJ8c15zPG9MRpdhj4bFdiPfuAIPuhPnustY9Za6ustWXBErqByjTgf621Je6N2yO456TrS2vtM9ZpZrsA5wePe9xzZRFOTdRpjSmYtXZokH30QzdZ3X0Awc+F3+E0PUzDaSY41wR5JhDnR4k51lqvtXYBsAU43y3fD4OUb2hA+arLdMLyGWNygLHAYw2UZwZOrXcG8D7wTvX5+HW4nw3XA3eeIF0Uzo9f86y1m93J1wF/tNZ+7H5WzMP5sWZ0E4qSCBytMy3Y8azvGkg0pt7nWDcD2TjB0dnAmcBvG5lvsHI0uszGmG/i/MAXuJ97At/HCXr647R0qXX83fOpI3AF8J8GytzcgpXrSuBNa+2b1lq/tfZdnOa205qwnlA/z0P53AvlOD6JE9y+Ezixkft+JvBsnR84RCTMFLCKtL4MoHtgrQ3wC5yasGpPAUOAuQG1btW+qv7HWluM82xTdzcoWYUTqE3ACdY+xLlJDgzensP54n7ROB1l/Ma9We0OFLi/VFfb2Sxb3HjF7t+OAdM64jTJqs8HwHhjTDcgAuf5ubHuM3hJODXQ1fYH/F8G5NtjzzhWB3SJAMaY84wxH7m1dUdwbtZSqxe21u7ACSoycYLNJnFrLRYBv7fWvhAwq5jj9wE0vB/q89WJk9TIwGlGvjfgnPwjTvBXre7+w1pbd1qjalgbqe4+gCDngrX2E2vtITdAfxMn+PpOkPx317kJ3YlzDYRSvuoyBS2f26ri98D/uD+Y1Ff+ZdbaMmttqbX2fpzmmONDKE9D5uD8sFD35r5u+Z7D+dHhRwGzMoCf1vms6oXz+TXDHOuU5q1GlCOk41lP+o5AcX2Bg7V2n7V2oxtgfQn8nIafqQylHI1Ka4wZjdPq4Lt1amPLgGestZ+7n9W/pp7Az1pb7l7/tzVzzXpDgpUrA7ikzjEfB3QzxowPOOYbGsg7UKif56F87jX22DyE8136vQbOnQb3vfsjbi7wbN3lRCS8FLCKtL6vcGqrAmttOlhrpwEYp2fTp3C+JH9o3B49A/Sq/setPU3BeU4InADubJwmnSvd8XOBUbhNmtwapbuttWfgPId4AU6N4V4guU5Tut4NbYTbJLg4yDAj1B1jrS1wyxF44zCMOk25AtJvA0qBm3CaPB7FaW55Hc4zk/5Qy+A2d3wFmI3zbG8n4E3ABKQ5H6eZ9XsEdLLizgu2T34RkC4ZJ1hdaK2t22R3Qz37YH89P16A8+xVfepOLwHiA8a7Bvz/FU7NWWrAOdnRWhusCWYwwdaFMWZDkH30pJtsA9DX1O51tcFzoR6WgGNWjx51aut6415H5vheQgOHDRDyudoRyAEWGGP24VybAHnGmIaC0hOVv7HOAR4yTs+r1U2Rlxu3yb67D/6M84PZxW6Lg2pfAffV+ayKt9a+YK2db491TNOYnoU/ByKN04y+WrDjWd81EMqxb+h+ZwMwtM6xH9pA3icss9tseiFwtbX2vTrLf0bt6/BEtXRROB0NhVuwcn0FPFfnmCdYax+w1i4NOOYn/GwI9fOc0D73aqV1v7f6UfvY3A2ch/MMbd2a8rrq2/ffB5ZZpxWUiLQk2wYepNWg4VQecGoCP8HpvCfOHR8CjHTn/z+cmtEInJrXDznW+c1cnCZq44BonGabywLynuLOf88dH+yObwhIMwnIcvNPwWkq9V/uvI9wArVodx1HCUOnSzgdPyXg3CgNJKDDIpxeMD/Aedb0dJwbnuM6RAlI/1e3nN93xx9yx28JSHMXtTscmgzsCBiv7jCkJ06TMh9OrbTBueEpxe3QB6emdS9OjURnnCBnWojb3xGnZ+DHG5g/FSfwPgOnR+F/03BHL/FueQM7hplFnU6OgG8C+TiBWRJOT6mBnS69Bjzqls2Dc/M3sb78qL9TnTxgnPv/fTgdL8W7abfWLU8j91P1+RgLXIRT69ilgbTfxanh9eBcB0U00FmMuz1VwP/g3Khe4p4znUMsX6POVfc86howjHT3fQ+ca603TkuIaHdbb8F5bq66E67cwP2Nc+3G4jx/vsT9P6qBMqbVWbfFadIb585/0t3PifUsm4MTwJzlbkMCTrPpDg2sy7hlOcNdTywQEzD/RZweVxPc7S3kWCdpmQR02uNu2yZ3H3XHCUQa6nBrEk7NoMH5Qe99nBrE6vlzcVqr4O7jne6xj8GpUd4JRDeQd7AyD8FpeXBpA8tejdOpXl+ca+ElnGAQ9xhUf47H4XwfFOG0lvlax9xNH+wzNli5euF89pwbsM5coGcT1xX0GnGXyW3C514X91hc7K7/QQI65cLpUG8r0LWeZYPu+4B0W3B+iAjpc0uDBg1ff2j1AmjQoMHi3oC94H45F+DcME7GefaqALcXT/eGYRnwS3d8Lsd6CS52b1z6BOSbiPOM6q/ccYPzrN4fAtJc7n4Rl+DcbP2OY0FLX5yeWIsJYy/B7k1KrSFgXgxORy9H3fL95AR5Xe/mkeGOX+COnxWQ5i4aGbC64//trvsITlPJFzkWsP4deDJg2fNwgtZGBzs4z0VZ9xgUBwy9A9L8xC3DUeAZAm7868nvHpwA54h7MzaLegJEnObLR3B6nr6W43sJ/gNO4FmI0zHVZe68Wvlx4oA1Faf2uMg9f++qrzyN2E+ZOIFvmXvOTg6YN4PaP8Qsdct9FOdHmMuC5DuL2r0Ef05AT6YhlK/BcxUnCK11TOtsV+C+H4xT61WC06vze0BOQPrqmp7A8te9huYGzC8Gxge59qo/XzLc8fI65+GMgPRTcWqEj+AEG3+j4YA1s55yBV5nKcCr7nbuAq4ImDcep6fkKHfcAL/BeeThsPu/qW8bca6V3Tg/LH2F85kW2Lv0e8C1AePDcTqXK8P58XB4wLxfAG81sszP4LzWJXDfbaizT+7GuTYP4nb65k6fiHOeFrnb9wEwobmOeT1p616v9ZbLnXeWW57D7vw3qOc8bsy6CH6N9KLOD0UE+dzD+dEi8NycjPP8chnO50RmnTJV1Dk2v2jMvnfTjHGPeb3nugYNGsI7GGstItI+GWPm4ry+4Y4WWt9dODe3V7bE+kRagjFmFs5rd8a1dlkawxjzNPA3a+07J0zcThlj7gAOWmv/eMLEoeUbjROcDLW1mzu3aafIMb8Sp7b69tYui4i0Le315fEiIiKnJGvtNSdO1b5Za+8NU76VwKBw5B1Op8gxf761yyAibZM6XRIREREREZE2SU2CRUREREREpE1SDauIiIiIiIi0SQpYRUREREREpE1SwCoiIiIiIiJtkgJWERERERERaZMUsIqIiIiIiEibpIBVRERERERE2iQFrCIiIiIiItImKWAVERERERGRNkkBq4iIiIiIiLRJClhFRERERESkTVLAKiIiIiIiIm2SAlYRERERERFpkxSwioiIiIiISJukgFVERERERETaJAWsIiIiIiIi0iYpYBUREREREZE2SQGriIiIiIiItEkKWEVERERERKRNUsAqIiIiIiIibZICVhEREREREWmTFLCKiIiIiIhIm6SAVURERERERNokBawiIiIiIiLSJilgFRERERERkTZJAauIiIiIiIi0SQpYRUREREREpE1SwCoiIiIiIiJtkgJWERERERERaZMUsIqIiIiIiEibFNnaBWiM1NRUm5mZ2drFEBGRk8Tq1avzrbVdWrsc7Zm+m0VEpDk19N3cLgLWzMxMVq1a1drFEBGRk4QxZmdrl6G903eziIg0p4a+m9UkWERERERERNokBawiIiIiIiLSJilgFRERERERkTapXTzDKiIiIiIiJwev10teXh7l5eWtXRRpBbGxsfTs2ZOoqKhGpVfAKiIiIiIiLSYvL48OHTqQmZmJMaa1iyMtyFrLoUOHyMvLo0+fPo1aRk2CRURERESkxZSXl9O5c2cFq6cgYwydO3cOqXZdAauIiIiIiLQoBaunrlCPvQJWERERERE5pURERJCdnV0zPPDAA82Sb2ZmJllZWWRnZ5OVlcVrr73WLPlWe/bZZxkyZAhZWVkMHz6c2bNnNymfVatW8eMf/xiAuXPnYozhX//6V838V199FWMML7/8MgDXXHMNGzdu/Pob0AR6hlVERERERE4pcXFxrFmzJix5v//++6SmprJlyxamTJnC9OnTG72sz+cjIiKi3nlvvfUWc+bMYdGiRXTv3p2KigqeffbZJpUxJyeHnJycmvGsrCxefPFFJk+eDMALL7zAsGHDauY//fTTTVpPc1ANq4iIyEnMGPMXY8wBY8z6BuYbY8zvjDHbjDGfGWNGtHQZRUTaiszMTG6//Xays7PJycnhk08+4dxzz6Vfv348+eSTACxevJgJEyZw/vnnM3DgQG644Qb8fv9xeR09epTk5OSa8eeff55Ro0aRnZ3N9ddfj8/nAyAxMZGf/vSnDBs2jOXLl5OYmMgvf/lLhg0bxujRo9m/fz8A999/P7Nnz6Z79+4AxMTEcO211wKwZs0aRo8ezdChQ7nooosoKCgAIDc3l1tvvZVRo0YxYMAAli5dWrMNF1xwQU3Zxo8fz4oVK/B6vRQXF7Nt2zays7Nr5ufm5rJq1Sp27txJ//79yc/Px+/3M378eBYtWtRs+78+qmEVERE5uc0FHgca+hn+PKC/O5wF/MH9KyISdne/voGNe442a55ndO/Ir741OGiasrKyWgHZ7bffzqWXXgpA7969WbNmDTfffDOzZs1i2bJllJeXM2TIEG644QYAVqxYwcaNG8nIyGDq1Kn8/e9/57vf/S4AkyZNwlrL9u3beemllwDYtGkTCxYsYNmyZURFRfHDH/6Q+fPnc9VVV1FSUsJZZ53Fww8/DEBJSQmjR4/mvvvu4+c//zl/+tOfuOOOO1i/fj1nnnlmvdtz1VVX8dhjjzFx4kTuvPNO7r77bubMmQNAVVUVK1as4M033+Tuu++u1fS3mjGGyZMn884771BYWMiFF17Il19+eVy6jIwMbr31Vm688UZGjRrFGWecwZQpU4Lu669LAatImFRU+Sgqr2rtYoicNAzQOTGmtYvR7lhrlxhjMoMkmQ48a621wEfGmE7GmG7W2r0tUkARkVYQrEnwhRdeCDjNZIuLi+nQoQMdOnQgJiaGI0eOADBq1Cj69u0LwOWXX85//vOfmoC1uknwF198wTnnnENubi7vvfceq1evZuTIkYATMKelpQHO87QXX3xxzfqjo6Nraj/PPPNM3n333aDbUlhYyJEjR5g4cSIAM2fO5JJLLqmZ/53vfKcmrx07djSYz2WXXcbvfvc7CgsLefjhh/n1r39db7prrrmGv/3tbzz55JNha1YdSAGrSBjsOVLGRb9fxv6jFa1dFJGTRmJMJOvvPre1i3Ey6gF8FTCe505TwCoiYXeimtDWEBPj/Djq8Xhq/q8er6pyKiPq9nRbX8+3/fr1Iz09nY0bN2KtZebMmdx///3HpYuNja313GpUVFRNfhERETXrHDx4MKtXr+bss89u0vYE5lWfUaNGsW7dOuLj4xkwYECD6UpLS8nLywOoCejDSQGrSDOrrPLzw/mfUFLh484LziAqQt22izSHyAh1u9DajDHXAdeB02RORORUtWLFCr788ksyMjJYsGAB11133XFpDhw4UJMmMTGR6dOnc/PNN5OWlsbhw4cpKioiIyOj0eu8/fbbueWWW3jjjTfo2rUrlZWVPPvss1xzzTUkJyezdOlSxo8fz3PPPVdT2xqqBx54gNjY2KBpbr31VmbMmEFGRgbXXnst//znP5u0rsYKa8BqjOkEPA0MASxwNbAFWABkAjuA71lrC8JZDpGW9Os3N7HmqyP8fsYIpmV1a+3iiIicyG6gV8B4T3facay1TwFPAeTk5NjwF01EJDzqPsM6derUkF5tM3LkSH70ox+xbds2Jk2axEUXXVQzb9KkSUREROD1ennggQdIT08nPT2de++9lylTpuD3+4mKiuKJJ54IKWCdNm0a+/fvZ/LkyVhrMcZw9dVXAzBv3jxuuOEGSktL6du3L88888wJ86uvVvi8884LuswHH3zAypUrWbZsGREREbzyyis888wz/Nd//VejtyNUxnlkJUyZGzMPWGqtfdoYEw3EA78ADltrHzDG3AYkW2tvDZZPTk6OXbVqVdjKKdJcXl+7h5te+JQfjOvD/7vgjNYujog0wBiz2lqbc+KUJwf3GdZ/WmuH1DPvfOBHwDSczpZ+Z60ddaI89d0sIk21adMmBg0a1NrFaLLFixcze/bssNcshtMrr7zCwoULmTdvXqusv75zoKHv5rDVsBpjkoAJwCwAa20lUGmMmQ7kusnmAYuBoAGrSFvk81s27CnE63N+9Dla5uW2Vz7jzIxkbjvv9FYunYiIwxjzAs73bqoxJg/4FRAFYK19EngTJ1jdBpQC4fuZXEREWt3ChQv55S9/yV/+8pfWLkqjhLNJcB/gIPCMMWYYsBr4HyA9oOfBfUB6GMsgEjb/+HQ3P/vb2lrTUhKiefyK4UTpWTsRaSOstZefYL4F/ruFiiMi0u7l5uaSm5vb2sVosgsvvLCmJ+T2IJwBayQwArjJWvuxMeZR4LbABNZaa4ypt02yOnaQtu5QsdMD8FPfP5OYKKdnt0HdOpDWIfiD6iIiIiIi0jjhDFjzgDxr7cfu+Ms4Aev+6ve7GWO6AQfqW1gdO0hbV+b1ATB5UDoej3oCFhERERFpbmFrt2it3Qd8ZYwZ6E46B9gILARmutNmAq+Fqwwi4VTm9REd6VGwKiIiIiISJuF+D+tNwHy3h+DtOB05eICXjDE/AHYC3wtzGUTCorzSR1xUxIkTioiIiIhIk4S1Zxhr7RprbY61dqi19tvW2gJr7SFr7TnW2v7W2snW2sPhLINIuJR5FbCKiIiItEf79+/niiuuoG/fvpx55pmMGTOGf/zjH61dLHJzcxk4cCDDhg1j7NixbNmypd5011xzDRs3bgw575ycY2+NWbVqVU3nUaWlpcyYMYOsrCyGDBnCuHHjKC4uBiAiIoLs7GyGDRvGiBEj+PDDD4Ou58iRI/z+978PqWzBqCtTkSYq8/qJi1bAKiIiItKeWGv59re/zYQJE9i+fTurV6/mxRdfJC8vr7WLBsD8+fNZu3YtM2fO5JZbbjluvs/n4+mnn+aMM85odJ4+n9P3yoEDB3jrrbeOm//oo4+Snp7OunXrWL9+PX/+85+JiooCIC4ujjVr1rB27Vruv/9+br/99qDrUsAq0kaUe33EROoSEhEREWlP/v3vfxMdHc0NN9xQMy0jI4ObbrqJHTt2MH78eEaMGFGrNnHx4sVMnDiR6dOn07dvX2677Tbmz5/PqFGjyMrK4osvvgBg1qxZ3HjjjYwePZq+ffuyePFirr76agYNGsSsWbNq1nfjjTeSk5PD4MGD+dWvflVvOSdMmMC2bdsASExM5Kc//SnDhg1j+fLl5ObmsmrVKgBeeOGFmprRW2+9tWb5ussA3HLLLdx3333HrWvv3r306NGjZnzgwIHExMQcl+7o0aMkJyfXjD/00EOMHDmSoUOH1mzHbbfdxhdffEF2dna9AXeowv0Mq8hJq9zrUw2riIiIyNfx1m2wb13z5tk1C857oMHZGzZsYMSIEfXOS0tL49133yU2NpatW7dy+eWX1wSGa9euZdOmTaSkpNC3b1+uueYaVqxYwaOPPspjjz3GnDlzACgoKGD58uUsXLiQCy+8kGXLlvH0008zcuRI1qxZQ3Z2Nvfddx8pKSn4fD7OOeccPvvsM4YOHVqrLK+//jpZWVkAlJSUcNZZZ/Hwww/XSrNnzx5uvfVWVq9eTXJyMlOmTOHVV1/l29/+dr3LVDd9fv/99+nQoUPN9KuvvpopU6bw8ssvc8455zBz5kz69+8PQFlZGdnZ2ZSXl7N3717+/e9/A7Bo0SK2bt3KihUrsNZy4YUXsmTJEh544AHWr1/PmjVrGnW4TkTVQyJNVKZOl0RERETavf/+7/9m2LBhjBw5Eq/Xy7XXXktWVhaXXHJJredER44cSbdu3YiJiaFfv35MmTIFgKysLHbs2FGT7lvf+hbGGLKyskhPTycrKwuPx8PgwYNr0r300kuMGDGC4cOHs2HDhlrrmTFjBtnZ2SxbtozZs2cDznOkF1988XFlX7lyJbm5uXTp0oXIyEhmzJjBkiVLgi5zxx13cO+999aalp2dzfbt27nllls4fPgwI0eOZNOmTcCxJsGbN2/m7bff5qqrrsJay6JFi1i0aBHDhw9nxIgRbN68ma1btzbhCASnGlaRJirz+kiKi2rtYqxok84AACAASURBVIiIiIi0X0FqQsNl8ODBvPLKKzXjTzzxBPn5+eTk5PDII4+Qnp7O2rVr8fv9xMbG1qQLbCLr8Xhqxj0eD1VVVcelC0wTmO7LL79k9uzZrFy5kuTkZGbNmkV5eXlNuvnz59fqHAkgNjaWiIjQKkoaWubss8/mjjvu4KOPPqo1PTExke985zt85zvfwePx8OabbzJo0KBaacaMGUN+fj4HDx7EWsvtt9/O9ddfXytNYPDeHFTDKtJEZV4fsWoSLCIiItKunH322ZSXl/OHP/yhZlppaSkAhYWFdOvWDY/Hw3PPPVfTWVFzOnr0KAkJCSQlJbF///56O0FqrFGjRvHBBx+Qn5+Pz+fjhRdeYOLEiSdc7o477uA3v/lNzfiyZcsoKCgAoLKyko0bN5KRkXHccps3b8bn89G5c2fOPfdc/vKXv9T0Jrx7924OHDhAhw4dKCoqavI21aUaVpEmqvD61SRYREREpJ0xxvDqq69y880385vf/IYuXbqQkJDAgw8+yIgRI7j44ot59tlnmTp1KgkJCc2+/mHDhjF8+HBOP/10evXqxdixY5ucV7du3XjggQeYNGkS1lrOP/98pk+ffsLlpk2bRpcuXWrGv/jiC2688Uastfj9fs4///ya5sTVz7CC08PyvHnziIiIYMqUKWzatIkxY8YATg3t888/T79+/Rg7dixDhgzhvPPO46GHHmry9gEYa+3XyqAl5OTk2OqHnUXaihH/9y7Tsrpy77ezWrsoIhIiY8xqa23OiVNKQ/TdLCJNtWnTpuOamsqppb5zoKHvZjUJFmkidbokIiIiIhJeClhFmsBaS5lXAauIiIiISDgpYBVpgooqP4A6XRIRERERCSMFrCJNUO51eoxTDauIiIiISPgoYBVpgjI3YI1VwCoiIiIiEjYKWEWaoKxSNawiIiIiIuGmgFWkCVTDKiIiItJ+JSYmtnYRatx111306NGD7OxshgwZwsKFC+tN9+STT/Lss8+GnHd8fDwHDhyomRa47ffddx+DBw9m6NChZGdn8/HHHwOQm5vLwIEDyc7OZtCgQTz11FMnXNecOXMoLS0NqXyNEdnsOYqcAmqeYVWnSyIiIiLyNd1888387Gc/Y9OmTYwfP54DBw7g8RyrW6yqquKGG24IKc+qqioAUlNTefjhh3nwwQdrzV++fDn//Oc/+eSTT4iJiSE/P5/Kysqa+fPnzycnJ4fDhw/Tr18/Zs2aRXR0dIPrmzNnDldeeSXx8fEhlfNEVMMq0gRllU4vwWoSLCIiItJ+LV68mNzcXL773e9y+umnM2PGDKy1vP3221xyySW10l1wwQWAU0N58803M3jwYM455xwOHjwIwJo1axg9ejRDhw7loosuoqCggAMHDnDmmWcCsHbtWowx7Nq1C4B+/fodVyM5aNAgIiMjyc/PJzc3l//93/8lJyeHRx99lLvuuovZs2c3uC7guGUArr76ahYsWMDhw4drrWvv3r2kpqYSExMDOIFt9+7dj9tHxcXFJCQkEBHh3PcuWrSIMWPGMGLECC655BKKi4v53e9+x549e5g0aRKTJk36GkfkeKphFWkC9RIsIiIi8vU9uOJBNh/e3Kx5np5yOreOurXR6T/99FM2bNhA9+7dGTt2LMuWLWPy5Mlcd911lJSUkJCQwIIFC7jssssAKCkpIScnh0ceeYR77rmHu+++m8cff5yrrrqKxx57jIkTJ3LnnXdy9913M2fOHMrLyzl69ChLly4lJyeHpUuXMm7cONLS0o6rjfz444/xeDx06dIFgMrKSlatWgU4zXurNbSu+pZJTEzk6quv5tFHH+Xuu++uyWPKlCncc889DBgwgMmTJ3PppZcyceLEmvkzZswgJiaGrVu3MmfOHCIiIsjPz+fee+/lX//6FwkJCTz44IP89re/5c477+S3v/0t77//PqmpqSEcrRNTDatIExx7hlWXkIiIiEh7NmrUKHr27InH4yE7O5sdO3YQGRnJ1KlTef3116mqquKNN95g+vTpAHg8Hi699FIArrzySv7zn/9QWFjIkSNHagK+mTNnsmTJEgC+8Y1vsGzZMpYsWcIvfvELlixZwtKlSxk/fnxNGR555BGys7P52c9+xoIFCzDGANSsJ1CwdTW0zI9//GPmzZtHUVFRzbTExERWr17NU089RZcuXbj00kuZO3duzfz58+fz2WefsWvXLmbPns3OnTv56KOP2LhxI2PHjiU7O5t58+axc+fOJu33xlINq0gTqNMlERERka8vlJrQcKluEgsQERFR8+znZZddxuOPP05KSgo5OTl06NCh3uWrg8uGTJgwgaVLl7Jz506mT5/Ogw8+iDGG888/vyZN9TOsdSUkJIS8PfUt06lTJ6644gqeeOKJWtMjIiLIzc0lNzeXrKws5s2bx6xZs2ql6dKlCyNGjODjjz8mLi6Ob37zm7zwwgshl6upVD0k0gTqdElERETk5DZx4kQ++eQT/vSnP9U0Bwbw+/28/PLLAPz1r39l3LhxJCUlkZyczNKlSwF47rnnampAx48fz/PPP0///v3xeDykpKTw5ptvMm7cuCaVK9i6gvnJT37CH//4x5qAfMuWLWzdurVm/po1a8jIyDhuudLSUj799FP69evH6NGjWbZsGdu2bQOc5tGff/45AB06dKhVg9tcVMMq0gR6D6uIiIjIyS0iIoILLriAuXPnMm/evJrpCQkJrFixgnvvvZe0tDQWLFgAwLx587jhhhsoLS2lb9++PPPMMwBkZmZirWXChAkAjBs3jry8PJKTk5tctobWFUxqaioXXXQRjzzyCOB0pnTTTTdx5MgRIiMjOe2002q9vmbGjBnExcVRUVHBrFmzajqPmjt3LpdffjkVFRUA3HvvvQwYMIDrrruOqVOn0r17d95///0mb1tdxlrbbJmFS05Ojq1+cFikLXj0X1t55F+f88WvpxHhCd4MRETaHmPMamttTmuXoz3Td7OINNWmTZsYNGhQaxejyRITEykuLm7tYrRr9Z0DDX03q0mwSBOUeX1ER3gUrIqIiIiIhJECVpEmKPf61EOwiIiIyClItastS3fcIk1QVulTh0siIiIiImGmgFWkCcq8PnW4JCIiItJE7aEfHQmPUI+9AlaRJnCaBCtgFREREQlVbGwshw4dUtB6CrLWcujQIWJjYxu9jF5rI9IEZQpYRURERJqkZ8+e5OXlcfDgwdYuirSC2NhYevbs2ej0ClhFmqBcTYJFREREmiQqKoo+ffq0djGknVCTYJEmKPOq0yURERERkXBTwCrSBGWVqmEVEREREQk3BawiTVDu9esZVhERERGRMFPAKtIE5V4fcdG6fEREREREwkl33CJNUOb1ERupGlYRERERkXBSwCoSImutOl0SEREREWkBClhFQlRR5cda9AyriIiIiEiYKWAVCVG51wegXoJFRERERMJMAatIiMq9fgA1CRYRERERCTMFrCIhKnNrWGOjdPmIiIiIiIRTZDgzN8bsAIoAH1Blrc0xxqQAC4BMYAfwPWttQTjLIdKcyirVJFhEREREpCW0RBXRJGtttrU2xx2/DXjPWtsfeM8dF2k3jtWwKmAVEREREQmn1mjTOB2Y5/4/D/h2K5RBpMnU6ZKIiIiISMsId8BqgUXGmNXGmOvcaenW2r3u//uA9PoWNMZcZ4xZZYxZdfDgwTAXU6TxapoEq9MlEREREZGwCuszrMA4a+1uY0wa8K4xZnPgTGutNcbY+ha01j4FPAWQk5NTbxqR1lBepSbBIiIiIiItIaw1rNba3e7fA8A/gFHAfmNMNwD374FwlkGkuanTJRERERGRlhG2gNUYk2CM6VD9PzAFWA8sBGa6yWYCr4WrDCLhUK5Ol0SknTHGTDXGbDHGbDPGHNfZoTGmtzHmfWPMp8aYz4wx01qjnCIiInWFs0lwOvAPY0z1ev5qrX3bGLMSeMkY8wNgJ/C9MJZBpNlV9xKsZ1hFpD0wxkQATwDfBPKAlcaYhdbajQHJ7gBestb+wRhzBvAmzuvnREREWlXYAlZr7XZgWD3TDwHnhGu9IuFWVukHIDayNTrZFhEJ2Shgm/u9jDHmRZwe+wMDVgt0dP9PAva0aAlFREQaoDtukRCVV/mIjvAQGaHLR0TahR7AVwHjee60QHcBVxpj8nBqV2+qLyP14C8iIi1Nd9wiISqr9BETpUtHRE4qlwNzrbU9gWnAc8aY4z7orLVPWWtzrLU5Xbp0afFCiojIqUd33SIhKvf61EOwiLQnu4FeAeM93WmBfgC8BGCtXQ7EAqktUjoREZEgFLCKhKjM61OHSyLSnqwE+htj+hhjooHLcHrsD7QLt38JY8wgnIBVbX5FRKTVKWAVCVFZpWpYRaT9sNZWAT8C3gE24fQGvMEYc48x5kI32U+Ba40xa4EXgFnWWts6JRYRETkmnK+1ETkplVf59Q5WEWlXrLVv4nSmFDjtzoD/NwJjW7pcIiIiJ6IaVpEQlVf6iFWnSyIiIiIiYae7bpEQlanTJRERERGRFqGAVSRE6nRJRERERKRlKGAVCVFZpU/PsIqIiIiItAAFrCIh0ntYRURERERahgJWkRApYBURERERaRkKWEVCYK2lzKsmwSIiIiIiLUEBq0gIKn1+/BZ1uiQiIiIi0gIUsIqEoLzSD6AaVhERERGRFqCAVSQEZV4fgJ5hFRERERFpAQpYRUJQXh2wRuvSEREREREJN911i4SguoY1NlI1rCIiIiIi4aaAVSQENQGrOl0SEREREQk7BawiISiv1DOsIiIiIiItRQGrSAjU6ZKIiIiISMtRwCoSgnKv81obvYdVRERERCT8FLCKhECdLomIiIiItBwFrCIhONbpki4dEREREZFw0123SAjU6ZKIiIiISMtRwCoSgpoaVgWsIiIiIiJhp4BVJARlXh9REYaoCF06IiIiIiLhprtukRCUe32qXRURERERaSEKWEVCoIBVRERERKTlKGAVCUFZpU8dLomIiIiItBAFrCIhKPMqYBURERERaSmRrV0AkfakzOsnNloBq4gI+z6D+3vXP880tFA9M6IToGsWdB0K3YY5Q1JPMA1mIiIipxAFrCIhKPf6iItSwwQREeI6Q/YV9cyw9ae3DUwvK4B962DrIrB+N++UY8Frt6HQLRuS+4BHn78iIqcaBawiISj3+khJiG7tYoiItL6kHnDeA82XX2Up7N8Ae9fA3rXOsPwJ8Hud+dEd3ODVDWS7DoXUARChWxkRkZOZPuVFQlBW6SOuk5oEi4g0u+h46DXSGapVVcLBTccC2L1rYdUzUFXmzI+MhfQhAbWxwyBtEETGtM42iIhIs1PAKhICdbokItKCIqOPBaLVfFVwaFvtIHbd32DVn535nihIO91dLtv5mz7YeVZWRETaHQWsIiEo9/rU6ZKISGuKiHQC0rTTYdilzjS/H47sqB3EbnkLPn3emW880Ll/7ZrYrlkQ16nVNkNERBpHAatICPQeVhGRNsjjgZS+zjD4ImeatXB0T+0gdsd/YN1Lx5ZLzqwTxA6DxC6tsgkiIlI/BawijWStpbzKr4BVRATw+r3sK9n3tfOJjYglKSYJ09yvsTHG6RgqqQecPu3Y9OKDsG9t7UB242vH5nfsUfsVO92GQcfues2OiEgrCXvAaoyJAFYBu621Fxhj+gAvAp2B1cD3rbWV4S6HyNfl9Vl8fkusXmsjIsLnBZ/zzZe/2Sx5xUfG06NDD3ok9qBnYk96JLr/d3D+j4+Kb5b1AE4N6mmTnaFa2RHn1TqBQeznb1Pzip741IBX7LhBbHIfBbEiIi2gJWpY/wfYBHR0xx8EHrHWvmiMeRL4AfCHFiiHyNdS5vUBEKsaVhERrDeZ8j0XB09kGnj3aq00lRBXyI7iAnZGbaXKsxy/qaiVJCGyE2lx3eiR2J2Mjr3pm9yLXh160jOxJ10TuxLlifoaW4LzLGuf8c5QrbLEfc3O2mOv2vnwMfBXOfNjkup5zU5/8Og7QkSkOYU1YDXG9ATOB+4DfmKc9j5nA9VvGp8H3IUC1jbNWtvg+95PJaWVzk1KnDpdEhEhPaEzP/vG94OmacxXR2WVn4LSSgpKKjlc6uVwUQWHygoo9O6jknw80QVURh2mMOowX0SvwUS9jzH+gJUYok0KiZ40OkWnkxrbjW7xPejdsRf9knuR2akrnRNj6BgbhccTQo1odAL0GuUM1aoq4MBG2PvZsZrYlU9DVbkzPyq+zmt2hkKXQU5vxyIi0iThrmGdA/wc6OCOdwaOWGvdnyfJA3qEuQzyNeQVlHLuI0soqfS1dlHajIRoPfotItKlQwzXT+wX1nWUe30UlFZyuKSSghIvh0srOVRcRt7Rvewp2cPB8j0UVO6n2HeAI/YghypXs728CI4Ae5w8rD8SvzcZ600h2qYS70kjKTKdzrFd6ZbQnbSEZFISokmOj3b+JkSTEh9NckIUiTGRtZ+tjYyB7sOdoZqvCvI/h30BQezaF2Hln5z5nijoMtAJZLsOcXonTs+ChM5h3XciIieLsN15G2MuAA5Ya1cbY3KbsPx1wHUAvXv3bubSSWPtOlxKSaWPS87sSc/kZnyGqJ2KifJw9qC01i6GiMgpITYqgm5JcXRLiqszp/5A2VpLQVkJW/J3se3wLr48+hV7inazv2wPhyv2UVT1KcWUUgzstvBZMdjCOPyVKTVBrd+b7I6nEOlPJjkuoU5AG+UGtNEB03uQnNGHlEGXOK1w/H4o+NJpSrxvHexbD19+AJ+9eKywHbodC2LThzhNijv3U5NiEZE6wllVNBa40BgzDYjFeYb1UaCTMSbSrWXtCeyub2Fr7VPAUwA5OTlqkNpKyt3nNmeMziC7l95XJyIibZcxhpT4RMb0PoMxvc+oN01hRSG7i3c7Q9Fu8orz2Hk0j7yjeewv+xyvv3Y/kH6TzFGbSlFVZ7Yf7UTF/k4UF3fEV5mCreoI1O6ILzbKExDQ9qRb0mn06/V9+o5IpH9iBT0rvyDywHoniN2/Hra/f+y52Mg4SBvk1sQOdQLZ9MEQ2xERkVNV2AJWa+3twO0Abg3rz6y1M4wxfwO+i9NT8EzgtQYzkVZXVuk8J6RXuYiIyMkgKSaJpJgkzuh8fEDrt37yy/LZXbybvKI88orz2F3kBrfFO9lfugJ/vJ84tzVvpImkc2w6SVFdSfSkEWO64KlKwV+ZTEVFJwpLDJs2F/HSqryadUR6DBmds+jbZQz9MhM57cxozojaQ4Z3OwmHN8P+dbDpn/DJs8cK1inDbUrsNinuOsSZpl6KReQU0BoP490KvGiMuRf4FPhzK5RBGqm6Z1wFrCIicrLzGA9p8WmkxacxPG34cfO9Pi97S/Y6gWxADe3uot18WfwRBRUFtdLHJ8XTp1dvxib0ItHTjYiqNMrKUjhcYNiRX8IHWw5S6avuQKozKQmT6NflAvr2TWBoUglneHaR4d1Op6LP8exfD5vfoKYrq5iOTu1rYBCbdgZE1W0+LSLSvrVIwGqtXQwsdv/fDowKll7ajppXuUTr3aMiInJqi4qIonfH3vTuWH/fGiXekpra2epmx7uO7mLbkS3sLv43PnusA8NO3TsxcmAGXWJ7EEtXbGUqxcXJ7D8cxXtbSlhQXInTZ+UwoiKy6Z0yi0GZEYxM2M9gzy56e7eTUrSFyLUvHOvgyXig82kBQaw7dOga/p0jIhIm6u5UgqpQDauIiEijJEQlMCB5AAOSBxw3z+vzus/L7qw1rDu8igOlB44ljIX0gekMSexNx8juRPnT8ZancKTQz+b8eN7ZGo/XNxAYCJxHanwko1OLOCt+L2d4dtLbu51Ou1YQteHvx/JM6g29R0Pvs6D3GOdVOx79EC0i7YMCVgmqzH2dTawCVhERkSaLioiiT1If+iT1OW5eqbeUXUW72HF0BzsL3WC2aCer89/naOXRmnSRqZEMzOxBl7ieJJiueKq6UFqSwu6CJObsGcCh4r7AJABSIkqZmHSAMXF5nOn5nN7b3idq3UtORjFJzvtlqwPY7iMgWm8CEJG2SQGrBFXm9RHpMURF6JdYERGRcIiPiuf0lNM5PeX04+YdKT/iBLJujWz1/+uPrqbcV+4kioO4PnEMT+hFcnQPYmwavspU9h3tzOMHM9iVPw6w9IvMZ3rKV4yP3Ub/AxtI3Paus7wnEroNc4LXXmc5tbGJeoWbiLQNClglqDKvT82BRUREWkmn2E5kx2aTnZZda7rf+jlQeuC4QHbn0e3kFS059rxsFxiQ0YP0mP6Yyt68ld+bx/Ky8FZ9jySKmZb8Fd9M2E5W2WY6r/gTnuWPO8ul9A0IYMdAan/1SiwirUIBqwRV7vURG62AVUREpC3xGA9dE7rSNaErZ3U7q9Y8r9/L7qLd7CraxbYj29iQv4H1+evZU7IY4iBhQATd4/uQaPqwvqgHb+4dRWHhVKLx8434PM5P2kmO53N6bnqTqDXznUzjUo7VvvYeDd2HQ2RMy2+4iJxyFLBKUOVev2pYRURE2pEoTxSZSZlkJmUyoeeEmun5ZflsyN/Auvx1rM9fz7r8jzlqjkJ3SO0VS1p0Pw55M3jkcDf27h+K9V7DwIgDTO+8i7HR2zhtz3oSPn/LySwixmlG3KkXxKdCQhdIqP4b8H9MB9XMisjXooBVgiqr9BEbpedXRURE2rvUuFQm9prIxF4TAbDW8lXRV6zLX1czbD70Lyo7VpLYERIjO4GnLwuKe/DogRwqSr5Nqt/LtE47OSfhSwaVbKVD4SqiKw4TUVlU/0ojYtzgtZ5gNqGLE+zGd4aIKPBEgIlwnqn1eAL+r54eUSeN+1cBschJTQGrBKVnWEVERE5Oxpia98qe3/d8wHn9zudHPmf9wfU1NbF7Kz8luqclGoiN7MYSbwavFqRTcnQY/qqO2KoEoq2ha2QJpyWU0Se2lF4xpXSLLKJLRDHJtpCO/gLiCw8QvX8znrJ8TFV582xEbBL0cpsp9x7jNFWOim2evEWkTVDAKkGVeX16pY2ISDtnjJkKPApEAE9bax+oJ833gLsAC6y11l7RooWUNiEqIorBnQczuPNgLuVSAIori9l4aGNAU+J1WPMR8SnHlosgknJPBzbZRDb64qnyxlNREUtFZRy2qjvW1x/ri8f6Eojwx9MjNp7TEnz0jS2nR0wJMR5LtMcSZSxRHku0x0+U8RNp3GnGT6THTxSWCOMn0p2XVLGHhP2rMVvfcQsS7QSt1QFsr7OoVVARaXcUsEpQ5V4fKQnRrV0MERFpImNMBPAE8E0gD1hpjFlord0YkKY/cDsw1lpbYIzRO02kRmJ0IqO6jWJUt1E10w6UHmDz4c0cKjvEkYojFFQUUFhRSEF5AUcqjjhD+REKKwvxW/9xeR4CDttIVtoEbFUc1h+B33qwfg/WegAPuH+trf4/wvlrPVg8YCOwVQl0YCYT+/ZjWsd9DPNvIvXwp5jlv4dljzor63K6E8D2Gg0ZYyA5swX2mog0FwWsElRZpY+4TqphFRFpx0YB26y12wGMMS8C04GNAWmuBZ6w1hYAWGsPtHgppV1Ji08jLf7Ev2v4rZ+iyqJagWxBuRvcukFuYUUhVf4qqmwVPr+PKn8VXr8Pr89b87/PVjpp/D58bjqf9VHkPUIl/+Zdv4e39/XAV9qHKO9Uzuz+Uy5MKWRkxBZ6HF1LxPp/wOq5TqG6ZcOwy2DIdyGxS3h3lIh8bQpYJajyKj3DKiLSzvUAvgoYzwPOqpNmAIAxZhlOs+G7rLVv183IGHMdcB1A7969w1JYObl4jIekmCSSYpLCkn+Jt4S1B9ayav8qlu9ZyabDy/HZJXxiDSsPpuMr7QPlOQxMmsW30mBixDpO2/8Wnrdvg3d+CaedA0MvhYHTIDo+LGUUka9HAasEVVbpJ0YBq4jIyS4S6A/kAj2BJcaYLGvtkcBE1tqngKcAcnJybEsXUqSuhKgEvtHjG3yjxzf48Qio8FWw7uA6Vu9fzYq9q1hz8FMq/cv5EphTkMrskr5ElV/CjD7/w4y4j+mV90/MKz+A6A5wxoVO8Jo53umlWETaBAWsElS5egkWEWnvdgO9AsZ7utMC5QEfW2u9wJfGmM9xAtiVLVNEkeYRExFDTtcccrrmcP2w6/H6vWw5vKUmgF2xbyXlvhX8taojz3w1nMTKn3PTaYZvsZTOGxdi1syHjj0g67sw6ELo3A/iklt7s0ROaQpYpUHWWue1NtH6lVFEpLUZY8YCa6y1JcaYK4ERwKPW2p0nWHQl0N8Y0wcnUL0MqNsD8KvA5cAzxphUnCbC25t1A0RaQZQniiGpQxiSOoSZg2dS4avgg68+4NVtC1kW9R+89gNml3Tn14XD6RHxW24+bR9nVy4m8cPHMdWdNsUkQXKGO2RCpwxI7uOMd+oNkTGtuo0iJzsFrNIgr8/i81vVsIqItA1/AIYZY4YBPwWeBp4FJgZbyFpbZYz5EfAOzvOpf7HWbjDG3AOsstYudOdNMcZsBHzALdbaQ2HcFpFWERMRw5TMKUzJnMLh8sO89eVbvLbtdTbFvsEh+xa3F/ansjCHYQlXcGX3g/T2HCS9ai9JFXuJ378Jz+eLML6KgBwNpPZ3XqVTPXTNguiEVttGkZONAlZpUHmVD0DvYRURaRuqrLXWGDMdeNxa+2djzA8as6C19k3gzTrT7gz43wI/cQeRU0JKbAozBs1gxqAZbD+ynde3v87Cba9zIPEFttlYfnFoAP+fvfsOj6pKHzj+PTOZSe8hhSSQ0CEQWugdlKKylrX33gvKT11XXVzdtYC6ooINXMV1RdcOgopKB4HQOyG0ACG9ZybTzu+PGyAhCUQlBXg/zzNPMveee+57QzR5c855j9sRhna2wOPsgHaGYNEhdPH30NU/nw6WfBJNWSS699Bi9yKsmz41OlYmiOhYJYntAVFJksQK8TtJwirqZHdI0EcO6AAAIABJREFUwiqEEM1IiVLqCeB6YKhSygRYmjgmIc4KbULa8FCvh3ig5wOkHknl2/RvSc1K5UjZVtzaXa3tfgI56AnjO0cItvJgnLYeeCrGEV7hzcjALAb5ZZDk3EPsjh/w2fjfyqsUhLczRl9jkiG68iXb6ghxSpKwijrZnMb/oGVKsBBCNAtXYaw9vU1rfUQp1QqY0sQxCXFWMSkTfWP60jemLwBuj5scWw6HSw9zuOwwmaWZHCo9RGZZJodLD5NZtoOKyinCFZhYRDS/VMRQUtwVp2sUES5fuukcBvln0t12gLZpKwne+uXxGwbGGAWeBj8CfmFN8chCNHuSsIo6HUtYrZKwCiFEU9NaHwFerfL+AMYaViFEAzGbzET7RxPtH00vetU47/a4ySjJYGfBTnbm7yStII2dBTuxe6/FApQDG0xBbPfE4LQnUFzUC4srkE7OCpI9WQwq282IFW+iUz/ANOgh6H8PeAc0+nMK0ZxJwirqZHPICKsQQjQ1pVQJUOeep1rroEYMRwhRhdlkJiE4gYTgBMYkjDl2vKiiiF0Fu9hVsIu0gjR2F+4mvXA9Fp9SAHYA+0xB/OBpicq6nidLtzF24T/wrHob07DHoffN4GVtmocSopmRhFXUye70ALKGVQghmpLWOhBAKfUckAl8BCjgOiCmCUMTQtQh2DuYPtF96BPd59gxrTXZ5dmkF6YbCWxROltzt7KTxTwdHc6UzGt4rmw9A+c/invFG5hHPgld/wxmWaouzm2SsIo62Z1Hiy7JPqxCCNEM/Elr3b3K+7eUUhuBv9V1gRCi+VBKEeUfRZR/FANjBwJGErsycyXT1k9jk17OBFoQmXkFLxSupttXd+GZ8zAqvi+q9UBoPQBiU8Dq18RPIkTjqlfCqpSKBAYBLQEbsAVj7zZPA8YmmpisYRVCiGalTCl1HTAbY4rwNUBZ04YkhPgjlFIMbDmQATEDWHZoGdM2TGMrq7iNKGIy+zC+rJAhe9Jov3cxJjQekwV3dA8scb3Av4VRqMk/AvzCwS8CAiLBNxSUaupHE+K0OWnCqpQaAfwFCAPWA9mAD3AJ0FYp9Tnwita6uKEDFY1P1rAKIUSzci0wtfKlgeWVx4QQZzilFEPihjA4djCLDy5m2oZp7GA1byovZpnaosoGEZrvZmBFISMPptP58Cz8sdXal8vkjcMvGk9gS7xCYrGGtcLU7TJjSx0hzkCnGmG9ALijshJhNUopL+Ai4HzgiwaITTQx2dZGCCGaD631PuDipo5DCNFwlFIMjx/O0LihLD+0nDVH1rAxZyPbSCXfx0468IU5FF89AuXxxuwy4eUAq9ODj9NFkNNBjNtO6/Iy2pTm0f5wGtEUYFr+KiWJYwkc/aSxD6wQZ5CTJqxa60eVUial1JVa689OOOcCvm7Q6ESTOraGVaYECyFEk1NKtQDuABKo8vNba31rU8UkhGgYJmViSNwQhsQNAcDpcZJWkMamnE1szt3M3qK9lDjyKHWWUugoObYXbI1+CMJHxdKuwMqz+5cR+M4QiluPIWjsU5K4ijPGKdewaq09SqnHgM9O1VacXewywiqEEM3JN8BS4CfA3cSxCCEakcVkoUt4F7qEd+Fqrq5x3uF2UOIooaiiiDx7Hrm2XPJsxsf9xftZyEIuC4mkU3Ennj24nKB3hlAU1BEVnYR/fHfMMd0gsguYreAoBUcZOMvBZIboZOOjEE2kvlWCf1JK/R/wKVUKPGit8xskKtEs2JxuzCaFxSxVgoUQohnw01o/3tRBCCGaH6vZSrhvOOG+4bShTY3zGSUZvL/lfb7Z/Q1XBEXQrrQTo4rLGbx7Mcm7vjxp3+WWcJztxxLc6zJIGHr69of1eCBnO3rfcmz7VqGUCYt/CF6+IaA9eCpKcNtLMfuFYApLhNBEiGgPwfFgkt9NzyX1TVivqvx4X5VjGmr5L0KcNWwOj4yuCiFE8zFXKXWB1npeUwcihDizxAfGM2nAJO5OvpsPtn7A/3Z9ztsBdt7GHwvhBLmDCbWbUVpR4aVxmN04TW7weEgucXD97q9J2fYxTrM/ZaFJmCM7EBDXBXOLjuAfDhZ/sPiC1R+8g8BcR4rhtMHunynd8CWW9AXgLmaTtzfLrcG4MROmK4jwVOACCkzeFJksRHjsJLoqiHO6iHW5UGZfHGEd8I7rgTm2J8R0h4gO4B3QqF9T0XjqlbBqrRMbOhDR/NicbnwkYRVCiObiIeCvSqkKwAkoQGutg5o2LCHEmSLKP4rH+z7OPT3uYWf+TtIL00kvTGdP0R72Fu3FpEwEWgMJtwYSYAmgzFnG4uwNLCQcX088HUu8SLbn0it9J0k7PyHS7aa2sU67VyBOayhua1CV6cQav8I0ck0OvvELZW54FAd9w/CoqrtkWoATE0/vY58prQhzWElwlJCyZy69dnxK5woHoR4PFX4xaJ8QVOV6XkviIEydLjCS6EOpUJgB8X0hcRgEtax76x+nDWyFRgJutkJ5LpTngzKBTzCEtDp+rdZgKwAvb+M+okHUdx/WZcBijLUzy7XWJQ0alWgW7E43vlaZciGEEM2B1jqwqWMQQpwdgqxB9InuQ5/oPqdsW2gvZOmhpSzMWMjyQyvY4HIxi2AgGLP2wqqtmLUJL4/CrMHbDX5uTZDHQ5CnAqVBo9HArqg4Mn2MhLJNUGtujB9I76je9IzsibfZm1JnKSWOErxMXvhb/PG3+FNcUUxGSQYZJRmkF+5hS84udhfuZq3DBRhJoo/LiyinmQC3E4eXGRMehu+dx5its/HXHjZ5e7Pf7EO/LR/TtcKBMnvj8Q5F+wShLH6gFNpWgMmWj5ej5m6dLsCM8VdCR0Ac5uguuPIPYC7OwMtlrJas8I3E3H4UXh3HgKMc3A4jwY1KgsAYSP8Z18F12HP3oSx+aI8HV2kuVJSgTV5oL1+wF6HC2xLSZSQohS3vEBXF2Xg8HryDo/EOisDLxx+NwlacR1luBi5bMd6hcbicFbhKcojodh7eCf0hoMVp+V5pDpTW+tSNlEoEhlS++gMVwFKt9cMNG54hJSVFp6amNsatRBX3/Gct6Tml/PjwsKYORQghTiul1FqtdUpTx/FbKKWG1nZca72ksWMB+dksxLnIoz1klWWxv2Q/B4oPsL94P2XOMhxuBxXuCuxuO6WOUgoriiiqKKbMWYpSJkwoQBEXGM+4xNGMbj2a+KD4PxRLUUUR2/O3szN/J1tz0tiVv4dyVxkWkxWHu4Ij9r21XuflNhPsshDkhgCPxtejUWiKTWaKzYpiswe72VOZgJuwm124zK5j13awm+ngcHDAy5tMLxMFFhdmrYhyKsba8hhpL6FMmbArRYD20MbhxFdrNnh7s8Hbh11eAfhqNy6lyDZZKDGbUBp8tIcis4l2rnL628vQwBEvL3JMXjiVooXHSaDHg7fWuFEUmk1kmr0oMHkR63ZgUyZyzGb62e0kV1QQbe0I4Z1QviF47KVQmoW2+KH8W+CxF6G8A4noOpKAuK4U7tuILf8gLlsJ1sAIQuM6YAlPQIUm1D0S3QDq+tlc3ynBe5VSdsBR+RoBdD69IYrmRqYECyFEs/Jolc99gL7AWmBk04QjhDjXmJSJmIAYYgJi6B/Tv0ljCfYOpn9M/zrjyC7PZsnBJTjdTpIjk4nyi2Jd1joW7l/JoZJM8u0FHHGVUuG2odH4ewUSaA0mwS+CcN8QbC47dlcFkf7hRPmHodEcLM5i2aGVbHdkEWINJcavJT1C4qhwOUgrSGd6WQXTT5zSrMHqMeMwV24XaQrArZ2YlJkgaygBFmPyTJ7bTqA1iJ+L05kX6FN5scLPHIhZeVHmKsJTpUC8QhFsbUGAVwBr7UeM/iyh/Go/AIC/u5A4+zKCy90Um8xke5vx0ZrQEhdFJjP+ZR76LP6aBKeLXVYL2WYzJSYTwR4PsZtdRLvctHP60CJqBD4tOuAqPgIofCLbEJLQHd/oTrjz0rGXl+DfadRp/bc9UX2nBKcDucB/gZnAA1prz8mvEmc6m0MSViGEaC601uOrvldKxQOvNVE4QgjRrEX6RXJ5h8urHRudMJrRCaP/cN9ujxtzLVv9HCw5yMacjYR6h2I1WylxlLAtbxsHSzIZ1mow/aL7EeoTetK+nR4nmaWZeJm8iPCNwGo2qjJrrbG5bDg9TpRS+Hv5H4vh6IxZpRSF9kLWZa/jx72/cLDkCPnOMvwsfvTxj6TUaaO4opjW1kByy3P5tHg7Tpx44UUL7xh8zL7stmez1FOGEycAEa7lxB1cTI7ZuFdsmos225y0drrYb/HCjoXnOqX94a/pydS3SvDrwGDgGqAnsFgptURrnd5gkYkmZ3e6CfE7TaXLhRBCnG4HkdlOQgjR6GpLVgHiAuOIC4yrdmxEqxG/qW+LyUKroFY1jiul8LP41XqNqjJtN8QnhJGtRjKy1akn37g9bvLsecfWC1eVXZ7N6szVfLtrAXnl2bTyj8LldpJdeph19r24cOONlTCv8N/0fL9HfacETwWmKqUCgFuAZ4A4jPXH4ixlc7qJkRFWIYRoFpRSb2BsKQdgAnoA65ouIiGEEGcys8lMpF9kreci/SK5qO1FXNT2ohrnnB4nRRVFhPuEV0uWG0p9pwS/gjHCGgCsAP6GUTFYnMXsTg++VklYhRCimaha4cgFfKK1Xt5UwQghhDg3WUwWInwjGu1+9Z0SvBKYrLXOashgRPNiFF2SbW2EEKI50Fp/qJSyAh0qD+1syniEEEKIxnDSbEQplQCgtf68tmRVGeJOPC7ODnYpuiSEEM2GUmo4kAZMA6YDu+ra6kYIIYQ4W5xqhHWKUsoEfINROj8Ho5R+O4ytbUYBkzAKP1SjlPIBlgDelff5XGs9qXJP19lAeGWfN2itHafnccTpZHO68ZWEVQghmotXgNFa650ASqkOwCdA76YIpjCrnJyMElrEB5KxPZ/UeftqtBl+XUdCo/3ZuymXDQsO1Dh/3i1dCAzzIS01iy2LD9U4P/aurvgGWNm+IpMdKzNrnL/oge5YrGY2LzrI7rXZNc5fOrEXAOt/PMC+zbnVznlZTYx/oAcAa77by8EdBdXO+wRYGHdXNwBWfpXOkT1F1c4HhHpz/q1JACz9bBe5GaXVzodE+THi+k4ALPzPDgqzyqudj4gPYMiVxmD5gve3UlpQUe18dJtgBlzaFoD572zGXuqsdj6uUyh9LkwEYM4bG3A5qm/ekNAtgp6jjcItX71Sc6lzu96RdBseh9PhZu4bG2uc7zQghs4DY7CVOvj+nS01zncdFkv7lChK8u389O9tNc73OL8VickRFBwpY9HHNScDpFyQQHznMHIySlj2Wc0Ko/0vaUtM22Ay04v49euaNT4HX9levveQ7z353mv6772j92tIJx1h1VpfATwNdMT4i+5S4FvgDoypSCO11gvquLyi8nx3jMIQY5VS/YGXgH9prdsBBcBtp+NBxOnldHtwebQkrEII0XxYjiarAFrrXYClCeMRQgghGpw6um9Pg95EKT9gGXAP8B0QrbV2KaUGAM9orcec7PqUlBSdmpp6sibiNCu2O0l+5keeurAztw9p09ThCCHEaaWUWqu1TmnqOH4LpdT7gAf4T+Wh6wCz1vrWpohHfjYLIYQ4ner62VzfKsFm4EIgoeo1WutX63HdWowpxNOAdKBQa+2qbHIQiK3j2juBOwFataq5F5FoWHanG0DWsAohRPNxD3Af8GDl+6UYa1mFEEKIs1Z9qwTPAezAZoy/7taL1toN9FBKhQBfAZ1+w7XvAu+C8Vfc+l4nTg975XoESViFEKJ50FpXKKXeBH7G+Fm8U2pACCGEONvVN2GN01on/96baK0LlVILgQFAiFLKq3KUNQ6oudpYNDlb5QirrGEVQojmQSl1IfA2xmwlBSQqpe7SWs9v2siEEEKIhlPfTTbnK6VG/5aOlVItKkdWUUr5AucD24GFwOWVzW7CqEAsmpljCatV9mEVQohm4hVghNZ6uNZ6GEa1/n81cUxCCCFEg6rvCOuvwFeVW9w4Mf6yq7XWQSe5Jgb4sHIdqwn4TGs9Vym1DZitlPoHsB6Y+fvDFw3F5pA1rEII0cyUaK13V3m/ByhpqmCEEEKIxlDfhPVVjOm8m3U9ywprrTcBPWs5vgfoW+8IRZOwu2RKsBBCNAdKqcsqP01VSs0DPgM0cAWwpskCE0IIIRpBfRPWDGBLfZNVceazywirEEI0F+OrfJ4FDKv8PAfwafxwhBBCiMZT34R1D7BIKTUfqDh68FTb2ogzlxRdEkKI5kFrfUtTxyCEEEI0lfomrHsrX9bKlzjLHS+6JAmrEEIIIYQQomnUK2HVWv+9oQMRzYsUXRJCCCGEEEI0tXolrJV7qNZYv6q1HnnaIxLNgl2mBAshhBBCCCGaWH2nBP9flc99gD8DrtMfjmgu7E4PZpPCYlZNHYoQQghAKZWOsc3cUmCp1nprE4ckhBBCNLj6Tglee8Kh5Uqp1Q0Qj2gmbE43Pl4mlJKEVQghmokuQD9gCDBFKdUR2KS1vrRpwxJCCCEaTn2nBIdVeWsCUoDgBolINAs2p1sKLgkhRPPiBpyVHz1AduVLCCGEOGvVd0rwWow1rArjh+U+4LYGikk0A3aHWwouCSFE81IMbAZeBd7TWuc1cTxCCCFEgzPVs93jQA+tdSLwEVAGlDdYVKLJ2ZxuKbgkhBDNyzXAEuBeYLZS6u9KqVFNHJMQQgjRoOqbsD6ltS5WSg0GRgIzgLcaLizR1OwyJVgIIZoVrfU3WutHgbuAecDNwNwmDUoIIYRoYPVNWN2VHy/EmIb0HWBtmJBEc2AUXZKEVQghmgul1BdKqd3AVMAPuBEIbdqohBBCiIZV3zWsh5RS7wDnAy8ppbypf7IrzkA2p4dgX0tThyGEEOK4F4D1Wmv3KVsKIYQQZ4n6JqxXAmOBl7XWhUqpGODRhgtLNDW7w010kHdThyGEEKKS1jpVKdVVKdUFY0/0o8dnNWFYQgghRIOq7z6s5cCXVd5nApkNFZRoelJ0SQghmhel1CRgOMZ+rPOAccAyQBJWIYQQZy2Z1itqJUWXhBCi2bkcGAUc0VrfAnRH9kQXQghxlpOEVdTK5nTjLUWXhBCiObFprT2ASykVBGQD8U0ckxBCCNGg6ruGVZxjZIRVCCGanVSlVAjwHrAWKAVWNm1IQgghRMOSEVZRg9PtwenWsoZVCCGaCaWUAl7QWhdqrd/GqNp/U+XU4PpcP1YptVMptVsp9ZeTtPuzUkorpVJOU+hCCCHEHyIJq6jB7jR2TJCEVQghmgettcYotHT0/T6t9ab6XKuUMgPTMIo0dQGuqaw0fGK7QOAhYNVpCVoIIYQ4DSRhFTXYKhNWH5kSLIQQzck6pVSf33FdX2C31nqP1toBzAYurqXdc8BLgP0PxCiEEEKcVpKwihoqnB5ARliFEKKZ6QesVEqlK6U2KaU2K6XqM8oaC2RUeX+w8tgxSqleQLzW+rvTF64QQgjxx0nRJVHDsRFWi/w9QwghmpExDdGpUsoEvArcXI+2dwJ3ArRq1aohwhFCiHPWppxN5Nhy6BzWmRj/GIzyBYbM0kyi/KMwqXPv93NJWEUNNoesYRVCiOZGa73/d156iOrb38RVHjsqEOgKLKr85Sga+FYp9SetdeoJMbwLvAuQkpKif2c8QghxztJas/TQUg4UH6BNcBv6t+yPSZlYeGAhExZNwKONmY4tfFvw4pAX6RvTlznpc/jrsr8yLG4YbULaUO4s57E+j/FV2leMaj2KCN+IJnkWm8uG1WTFbGrYnEESVlGDTYouCSHE2WQN0F4plYiRqF4NXHv0pNa6CDj2245SahHwfycmq0IIIf6YAnsBjyx6hNSs4/97HRI7hH4x/Zi2YRqdwzrzeN/H2ZW/i4+2f8TjSx/n3h738sKqF2gT3IZlh5ax5OASNJpVmavYV7yPeXvnMXPMTLxMvy2tK7AX4NEewn3D62xTVFFEkDWIHFsO3+/9ns7hnekTfbyUwszNM5m3dx5f/OkLfL18f/sXpJ4kYRU1SNElIYQ4e2itXUqp+4EfADPwvtZ6q1LqWSBVa/1t00YohBBnF7vLjkd78LP4VTs+dd1UNmRv4Kl+TzGq9Sh+3PcjU1KnsPTQUvpE92Hy0MlE+EbQM7InPSJ7cM131/DsymdJCk/infPf4UjZEXy9fJm2YRrz9s5jYMuBrDi8gmdWPMOkAZOwmC31iu/DrR/y+rrX0Wju7n43t3W9rdooqdvjZvKayXyy4xNGtRpFYUXhsST7ruS7uL/n/TjdTj7f9TldI7o2aLIKkrCKWlTICKsQQpxVtNbzqLItTuWxv9XRdnhjxCSEEGeLI2VHmJM+h/FtxxPlF8U9P91DWmEazw18jsNlh9mYs5H+Mf35Mu1Lrut8HVd1ugqAaztfS0p0Ck6Pk6TwpGp9dgzryOsjX6fUWcro1qMxKRPB3sEAPDvoWS5pdwn9Y/rz1sa3eGvjWyzYv4B2Ie2YmDKRXlG96ox1/t75vJz6MiPiR2A1W3lj/Rt8lfYV8YHxjEscxyXtLuGfq/7J/3b9j+Hxw/npwE8A3Nb1NnJtubyz6R06h3UmqzyLPHseV3e6uoG+qsdJwipqOF50SRJWIYQQQgghaqO15q2NbzFz80wcHgeLMhZxTedrSM1KJcwnjAcXPgiAr5cv8/fOJ8Q7hLu7312tjw6hHY6/KcmCshwITQDvAAbHDjaOezyw63toPQC8g/DGxICWAwC4t8e9dI3oyorDK/j5wM/c9P1NDGo5iLVZaxkSN4S+0X1RKPrE9CHSN5IXVr1A9xbdeWXYK3iZvBgWN4yfD/xMemE6k1ZMYvWR1czdM5fbut7GhN4T2Jq3lQX7FnBX97vwUl7sLtzNhEUTABgU3o2BZeVGfKaGKwYlCauoweaQbW2EEEIIIYQ4mQ+3fshbG99iXMI4ukd258XVL7J12VY6hnZk1rhZfLz9Y5IikugZ2ZMv076kTXAbY5RUa+NVNck7shlmjgFnmfE+pDVcPA0Sh8CSKbDoeQhrA14+UFEKl0yDeY/C8L8wNOlShsYN5cGeD/LG+jeYvWM2g2MHs/TgUhbsXwCAxWShc3hnCioKmN53OpbyPHA7Gd92POPbjsfusnPHj3cwd89chscN58Hku2HrVyQlDiMptAd8eDFEJfFK/0nctvhhksKTmJR5CNNXd8Ej28Aka1hFI5KiS0IIIYQQQtRt7p65vLr2VUa3Hs2LQ1/EpEzsLtzN57s+59E+j+Jn8eOO5DuOtb+u83XGJ/uWG4lmzg4IjIFRT0NkZ/jkWvAJhvGvQeF+2PBf+PwWSLkNFr8I7UdDZuXW22XZ8OF44/Ov74WwthCTjJ/Fj8f7Ps4jKY9gMVmwuWyUOcuwOW28ueFNNmRv4OqOV9N158/wyz/A44Z+d8GoSfhYfJg1bhZFFUUEu5yoGedB1mbwjzTuB3BoLbEZa/j+9gVQloNe3B098CGURdawikZmP1Z06dzb50kIIYQQQogT7S3ay0/7f8LXy5fVR1azMGMhPVr04J+D/3lsb9Sn+j3FDV1uoE1wm9o7SfsJPv4zBLeCgQ/A/hXw1V3GOd9QuOFraNnDeN/pInh3hJGsdroI/jwTlAlMXrDlc1gwCS58Bb57BN4fC31ug4gOkHwVFi+r0aWXr1EQyRdeGvqS0e+WL+DzW40+/VvAr9Mh9X3wi0AlXULIyKfho8sgLw3GTYGVbxrXXfMpKAX/vcqI2VaAGy/u3JrM9OHuBl1KKAmrqMHmcGNSYDVLwiqEEEIIIc5dFe4KZmyewczNM3F6nAD4mH14uPfD3NDlBiym45V5zSazkawWHYSKEmPkFIzpvx4X/PCEMRp691Kw+hsjnCungasC+t1pjLAeFdkZbvzaONdmWPWgkq+EblcYCWRMdyOBXPEGoGHZv4xR07QFxnUte4LLDtHJYPGFeY9BXB+4/N/gZYWkS4y2ubuM5DRtAeTuxHX5LOa7+zDg5qvZsHYlD36saR3uxwc9HyJq/WsAvGB5kIqAlg1e90YSVlGD3Wn8laRyA3khhBBCCCHOKVprFmUsYvKayRwsPcgFiRcwMWUiVpMVi9mCv8X/eOO8dFj7AfS+GYLjYdbFkL8H+t9rrE3dv9xIEnN3wdWfGMkqgMkMgx481s3K9Dz25pbRItCb1uF+dGjVH4B9uWU8NHs9l/SMRQH55U5uH5LIqz/u4tp+rehw81wjKd79E8x/HOY/ZozY7l5wPEbvIGP0tjyXgks+4pW5Oym2ubh/ZG86jBluXP/DXyFtAfYRk7hqcQQbM9bjbzVT5nAT4mehqNzBmPUD+GVoONtoy8wfYfqfWjf0P4UkrKImm9Mt61eFEEIIIcQ5Kd+ezz9+/QcL9i+gbXBb3hv9Hv1j+tdsqDUs+JsxSqrdkPYjdL0c8nZD4lBjxNI3DJIug+3fQpsR0HFcrff8ZUcWt32YitbHjz00qj13Dm3DXR+tZXdOKRsPFh0798XagxwqtLFgWxbf3j+I8ABvaH8+JAyBvUuM0dXsbcZIr9awfCocXo+j+/VcPsfBgfwMfLzMzN+SyYXdYvDz9mJkxwmMGP08d36whq2HcnlmfBc+X3eQLYeKefeGFKKDfBj/5jJ6/dgWi1nRNTaQ87tEne4vfw2SsIoabM6GnYcuhBBCCCFEc7Q5ZzP3/3I/JY4SHur1EDcl3VRt2m81iyfDitehx/XQbiR8cTss/Ae0HQnXfwmH1xlTgH1DwP4KmK1szSzmya+2sPVwEcG+Vu4f0ZaoIB8e/XwTSS2DmHZtLwrLncxctpepP6fx+dqDZBbZ+PDWvmQXVxDmb2XOxsN8uf4QNw5ozadrMrh0+gpuH5JIdJAPozpHYe4w2oivZc/jsVZOK/7LZxvYl3eYj27rS6foIP7x3TZWpudRanfx6Zrtd/cjAAAgAElEQVQMzuscyZJdOfzz0q5c1681Nw5IIKvETkywUVjpzWt7cvO/19AqzI+3ruuNpRGWEErCKmqwO934WiVhFUIIIYQQ544jZUd4cOGD+Hr5MmP0DNqHtq+9odaw+j1jq5nu18LFbxrrSYsOwuIpMOZ5431s7+PX+ASxem8+1773KyF+Fm4ZlMjWw0U8M2cbAB2jAnn3hhRahvjSOhwmX57M/rwySuwu/nN7Pwa2jTjW1eD2Edw8KIFuscFc3KMlEz7dwN++2QpAh6gALusVx3ebMundOpTW4X7klzno1SqUliG+fLX+EHcNbXusv1evNIo8lVa4uGHmKn7YmsWVKXFc27cVACaTOpasAgxp34LFjw6nRaA33l6Nky8oXXXcuZlKSUnRqampTR3GOeOWf68mt9TBnAcGN3UoQgjRIJRSa7XWKU0dx5lMfjYLIc5k2eXZHCo9RJA1CIvJQqmzlL+v/Dv7ivbx8QUf0y60XfULDq+HrV8Z+6DuXQoHVkDbUXDNbKN40VGuCvDyrnE/j0fzp2nLyC918N2DQwj1t6K15tuNh3G5NZf0jMVsql4/xu3RmBSnrCvjdHvILa0gdV8Br/y4k3155bQO9+NggQ2353iu52sx42VSLH18BCF+1hr9aK2pcHmabKZlXT+bZYRV1GB3emQNqxBCCCGEOCtorSl3lR8rlGRz2bhh3g0cLjtcrZ1C8cbIN6onq2V5xjTf1H8bRZI8LmNd6vjXoecNYDKmxFa43MaIo5c3j3++iU2Hinjqws4s353L0rRc2rTwZ8uhYl67qgeh/kayqJTi4h6xdcZ9YgJbF4vZREywL+O7+zI6KYq1+wromxhGid2FBvy9zcxenUFadgnjusbUmqwejac5LguUhFXUYHO6CfSRbw0hhBBCCHFmy7Pl8czKZ1h2aBnTRk5jYOxAPtjyAYfLDvN0/6cJtAbi9DgJsATQOqg1bUPaGhe6HLD6HWOKr6MU+t0NI54AayCgjeQVKLY7eePnND5YsY8J53WgX2IYn6Zm4O1l4roZqwDoFB3INxsO0z0umD91b9mgz+vtZWZgO2O679HEGOCmgQkNet+GJFmJqMHudBMZWHMqgxBCCCGEEGcCrTW/HPiFZ399llJHKVF+UUxcPJGXh73M+1veZ0zCGK7seGXtF2esgTkPGlV2250Po587vqdqFfllDi6dvpwD+eW0bRHAlB92EhviS1SQN3MfGMLnaw/SNzGM3q1D2Z9XRpCPBVM9R03FcQ2WsCql4oFZQBSggXe11lOVUmHAp0ACsA+4Umtd0FBxiN/OJkWXhBBCCCHEGWp73nZeTn2Z1UdW0yG0A++Nfo9ASyDXfHcNd/90Nz5mHyb2nlj7xes+gm8fgKCWxvrUOrahcbk93P/fdWQW2fnkjv70iA/hyndWsulgEZMvT6ZFoDf3DG97rH3rcP9a+xGn1pAjrC5gotZ6nVIqEFirlFoA3Az8rLV+USn1F+AvwOMNGIf4jWwO2YdVCCGEEEKceTbmbOTG+TcSZA3iib5PcEXHK45tS/P6yNe5/cfbuTP5TmICYmpenLYA5jxkbEtz5YfgHVjrPUrsTp78agsr0vN45Yru9G8TDsD7N/dh4Y5sLusV12DPdy5qsIRVa50JZFZ+XqKU2g7EAhcDwyubfQgsopklrIcKbTz86QbsTndTh9Ik8soczXLBtRBCCCGEECfzwZYPCLQGMvfSuQR7B1c7l9wimSVXLcHHy8coonTgV/ANNar8VpTCxtkQ1aXWZHV/XhlfrDtEeYWL77ce4XChjUfHdOTPvY8npxEB3lyREt8oz3kuaZQ1rEqpBKAnsAqIqkxmAY5gTBmu7Zo7gTsBWrVq1fBBVrH5YCGr9+bTNyEMf+9zL3Eb3qEFF3Sr5a9OQgghhBBCNFOHSg/xS8Yv3Jx0c/Vk9fB62DEPBj+Mj9UPMjfCd4+ATzB43MZWNFb/ymT1o2rJqtaa2WsyeG7uNuxOYxZifJgf/7t7AL1bhzXBU557GjxhVUoFAF8AE7TWxVX3EdJaa6VUrRvBaq3fBd4FY6+3ho6zKlvlyOrky5NJiJD55kIIIYQQQjR3s3fMRqG4ptM1xgGXA5a+DEteBu2GrK1wxQcwZwL4hcP9qeAbUmd/mUU2nvhyM4t25jC4XQQvX9Gd6GCfxnkYcUyDJqxKKQtGsvqx1vrLysNZSqkYrXWmUioGyG7IGH4Pm8MDIIWHhBBCCCGEaGbSCtJoFdQKb/PxXS3KneV8kfYF57U+j2i/KNj1AyyYBDnbIflqiOwEPz0D742ErM1w2YyTJqtzNx3miS8343Jr/v6nJG7o31oq/DaRhqwSrICZwHat9atVTn0L3AS8WPnxm4aK4fc6OsIq6ziFEEIIIYRoPlYcWsFdP91FuE8413e5nkvbXYrL42LOnjmUOEq4vs2f4MPxsG8phLWBqz+BThcYF9sKYPlUSBwG3S6vtX+Hy8Nzc7fx0a/76dUqhH9d1UMq/DaxhhxhHQTcAGxWSm2oPPZXjET1M6XUbcB+oI4NkJrO0WJLUilXCCGEEEKI5sHlcTF5zWRiA2JpHdSaqeumMnXd1GPnu4Z3pXvaMiNZHTcFUm4Bs+V4B6Oegcgu0GYEqNpHS5/+egufpmZwx5BEHhvbCYvZ1MBPJU6lIasELwPqGjcf1VD3PR3sTjcmBRazDPsLIYQQQgjRHHyx6wvSi9J5bfhrjGo9iu1521mZuZIASwAh3iH0DOuMensYdBgL/e6s2YHJBN2vrrP/2asP8GlqBvePaMf/jenYgE8ifotGqRJ8pjm6D6mq4y8vQgghhBBCiMZT7Chm2oZppESlMLLVSAA6h3emc3jn441S/w3leTDg/lP2Z3e62ZNTRmmFiyPFdnZkFjNj6V6GtI/g4fM7NNRjiN9BEtZa2JxuKbgkhBBCCCFEM/HuxncprCjksT6P1T6o5PHAymkQ0x0SBp+0L5fbw+Vvr2DLoeJjx8wmRc/4EF6/uidmKa7UrEjCWgub0y0Fl4QQQgghhGhiR8qOMGXNFH7c/yOXtb+MztYweH8cxPaCPrcZhZUA0n6EvDSj+u8JCW1uaQXLd+dyUXJLzCbFp6kZbDlUzKNjOtI9LoSIQCuJEf54e8nv/82RJKy1OLopsBBCCCGEEKLxOT1OZm2dxTub3sGjPdzX4z5u7XorzHkYMlbBwdXGiGrLHuAog8IMCIqDpEuq9bM9s5jbP0zlUKGNpWm5/G18F/61YBd9E8K4d3hbWQJ4BpCEtRZ2p0emBAshhBBCCNEEtuVtY9KKSezI38HI+JE81vcxYgNi4fB62PAxDLwf+t8Haz+AfcsgpJVR+bfHNdWqAn+/JZNHPttIoI8X1/ZrxX9XHWD13nxySx3MuKmzJKtnCElYa2FzuPGRKQFCCCGEEEI0Gq01b296m3c2vkOoT+ixasCVJ+H7J8AvHIY+Cj7BMOKJWvspq3Dx3NxtzF6TQfe4YN69MYXIQG/C/Ky8uXA3f+rekh7xIY34ZOKPkIS1FjanmyBfy6kbCiGEEEIIIU6Lz9M+Z/qG6VzY5kKe6PsEwd7Bx09u+xoOrISLXjOS1Tpkl9i54u2VHMgv5+5hbXn4/PbH1qZOHN2Bvolh9GwlyeqZRBLWWtidbqKCvJs6DCGEEEIIIc4JG3M28vyq5xkUO4h/DvonZlOV2Y5pP8H8xyGqG/S68aT9fLRyPwfyy/n49n4MbBtR7ZxSiqEdWjRE+KIBScJaC5sUXRJCCCGEEKJR5NpyeWTRI0T7RfPSkJeOJ6slR4xpwFu/hPD2cOlbYKr7d3SHy8MnqzMY1SmyRrIqzlySsNbCLvuwCiGEEEII0eDKnGVMXDSR4opi/nPBf4xpwFrDps9g/qPgtMOIJ2HQQ+B18hmQP2w9Qm5pBdf3b91I0YvGIAlrLWwOt+zDJIQQQgghRAPaU7iHCYsmcKD4AC8MeYGOYR2hNAfmToAdcyG+H1w8HSLa1au/j1bup1WYH0Pby7Tfs4kkrLWQbW2EEEIIIYRoOAv2L+CpZU/h4+XDe6Pfo090HyjNhneHQ1kOnP8cDLjvpFOAq9pxpJjV+/L56wWdMJlku5qziSSsJ3C5PTjcHlnDKoQQQgghRD3l2nKZum4qFyRewICWA2qc35izkZ/3/8yugl2kFaSRbcsmuUUyrwx7hWj/aHC74PNboTwPbv0eYnvXep/SChd/+2YL8aF+DOvYgnaRAWzMKGTG0r14e5m4ond8Qz+qaGSSsJ7A7vIASMIqhBBCCCFEPewq2MX9P99PZlkmc/fM5cUhLzImYcyx89+mf8uk5ZNQStE2pC39W/YnKTyJyztcjtVsNRot/AfsWwqXvFVnsgowY+kevlx3CJOCqT+nHTtuUnD/yPaE+lsb7DlF05CE9QR2pxsAH5kSLIQQQgghxEktObiERxc/SoAlgBmjZzB9w3QeW/IYpY5SLmt/GTO3zGTquqn0i+nHa8NfI8AaULOTHd/Bsn9B75uhx7V13iu/zMGMpXsZmxTNi3/uxrLduezNKaN7fAi9WocS4C2pzdlI/lVPYHNUJqxepiaORAghhBBCiIantaaooohg72CUqv/6z4+3f8zkNZPpGNqRN0a+QZR/FMktknlk0SM8s/IZ5u6ZS2pWKhe2uZDnBj6HxWyp2cnun+HLu6BlTxj70knv99ai3ZQ7XEwc3YEQPysXJbf8rY8qzkCSsJ7g6AirFF0SQgghhBBnozVH1pCalcq+on3sLdrL/uL9lLvKGRI7hJeGvkSgNfCUfczfO58XV7/IiPgRvDjkRfwsfgD4evny+ojX+euyv/L9vu+5pestTOg1AZM6YTBIa/j1LfjxSYjsAld9DBafOu+XWWTjw5X7ubRnHO2jTh2fOHtIwnoC29GEVdawCiGEEEKIs0ipo5SX1rzE17u/BqClf0sSghPoFdULb7M3s7bO4trvruX1ka+TGJxYZz/b87bzt+V/o1dkL14Z9kqNkVOL2cJLQ1/ivh73kRCcUP1iraFgHyx5GTb8BzpdBJe+A961TBWu4vWf09BaM+G89r/n0cUZTBLWExydEiwJqxBCCCGEOFuszlzNU8ufIqs8izu63cHt3W4/Nip61JDYITyy6BGu++46Xhr6EkPihtToJ9+ez0MLHyLYO5hXhldJVj0e2DEHWg2AgEhMylQ9Wd0xDzb+FzJWQ2mWcWzY4zDsL2CqeylehcvN899t55PVGdw8MIH4ML8624qzkySsJ7BJ0SUhhBBCCHGWsLlsTF03lY+3f0xCUAKzxs2ie4vutbZNiU5h9kWzeWjhQ9z3833c0/0exrcdT2xALEopnB4nExdNJN+ez4djPyTCN8K40GmHb+6FLV9AUBxc9xlEJR3veOV0+OEJ41yb4RDfF1oPhshOJ439YEE59328jo0Hi7htcCJ/GXfy9uLsJAnrCexO2dZGCCGEEEKcmSrcFezM38nWvK1sy9vGqsxVZJZlcm2na5nQewK+Xr4nvb5lQEs+HPshk1ZMYvrG6UzfOJ1o/2h6R/XG4XaQmpXK84OfJymiMiEtz4fZ18KBlTDgfiNpnTkGrvgA2o2Chf+EJVOg83j480zw8q7Xc6zYncu9/12H2615+/pejO0a8we/MuJMJQnrCY5tayMJqxBCCCGEOAO4PW4+3v4xc/bMYXfBblzaBUCYTxhJ4Uk8O+hZ+sf0r3d/fhY/Jg+dzF3Jd5GalcqaI2tYeXgl+fZ8buxyI+Pbjjca5qXDx1dA0UG4/H3o+mfofy98chX89wpIHAp7FkHPG2D8VDCd+vdrrTUfrtjHc99tp02EP+/emEJihP/v+bKIs4QkrCeQoktCCCGEEOJMsadoD08vf5pNOZvoGdmTW7reQlJ4EkkRSUT5RZ16mxp7EeTthsIMSBgM/sY0X6UU7ULb0S60HVd3uhqtNUfKjhDtH21cV7Af3h8DHhfc+A20HmAcD46FW76Hz2+FtB9g0ENw3t+hHtvlaK15+pst/OfXA5zXOYp/XdWdQJ9atsIR5xRJWE8gRZeEEEIIIURz5/K4mLVtFtPWT8PX4suLQ17kgsQLTp2gVpTAsteMKby5aVCWffxcQBRc9q6xzvQESiliAmKO9/HJ1eBywG0/1lyL6h0A13xi9H+KdapV/W/tQf7z6wFuH5zIXy/ojMlU/z1hxdlLEtYTHC+6VHe1MiGEEEIIIZpKemE6Ty9/ms25mxnVahRP9X/qeAGkk9nxHcx7FIoPQ1wfaD8aItpBeHuw+sP8x2DWJTBkIgx/Asy1pAoeN3xxB+TshOs/rzshNZl/U7K6L7eMZ77dyoA24ZKsimokYT1BhdONSYHVLAmrEEIIIURzorWm2FFMdnk22eXZRPlF0S60XVOH1WhcHhcfbP2A6Rum42/xZ8rQKYxJGHPqUdXiw0aiumMuRCYZBZHi+9Zsd+cimPcYLH0Z9i2Dy2dCcFz1Nj8/C7vmw7gp0HbkaXkup9vDhE834GVSvHJld0lWRTWSsJ7A5nTjYzGf+j98IYQQQghx2lS4K8guzyanPIfs8myyyrOqf27LIac8B7vbfuwaszLzQM8HuKXrLZjU2T3YkF6YzlPLnmJL3hbOb30+T/Z7knDf8LovcDkgZwfsWQiLpxhrTc97xqjka65jXajVHy6ZBm2GwdyH4Y3eENMDYntDbC8oz4Plr0HKrdD3jtP2bG/8nMaGjEKmXduLliEnr2Iszj2SsJ7A5nTL+lUhhBBCiEawv3g/f132Vw4UH6CworDGeW+zN5F+kUT6RdI1vCuR8ZHH3kf4RjB752xeW/caa7PW8vzg5wnxCTktcTk9Toorik+eEDaSqqOqAZYApgybwtiEsTUbFmYYU36PbDJe2TvA4zTOtR0FF74CYYn1u2nylUaSumYGHFoLqTPh12nGucShMG5yvYoo1ccnqw/wxsLd/LlXHBcmy9Y1oiZJWE9gc3hkSxshhBBnFaXUWGAqYAZmaK1fPOH8I8DtgAvIAW7VWu9v9EDFOeeF1S+wp3APFyRecCwRrfoKsgaddNZb76jepESlMHnNZK6ceyUvD3uZ5BbJfyimrblbeXLZk6QXpdMhtAMj4kcwotUIuoR1afQZeFXXqtY5qup2wso3YdFL4LKBfwuIToaB50F0N2OENKzNb08ww9vC2BeO3yN7O2Rvg47j6h6h/Y3eXZLO8/N2MLxjC/5xSdfT0qc4+0jCegK7042vVRJWIYQQZwellBmYBpwPHATWKKW+1Vpvq9JsPZCitS5XSt0DTAauavxoxblkycElLD+0nEdTHuXGpBt/Vx9KKa7udDXdIroxcfFEbvr+Jib2nsh1na/7zcml0+3k7U1vM3PzTMJ9w7mn+z2sylzFe5vf451N7xDlF8Xw+OGMiB9B3+i+WE5T0lYbt8fNB1s/YNqGaSdfq3pgFcydYCSSnS6C0c9BaOJpG/08xmyBmGTjdRporXl1wS7e+GU3FybH8K8re2D1OrundIvfTxLWE9hlSrAQQoizS19gt9Z6D4BSajZwMXAsYdVaL6zS/lfg+kaNUJxznB4nU9ZMISEogWs6XfOH+0uKSOLTiz7l6eVP89Kal1ibtZZnBz1LoDWwXtfvyN/Bk8ueZFfBLi5uezGP9X2MIGsQ9/a4lwJ7AUsOLmFhxkK+Tf+WT3d+ir/Fn8GxgxkRP4JBLQedtqnIAPuK9vHk8ifZlLOJ81qdx1P9n6o5qlqeDz89A+s+hKA4uPoT6HTBaYuhoezJKeXrDYf5ev0hDuSXc3WfeP55aTfMUmRJnIQkrCcwii7JX3iEEEKcNWKBjCrvDwL9TtL+NmB+g0Ykznmzd8xmX/E+po2adtpGKoO9g5k6Yiqzts3iX2v/xZVzruTV4a/SObxzndc4PU5mbJ7BuxvfJcQnhDdGvsHw+OHV2oT6hHJxu4u5uN3F2F12VmWuYmHGQhZlLOKHfT+gUHQK60T/lv0ZEDOAnpE98fHy+c3xe7SHT3Z8wmtrX8NqtvLSkJcYlziu+qiq1rDlC/j+L0bSOuB+Y/sZ74DffL/GVOFyM2H2BuZvOYJSMKhtBA+f355LesRKoVNxSpKwnsDmdBPgLV8WIYQQ5x6l1PVACjCsjvN3AncCtGrVqhEjE2eTAnsBb218i0EtBzEkdshp7VspxU1JN9G9RXf+b/H/cf2863m87+Nc0eGKGolRWkEaTy1/im1527gg8QKe6PvEKUdKfbx8GBY/jGHxw/BoD1tyt7Dy8EpWZq7ko20f8e8t/8ZqstIrqhf9Y/rTv2V/Ood1PmUF48Olh3l6+dOsPrKaIbFDeGbgM0T6RVZvVHQIvnsEdn1vFES64StjjWozUVDm4O9ztjKsY4tqiajL7eHBT9bzw9YsHhzZjuv6tyYq6Lcn9OLcJZnZCWwONy0CvJs6DCGEEOJ0OQTEV3kfV3msGqXUecCTwDCtdUVtHWmt3wXeBUhJSdGnP1RxLpi2YRrlznIe7fNog42u9Yjswf/G/48nlj3Bc78+x9qstUwaMAk/i1+1qruB1kBeHf4q57c+/zffw6RMJLdIJrlFMnd1v4tyZzmpWan8mvkrKw+v5LV1r8E68PPyo01wG9qGtKVdSDvahLShXUg7YvyNirhf7f6KyWsmA/D3gX/n0naXVv+6eDyw7gP48W/G1jRjnod+d4Op+SxhKyhzcO2MVWzPLObrDYf5YUsW/7y0KyF+Vib+byM/bM1i0vgu3DKonlWKhahCEtYTSNElIYQQZ5k1QHulVCJGono1cG3VBkqpnsA7wFitdXbjhyjOFWkFafxv1/+4quNVtA1pe+oLXA4oy4bSyldZNpRmQWmO8TE4DoY9Dj5BNS4N9Qll+qjpzNg8g2kbprE9fzsP93qYGZtnsCl3E+e3Pp+n+j9FmE/YaXk2P4sfQ+OGMjRuKAA55Tn8mvkrW3K3kF6YzvLDy/km/Zvj7b38iPCN4EDJAfpG9+W5Qc/RMqBl9U7z0mHOQ7BvqbGdzPjX6781TSPJL3Nw3YxVpOeU8u9b+rDzSAmv/rjr/9u78/ioynuP459fdiAk7BFI2BFENtkVVASsuCJ1q9VK3Shqa+/Vam2vVq+trVi7eWu1KKC4K1rEpWINWK2yCrKvsiTsYUtISDLJzHP/OCcQMNGELDNJvu/Xa16Zec72O4eHmfnNsxwu+PMn9EttRvq6vfx8bE8lq3LSlLCeQPdhFRGR+sQ5V2xmPwbm4N3WZppzbrWZPQwscc7NBn4PJAJv+C07Gc65y8IWtNRLzjkeW/wYibGJ3N7vdq8wFIS1s+HAFsjzk9CS5DR3DxR8/d6sAMQnQ5NW3rZrZsPlT3oJ3QmiLIqJfSfSv3V/7v3kXu6cdyfJ8ck8ds5jjO00tvwW3m3zYdtnXtfbtCEQ16TS59u6cWsu7Xopl3a99GhZdmE2Xx36ik2HNrE5ezPbcrZxfa/ruabHNcd3Gw4FYcHfYO5vIDoeLvs/OOMH1T/7bxWVJKubs3J59oZBnHNqa87r0YaRPVpz12vLSV+3lztHd+e2kRX4cUKkHEpYT1BQpPuwiohI/eKcex94/4SyX5V6PqbWg5IG5+PMj1mwawH3Dbnv2FjRT/8A8x7xnsclevcQTUyB1j2g89ne85KyxDbeo0kbiPXHQGYugn9MgucvhSETYcxDZSaXQ9oOYeZlM5m1aRaXd7ucVo1alR1kIA8++l9Y9PdjZVEx3r1MO54FHYdDh2HQ6ORmBU6OT2ZAygAGpAwof6UDm2HW7ZAxH3pcBBf/EZLantTxalJ+IMj1frL6jJ+sluh5ShKz7hjOut059GmfHMYopT5QwnoCb5ZgJawiIiIi1SUQDPD4ksfpktyFq3tc7RUe2AyfPA6nXQbjnz6pVkzShsCk/0D6w7DwKdj0EVz+lJdUnqBVo1bc0ueW8ve1bT68fbsX19BJMOIu2LMStn3uPRY+DZ8/ARik9PYT2LMgdTAktat666dz8MV0mHO/lySPnwJ9r464VtUSD81ezdrdOUybMPi4ZLVEXEwUfVOr73Y/0nApYS0lGHIEikPqEiwiIiJSjV5e+zIZhzN4eszTxEbFesnZ+/dAdCxcOPnkktUScY3hwkfhtEu8lslpY+HMO2DUA8daYr9JUb7X9Xb+k9AsDSa867XuAjRNgW5jjq23fYmfwH4GS2cca4lNTIF2Z0C7Ad7f9gO8LssVlbMTZv/ES7i7jIRxT3rjcyPUrGU7eG1JJj8+rxvn9Wzz7RuIVEGNJaxmNg24BNjrnOvtl7UAXgM6AVuBq51zB2sqhsoqKAoC0ChO92EVERERqQ778/fz9xV/5+z2ZzO8/XCvcM3bXnI29lGvdbI6dBoBt30O/3oA5v8VNn4Ilz8NqQPL32b7Eq9L8f6NMOgmOP/X5d/TNLaRl8iWJLPFAdi9AnZ8ATuXwY6lsGEO4E+gnZzmJa8pp0NSe+88k1O9v/FNj+135Ux4724oLoSLHodBN0NU7X0XzSko4r0Vu/jXmj2ckdaMG0d0/sZbPG7OyuWX/1jJkE4t+K8x3WstTmm4arKF9Tngr8CMUmX3AenOuUfN7D7/9c9rMIZKyS9JWNXCKiIiIlIt/vrlXykoLuCewfd4BYWH4YNfePcQHXxr9R4sPhEu+ROcdim8/WOYej6M+G9vJuGYuGPrFRXAx7/zuvg2befd07TrqModKyYOUgd5jxKFh2HX8mMJ7M6l3sRQX4szyUtcYxt566YOhvF/h5a1MzlRMOT4dGMWby7dwYerd1NYHKJtcgJz1+3luc+3cvt53bhuaIevDZMrKApyx8vLiI+J4i/X9icmWo08UvNqLGF1zn1iZp1OKB4HjPSfPw98TAQlrCUtrBrDKiIiIlJ16w+s562Nb/H9nt+nc7J/W5N5v4PDu+CaFyC6hr6Kdh0Ft8+HD34Jnz4OGz7wxra27eslkrNug5biuO8AACAASURBVKx1MOAG+M4jZd4W56TEN/VaejuNOFZWXOidb85O75G93X++w5sNefSDcNadNXctTrBtfx43PbeYr7LySG4UyzWD07hiQCp9U5P5MvMQj3+4nl+/u4apn27mxuGdadEkjphoIzrK+GjNHtbuymH6DwfTNrlRrcQrUttjWFOcc7v857uBlFo+/jdSwioiIiJSPZxzTF48maS4JCb1m+QV7lrhTV408IfHt0zWhIRk73Y3p10K79wJz5wHPS+Gte96sw1fNxO6n1+zMQDExEPzTt4jzJZmHOSW55cQco4nrj2DC05PIT7m2PfeMzo056VbhvHZpn08Nmc9j7y/9mv7+NG5XTRuVWpV2CZdcs45M3PlLTezicBEgA4dOtRKTPmBEKAuwSIiIiJVlZ6RzuLdi7l/6P0kxydDKATv3QWNmsOYB2svkB5jIW2BN8nTqpnQ7/sw9rdeHA3IB6t289NXl5GSlMBzNw6mS+tyxuoCw7u1YlbXluzOKaCo2FEcClEcckRHGV1aVWGCLJGTUNsJ6x4za+uc22VmbYG95a3onJsCTAEYNGhQuYltdTo6hjVOCauIiIjIySoMFvL4ksfp1qwbV5x6hVe49HnYvtibCKm2k8XGLeDKqd6MxJWZvbeemP7ZFh5+dw39Upvx7IRBtEqM/9ZtzEzdfiUi1PZI6dnABP/5BODtWj7+N8pXl2ARERGRKntxzYvsyN3BvYPvJSYqBnKz4KOHoOMI6Pe98AXWwJLVnIIiHpq9mv99Zw3nn5bCK7cOq1CyKhJJavK2Nq/gTbDUysy2Aw8CjwKvm9nNwDbg6po6/snID2iWYBEREZGq2Je/jykrpjAybSRntjvTK/zXryCQB5f8EczCG2ADsPNQPtM/28IrizLJLSzmxuGduP/iXkRH6dpL3VOTswRfW86i0TV1zKoqLFaXYBEREZGqeGLpEwRCAX426GdewdbPYPnLMOIuaN0jvMHVc2t25vDMp5t5Z/lOHHBxn7ZMPKcLvdsnhzs0kZMWtkmXIlFJC2tCrO4pJSIiIlJZa/avYdamWUw4fQIdkzpCccCbaKlZBzjnnnCHV28VBUM8MGsVry7OpHFcNDec2YmbRnQitXnjcIcmUmVKWEs5OumSugSLiIiIVIpzjsmLJtM8oTkT+070Chc86d3v9NrXIE7JU004EijmjpeWMm99FhPP6cIdI7uR3Dg23GGJVBslrKVo0iURERGRkzNn2xyW7l3Kg2c+SNO4pnBwG3w8GXpe4t1aRqrdwbwANz2/mOWZh3hkfG+uG9ox3CGJVDslrKUUBIKYQXyMugSLiIiIVFRBcQF/WvInejTvwfhu473Cf/7cm2Bp7KPhDa6e2nEonxumLiTzYD5/u24gY3ufEu6QRGqEEtZSCopDNIqNxjR7nYiIiEiFzVgzg515O5k2YhrRUdGw7j3Y8E84/9fQLC3c4dU7G/Yc5oapi8gLFPPCTUMY2qVluEMSqTFKWEvJDwTVHVhERESkEvYe2cuzK59lTIcxDD5lsHf7mn/+HNr0gmG3hTu8eueLbQe4cfpiEmKjef1HZ3Ja26RwhyRSo5SwlpJfFNSESyIiIiKV8Jelf6E4VMxdg+7yCv49GbIz4aY5EK3Jf6rTx+v3MunFL2ib3IgZNw0hrYUmspL6T4M1S8kvCuqWNiIiIiIVtDJrJbO/ms0NvW4grWka7FkD85+EM66HDsPCHV698s7yndw6YwldWyfyxqQzlaxKg6EW1lIKAkEaxamFVUREROo+5xy78nYRHx1PUnwSsVHV29rpnGPy4sm0TGjJrX1vBefgvbshvimMebhaj9XQvbwwg/+ZtZJBHZsz9YeDSUpQy7U0HEpYSykoVpdgERERqducc/xnx394esXTrMhacbS8cUxjkuOTSYpLOv5vfNLXy/y/yXHJNIltUuaElP/c8k+WZy3n4bMepklsE1j2EmR8Dpf9HzTRJEDV5amPv2LyB+sY2aM1T103UI0r0uAoYS0lPxCkSbwuiYiIiNQ9zjnmZc5jyooprN6/mrZN2nL3wLuJj4knuzCb7MJscgI55BTmkBPIYUv2FnICOWQXZhMIBcrdb7RFkxSXRFJ8EslxxxLcRbsXcVqL0xjXbRwcOQAf3g9pw6D/9bV41vWXc47JH6zn6X9/xaX92vGHq/oRp1svSgOk7KyU/KIQLRP1q5WIiIjUHSEX4qNtHzFlxRTWH1xPamIqD535EJd1vYzYCk56VFBc4CW1gWxyCnOO/i1JaEsS3exANgcLDrItZxtRRPHLob8kyqLgowehIBsu+SNEKamqqmDI8cDbq3h5YQbXDe3Aw+N6Ex2l2y5Kw6SEtZQCzRIsIiIidUQwFGTO1jk8s/IZNh3aRKekTjwy4hEu6nwRMVGV+4qXEJNAQkwCKU1SKh9IxkJYOgPO+gmknF757eU4xcEQP3tjObO+3MltI7ty7wU9yuySLdJQKGEtJT+ghFVEREQiW3GomPe3vM8zK55ha85WuiZ3ZfLZk7mg0wVER9Xy95hgMbx3FySlwrn31e6x66FAcYg7X1nGB6t3c88FPbjjvG7hDkkk7JSwlpJfpFmCRUREJDIVBYt4Z/M7PLPiGbbnbqdH8x784dw/MKbjGK9bbjgsfBr2rIJrXoT4xPDEUE8UFAWZ9OIXfLw+iwcu6cXNIzqHOySRiKCEtZSCoiAJamEVERGRCBIIBvjHxn8wddVUduXtolfLXjwx+AlGpo385q6ihYdhyycQFQNxiV5CGZd47HlsY6hKV9PsHfDx76D7BdDzkpPfj5BXWMwtzy9hwZb9/HZ8H74/tEO4QxKJGEpYfaGQo7A4REKsJgoQERGR8CsoLuDNjW8ybdU09h7ZS9/WfXlg2AOMaD/imxPVg9tg0RRvXGlhTvnrWdTxCWxcE/950+MT3PimpZYlQlxT7+/n/wehIFz0WNUS3wYup6CIG6cv5svMQ/zx6n6MPyM13CGJRBQlrL6C4iCAxrCKiIhIWB0pOsIbG95g+qrp7C/Yz8CUgfxm+G8Y1nZY+Ymqc5C5EOY/CeveBQxOHw8DJ0BsEwgchsJcCOR6La+BXAjk+WWll+XCoczjy4oLyg921APQvFNNXIYG4WBegBumLWLd7hz+eu0ZXNinbbhDEok4Slh9+QE/YdUYVhEREQmDvKI8Xln3CjNWz+Bg4UGGth3K7/v+nsGnDC5/o2ARrJ4FC56EncsgoRmcdScMmQjJ7asnsGDRCQmun/RGxUCnEdVzjAYiGHJs2HOYLzMPsSzjIJ9u3Mf+vABTfjCI83q2CXd4IhFJCasvv8hLWDWGVURERGpTTiCHl9a+xItrXiQnkMPw9sOZ1HcS/dv0L3+jIwfgi+mw6Bk4vAtadoOL/wD9rvW671an6Fho1Nx7SIUFQ46dh/JZsyuHZRmH+DLzICu2Z3PEbyRp1jiW/mnNuO3crgzt0jLM0YpELiWsvoKiEKAuwSIiIlI7DhUc4oW1L/Dy2pfJLcplZOpIftTvR/Ru1bv8jbI2wMKn4MtXoDgfuoyES5+AbmMgSvNwhEN2fhGbs3LZnJXH5n3+36w8tuzPI1Dsfb+MjTZ6tU3iqoGp9O/QjDPSmtOxZWPdX1WkApSw+grUwioiIiK1YH/+fmasmcGr617lSPERzu94PhP7TqRni55lb+AcbJ4H8/8Gm/4F0fHQ92oYdhuknF67wTdQzjl2ZRewaW+u98jK5au9uXyVlcu+3MDR9WKijA4tGtOldRPO7dGaLq2a0D2lKae3S9J3TJGTpITVV9IlWC2sIiIiUhOyjmTx3OrneH396xQGCxnbaSy39r2V7s27l71BUT6seB0WPAVZa6FJGxj5Sxh0EyS2rt3gG5hd2fm8tXQHm/yk9Ku9ueT5XXkBkhvF0q1NIqN6tqFr60S6tE6kS+smdGjRmNhotXSLVCclrL5jky7pTUZERESqz+683UxbNY03N7xJ0AW5uMvF3NLnFjondy57g8N7YPGzsGQqHNkPKX3g8qeg9xUQE1+7wTdAOw/lc9XT89lxKJ+2yQl0a5PIVYPS6NYmka6tE+nWJpFWiXHqzitSS5Sw+jTpkoiIiFSnzJxMpq+ezqxNs3DOcVm3y7il9y2kJaWVvcGuFbDgb7ByJoSKoceFXrffTmfrPqe1JOtwIdc/u5Cc/CLe+fEI+qQmhzskkQZPCauvQF2CRUREpAqcc2w8tJH0jHTmZsxl3YF1xEbFMr7beG7qcxPtE8u4zUwoCBs+8ManbvuPd8/UQTfC0EnQsmvtn0QDduhIgB9MXciu7AJeuHmIklWRCKGE1adJl0RERKSyQi7EiqwVzM2YS3pGOhmHMzCMfq37cffAu7mw84WkNEn5+oaFh2HZS7DwaTi4BZLT4Pxfw4AboFGz2j+RBi63sJgJ0xezOSuPaT8czKBOLcIdkoj4lLD6jo5hVcIqIiIi36AoWMTi3YtJz0hnXuY8svKziImKYegpQ5lw+gRGdRhFq0atyt744DZYNAWWvgCF2ZA6BMY8CD0vhWh9LQuHgqIgtzy/mFU7snnqugGM6F7Ov52IhIXeGX35JfdhjVPCKiIiIsc7UnSEz3d+TnpGOv/O/DeHiw7TKKYRI9qPYFSHUZyTeg5JcUllb+wcZC6CBU/C2ncAg9Mvh2G3Q+qgWj0POV6gOMRtL37Bwi0H+PM1/fnO6aeEOyQROYESVl/JpEvxMZolWERERCC7MJuPMz8mPSOdz3d+TmGwkOT4ZEZ1GMXoDqM5s92ZJMQklL+DYBGsedubSGnHF5CQDGf9BIZMhOTU2jsRKVMw5Pjv175k3vosfju+D+P6lzHGWETCTgmrr6AoSKPYaE1RLiIi0oDtydvD3My5pG9LZ8meJQRdkJTGKXy3+3cZ3WE0A1MGEhNVztengmzYvgS2L/ZaVLcv8br9tugKFz0O/a6F+MTaPSEpUyjkuO/NFby3chf/c9FpfH9oh3CHJCLlUMLqKygKqjuwiIhIA7Qle8vRmX1X7lsJQOfkztzY+0ZGdxjN6S1P//oP2s7Bvo2wfZGfnC6GvWsBBxi06QW9x8OpF0L370CUenBFCuccD7+7hje+2M5PR3fn1nO6hDskEfkGSlh9+YEgCeoOLCIiUu8551izfw3pGemkZ6SzOXszAL1b9uanA37KqA6j6JJ8QhJTeNjr1pu5+FiSWnDIW5aQDKmDodflkDYY2g/0yqRGbdufx6odObRJiielaQJtkuIrdLeHP3y4gec+38rNIzrzX2O610KkIlIVSlh9+UVBEtTCKiIiUi8Vh4pZtnfZ0SR1d95uoi2agSkDubrH1YzuMJpTmvgT7jgH+7/yW04XeUnq3tXgvAkaad0TTrsU0oZ4s/y2OlUtqLUoGHJM/c9mHv9wA4Hi0HHLmjWOJaVpAinJCaQ0jScl6fjnn2zI4q/zNvG9wWncf/FpGgomUgcoYfWVjGEVERGR+qEwWMj8nfNJz0jn48yPOVR4iPjoeM5sdyZ39L+DkakjaZbQDAJ5sGMpbH/pWAvqkf3eTuKTvBbTc+7xktPUgdCoeXhPrAH7KiuXe95YztKMQ5zfK4Ufn9eN7PwiducUsDengD05hUefb9h9mKzcQoIhd9w+LuvXjkfG91GyKlJHKGH15SthFRERqfMOBw7z6fZPSc9I59Mdn5JfnE9ibCLnpJ7D6A6jGdFuOI1z93pjTtN/A5kLYc9qcN7dAmjZHU4d63XxTRsKrXtAlL4fhFsw5Jj+2RZ+P2c9CbHR/Pma/ozr3+5bk85gyLE/t/BoIlscDDGmVwrRUUpWReoKJay+gqIQjdUlWEREpM7Zl7+PeZnzSM9IZ+GuhRSHimnVqBWXdLmE0e1GMCQUQ+yOpbDgeci8HfKyvA3jEqH9ADj7Lr/1dBA0bhHek5Gv2bIvj3veWM6SbQcZc1obfju+D22SvuF2QqVERxltkhJok5RAHzSuWKQuUsLqyw8Ead44LtxhiIiISAVkHs5kbsZc0jPS+XLvlzgcqYmpXN/lMkZHNaPvwV1ErZwL//oLhIq9jVp0ga6jvbGnaUO8mXzVehqxQiHH9M+38vs564iLjuKPV/dj/Bnt1ZVXpIFRwurTbW1EREQil3OODQc3HE1S1x9cD0CPxDRuazGAUbmHOXXLKmzl594GsY2h3QA4605/cqTB0KRVGM9AKmPrvjzunbmCRVsPMLpnG3773T6kVLBVVUTqFyWsPm8Mq2b4ExERiRQhF2J51nLSt3kz+27P3Y5hnBHbnJ8VJzJqzxbSAhneys06QudzjiWnKb0hWl9z6ppQyPH8/K1M/mAdsdFRPH5VP64YoFZVkYYsLO/kZjYW+AsQDTzrnHs0HHGUpkmXRESkvvq2z10ziwdmAAOB/cA1zrmttR0nQFGwiEW7F5G+9V/My/iIfYFsYjCGBkLclHOA8/LyaRW1x2s9HTzRG3uaNgQS24QjXKlGGfuP8LOZy1m05QDn9WjN777bl1OS1aoq0tDVesJqZtHAk8D5wHZgsZnNds6tqe1YSssP6D6sIiJS/1Twc/dm4KBzrpuZfQ+YDFxTWzEeKTrCf756l/SNs/n04GoOu2IahUKcfSSf0UfyOTu2FU1Th0CfIZA2GFL6QIzmnagvQiHHCwu28eg/1xETZTx2ZV+uGpiqVlURAcLTwjoE2OSc2wxgZq8C44AaTVj/vSGLuWv3lLu8sDikFlYREamPKvK5Ow54yH8+E/irmZlz7vgbWJaSuW8DP31mdJWDO0Qeq2JzCZjRLBjkvCOF9A+2olVsX/Yk9mVNSm8Wxrb2Vt7jP9hQ5eNK5Fi9M4cl2w5y7qmtefSKPrRNbhTukEQkgoQjYW0PZJZ6vR0YeuJKZjYRmAjQoUOHKh90457DvL18Z7nLWyXG0TdV052LiEi9U5HP3aPrOOeKzSwbaAnsK71S6c/mJh0TWBK9u8rBNQnB0JymNM7vzu6CwXxIV96zWG/hPoAioPzPb6n7GsdG89gVfblqkFpVReTrInY2AufcFGAKwKBBg8r9hbeibjm7C7ec3aXKcYmIiDRUJ342f3bTkjBHJCIi9V04psXdAaSVep3ql4mIiEj1q8jn7tF1zCwGSMabfElERCSswpGwLga6m1lnM4sDvgfMDkMcIiIiDUFFPndnAxP851cCc79p/KqIiEhtqfUuwf7YmB8Dc/Cm15/mnFtd23GIiIg0BOV97prZw8AS59xsYCrwgpltAg7gJbUiIiJhF5YxrM6594H3w3FsERGRhqasz13n3K9KPS8ArqrtuERERL5NOLoEi4iIiIiIiHwrJawiIiIiIiISkZSwioiIiIiISERSwioiIiIiIiIRSQmriIiIiIiIRCQlrCIiIiIiIhKRlLCKiIiIiIhIRFLCKiIiIiIiIhFJCauIiIiIiIhEJHPOhTuGb2VmWcC2athVK2BfNeynIdC1qhhdp4rTtaoYXaeKq8q16uica12dwTQ0ZpYNbKzAqslA9jcsr+91/tvOv64fvzr2X5V9VHbbyqxf0XVVx+tvHa+ufauOV0yZn811ImGtLma2xDk3KNxx1AW6VhWj61RxulYVo+tUcbpW4WVmU5xzE6u6Xn3/d6zodaqrx6+O/VdlH5XdtjLrq45XTH2u49W1b9XxqlGXYBERETkZ71TzevVVuM+/po9fHfuvyj4qu21l1lcdr5hwn39NHr+69q06XgVqYZUy6VpVjK5TxelaVYyuU8XpWtUP+neU+k51XOo7tbBWrynhDqAO0bWqGF2nitO1qhhdp4rTtaof9O8o9Z3quNR3NVrHG1QLq4iIiIiIiNQdDa2FVUREREREROoIJawiIiIiIiISkRpMwmpmY81svZltMrP7wh1PpDCzNDObZ2ZrzGy1mf3UL29hZv8ys43+3+bhjjVSmFm0mS0zs3f9153NbKFft14zs7hwxxhuZtbMzGaa2TozW2tmZ6pOlc3M/tv/v7fKzF4xswTVKY+ZTTOzvWa2qlRZmfXIPE/412yFmQ0IX+QiIiJSXRpEwmpm0cCTwIVAL+BaM+sV3qgiRjFwt3OuFzAMuMO/NvcB6c657kC6/1o8PwXWlno9GfiTc64bcBC4OSxRRZa/AB8453oC/fCul+rUCcysPXAnMMg51xuIBr6H6lSJ54CxJ5SVV48uBLr7j4nAU7UUo1QzM2tiZs+b2TNmdl244xGpbmbWxcymmtnMcMciUhPM7HL/Pfw1M/tOVffXIBJWYAiwyTm32TkXAF4FxoU5pojgnNvlnFvqPz+Ml1i0x7s+z/urPQ9cHp4II4uZpQIXA8/6rw0YBZR86DT4a2VmycA5wFQA51zAOXcI1anyxACNzCwGaAzsQnUKAOfcJ8CBE4rLq0fjgBnOswBoZmZtaydS+TZltZb75WX1fvouMNM5dytwWa0HK3ISKlPH/e+jDfWHSKmjKlnHZ/nv4ZOAa6p67IaSsLYHMku93u6XSSlm1gk4A1gIpDjndvmLdgMpYQor0vwZuBcI+a9bAoecc8X+a9Ut6AxkAdP9rtPPmlkTVKe+xjm3A3gcyMBLVLOBL1Cd+ibl1SO9z0e25zihtfwbej+lcuzfMliLMYpUxXNUvI6L1EXPUfk6fr+/vEoaSsIq38LMEoE3gf9yzuWUXua8ex81+PsfmdklwF7n3BfhjiXCxQADgKecc2cAeZzQ/Vd1yuOPvxyHl+S3A5rw9S6wUg7Vo7qjnNby8no/bcdLWkHfU6SOqGQdF6lzKlPH/XklJgP/LOnJWRUN5YNgB5BW6nWqXyaAmcXiJasvOefe8ov3lHSn8//uDVd8EWQ4cJmZbcX7DzkKb6xmM787J6hugfdlc7tzbqH/eiZeAqs69XVjgC3OuSznXBHwFl49U50qX3n1SO/zdU95reJvAVeY2VPAO+EITKSalFnHzaylmT0NnGFmvwhPaCLVorz38Z/gfce50swmVfUgDSVhXQx092fejMOb1GR2mGOKCP4YzKnAWufcH0stmg1M8J9PAN6u7dgijXPuF865VOdcJ7w6NNc5dx0wD7jSX63BXyvn3G4g08x6+EWjgTWoTpUlAxhmZo39/4sl10p1qnzl1aPZwA3+r7rDgOxSXYelDnHO5TnnbnTO3eaceync8YhUN+fcfufcJOdcV+fc78Idj0h1c8494Zwb6Nfzp6u6v5hvX6Xuc84Vm9mPgTl4s3BOc86tDnNYkWI48ANgpZl96Zf9EngUeN3Mbga2AVeHKb664OfAq2b2G2AZ/mRDDdxPgJf8H4g2Azfi/UCmOlWKc26hP0vkUrwZu5cBU4D3UJ3CzF4BRgKtzGw78CDlvze9D1wEbAKO4NU5iWxqFZf6TnVc6rtaqePmDQESERERqTn+xH7v+rdwwu/2vgGvZ8EOvN5Q39cPylJXqY5LfReuOt5QugSLiIhImPit5fOBHma23cxu9mfCLun9tBZ4XV/kpa5SHZf6Lpx1XC2sIiIiIiIiEpHUwioiIiIiIiIRSQmriIiIiIiIRCQlrCIiIiIiIhKRlLCKiIiIiIhIRFLCKiIiIiIiIhFJCauIiIiIiIhEJCWsIiIiIiKVZGadzGxVNe1rppl1qcT6j5hZppnlnlAeb2avmdkmM1toZp1KLfuFX77ezC7wy+LM7BMzi6mO8xCpCUpYRURERETCxMxOB6Kdc5srsdk7wJAyym8GDjrnugF/Aib7x+gFfA84HRgL/M3Mop1zASAduKYKpyBSo5SwioiIiEidYmbXm9kiM/vSzP5uZtFmNtjMVphZgpk1MbPVZtbbzBLNLN3MlprZSjMb5++jk5mtM7PnzGyDmb1kZmPM7DMz22hmQ/z1HjKzF8xsvl9+axnxRJvZ781ssR/Dj/zytn4L5pdmtsrMzi7jdK4D3vbX7+gfo5WZRZnZp2b2nRM3cM4tcM7tKmNf44Dn/eczgdFmZn75q865QufcFmATxxLeWX4MIhFJzf8iIiIiUmeY2Wl4LYLDnXNFZvY34Drn3Awzmw38BmgEvOicW+V3dx3vnMsxs1bAAn89gG7AVcBNwGLg+8AI4DLgl8Dl/np9gWFAE2CZmb13Qlg3A9nOucFmFg98ZmYfAt8F5jjnHjGzaKBxGac0HHgFwDm3zcwmA08Bi4A1zrkPK3F52gOZ/r6KzSwbaOmXLyi13na/DGAVMLgSxxCpVUpYRURERKQuGQ0MBBZ7jYc0Avb6yx7GSzwLgDv9MgN+a2bnACG8RC3FX7bFObcSwMxWA+nOOWdmK4FOpY75tnMuH8g3s3l4rZNfllr+HaCvmV3pv04GuvuxTDOzWGCWc670NiXaAlklL5xzz5rZVcAkoH+Fr8pJcs4FzSxgZk2dc4dr+ngilaWEVURERETqEgOed879ooxlLYFEIBZIAPLwuru2Bgb6LbJb/WUAhaW2DZV6HeL478nuhOOc+NqAnzjn5nwtWC9Rvhh4zsz+6JybccIq+aXiwcwaA6n+y0SgMknkDiAN2O63LCcD+0uVl0j1y0rE4yX5IhFHY1hFREREpC5JB640szYAZtbCzDr6y/4OPAC8hD/hEF7SttdPVs8DOp64wwoY54+NbQmMxGs5LW0OcJvfkoqZneqPo+0I7HHOPQM8CwwoY99r8boml5jsx/8r4JlKxjkbmOA/vxKY65xzfvn3/FmEO+O1/i7yY20J7HPOFVXyWCK1Qi2sIiIiIlJnOOfWmNn9wIdmFgUUAXeY2blAkXPuZX+86OdmNgov+XvH7+a7BFh3EoddAcwDWgG/ds7tLH3LGLxktBOw1J/kKAtv/OtI4B4zKwJygRvK2Pd7/nof+ecwGG98btDMrjCzG51z00tvYGaP4Y23bWxm24FnnXMPAVOBF8xsE3AAb2ZgnHOrzex1YA1QDNzhnAv6uzvPj0EkIpn3o4uIiIiIiJzIzB4Ccp1zj9fQ/hvhJcPDSyWRtcbMhff0AQAAAHZJREFU3gLuc85tqO1ji1SEugSLiIiIiISJP5nTgxybtbfWmFkc3mRQSlYlYqmFVURERERERCKSWlhFREREREQkIilhFRERERERkYikhFVEREREREQikhJWERERERERiUhKWEVERERERCQiKWEVERERERGRiPT/f7etvM1TZrwAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 1152x432 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"def megasim(*, T, datagen, dt=1, alpha = 0.05, seed=4545):\n", | |
" import itertools\n", | |
" from matplotlib import pyplot as plt \n", | |
" import numpy as np\n", | |
" \n", | |
" strats = { f().__class__.__name__: type('',(object,),{ \"impl\": f(), \"lbz\": [], \"ubz\": [] })() for f in [ EmpBernConjMix, GammaPriorNSBet, InvpowPriorNSBet ] } \n", | |
" wrz = []\n", | |
" \n", | |
" for t in range(T):\n", | |
" w, r, expOp = datagen.genobs()\n", | |
" for _, cs in strats.items():\n", | |
" cs.impl.addobs(w, r)\n", | |
"\n", | |
" if t % dt == 0:\n", | |
" wrz.append(w*r)\n", | |
" \n", | |
" for _, cs in strats.items():\n", | |
" l, u = cs.impl.getci(alpha=0.05)\n", | |
" cs.lbz.append(l)\n", | |
" cs.ubz.append(u)\n", | |
"\n", | |
" fig, ax = plt.subplots(1, 2)\n", | |
" fig.set_size_inches(16, 6)\n", | |
" ax[0].plot(list(itertools.accumulate(wrz)))\n", | |
" ax[0].set_ylabel('sum(wr)')\n", | |
" for k, cs in strats.items():\n", | |
" color = next(ax[1]._get_lines.prop_cycler)['color']\n", | |
" ax[1].plot(cs.lbz, label=k, color=color)\n", | |
" ax[1].plot(cs.ubz, color=color)\n", | |
" color = next(ax[1]._get_lines.prop_cycler)['color']\n", | |
" ax[1].plot([datagen.truemu for _ in cs.lbz], linestyle='dashed')\n", | |
" ax[1].set_xlabel(f'examples (x {dt})')\n", | |
" ax[1].set_ylabel('raw bounds')\n", | |
" ax[1].set_xscale('log')\n", | |
" ax[1].legend()\n", | |
" \n", | |
" pstr = ','.join([f'{v:.3g}' for v in datagen.probs])\n", | |
" fig.suptitle(f'expwsq = {datagen.expwsq} wmax={datagen.wmax} truemu={datagen.truemu} p={pstr}')\n", | |
" \n", | |
" return None\n", | |
"\n", | |
"def flass():\n", | |
" dg = DataGen(wmax=10, expwsq=2, truemu=1/2, seed=4545)\n", | |
" megasim(T=10000, dt=100, datagen=dg)\n", | |
" dg = DataGen(wmax=10, expwsq=10, truemu=1/2, seed=4545)\n", | |
" megasim(T=10000, dt=100, datagen=dg)\n", | |
" dg = DataGen(wmax=20, expwsq=10, truemu=1/2, seed=4545)\n", | |
" megasim(T=10000, dt=100, datagen=dg)\n", | |
"\n", | |
"flass()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "1e783652", | |
"metadata": {}, | |
"source": [ | |
"## Changing Mean" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"id": "2fa72694", | |
"metadata": { | |
"code_folding": [ | |
0 | |
], | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA7MAAAGeCAYAAABGs1auAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3iUZfr28e81kwYJnYD0JiA9QEBcWhBErOjahQVERVzLb13XRVdf2+ouKiquuiqiAoqIZdeKiro0sUDoAiIdo0gNJYEASe73j5nEAGlgJk8mOT/HkcN5+jWJB8k5dzPnHCIiIiIiIiLhxOd1ASIiIiIiIiInSmFWREREREREwo7CrIiIiIiIiIQdhVkREREREREJOwqzIiIiIiIiEnYUZkVERERERCTsKMyKiIiIiIhI2FGYFRERCTEzO8/MvjSzPWb2i5lNNLMqXtdV0sysn5nNMrO9ZrYpn+NNg8cPmNn3ZjbAgzJFRKScUJgVEREJvWrAQ0B9oA3QAHjM04pCIx14GbijgOPTgCVALeBu4G0ziy+l2kREpJxRmBURkVJhZvXN7B0z22FmG83s1uD+mmaWYmYXBLfjzGydmQ0Lbk8ys+fN7DMz229mc8ysSfDYA2b2dPB1pJmlm9ljwe1KZpYRvH+Mmb1mZruCraMLzaxu8LxmwXvuDz7jGTN7rSTfu3PudefcJ865A865VOBFoGcB36drzOyDPNtrzeytPNs/mllC8LUzsz8Gz9lvZn83sxZm9pWZ7TOzN80sKnhuDTP7MPj9Tw2+blicn8EJvM8FzrlXgQ35vK9WQBfgPufcQefcO8AK4JITeYaIiEgOhVkREQk5M/MBHwDLCLRK9gf+ZGZnO+d2AyOBF82sDvAksNQ5NyXPLYYAfwdqA0uBqcH9c4Ck4OtuwC9An+D2GcCa4P2HE2gdbUSgVXA0cDB43uvAouC9/x48t6D30TgYhgv6urqY35I+wMoCjs0BepuZz8zqA1HB94KZNQfigOV5zj8b6Ar0AP4KTACGBt9re+Cq4Hk+4BWgCdA4+P6fASjqZ2Bmdxb2vov5ntsBG5xz+/PsWxbcLyIicsIivC5AREQqhG5AvHPuweD2BjN7EbgS+NQ5NzPY+vgFUBPoeMz1Hznn5gKY2d3AXjNrBHwNtDSzWgQC4kvAH80sDuhLIBgCHCEQYk91zi0nEF4xs8bB2gY45w4Bc/O2ih7LObcFqP5bvhFmdhaBwHx6Ac/YYGb7gQSgFfApkGBmpxEItfOcc9l5LnnUObcPWGlm3wEznXMbgs/6GOgMTHbO7QLeyVPHw8CsPM8t8GfgnBsLjP0t75tACN97zL69BD7cEBEROWFqmRURkdLQBKh/TGve34C6ec6ZQKAlcVIweOX1Y84L51wasBuo75w7CCQTCK59CITXrwh04c0bZl8lEArfMLOfzexRM4skMIY11TmXnudZm0vkHefDzHoQaAm+1Dn3QyGn5rQ457yn2QTeT973lGNbntcH89mOCz67spm9YGabzWwfMBeobmb+POcX9jP4rdKAqsfsqwrsz+dcERGRIinMiohIafgR2Oicq57nq4pz7lyAYKCaAEwh0LJ66jHXN8p5EWx1rQn8HNw1BziTQAvkwuD22UB3AoEN59wR59wDzrm2wO+A84FhwFaghpnF5nlW44LeRLCbcVohX0MKubYz8D4w0jn3RaHfrV/DbO/g6zkUHGaL63agNXC6c64qv3bHtmB9Bf4MzOxvhb3vYj5/JdDcjp7FuRMFd7cWEREplMKsiIiUhgXAfjMbE5yYyW9m7c2sW/D43wBHYNzmY8CUY1oMzzWzXsHJjP4OfOOcy2mtnUMgmK5yzh0m0Ip5HYHwvANyl4zpELznPgLdjrOdc5sJtOw+YGZRZtYLuKCgN+Gc2+Kciyvka2p+15lZe+AT4BbnXIHdmPOYA/QDKjnnUoB5wCACXaWXFOP6/FQh0FK7x8xqAvcdc7zAn4Fz7h+Fve8879NnZjFAZGDTYnImoAq2RC8F7gvuv5hAV+Z3EBEROQkKsyIiEnLOuSwCraEJwEZgJzARqGZmXYE/A8OC5z1CIFTdmecWrxMIX7sJTHY0NM+xr4BKBFthgVVARp5tgFOAtwkE2dUEwuKrwWNXExi/ujv4jLwTT5WU24F44KU8LZoFtkgGg18agRBLcEzsBmB+8Ht0MsYT+D7tBL4hEK4BKObPoDj6EAjMM/h1kqmZeY5fCSQCqQTG4F6a84GDiIjIiTLnnNc1iIiIFMjMJgEpzrl7Sul59xOYKGpoUeeKiIiId9QyKyIiIiIiImFHYVZERERERETCjroZi4iIiIiISNhRy6yIiIiIiIiEHYVZERERERERCTsKsyIiIiIiIhJ2FGZFREREREQk7CjMioiIiIiISNhRmBUREREREZGwozArIiIiIiIiYUdhVkRERERERMKOwqyIiIiIiIiEHYVZERERERERCTsKsyIiIiIiIhJ2FGZFREREREQk7CjMioiIiIiISNhRmBUREREREZGwozArIiIiIiIiYUdhVkRERERERMKOwqyIiIiIiIiEHYVZERERERERCTsKsyIiIiIiIhJ2FGZFREREREQk7CjMioiIiIiISNhRmBUREREREZGwozArIiIiIiIiYUdhVkRERERERMKOwqyIiIiIiIiEHYVZERERERERCTsKsyIiIiIiIhJ2FGZFREREREQk7CjMioiIiIiISNiJCNWNzexl4Hxgu3Ou/THHbgfGAfHOuZ1mZsBTwLnAAWCEc25xUc+oXbu2a9q0aYnXLiIiFdOiRYt2Oufiva4jnOl3s4iIlKTCfjeHLMwCk4BngCl5d5pZI2AgsCXP7nOAlsGv04Hngv8tVNOmTUlOTi6hckVEpKIzs81e1xDu9LtZRERKUmG/m0PWzdg5NxfYnc+hJ4G/Ai7PvsHAFBfwDVDdzOqFqjYREREREREJb6U6ZtbMBgM/OeeWHXOoAfBjnu2U4L787jHKzJLNLHnHjh0hqlRERERERETKslILs2ZWGfgbcO9vuY9zboJzLtE5lxgfr2FNIiIiIiIiFVEox8weqwXQDFgWmO+JhsBiM+sO/AQ0ynNuw+A+ERERERGpAI4cOUJKSgoZGRlelyIeiImJoWHDhkRGRhb7mlILs865FUCdnG0z2wQkBmczfh+42czeIDDx017n3NbSqk1ERERERLyVkpJClSpVaNq0KcHGL6kgnHPs2rWLlJQUmjVrVuzrQtbN2MymAV8Drc0sxcyuLeT0GcAGYB3wIvDHUNUlIiIiIiJlT0ZGBrVq1VKQrYDMjFq1ap1wq3zIWmadc1cVcbxpntcOuClUtYiIiIiISNmnIFtxnczPvlRnMxYRERERESmr/H4/CQkJuV9jx44tkfs2bdqUDh06kJCQQIcOHXjvvfdK5L45pkyZQvv27enQoQOdO3dm3LhxJ3Wf5ORkbr31VgAmTZqEmfH555/nHn/33XcxM95++20ArrvuOlatWvXb38BJKs0JoERERERERMqsSpUqsXTp0pDce9asWdSuXZs1a9YwcOBABg8eXOxrs7Ky8Pv9+R77+OOPGT9+PDNnzqR+/focOnSIKVOmnFSNiYmJJCYm5m536NCBN954gwEDBgAwbdo0OnXqlHt84sSJJ/WckqKWWRERkQrIzF42s+1m9l0Bx83M/mVm68xsuZl1Ke0aRUTKiqZNm3LXXXeRkJBAYmIiixcv5uyzz6ZFixY8//zzAMyePZs+ffpw3nnn0bp1a0aPHk12dvZx99q3bx81atTI3X7ttdfo3r07CQkJ3HDDDWRlZQEQFxfH7bffTqdOnfj666+Ji4vj7rvvplOnTvTo0YNt27YB8M9//pNx48ZRv359AKKjo7n++usBWLp0KT169KBjx45cfPHFpKamApCUlMSYMWPo3r07rVq1Yt68ebnv4fzzz8+trXfv3ixYsIAjR46QlpbGunXrSEhIyD2elJREcnIymzdvpmXLluzcuZPs7Gx69+7NzJkzS+z7XxC1zIqIiFRMk4BngII+vj8HaBn8Oh14LvhfEZGQe+CDlaz6eV+J3rNt/arcd0G7Qs85ePDgUWHtrrvu4oorrgCgcePGLF26lNtuu40RI0Ywf/58MjIyaN++PaNHjwZgwYIFrFq1iiZNmjBo0CD+85//cOmllwLQr18/nHNs2LCBN998E4DVq1czffp05s+fT2RkJH/84x+ZOnUqw4YNIz09ndNPP53HH38cgPT0dHr06MHDDz/MX//6V1588UXuuecevvvuO7p27Zrv+xk2bBhPP/00ffv25d577+WBBx5g/PjxAGRmZrJgwQJmzJjBAw88cFR34hxmxoABA/j000/Zu3cvF154IRs3bjzuvCZNmjBmzBhuvPFGunfvTtu2bRk4cGCh3+uSoDArIiJhyznHB8u3cm77U4jwq7PRiXDOzTWzpoWcMhiYEpyk8Rszq25m9Upj6bzUvTv4YP6LdGnVn/anKj+LSOkprJvxhRdeCAS63qalpVGlShWqVKlCdHQ0e/bsAaB79+40b94cgKuuuoovv/wyN8zmdDNev349/fv3JykpiS+++IJFixbRrVs3IBCm69QJrGbq9/u55JJLcp8fFRWV22ratWtXPvvss0Lfy969e9mzZw99+/YFYPjw4Vx22WW5x3//+9/n3mvTpk0F3ufKK6/kX//6F3v37uXxxx/nH//4R77nXXfddbz11ls8//zzIeuqfSyFWRERCVsvz9/E3z9cRcYlHbm8WyOvyylvGgA/5tlOCe47Lsya2ShgFARaLn6rjVu/57Ed07hm/88KsyIVVFEtqF6Ijo4GwOfz5b7O2c7MzASOn5E3vxl6W7RoQd26dVm1ahXOOYYPH84///nP486LiYk5apxsZGRk7v38fn/uM9u1a8eiRYs488wzT+r95L1Xfrp3786KFSuoXLkyrVq1KvC8AwcOkJKSApAb9kNNH2OLiEhY+mL1Nh76aBXntD+FS7s29LqcCs05N8E5l+icS4yPj//N94vw5fzxdvxYMxGRsmzBggVs3LiR7Oxspk+fTq9evY47Z/v27WzcuJEmTZrQv39/3n77bbZv3w7A7t272bx58wk986677uKOO+7gl19+AeDw4cNMnDiRatWqUaNGjdzxsK+++mpuK+2JGjt2bIEtsjnGjBnDkCFDePDBB3PH7IaaWmZFRCTsrPp5H7dMW0L7+tV44vIEfD6tSxgCPwF5m7sbBveFnC8YZrOdwqyIlK5jx8wOGjTohJbn6datGzfffDPr1q2jX79+XHzxxbnH+vXrh9/v58iRI4wdO5a6detSt25dHnroIQYOHEh2djaRkZE8++yzNGnSpNjPPPfcc9m2bRsDBgzAOYeZMXLkSAAmT57M6NGjOXDgAM2bN+eVV14p8n75tSafc845hV4zZ84cFi5cyPz58/H7/bzzzju88sorXHPNNcV+HyfDAkNhwlNiYqJLTk72ugwRESlF2/dncNEz88l28N7NPalbNabE7m1mi5xziUWfWT4Ex8x+6Jxrn8+x84CbgXMJTPz0L+dc96LuWRK/m1dvWMTl80bwh8gz+OvVE37TvUQkfKxevZo2bdp4XcZJmz17NuPGjePDDz/0upST9s477/D+++8zefJkT56f3/8Dhf1uVsusiIiEjYwjWVw/ZRGpB47w1ugzSjTIVjRmNg1IAmqbWQpwHxAJ4Jx7HphBIMiuAw4Aof14PQ+/P/DnSTZZpfVIEZEK7/333+fuu+/m5Zdf9rqUYlOYFRGRsJCd7bj9rWUsT9nD80O70r5BNa9LCmvOuauKOO6Am0qpnKP4g92MnboZi0gYSUpKIikpyesyTtqFF16YO2NzuFCYFRGRMmnJllRemLOBzOCC83sPHmHhplTuOuc0zm53isfVSSj5/VEAOMJ3KJSIiISewqyIiJQ5m3elM3LSQsyMetV+7Up8c79TGdWnuYeVSWlQy6yIiBSHwqyIiJQJR7KymbZgC7vSDvPB8p9xwH9v/B1Na8d6XZqUMl/OmFmFWRERKYTCrIiIeM45x73vrWTagi0AVKsUyQt/6KogW0H5TS2zIiJSNJ/XBYiIiLz05UamLdjCTf1asGnseSy7byA9mtfyuizxSESwZdahMCsipW/btm1cffXVNG/enK5du3LGGWfw3//+1+uySEpKonXr1nTq1ImePXuyZs2afM+77rrrWLVq1QnfOzHx19VvkpOTcyezOnDgAEOGDKFDhw60b9+eXr16kZaWBoDf7ychIYFOnTrRpUsXvvrqq0Kfs2fPHv7973+fUG2FUZgVERFPfb5qGw/PWM057U/h9rNae12OlAG5S/M4TQAlIqXLOcdFF11Enz592LBhA4sWLeKNN94gJSXF69IAmDp1KsuWLWP48OHccccdxx3Pyspi4sSJtG3bttj3zMoKLIO2fft2Pv744+OOP/XUU9StW5cVK1bw3Xff8dJLLxEZGQlApUqVWLp0KcuWLeOf//wnd911V6HPUpgVEZFyY9XP+7j1jSW0r1+NJy5PwOczr0uSMsDvy1lnVi2zIlK6/ve//xEVFcXo0aNz9zVp0oRbbrmFTZs20bt3b7p06XJUK+Ts2bPp27cvgwcPpnnz5tx5551MnTqV7t2706FDB9avXw/AiBEjuPHGG+nRowfNmzdn9uzZjBw5kjZt2jBixIjc5914440kJibSrl077rvvvnzr7NOnD+vWrQMgLi6O22+/nU6dOvH111+TlJREcnIyANOmTcttUR0zZkzu9cdeA3DHHXfw8MMPH/esrVu30qBBg9zt1q1bEx0dfdx5+/bto0aNGrnbjz32GN26daNjx4657+POO+9k/fr1JCQk5BvGT5TGzIqIiCe278vguskLqRoTycThiVSK8ntdkpQREf7AJ/5OLbMiFdfHd8IvK0r2nqd0gHPGFnrKypUr6dKlS77H6tSpw2effUZMTAxr167lqquuyg2Ny5YtY/Xq1dSsWZPmzZtz3XXXsWDBAp566imefvppxo8fD0Bqaipff/0177//PhdeeCHz589n4sSJdOvWjaVLl5KQkMDDDz9MzZo1ycrKon///ixfvpyOHTseVcsHH3xAhw4dAEhPT+f000/n8ccfP+qcn3/+mTFjxrBo0SJq1KjBwIEDeffdd7nooovyvSanO/WsWbOoUqVK7v6RI0cycOBA3n77bfr378/w4cNp2bIlAAcPHiQhIYGMjAy2bt3K//73PwBmzpzJ2rVrWbBgAc45LrzwQubOncvYsWP57rvvWLp0aZE/ruJQy6yIiJS6jCNZXD8lmdQDR5g4PJG6VWOKvkgqjNwxs5oASkQ8dtNNN9GpUye6devGkSNHuP766+nQoQOXXXbZUeNSu3XrRr169YiOjqZFixYMHDgQgA4dOrBp06bc8y644ALMjA4dOlC3bl06dOiAz+ejXbt2uee9+eabdOnShc6dO7Ny5cqjnjNkyBASEhKYP38+48aNAwLjVi+55JLjal+4cCFJSUnEx8cTERHBkCFDmDt3bqHX3HPPPTz00ENH7UtISGDDhg3ccccd7N69m27durF69Wrg127G33//PZ988gnDhg3DOcfMmTOZOXMmnTt3pkuXLnz//fesXbv2JH4ChVPLrIiIlKrsbMftby5j+U97eX5oV9o3qOZ1SVLG5HQz1gRQIhVYES2oodKuXTveeeed3O1nn32WnTt3kpiYyJNPPkndunVZtmwZ2dnZxMT8+kFs3m63Pp8vd9vn85GZmXnceXnPyXvexo0bGTduHAsXLqRGjRqMGDGCjIyM3POmTp161ERNADExMfj9J9a7qaBrzjzzTO655x6++eabo/bHxcXx+9//nt///vf4fD5mzJhBmzZtjjrnjDPOYOfOnezYsQPnHHfddRc33HDDUefkDfYlQS2zIiJSqsZ//gMfrdjKnYNO4+x2p3hdjpRBPr8Pcw6HuhmLSOk688wzycjI4Lnnnsvdd+DAAQD27t1LvXr18Pl8vPrqq7kTJ5Wkffv2ERsbS7Vq1di2bVu+EzIVV/fu3ZkzZw47d+4kKyuLadOm0bdv3yKvu+eee3j00Udzt+fPn09qaioAhw8fZtWqVTRp0uS4677//nuysrKoVasWZ599Ni+//HLurMc//fQT27dvp0qVKuzfv/+k39Ox1DIrIiIht2RLKs/OWs/BI5nMX7eLyxMbMqpPc6/LkjLKzPAB2epmLCKlzMx49913ue2223j00UeJj48nNjaWRx55hC5dunDJJZcwZcoUBg0aRGxsya+F3qlTJzp37sxpp51Go0aN6Nmz50nfq169eowdO5Z+/frhnOO8885j8ODBRV537rnnEh8fn7u9fv16brzxRpxzZGdnc9555+V2Uc4ZMwuBeQ4mT56M3+9n4MCBrF69mjPOOAMItOy+9tprtGjRgp49e9K+fXvOOeccHnvssZN+fwAWzpMrJCYmupxB1yIiUjZt3pXORc/Ox+8zGtSozGl1q/D3i9oTFVH2OgeZ2SLnXGLRZ0pBSup3c+dJ7TkruymPjvywBKoSkXCwevXq47quSsWS3/8Dhf1uVsusiIiEzN6DR7h2cjIOeGv072hWu+Q/xZbyyec0AZSIiBSu7H0sLiIi5UJmVjY3v76YzbvSeX5oVwVZOSEGGjMrIiKFUsusiIiUOOcc93+wknlrd/LopR3p0byW1yVJmPHhNGZWREQKpZZZEREpcZO/2sRr32zhhr7NuTyxkdflSBhSy6yIiBRFYVZERErUrDXbefDDVQxsW5cxZ5/mdTkSpvxOYVZERAqnMCsiIiVmzS/7ueX1JbSpV5XxVybg85nXJUmYMjQBlIiIFE5hVkRESsTOtEOMnLSQylF+Jg5PpHKUpmWQkxfoZiwiUrri4uK8LiHX/fffT4MGDUhISKB9+/a8//77+Z73/PPPM2XKlBO+d+XKldm+fXvuvrzv/eGHH6Zdu3Z07NiRhIQEvv32WwCSkpJo3bo1CQkJtGnThgkTJhT5rPHjx3PgwIETqq+49JeGiIicNOcc/++97/hg2VYOZWYB8OYNZ1CvWiWPK5Nw5wMcapkVkYrttttu4y9/+QurV6+md+/ebN++HZ/v1/bIzMxMRo8efUL3zMzMBKB27do8/vjjPPLII0cd//rrr/nwww9ZvHgx0dHR7Ny5k8OHD+cenzp1KomJiezevZsWLVowYsQIoqKiCnze+PHjGTp0KJUrVz6hOotDLbMiInLSnvpiLa99s4Wep9biym6NmXxNdzo2rO51WVIOmMbMioiHZs+eTVJSEpdeeimnnXYaQ4YMwTnHJ598wmWXXXbUeeeffz4QaNm87bbbaNeuHf3792fHjh0ALF26lB49etCxY0cuvvhiUlNT2b59O127dgVg2bJlmBlbtmwBoEWLFse1ZLZp04aIiAh27txJUlISf/rTn0hMTOSpp57i/vvvZ9y4cQU+CzjuGoCRI0cyffp0du/efdSztm7dSu3atYmOjgYCobd+/frHfY/S0tKIjY3F7/cDMHPmTM444wy6dOnCZZddRlpaGv/617/4+eef6devH/369fsNP5H8qWVWREROyntLf2L852u5rGtDHr20I2YaHyslx4BshVmRCuuRBY/w/e7vS/Sep9U8jTHdxxT7/CVLlrBy5Urq169Pz549mT9/PgMGDGDUqFGkp6cTGxvL9OnTufLKKwFIT08nMTGRJ598kgcffJAHHniAZ555hmHDhvH000/Tt29f7r33Xh544AHGjx9PRkYG+/btY968eSQmJjJv3jx69epFnTp1jmvF/Pbbb/H5fMTHxwNw+PBhkpOTgUCX4RwFPSu/a+Li4hg5ciRPPfUUDzzwQO49Bg4cyIMPPkirVq0YMGAAV1xxBX379s09PmTIEKKjo1m7di3jx4/H7/ezc+dOHnroIT7//HNiY2N55JFHeOKJJ7j33nt54oknmDVrFrVr1z6Bn1bxqGVWRERO2KLNqdzx9nK6N6vJwxd3UJCVEucj0I1dRMQr3bt3p2HDhvh8PhISEti0aRMREREMGjSIDz74gMzMTD766CMGDx4MgM/n44orrgBg6NChfPnll+zdu5c9e/bkhsHhw4czd+5cAH73u98xf/585s6dy9/+9jfmzp3LvHnz6N27d24NTz75JAkJCfzlL39h+vTpub9vc56TV2HPKuiaW2+9lcmTJ7N///7cfXFxcSxatIgJEyYQHx/PFVdcwaRJk3KPT506leXLl7NlyxbGjRvH5s2b+eabb1i1ahU9e/YkISGByZMns3nz5pP6vp+IkLXMmtnLwPnAdudc++C+x4ALgMPAeuAa59ye4LG7gGuBLOBW59ynoapNRERO3o+7D3DDq8nUqxbDC0O7EhWhz0Wl5GmdWZGK7URaUEMlp5stgN/vzx1reuWVV/LMM89Qs2ZNEhMTqVKlSr7XF/VBb58+fZg3bx6bN29m8ODBPPLII5gZ5513Xu45OWNmjxUbG3vC7ye/a6pXr87VV1/Ns88+e9R+v99PUlISSUlJdOjQgcmTJzNixIijzomPj6dLly58++23VKpUibPOOotp06adcF2/RSj/ApkEDDpm32dAe+dcR+AH4C4AM2sLXAm0C17zbzPzh7A2ERE5CfszjnDd5GQOZ2bz0vBu1IgteMIHkd9CY2ZFpKzq27cvixcv5sUXX8ztYgyQnZ3N22+/DcDrr79Or169qFatGjVq1GDevHkAvPrqq7ktp7179+a1116jZcuW+Hw+atasyYwZM+jVq9dJ1VXYswrz5z//mRdeeCE3rK9Zs4a1a9fmHl+6dClNmjQ57roDBw6wZMkSWrRoQY8ePZg/fz7r1q0DAl2uf/jhBwCqVKlyVMtvSQpZy6xzbq6ZNT1m38w8m98AlwZfDwbecM4dAjaa2TqgO/B1qOoTEZETk5mVzS3TlrBuRxpTRnbn1DplZ/kCKX98mMbMikiZ5Pf7Of/885k0aRKTJ0/O3R8bG8uCBQt46KGHqFOnDtOnTwdg8uTJjB49mgMHDtC8eXNeeeUVAJo2bYpzjj59+gDQq1cvUlJSqFGjxknXVtCzClO7dqxOfWwAACAASURBVG0uvvhinnzySSAwsdMtt9zCnj17iIiI4NRTTz1qCZ4hQ4ZQqVIlDh06xIgRI3Inspo0aRJXXXUVhw4dAuChhx6iVatWjBo1ikGDBlG/fn1mzZp10u8tPxbK8SjBMPthTjfjY459AEx3zr1mZs8A3zjnXgseewn42Dn3dj7XjQJGATRu3LhrafTFFhERuP/9lUz6ahP/uLgDV5/e2OtyQsLMFjnnEr2uI5wlJia6nAlGfouzJ7ancXZVXhz1VQlUJSLhYPXq1bRp08brMk5aXFwcaWlpXpcR1vL7f6Cw382ezGZsZncDmcDUE73WOTcBmACBX5glXJqIiOSxP+MIO9MO88XqbUz6ahPX9mpWboOslC2BdWb1a15ERApW6mHWzEYQmBiqv/u1WfgnoFGe0xoG94mIiEd+2LafS5/7in0ZgTE0Z55Wh7+dG76fmEt4MaeleUQkvKhVtvSVapg1s0HAX4G+zrm8KwG/D7xuZk8A9YGWwILSrE1ERH61K+0QIyctJDrSz+MXtKNSlJ8zT6uD36cleKR0aDZjEREpSiiX5pkGJAG1zSwFuI/A7MXRwGfBqaq/cc6Nds6tNLM3gVUEuh/f5JzLClVtIiJSsIwjWYx6dRE79h/izRvOoFOj6l6XJBWQYVpnVqQCcs5p7fIK6mT+zQ/lbMZX5bP7pULOfxh4OFT1iIhI0Zxz3PWfFSzanMqzV3dRkBXPGOD096xIhRITE8OuXbuoVauWAm0F45xj165dxMTEnNB1nkwAJSIiZcsXq7cxcd5G0g9nsjxlL38Z2IrzOtbzuiypwHxozKxIRdOwYUNSUlLYsWOH16WIB2JiYmjYsOEJXaMwKyJSwS3eksqNUxdTt2o09atV4pYzT+Wmfqd6XZZUcOZMY2ZFKpjIyEiaNWvmdRkSRhRmRUQqsJTUA4yakswpVWN496ae1IyN8rokEUBL84iISNEUZkVEKqj9GUe4dlIyhzKzeWNUooKslCmB2YxFREQKpjArIlIBZWU7bp22hHU70ph0TTdOrVPF65JEjmKom7GIiBTO53UBIiJS+h7+aDWz1uzggQvb0btlvNfliBxH68yKiEhR1DIrIlJB7Ms4wvZ9Gcxes4OX52/kmp5NGdqjiddlieQr0DIrIiJSMIVZEZEKYO22/Vzy3Ffsy8gEoF/reO45r63HVYkUzBw4U5wVEZGCKcyKiJRzu9IOMXLyQqIi/Iy/oj0xkX6SWsfj92lBeim7DNM6syIiUiiFWRGRcuxQZhY3vLqI7fsO8caoHnRuXMPrkkSKxUBhVkRECqUwKyJSTjnnuOudFSRvTuWZqzsryEpY0ZhZEREpimYzFhEpp/49ez3/WfITfz6rFed3rO91OSInxIdpzKyIiBRKYVZEpByasWIrj326hosS6nPLmad6XY7ICQsszSMiIlIwdTMWESknftmbwStfbeTg4SzeTP6Rrk1qMPaSjphpoicJP+pmLCIiRVGYFREpB9IOZTLilQWs255GbHQErU+pygt/6EpMpN/r0kROimYzFhGRoijMioiEoaU/7mHttv252x8s38ra7Wm8PKIbfVvFe1iZSMlQN2MRESmKwqyISJiZ88MORk5aSFb2r3/qm8GDF7ZTkJVyQ92MRUSkKAqzIiJhZO22/dw8dTEt68Tx3NCuRPgC42ErRfmpHRftcXUiJUdhVkREiqLZjEVEwsSutEOMnLyQmCg/L4/oRrPasTSqWZlGNSsryMpJMbNBZrbGzNaZ2Z35HG9sZrPMbImZLTezc0utNi3NIyIiRVCYFREJA4cys7jh1UVs33eIF4clUr96Ja9LkjBnZn7gWeAcoC1wlZm1Pea0e4A3nXOdgSuBf5dafRjZpfUwEREJSwqzIiJlnHOOO99ZQfLmVB6/vBMJjap7XZKUD92Bdc65Dc65w8AbwOBjznFA1eDrasDPpVWcT2FWRESKoDArIlLGPTtrHf9d8hO3n9WK8zvW97ocKT8aAD/m2U4J7svrfmComaUAM4Bb8ruRmY0ys2QzS96xY0eJFKcxsyIiUhSFWRGRMuyj5VsZN/MHLkqoz81nnup1OVLxXAVMcs41BM4FXjWz4/52cM5NcM4lOucS4+NLakZtw1kJ3UpERMolhVkRkTJq2Y97+PObS+napAZjL+mImf6ylxL1E9Aoz3bD4L68rgXeBHDOfQ3EALVLozifGU5tsyIiUgiFWRGRMujnPQe5bkoy8VWieeEPXYmJ9HtdkpQ/C4GWZtbMzKIITPD0/jHnbAH6A5hZGwJhtmT6ERfBnMbMiohI4RRmRUTKmPRDmVw7OZmDh7N4eUQ3LbsjIeGcywRuBj4FVhOYtXilmT1oZhcGT7sduN7MlgHTgBHOuVJpLjXTmFkRESlchNcFiIjIr7KyHf/3xlLW/LKPl0d0o1XdKl6XJOWYc24GgYmd8u67N8/rVUDP0q4LctaZ9eLJIiISLhRmRUTKkEc++Z7PV2/jwcHtSGpdx+tyRDyjdWZFRKQoCrMiIh5LTT9MSupBvt24iwlzNzD8jCYMO6Op12WJeMpMYVZERAqnMCsi4qH1O9L4/b+/Yu/BIwD0aRXP/zu/rcdViXjP53waMysiIoVSmBUR8Uhq+mGunbSQCJ/x7yFdqBzlp0fzWkT4NTefCGZka8ysiIgUQmFWRKSUvDBnPY9+uoas7F/bm6IifEy7/nS6NqnpYWUiZY8Pw6E0KyIiBVOYFREpBR8t38o/P/6evq3iSWhUPXd/r5a1FWRF8mH4NGZWREQKpTArIhJiy37cw5/fXEpikxpMGNaV6Ai/1yWJlHlaZ1ZERIqigVkiIiH0856DXDclmTpVo3nhDwqyIsVlaMysiIgULmRh1sxeNrPtZvZdnn01zewzM1sb/G+N4H4zs3+Z2TozW25mXUJVl4hIaUk/lMm1k5PJOJzFS8O7USsu2uuSRMKGWmZFRKQooWyZnQQMOmbfncAXzrmWwBfBbYBzgJbBr1HAcyGsS0Qk5LKyHf/3xlLW/LKPZ4Z0oVXdKl6XJBJWNGZWRESKErIxs865uWbW9Jjdg4Gk4OvJwGxgTHD/FOecA74xs+pmVs85tzVU9YmIhMLiLams/HkfS7ak8vnqbTw4uB19W8V7XZZI2DEznBnOOczU31hERI5X2hNA1c0TUH8B6gZfNwB+zHNeSnDfcWHWzEYRaL2lcePGoatUROQEfbl2J8NfWZC79M7Ins0YdkZTb4sSCVM+F+g8lp2dhd+v+SpFROR4nv12cM45Mzvh4TDOuQnABIDExEQNpxGRMmHd9jRunLqIFvGxvDyiG5WjIqgZG+V1WSJhyywYZl0Wfi2+ICIi+Sjt2Yy3mVk9gOB/twf3/wQ0ynNew+A+EZEyLzX9MNdOXkiU38dLw7vRsEZlBVmR38hHoGuxy870uBIRESmrSjvMvg8MD74eDryXZ/+w4KzGPYC9Gi8rIuHgcGY2N7y2iK17M5gwLJFGNSt7XZJI+RBsmc3KOuJxISIiUlaFrN+OmU0jMNlTbTNLAe4DxgJvmtm1wGbg8uDpM4BzgXXAAeCaUNUlIlJSnHPc/d8VLNi4m6euTKBrkxpelyRSbuR0M87KzvK4EhERKatCOZvxVQUc6p/PuQ64KVS1iIiEwvNzNvDWohT+r39LBic08LockXLFF5zBWC2zIiJSkNLuZiwiUi588t1WHvnkey7oVJ8/DWjpdTki5Y4F/0TJVMusiIgUQGFWROQErUjZy5+mLyWhUXUeu7Sj1sAUCYHcbsZZCrMiIpI/hVkRkRPwy94MrpuykFqx0UwY1pWYSL/XJYmUSz40AZSIiBROYVZEpJgOHM7kuikLScvIZOLwROpUifG6JJFyK6dlNlNL84iISAG0CrmISBFmfb+dTbvSmbVmB6t+3sfE4Ym0qVfV67JEyrWcltlshVkRESmAwqyISCGmL9zCmHdWAOAzuPf8tpx5Wl2PqxIp/8zng2xNACUiIgVTmBURKcDX63dx93+/o3fL2jx1ZWeiInzEReufTZHSkNsym6WWWRERyZ/+KhMRycfGnemMfm0RzWrH8uyQLlSNifS6JJEKJXc2Y7XMiohIARRmRUTyyDiSxb6MI1w7aSF+n/HS8G4KsiIe8AWXvMrSmFkRESmAwqyISNDLX27kwQ9XARDl9zH1+tNpXKuyx1WJVFSBZa+ysrU0j4iI5E9hVkQk6Luf91K9ciSj+7agW9MadG1S0+uSRCosX7CbsctSN2MREcmfwqyISNCutMM0rlmZ0X1beF2KSIVnvuA6s05hVkRE8ufzugARkbJid/phasZGeV2GiACGJoASEZHCKcyKiATtSjtErdhor8sQEcBnwTGzWppHREQKoDArIgI459iZfpjacWqZFSkLfMFuxtlqmRURkQIozIqIAOmHszicma1uxiJlRE43Y4VZEREpiMKsiAiBLsYAteLUzVikLMjtZqx1ZkVEpAAKsyIiwM60wwDUUsusSJlgwaV5sly2x5WIiEhZpTArIkJgJmOAWhozK1Im+HyBllmnbsYiIlIAhVkREdTNWKSs8ZmW5hERkcIpzIqIALvS1c1YpCzJDbNOY2ZFRCR/CrMiIsCutMPERvmJifR7XYqI8OsEUNmaAEpERAqgMCsiAuxKP6QuxiJlSE6YddmaAEpERPKnMCsiQmACKK0xK1J2+Hw53Yw1ZlZERPKnMCsiQmBpntqayVikzDBfTjdjtcyKiEj+FGZFRAjMZqyWWZGyI2dpHk0AJSIiBVGYFZEKzznH7vTDGjMrUoZozKyIiBRFYVZEKrx9BzPJzHZalkekDPHnzGasMbMiIlIAhVkRqfB2pR8CoJbGzIqUGb8uzaOWWRERyZ/CrIhUeLvSDwNQK1bdjEXKCtNsxiIiUgSFWRGp8HalqWVWpKzRmFkRESmKwqyIVHjJm1IBiNcEUCJlht8fAWjMrIiIFExhVkQqtPeW/sTELzdyWdeG1Kka43U5IhLk0wRQIiJSBIVZEamwFm9J5Y63l9O9WU0evriD1+WIlDozG2Rma8xsnZndWcA5l5vZKjNbaWavl1ZtOevMZjt1MxYRkfxFeF2AiIgXUlIPMGpKMvWqxfD80K5EReizPalYzMwPPAucBaQAC83sfefcqjzntATuAno651LNrE5p1Zc7ZlYtsyIiUgBP/nozs9uCn/B+Z2bTzCzGzJqZ2bfBT4enm5lmYhGRkNifcYRrJyVzKDObl4Z3o6bWl5WKqTuwzjm3wTl3GHgDGHzMOdcDzzrnUgGcc9tLqzifLzhmVhNAiYhIAUo9zJpZA+BWINE51x7wA1cCjwBPOudOBVKBa0u7NhEp/7KyHbdOW8K6HWk8N6Qrp9aJ87okEa80AH7Ms50S3JdXK6CVmc03s2/MbFB+NzKzUWaWbGbJO3bsKJHi/OpmLCIiRfCqm3EEUMnMjgCVga3AmcDVweOTgfuB5zypTkTKnfnrdrJ4cyqrf9nHrDU7eOii9vRqWdvrskTKugigJZAENATmmlkH59yevCc55yYAEwASExNdSTxYE0CJiEhRSj3MOud+MrNxwBbgIDATWATscc5lBk/L79NhIPDpLzAKoHHjxqEvWETC3uw12xk5aSHZDszgxqQWDO3RxOuyRLz2E9Aoz3bD4L68UoBvnXNHgI1m9gOBcLsw1MX5/GqZFRGRwpV6mDWzGgTG5DQD9gBvAfl2W8pPKD79FZHy64dt+7nl9SW0PqUq02/oQeVIPxF+TfYk5YeZ9QSWOufSzWwo0AV4yjm3uYhLFwItzawZgRB7Jb/2kMrxLnAV8IqZ1SbQ7XhDib6BAvj9ORNAKcyKiEj+vPiLbgCw0Tm3I/hJ73+AnkB1M8sJ1/l9OiwickJ2pR1i5KSFxET5eWl4IlVjIhVkpTx6DjhgZp2A24H1wJSiLgr2hroZ+BRYDbzpnFtpZg+a2YXB0z4FdpnZKmAWcIdzblco3sSx/BYJqGVWREQK5sWY2S1ADzOrTKCbcX8gmcAvyUsJzKY4HHjPg9pEpJzIOJLFqFcXsWP/IabfcAb1q1fyuiSRUMl0zjkzGww845x7ycyKNYmic24GMOOYfffmee2APwe/SpUmgBIRkaKUehOFc+5b4G1gMbAiWMMEYAzwZzNbB9QCXirt2kSkfHDOcdd/VrBocyqPX96JhEbVvS5JJJT2m9ldwFDgIzPzAZEe1/Sb+dTNWEREiuDJbMbOufuA+47ZvYHAmnciIr/Js7PW8d8lP3H7Wa04v2N9r8sRCbUrCIx1vdY594uZNQYe87im38wfHHmUjWYzFhGR/Hm1NI+ISEh8tHwr42b+wMWdG3Dzmad6XY5IyDnnfgGeyLO9hWKMmS3rfL5gmM3WXI8iIpI/hVkRKTeW/biHP7+5lMQmNRh7SQfMzOuSRELGzPYDBSY951zVUiynxEX4A3+iONTNWERE8qcwKyJhLe1QJg9/tIrt+w6x5Mc91KkazQt/6Ep0hN/r0kRCyjlXBcDM/g5sBV4FDBgC1POwtBLh8wWm9dCYWRERKYjCrIiEraxsx63TljDnhx20qVeFVnXj+Pvg9tSKi/a6NJHSdKFzrlOe7efMbBlwb0EXhANfsGU222nMrIiI5K9YYdbM6hBYC7Y+geV0vgOSnT4uFREP/WPGav73/XYeuqg9Q3s08bocEa+km9kQAkvbOeAqIN3bkn67iOA6s67gntQiIlLBFbo0j5n1M7NPgY+Acwh0W2oL3AOsMLMHzCysx+SISHia+u1mXvpyI9f0bKogKxXd1cDlwLbg12XBfWEtIiIQZrXOrIiIFKSoltlzgeuDMyMexcwigPOBs4B3QlCbiEi+vly7k3vfW0m/1vHcc15br8sR8ZRzbhMw2Os6Spr5guvMagIoEREpQKFh1jl3h5n5zOxy59ybxxzLBN4NaXUiIsdYtz2NG6cu4tT4OP51VWf8Ps1YLBWbmcUD1wNNyfN73Tk30quaSkJEztI8Tt2MRUQkf0WOmXXOZZvZX4E3izpXRCSUUtMPc+3khURH+Jg4PJEqMZFelyRSFrwHzAM+B8rNbEn+nKV51M1YREQKUNzZjD83s78A08kzqYRzbndIqhIROcbhzGxueG0RW/dmMO36HjSqWdnrkkTKisrOuTFeF1HSInw5E0ApzIqISP6KG2avCP73pjz7HNC8ZMsRETmec467/7uCBRt389SVCXRtUsPrkkTKkg/N7Fzn3AyvCylJvuBa0epmLCIiBSlWmHXONQt1ISIiBXl+zgbeWpTC//VvyeCEBl6XI1LW/B/wNzM7BBwBDHDOubBebcDn8+NzDmcKsyIikr/irjP7JTCHwJic+c65/SGtSkQk6JPvtvLIJ99zQaf6/GlAS6/LESlznHNVvK4hFHw+wwc4V26GAYuISAkrbjfjPwC9gUuAx4Kf/s5zzt0WsspEpMJbkbKXP01fSkKj6jx2aUfMNHOxyLHMrE9++51zc0u7lpLkM8OAbNQyKyIi+StuN+ONZpYBHA5+9QPahLIwEanYftmbwXVTFlIrNpoJw7oSE+n3uiSRsuqOPK9jgO7AIuBMb8opGWbgd04TQImISIGK2814PbATeB14CbjFaa58EQmRA4czuW7KQtIyMnn7xt9Rp0qM1yWJlFnOuQvybptZI2C8R+WUmJyWWaeWWRERKYCvmOf9C9gCXAXcCgw3sxYhq0pEKqzsbMdt05ey6ud9PH11Z9rUC+s5bES8kEI56D3ls5wxs/rsXEQkrDgHv3wHRw6G/FHF7Wb8FPCUmcUB1wD3Aw0B9fsTkRL12Mw1fLpyG//v/LaceVpdr8sRKfPM7GnIbb70AQnAYu8qKhk+A3MaMysiEhays3A/LmDHondYsWkG30Yc4KyOf6Nb0qiQPra43YwfB3oBccBXwL0EZjYWESkxbyX/yHOz13P16Y0Z2bOp1+WIhIvkPK8zgWnOufleFVNSLKebsdaZFREpmzIPkb1+DluT32LZL7OYH53FnMqV2VvLj99Vo250LN1CXEJxZzP+GnjUObctlMWISMX17YZd/O2/K+h5ai0euLCdZi4WKSbn3GQziwJaBXet8bKekuRDY2ZFRMqUQ/vJXDOTHxe9xdLd3zCvkp95lSqRUbsSUS6KVlW6c1u7CzinRRKVIyuHvJxCw6yZNXXObXLOvV3AcQMaOOdSQlKdiFQIm3amc8Nri2hUszL/vrorkf7iDucXETNLAiYDmwADGpnZ8HBfmgfQBFAiImVBxl4Or/yQ9cnTWJq+nNmVovi2UgxZtatQ2VWmY82+XNXhAvo26UGkL7JUSyuqZfYxM/MB7xGY5n8HgWn/TyWwPE9/4D4Ck02IiJywvQeOMHLyQgBeHt6NapVL9x9BkXLgcWCgc24NgJm1AqYBXT2tqgT4HGRrAigRkdJ3KI0jq2ewYcFrLEpbyszK0SyOicbFVKOqq07vUwYwtOMFdKuXgM9+bYRwzrHzxzT8ET5q1o8NeZmFhlnn3GVm1hYYAowE6gEHgdXAR8DDzrmMkFcpIuXWve9/x4+7D/DqtafTtHbo/9ETKYcic4IsgHPuBzMrF58KqWVWRKQUHTlI1vefsGnBVJL3LOSz2CgWxkSTXasaNajFuQ3PZ3jCBZxWs9VRw8GysrL5+Yc9bFy2k43Ld5C2+xCn9TiF/iPahrzkIsfMOudWAXeHvBIRqZBWpOxlQJu69Ghey+tSRMJVsplNBF4Lbg/h6EmhwpbGzIqIhFjWEbLWfsGWb6aweNd8Pq8cydeVYsiqXZWqrjoDGpzLyITf07b20QE283AWEVGBhW0+e2kl6xfvICLSR8M2Nel2XjOadqhdKuUXdzZjP3Ae0DTvNc65J0JTlohUFLvSDxNfJdrrMkTC2Y3ATQTWgYfAagP/9q6ckqOleUREQsA52LqM7V9NInnzh3xWyTGnciWO1K5KnKtCn1POZmTnS+hU5+gJOTPSj7BpxU7WL95ByurdDP37GcRWj6ZDUkNadT+FRm1rEhlVuiu3Fnc24w+ADGAFoMErIlIiDmdms/fgEWrFKsyKnCzn3CEzewb4gsDv6DXOucMel1UifGhpHhGRErNrPWlL3mHZiteZHbGHj2Mrs7d2JSq5GLrFD2Rk50voXq/zcStK7P45nfnvrCVldSrZ2Y64GtG0692AnH+eG7Sq4cGbCShumG3onOsY0kpEpMJJPRD4e7tmXJTHlYiELzM7D3geWE9gmGkzM7vBOfext5X9dhozKyLyG2RnQcpCdi95l5UbPibZl8oXsZXZXDMSv6tGy9ju3JlwJYNa9CXC92ssTN97iA1LdlA1vhJN2tUiqlIEe7cfpFP/RrToUoc6TauUmSUUixtmPzazgc65mSGtRkQqlF1pgTBbO1ZhVuQ3eBzo55xbB2BmLQhM0lhOwqw6hImIFFt2Nm7L12z9ejLLfvofX8VkMadyJVJr+vG56tSPbMmNrS/hDx0voEpUldzL0vceYl3ydtYv3s7WDXvBQdve9WnSrhZxNaIZ8mCPMhNg8ypumP0G+G9wmZ4jBH+/OOeqhqwyESn3dqUfAqCmwqzIb7E/J8gGbQD2e1VMSTKH2mVFRIpjxw+kfvsqi9e8zf+iM/g8tjIH4isR5SJpEZvI9a3PZfBpZ1I16tf4lncSp4+eXc6OLfup1SCO7uc3o0XnOkctrVMWgywUP8w+Afx/9u47vMmy7eP490rStOnetEDL3hvLRkFQEFEc4B6oIOLELY7XAfo4H/dEUFEeFQVUFGQoskSQvTcUSuneTdus+3r/aEErFBml6Tg/x9EjTXLdd86b0eaXa/UCNmuZvCKEqCTZ9tKe2YhAmTMrxKlSSl1Z9u0apdRc4BtKs99VwGqvFVaJTCgZZiyEEBUpzKB4/XQ2rf+C5TqVOYH+ZERa8DHCaBd6Ljd3GkH/Rj3xMf+1W5uzxM3+jZnsXpNG6t48Rr7YBx9fM32vboEt0IewmDPbJtHpcbLk0BJm753NIwmPEB8cf6ZXeUInG2aTgC0SZIUQlSnzyDBjmTMrxOm49G/fpwH9yr7PAPyqvpzKJ3NmhRDiH5xFuLf9xO6Vn/J78RbmBvqzO8SKSYfQ2Lcjoztcw5WtL8TPUv7XQFZyIWvmJpK4KRO3yyAwzJc2ferjcRn4+Jqp3zz0jMpKtacyfed0vt35LXnOPMK0hT31+hHfrnqE2X3AYqXUz4DjyIOyNY8Q4kxkFTowmxTBfj7/3lgIUY7W+lZv13C2KWRrHiGEwPCg9y8lacVn/Jm+mHkBVv7080XbQqmn4hjZ4ipu63wZ4bbwo4doQ3N4Ty5+AT5ENAhEa82hnTm07hVLi271iG0WgjKd/tBhQxtsz9rO0kNLWXJoCVuztqKAc4vcXJ+fTcsiC7tjXNCuEq7/BE42zO4v+7KWfQkhxBnLtjsJD7BiOoMfpkKI2suE9MwKIeqwjJ1kr/iE1Xu+41c/N4v8/XFEBhOkQxjU4FLu7HYNzUIblzskN72InStT2bkqlYKsEtr0jmXAzW2IaBDIrS/3wWQ2nXY5bsPNqpRVLDiwgKWHlpJZnIkC2rjM3FuQyxC7nf3O9uyMvwt1+XB6tIg9s+s/CScVZrXWz53tQoQQdU9moZMIWfxJCFEBpWXOrBCijvG4cG/7ia3L3mGhey+zAwPIifTF1wiiY/gARp9zDb0anHPcBZnmTdrM3nUZoCCudRg9hjWlaecooHQBJ2U+vc6Dndk7mb13NnP2zSGrJAt/zPQscnKBPYc+RSUccjdig9/FLO0ygov79+O8Knxvd1JhVin1G8dZUFBrPaDSKxJC1BnZdgcRMl9WCFEBBWglYVYIUQfkHybn90n8se1LZvsb/B5gw6RDaOrXhXGdrmdYywHlFnIyPAZJ23PYvzGD865rhcmkiG0WSlR8EK16xBAYdvpLJ3gMD7tydrEyZSVz9s1hZ85OaUqzDwAAIABJREFULCh6F7u5Mj+bBLuH1boDieFXMb/PxfTp3IGbI/wr40/hlJ3sMOOH//a9HzAccJ/uiyqlQoHJQHtKQ/JtwE5gOtAYSASu1lrnnO5rCCGqvyy7k05hZ7bggBB1nVJqL6Vb6C0Dlmmtt3q5pEqjAEOyrBCittIavX8Juxe/w6K81cwMDiA10hd/I4Ah9a/kgV4jiQ2sV+6QnFQ7239PYeeqVIrynfgGWOh8QTyh9fzpNDDuDErRrElbw5x9c/gtaRHZJaUxrJXbxBO52VxYWMIWT3t2Ro+kZOBwzm3XiAuqwZonJzvMeO0/HvpdKfXnGbzuW8A8rfUIpZQV8AeeAH7VWr+klBoPjAceO4PXEEJUc9mFTtljVogz1xboAZwLvKqUagVs0lpf4d2yzpysZiyEqJWKcylaPY0/137MHGsBCwP88YSH0NDckic7j2JE20FYTMfGtMN7cvnutXWYTIr49hG07hVD4/aRmH1Ofx5scmEyvxz4he92f8fevL3YMNO7yMFAey7dih1kuRqyIvBaFva9lkE9OtK/mm2neLLDjMP/dtcEJAAhp/OCSqkQ4DzgFgCttRNwKqUuA/qXNZsKLEbCrBC1VonLQ4HDLdvyCHHmPICr7NYA0su+ajylFfr036MJIUT1krKJpMVvsyTlF2YG+bIn3IrVCKVHxEU82Hs0rSKalmueeaiQbcsPExBq5ZyLGhPTJJi+V7WgeUI0ASGnHyozizOZvXc2CxIXsDWrdDBPa5eJiblZ9C908qfRiX2hV5HRpT+9ExK4PSb4jC77bDrZYcZrKR0OrCj9hZkIjDrN12xC6R54nyqlOpWdexxQT2udUtYmFah3vIOVUmOAMQDx8Wd33yIhxNmTbS/dYzY8oHp9widEDZQPbAZeBz7WWmd5uZ5Koygd+iaEEDWWqwTn5u/Y8Pu7zCeZnwIDKIoIIpJYxrQZyeiuV2Kz2I42d5a42b06jW2/p5CemI/Jomh/bgMATGbTaQ8ltrvsrExZyaKDi/h5/8+4DBet3Wbuz89lkN1OobMBS0JuYdHgmzm/Y1MG1ZCRcycbZh+jdFhwvlLq/4CuQNEZvGZX4F6t9Sql1FuUDik+SmutlTr+ig9a60nAJICEhAT5DSdEDXUkzMoCUEKcseuAvsBdwGil1Apgqdb6V++WdeYUShaAEkLUTOnbyVz5Gcv2zOD7ABPrgv0w6xDaBPZhXK8x9GzQ+biHLflyJ7v+TCMsNoC+V7WgVY8Y/AJPb26qy3CxPWs73+35jp/2/kiJx4ENE5flF3Jzfi4ljvostw5lbpth9OnZh7ENTmvgrVedbJh9Smv9jVKqLzAAeA34gNI5OqfqEHBIa72q7P4MSsNsmlIqVmudopSKpZYMkRJCHF9moQNAhhkLcYa01j8APyilWgNDgPuBRwHbCQ+sARRgyJxZIURN4bRTvPZLVv/5IctVFvMC/cmJ8CfYCGFE4+sY1+MGQv3+WvjS4zHYtz6DLUuS6Xd9K8JjA+h6USM69G9IvSbBx91+598UuYpYemgpP+37iT9TVlHsKcGKiYsL7AwrzKdVsWYBffm57a306X0eoxuGnNbrVBcnG2Y9ZbdDKR3CNEcp9fzpvKDWOlUplaSUaqW13gkMBLaVfY0EXiq7/eF0zi+EqBlkmLEQlUMpNRPoBOwFlgI3A6tOeFANYUIdfQMihBDVVtZe0pa8x+LE7/g20MrOUCtmHUITvy48cs5Ihjbvh0n9tQCAPdfB1mXJbF1+mKI8J0ERfthzHYTHBhBRP/CUX15rzbzEeXy942s2ZWzErT1EaguXFhbQrdhOlyIXf3h68nuDS0jsN4DBXZoQXA1WIq4MJxtmk5VSHwEXAi8rpXwpXQjqdN0L/K9sJeN9wK1l5/tGKTUKOABcfQbnF0JUc1mFMsxYiEryIrBea13rcp+sZiyEqLY8bpybZ7Hx9/dZ4tnP94GB5EUEEq6juLXlzdzedThBvkHHHOZ2evjy2ZU4HR7i20bQ4cYGxLeLwGQ69d5RQxssPbSUjzd9zKbMTTQyLNyUn8e5xXbiin1ZrBPYEdKFwz0Hc3nfLlxeQ+bBnoqTDbNXAxcBr2mtc8uGAT9yui+qtd5A6YrI/zTwdM8phKhZMu0OfMyKIN+T/TEkhDgerfUapVR7pVRbSveCP/L4514sq1IorSTMCiGqF0chhSs/Ycm6D/jG3826QD9MOoSmvp15tsdYBjbpVW7YrsdlsGt1God35zDg5jZYrGb639ia6EZBhET5n1YJhc5Cvt/zPV/u+JKkgiSiDBMTsrLomB/IMnqwNPY8Wg6+hGHt6uNvrd3vs052n9kiYNbf7qcAKRUfIYQQFdNasz2lgIgA3xo9T0OI6kAp9QylW9u1BeZSOm92OVDzw6ySnlkhRDVRkEb6b2/yy57pfBVkJTHch0AjlCsb3cA93a4lKiCyXPPiQidblyazaXEyxflOwusH4LC78Qv0oUXCcTdtOSFDG+zJ3cOs3bP4fvd32N1FtHfBfTmZdCy08q3tJoKuvo/rWsfgazFX1lVXe7U7qgshqqX3F+9l6a4MHhncytulCFEbjKB0zux6rfWtSql6wDQv11QplFYY3i5CCFG3Zexi34IXmZfxG9OD/MmOCCCSGB7sdBc3dbwUi+nYOHV4dw6z396Ix2UQ3y6czgPjadgm7JQ/wPcYHlamrOSHvT+wInkFec48zCgutJcwMjcHT0lDFgTeif2SG7m7a2Ms5rq3MbeEWSFElZq7OYVX5+/kss71uat/M2+XI0RtUKy1NpRSbqVUMKW7AZzeRoTVjEKGGQshvMM4sJLN859nTskWvgsKoCQsiEaWNjzRcxyDmvYuF0y11hzanoPHY9C4QyRRjYJp27c+7c9tQHj9gFN+bZfHxdz9c5m8+WMS8w8QhJl+9hK6F+XTs8jBGlcCP8U9Sf+BQ3m4aUSdHuUmYVYIUWU2JuXy4Dcb6BofysvDO9bpH75CVKI1SqlQ4GNgLVAI/OHdkipH6QJQQghRdXT6djb+8AhfOrcxP8AfrMG0C+jD+H730zG6/Igyw2OwZ2066+YfICvZTmzzEBp3iMTHaua8a1qe8munF6UzY9cMvt35LZklmbRwwSs5mXQr1Cw1zmG3rQOJ7S5ieP/uXBpxevNtaxsJs0KIKnE4t5jRn68hMtCXSTcn4OdTd+ZzCHG2qNJPhF7UWucCHyql5gHBWutNJ3n8RcBbgBmYrLV+qYJ2wyndF76b1npN5VR/EvWhJMwKIaqETlrNpnkTmV2yiZlBgZgsQfSNvIwn+91F/aCYY9rv25DB7zN2k59ZQliMPwNubkPLbqc+FxZga9ZWpm6ZysIDC/BoD71KPEzIzSLCHsUP/neQ0v9qLurShCtDa/z24ZVOwqwQ4qyzO9yMnrqGYqeHaaN6EBkoe8sKURm01lopNRfoUHY/8WSPVUqZgfco3XbvELBaKTVba73tH+2CgHF4Ye9ahcJQEmeFEGeJ1rh3/8LqX57nO53E/AB/lE8wnYLP56VBTxIbGF2uubPYDYDVZkFrjV+glT4jWtCkYyTqFLfW0VqzKnUVn2z+hD9S/iAAM9fm5XFdfj77HW1ZHDaa7ldfy2NtY09r2566QsKsEOKs8hiacV9vYEdqPp/c0o1WMcfuuSaEOCPrlFLdtNarT/G47sAerfU+AKXU18BlwLZ/tJsIvMwZbMl3umSYsRDirPC4cWycybLlrzDDJ4/fA2z4GMH0jriE/+t/zzE9sUX5TjYuSmLLkmQ6DWhI90ub0rRzFE07R53ylKl9uftYcGABCxIXsDt3NxHazAM5OVyc52aepx9fNL+eIeefx1NxoTId6yRImBVCnFWvzNvBL9vTeG5YO/q3iv73A4QQp6oHcINS6gBgpywDaq07/stxDYCkv90/VHauo5RSXYE4rfUcpVSFYVYpNQYYAxAfH3/qV1DReWWYsRCiMmlN0YaZ/LL4Gb72d7E5xBebEcrQ+tcy/tzbCfULKde8MKeEdfMOsG1FCh63QbMuUTTpFAVwSkFzV84uFh5YyMLEhezN2wtAB7eJp3Oz6FNg5ls9lOndRnHdeR2JDvb7l7OJv5MwK4Q4a77+8yAfLd3Hzb0aMbJ3Y2+XI0RtNfhsnFQpZQJeB275t7Za60nAJICEhIRKy58mZGseIUTl8BxYye8/Pswkn3Q2hvsSbERyU/PR3Nfjevwsxw+QS7/exYHNWbTqGUOXQfGExZz8ysRaazZkbOC99e+xKnUVJhSdXYon8rIZWFTMYVdj5luuI/fcW7m1TyuC/Xwq61LrFAmzQoizYsXeTJ76fgvntojk6UvaerscIWotrfWB0zw0mfJb+DQse+yIIKA9sLisByIGmK2UGlZ1i0DJ1jxCiDOjUzax5sfH+NK9i1+C/LEZwYxqeS/39LjhmD1i7bkO1s4/QKcBcYRE2eh9ZXP6XtWC4MiTX3gp1Z7K1K1T+S3pN5ILkwnTZh7OzuGSQjv73c35lSt5v8XF9OrahXEto2RBzDMkYVYIUen2ZRRy57R1NIkM4L0butbJTbyFqAFWAy2UUk0oDbHXAtcfeVJrnQdEHrmvlFoMPFzlqxnLlDEhxGnQWXvZPPtxptvX8FOgP2afIAZFj+C5gfcTaA0s19ae52DdvANsXXYYbWii44MIibIRWu/ktr/RWrMtexvf7f6OWbtnoQ03PR0wqiCLPgWK6cYlvN1iOH26dpQAW8kkzAohKlVukZNRU9dgNimmjOwmw2aEqKa01m6l1D3AfEq35vlEa71VKTUBWKO1nu3dCmXOrBDiNBRls/PHJ5iRNp8ZwQHowEB6hg3h+QseJSog4pjmK2btYdNvhzA8mtY9YzhnSGNCok6uJzbNnsac/XOYvWc2e/P2YsXE0AI7t+fmkuhozTI1gOTuN3LrgI6E+lsr+0oFEmaFEJXI6Ta4c9o6knOK+d/tPYiXDb2FqNa01nOBuf947OkK2vavipr+TsmcWSHEyfK4yVr+ATPXv8UnIb4UBQfSOfA8nh/0JPHB9cs1dZa4sfqVxiC3w0OLbvVIOMkQW+wu5teDv/Lj3h9ZeXglBgYdyxZzGlDoYLG7Fx81HsOFfXvyUNMI6YU9yyTMCiEqhdaa//t+C3/sy+L1qzvRrXG4t0sSQtRw0jMrhDgZzp2/sGDew3wYUMKBMBtNzK14cfBLtItqXq6dy+Fh029JrJt/kKF3d6R+81DOvbblv65MrLVmbdpaZu+dzYLEBdjddmLxYXRuLsMKCslzxjGbq9jU+gpGnNuZ4XGhZ/Nyxd9ImBVCVIrJy/YzfU0S95zfnCu7NvR2OUKIWkB6ZoUQJ6LTd7Bq1jg+03v5PdRGqBHJs92eYXjbC8u183gMtv+ewuqf9lOU76Rxx0hsgaXToE4UZLXWzEucx5TNU9iZsxN/zFxgL+by/BwaFtv4wdOXt+tdQo9efbm/QyyBvhKtqpr8iQshztjCbWn85+ftXNwhhgcvbOntcoQQtYQsACWEOK7iXHb+MJ6vM+YzKygAHx3EiPjbeOK8sfiYy6/VobVm1qvrSE/MJ7ZZCIPHtKd+83/vOc0pyeHp359m8aHFNDHMPJeVxQC7k6XuBL7yu5243kO44pzGjI08+e16ROWTMCuEOCNbD+cx7uv1dGwQwn+v6ozJJO88hRCVQynpmRVC/I3W5P45jZkrJvBxqJXioEB6hA7mpcFPEW4rH1DT9ucT3SgIZVJ06N8AP//GNOoQ8a9DijOLM5m+czpfbf+SImcBj2TlcF6uH1/oq1jT5iou6d6a15pGyPudakLCrBDitKXnlzB66hpCbD58fHMCNqssciCEqDwmmTMrhChjpO9k6YwxvG9JZXu4H43MzXl18Gu0iWpWrl1uehF/zNrLvg0ZDBrVjhbd6tG6Z+wJz53vzOenvT8xL3EeG9I3oNH0K3ZzV1YWCxyX833f+7m7T3PCA2RF4upGwqwQ4rQUOz2M/nwNecUuvh3bi+hgP2+XJISodaRnVog6z1nEvjnP8PmhmcwK8sdfB/NQxycY2fnycr2sJXYXa+YmsnnxIUwWEz2GNaVxp8gTnBjyHHlM2jSJb3ZOp8TjoKW2MjY3jyH2QpJK2vBx+MPcM+YamkUFnvA8wnskzAohTplhaB76dgObk/OYdFMC7eqHeLskIUQtZMIkc2aFqMOKtszh+18e5qNgRW5QAL3DLuK1Ic8QaD02XP707kbSEvNp2zuW7sOaEhDie8Jzz903lxdX/Yc8Zx6X2B3cmJuNrSSc+ca5vBw6kEFDLuSVTvXxMZvO1uWJSiBhVghxyl5fuIu5m1N58uI2XNi2nrfLEULUUgqkZ1aIOkjnJrHq27v4wNjBujA/YqjPlAv/S0L99uXaJW3PJrZZCBarmd5XNsNqsxDZMOiE504qSOK9De8xZ98cOjoNns5IY29xF97xu5cWfS7kog71uSM26F/n1orqQcKsEOKUzFp3iHd/28O13eIYfW4Tb5cjhKjNlEnmzApRlxgGKb+9xbSt7/C/YH98dCCjWtzHfb1GYlJ/9ZDmZxaz/Nvd7N+YSe/hzelyYTz1W4Sd8NRJBUn8d81/WXRwEWbgrpxc+maH8pb/RC65+nLebReDWRZ1qnEkzAohTtrqxGzGz9xMr6YRTLisvXxqKYQ4q2QBKCHqDiNjNwun38JbflkkhQTQ2b83bwx9kUj/8KNt3E4P6xceZO28AygFPS9vSsf+J97b3uFx8MW2L/ho44eYPW5G5+ZzVX4Bsx0XsajveN64oC2+FlnAsqaSMCuEOCkHs4q444u1NAiz8cGNXbFaZA6JEOLsUig88pmZELWb4eHgglf4dPdkZgT7E2KE8krvVxnS4txjmi76Yge7V6fR/Jxoeg9vTlB4xYtPaq2ZnzifN9e+QbL9MOcXOXgoM49fHOfzRNgV3HnjhXRvEl7h8aJmkDArhKiQy2Pwf99vYdOhPNLyS/AYmikjEwj1l6XphRBVQYYZC1GbuVO3Mf+bW3krIJ/UIH/6hg7mtSHPEWANONomL6MIH18L/sFWzrmoEW37xNKw9YlD6MaMjby6+lU2ZmykpUfxcXoaTntL/hP5ArdcMoDbmobL6LJaQsKsEOK4tNY8M3srX69O4ryWUcSH+3P7eU1pKsvTCyGqiEnJ1jxC1EoeF/t/fp4piV/wQ0gAYUY4b/V7nfOb9Piridtg/cKDrJmbSKvu9Tj/pjZENDjxe5AD+Qd4b/17/Jz4M5HazITMLDoUBPGWGkfXwdfxfu8mMi+2lpEwK4Q4rk9/T+TLVQcZ268Z44e09nY5Qog6SGFCK4XWWnpRhKglXMkbmTvjNt4OLCIjMICBEcN4ecjT+Jr/2kondV8ev03bQfZhO826RNH90qYnPGeaPY2XV7/MLwd+wYpiTE4+I/JcfOy6kg1db+PZQe2ICDzxVj2iZpIwK4Q4xqIdaTw/ZxuD2tbj0cGtvF2OEKKOUpQGWI0++r0QooZyO9n14/8x5fAM5ob6E2lE8eHAt+kd17lcs+0rDrPoix0Ehvpy8V0dadIx8oSn3Zu7l7ELxpBXnMmo3AKuzSvgJ+cFPBc/igeG9aRVzIm36hE1m4RZIUQ5O1LzuffL9bSJDebNaztjkuE4QggvOdIba2ij3LYcQoiaxXFgDT9+N5p3gp3kBvgzJPoqXhj0OD5mH6B0apPL4cHqZyG+XQRdLognYWhjrH4VR5USdwnTd07no40fYHXY+Tglg/VF5/JgyAhGXd2f21pFy4iOOkDCrBDiqIwCB6M+W0Ogn4UpI7vhb5UfEUII71GUBlhtGCBZVoiax+1g23eP8XHGj/wS5k+0jmHK4HdIiG13tIk918HiL3fiKHJxxYNdCQjxpffw5hWe0mW4+G73d3y06SPSi9LpUeLmwfRC3rU8w7Brr+CLtvXkg/g6RN6pClGH7c0oJK/YBYDW8PycbWTZHXx7R29iQipe7l4IIarCkTBraI+XKxFCnCojN5kfP7+S1wILKPAP4IoGN/L0gAexmErjh9aanatSWf7Nbtwug+6XNkHDCScUrE5dzYQ/JpCYn0gnN7yUkYalKI53wp9m4ugriZR5sXWOhFkh6qjk3GIG/nfJMY9/eGNXOjQM8UJFQghRnunIMGPD7eVKhBCnIn/7IqYsuINPQ3yJ1NFMu3gS7aNbHn2+uNDJoqnbSdycRUzTEAaObENoPf8Kz2d32Xl19avM3D2ThoaJd9IziCmK5E3jXuJ6XMlrF7YiwFdiTV0kf+tC1FHJOcUAPHZRa9rEli6OEBtik4UShBDVhiqbJythVogaQmt2//wf3jjwKctCbXSxdeejK97F5mMr18ziYyY/q4Q+I5rTcUDcCYcFr05dzf8tf4oU+2FG5hZwTa7mdeet+HW5mqcvaE39UFuFx4raT8KsEHVUVqEDgP6tomgTG+zlaoQQ4ngkzApRU2h7Fr99cQOvWhJJsdkY2fQuHuo79ugiTPY8B2vnJtJ7eHN8fM1c82Q3TOaKJ8OXuEt4a91bTNs+jTiPYmpaKtvtfXi6wd08ObwnzaPlw3chYVaIOivL7gQgIsDq5UqEEOL4jqxgbGgJs0JUZwU7l/Dlz2P4MNQHmw7izX7v0b9J96PP716TxpIvd+J2GTQ7J5oGLcNOGGRXHF7BxD8mcqjwENfmF3JDluZF4yH6XXo9U7qduCdX1C1eC7NKKTOwBkjWWl+ilGoCfA1EAGuBm7TWTm/VJ0Rtl1VY+t8rTMKsEKKaMh3ZZ9aQBaCEqJYMDztmP807KdNZGmajlU9bPr7iI8JsoQA4i90snb6LnStTqdckmIEj2xAWE1Dh6bKKs3h1zavM2TeHRobik7Q0kuzdeC52HBOu7UtceMXzakXd5M2e2XHAduDI+MaXgTe01l8rpT4ERgEfeKs4IWq7LLuDEJsPPif4ZFQIIbxK5swKUW0ZeSks+OIaXrVlkGWzcVPTO3mk753l9nZd9MV29q3PIGFoYxIuboz5BO85lh1axhPLHqfQmc8dOXlclmfmP6576TLoeib3bYpZemPFcXglzCqlGgJDgReAB1Xpv/oBwPVlTaYCzyJhVoizJsvuJCJQemWFENXX0QWgZGseIaqV7E1z+Py3+/k0xJcQHcrHF35EtwYdATA8Bm6XgdXPQs/LmtFpQByxzUMrPJfH8PDhpg/5aONHtHAbfJKayvLiATxZ/3aeHiFzY8WJeatn9k3gUeDIv84IIFfro5NiDgENjnegUmoMMAYgPj7+LJcpRO2VVeiQ+bJCiGrNdGQBKI+EWSGqBY+LTTMe5K2cefwZ6kdnWwIfXP4OgdZAAPIyiln4yVYCQ30ZPKY9ofX8T7jlTm5JLuOXPcbvh1cwrKCIkZlmntXPMOSSYXzWPV7mxop/VeVhVil1CZCutV6rlOp/qsdrrScBkwASEhJ0JZcnRJ2RbXfSNDLQ22UIIUSFlDKBBrcMMxbC6zw5Sfz0+QheDyqgwNfGXW0eZmy3m44OK965MoUlX+1CmRSdBsSVG258PEsPLeW5Fc+SU5zJ05lZhOS24sX6T/Df688lJsSvKi5J1ALe6JntAwxTSl0M+FE6Z/YtIFQpZSnrnW0IJHuhNiHqjKxCJ90aS8+sEKL6OtIz6/FImBXCm/J2LmbKvDF8GupLlI7ki6GTaRfVEgCX08Oyr3exfUUKsc1DuPC2dgSFVxxGk/KTeGv9W8xPnE8zj+LN1FR+tl+Oq9d9fDykLRZZy0OcgioPs1rrx4HHAcp6Zh/WWt+glPoWGEHpisYjgR+qujYh6gqPockucsowYyFEtfZXz6zL26UIUWft++Vt3tz1Nr+F2jjHvzsfXvEefpa/wqqzyE3iliwSLm5Mt6GNK9xyx2N4+GDjB0zZPBmL1ozNyeOSXB+eNR5lxDU3MLRjbFVdkqhFqtM+s48BXyulngfWA1O8XI8QtVZukROtISLQ19ulCCFEhY4sAOWRObNCVD23k1X/u52XnCvZ52/jxsa38+h59x4dPpy0PZsGrcIICPXlhmd74OvvU+GpskuyeWTJw/yZuppL7A7GZWWxwHE+j9W7g+evkUWexOnzapjVWi8GFpd9vw/ofqL2QojKkWUv3WM2XHpmhRDV2NEFoGQ1YyGqlFGQzk+fXc7LAbm4LDZe7P0mF7fsD4Db5WH5N7vZuuww59/UmrZ96p8wyB4uPMwdC24npSCJiRlZhOY3Z4waz9AL+zGtbxMZVizOSHXqmRVCVJHMQgeAbM0jhKjWjvbMGhJmhagqhfvXMO2HG/kg1EKEjmDq5dNoHtYIgNz0IuZ/vIXMpEK6DIqnVc+YE55ra+ZW7lt0D8VFWXyYksbCwivI7zKWz4a0lQ/URaWQMCtEHZRd1jMbESDDjIUQ1deR4Yxuj8yZFaIqJP3+Oe+un8DcMBvtfNsz5crJBFgDAEjcnMnCKVtRJsXQuzrSuGNkhefRWvP5ts95c+2bRHrcTDqcybsl9zJ4xC1c0aVhVV2OqAMkzApRB2UVloVZ6ZkVQlRjJmUGQMucWSHOLq3ZMvsZXkz9mk1BNi6PvYbnLnwCk/prCLCvvw/h9QO5cFRbgiNsFZ4qpySHp35/iqWHlnJ+sZNH0u38n/EY946+mXMahVfF1Yg6RMKsEHVQlt2JUhDmL2FWCFF9yTBjIaqAx82KabfxvOtPUq1+PNH5Oa7rdAUAjmI3iRszaNUzlthmIVz5SNcT7h+7JnUNjy19lJziTB7PzKZ5Xn3us03kP7dcRJvY4Kq6IlGHSJgVog7KKnQQ5m/FbDrxhuZCCOFNpqNhVvaZFeJs0I4C5k+5ghf8DuM023h7wCT6NuoGQHaKnZ8/3Ex+RjExzUIJibJVGGQ9hodJmyfx4YYPaGDAFykpLCq6mMXN7+LTq7sQKh+ei7NEwqwQdVBWoewxK4So/lTZMGOPrGYsRKWxhBQmAAAgAElEQVRz5yYz87NLeSXESSAhTLvsS1qENwFg34YMfvlsGxYfE5c90JmQqIqHFWcUZTB+2WP8mbqai+0l3JPh5Ennw5x30VV81LfJCXtyhThTEmaFqIOy7U5ZRVAIUe39tc+s9MwKUZnsBzfy6axr+CjMh4aqPtNGfE2Ef+l81vULD7Ji5h6iGwVx0R0dCAr3q/A8G9I38MBv91NYksOEjCyi8htzl+0hJtw6gC7xYVV1OaIOkzArRB2UaXfQJkbmrgghqrcjC0AZMmdWiEqTtuFH3l32AN+H2ejo15lPRkzG1/zX7ga+/hZaJEQz4OY2WKzmCs8zY9cMXlj5ArFuNx+mpDK76HLmtRzNtKu6EnKCfWeFqEwSZoWog7IKpWdWCFH9mWQBKCEq1YEV0/jPxudYEWxjSPQwXrpoIiZlorjASWZSIXFtw2nbpz5tesdWODzY5XHx8uqXmb5zOr1LXDyZVsTjzse44OLhPNy7sQwrFlVKwqwQdczy3ZnkFbuoH1rx/BchhKgOjvbMypxZIc5Y4or/MXHTc6y2+XFHy3Hc02s0AFmHC5n7/iYcRW5ufqE3VpulwkCaWZzJQ4sfYl36Om7NzWdQdgh3+zzDc2MuoqsMKxZeIGFWiDpkT3ohd/5vLa1jgripVyNvlyOEECdkMZUOVSx2l3i5EiFqttIg+yyr/fy4r+2jjO5+EwBJ27KZN2kzZquZS+/tjNVWcTRYn76eR5Y8TF5RBq+kZ+LK78Rz9R5h8s19qBdc8bxaIc4mCbNC1BHZdiejpq7G12Ji8sgEAn3lv78QonqLsIQCkFqS4eVKhKi5Dvzx1dEge2/bR44G2R0rU/jt8x2Exfoz9O5OFS705DbcTNo0iY82fkR9Q/NZSgqz7cPJ7DiWL67sgJ9PxfNqhTjb5N2sEHWAw+1h7BdrSckr4esxPWkY5u/tkoQQ4l9FmEOxaM1hh4RZIU7HwT++YuLGp48G2du733z0uYyDBdRvGcpFd3TAt4Ie2eTCZMYvHc+GjA1cai/hvswiHnfcT98h1zO+j8yPFd4nYVaIWk5rzROztvBnYjZvX9dF5rQIIWoMZbFS3+0mpTjV26UIUeMcXPkVEzY+zZ9+ftzT5mFu734zhsegMNdBcISNPiNaoA2N2WI67vFz981l4soJ4CrhpfRMogsbMdL0HE/dciHntoiq4qsR4vgkzApRy32wZC8z1x3i/gtaMKxTfW+XI4QQJ60gtC0N97hJKzzo7VKEqFEOrvyaiRtKg+zdbR5kTI+RuBweFkzeQkZSIdc906O0N9Z0bM+q23Dz/Mrnmbl7Jp1d8EJqCt8UX860+FuYem0CMSEyP1ZUHxJmxUl777c9bD2c5+0yxClweTQLt6UxrFN9xg1s4e1yhBDilHh8w/BzBZDiLvvdYxhguMEiW4sJUZGDK7/m+fX/xyqbH3e1fpA7etxKSaGLH9/dSMaBfM67tmWFw4pdhovHlz7O/APzGZVbwIhcH+53PkW/AUOZdn5zzMcJv0J4k4RZcVIMQ/P6wl2E2nxkf9Ia5pKOsbwyoqPMaxFC1DgmBfnOBuSrJPJy9hPy52TY9gPcvQqsAd4uT4hq59Cqr5lYFmTvbP0AY3veSmGOg9lvbyA/o5iL7uhA087HHyJc4Czg0aWPsjx5OQ9l5VAvty232e7lPyP7kNA4vIqvRIiTI2FWnJS8YhceQ3P3+c25rW8Tb5cjhBCiDlBKkeRoBSRxaM0kQlZ9DIYLVk+GPuO8XZ4Q1cqhVdOZsK40yI5tdT939rwNgFU/7KUwp4RL7+1Eg1bHXzfjYP5B7l10DwfzEnk6MwtXTne+b/EE317VhRB/n6q8DCFOyfFnfAvxD1l2JwARgdIrK4QQomqYFOx3tgHg0Iap5JnN7GzYGZa/CY4CL1cnRPWRvOobJqx7ipVlQfauXqOOPnfutS258uGuFQbZRQcXcc1PV5OVd4CPUlLJyenPuo7P8v5N3STIimpPwqw4KVmFDgAiAny9XIkQQojKopS6SCm1Uym1Ryk1/jjPP6iU2qaU2qSU+lUp1agq6zMphccVCUCSxcwzjTpyjU8e+935sPQ1MDxVWY4Q1VLy6plMWPckf/j/FWRT9ubx03sbcTk8WP0sRDYMOuY4t+HmzbVvMu63ccQX2/kyKYUZBTdzqNsTvDKik8yPFTWChFlxUqRnVgghahellBl4DxgCtAWuU0q1/Uez9UCC1rojMAN4pSprNJkAw5cQcwBbgyNY5M7Ag4enY5ujf38T3u4MW2ZVZUlCVCsp62bz/JrxrPD3444W93FXr1Ekbctm9lvryU0rwlHkOu5xWcVZjF04lilbpjC8sJg3kgt5sOhx2g29h+eGtcMkQVbUEBJmxUk5GmZl8SchhKgtugN7tNb7tNZO4Gvgsr830Fr/prUuKru7EmhYlQUeWbguMqAxv1oMtPLgyunBBnMRk3uOxWULgxm3wqpJVVmWENVC+uZ5vLjyIZb7+zG62d3c0/t2DmzJYs77mwiJ8ufKh88hMOzYbXQ2pG/g6h+vYkPqaiZmZDE0PYqb9Mvcf+tNjOzdWBaMFDWKhFlxUo4MMw6TMCuEELVFAyDpb/cPlT1WkVHAz2e1on8wlb2pjvKLRaPxFDfkvs6PgiOet9PmkuBr59m4jrh+fgRWflCVpQnhVZnbfuWlpffyW4AfNzcezbi+YzmwJYu5H24iLNafyx/ogn/wse/ZFh1cxK3zbsValM205GTScvvzfMRLTL3vEvq2iPTClQhxZmQ1Y3FSsu1OQmw++Jjl8w8hhKhrlFI3AglAvwqeHwOMAYiPj6+01w30LX2bYtWlW4m4crszoms83ZtM5sPVc9mYvYKZvn+ys2FLPljwJKFhTaDVRZX2+kJUR/mJa3l10VgWBvlxTcObeKRf6creIVE24ttGMHBkG/wCjl24aeGBhTy65BFaO128kZLNc8V3Edx1BNMva4efj7mqL0OISiHJRJyUrEKnzJcVQojaJRmI+9v9hmWPlaOUugB4EhimtXYc70Ra60la6wStdUJU1PH3sDwdXeJCaREdyNa9MQToFsRZexMd7EdCo1gmjxjFilEf09lvLJvNLkbHNqRo1ihI3VJpry9EdePMTuL92TcwN8iPy2JG8NTAR8k4WIDWmtB6/gy9q+MxQVZrzdStU3lo8UO0czh54XAxt5ZM4LzLR/PyiI4SZEWNJmFWnJTMQgeRspKxEELUJquBFkqpJkopK3AtMPvvDZRSXYCPKA2y6VVdoMmkuLN/MxKT65G6YxR9m5UfBe1jNvH51XfRP+xBdvrAQ2EhuL+6FgrTwTCgOLeqSxbirDHs2Uz9Yij/C/GhV2BvJg56mt1r0vj2pTVsXnzM51AAeAwPE1ZO4LU1rzGw2MHEww7u08/ywh0juK575Y2iEMJbJMyKk5JtdxIu82WFEKLW0Fq7gXuA+cB24But9Val1ASl1LCyZq8CgcC3SqkNSqnZFZzurLm0U30ahNoA6N0s4pjnlVK8c9lNtPS5ieU2M8/7lKA/HQJvtIOXG8FH/WDtZ1VctRCVSzsKmT7lIt4NMWhhbsb7V7zHvvUZLPxkGzFNg2ndK+aYY5weJ48sfYQZu2YwKreAsWlW7mYCr9x+OV3jj7/nrBA1jcyZFScly+6kexMJs0IIUZtorecCc//x2NN/+/6CKi/qH3zMJu6/oAUTf9pGz6bHhlkoDbRfXvMgg6emMzNoHgEF+Xgi6rMzugEDSvIZMvcBIq2B0GFEFVcvRCVwO5k9eSivBBdRX8Uy7ZovObQllwWTtxLTJJhL7umE1a/8W3q34ebBxQ+w5NBSHs3KIS6vBXf7PsR7t/WjVcyxe84KUVNJmBX/ymNocoqcRATKMGMhhBBV76qEOIZ3bXjCvS99LWZmXTuRQdMy+TxoDVrnoktCWWMt5oOGcUyfM4646LZQ759b6QpRjRkeFnwynBf8MwnTYXx1zQxMDh8WTNlKZFzgcYOs1pqJKyey5NBSnszMxprbmbeiH+XLW3oQHXTsVj1C1GQyzFj8q5wiJ1rLHrNCCCG850RB9ojwAD++Gf4m5/g+xAMt/8enF3zHBcEvUqCtjIsIoWTyBTD/SShIrYKKhThDWrP8i5FMsOzFVwfwxYiZhNpC8Av0YcidHbj0vs5Ybcf2S328+WNm7Z7F7bl5GDndmBX/JNPG9JEgK2ol6ZkV/yqr0AkgqxkLIYSo9ppGhvDZtbccvd+9ySXcOSuX5QUvMzo2nifXTabNmk+gx1jIT4YdcyGyOTQ9H5qdD3E9wCIjkYT3rfn2fp5xr8WjbEy9bDrmDD/27Eqn+TnRxLUOP+4xi5MW8876d7i40E6rzGZ802w8k2/sJisWi1pLembFv8qyl+7EIAtACSGEqIneuex6GnpuYANurq4fzZiYxhxc+TYb9s5nQr1WfG04SVn1Lky9FF5rAcvfBFeJt8sWddi2ORN5Lm8++SYr7wz+nDB7JD++s5FVs/fhcRvHPWZH9g7GL3mUtk4XIzJC+CTmKd69QYKsqN2kZ1b8qyM9s5EyZ1YIIUQNZDGbmHPLY/y4ZQRvrJrCCssChsbVL3s2HSzwQsMY/N1BnOcyuH/xBBqseBtaDIYuN0Djvl6tX9Qt+5Z8yLPJ00j28eWVc9+nuaUps95ci9VmZti4zpgtx/ZFrU5dzX2/3kuQs5hnUkt4yvYCk285F5tVgqyo3STMin+VVVjaMytzZoUQQtRUJpPiso7NGdbhP/y4dSTvrJlKg8D6jOs5nD3ZB1mU+Afbctbxs2kL8xvG0aMkgMv3zaffpq8I7HgdnHML2EIhojmYJCCIsyNtw49M3P5fdvn58WTCS/SKSmDmK2vRGi4b14Wg8GPnvf568FceXfIIDV1u3klOY7zrKV4aM0hG1Ik6QcKs+FfZdidKQai//FAUQghRsymlGNa+NcPav3j0sS4N63NVx54A7MpM4onf3mCVXsZKWwB+YSGM3/cjwzZ+WfqmKbotauAzf62KnJcMHifE95S5tuKMlBzeymu/P8SaQD/uafUoV7W/mI2/JlFc6OLyB7oQWs//mGNm7Z7Fcyueo53Lw39Tsrm/6FFuu/FqWtaT7XdE3VDlYVYpFQd8DtQDNDBJa/2WUiocmA40BhKBq7XWOVVdnzhWpt1JuL8V80msJCmEEELUZC0j45hx1eu4DTe/7lvFC3+8zrORbp6NDENpRZ+iPB6acSONXC6cSpHkY6FYKdoYVqzxPTAF1gPfQFDm0lv/CIhsAfXag48NzNbSW60hZQP6wB+UpO7AmZ2EozANp3ZjVj6Eth6ErdvNYA0Eww2B9cAkS53UVtqexUczrmJeiC9DI6/gjp43AdBpYBxNOkUSHGkr195jeHhr3Vt8uvVTejvcPJNaxBjHk9x29WUMbhfjjUsQwiu80TPrBh7SWq9TSgUBa5VSC4FbgF+11i8ppcYD44HHvFCf+IfsQqesZCyEEKJOsZgsDG7ehwub9eKLTT+yLXMvWcXZ/J45j+UBsce09/WYaFG4m8j87di0B40mQLsJNgzi3S6aOV34aDCjifCJwo1iuSmPtX6+7Pbx5bDFgj30yNmK6Zj4P4ZtmYSf1riBKI8i3CeSqKAm2MLj8Q2OxhocjQqIBJOlNPAaHjBcZd+7weMuDc712oHFD7J2Q3BDaNAVlHxAXW24nXzz6TAmh5hp79OBFwY/w+L/7aB9v4ZENgw8Jsi6DTcPLX6IRUmLuLqwmFsyFbe4nuHRG4ZyQdt6XroIIbyjysOs1joFSCn7vkAptR1oAFwG9C9rNhVYTB0PsyUuD4/P2kxescurdaw/mEOrGBmuIoQQou4xKRMjO1129H528YN8vH4mdmcRVrOFttGNMZvM/LBzEYn5e0j0FOLRLhQKt3bi0oVo5TnmvEqDVuHYCKWerSldguKoH1QPfx8/8koKWHRgLs/7pf3jKAOl9xCWu5vwbDchHoNQw8AEuACXUriVwqXAjcKlFH7aoLnTha/W7PfxIdrjoZ8rAD+zH7muXIItIdQPaky96Nb4RzSgJC+d/JwkMgoO4zKc+FuDKXIVklOSiUu7y+rQR291uVvwUT74WwIJtAYR7BtKoF8I/tZA8oqzyS3KJL8kB7d20zCkCTGRzbDagjEFREBIHPiHg9kHchIxMvdiCmkAUS0hsiVYAyrxb7Ua0ZrF027mvwG5xBrRTBkxmaVf7WLb7ylENgwksmHgMYe8ve5tFiUt4pGsHLoV1GOk8TAv3jaIHk0jvHABQniX0lr/e6uz9eJKNQaWAu2Bg1rr0LLHFZBz5P4/jhkDjAGIj48/58CBA1VWb1VbfzCHK95fQZPIAAJ9vTu9+bru8VzfI96rNQghxNmmlFqrtU7wdh01WUJCgl6zZo23y6g2DG2QXJjMvtz9aAyKnA42pO6m2O3gunYX0yaiNeo4vaRaaw7kH8BismBWZg4VJLM1PZEdWYmkFKaR58ihyJlNsTsP0JiUBTPm0lvlc/TW4Skg252MoTwEE0mBzsJlch/zegGGQYTHQ7bZTGEVDWf2NTT+2iDUYxDrdhNiGFi15pDFQpKPhWiPh6ZOF01cbqKx4aus2Mw2QnzDCLNFER4cg49vACaTCWUyYTKZUcqEMplLe56V6fhffiEQEF02bFtBaDyENgJz1b/X2jpnIuNSv6RY+TN9xFxSlxexavZ+zhnSiJ6XNTum/Zx9cxi/bDzX5BdwTmZrXrTey/u39KV9g5Aqr12IqnKi381eS0hKqUBgJnC/1jr/7z/ItdZaKXXclK21ngRMgtJfmFVRq7dk20u3xHnzms50ijsm1wshhBCimjMpE3FBccQFxR197OJmg//1OKUUjUMaH70fGxhLt9jT+5zlSMeFUooSdwk/7PwNszLTNDyW/dmpbMnYx76c/eQXZ9DSFkW0fz1ig6KxWXzJcxQSaPWnSWgsQb7lFyA68t5NceQ9nMLuLCHdnktmUQ7ZxfkUOu0UuUsItgYSYQslOiAci8nM1oy9pNrTKHHZKXSks8OVhksX4cGNvwon1K8RGc4U9lpSKDYX/+1VS4AUMFIw5WzEV2vMGiyU3prRR4dzH7lv+dv9v7cza7BqTQO3mzi3QbQpnHDfCDwYeAwPHu3G0AYew40HD1ob2CwBBFlDMam/r2hdev02axCRofH4R8bhE9oAghtAYDQ4C6Ekr3QeNYCjAEpyyUzdycTkaeT4+PLOgCkU7dCsmr2fVj1i6DGs6TF/j1/t+IqXVr3IOSVOBmZE8WrUY3w7shf1go9d4ViIusIrYVYp5UNpkP2f1npW2cNpSqlYrXWKUioWSPdGbdXJkf1dZb6qEEIIIU7X3zsM/Cx+XNNuyNH7XWM6MNwbRZ2CvJJ8dmUnkV9SRFZRPocLMkizZ5NVnIXD48RtuPFoT+mX4cHQrrL7blzag6HdGNqDoT1o7QHtRGknBh7c2sUycnGbPIABZPxLNYVlX8fnk7OJ6AwP0R43UW4PkR6DIpMi32TiSPwtMCkKTCYyzGYyrFYebP80veI7MeenTdRvEcr5Nx7bW//O+neYtGkS/RweHk51Mi7gCT4f1ZcQf58z+JMVoubzxmrGCpgCbNdav/63p2YDI4GXym5/qOraqptM+5H9XWWpfyGEEELUTSF+wXSr3+6snV9rTZo9nXUpuziYl46PyYLVYim9NVuwmn3wtVhQSpFpzyPdnoOhjb+dQQGaPEchyQUpZNuTSXOkss+TQzFF+OCDL7aymcUaq8kfP3MgYT4hjGgymFsSRgAwZGwH3E4Ds0/5Yd6TN09m0qZJXFlYzJgsE7e7n+L1kQMlyAqBd3pm+wA3AZuVUhvKHnuC0hD7jVJqFHAAuNoLtVUr2YVO/K1mbFbZnF0IIYQQ4mxQShETWI+LW1T9SsAlhS4WfrKVPiNa4B9sxWwrH2R/2vcTb617i4vtxVybGcg17vFMvHEArWOCq7xWIaojb6xmvByoaD34gVVZS3WXZZctcYQQQgghaiOPy2Duh5tITyygQ/+G+AeXf8+X58jjlZX/obPDxW0Zftypnub9OwbQsaGsoyLEEd5dIlecUGahg3AZYiyEEKIO2rchg5Xf7z3m8SFjOxAWE8DOVams/TnxmOeHjetMYJgfW5cls/HXpGOev/KRc/AL8GHDLwfZuuzwMc9f+3/dMVtMrJm7n52rym+NYzIrrnu6BwB/fLeXfRvKz6+02ixcNb50kaal03eRtC273PMBoVYuf6ArAIs+307K3rxyz4dE27jk7k4AzJ+8hcyk8nMzIxsGMvj29gDMeW8juenF5Z6PaRbCwJvbAPD9G+uw5zrLPR/XOozzrmsFwLcvrcFRVH7rv6adoug9vDkAXz63CsNjlHu+ZfcYul/SBI/b4KsJq/induc2oMuF8TiKXHz70rErWv9/e3ceJ1dV533886ulq7ur9+50Op2ku7NCEoxJSCDIqiwCMkQFNS4jCqM4ODrqqA8O8yBuM4I6LuOIiuIgA8qoo+LCg2yiISxJCISkCVk7Se9beu+u9Tx/VCXppKuzQNJVlXzfr1e/cuucu/z69E2d+tU9955Fl9RwxgVTGdgb4jf//vyY+qVX1nH6OVPoaRvi9999cUz9OW+bxawllXTs7ufhuzaOqT9/5VxqF5TTvK2Hx+95eUz9m94/j+o5Jeze1MWTP98ypv7yD53BpJpCtq9vZ/X/jj33rvrowsS590wLz/2hYUz9Wz+5mMKyXDb+pYn1j+weU/+Om5eSG/Sz/k+72fjXJqLhGEO9YS67YQFVM8c+jfjb675JX7ifmzoj3OS+wJ03XqqpEkUOoWQ2g3UPhqnSE+pEROQUFMj3UT517Byb++4nzC3wp6z3eBP1eYU5qes9icFhweIAFdPH1u8bOxYsyR1TP/qhPIVlY7f3j7otqKh87PZ5wQP3OBZX5hENHzz/bLD0QJ9fUpk/ZhhbceWBpwmXTgniDxx8G1LxpLz9y2XVBeQXHpzMFo2qr5hWQCR08PGLKg4cv7KmkHj84EkjCssS9WZQWTt2mGtBSeILePNYyvp9Vx69PqOy7jD1fk/K+tyCRPv5A96U9YH8xMfanFxfyvqcvER9IOinasbY+n3tmVeQk7Lel/z75hWlrvf6EudesDh1vceb+IsWlAX219fML2POsrHDm1c3reaXW3/F+/r6+NnwB/n6hy5TIiuSQlrnmX2tTva57Jb/62OcP6eCr73j9ekORUTklKB5Zl+7k71vFjnRVjev5uOPfYyakSE+tKeC3W/6CTdeNDvdYYmkzeH65omZFVuOmXOO7sEw5QUaZiwiIiJyKtjUtYmPP/YxaiNh/qOlhweKbuL688fOOSsiCUpmM1R/KEo4FqdCD4ASEREROen1h/v59BOfojQa5jtNXfzDyP/hpmvejN+rj+si49E9sxmqayBxn0tZUMmsiIiIyMnMOcfnn/o8LYPN3NXayceGP8u733YNZ80oS3doIhlNX/VkqO7BEICGGYuIiIic5L75/Dd5ZPcj/GP3Xn4zsJJ3vvUa3rlserrDEsl4SmYzVGfyymy5rsyKiIiInLTu2XQPP9n4E97RN0BF93y8y65n5Vk16Q5LJCtomHGG2jfMuFz3zIqIiEgaOOdoHmwm15tLeV75mPpIPML2nu14zENpoJRJ+ZPSEGV2+9323/H1tV/n0qERVnSV8sWKT3PfW+anOyyRrKFkNkPtG2ase2ZFRETktYq7OB47ugF5Q5EhvvX8t3ho50P0hHoAqApWsaB8AfPL57OgfAGG8bW1X2Nbz7b921XkVRy0zrzyeQS8ASLxCOW55ZgZO3p2sLVnK/PL51OUU0R9Vz1mxoLyBRTmnJh5VBt6G3iy8UlGoiPUFtVSFCgix5PD5OBkJudPpn2ond5QL7VFtQT9QTqGO4jEI1TkVeAzHyOxEZoHmmkeaKYst4yaohqKA8UAhGIhuoa78JgHw/CYh5JACX6vf0wczjl29e1i897NtA+2MxgZ5IcbfsCyUISb2v3c6L2Fn7zvPHL93jHbikhqSmYzVOdAmMKAj4BPb2giIiJyZM45oi6K33MgkWoeaOYzT36GLXu3ML98PmdPOZsLpl1A00ATz7U8B4CZsalzE21DbSyqXMS2nm009DZwZX4Niz15jHg8bCKH+vYNPLb7sf37rvYV8IVoAYV4ac/Jpd5yqe98mb82/pU48YNiK8opoiKvgh29O8aNv66ojgUVCygJlOAzH16PF5/Hh8985PpymZw/mdLcUvweP3tDe2nobaA/3E/MxaguqGZ64XS6hrvY07+HxoFGmvqbaBxopHuk+6jbMOANEIqFjrheaaCU4kAxe/r3EHOxg+q85mVqwVTqiuuoKUwMF+4a6eK5lufoGuk6aN3XReJ8vjXEDbEv8u2/u4Sa8vyjjlVElMxmrMQcs7oqKyIiIqkNRYZ4uvlpntjzBE83P03XSBdxF+f0stNZOGkhAA83PEw0OsLV+TW8PNTB91/8Pne+eCcAQW8eOR4fURdjbqCcZZ4g61vX4olFuKutg7OH90DFXIiOwN4GAPo8xuaiybT5fFzc9TL5U5dCoBD622DneohHGTJjc7CYzWXTcF4fxGNsJY/mkUGuCeWwqLuJlytqGfDnMr+7CWfGxrKpbAyHWde4isF4mGg8TtTFiLkYcdy4bZDj8WEYoXhkf5nXPFTlFDPNk88bXT5zIyNc1LqVklicPYE8BgMFhHx+WvNLaA3kUxkaojg0xM7CUnq8OUyLDJEbj9KZk0/UYwRiUaqG+qjua6c7v4TdhWU0uFx6w2EutVKmhQYBiJsRx2jPyaUhHGFnRz1rmp/BY0aBJ4ezXIDlgzCvp4XqaBSPA0eQleFbue0DV3DG1OITdKaInLyUzGaorsGQhhiLiIic4pxzvNjxIquaVrG9ZzsA4XiYnpEeNndvJhwPU+gv4DBNr/sAABwlSURBVLyCOqblToV4lPXRIf644/d4zUtt3MNXGnZQG90CQJfXz9PVp1M10MmivbvHfBB0gAGccQ1c+XWGfcV4PBCIDkDrRopaX+Ks1g3Q30r/hXfw6+jricQcwRwfc8p8zHB7yO/YyJKWDSxpr4doDMwDuzfDcDdMXw6L3szC1g0w0g8zLwccb2h+ERpegnh0TBvEgUEz2nw+ev0BIl4fRaEh6iIR8p3DAV1eD43+AOXRMFXRGPuuTbtAEUMlc3lh6o30WSHTaaPEDeNzIeaFO8gb6GAop4Ih31Te0L0bf7iFwbxqIp4C8ge6MRcn4gnQ46ulpWAZ1fSyqLeFwqFt+MK99BfUsddflWw1h7k4hX3dFA1txhsdPuj3COWUsDVvEev8b+T+eDmhmGP1SC2feddlnDen4nidMiKnFCWzGaprIMz0Mg01EREROdl1DnfywCsP8NttvyXPl8eyqmVcUnsJs4pncevqW1nVtAqPeagtrMFrht+8lHhyWVk8j4u6Wli09Xn8rn78Ayy/CS78LLRtonz7E1y14wmYchZccBn488HFoep1UFSNNa4hjod72+r41d31bGruwzlHbXmQWZMKmF15EbOnX8VwJMY3fv0KPUMvHnQon8eoq6hl7uQFzJpagAGD4Rg1p+VRmhPhwfpe6tf3cVrVW8kr8LK+vodY3HH6lOs448wclua3U2ghiEfxuAjEYpiLEogPURrrpjzWhycepp8g610V3fEg4ThMsw6q4m10UMxz0XJeHi5jfV8hm/YaI71xPAY+r4dwNJ66jY5Cnt/LcOTAkGIjjhsa7z5kRyU9zPJ1EHHG3ng+O0amUBDKYV51ETVl+fg8xs1zKrhqYfWrjknkVGfOjT90I9MtXbrUrV27Nt1hnBDLvvIoF59eyVevWZjuUEREThlmts45tzTdcWSzieybH9/9ONF4lEtrL8XMJuSYx1vrYCvv+cN76Bzu5NzKJWAe1nVtZDg6jGHkePz8Y95Mrm7eQnF3w9gdVC6A098Cp10OZbPA44OmddCxGbx+qJhLY/EStrUPMGtSAdNK8zAznHNs7xhgJBJnMBTluZ3dNHQNMW9KIau3d/H45nYWTS/hvNkVeAy2dQywrX2AnZ2DRGKJz45La0u55S3zmFQYoHc4wrb2Aba09bOlbYCtbf3s6h4CIMfrIZRMIisLAyybUcbWtn6GIzEWTy/F7/Xwcksf29oHCMdefbK5j99r1JTlU1cepK4iyLwpRbzp9EpK8vx0DoQYjsSIxBztfSN0DISYUpxHWdDPrq4h+kYi1JQFCQa8dCdnlsgP+JhakkdFQQ6haJzGvUPs7h6ibzjK7MoCasrz8Y46/7oGwjR0DbKre4jGvUP4PR6K8nwsqytj4bQSvJ7sPFdF0uVwfbOuzI5j9fZOvvfEduJpSva7BkK6Z1ZEROQwvvzMl+kY7mDp5KV85byvUF1w9Fe44i5OX6iPwegg1cHqtCTDQ5EhPvb4xxgK9/Hz2CTmP/trAEaKa/hz7et53hvnnVtWMzvUCDMuhEXvA28AcvIhWAlVZ0DZzP37c84RisbJnXkhzLwQgIc3tfKpu//CYDhxRbE8mMOZtaVsbu1ndzLZBDBL1P3q+UZyvB6+cPUC3n9O7Zh2icTi7O4eomcozOLppXiSidm0UlhQffA9n+FoHJ/HMIO2vhBtfSMsqC7C5019NTMSi7Ora5CRSHx/TACGEY7F6ewPMRiOEneO0vwc5kwupKIgB7/HQ2vfCM09w0wuyqW6JG/chLGyKHf/8uzKgoPqZlce+WnKuX4vsysLD7tuMODTg5xEJoiS2XH8YUMLz+7sYtH0krQcf1ldGRfPm5yWY4uIiGS6cCxMx3AHSyqX8HL3y9y6+lbuuvQuAJoHm5laMHXcbZ9peYbP/fVzdA53AnBW1Vl8Yskn8Hg84GB++fzjlty+0v0KO3p30DTQxKbOTbQOtnJO9TmU55XzwCsPsKu3ge+2dTI/JwyXfAG8OeTueorL6x/h8ugITDsL3v5DKJuRcv87OgZ48MVmHt7Uxq6uQYbCMaaW5FFXkU//SJQNjb28floxn37zaezuHmJdw17W7OqmrjzI3180i4qCAD6P8frpJZQFc2jvGwGDysLclMfzez3MmlSQsu5QOb4DSWtVcS5Vxan3OXrfR5NQplJdkkd1Sd6r2lZEspeS2XF0D4apLQ/yi4+8Id2hiIiIyCHahtoAeOveTobmvpuvbvoRq5pWsa5tHT/e+GP+6cx/4gNnfGDMdve9fB93rLmDuqI6rl/wQULhPn6y+We854/v2b/OwoqF3LToJs6deu6rii0cC1PfVc8PNvyAVU2r9pdPK5hKhb+QH2/8MXEXZ15BDd/q6uf8gjq4/iHITV7ZPOcmCPVDWz1MPRO8PkYiMba2DdA3EqG9f4SdnUP8+ZV2NjT2YgZn1ZWxclkNxXl+tncMsLt7iJL8HG68cCafvGTu/rlL33t27WFjH33lUkQk0ymZHUfXQJhyPU1YREQkI7UOtAAwZfcaztz2LPfPXcDnVn2O3lAvlfmVfGPdNygOFHNp7aUE/cH9c6ne/tztXDh5KV9tbiT4689CdJhrZ17IE7PfQrH56Qh1c3fXOj7y6Ee4aPpFfHbpZ5leNB1IJKn31t/Lr7b+iuVTlnPN3Gto6m9i78hellcvpyfUw50v3Mmzrc8SjUcp9Af5ZME8zh8eoaq3jcKGZ8HF6S6qpitYwuydq7CiafDeXxxIZPcJFELN2Wxr7+dbj27l8c3tDIVHPXzI4IzqYv7lLfO4amH1Ea96ioicjJTMjqNrMMTpVUXpDkNERERSaO5OTDVTvej9+Pes55Otu/hkaR4XTl7GHfFSPprfyq2rb+XW1bdSV1THHRfcwZee+RLl/kL+9cVHCeKFpdeDP5eStT/hbTue3L/vt+eVce9p5/L9lme56jdXcVntZQT9QVY1raJtqI2FhXX8Zttv+MWWX4yJqyyniL8tns/8gX7O2bGaYrcdJp0OpTNg3tVQWEXZjico62+FK+6Ahe+iz4Lc9+ft3LO6gZhzzJoU5Ky6Morzc/j6w6/g9xpvXTyV82dXUBrMoaIgwLTSvP1XW0VETlVKZsfRNRjWPK8iIiIZqiWZzE6uOR8Wf5CLv38+91RewIL6Zwn0NfKf5bN5/E030xYf4f6X72flH1YSd3Fu7+qjsGg6rLwfSpNDbs/9BOx8EgqnQHgA/3N3cf0Lv+Oqggr+e85yftH4V8yMM/On8oXBTs7d+Rfacwt5unYJswa6KRrq5a+TZ+Aig7x9yzry3cbEvpZcD+d9AooOeTDVshv2L+4dDPP2O59iZ+cg58+poKooly1t/Xz3iW3EHZwzs5xvrVzEZA3/FREZQ8lsCpFYnJ6hiJ4mLCIikqFaexsoj8YIlM+ByfOx5X/Pkqe/C3mlcNW3yH/4Fq566AtQMZcVFa/jluJ+gq31XDHcBdf/HEqmH9hZbhHM+5sDr2deBE3PU/no5/nU+t/zMW8Aj4vhjddDxVxY8T0qdz7Jim2PwqR5MGUm721YBc7BG/8FllwHBZOO+DuEojFuvHcdTT3D3P93Z/OG2RX763qHImzvHOD1mspFRGRcSmZT2DuUmFdM98yKiIhkppahNqbEogeurl50M8TCsPhvYcpCqJwPT30bhrqoWPdTfpBbDMPd8OZ/OziRHc/UJXDd76D1Jfzr7wNfIDHdTd35iflbF7/34PXjyflRPamnnYnFHS/s2cum5j7mTi4kFI3znce2sm7XXr7z7sUHJbIAxfl+ltSUHmuziIicUpTMptCVnCS7vCCQ5khEREQklZZQD7OdD3KCiYJAIVz5tQMr1JwNNfcnlhvXwq9vhIo5cPaNx3agqtfBFV898nopktjhcIz/fmYXz+7s4vndPXQPhg+qn1wU4I5rF3L1649+flwRETlAyWwK+5NZXZkVERHJOM45WuPDnOc/yjlJpy2Fj64BFwfPiX9o0kgkxiP1bXz1oc009Qwza1KQi06bxEWnVbJ4eglb2/sZCse4dP5kAj49xElE5NVSMptC12AIQPfMioiIZKDeUC/DOKbkVRx55X08HiD1EODjpaM/xB3/bzO/39DCcCTGnMoCHvjwcs6eWX7QetPL8k9oHCIipwolsykcuDKrYcYiIiKZpqV/DwBTCqdN+LG3tQ/ww79sp7Y8yIyKIH98qYVNzX1MLgqwqbmPkUiMdyydzhVnVLF8Zjl+74lNoEVETmVKZlPoHgzj9RjFef50hyIiIiKHaOnYCMCUklmveV/haBy/14jEHL97sZk1Dd1Ul+RxWlUh586uoCCQ+KgUjcX5n7WNfOn39TgcI5HEA59K8v2cPaOMzoEwy2eWc/MVpzNrUsFrjktERI5MyWwKXYMhSvNz8OhR+CIiIhmnpSsxx2zVpAWveh9tfSN857GtPLBmDwGfB7/PQ89QhKJcH30jUQD8XmPhtBLmVBbw1PZO9nQP75/31WPGjo4BFtWU6L5XEZE0UTKbQudAmArdLysiIpKRWvsaCMTjlFWe8aq239LWzzV3rmY4HOPaM6eR6/fSOxxhxaJqLpw7iVA0zgt7enhiczvrd/fw0MZWZlcWcMuV87ls/uT9X3ZPKtTtSCIi6aRkNoXuwTBlepKxiIhIxonFY9T37WJKLI4VH/s9s92DYW64Zw0Bn5fffvRcZqYYEpzr97J8ZjnLD3lwk4iIZBY9lSCFroGQ5pgVERHJMOGn7+QzP1zAc+EOVkT9xzzNjnOOj/9sPW19Ie56/5kpE1kREckeujKbQtdAWHPMioiIZJj/2PQjHsnz8+mcGq573buOefs/b+lg1bZObvub+SyuKT0BEYqIyERSMnuIUDRGfyiqZFZERCSDxHp28Xsb5k3BmVx37e+PeXvnHN/40ytMK83jPWfXnoAIRURkoimZPUT3YHKOWQ0zFhERyRhrX7ibTp+XK+dec0zb9Y1E2NjYS31LHxub+vjatQvJ8ekuKxGRk0HGJbNmdjnwbcAL/Mg599WJPH7XQCKZ1QOgRETkZHekPtfMAsBPgTOBLuBdzrmGiY4T4KHdj5Hv4IJ5Rz+8+M+vtPPZX26gvT8EwKxJQd62eOqJClFERCZYRiWzZuYF/hO4FGgE1pjZg865+omKoSt5ZVZT84iIyMnsKPvcG4C9zrnZZrYSuB049ptVX6PIcA+PRPfyxuB08vz5464XjcV5YO0e7n16F+39IboHw8ypLODf3v46CnP9zJwUxOfVVVkRkZNFRiWzwFnANufcDgAz+zmwAjhhyWzXQIi/++na/a97hiKAhhmLiMhJ72j63BXAbcnlXwLfNTNzzrkTGdgrO9fzz498YP/rsMXpy/HQ3bGQt33vqXG36xwIsad7mEXTS7jydVXUlQd53/Jacv3H9tRjERHJDpmWzE4F9ox63QicPXoFM/sw8GGAmpqa13xAM6MgcKAZCgI+FteUML007zXvW0REJIMdsc8dvY5zLmpmvUA50Dl6pePeN3u8BDiQgAacl7OH8wjlXkWBjf/RpTQ/h3++Yh6Xn1GFmb3mOEREJLNlWjJ7RM65HwI/BFi6dOlr/ma4LJjDvTcc2neLiIjI0TreffPc2oXc/+HnX3NcIiJycsu0G0eagOmjXk9LlomIiMjxdTR97v51zMwHFJN4EJSIiEjaZVoyuwaYY2YzzCwHWAk8mOaYRERETkZH0+c+CFyXXL4WePxE3y8rIiJytDJqmHHyfpx/AB4mMU3A3c65TWkOS0RE5KQzXp9rZl8E1jrnHgR+DNxrZtuAbhIJr4iISEbIqGQWwDn3R+CP6Y5DRETkZJeqz3XO3TpqeQR4x0THJSIicjQybZixiIiIiIiIyBEpmRUREREREZGso2RWREREREREso6SWREREREREck6SmZFREREREQk6yiZFRERERERkayjZFZERERERESyjpJZERERERERyTpKZkVERERERCTrmHMu3TG8ambWAew6TrurADqP074mkuKeeNkau+KeeNka+6kcd61zbtLxCOZUpb4ZUNzpkK2xK+6Jl62xn8pxj9s3Z3UyezyZ2Vrn3NJ0x3GsFPfEy9bYFffEy9bYFbdkimz9myruiZetsSvuiZetsSvu1DTMWERERERERLKOklkRERERERHJOkpmD/hhugN4lRT3xMvW2BX3xMvW2BW3ZIps/Zsq7omXrbEr7omXrbEr7hR0z6yIiIiIiIhkHV2ZFRERERERkayjZFZERERERESyzimfzJrZ5Wb2ipltM7Ob0x3PeMxsupk9YWb1ZrbJzP4xWX6bmTWZ2QvJnyvTHWsqZtZgZi8lY1ybLCszs0fMbGvy39J0xzmamZ02ql1fMLM+M/tEpra5md1tZu1mtnFUWco2toTvJM/7DWa2JMPi/pqZbU7G9mszK0mW15nZ8Ki2/36GxT3uuWFmn0u29ytm9ub0RL0/llSxPzAq7gYzeyFZnkltPt77YMaf53Js1DdPDPXNJ5765oyIW33ziY07vX2zc+6U/QG8wHZgJpADvAjMT3dc48Q6BViSXC4EtgDzgduAT6c7vqOIvwGoOKTsDuDm5PLNwO3pjvMI50orUJupbQ5cACwBNh6pjYErgYcAA5YDz2ZY3JcBvuTy7aPirhu9Xga2d8pzI/l/9UUgAMxIvu94Myn2Q+q/AdyagW0+3vtgxp/n+jmmv7P65omLX33ziY9RfXP641bffGLjTmvffKpfmT0L2Oac2+GcCwM/B1akOaaUnHMtzrnnk8v9wMvA1PRG9ZqtAO5JLt8DvDWNsRzJxcB259yudAcyHufcX4DuQ4rHa+MVwE9dwjNAiZlNmZhID5Yqbufcn5xz0eTLZ4BpEx7YEYzT3uNZAfzcORdyzu0EtpF4/0mLw8VuZga8E/jZhAZ1FA7zPpjx57kcE/XN6aW++ThS3zyx1DdPvHT3zad6MjsV2DPqdSNZ0AmZWR2wGHg2WfQPycv0d2facKBRHPAnM1tnZh9Olk12zrUkl1uByekJ7ais5OA3kGxocxi/jbPp3L+exDd4+8wws/Vm9qSZnZ+uoA4j1bmRTe19PtDmnNs6qizj2vyQ98GT4TyXA7Ly76a+OS3UN6eP+uaJpb55HKd6Mpt1zKwA+BXwCedcH3AnMAtYBLSQGIKQic5zzi0BrgA+amYXjK50iXEHGTlPlJnlAFcDv0gWZUubHyST23g8ZnYLEAXuSxa1ADXOucXAp4D7zawoXfGlkJXnxiHezcEfDjOuzVO8D+6Xjee5ZD/1zRNPfXP6qG9OC/XN4zjVk9kmYPqo19OSZRnJzPwkTpL7nHP/C+Cca3POxZxzceAu0jg84nCcc03Jf9uBX5OIs23fsILkv+3pi/CwrgCed861Qfa0edJ4bZzx576ZfQC4Cnhv8k2Q5FCgruTyOhL3t8xNW5CHOMy5kfHtDWBmPuDtwAP7yjKtzVO9D5LF57mklFV/N/XNaaO+OQ3UN0889c2Hd6ons2uAOWY2I/kN30rgwTTHlFJyrPyPgZedc/8+qnz0GPO3ARsP3TbdzCxoZoX7lkk8QGAjiba+LrnadcBv0xPhER30bVg2tPko47Xxg8D7k0+UWw70jhoKknZmdjnwWeBq59zQqPJJZuZNLs8E5gA70hPlWIc5Nx4EVppZwMxmkIj7uYmO7yhcAmx2zjXuK8ikNh/vfZAsPc9lXOqbJ4D65rTKyvcs9c1po775cFwGPAUrnT8knqi1hcQ3GrekO57DxHkeicvzG4AXkj9XAvcCLyXLHwSmpDvWFLHPJPG0uBeBTfvaGSgHHgO2Ao8CZemONUXsQaALKB5VlpFtTqJTbwEiJO4/uGG8NibxBLn/TJ73LwFLMyzubSTup9h3rn8/ue41yXPoBeB54G8yLO5xzw3glmR7vwJckWnnSrL8v4CPHLJuJrX5eO+DGX+e6+eY/9bqm0987OqbJyZW9c3pj1t984mNO619syV3KiIiIiIiIpI1TvVhxiIiIiIiIpKFlMyKiIiIiIhI1lEyKyIiIiIiIllHyayIiIiIiIhkHSWzIiIiIiIiknWUzIqIiIiIHEdmVmdmx2WuWzP7ZXIu0aNd/ytmtsfMBg4pD5jZA2a2zcyeNbO6UXWfS5a/YmZvTpblmNlfzMx3PH4PkRNByayIiIiISAYyswWA1zm34xg2+x1wVoryG4C9zrnZwDeB25PHmA+sBBYAlwPfMzOvcy5MYp7Qd72GX0HkhFIyKyIiIiInDTN7n5k9Z2YvmNkPzMxrZsvMbIOZ5ZpZ0Mw2mdkZZlZgZo+Z2fNm9pKZrUjuo87MNpvZf5nZFjO7z8wuMbOnzGyrmZ2VXO82M7vXzJ5Oln8oRTxeM/uama1JxnBjsnxK8srnC2a20czOT/HrvBf4bXL92uQxKszMY2Z/NbPLDt3AOfeMc64lxb5WAPckl38JXGxmliz/uXMu5JzbCWzjQDL8m2QMIhlJwwZERERE5KRgZvNIXEk81zkXMbPvAe91zv3UzB4EvgzkAf/tnNuYHEL7Nudcn5lVAM8k1wOYDbwDuB5YA7wHOA+4Gvhn4K3J9RYCy4EgsN7M/nBIWDcAvc65ZWYWAJ4ysz8Bbwceds59xcy8QH6KX+lc4GcAzrldZnY7cCfwHFDvnPvTMTTPVGBPcl9RM+sFypPlz4xarzFZBrARWHYMxxCZUEpmRURERORkcTFwJrAmcdGRPKA9WfdFEknpCPDxZJkB/2pmFwBxEknc5GTdTufcSwBmtgl4zDnnzOwloG7UMX/rnBsGhs3sCRJXNV8YVX8ZsNDMrk2+LgbmJGO528z8wG+cc6O32WcK0LHvhXPuR2b2DuAjwKKjbpVXyTkXM7OwmRU65/pP9PFEjpWSWRERERE5WRhwj3PucynqyoECwA/kAoMkhtBOAs5MXsltSNYBhEZtGx/1Os7Bn6HdIcc59LUBH3POPTwm2EQS/Rbgv8zs351zPz1kleFR8WBm+cC05MsC4FgSzCZgOtCYvCJdDHSNKt9nWrJsnwCJLwBEMo7umRURERGRk8VjwLVmVglgZmVmVpus+wHwf4H7SD78iERC155MZN8I1B66w6OwInkvbjlwEYkrrqM9DPx98gosZjY3ed9uLdDmnLsL+BGwJMW+XyYx3Hmf25Px3wrcdYxxPghcl1y+FnjcOeeS5SuTTzueQeKq8XPJWMuBTudc5BiPJTIhdGVWRERERE4Kzrl6M/sX4E9m5gEiwEfN7EIg4py7P3l/6mozexOJxPB3yaHDa4HNr+KwG4AngArgS8655tHT3pBIVOuA55MPXOogcb/tRcBnzCwCDADvT7HvPyTXezT5OywjcT9wzMyuMbMPOud+MnoDM7uDxP29+WbWCPzIOXcb8GPgXjPbBnSTeIIxzrlNZvY/QD0QBT7qnIsld/fGZAwiGckSX8iIiIiIiMixMLPbgAHn3NdP0P7zSCTK545KMCeMmf0vcLNzbstEH1vkaGiYsYiIiIhIBko+WOrzHHi68IQxsxwSD6ZSIisZS1dmRUREREREJOvoyqyIiIiIiIhkHSWzIiIiIiIiknWUzIqIiIiIiEjWUTIrIiIiIiIiWUfJrIiIiIiIiGSd/w8y08MF2iSKnwAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 1152x432 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6wAAAGeCAYAAACQFozLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXhU5d3/8fd3JslMyIQk7PsqmxCJEBBFIChFXApVa13wUepW7VP71LZWbf1Z6aOtVqxY62NrrQpKXaqt+4K1IogLgoJsouz7EiEhkzBJJrl/f8xkDPsikxkyn9d15SJzzn3O+Z5ByXxyL8ecc4iIiIiIiIgkG0+iCxARERERERHZFwVWERERERERSUoKrCIiIiIiIpKUFFhFREREREQkKSmwioiIiIiISFJSYBUREREREZGkpMAqIiIiIiIiSUmBVURE5AiZWVsze8nMNpqZM7Mue+z3mdmjZrbTzDab2U8TU2l8mdnDZrbMzGrNbMI+9t8Qvf+d0ffDl4AyRUTkGKTAKiIicuRqgTeA8/ez/3agB9AZGAn8wszGNExpDWoB8EPgkz13mNkZwM3A6UTeh27AxAatTkREjlkKrCIi8o2YWTsze97MtpnZKjP7cXR7MzNbb2bfjr4OmNlyM7ss+vpxM/uzmb1lZmVm9q6ZdY7um2hmD0S/TzezcjO7J/o608xC0fP7zexJM/vKzErM7GMzax1t1zV6zrLoNf5kZk8ezXt3zm1xzv0f8PF+mlwO/K9zbodzbinwV2DCvhqa2RozGxj9fny0x7Zv9PWVZvZC9Pvbzewf0fsuM7OFZtbTzG4xs61mts7MRtc77/fNbGm07Uoz+0G9fTeZ2UdmlhZ9fZ2ZLTYz/2G+Dw86594GQvt5D/7mnFvsnNsB/O/+3gMREZE9KbCKiMgRMzMP8DKRHrb2RHrRfmJmZzjntgNXAH81s1bAfcB859zUeqcYTyTAtADmA9Oi298FiqLfDwI2A8Ojr08GlkXPfzmQA3QEmgPXArui7f4OzIue+3+jbfd3H52igXd/X5ccwXuTB7SNvjd1FgB993NI/XseAazk63seEd1f59vAE0Ae8CnwJpGf6e2B3wB/qdd2K3AO0BT4PnCfmQ2I7rsHqARuNbMewG+BS51zoeg9HOg9ufkQ34q++3gPWptZ80M8XkREUlhaogsQEZFj2iCgpXPuN9HXK83sr8BFwJvOuelm9g/gbaAZcMIex7/qnJsJYGa/AkrNrCPwAdAjGmqGA38DfmhmAXYPb9VEgupxzrnPiARUzKxTtLZRzrlKYKaZvby/m3DOrQVyv8kbsQ+B6J+l9baVAtn7af8uMA64FxgG/A4YBTxE5J4n12s7yzn3JkD0/T0PuMs5V2NmTwMPm1muc67EOfdq/WuY2fTo+T9xztVGe7w/AS4Efu+c+7SusXPuaLwnAfZ+DyDyPnx1FM4vIiKNmHpYRUTkm+gMtKvf8wb8Emhdr83DQD/gcefcngFlXd03zrkgsB1o55zbBcwlEtSGEwlz7wND2T2wPkGkd/Fpiyx89HszSwfaATucc+X1rrXmqNzxoQtG/2xab1tToGw/7d8FhplZW8ALPAsMtchCTjlEeqDrbKn3/S6g2DlXU+81RAOzmZ1pZh+a2fbo389ZRHqdAXDOrQbeAboADx767R2yIHu/B7D/90FERCRGgVVERL6JdcAq51xuva9s59xZAGbmJRJYpxLpIT1uj+M71n0T7T1tBmyMbnoXOA04kcgc0XeBM4DBwEwA51y1c26ic+544BQiQ18vAzYBeWaWVe9anfZ3E9EhwcEDfI0/3DcmOl9zE9C/3ub+wOL9tF8OVADXAzOdczuJDIW+BnjPOVd7uDVYZDXe54FJQOtoj+lrgNVrczaRYdZvExkiXP/4A70nvzzEMhaz93uwZR+/vBAREdmLAquIiHwTc4Cy6OI9mWbmNbN+ZjYouv+XgCMyl/UeYGo0xNY5y8xONbMMIvNMP3TO1fW6vkskfC5xzlUBM4CriATkbQBmNtLM8qPn3ElkiHCtc24NkR7aiWaWYWanEpn3uU/OubXOucABvqbt79joAkV1j2nx7bFg0VQi80PzzKw3cDXw+AHez3eBH/F1D/KMPV4froxobduAsJmdCdRfkKkF8AiR9/Vy4Ntmdlbd/oO8J7+td56M6H0bkG6RxbDqPmNMBa40s+PNLBe49SDvgYiISIwCq4iIHLHoMNRzgAJgFVBMJADlWGTF258Cl0Xb3U0kvNZfrOfvwK+JDAUeCFxab9/7QCbR3lRgCZFVaGfWa9MGeI5IWF1KJNg9Ed13CXBS9Ny/JhKc4mEXXw///Zyvh+QSve4KIsOR3wXucc69cYBzvUtkbufM/bw+LM65MuDHRIYX7yDynrxUr8nDwIvOudeiPZ5XAo8cwYJI04nc9ynRc+4iumBU9H5/T2TY8Voi78Wvj+R+REQk9ZhzLtE1iIhICjKzx4H1zrlbG+h6txNZnOnSg7UVERGR5KAeVhEREREREUlKCqwiIiIiIiKSlDQkWERERERERJKSelhFREREREQkKSmwioiIiIiISFJSYBUREREREZGkpMAqIiIiIiIiSUmBVURERERERJKSAquIiIiIiIgkJQVWERERERERSUoKrCIiIiIiIpKUFFhFREREREQkKSmwioiIiIiISFJSYBUREREREZGkpMAqIiIiIiIiSUmBVURERERERJKSAquIiIiIiIgkJQVWERERERERSUoKrCIiIiIiIpKUFFhFREREREQkKSmwioiIiIiISFJSYBUREREREZGkpMAqIiIiIiIiSUmBVURERERERJKSAquIiIiIiIgkJQVWERERERERSUoKrCIiIiIiIpKUFFhFREREREQkKSmwioiIiIiISFJSYBUREREREZGkpMAqIiIiIiIiSUmBVURERERERJJSWqILOBQtWrRwXbp0SXQZIiLSSMybN6/YOdcy0XUcy/SzWUREjqb9/Ww+JgJrly5dmDt3bqLLEBGRRsLM1iS6hmOdfjaLiMjRtL+fzRoSLCIiIiIiIklJgVVERERERESSkgKriIiIiIiIJKVjYg6riIiIiIg0DtXV1axfv55QKJToUiQB/H4/HTp0ID09/ZDaK7CKiIiIiEiDWb9+PdnZ2XTp0gUzS3Q50oCcc3z11VesX7+erl27HtIxGhIsIiIiIiINJhQK0bx5c4XVFGRmNG/e/LB61xVYRURERESkQSmspq7D/btXYBURERERkZTi9XopKCiIfd11111H5bxdunQhPz+fgoIC8vPzefHFF4/KeetMnTqVfv36kZ+fz4knnsikSZOO6Dxz587lxz/+MQCPP/44Zsa///3v2P4XXngBM+O5554D4KqrrmLJkiXf/AaOgOawioiIiIhISsnMzGT+/PlxOfc777xDixYtWLZsGaNHj2bcuHGHfGxNTQ1er3ef+15//XUmT57M9OnTadeuHZWVlUydOvWIaiwsLKSwsDD2Oj8/n6effppRo0YB8NRTT9G/f//Y/kceeeSIrnM0qIdVRESkETOzR81sq5kt2s9+M7M/mtlyM/vMzAY0dI0iIsmiS5cu3HLLLRQUFFBYWMgnn3zCGWecQffu3fnzn/8MwIwZMxg+fDhnn302vXr14tprr6W2tnavc+3cuZO8vLzY6yeffJLBgwdTUFDAD37wA2pqagAIBAL87Gc/o3///nzwwQcEAgF+9atf0b9/f4YMGcKWLVsA+N3vfsekSZNo164dAD6fj6uvvhqA+fPnM2TIEE444QTOPfdcduzYAUBRURE33XQTgwcPpmfPnsyaNSt2D+ecc06stmHDhjFnzhyqq6sJBoMsX76cgoKC2P6ioiLmzp3LmjVr6NGjB8XFxdTW1jJs2DCmT59+1N7/fVEPq4iISOP2OPAnYH+/hj8T6BH9Ogl4KPqniEjcTXx5MUs27jyq5zy+XVN+/e2+B2yza9eu3QLZLbfcwoUXXghAp06dmD9/PjfccAMTJkxg9uzZhEIh+vXrx7XXXgvAnDlzWLJkCZ07d2bMmDH885//5Lvf/S4AI0eOxDnHypUrefbZZwFYunQpzzzzDLNnzyY9PZ0f/vCHTJs2jcsuu4zy8nJOOukk7r33XgDKy8sZMmQId955J7/4xS/461//yq233sqiRYsYOHDgPu/nsssu44EHHmDEiBHcdtttTJw4kcmTJwMQDoeZM2cOr732GhMnTtxt6G8dM2PUqFG8+eablJaWMnbsWFatWrVXu86dO3PTTTdx3XXXMXjwYI4//nhGjx59wPf6m1JgFRFpxEp3VfPJ2h2JLuOo8JoxvGfLRJdxzHHOzTSzLgdoMg6Y6pxzwIdmlmtmbZ1zm+Jd25zF77B09Xt0Ou4HdG8RoFPzJvG+pIgIcOAhwWPHjgUiw2SDwSDZ2dlkZ2fj8/koKSkBYPDgwXTr1g2Aiy++mPfeey8WWOuGBK9YsYLTTz+doqIi3n77bebNm8egQYOASGBu1aoVEJlPe/7558eun5GREev9HDhwIG+99dYB76W0tJSSkhJGjBgBwOWXX84FF1wQ23/eeefFzrV69er9nueiiy7ij3/8I6Wlpdx777389re/3We7q666in/84x/8+c9/jtuw6voUWEVEGrF7py9j6gdrEl3GURHwpbFo4hmJLqMxag+sq/d6fXTbXoHVzK4BroFID8Q39cKcybzsWUloVl/aNMtl1i9O+8bnFJFjy8F6QhPB5/MB4PF4Yt/XvQ6Hw8DeK93ua+Xb7t2707p1a5YsWYJzjssvv5zf/e53e7Xz+/27zVtNT0+Pnc/r9cau2bdvX+bNm8dppx3ev5V191D/XPsyePBgFi5cSJMmTejZs+d+21VUVLB+/XqAWKCPJwVWEZFGrDhYScdmmfzxohMTXco35vXoEQiJ5px7GHgYoLCw0H3T83Vr1QmKV3JdoYc/zt3F5tIQbXL837hOEZF4mzNnDqtWraJz584888wzXHPNNXu12bp1a6xNIBBg3Lhx3HDDDbRq1Yrt27dTVlZG586dD/mat9xyCzfeeCOvvvoqbdq0oaqqiqlTp3LVVVeRl5fHrFmzGDZsGE888USst/Vw3XXXXfj9B/53+KabbmL8+PF07tyZq6++mldeeeWIrnWoFFhFRBqxslCYFgEfJ3bKO3hjSVUbgI71XneIbou7ts07QzGc2GoH0IpP1+7gzPy2DXFpEUlxe85hHTNmzGE92mbQoEH86Ec/Yvny5YwcOZJzzz03tm/kyJF4vV6qq6u56667aN26Na1bt+aOO+5g9OjR1NbWkp6ezoMPPnhYgfWss85iy5YtjBo1CuccZsYVV1wBwJQpU7j22mupqKigW7duPPbYYwc93756hc8888wDHvPuu+/y8ccfM3v2bLxeL88//zyPPfYY3//+9w/5Pg6XRaasJLfCwkI3d+7cRJchInLM+c6Ds8n2p/HElVpDpz4zm+ecKzx4y8YhOof1Fedcv33sOxv4EXAWkcWW/uicG3ywcx6Nn82zP3+Oaz+ayGNdx3PJ9P5cfnJnfnX28d/onCKS/JYuXUqfPn0SXcYRmzFjBpMmTYp7z2I8Pf/887z00ktMmTIlIdff138D+/vZrB5WEZFGrCxUTfvczESXIQlkZk8BRUALM1sP/BpIB3DO/Rl4jUhYXQ5UAPH7NfkecvOOA6AsuJ789sP5ZG1JQ11aRCRlvfTSS/zqV7/i0UcfTXQph0SBVUSkEQtWhgn49E99KnPOXXyQ/Q747wYqZzc5TVoAUBLcxIBOuUz5YA1V4Voy0vSYeBFJXkVFRRQVFSW6jCM2duzY2ErIxwL9RBARacSCoTDZfgVWSU65vlwASiu2cmKnPKrCtSzZdHSfxygiIsc2BVYRkUaqptZRXlVDQIFVklRWehZpGCWVJQyILgz2yZrG8dxgERE5OhRYRUQaqWBl5FlrGhIsycrMyPFkUFJdQZvsDNrl+Jm/TvNYRUTkawqsIiKNVFmoGoCm/vQEVyKyf7npWZR6gOBm2uZm8lV5ZaJLEhGRJKLAKiLSSMV6WDUkWJJYTkYuJR4PlKzDn+4hVF2b6JJEJAVs2bKFSy65hG7dujFw4EBOPvlk/vWvfyW6LIqKiujVqxf9+/dn6NChLFu2bJ/trrrqKpYsWXLY5y4s/PqpMXPnzo0tHlVRUcH48ePJz8+nX79+nHrqqQSDQQC8Xi8FBQX079+fAQMG8P777x/wOiUlJfzf//3fYdV2IAqsIiKNVFkoEli16JIks9wmzSnxeqB0Hf40L6HqmkSXJCKNnHOO73znOwwfPpyVK1cyb948nn76adavX5/o0gCYNm0aCxYs4PLLL+fGG2/ca39NTQ2PPPIIxx9/6M+trqmJ/Nu6detWXn/99b3233///bRu3ZqFCxeyaNEi/va3v5GeHhmhlZmZyfz581mwYAG/+93vuOWWWw54LQVWERE5JMGQ5rBK8svNakOpxwMla/GnK7CKSPz95z//ISMjg2uvvTa2rXPnzlx//fWsXr2aYcOGMWDAgN16E2fMmMGIESMYN24c3bp14+abb2batGkMHjyY/Px8VqxYAcCECRO47rrrGDJkCN26dWPGjBlcccUV9OnThwkTJsSud91111FYWEjfvn359a9/vc86hw8fzvLlywEIBAL87Gc/o3///nzwwQcUFRUxd+5cAJ566qlYz+hNN90UO37PYwBuvPFG7rzzzr2utWnTJtq3bx973atXL3w+317tdu7cSV5eXuz1Pffcw6BBgzjhhBNi93HzzTezYsUKCgoK9hm4D5c+xYiINFJllephleSX06QFJV4vrmQtPg0JFkk9r98Mmxce3XO2yYcz79rv7sWLFzNgwIB97mvVqhVvvfUWfr+fL7/8kosvvjgWDBcsWMDSpUtp1qwZ3bp146qrrmLOnDncf//9PPDAA0yePBmAHTt28MEHH/DSSy8xduxYZs+ezSOPPMKgQYOYP38+BQUF3HnnnTRr1oyamhpOP/10PvvsM0444YTdann55ZfJz88HoLy8nJNOOol77713tzYbN27kpptuYt68eeTl5TF69GheeOEFvvOd7+zzmLqhz++88w7Z2dmx7VdccQWjR4/mueee4/TTT+fyyy+nR48eAOzatYuCggJCoRCbNm3iP//5DwDTp0/nyy+/ZM6cOTjnGDt2LDNnzuSuu+5i0aJFzJ8//5D+ug5GPawiIo1U3aJL2Vp0SZJYri+XajN2RXtYK8MKrCLSsP77v/+b/v37M2jQIKqrq7n66qvJz8/nggsu2G2e6KBBg2jbti0+n4/u3bszevRoAPLz81m9enWs3be//W3MjPz8fFq3bk1+fj4ej4e+ffvG2j377LMMGDCAE088kcWLF+92nfHjx1NQUMDs2bOZNGkSEJlHev755+9V+8cff0xRUREtW7YkLS2N8ePHM3PmzAMec+utt3LHHXfstq2goICVK1dy4403sn37dgYNGsTSpUuBr4cEf/7557zxxhtcdtllOOeYPn0606dP58QTT2TAgAF8/vnnfPnll0fwN3Bg+rW7iEgjpSHBcizI9eUCUFK2Hl+uh0oNCRZJLQfoCY2Xvn378vzzz8deP/jggxQXF1NYWMh9991H69atWbBgAbW1tfj9/li7+kNkPR5P7LXH4yEcDu/Vrn6b+u1WrVrFpEmT+Pjjj8nLy2PChAmEQqFYu2nTpu22OBKA3+/H6/Ue1n3u75jTTjuNW2+9lQ8//HC37YFAgPPOO4/zzjsPj8fDa6+9Rp8+fXZrc/LJJ1NcXMy2bdtwznHLLbfwgx/8YLc29cP70aAeVhGRRqosFMZj0CTj8H7AiTSkHF8OACXV5ZE5rGEFVhGJr9NOO41QKMRDDz0U21ZRUQFAaWkpbdu2xePx8MQTT8QWKzqadu7cSVZWFjk5OWzZsmWfiyAdqsGDB/Puu+9SXFxMTU0NTz31FCNGjDjocbfeeiu///3vY69nz57Njh07AKiqqmLJkiV07tx5r+M+//xzampqaN68OWeccQaPPvpobDXhDRs2sHXrVrKzsykrKzvie9qTfu0uItJIBSvDBHxpmFmiSxHZr1gPq6vEn+alusZRU+vwevTfrYjEh5nxwgsvcMMNN/D73/+eli1bkpWVxd13382AAQM4//zzmTp1KmPGjCErK+uoX79///6ceOKJ9O7dm44dOzJ06NAjPlfbtm256667GDlyJM45zj77bMaNG3fQ48466yxatmwZe71ixQquu+46nHPU1tZy9tlnx4YT181hhcgKy1OmTMHr9TJ69GiWLl3KySefDER6aJ988km6d+/O0KFD6devH2eeeSb33HPPEd8fgDnnvtEJGkJhYaGrm+wsIiKH5mfPLuDDlV8x++bTEl1K0jGzec65woO3lP05Wj+bV5Ss4Dsvfofff1XG2oFv87vXP2fxxDPI0lB2kUZr6dKlew01ldSyr/8G9vezWUOCRUQaqbJQtVYIlqQXGxJMGH9a5GOJHm0jIiJ1FFhFRBqpuiHBIsksFlg9RpO0yArBIa0ULCIiUQqsIiKNVFkorB5WSXrpnnQCngxKPV6aeCKPYtJKwSIiUkeBVUSkkQpWhgnoGaxyDMjx+inxesi0KgBC1ephFRGRCAVWEZFGSnNY5ViRm9aEEo+HTIv0sOrRNiIiUkeBVUSkkSoLhcnWHFY5BuSmZ7HT4yGTaGDVkGAREYlSYBURaYSqwrVUhmvVwyrHhKbp2ZR6PfijQ4IrNSRYROIsEAgkuoSY22+/nfbt21NQUEC/fv146aWX9tnuz3/+M1OnTj3sczdp0oStW7fGttW/9zvvvJO+fftywgknUFBQwEcffQRAUVERvXr1oqCggD59+vDwww8f9FqTJ0+moqLisOo7FPokIyLSCAUrwwBaJViOCZlpfkJm+Kmbw6oeVhFJLTfccAM///nPWbp0KcOGDWPr1q14PF/3LYbDYa699trDOmc4HPks0KJFC+69917uvvvu3fZ/8MEHvPLKK3zyySf4fD6Ki4upqqqK7Z82bRqFhYVs376d7t27M2HCBDIyMvZ7vcmTJ3PppZfSpEmTw6rzYNTDKiLSCAVD0cCqRZfkGJDh9VNlhq8usGoOq4g0kBkzZlBUVMR3v/tdevfuzfjx43HO8cYbb3DBBRfs1u6cc84BIj2UN9xwA3379uX0009n27ZtAMyfP58hQ4ZwwgkncO6557Jjxw62bt3KwIEDAViwYAFmxtq1awHo3r37Xj2Sffr0IS0tjeLiYoqKivjJT35CYWEh999/P7fffjuTJk3a77WAvY4BuOKKK3jmmWfYvn37btfatGkTLVq0wOfzAZFg265du73eo2AwSFZWFl6vF4Dp06dz8sknM2DAAC644AKCwSB//OMf2bhxIyNHjmTkyJHf4G9kb/rVu4hII7QzFJkLqCHBcizwp2dSGQus6VolWCSF3D3nbj7f/vlRPWfvZr25afBNh9z+008/ZfHixbRr146hQ4cye/ZsRo0axTXXXEN5eTlZWVk888wzXHTRRQCUl5dTWFjIfffdx29+8xsmTpzIn/70Jy677DIeeOABRowYwW233cbEiROZPHkyoVCInTt3MmvWLAoLC5k1axannnoqrVq12qs38qOPPsLj8dCyZUsAqqqqmDt3LhAZ3ltnf9fa1zGBQIArrriC+++/n4kTJ8bOMXr0aH7zm9/Qs2dPRo0axYUXXsiIESNi+8ePH4/P5+PLL79k8uTJeL1eiouLueOOO/j3v/9NVlYWd999N3/4wx+47bbb+MMf/sA777xDixYtDuNv6+DUwyoi0gjVDQnWoktyLMhIa0LIjPTaEKDnsIpIwxo8eDAdOnTA4/FQUFDA6tWrSUtLY8yYMbz88suEw2FeffVVxo0bB4DH4+HCCy8E4NJLL+W9996jtLSUkpKSWOC7/PLLmTlzJgCnnHIKs2fPZubMmfzyl79k5syZzJo1i2HDhsVquO+++ygoKODnP/85zzzzDGYGELtOfQe61v6O+fGPf8yUKVMoKyuLbQsEAsybN4+HH36Yli1bcuGFF/L444/H9k+bNo3PPvuMtWvXMmnSJNasWcOHH37IkiVLGDp0KAUFBUyZMoU1a9Yc0ft+qOL6ScbMbgCuAhywEPg+0BZ4GmgOzAP+yzlXtd+TiIjIYSuLDgnO1pBgOQb405vgzLDaXUA2obB6WEVSxeH0hMZL3ZBYAK/XG5v7edFFF/GnP/2JZs2aUVhYSHZ29j6PrwuX+zN8+HBmzZrFmjVrGDduHHfffTdmxtlnnx1rUzeHdU9ZWVmHfT/7OiY3N5dLLrmEBx98cLftXq+XoqIiioqKyM/PZ8qUKUyYMGG3Ni1btmTAgAF89NFHZGZm8q1vfYunnnrqsOs6UnHrYTWz9sCPgULnXD/AC1wE3A3c55w7DtgBXBmvGkREUlWwMjIkOKAhwXIMyEiPfLiqqYnM5dKiSyKSDEaMGMEnn3zCX//619hwYIDa2lqee+45AP7+979z6qmnkpOTQ15eHrNmzQLgiSeeiPWADhs2jCeffJIePXrg8Xho1qwZr732GqeeeuoR1XWgax3IT3/6U/7yl7/EAvmyZcv48ssvY/vnz59P586d9zquoqKCTz/9lO7duzNkyBBmz57N8uXLgcjw6C+++AKA7Ozs3Xpwj5Z4f5JJAzLNrBpoAmwCTgMuie6fAtwOPBTnOkRE9sk5x4wvtsUWKWosPlwRWVhBc1jlWODPiATW6upyMrwezWEVkaTg9Xo555xzePzxx5kyZUpse1ZWFnPmzOGOO+6gVatWPPPMMwBMmTKFa6+9loqKCrp168Zjjz0GQJcuXXDOMXz4cABOPfVU1q9fT15e3hHXtr9rHUiLFi0499xzue+++4DIYkrXX389JSUlpKWlcdxxx+32+Jrx48eTmZlJZWUlEyZMiC0e9fjjj3PxxRdTWVkJwB133EHPnj255pprGDNmDO3ateOdd9454nvbkznnjtrJ9jq52f8AdwK7gOnA/wAfRntXMbOOwOvRHtg9j70GuAagU6dOA+M9NlpEUtOCdSWMe3B2osuIi6wML5/eNg1z1CQAACAASURBVJqMNC1XsCczm+ecK0x0HceywsJCV7eoxzf1r2XPcduHE3mjw3mMmXUK5w/owO1j+x6Vc4tI8lm6dCl9+vRJdBlHLBAIEAwGE13GMW1f/w3s72dz3H71bmZ5wDigK1AC/AMYc6jHO+ceBh6GyA/FeNQoIrK9PDKF/k+XnEjvNvuem3KsymuSobAqxwR/emSVzMrqCvzpXir1WBsREYmK51ixUcAq59w2ADP7JzAUyDWzNOdcGOgAbIhjDSIiB1QWXU23d5umHNcqkOBqRFJTRlpkwZPK8C786RoSLCLJTb2rDSuev3pfCwwxsyYWWTrrdGAJ8A7w3Wiby4EX41iDiMgBlel5pSIJ5/f6gWgPa5p6WEVE5GtxC6zOuY+A54BPiDzSxkNkiO9NwE/NbDmRR9v8LV41iIgcTN1iSwE9r1QkYTK8GQBU1oTwqYdVJCXEcx0dSW6H+3cf109ozrlfA7/eY/NKYHA8rysicqjKQmE8Bk0yvIkuRSRlxXpYw7vwp3n1WBuRRs7v9/PVV1/RvHnzgz7DVBoX5xxfffUVfr//kI9Rl4KIpLRgZZiAL00/MEUS6Ose1kr86V4qqhrXY6ZEZHcdOnRg/fr1bNu2LdGlSAL4/X46dOhwyO0VWEUkpe0MVZPtT090GSIpzZ8W7WGtqcKf7mF7uYYEizRm6enpdO3aNdFlyDFCzzsQkZQWDIW14JJIgvm80VWCa6rwpXsJadElERGJUmAVkZQWrFRgFUm0rwNrZWSVYC26JCIiUQqsIpLSykJhrRAskmCxwFpbjT/do8faiIhIjAKriKS0YGWYgOawiiRUXWAN1YbxpXn1WBsREYlRYBWRlFYWqtaQYJEE83q8pGFUuTD+dI8eayMiIjEKrCKS0spCYbI1JFgk4XzmIVQbxp/uJVzrCNeol1VERBRYRSSFVYVrqQzXqodVJAn4LI0qV4M/PfLRJBRWYBUREQVWEUlhwcowgBZdEkkCPvMSohZ/mgFoWLCIiAAKrCKSwoKhSGDN1qJLIgnn86RTZUaWJ/L/pQKriIiAAquIpLCdoWoAAhoSLJJwPk8aITMyPZH/Lys1JFhERFBgFZEUVjckWIsuiSSez5NBlRmZRAKrelhFRAQUWEUkhZVpSLBI0vB5Mwh5jCaeKgA9i1VERAAFVhFJYcFKDQkWSRY+ry/Sw2qRwFqpHlYREUGBVURS2Nc9rAqsIonm8/oImeGvGxIcVmAVEREFVhFJYXWBVY+1EUm8uh5WPxoSLCIiX1NgFZGUFawMk+H14E/3JroUkZTnS/MTMsMXC6zqYRUREQVWEUlhZaFqzV+VlGBmY8xsmZktN7Ob97G/k5m9Y2afmtlnZnZWQ9foS8ukyowMpx5WERH5mgKriKSsYCis4cDS6JmZF3gQOBM4HrjYzI7fo9mtwLPOuROBi4D/a9gqI4G10owMVwlApeawiogICqwiksLKQmEtuCSpYDCw3Dm30jlXBTwNjNujjQOaRr/PATY2YH0A+NKbUGlGWm0IUA+riIhEKLCKSMoqq1QPq6SE9sC6eq/XR7fVdztwqZmtB14Drt/XiczsGjOba2Zzt23bdlSL9KVnUWsGtbsAzWEVEZEIBVYRSVnBUJhsf3qiyxBJBhcDjzvnOgBnAU+Y2V6fEZxzDzvnCp1zhS1btjyqBfjSswCoqionI82jx9qIiAigwCoiKaysslpDgiUVbAA61nvdIbqtviuBZwGccx8AfqBFg1QX5cuIBNbKcDkBXxrB6GOnREQktSmwikjK0qJLkiI+BnqYWVczyyCyqNJLe7RZC5wOYGZ9iATWozvm9yB8aZkAVFaV0yrbx5adlQ15eRERSVIKrCKSkpxzWnRJUoJzLgz8CHgTWEpkNeDFZvYbMxsbbfYz4GozWwA8BUxwzrmGrNPn9QFQGd5F2xw/m3fuasjLi4hIktInNRFJOR+v3s7nm8sI1zo9h1VSgnPuNSKLKdXfdlu975cAQxu6rvp8adHAWl1Bm5xMFm4oTWQ5IiKSJPRJTURSztVT51JSUQ1A52ZZCa5GRKBeD2tNiDZ5foqDVVSGa/CleRNcmYiIJJICq4iklJpaR0lFNVee2pXrirrTIuBLdEkiQr3AWh0ZEgywdWclHZs1SWRZIiKSYJrDKiIppbwqsvJom6Z+hVWRJPJ1D2slbaKBdfPOUCJLEhGRJKDAKiIppSz6qAwttiSSXPZcdAlgU6kCq4hIqlNgFZGUUvdsRy22JJJcvg6sFV/3sJZqpWARkVSnwCoiKSVYGVlsKdufnuBKRKQ+f1okpFaGQ2T708nK8KqHVUREFFhFJLXsrOth9amHVSSZZHgzgEhgBWiT42eL5rCKiKQ8BVYRSSl1Q4KbakiwSFLxe6M9rDWVALTNyVQPq4iIKLCKSGop0xxWkaQU62GlFsKRlYI3K7CKiKQ8BVYRSSl1c1g1JFgkuaR50kjDQ6UZVJbRpqmfrWWVhGtqE12aiIgkkAKriKSUYCiMGWRlKLCKJJsMT1o0sO6kTY6fmlpHcbAq0WWJiEgCKbCKSErZGQoTyEjD47FElyIie/B70mM9rHXPYt2shZdERFKaAquIpJRgZZhszV8VSUoZ3gxCdUOC9SxWERFBgVVEUkxZqFoLLokkKb/XR1W9OayAVgoWEUlxCqwiklKClWEtuCSSpHxp/lgPa16TDLweozhYmeiyREQkgRRYRSSlBENhsv3piS5DRPbBn9aEXR4PVJbh8RjNszIoLtOiSyIiqUyBVURSSlkorCHBIkkqkNGUimgPK0DLbB/b1MMqIpLSFFhFJKWUVYZpqsAqkpQCvhzKvJ5YYG0R8GlIsIhIilNgFZGUEgxpDqtIsgpkBCj3eHcLrNvKFFhFRFKZAquIpIzqmlp2VddoDqtIkspKzyLo2X1I8FfBKpxzCa5MREQSRYFVRFJGeWUYQD2sIkkqkB5glxk1oVIAWgQyqKqpZeeucIIrExGRRFFgFZGUURaKBlbNYRVJSlnpWQAEqyKBtWW2D4BtQT2LVUQkVSmwikjKqAusWnRJJDllZ2QDUF43JDgQDax6tI2ISMpSYBWRlBGMDQnWHFaRZBTrYa0OAvV7WLXwkohIqlJgFZGUURaqBiBbPawiSSmQHgCgvLoCiKwSDFCslYJFRFKWAquIpIxYD6sCq0hSysqI9rDW7AIgJzOdNI+ph1VEJIUpsIpIytgZncOqHlaR5JSdHpnDGqytgtoaPB6jRcCnHlYRkRSmwCoiKSNYF1g1h1UkKcXmsNZ7FmuL7AyK1cMqIpKyFFhFJGUEK6vxegx/uv7pE0lGgYzoHFbzxAJry4BPQ4JFRFKYPrWJSMooC4XJ9qdhZokuRUT2ITMtE8MIer4OrJEhwXqsjYhIqoprYDWzXDN7zsw+N7OlZnaymTUzs7fM7Mvon3nxrEFEpE4wFCbg0/xVkWTlMQ8Bry8SWKsij7Zpke2jOFhJba1LcHUiIpII8e5hvR94wznXG+gPLAVuBt52zvUA3o6+FhGJu52hMNl+zV8VSWZZaU2ic1h3ApEhweFaR+mu6gRXJiIiiRC3rgYzywGGAxMAnHNVQJWZjQOKos2mADOAm+JVh4gknnOO5+atp6QisR84l28to1W2P6E1iMiBBdKzKK8/JDg78izWbcFK8rIyElmaiIgkQDzHxnUFtgGPmVl/YB7wP0Br59ymaJvNQOt9HWxm1wDXAHTq1CmOZYpIvK3YFuTG5z5LdBkADD2uRaJLEJEDyMoI7LZKcMtANLCWVdKzdXYiSxMRkQSIZ2BNAwYA1zvnPjKz+9lj+K9zzpnZPielOOceBh4GKCws1MQVkWNYXc/qX/5rYMIDY1aGN6HXF5EDC2Q0ZWe9VYLb5UZGRWwo2ZXIskREJEHiGVjXA+udcx9FXz9HJLBuMbO2zrlNZtYW2BrHGkQkCZRVRp5/2jLbp0WPROSAAr4cNtQbEtw2JxMz2LBDgVVEJBXFbdEl59xmYJ2Z9YpuOh1YArwEXB7ddjnwYrxqEJHkEAxFAmtTv8KqiBxYICObcq8XKr4CICPNQ5umftYrsIqIpKR4f3q8HphmZhnASuD7RELys2Z2JbAG+F6caxCRBCuLBtaATyv0isiBZaVnEfR6Yfm/wTkwo0NeJut3VCS6NBERSYC4Blbn3HygcB+7To/ndUUkuQQrI3NYA+phFZGDCGQE2IWjZvtKvJsXQtsTaJ+bycerdyS6NBERSYB4P4dVRISyUBgzLXgkIgcXSA8AEPSmwZIXAOiQ14TNO0OEa2oTWZqIiCSAAquIxF1ZKEzAl4aZJboUEUlydYG1vNNgWPwCOEeHvExqah2bd4aYt2Y7d7/xOc7pAQIiIqlAgVVE4i5YGaapX/NXReTgstKzAAh2HwnbV8CWRXTIawLA+h27eHT2ah6asYIvtwYTWaaIiDQQBVYRibuyULUeZyMihySQEe1h7TAwsmHVTNrnZQKRwDpn1XYAXlu4KSH1iYhIw1JgFZG4C1aGteCSiByS2BzWtHTIyIaStbTL9QMwe3kx28oq8Ri8vnBzIssUEZEGosAqInFXFgqTrcAqIocgFliryyG3I5SsxZfmpXVTH28sioTUS07qxLItZazYpmHBIiKNnQKriMRdMLrokojIwcTmsFYHIacjlKwDIisF76quoXlWBj8sOg4gFmBFRKTxUmAVkbgrq1QPq4gcmtgc1qpyyO0EpWsBaJ8bmcc6uGsz2uVmMqBTLi8v2JiwOkVEpGEosIpI3JWFqsnWKsEicgiapDXBsEgPa25HCJVCqJQO0YWXTuraDIBzT2zP55vLWLShNJHliohInCmwikhcVdfUEqqu1ZBgETkkZkauL5ctFVsiQ4IBStbRpXlkqPCQ7s0BGFvQHn+6h6c/XpuoUkVEpAEosIpIXJVXhgE0JFhEDllhm0Jmb5hNbU6HyIbSdYwtaMe0q06id5umAORkpnNWflte/HQju6pqElitiIjEkwKriMRVWSgSWNXDKpI4ZjbGzJaZ2XIzu3k/bb5nZkvMbLGZ/b2ha6yvqGMR23ZtYylVkQ0l6/Cnexl6XIvd2l00qBNllWFe1TNZRUQaLQVWEYmrusCqHlaRxDAzL/AgcCZwPHCxmR2/R5sewC3AUOdcX+AnDV5oPcPaD8Mw3i1eAGn+2MJLexrUJY8uzZvwymdafElEpLFSYBWRuCoLVQNo0SWRxBkMLHfOrXTOVQFPA+P2aHM18KBzbgeAc25rA9e4mzx/Hv1b9mfG+nchpwOU7DuwmhlDujVn/roSnHMNXKWIiDQEBVYRiatgpYYEiyRYe2Bdvdfro9vq6wn0NLPZZvahmY3Z14nM7Bozm2tmc7dt2xanciNGdBzB0u1L2dK0bexZrPvSv2MuJRXVrPmqIq71iIhIYiiwikhcBbXoksixIA3oARQBFwN/NbPcPRs55x52zhU65wpbtmwZ14JGdBgBwPtNMqH0AIG1Q6TMBetL4lqPiIgkhgKriMTVzrpFlxRYRRJlA9Cx3usO0W31rQdecs5VO+dWAV8QCbAJ0y2nG2meNFane6F8G1Tv2me7nq0DZKZ7+XStAquISENxu0rYOvdffPHypLhfS58gRSSugnWLLvk0h1XkmzCzocB851y5mV0KDADud86tOcihHwM9zKwrkaB6EXDJHm1eINKz+piZtSAyRHjlUb2Bw+T1eGmX1Y6NFp2bWrIOWvbcq12a10N++xz1sIqIxFltsJg17z+DW/hPOpV9Qitq8bksqs+4nvQMX9yuq8AqInFVFqomzWP40zWgQ+Qbegjob2b9gZ8BjwBTgREHOsg5FzazHwFvAl7gUefcYjP7DTDXOfdSdN9oM1sC1AA3Oue+iuO9HJJ2gXZsCG6OvChZEwmsOzfBlkXQ41uxdgWdcnn8/dVUhWvJSNO/NSIiR6y2Ble6ntLNK9m6ZBaeNe/hrQlhrpYOFYvpSi2rXBvezPseJd1OJK1LR76XnhHXkhRYRSSugpVhAv40zCzRpYgc68LOOWdm44A/Oef+ZmZXHsqBzrnXgNf22HZbve8d8NPoV9JoH2jPO9uXRV4UfxEJqbPvh48egqv+Ax0GApF5rFXhWj7fvJMTOuw19VZERA7EOUpXzGHjrKm0WfcqebU7yAVygWWuEyWebLwuzOKc77GlTyEbmm5j1sYZbNrxPk3KmnBev9GkW/xG0imwikhcBUNhLbgkcnSUmdktwKXAcDPzAI16rH37QHu2V+6gokkzmmyLBtetiyN/vvlLuOINMKOgUySkzl9XosAqInIowpUUL3mXbZ++St66t2gT3oDfpTEnvZCdHUcQbtaGHS0z2Za2kWpXSa2rZdb6WWzc8j4Z2zIY2n4oV/a7kpPankSaxfdznj5Fikhc7QyFCWj+qsjRcCGRuadXOuc2m1kn4J4E1xRX7QORp+9satGN7sVfRDZuXQpNWsC6D2HpS3D8ONrl+Gmfm8mMZdu47OQuiStYRCRZhSvZtvgdvvr8PTwb59Gx9BNaECLbpfGZty8fdB1Pca8OfBL8kM+2vcrOkp1QAumedDLTMgnXhhnYeiA/OvFHjOw4kkBGoMFKV2AVkbgKVlaTrWewinxjzrnNwB/qvV5LZA5ro9Uu0A6ADTlt6L78fQhui6wY/K3/hQVPwZu3QvfTMF825/Rvy99mrWJ7eRXNsuI7n0pE5FhQXbqJte8/R3jZdDqVzKElIZo7YxVteS97NOXdTmVn5zyWlH/Cf9a9yK5lu2iX1Y4zupxB+0B7ejfrzcDWA/Gn+RN6H/oUKSJxVRYK06ZpYv+hEzmWmVkZ4Pa33znXtAHLaVAdsjsAsKFJDuzaDqtnRna0yYeOJ8FjYyJDg8c+wLj+7fnLuyt5beEmLh3SOYFVi4gkULiKdR/9i4o5U+he+gHdqWWDa8HswCgquo8g1LUd220jH25+n/lbH6JmUQ1NM5pyTrdzOKfbORS0KsBjybV4nQKriMRV3aJLInJknHPZAGb2v8Am4AnAgPFA2wSWFnfN/c3xeX1sSPNGNix+IfJnq+MhuzUM/R947z7odTZ9ep7Bca0CvDR/owKriKSUio1LWffRi7h1H9F2x1w6up1scbm83ex7BE8YxY5mQT7cPJt5Wx8i/FnkcYO9m/Xmin5XcGr7Uzmh5QmkeZL3s1ryViYijYIWXRI5asY65/rXe/2QmS0AbtvfAcc6M6NtVls2uurIhi/fgsxmEGgVeV10Cyx9Gd67D+s1hnH923HvW1+wqricri2yEle4iEicVe3YwMq3H6XpsmdpV72WXsA615JP/QMp6X0WW7p4eXPdq3y59jewFo7LPY7/Ov6/GNxmMP2a9yPXf+wsUHdInyLNrBUwFGgH7AIWEXl2W20caxORY0BxsJKnPlpLde2+RyyW7qrWoksiR0e5mY0HniYyRPhioDyxJcVf++z2rN+1HdKzoLoc2g+Eusdkpfmgz9jIo25COxlX0J4H/rOcUX94l+E9WnD3+SfQSlMSRKQxCFexcf6b7Jj3T5pv+5A24Y30Bj6145nf6WfU9BtEeXaQOVs+4J11kZ7U/Bb53Dz4Zoo6FsUWsTsWHTCwmtlI4GagGfApsBXwA98BupvZc8C9zrmd8S5URJLTi/M3cu9bX+x3v9djHN+u0U6xE2lIlwD3R78cMDu6rVFrn9WeRcWLoEUP2DSf6pa9KN1VTIvMFpEG3UfCe3+ANbPp1OtMXvnxqfzr0w08NnsVP376U6ZdNQSvR8+BFpFjUG0NG+e9QslH0+hUPIt2VNDU+VmY3p9P236Hij6FrPCv5D/r3mbD0n8A0MzfjIt7X8y5x51Lj7weCb6Bo+NgPaxnAVdHVyLcjZmlAecA3wKej0NtInIM2LkrMlRv5W/PwqMPhSJx45xbDYxLdB0NrX12e0orSwm2GERg03we9QT52z/P4plznqFrTtfI4ktpmbDiHeh1Jj1bZ3PTmN50bxng5/9YwP1vf8lPv9Uz0bchInJonKNk5Tw2vP80LVe/RLuaLfhdgI+zhlHZcwyVPdvwZfkSPt7yMUtWvUKaJ41T2p3ClflXMqj1IDo37YxZ4/o8dsDA6py70cw8ZvY959yze+wLAy/EtToRSXploTABX5rCqkicmVlL4GqgC/V+fjvnrkhUTQ2h/qNtegFLXYhd4V386r1fMfXMqaSl+aDzKbByxm7HfXdgBz5Y8RUP/OdLLhjYgY7NmjR88SIih8BVlVOyZiFbl32If+E0Old+QcB5mO/NZ+7x1xPK78JH295j5vq/Evw4SIYng34t+vHzwp8ztvtY8vx5ib6FuDroHFbnXK2Z/QJ49mBtRST1BCurCeg5qyIN4UVgFvBvoCbBtTSYTtmdAFjTsge9ep/DqqoSmvmbsbB4IX9b+Dd+0P8HkWHB02+F0g2Q8/U8rZ+M6sHzn6zn9UWbuGZ490TdgojIPpWsWcj6NyfTbeMr5BEiD1hBB97o/DOscBgLQ/N4ccWzlMwpIdeXy+guoxnVaRQntT2JDG/qPG/6UD9l/tvMfg48Q70FHpxz2+NSlYgcM4KVWgVYpIE0cc7dlOgiGlq3nG54zMMXteWc9r0prJ02iMuOv4xNwU08tOAhBrYeSGG3okjjlTPgxPGxYzs2a0K/9k15fdFmBVYRSQquqoJVH/yTmjmP0qN8HpkunQ+ziggfdyZpHbqx3L+aF1b8k9Wf/AOveTmt02l8t+d3GdxmcFI/eiaeDvWuL4z++d/1tjmg29EtR0SONWUhPWdVpIG8YmZnOedeS3QhDcmf5qdz0858seMLNgQ3EK4N06VpF67Ov5ql25dy48wb+cfZz9AipyN8+uRugRXgzH5tuefNZWwq3UXbnMwE3YWIpLqStYtY//of6LbpVboRYpNrzpttr6Hm5FHMLpvJZ9teYO3na6l1tRS0LOD/Dfl/nN7pdJpnNk906Ql3SJ8ynXNd412IiBybykJhmmbqsTUiDeB/gF+aWSVQDRjgnHONfhnunnk9WVS8iNWlqwHomtOVQEaAe4vuZfyr47ln3r3cfcr18PovYPVs6DI0duyZ/dpwz5vLeGPRZr4/VB9nRKThVJcVs2LGk6Qv+Qfddy2K9aZW519AaVc//1zxLJ/N/zmB9AAntT2JM7qcwemdTqdP8z6JLj2pHOpzWN8D3iUyd2a2c64srlWJyDGjLFRN+1z1WojEm3MuO9E1JErPvJ68ufpNFn21CIgE1rrtZ3Q5gxnrZ1B73m14Zk6Cmb+Hjs9D+TbIbkO3lgF6t8nmqTlr8aV5Gdy1Gce1CiTydkSkEavYuoo1H76ALZ9O951z6E2YFXRgettrsVNG82Hwfaav+RMlH5XQuWlnbhl8C+OOG0dWelaiS09ahzqO77+AYcD5wD3R3+7Ocs7dELfKROSYEKwMa9ElkQZgZsP3td05N7Oha2lovfJ6AfDW6rdo5m9Gji8ntu+ktifx4ooX+bxsDcefcj289f/g7s5QFYQhP4TRd3Lx4E7c/vJifvmvhbTN8fPeTafp2awictTUhMpYPmMans+eokfFfPoAG1xL3m12HukDvktJmypeXPkvPv7kJ/i9fkZ2HMm3u3+boe2H4jFPostPeoc6JHiVmYWAqujXSEB91f+fvTuPi7ra/zj++s4MMOyr7PsiAqLirrjvWy5Z5lbm0nK9ZlZWt33TstIWK9u0zMwsvZnlGpmY4ooLKiiIILKvssPAzJzfH5jl795bVMIAnufj4UNmY94gMucz55zPkSSJylrZdEmSmsmjv/lYC/QEjgNDTBOn+bR3bDhH9WLZRbq6dr3utl4evQA4knuE8O5zIPMIWLcDQz0cXgWV+cy6dTXTevqy9VQ2j24+zf4LhQwKdW32r0OSpDbEaCQ74UdK4tYSVLSHUGrJwJ0Y93nYd5uMzl0Qm7GTmIxnqU6rxsPag4e7Pczk9pOxM2/zOzluqMYuCb4IFAEbgDXAA0IIY1MGkySp5TMYBVV1Btl0SZKagRDilt9eVhTFB3jLRHGalbu1O7ZmtlTUV1xbDvwLVytXAu0DOZJ7hNkdZ8PULxpuEALsvWHfMug2G/OA/ozv4snLO87xdXymLFglSfrTii8eJy9xP8aMw/iUHMRLlGEnLDlmOxhV1+lU+1uxK2M7B1MeojqpGmsza0b6j+SWoFvo5tZNzqb+RY0dZa4E+gHTgChgn6IoPwshLjZZMkmSWrxKnR5ALgmWJNPI4iZZ7aQoCiGOIZwoOPEfBStAb4/ebEndQp2h7tezCRUFoh+EQ+/C6a8goD8WGjWTorz5/PAlSqrqcLK+ec4xlCTprxF6HelHtmHc/ybBtWdwBkqEDYlWPagLGol1j17EF+7l+4tvUJxZjJPWiXGB44j2iqaPZx8sNbLPx9/V2CXBbwNvK4piA8wGnge8AXXTRZMkqaWrqK0HwE4ruwRLUlNTFOUdGo6UA1ABXYATpkvUvNo7tv+fBWsvj15sOL+BhMIEerj3+PUGcysIGw9JW2HMcjDTckcPHz6JS2fLyWzm9pNdgyVJul5NWRHnv30V88IzaAy1eNecJ5Aa8nDmJ/+Hce0+EY27Nan5cey+tJszsavQKBoGeA9gYvBE+nn3w0wlx0U3UmOXBK+gYYbVBjgIPEtDx2BJkm5i12ZY5ZJgSWoO8b/5WA98KYSIM1WY5hbZLpKvU74m2CH4P27r7t4dlaJif/b+6wtWgE63Q8IGSNkFERMJdbcl3MOO3WfzZMEqSRIAwlBP2tGdlJ/cQkjBTqKoIUXxp16x4LjtYGg/ivpwH769tIWEsw9w5fgVoKEh3OLuixkXOE6el9qEGjvKPAS8JoTIb8owkiS1LpW1DQWrbLokSU1PCPGZoijmQPurVyWbMk9zGxswlgjnCDxtPP/jNjtzOwZ5D+KbC99wf6f7sTKz+vXGgIFg4wYH34H8s+DRmf4hAEPRggAAIABJREFUwXwSl05NnQFLc7lYTJJuRkJfR/b5IxSc2IZP+iaCRDFVwoIE62g0Qx7ALtCTOn0NqQUn+eHSThIPJOJq6cogn0F0dOlItFc0XjZepv4ybgq/O8pUFMVfCHFJCLH5f9yuAF5CiKwmSSdJUotWUSv3sEpSc1EUZRDwGXAJUAAfRVFm3QzH2gCoVWqCHIL+5+2zO87mp50/sSV1CzPCZvx6g0oNXWbAgTcgOx7MbYgev58PfxYcz7hCvxCXZkgvSVJLYNBVkZOaQMHPawjN3443NXgDJ826khL5NF69h3IqZzufJz1FZWLltceFOYXxTO9nmBg88dd98lKz+aNR5uuKoqiArTS0zi+koZV+MA1H2wwFnqOh8YMkSTeZCp2cYZWkZrQCGCGESAZQFKU98CXQzaSpWogurl2Ico1iXeI6IpwjyK7MZqjvULQaLQx5GnrdByVp8OloelbuRaPy4ODFIlmwSlJbJwTn9m3C4sAyAvUX8QFchRknbAch2o/CpWNfMkUqW1O3Er/rbYzCyFDfoYwNHIulxpIg+yA8bDxM/VW0OPV1BrLOleDX0RmVumm7H//uKFMIcbuiKOHADGAO4AHUAOeA7cBSIURtkyaUJKnF+qXpkq1suiRJzcHsl2IVQAiRoiiK/M/3G7MjZrNw70Lu3HknAF1du7JyyErsLezB1r1habBrBNqEdXTyfplDacUmTixJUpMQguQjO6g8thG3K/GEGXPIVDz42fteNC5BuEQN4FJNAvF58Rw9+hmlulL87PyYFzmPUf6jCHEMMfVX0CLVVNSRfrqI9IQiss6VoK83MvGhKLxCHZv0ef9wWkQIkQQ81aQpJElqlSrlkmBJak7xiqKsBtZfvTyD6xsx3fQG+gzkqV5P4aR1okZfwwuHXmD27tl8OfZLLNQWDUfddLsbdj7KxMgCXjhuwU/n83lp2zlenhRJnyDZNEWSWjNhNJIY+zXmh94ktP485cKKVMtIMgLmoe4bTUrpWVJLU9mzfw21hlo8rD2I9opmYvBEern3omG3o/Rb+joDGnM1uup61j4eh9EosHG0ICzak4DOLrgH2Td5hsZ2CVYDYwH/3z5GCPFG08SSJKk1qNTpUSlgJZuWSFJz+AfwT2Dh1cv7gVWmi9PyqBQVUztMvXbZUmPJI/seITYzlpH+Ixuu7DQFYp5luC6GZ41jmbO2oeb/JC5dFqyS1EoZ9XpOx6zFPv5dOhrSycGVuA5PEjZmLrWVKaxL/IyDP60FwEnrxOiA0cwIm0GoU6hpg7dQJTlVXDxZwMUThVjbm3PLwi5YWJkxYFp7XP3scPGxadbivrHTIt8DtcAZwNh0cSRJak0qavXYWGjkO5KS1AyEEDpFUd4F9tDwWpwshKgzcawWbajvUFwtXdmWtu3XgtXSAYKH4pZ3AFvtBAJcrAl1s2XLyWxKqupwspYNVSSptaivq+X0jo9wO/0+XYw5ZCjeHO60FJvogWw5/xkLtg5Hb9Rjb2HP4u6LuTXkVmzNbU0du8VK3J9Nwp5MruRVgwIegfb4d/p1n39Ef9N0RW5sweothOjUpEkkSWp1Kmr1cv+qJDUTRVHGAh8AF2noEhygKMp9Qoidpk3WcqlVasYEjmF90nqu1F7BUXt1n1XAQFTnt/HTXH/sPIJJK6xi0/Estp3O4a4+/ibNLEnSH7ucfILcfZ8QmLONblzhgjqIYz3fxrxbFF8kriZ214dYm1kzNXQqfT370s2t2/XHXUkIIci/VE76qUK6jfbHXKtBV6PHyt6cyEHeBEa1w9rewtQxgcYXrDsVRRkhhPihSdNIktSqVNTWyw7BktR8VgCDhRCpAIqiBNHQAFEWrL9jXOA41iau5YdLPzApZBIA5gEDAGhXeBR8QgnzsCPMw45/n8iWBasktVB1uloStn+AQ9J6QvQX8BQqzlj2JKvHPIwRAaw5s5q4XSuwM7djfpf5TO8wvaHhmnSNEIL89HJS4wu4eLKAyis6VCoF3whnvNo7EjXcl64j/Ewd8z80dqR5GNhy9Yibehre2RVCCLsmSyZJUotXqdPLhkuS1HwqfilWr0oDKkwVprVo79ieYIdgVp5cyevxrxPiEMKGMV+g2LhB+j7o2tBReHJXL5ZsP8f5vHI6uMvhjSS1FEaDgePfvoPvmZX0oJg0lT+Hgh8hcMhd1IgcPj7zMfG743HSOrGo6yKmdpiKtZm1qWO3GEIIDPVGNOZqSnKq+Pdrx1FrVPiEO9FrQiD+kS5orRtWy7XULV6NHWm+AfQBzgghRBPmkSSpFanU6XGW+70kqUkpinLr1Q/jFUXZAXwNCOB24JjJgrUSiqIwp+McPkv8DBcrF+Ky44gvOE6PgAGQ/jOUZcPuJ7m91yO8rdWwfHcyq2f1MHVsSZKACyf3IbYvpoc+hfOaDuT1ex2nqB4cT/uO5w7eS25VLu0s2/FYj8eYHDJZLvv9jbLCai4cyyflWAFufrYMvTscJ09rRsyLwDfCGQvL1jPh0NikmcBZWaxKkvRbFbV6/Jzlu5iS1MRu+c3H+cDAqx8XAtrmj9P63BJ0C7cE3UKtvpZhm4ex4dyGhoL1zCZYMwLKs7DXaJk/6DFe3XWew2nF9A6UHYMlyVQKczJI3/wU3Yu3UaLYcyzqFVS9evLxmdXEffs8Cgp9PPuwqOsihvoNbTi2SgLg3MFczu7LoiCjYQGOR7A9nu0b9u8rikJIdzdTxvtLGluwpgGxiqLsBHS/XCmPtZGkm9svXYIlSWo6QojZps7QVmg1Wm4LuY1PEz8lp/00PAGqCsG3DyRtZfaDy/j8kJaXd5zj2/nRqFQtc3mcJLVVhXmXSf1mCVH53xCFkaPuU3GYsIDPzn3Avt3v46R1YkGXBUwInoC7tbup47YIdTV60hMKad/THUWlUJxViRDQ99Zggru7YuvU+t/XbOxIM/3qH/OrfyRJkqiorcdONl2SJKkVuSP0DtYmruWrvDgeGvQE+PQECztYPRRtylYWjxzGw18n8O8TWdze3cfUcSXpplBZUcbpDU8TlbORntRzwnEU7cb9i5NVh1jz092oFTUPdXuIqaFT5bJfwGgUZJ0v4fyhPNJPFaKvN2LrbIlniAN9JwehUqtMHfGGatRIUwjxQlMHkSSpdanTG9HpjXKGVZKkVsXDxoPeHr3Zm7mXhyZ+13ClENCuA5xcz8Q5s1h/OINlO88zIsIde0t5dJckNaWTP27E48BT9KWIePvhuN7yDMWaXJ47+SSZFZmM8h/F4u6LcbNufUtZm0JpfjXfvnmSqlIdFlYaQvt40KG3O24BDc3i2lqxCo0sWBVF2UtDg4frCCGG3PBEkiS1ClU6PYA81kaSpFanj2cflscvJ68qr2FZoaJA1Ez44WlU+Wd4cUJHbnn3AC9+n8RTY8Nwks3lJOmGK8jO4PKXC+leGUuGyodzIzdR7qHh5VMvcOHKBYIdgvlo+Ef08exj6qgmVVtZT8qxfNQahYj+Xti5aPFq70BA53b4d3JGY6Y2dcQm19iR5uLffKwFJgP6xjxQURQ1EA9kCyHGKYoSAGwEnIHjwJ1CiLrGR5YkqSWoqG34FWCjlbMPktQcFEW5SMMxc/uB/UKIRBNHarV+GQAfyjl07WxWusyA/Stg1xN0vHsbc6IDWHMgnS0ns7hnQCBPjA4zYWJJajvKSktI3PQiXbI2EImRwwHzsR09jZfjX+X0+dP42fnxav9XGek/ErWq7Rdj/43RYORyYgnnDuZy6UwRRoPAP9KZiP5eqNQqhs+JMHXEZtXYJcHH/99VcYqiHG3kczwInAN+OdTsVeBNIcRGRVE+AOYC7zfyc0mS1EJU6OoB5JJgSWo+4UAvoD/wuqIoocBpIcQk08ZqfUIcQnCxdOFQziEmBk8kqSSJDo4dUA99FrY9BInf8PTYW5nYxYsVMcl8GneJB4eGYGUuf99J0l9VXVXByS1vEZb6IX2p4ITdEBzHP8fh8ljW7r4Lewt7Xuz7IrcE3YJGdXP/X9u3IZmkuFwsbc2IHOxNh94euHjbmDqWyTR2SbDTby6qgO6AfSMe5w2MBZYCDysNp9EOAaZfvctnwPPIglWSmszFwkq+PHIZ4w0+lCq/ohZANl2SpOZjAOqv/m0ECq7+kf4kRVHo49GHA9kH+Dr5a5YcWcKirouY2/VuOL4Wdj+NEjKCSG977u0fSGxyIfsvFDEyQnYllaQ/QwhBWvJp8n7+lLCczURTQaI2itLRS6h1UbHgyFNcrrjMpOBJPNL9Eewt/rC8aHMMeiPpCUUkxeXQf0oIju7WRAzwwq+jC36dnFG3wT2pf1ZjR5rHadjDqtDwYnmJhpnRP/IW8Bhge/WyM1AqhPhlOXEW4PXfHqgoyr3AvQC+vr6NjClJ0v+38ehlVh9Ix7YJZkI97LUEtrt53/GTpGZWDpwB3gA+FkIUmzhPq9bHsw/fp33P0iNLAdiUsonZHWejGvsGrB4GPz4PY1fQI8AJW62GH5PyZcEqSY1UU1PDiR1raJf4Ke2NqQQIhTM2fSgc8ACakCBeO/4mcafi8LH1YfWI1fTy6GXqyM2uNL+apAM5nD+cS01FPTaOFlSU1OLobo2rnx2ufqZO2HI0dgT7OLBLCFGuKMozQFeg+vceoCjKOKBACHFcUZRBfzaYEOIj4COA7t273+C5IUm6eVTU6mlna8Gxp4aZOookSX/PNKAfMB+YpyjKQeBnIcQe08ZqnX7Zx+ph7cHsjrNZemQph3IOEe0dDb3nw+H3IOJWzPyjGRzqyk/nCzAYBWp5Nqsk/a4T+7fhuudhosnnstqX+A6PEjhwBo7Waj48/SHff/8vbM1tebT7o0ztMBVz9c3X1KyuRs/GJUev7U0N7+eJb4SzPPv5f2hswfq0EOJrRVH60bCkdzkNy3h/7+2QaGC8oihjaGjUZAe8DTgoiqK5OsvqDWT/5fSSJP2hCp1edvKVpDZACLEV2KooSgdgNLCIhlVMliYN1kq5WLrwUvRLdGrXCW8bb95PeJ9NKZuI9oqGIU9D8nbYMAXcOjLXeTTfVYVwKvMK3fyc/viTS9JNqLiogKQvnyC66N/kqt04N3A1AX3HciH3EM+fe5PYzFjMVGbcHXE3cyPn3lTLf6vKdCQdyKEoq5LR90Vibqlh5D0dcfWzxdrewtTxWrzGjmINV/8eS8MypO2Koiz5vQcIIZ4AngC4OsO6WAgxQ1GUTcBtNHQKngVs/SvBJUlqnIpafZMsB5YkqXkpivJvoDNwEfgZuAs4YtJQrdzE4InXPp4QPIF1ievIqczB08YTpm2Ew+9D+s90KliOpWoVnx/KoLO3Axq1ipKqOnncjSQBwmgkbssqwk6/SjQVnHSfjPuUp4nJ+J6vNg+nvK4cRwtH5kXOY3rYdFwsXUwduVkIIchNLePMvizSThRiNAp8wp2o1xkws1AT0Onm+D7cCI0dxWYrivIhMBx4VVEUCxqaL/0VjwMbrxa8J4E1f/HzSJLUCJW19djKo2ckqS14BTgphDD84T2lP21a6DQ2nt/I0iNLeXfIuyiuYTB+JSTvQvnyDp7tWMgTp9RkXqlBCMGJy6W8N70rYzt5mDq6JJlMxqVU8r5+mH7V+0ixCKdy/BtkavP55+5pVNdXM9R3KLe1v41eHr1uus6/F+LziVmThIWVhsjB3nQc4IWDm5WpY7VKjf3JmQKMApYLIUoVRfEAHm3skwghYoHYqx+nAT3/XExJkv6qilo9rrZaU8eQJOlvEkLEK4rSUVGUcBq22vxy/ToTxmozPGw8WNBlAa/Hv87O9J2MCRzTcEPgIDC3YZpNAhZTRvLs1kRcbS1wsTHnq/hMWbBKN6XEE3Hodj1DZ90JPFFxov1C2o2bx2vxy4nNiqWbWzee6/McAfYBpo7abCpKajmzNwsnL2s69PbAP9KFwXd2IKSHG2bmN+d5sjdKY89hrQa++c3lXCC3qUJJknTjVOr02Mg9rJLU6imK8hwwiIbzWHfQsI/1ACAL1htkRtgMdl3axbKjy+jp0bNh6aKZFkJGwPnt3DruTSZ28UJR4PXdyXz4cxqFFTra2co9aNLNoV6v58CGZfS9+BbViiUJ/nPwHjKXE+WH+OD7yagUFYu7L2Zm2EzUqpujSMtPLydhz2VSTxQC0GWYDwDmWg3h0Z6mjNbk8qryOF14mhH+I5r0eeQoVpLauMpa2XRJktqI22jYw3pSCDFbURQ3YL2JM7UpapWal6Jf4o5td/Bs3LO8N/Q9FEWBsFsg8Ru4fBiVfzQAE7p4sSr2IjvO5DKrr79pg0tSM0g6fQzD1gcZbEgk0bYPfnM+xZpyHj+6jPj8eIb7DeexHo/hbn3zHP+078tkzu7LxlyrpvMQbyIHe2Pn3Pb74BVWF7IpZROfnv0UM5UZ0V7RWJtZN9nzyVGsJLVhRqOgsk42XZKkNqJGCGFUFEWvKIodUAD4mDpUWxPkEMTD3R7mlaOv8H7C+/Ty6EWgb08c1RYQ+wpMfB8yjxAa/ymj203h21PZsmCV2rSyigqOr3+afnmfU6NYcqbbEup69GHuwUUkFSdhpbFiSfQSxgeNb3iDpw2rq9Fz7mAu7Xu6YWlrjn8nFxxcrQiL9sC8jUwO1BvrqdHXUFNfQ42+hip9FYXVhWRXZpNcksyZojOklqYCMMxrMJPNuzdpsQqyYJWkNq2qTo8QyKZLktQ2xCuK4gB8DBwHKoFDpo3UNk3rMI24nDjeT3if9xPeJ9w5nK9GLIGYZ+CtSKDhePgH3RwZleHChfwKQtxsTRtakm6wjMuXSN35HuG5/2YIxSQ4j8J/+goOZH/PBz/MxcPag3/1/BdjAsbgqHU0ddwmVV1eR8KeTM7uy6Ku1oCZVk14tCd+Ec74RTibOt7flluZy/L45ezN3Eu9sf5/3s/RwpFw53DG+AzDI/Uy/Q+sR8XXVEaNx8bWocnyyYJVktqwilo9gNzDKkmtnNIwbfGKEKIU+EBRlF2AnRDidCMfP4qGs9DVwGohxLL/cb/JwGaghxAi/sakb30UReGtwW+RWJRITEYM65LWkTHgNfxCR8GRD8E1HC4fJPTsN7hqb+e57xL5Yl6vNj+7JN0c6uoN7P9qBT0vvMFQpYZkq67UDnoHs6AA7jn4MOdKzjE2cCzP9H6myWfWTE0YBfu/SiEpLheDwUhQlCtRw31xC7AzdbS/LKcyh+1p2zFTmWFlZkV8Xjx7M/cCMDlkMi6WLliqzLBUVFgKBTMjmFfqsLpShmXuBWzSE/DVfYUGIyfNotCMWkpkExarIAtWSWrTKnUNBavcwypJrZsQQiiKsgOIvHr5UmMfqyiKGniPhqPpsoBjiqJ8J4RI+n/3swUeRJ7tCoCZyowurl1ws3JjXdI6YjJimBc5D0YubbiDczDKyfW81fES0+M1bD2Vw8QoL9OGlqS/KScvh5w1dzK0Pp4Uqy7U3fEOPl7BrDq1is+3P4mT1onlA5czwm9Em36DpvJKLTaOWhSVQnVFHaG93Iga4dcqj6URQrA3cy/x+fGkl6VzKOcQht+cjuasdWak50BGplyi6+530Ypa1Bj/6+eqEhakqQPY124m1hGj6Nl/NCr1Xz3ptPHkKFaS2rBrM6xyD6sktQUnFEXpIYQ49icf1xNIvXqsHIqibAQmAEn/734vAa/yJ46tuxl42HjQyaXTrwXrL3x6gnMwfcp30cXnaZ7/PpE6vZFbu3qhaYYBnCTdaEf3/4DXnvl0FiUkRT2D6/C7+OrCZjYfXURhTSG3tb+Nh7o9hJ15651d/CO5F8s4sesSGYklTH++Fw6uVoy8p2OrLM6NwkhiUSIrT67kcO5htGotXjZezAycwICCeqw1VtSYa7BNP4nPuc9RCwP7LYegt3RBmFmBuRWKuTUqC2vM7T2wcw8kIKgDkbbN31RKjmIlqQ2rqG3YhyBnWCWpTegFzFAUJQOoAhQaJl87/cHjvIDM31zOuvq5rlEUpSvgI4TYrijK/yxYFUW5F7gXwNfX989/Ba3UcL/hrDi+gqyKLLxtvRuuVBToMh1lz4u8e4cZ/9xjxWP/Ps3X8Zlsur9PqxzgSjen4tIyTn7+BIOLNlCscqFg8rckWRQwZ+t4quur6evVl9cjX6ebWzdTR20SQgiyzl3h2I50clPL0Fqb0WOsP1rrhv4fLfX/shCC9PJ0DmYfpLi2mDJdGdmV2RRUF6BRaSiqKaKopggbMxsWeYxhYH41moxUvE+tRPObGdQiYcdBbT/sRz7JsK4t899YjmIlqQ37dUmwbLokSW3AyKb4pIqiqIA3gLv/6L5CiI+AjwC6d+8umiJPSzTMbxgrjq/gq+SveKjbQ8TnxbM2cS2PRMwl6NAqvPc9zLf37+Hjg1m8vOM8hy4W0zfYxdSxJel31dbp2f/tR4QnvsEwpZCzbrfgMfVlXjz5Gvuy9tHDvQfP9H6GAPsAU0dtUjUV9WxblYCljTn9bg8hvJ8nZhYt9wzZ4ppivr/4PVtSt5BWlgaARtFga26Lp40nvra+GDESaBdAL3M3OhzZTnjKB1QLC7KECztsJmE7YD5aG0d0FUWEhnVkmEPL3ossC1ZJasPkkmBJajuEEBl/8aHZXH/8jffV635hC3QEYq/OJLgD3ymKMv5mbrz0W9623gz0HsjaxLXsurSLvKo8AFwsXXhx/ErYOB0l9hXuGvA0q2Ivsv5IhixYpRarRqfn6P4dOB1cwnBjMpctgsge/S4aP3/ujL2f3Mpc/tXzX0zrMA2V0vaWtwshyE6+QsbZYqJvC8HKzpwJD3bBzd8etVnL/HqFEBzLO8bG5I3svbwXvdAT1S6KJ8PupnNxBfbl5YjqKyh5l7GoScSoqLGqK8bGWE6ZsGKj2yIixj2Iv6st7a+bxAgy2df0Z8hRrCS1YZW1sumSJEkcA0IURQmgoVCdCkz/5UYhRBlwrbpSFCUWWCyL1eutHLKSHy79wNcpXzMmYAx5VXnsvrSbf/X8F1ZdZsKBN9Ge385LflNYlBhBfnktbnZaU8eWpGvKKqs5+PlzhOdtZaCST4niyIXey/AfNptPk9bx/rYncNQ68smoT4hyjTJ13CaRlXyFY9vSyblQirW9OVEj/LCyM8czpOUey3M49zDvnHyH04WncbRwZEbQBIYUVxGQsB1H3VYAqoUF5ViRJdpRpHihYKRe7U+59wCCoycxNax1z5LLUawktWEVOj2KAtbm8r+6JN2shBB6RVEWALtpONbmEyFEoqIoLwLxQojvTJuwdVApKkYFjGJUwCgATuSfYEf6DmIyYpgw7s2GJkzHVjPu0su8Kt5g49FMHhwWYuLUktQg4UwCmm/mMVqkcMG2OxciHiRw8F0kFSeweNsdpJWlMcp/FE/1egoHbdMeUWIK5UU17PnsHDkXSrGyN6f/HQ1LfzVmLXPpb3FNMScKTvBd6nfEZsU2nHnrN4n+ScfxPv82KowcNEaQ7DIFu87j8PDyx87SjBAnK7pbtr1tYHIUK0ltWEVtPTbmGlSqltkwQJKk5iGE2AHs+H/XPfs/7juoOTK1dlGuUfjZ+fFt6rdMCJ4A3WZB8DCUtzvxlPPPLDvpz8KhwS22YYt0c9AbjPzw1Xv0T14KisKlwe8RMnAm6WXpLIz7Fz9n/YyvrS8rB69ksO9gU8e94epq9ZhrNWhtzNBV19NvSggR/VtmoZpTmUNMRgwxGTEkFCYAYGNmwwKvkdxyai+eZ98mVzjxuflkNN3uZER0b/raWpg4dfOQBasktWGVtXps5HJgSZKkG05RFCYETWDlyZWkXEmhvWN7sPeCiEkMTdrBo1VjuFBQSXs3W1NHlW5S2fmFJH/6D8bUxpBu1RGXWes4WXGaZ3bcyanCU9iY2fBIt0eYHjYdc7W5qePeUFfyqjiyNY2S3CqmPtMTc62GO57u2eLeQBJCcCD7AB+f+ZiTBScBCHMKY0HoDHrUK7gn/IhnysdcNHrwvvNiIkfN5c4Qj5tuIkKOZCWpDauo1cuGS5IkSU1kcvvJrD+3nqcOPMWGMRswU5tB7/mYn9nEHepYYpKiZMEqNTshBD/9uJ2guMUMFHmc7/APPCY8ylOHX2Bv5l6CHYJZGLWQW0NuxdnS2dRxb6jKK7Uc25bOuYO5aMzVdBnui9EoUKlb3vE0ySXJvHzkZU4UnMDT2pNFIdPof6UU13M/4nB8NwCFwp5V1vfT7daH+Eewu4kTm44cyUpSG1ap08uGS5IkSU3ESevE832eZ+Hehbx94m0e7v4wKq+u4NuH2dmx/PPsVP45ONjUMaWbSG5hEWc+Xciwqh0Uq10onLiZajcnbtsxlaKaIh7r8Rgzw2a2uOLtRijIKOeb5ScQRkHkYG+6jfLHyq7lzRxX1FWw6tQqNpzfgL25PU96j2H4qRhczr6KQSgcNYYRb3kPSuBAQjp2475wD9Q32Yzq/ydHspLUhlXo9Ni3wc33kiRJLcVg38FMDpnMZ0mfsTtjN7PCZzEz8ja8Lz9CdU4SqQVd+PFcAaMi3PF3adlnHUqt24X0NOrW3c5Q40UuBMwg8PYlfHpxE6t2L8bTxpP1o9cT4RJh6pg3lKHeSEluFe18bXHxsaXzEG8i+nth52Jp6mj/QQjB9vTtrIhfQXFNMbd59mf22aP4nP+AFKMXn1vejzZyAoO7d2SBm22bfFPhr5IFqyS1YRW19Xg7trxf2pIkSW3JU72fort7dzYlb+LVY6/Sf8RafFEYozrC6Ld9qDcIdp7J5Zv50dTpjZy4fIW+Qc5yQCrdEJW19cRu+5zOZ5bho1whZ9RqHDr15x9xj3Ik9wijA0bzbO9nsTG3MXXUG0YIwcUThRzakoquRs9dS/tirtXQZ1LLXNGQeiWVpUeWEp8fT0fHUJbVudIrbj3ZwpnXbB+lx9h5LOrgJn8n/A+yYJWkNqyyVo+t3MMqSZLUpMxUZowLHEdvj96M2DySJKNIAAAgAElEQVSCLy7v5gm/PtyaFc/PznPpH+zCyp9SWXvwEj8m5XMorZiN9/amd2Db2j8oNb/zFy9Ss34G48Q58s08KZu0mTh1Lm9tnYDBaOCFvi8wKXhSmyqE8i+VE7f5ArmpZTh5WjNweijmLXT7U3FNMZ+e/ZQvzn2BlZkVT7UbyC3Ht2Cmr2G1MgnbEf9icZ/Qm66J0p/VMv91JUm6ISpq5R5WSZKk5uJi6cLogNF8m/otC0Jn4pfxDFsiDyMOvoOb62Se2gZqxUiwKpd9KYWyYJX+lpOnE3D69xT8lRIu912Kx6A5PHPkRbanbae3R2+e7f0sPnY+po55Q5XkVLF5WTyWtmYMmhFKWF8PVGqVqWMBkFmRyYn8EyRfSaairoKq+ir2Ze6jzljHrR79mHfuOD7Jn/OzIZJDoY8zb+IInG1ujmNp/i45kpWkNkpvMFJTb8DGQu5hlSRJai4zw2by3cXv2GIBswD2vIhibst03WfscezIs8578c/aysNJK2BUB1PHlVqpH3Z9R5dDD2Cp1FMx5d+Y+Ybwz9hFHMo9xMKohcyLnNdmZlX1dQZyL5bhE+aEk6c1Q2eFEdilHeaWpi1jThacJCYjhnpDPclXkq8dS6NVa3HQOqBW1EzwHsxtefmEH9xAjnDiJevHGXnbfTwu36z6U2TBKkltVJXOACDPYZUkSWpGYc5hdHXtyubLMczq/wiYWULUXSjv9+UTw7OQVQ6Af8l+iirvxEXOsEh/gtEo2Lr2NcZmvEqJmRv6mV+yrmgPX2xZBMALfV/g1pBbTZzyxhBCkJ5QxIFNF6gq1XHXy32xtregQx8Pk+WJy4kjrTSN+Px49mbuxUJtgVajxdXSlQeDpzCkXsGj8DJUXcFYW47lmdXohYqPxQRUAx/lX4MiMGshM8KtiRzJSlIbVV5bDyCXBEuSJDWz0QGjWXpkKWmD3ybQIbDhynFvwNd3Qfe5VGUmMCg3gbjUIiZ08fqvn0NvMKKRA1vpN/QGI99/9ByT8leSZt8T93mf83j8UmIzY5kYPJH5nefjYWOaYu5GK82vZv/XKVxOLMHJ05rxC7tgbW/aN3dWJazig4QPALA1t2WBzyhmlJajNeipS0vA6uQeAPKFA0XCnnrUHBQTKQq7k7lj+uLlIJtg/lVyJCtJbVSlTg8gmy5JkiQ1syG+Q1h6ZCkxGTHc53Bfw5XhE+DBBHDww/Ln5XTKX8I3ScnXFaw6vYEl286xL6WQzCvVLB4RKs9xlQCoNxjZ/v7jTCr6iFTnwTjP/oB/HniC+Px4nuz1JNM6TDN1xBumtqqer5YeRaVS6Hd7CB0HeaE28Zs3X53/ig8SPmCicxSLtYGYpR/GKvkjSoQNhcKaAhzZyTxqg0bh4xuAq60F5hoVtwU642qnNWn2tkCOZCWpjaqovVqwauUeVkmSpObkauVK53ad2XN5D/d1vu/XGxz9AVC1HwF7l2C88CNrDgQQ4WlHUDsbHtucwOWUUzzgmYq7SGVFzEA6e8+gX4iLab4QqUWordPzw6pFTCz9nFS3UYgpzzNt990UVheyrP8yxgaONXXEv00IQV5aOR5B9mitzRhyVxieIQ4mm1VNuZJCUU0RntaefHL2E7akbiHarB3PxW9FhUKOcOZNMRtVjzk42Vnjbq/lsXA3rMxladUU5HdVktqoSl3DkmC5h1WSJKn5DfMdxorjK9iaupW1iWu5K/wuJoVMAkDXLhRF245+ulPcuy3p2mMGqE7zg3YF6uJ6hNqccIsTTP/SnWV3jyDK1/Fv5ckurWH32TxySmvo7OPAuE4ebaYpT1t2ITOXS+vmM77+J1K9JqCbuJh7f5iHhdqCtaPWEtku0tQR/7byohr2fZnC5cRibl3cFY9gB0K6uzV7jur6anZf2s2mlE2cKTpz7XqVomKWXSQLE7bzpRjNqQ4P4+3iwD29fXG1lbOnzUGOZKXrlFTV8daPKdTWG0wdRfqbMktqALCRS4IlSZKa3VDfoaw4voKn455GpahYdnQZfTz7sC1tGx+d/oivQvox4twukjt+TqHKhRydJd2yPkPt0gGmb0SpLcfx4yG8pl/B1FUaosN86RXgTHd/xz9dvJZV1zP9/Z9xLk/CS32FN+J82XOuG0smRcrXiBbs4OFDeO2cxRClkPSIf1I1YAr3x9yHvYU9a0auwcvmv+9/bi2MBiMJe7I4ui0NlIblv26B9s2eQ2fQ8enZT/ks8TMq6ysJtA/k8ZBphKituIyB9qlxdE7YzjZjHwJmruTO9q7NnvFmJ39LSdc5kFrEukMZtLO1QCMPMW71Ir3s5SZ/SZIkE/Cx82Fc4Dgs1BbMCJvBjB0zuOeHe7hUfgmAfZ6hBNRWYVF6Ce+y/XjXVYJbR7jrW7B2AXtQTXyPzpvnEG+7mE8yxhBzPoB3hA9zh3Vl4dBgdHojZmoV6v/yei2EIKesFmdrcx7fdJzlNc/QwyIZAL2ZOc+euZMZhZNYN6839pZy60hLc+jYEYJ2TsVCJaiY8i1XnGyZv+d+nLXOrBm5Bndrd1NH/FuEEHy38hTZyaX4d3JhwNT22Do172xlVX0V2y5uY23iWrIqsxjqNYC71C5EnNmBxalXAegF1KFhuWEaobc+ST9ZrJqELFil61Rc7Sy77YF+uMlN4pIkSZL0l73S/5VrHy/osoDX41+nl0cvCqoLiKtI4+4ZmxpuFAJqy8DCFlTqXz9Bx8lg54313qU8kL6eByxAp2hZ+NP99IsfSF55Q0E6t18A03v5XutZUFFbz+JNCexOzAfgcc2X9NAkw8iXwbc3mp+W8PLFNawvuMydq2HtnF44WZs32/dF+n2H4o8RsG0qWpUR1eztHFdKeOzH+3GzcmP1iNW4WTf/ctkbpa5Wj5m5GkWlENbXk8iB3gRGtWu25enV9dUcyD5ATEYM+7L2UaOvIcwxlA+d+9Hr0GbUhlpOGQP5yngvBVYhWFVlYHDtxMPTxhDsatssGaX/JAtW6TqV1xr1yB8NSZIkSbpRZoTNwNPGkz6efXjv1Ht8df4ravQ1WGosQVHA0uG/P9C3F8z6Dq5kQNEFzGNf4cPstzijHMTLLo884chru0fw7t7uTO/ph0qlsPtMDuPKNvCmTQxV5i60q05FdJuN0uefV8P8G358lpkH34EChZFv3strt3VmcAc5e2RqR06cwO/7O7BU6dHf+Q0f5+3gi3NfEOYUxqphq3CxbL0NuDLOFhP7xXl6jA0gvJ8nob2ab5a4Rl/Dq0dfZXvadmoNtThpnRjjO4xb69WExm/CojqXLYZovrOcRPc+g3m4uw/tbC2oNxjRqBS539vEZFUiXaeiVo9KAUsz9R/fWZIkSZKkRlGr1AzzGwZAtGc0nyd9zvH84/Tz6vcf962ur+ZC6QXCnMIwV1+d+XT0A0c/FP9o2LGYyEsHwDUSp9wE1upeJ9M8iDfiRmJUNCyzPERPzTHwH4aVogZNGMqoX2d7Ualg+EsgBDMPvUsA5Tyw9m7mjuzB/EFBcnBuAlU6Pds3f0L/lFewVtWjn/kNSy9/SUxGDDPCZvBwt4d//VloZXTV9RzYnMr5g7k4ulvh5GndrM+fV5XHwp8Wcr7kPLcFjWe0Yk/njJOo965GbdRxzNie1RYLGH/rZFZ3dL9uib2ZPAu5RZAFq3SdSp0eGwuNfLGSJEmSpCbSza0b5ipzDuYcvK5graqv4tF9jxKXE4dRGBnuN5wVA1dc/5psZgkT3vv1sr4OzmzCJ+4t3qxb1XCd0QJGvwY9722Yvf1vFAVGLAFbd/rueZFY62Tu/OEh8sqGMjTMlQ7udrjby61BzaGovIoTK6czRR9LvtYf49RPWHb5K2IyYnisx2PcGX6nqSP+ZZnnS9iz9hzVZTq6jvSjxzh/NM04KXKy4CSL9i6izqBjpWUY/X/6ELWxjnzhyA7DIGItR9Cz7yDejPaXR9K0YPJfRrpOeW29PLdTkiRJkpqQVqOlm1s3YjNjGeA9AG8bbxy1jjzw0wOcyD/B3RF3U2eoY/259aw/t/73CxaNOUTNgM7T4PJBsLCDdqGguf78ytzKXHZf2k16eTodnDpwR+gdqBQV9H0AJXAwthun87V4hVlH6/j8cDjmGhUrp3ZhVEePJv5u3NzKqnWcfPdORuhjyYxcgNf4Z3jmyEvsvLSTRV0XtepiFcCoF5hbahh9fyRu/nbN9rwGo4Evz3/JiuMr8LR0ZXlRLe0Lf2C9fih7NANxj+jH6M5erAl2QSNnUVs8WbBK16ms1cv9q5IkSZLUxIb5DeOlwy9xzw/3XLtOQWFZ/2WMCRyDEILsymzeiH+D6vpqZobPxNrsd5ZSqlTg/5/LiwEq6yqZvXs22ZXZ2Jrb8s2Fb9hzeQ8v93sZVytXcO+IMmcXFusmsrFoCXozW84oIdz7xTy+CQslt6yWdrYWjOvkQaSXPfaWZuSU1VKt09M70BmVPFXgL6nR6dn/7j2Mq9tDeseFeEx4iuePvMx3F79jfuf5zI2ca+qIf8nlpGKu5FXTeYgPfh2d8QlzRNVMRaEQguP5x3nz+JucLjpNf6eOvJh4GPOaWh7SPMktU+5idft2mGtkkdqaKEIIU2f4Q927dxfx8fGmjnFTmP7xYeoNRjbd39fUUSRJkpqMoijHhRDdTZ2jNZOvzX9fXlUemRWZZFVkkVmRSRfXLgzwHnDt9vK6cp4+8DR7M/dipbHC396fCOcIHur2ELbmje9Y+uT+J9mevp01I9bQza0b31z4hlePvYqT1onVI1bjbevdcMfqEji5HkozEKc2UIw9b3InHawruFBlyaaKjtRw/TLhBYODWTwy9IZ8P24mdXoj2955kFvL1pEWPIsrw+7i2YPPcbniMvd2upcFXRa0uu1Z9ToDBzZfIGl/Ds5eNtz+ZHfUzVCoHs09ytrEtegMOkp1paRcScHJwpFHHaIYdWQ9lw3tWO70PM/NmShPwGjh/tdrsyxYpevc8s4BXGzM+XR2T1NHkSRJajKyYP375Gtz80ksSmRL6hayKrI4knsEXztfFkQtILkkGUetI+ODxl9XwAohWHN2DZ+c/QQbMxtyq3KZ33k+/+jyj+s+570x92KpseTdoe/SwanD9U+adRw23A7VxdeuMmgsqbAJoEZli11dPobacu6r/gfz7pzF0LDWe9RKc9PpDWxd9QRTSj4k3XsihWP+wf175uNm5cZzfZ+jt0dvU0f80/IvlRPzSSJlhTVEDfOl5/iAJtmrWlBdwK70XRzJO0KprhSD0UBicSKuVq542zS88TLGvgOjTu/GPu8kMYau/Bj6Ai/cEY1WNhRt8WTBKjXK4OWxRHrZs3JalKmjSJIkNRlZsP598rXZNI7lHeOh2Ico05WhUlQYhRErjRUTgydyR4c7qNHX8EXSF3yf9j3RntE4aB1w0bqwqNsiNKrrt/wklyRz/4/3U1pbypzIOdzf+X7MVL/pY1FZAEUXwCWk4e+krXAlHWqugJ0nxtwzlJcWc5t4lQ2PTMLVVs5e/ZGaOgPb3nuE28s+5ZLbCKomP8PcH+/Fw9qDtaPWYm9hb+qIf1pNRR3rnjyI1saMYXeH4xXq2CTPc6bwDAt+WkBJbQn+dv54WHtQb6wn2sqHmVnJaPW16CuL0BScpVjY8Yq4i7Dhc5nTL6DVzVbfrGTBKjVK9yUxjIhw5+VJkaaOIkmS1GRkwfr3yddm0ymqKSK9LJ1w53AulV/ii6Qv2HlpJ3qj/tp95neez/2d7//DgXppbSmvx7/Odxe/o79Xf5YPXI6VmVXjghSmYPxoEKd0nmzs+CGvTen2hw8pqKhly4lsknLL6e7nyJAwN7wcLBv3fK1cZW09u99dyOTKDVzyGoeY/AKzfpiDpcaSdaPX4WbdumapddX1WFg1vMGRdqoQzxAHtNZN07hzV/ounj34LE4WDqx0H0b7nLNQXYJRX4cq6wiFOJBpbIcRFd8a+lISPJnHx3fFz7l5j9CR/h5ZsEqNEvr0Tu7u688TY8JMHUWSJKnJyIL175OvzS1LUU0Ru9J34WzpTJRrFO7W7n/q8ZtSNrHk8BIC7QOJdIkkxDGE6R2mo1b9wTLKM5vh33N5un42t9//PJ19HK7dJIRgX0ohxzOukJxXQUp+BRklVXQknT7aDA7UBnBR5c8jIzswt1/gdedftjWlVTr2vjefSdWbyfCbjMVtS7hr993oDDo+G/UZ/vb+po74p6Qcy2PfhhSGzQ4noJNLkz1PbmUub514ix3pO+hkH8zy1EQ8KvPJw5nLxnaYYWCvoTOpwbPw93BFpSiM7+JJe7fG7/GWWo7/9dos28FK19Tpjej0RtklWJIkSZJaGRdLF2aGz/zLj7+9/e04a515P+F94rLj2JK6haO5R3m85+OklaVhZ25HpEvktQJWCEGNvgarjpPRx69lccYmpqwbhLuHJ96OlvQKcGLLyWyOJGcSoc4k2iaPmdpswh0Tcam+CAKwgAKNBwt3zeX7hD7MHxTEiAj3VlO4CiHQ6Y3X7Y00GAUHLxZhb2lGJ++G4j0tr5iU1fOYpP+JjKDpWEx8lrkx8yivK+eTkZ+0qmK1rlbPvi+TSTmSj3ugHU4eTTODmVaaxuvxrxOXHYdaUTPfeyR3H/qSsnpz7lItxbF9X3ycrKk3GhnU3pWHg5ybJIfUMsjKRLqmUtewlMjGQv5YSJIkSdLNZojvEIb4DgHgy/NfsuzoMmK/ib12u6OFI752vpipzEgrS6NUV8rygcsZPuZV7D/oxxL1Rxy80ovTGTY8diSQaeYH+Mh6I+aGStAB2IF7J+j4TwgYCFlHaffz62zUL2F72VBe3zCaVZ5hvHZbJ8I8mvbMznqDkfO5FYS42fzXZjyFFToul1TTwd0W66vjIoNREJOUz8X8UspzUrC4FItTXTZXQm6nS88BXEg+i9npDYzVx1AhLFntdAdqtZqoou8YpVwgO+ohzIbcw+wf5lCqK+WDYR8Q7hzepF/njVSUVcnuj89SVlBNj3EBdB/td8OPqzEKI18lf8WK+BVYaiy5L/wubslOxXf/x5wz+vKux1LeuXs09pZNs/RYaplkZSJdU1nbULDaauUvAUmSJEm6mU3rMI1Qx1ASixMJdw6nsLqQ/dn7KaguQGfQ0d+rPylXUnjqwFMEjNlAcN8H6Bn3Nj1r40ABYalGEQbwHQC97ge3juDgC7/dU+sSjBI+AX5awphjaxhrsYcdJf2Z9c5MhveI4O6+/vg5W2OmVm5Y05wrVXW8vuscl8/8TKf6M6y078M9t0/gyMVCzl5IpXOH9lioBEV73iFYpBEjfCht14OgLoPIPf4dt5V+ylAlCzPFAIBeo0GTtovsi84MVooxolDoMQC7ynzmlb4FQJmZC0XD3kdEDGDO7jlU1Ffw0fCPiGzXuvqFFGSUU1erZ8JDUXi1v/GNlZJLknnp8EskFCYQ7dqNFyuMuOxcBkY9H+nHcrnzQ7wxqSsWGtnt92Yj97BK15zNLmPcOwf48M5ujIz4c3tfJEmSWhO5h/Xvk6/NUkF1AVO+n4KNuQ1fj/saK10l1FVBUQpcOgCu4dB56vVF6lVCiOuL0MoCOPw+4uA71CiWvFN3C1/WD6AUWyzN1NzS2YNbu3pjpzXjYmElW0/lUKXT08XXgSEdXOnu5/i7RW2lTs+us3ns3PEtT+rfI0jJAaAeDWv1I+inOkuY6jLJRm+MqAhTXUZn4YSFrgSAImGHi1JOhU0glp0moHEJAv9+YOlIxc+r0GWdxCZ0ENqIseDoD0JA5lHQ2kG7DqSXX+K+mPuoqq/ioxEfEeEccUP/LZpKvc5AYWYFnsEOCCGoqzVgYXnj57tiM2N5JPYRbMytecRtIKPiPkVfX8/X+gHs1o5i9qSxjJBj0zZPNl2S/tDhtGKmfnSYDfN60Te46TbQS5IkmZosWP8++dosQcMxO3N2z+GeyHtY2HXh7963tLaUQ7mH2Hh+I2eKzhDmHMYArwHMipiFVnP1SJyC87DzUUj/GYOioU5tTY1iyRZdD7bU96IGC0KVTKZrD+KoquGozodYQ2eynXqhUqkpLS9jdFQQDw5rT3WdnvhLV9h+OofyC3FMYB93aGIx2HhiPuxp8O2NbudTWFzYjs4+CIuoKdQm74H/a+/O46Oq7v+Pvz4zk30lgUAICYRFWQQBARXcxV3Efa+VWm371a9af/1at1pra1v9tnbV1vVbba1btRVrVcRd2UUEwr6GELYsZF9mOb8/ZoAAQUCSzMS8nzzmkTvn3Ln3MzeXOfnMPefcuq0knHl/+OpvfQWseJu6xf8mrs8o4o+7GXzx+3yP/qCfD0s+JCUuhWNyj8HMmLt5Lre+H76t0J8n/pkh2Z1jYsuK0jreemIxtZWNXPPA+HabAfiNNW9w9yd3MzijP3+ocvRY8x7zQwP5Q8btXHL6CUwc0pN4X9t2PZbYpIRV9uudJVu4/tl5vH7TcQzv0/nuAyYicqCUsB46tc2ywx0f38G0ddN4bfJr5Kfn7ywPhoJMXT2VWZtmsbhsMcU1xQDkpeZxfN7xLKtYxoJtC+iX3o87x93Jsb2P3XWVdEtReAbiphqo3ohb8Xa4i3GES8/D0vNwWxZj/noqPVn4CJAWqmZa8CgeCUwm0+o4xrOEyb5Z9GYbIW8CNvIq7PT7ISEyi6xzsL0YMvrA/mZEJjwZ0PLK5aysXMknGz+huKaYCwZewPF9jmfOpjm8vvp1tjZsBWBw1mAAllUsozCjkEdPfZQ+aX3a4pC3u2WzNvHh35cTl+DltOuGkT84q13289Lyl/jZrJ9xVOYgHi6aTUKzn98ELsJz7Pe47Yyh6v7bxShhlf365+clfP/FL3j/BydR2F33rRKRry8lrIdObbPssLV+K5P+OYk+aX0YnDWYrMQshmYP5YVlLzB/63xyknMY0X0ER3Q/ghE9RjA6Z/TO2YZnls7kJzN/wsbajQzMHMj1w6/nrMKz9u7eW7MZ1s8AF4LUHOg7IZxgBpphxZuw+NVw99vEDIJz/w+vvxYAZ14YcAo2/GI4/GxITKeisYJp66Yxa9MsTik4hUn9J1HWUMZnWz5jTK8xNPgb+Omsn1JUXsSAzAGMzhnNifkn8urKV/nXqn8B4DEPR/Y4kpzkHKavn07QBfGal2Nyj+HKIVdS3lDO35f9ndS4VCbkTeDSwy8lPb59J5JqCy7k+OD55Sz5uJTegzI5/dvDSMlIaPP9lNSU8OySZ3l+2fOc0G0ov/ziA7b6u/FA1s+4+aKJjGxxeyTpOpSwyn49O3Md975WxLx7JtI9te0/nEREYoUS1kOntllaen316zyy4BFCLkRZQxn+kJ/UuFTuPPpOJvWf9KXjS5uCTby59k3+tuRvLK9cztG5R3PLqFs4ovsRX22ypdptsHIadOsbnuwpKZz8OOd4bfVr/GL2L6gP1JORkEFVUxVH9jiSZRXLaAo24TEPPvMR741nYt+JrKtax6KyRQRdEJ/5uGbYNZzT/xzy0/JJ8iUB4eRr9fbVjO45mrT4zn//z49eXEFcvJejzyts01mAGwINvL76daatn8acTXPwmIcLuo/m9rlTWRvszTMDf8NPrzxZ3X+7MCWssl+PvL+K/317Oct+emarU7yLiHxdKGE9dGqbZV+agk0sq1hGXmoe3ZMOfE6MYCjIP1b8g9/N/x01/hoGZg4kJzmHeE88pxScwsS+E4nzxFFUXsSrK1+lqqmKw7odxjG5xzCm1xgMo7q5moyE3Yc1NQQaeK/4PV5d+SpzNs9hTM8x3DHuDgZmDuTZJc/y7JJnGd97POcPPJ85m+dQ0VDB9SOup1dKeJKfysZKZpTO4PBuhzOw28A2PVaxYtOq7fjivfQoSNt7QqxD5Jxj3pZ5/HjGj9lQs4F+6f04o89JXFRTT85Hv2FBqD//PuJ33HPx+E5zD15pH0pYZb8efGsZT328lhUPnBXtUERE2pUS1kOntlnaS01zDf9Z8x+mrZ9GY7CRioYKSmpLdlsnNS6Vnsk9WVe9jqALkpOUQ2Owkermasb3Hs+UI6ZQ3lDOzNKZvLP+HeoD9eSm5HL1kKu5ashVO7skd3XOOYo+LuXjF1fQe1Amk28d1Wbbbgw08os5v+CTkk/Y2rCVPql9uK/vJMYUL8QtmYovUMf04Cjmj/0V/zPpqDZNkqVz2lfbrPuwyk41jX5SE3VKiIiISPSkxadx2eDLuGzwZUA4qVqwbQGfbfkMgJ7JPTm14FSS45JpCDTwwYYPeGf9O2QkZNAtoRsvrXiJ66ddD4QT2zMLz+Tc/udyVM+j8Ji6m+4Q9If46IXlLPl0EwXDsjntW0PbbNvOOe6dcS9vrX2LM/qdwVEpBZz52b/IXHQntSTzn8BY/p14LhPPOJ3/OaavklX5UspOZKfaxgCpCTolREREJHaYGaNyRjEqZ++rf0m+JM4qPIuzCnf1DptyxBRmb5pNflo+/TP7E+dpn9uxdGZN9X7eeHQhm1ZVcdSZfRl3Xn88bdQdNxAK8NjCx3hz7Zvc3G00U1YuxDY+TW0ogbtC36HmsAs488h+PDWsJ3FtOEZWvr6UnchONY0B0nSFVURERDqxtPg0JvadGO0wYpovwUt8ko/TrxvGoLE922y709ZN4+HPHmZj7UZOT8jj2/P/xReh/swKncnigqv44cUnkZ+V3Gb7k65B2YnsVNOkK6wiIiIiX1cbllWQ3TuV5PR4zvmvEW3aFXfOpjnc/tHtHNbtMG4rOJqJH/6W50OnUX7iLzi6fzbf6ddNXX/lK1F2IjvVNAbIy0yKdhgiIiIi0sYWvl/CJy+tYMj4XE7+xpA2TR5La0v5wYc/oCAphz9trSH7s98yKzSEzAsf5sqRBW22H+malLDKTrVNftISO//9w0REREQkLBRyfPLSShZ9UEK/Ed2ZcMmgttu2C/Hqylf53fzfEQg28as1qwk0xfHz4JX0OPlGrl9g5FIAACAASURBVFeyKm1ACavsVKsxrCIiIiJfG/7mIO88VcTaL8oYOTGfYy8c2GaTKzUHm/nhRz9kevF0RncfwfeXfUFmk4/fD3yCG86eQEG2xqpK21B2IkB4+vEazRIsIiIi8rURaApSubme4y8bxIiT89tsuw2BBm59/1ZmlM7gB4Xnc/G8fxNXXcpDvX7NT66aiLeNkmIRgHabS9rM8s3sfTNbYmZFZnZLpDzLzN4xs5WRn93aKwY5cE2BEIGQ031YRURERDq5mopGgsEQSWnxXHbP2DZNVkMuxF0f38XM0pn8KGU433zv95Rtr+We5Hv572uvVrIqba49b34UAP6fc24ocAxwo5kNBe4A3nXODQLejTyXKKtu9AOQlqh7lYmIiIh0VlvWVfPyL+by6T9WAeCL87bp9v/w+R+YXjydm+MKuHTxG/w1eDovH/MPfnzrTWQk6e9IaXvtdjnNObcJ2BRZrjGzpUAeMBk4KbLaM8AHwA/bK47O4PPiSp78ZC3OuajFUN8cBCBNXYJFREREOqXionLefGwRSWnxDD8xr023XdZQxkNzH+LNtW9yvi+X61Z8zCNcwrhvPcg3CrPbdF8iLXVIdmJm/YBRwGygZySZBdgMtHq3YjO7AbgBoKDg6z3D2L8+38ibizYxoEdqVOMYnpfBiD4ZUY1BRERERA7eynlbmP5/S8jqncK5Nx1JSkZCm227qLyI777zXer8dVyfOZr/+vxf/IXJnHTDrxnWW387Svtq94TVzFKBV4BbnXPVLe/55JxzZtbqZUXn3OPA4wBjxoyJ3qXHDlDTGCA3I4l3bjsx2qGIiIiISCfTWOfng+eW07MwnXNuPJKEpLb7E39x2WJumHYDaXEpPJE4jMM+f4FpoXEMu/ZhJavSIdo1YTWzOMLJ6nPOuVcjxVvMLNc5t8nMcoGt7RlDZ1DTpNvJiIiIiMhXk5gSx/nfH0Vmr2Ti4ttuzOqM0hnc9sFtZPpSeHRdMf3q5vK34ES6nf8g4/p3b7P9iHyZ9pwl2ICngKXOuYdbVE0FvhlZ/ibwWnvF0Fno/qciItKezOxMM1tuZqvMbK/JDs3stsis/gvN7F0z6xuNOEXkwDnnmPnP1Xzx7gYAehSktVmyGgwFeWHZC9w4/UZ6J2Tx5zVrSK1t5Afpv+LIG55k0lED2mQ/IgeiPbOkCcA3gEVmtiBSdhfwS+AlM7sOWA9c2o4xdAo1TX56pLbdOAMREZEdzMwLPAKcBpQAc81sqnNuSYvVPgfGOOfqzex7wEPAZR0frYgcCBdyfPj8coo+LuWIE/JwztFy2N2hmLVpFg/OeZBV21dxbOZgfrFoJo3+eP5U+Ace/Ma5xHnb8yYjIntrz1mCPwH29T/n1Pbab2dU2xigf/foTrgkIiJfW+OAVc65NQBm9gLhGft3JqzOufdbrD8LuLpDIxSRAxYKOd7/61KWzdzM6DP6csz5/dskWa331/Oreb/i5RUvk5/ah//NPYOJM55mdSiXlw77NfdceYbusSpRoX6oMaCmMUCqugSLiEj7yAM2tHheAhz9JetfB7zZrhGJyFfinOO9Z5eyfNZmxp5byNhz+rVJsuoP+bnl/VuYvWk23+x1PN8u+pTM6hl8EDyShcf8hrvPGo1HyapEibKkGFDTFND9T0VEJOrM7GpgDNDqtPVd6ZZzIrHIzMjpm05mTjJjzu7XJtsMuRA/mfETZm2axY+9BVw88zmWh/pwn+9OTjzvKm4end8m+xH5qpQlRVlTIEhzIKRJl0REpL1sBFr+xdknUrYbM5sI3A2c6Jxram1DXemWcyKxJBgMsX1zPdl5qYw4uU+bbLO2uZbHFj7Gm2vfZEv9Fq5rSuC80ln8OnAZnuNu4YGTDydFF1QkBugsjLLaxgAAqfpAEBGR9jEXGGRmhYQT1cuBK1uuYGajgMeAM51zXf52cyKxJBgIMe2pIjYsqeCq+48hJePQJ+osri7m5vduZl31Oo7vdQw3VYc4Z+Pn3Jt8N9dccwNDctPbIHKRtqEsKcpqm8IJa1piXJQjERGRryPnXMDMbgLeBrzA0865IjO7H5jnnJsK/C+QCrwcGQ9X7Jw7L2pBiwgAoWCId54qYs3n2zjukkGHnKz6Q35eWPYCjy54FC/Gn1wOR898CY8L8lPfjdz0nRvJy0xqo+hF2oYS1iir2XGFVV2CRUSknTjn/gP8Z4+ye1ssT+zwoETkS4VCjnefWcrqSLJ65KmHNpa0tLaUW96/hWUVy5iQcRh3LJ1DRqPjkeAkZicez13fulTJqsQkZUlRtiNh1RhWEREREdlh6aelrJizhWPO739IyWpVUxUzN83kF7N/gT/QyMOefCYumM6iUCE/73Ev1551At8rzMKn+6tKjFKWFGU7uwQnqEuwiIiIiIQNGZ9LYmocA0blfKXXB0NBfjHnF7y4/EUA+iZk8bviDfRqWs9D/supGflt/nDBaBJ83rYMW6TNKWGNsppGP6AuwSIiIiJdnXOOBdM3cNjYnqRkJnzlZDUQCvCjT3/Ev9f8m8u6DeeMukaOXPYuX4QO4+70O7lp8gkcN6h7G0cv0j6UJUXZrkmX9KsQERER6crm/Hst895YR6A5yNhzCr/SNur99dz+0e18WPIhN9XDd9a+QYV14y+Bc1g1/DaeuWiUrqpKp6IsKcpqdFsbERERkS7vi3c3MO+NdQwZn8uYs/p9pW2sr17PDz78ASsqlnNntZ+zy2u51H8fzbljuWhMPg8eXUBkJnCRTkNZUpTVNAaI93pIjNM3XSIiIiJd0Yq5m/nk5ZX0H9mDk64ejHkOLqn0B/08vfhpHl/4OAnm4fdlVQyu8fC9uJ/xyxsvpn+P1HaKXKT9KWGNstomv8avioiIiHRRoZBjwTsb6D0ok9OuG4rnIJPV+Vvm85OZP2FN1RrOiO/F7as+Y3OgH99Juos/3HA2+VnJ7RS5SMdQphRlNY0BjV8VERER6aI8HuO8W0ZiHsN3kD3uXlr+Eg/MfoBecWn8cXszx1fO49nAabyZ+12e/OYEuqcmtFPUIh1HmVKU1TYGNH5VREREpIup3FzH5+8Uc8Llh5GYcnC3NwyGgvxxwR95ctGTHEcyv1qxmPUMYHLzTYw6+mSeOXuIhpvJ14YypSirUcIqIiIi0qXUVjYx9fcLCPpDjDmrH+ndkw74tdsbt3PHx3fwaemnXNhs3FG6mgear+Wz7Mk8MGUkowu6tWPkIh1PmVKU1TQFyMs88A8pEREREem8mhsD/PuRL2iqD3DBbaMPKlktKi/itvdvY1v9Fu6pauDMyiauabqLE06dxGsnDiDe52nHyEWiQwlrlNU2+UlLTIt2GCIiIiLSzkLBENOeLKKitI5zbxxBj4ID/xvwrbVvcfcnd5NlPp4p2UiCP4+L/Hfzw6vP5rShPdsxapHoUsIaZZp0SURERKRrqNrWwOa1VZxw+WEUDMs+4NdNXz+dOz7+IUe6OH67fgXvBE7ijwnf5rdTxqsLsHztKVOKIuecJl0SERER6SK69Urhqp8cQ1Jq/AGtX9ZQxsvLX+bxhY9zhN/x+43F/LTpeooLLuAfV44iJy2xnSMWiT5lSlHU6A8RCDnSEg9uZjgRERER6TzWLNhGRWktR53V74CT1TfWvMG9n95Lc6iZEwNe7ivdyvUNt3PE+LN57uzBxHk1XlW6BiWsUVTT5AcgVV2CRURERL6Wtq6v5p2ni8jqncrI0wr2e6/VhkAD/1z5T34555eMsWTuKVlPn4BxbdMPmHTexXzj2H4dE7hIjFCmFEW1jQEA0tQlWEREuqjpf1nC1nXVu5V165XCWd8dDsBbjy2iYlPdbvU9+qZx2pRhALz+hwXUlDfuVt97UCYnXTUYgFd/9RkNNf7d6vsOz+a4iwcB8NLP5+JvCu5WP/CoHI4+rz8Az/141l4xDz62F0ed2Q9/U5CXfj53r/rhJ+Ux4uR86qub+eev5+9VP+r0AoZO6E11WQOv/+GLverHnVvIoLE9KS+t5a3HFu9VP/6igRSO6M6WtdVM/8uSvepPuOIw8gdnUbK8kg+eW7ZX/cRrh9KrfwbrFpbxyT9W7lV/1neGk52Xysp5W5g9dc1e9ZP+eyQZPZJY8mkp899ev1f9hT84iuT0eBa+v4GF75XsVX/p3WOJT/Tx2VvrWPrppr3qr7r/GMyM2VPXsHLult3qfPFeLv/ROAA+eWkl6xaV7VaflBbHRbePAeD955ZRsqxyt/r07EQm3zoKgGlPFbFlj3MvKzeFc/5rBAD/+dNCykt3P/d69kvn9OvC595rv/2c6j3OvT6HZXLyN4YA8MpD86iv8VNf3UxSajzn/NeIL01WV1Su4P6Z97OobBEhF+KEZvjllvW8ZpP5Y8OJTDlrgpJV6ZKUKUVRzY6EVVdYRUSki0rvnkTQH9qjbNe4vIycZMxju9VntLgNSGbPZOL3aEdb3iYkq3cqTfW7J6xpWbu2n52XQmCP/ad2S9i53D0/da+YUzLD9eZpvT45PVzv8Ro9WqtPC3cJ9cZ5Wq1PTA0PFYqL97Zenxx+v3EJrdcnJPl2/szpm75XfVxiOGlKSIlrtd4X790ZR6v1ceGuqMnp8a3We7zh31dKRgI5/fau3/H7TO2W2Gr9DmnZe9d743Z1g83ISdqrPiF517mQmZNMYI8vI5LTd3XHzcpNwXY/tUjLbnlupBKXsHuC2a1X8s7l7n1Sd9seQGbPlJ3LPfLTaGoI4PV5GHV6wV7rtvTqyld5YNYDpJmPG7w5DN26hlE1zVzZcBfePqP58Xn9OWt47j5fL/J1Zs65aMewX2PGjHHz5s2Ldhht7tNVZVz15GxevOEYju5/4DPFiYjIoTGzz5xzY6IdR2f2dW2bRTrauqp1XPDa+RwV9PLghjUkJubxRag/P6o6l6vPPY0pEwqjHaJIh9hX26xLe1FU0xj+xleTLomIiIh0Tb+e+xDxoQA/2VTGT5tv5F/1x5Ic7+W+C4dx6dj8aIcnEnVdPmF9+J0VfF5cuf8V28HW6iZAXYJFREREuqLZm2bzwcaPuaWyiltrvk/20JN4c+IgBuWk4tMswCKAElae/mQtyfFe8rol7X/lNpac4OWMYT3plaF7aImIiIh0JYu2LeL2D/4fvQNBsiuHMP6USdw6cRC258BakS6uSyeswZCjtinAdccV8v3TDot2OCIiIiLSBcwoncEt791MdiDI7zeX8+O0H/PsKQOVrIq0okv3Nahr1iy9IiIiItJxyhrKuOPD2+nj9/PX4mKeqL+GGyadTJy6AIu0qktnarW6rYyIiIiIdBDnHD/65B7qm6p4YnM5tzd+n/ghZ3LS4T2iHZpIzOrSX+XsuA9qaoJm6RURERGR9vXnhX/mk9JPua28gkdqrqXbyHP5wxWj1RVY5Et06YS1til8W5lUXWEVERGRLqreX8/KypU0B5ujHcrX2jNFz/DogkeZVFtP0vYRxI+6jF9fciTxvi7957jIfnXpTK1aXYJFRESkCwmEAhiG1+NlwdYF/HLOL1lasZSQC5HoTWRkzkjG9RrHuNxxDMseRlF5EQ/MeoA1VWuI98ZTmF7IyJyRjM4ZzcickWQnZUf7Le1U76/ni21f0COpB30z+hLnObAedM45yhrKWF+9nvXV66n111KQVkC/jH70SesDDkrrSmkMNAJgZvg8Pnol9yI5Lnmv7dU017Cmag0bazbSFGyiIdDAW+ve4vOtn3N6fRPf3hbPLek38eLkYbqyKnIAunSmtnMMa0KXPgwiIiLSCYRciO1N2/F5fKT4UvB6vDvrisqKuH/W/VQ3VZMSl8LonqMZmj2U5RXLKa4pJs4TR0VjBUvKlxDvjWdY9jDmbJ5Dr7gMbkg5jIKmOpYkJjO7qpjfb5oFn0OyL5mGQAM5cWlcntKfJmBFUzUvLHueZ5c8C0Df9L4MyRpCoi+R9Ph0hmUPY1vDNl5f/TpBF2Ro9lCqmqpYX72e3JRchmYPZWj2UAZkDsDn8WE7/lnk0eJ5IBRgXfU6NtRs2JlQD8gcQEpcCqurVrN6e/hRH6gnEAywYNsCmoJNux2zJF8ShRmFJPmSWFe1Do95KMwopCHQQHFNMc3BZkIutNfrdvCZD4cj6IKt1uck5VCQXkBOcg4e81BcU8zissWEXGi39frFpfP/qho4dbuXK/138egVx5Ecr78/RQ5El/6fUtu04wqrxrCKiIhIbCoqL+KZomeYvWk2FY0VAKTFpXFcn+MYnDWY2uZanil6hqy4FI5K6cP2YBP/WvlPnl/2PIneBPom5RB0IVLNx6VJfanDMb9yNRe4ZH6wYiGpnjjI6MOkynXgQlT4Epibezhzk7uR1ryNb68sIsUt3hlPM7Aku4DPs/swP2gs3jyPgAux3V9LYyjcrXhEUi8yPIl8uuEDMr1JDPAms7FqHc9snkNgH8nfwTKM/MTupHsTMOCiuByOr93K9sRUNiSlETQPdQZrmupoaKzhBG8GIWBt9UaSzcsZ3iwSvYbHhchtaqBvTRkF20tJC/gpTs1iXUYv1iWnYc5R0FBDSsCPAxzg9xgbE9ModvEUV29k4fbVAGQTx/UuneHbt5BXW0GSC+Fx0CtYzJK44VzdeD0/uuo0hvfJaJNjINIVdOmEtaZRY1hFRESkY4VcCI/tPm7ROceyimV8UPIBVU1VeMyDz3xsrt/MW2vfIj0+jRPS+jM0qZAgsIomPto4gzfXvgnAsZ50HlyxiG6hLwBoMijJyKVgezFxrNy1I/PCjoQxPhXOeRhGXk3QE4e3uRo2zCFr/aecsX4GZyydAQlphM79HVWHXQLBJtKqVxK/cS4jS+YysmQeU6o27Ny0H1iVnE5CoJn+zcWtvvcmgxUpWRR3yyVkHsBwZjiMEIAZDoczwxNy9KneSmH1ZnwOar0+VmXlUxeXwIDKTfSr306iW7/rGMYlU5UzlsSGahK2LYVQEJrrsMjVU0e4+63hws89cThfIpiXhuRcyhMGUpx1PNtdMgW2lWMbNnJmxTocHrYn5dPoScaFX4rHBTi+ZjMp9SV4A/W7vcfKtEGsiR/LgpQe1IQSaAjAy5WDKPH35jeXj+T0Yb0O8EwREejiCWttYwAzSIn37n9lERERka8o5EK8svIVpq6ayuKyxYzLHceZ/c7k1L6nsql2E/fOuJcl5UswjNS4VIIuSNAF8eDhmsQCvrN8JmmhxbtvE2hMzCAYCpDqL8FOvgsGT4LG7SSs+5gB25bD2OHQYwi4ECRmQO6R4K+HknlUZQ7mt3Pq+PTjmazcWku/7BRG5vdgVMG1jDzjVgZn+5i5tpK7pq5k48vvA+F5P4b1Hs3wvJM54uQMRmY2kB/YgMcFiavbypDSBYS8CXyWeRr1njQG23rKQ8ksbepOH08ZA4NrOaJqGcMr14ZjwrEzC3QhCLmdZc6Mhl4TKMvPI2A+4gN1HN24Dm+gjvK8o/jc8ljc3IvyQBJNgRBTS9MoX737FwFxHseYzDrSvH5mVKZhwNj0KsqbfSyqTSO0Y/7RqvCPBJ+HjKQ4tta03kV4b47uVNPLW0UI2BZMZ1tjJmmJPgqykklN8uHzGpcd3YMLR+eRk5Z48CePSBdnbseHRAwbM2aMmzdvXptv976pRbwyv4RF953R5tsWEZHYZWafOefGRDuOzqy92uY9BUNBXln5Cifnn0yP5La5V2XIhXaOk+wIzjkemvsQf1v6NwZm9OeotH58un05JbUbifPE4XCk+1K4KWUQp5YsJauubNeLm2og6IcxU2D4JZB3FGBQtgJWTYfqjeGEb8gk6nofS3WjH8PomZ6AmVHXFGBtWR3+YIjiinpmri7H4zEG9kjl8Y/WUF7XxISB3RncK50122r5fMN2tkWStXifh+ZAiIE5qVw+Nh+AtWV1LN5YxdLNNTQHwuM0fZ7wcUyK83J4rzRKtzdQWtW4z+ORmuAjPys8WVEwFCIYcgRDjkDIEYr8DIYcjf4gdc1f3n24W3Ic2akJeM0YVZDJyYNzqGkMULq9AYAGf5D15XU0+UMMyEnFDNaX1ZOS4KN/jxTSEn14PUZ+t2T690ihd0YSHo/R6A+yoaKe9eX1+LxG/+6ppCX68JhhHggGHaVVDZRUNrChop7yuma8ZvRIS+C4Qd3p3z1FEyqJHKR9tc1d+wprU0ATLomIiMSwuVvm8tNZP+V383/HnUffybn9zz2o11c2VhLniSM5LhnDeK/4PR6a+xBZiVncP+F+BnUbdMgxOueoaKygMdhIU7CJ5mAzOck5ZCVmEXIhnl78NH9b+jeuSujDD5d8hjV/gEvIYPGACfwnPR3XUMl3l3xAZqAI+k6AgmN3bdybAKOvgZ5Dd99pz6G7lb22YCM/fPodGv3hJDIrJZ78rGSWlFbhD+66OJGe6MMRvhd9/+4pPHHNhN3GUzrnKK1qZEHxdhZsqCQrJYEpE/qRGLd7bzR/MMTKLbUs3ljFuvI6zKC6IcCyzdUc1iuNe84dSs/0RFZuqSE7NYHDe6axtaaR5VtqWLG5hpLKBjwew2uG12v4dix7DJ/X8JgR5/XQv0cKA3NSSYzz0ugPsrasjobmIIf3SuPwXmn0SE1ol8QwMc7LoJ5pDOqZts91uqXEM6y3xqKKtLcuna3VNPo14ZKIiEgMK60tBaBnSk/u/PhOMhMyOS7vOBoCDTQFmshMzGz1dbXNtfxk5k94a91bO8uSfEk0BBoYmDmQ0rpSLv33pVw77FquO+I6UuNTd65X1VTFEwufYH3Nei4//HLG9x4PsFtitLluMxWNFayvXs+zRc+yuHz37roe8zCu1zhKakooqS3hdFK4fflsbMRlUHgCtu4Thi9/g+ENleEXDJ0MZz4I6bl7vZdGf5Cp8zbw1uLNLCzZTqM/RHqijzH9suidmUTp9gamflHKuMIsLhyVhz8Y4ouSKtaX1/GtCYWMzM8kMc5Lj7QEhuSmY8CGynp6ZSSS4Ns9ETUz8jKTyMtM4pwRe8eyQ5zXw9De6Qztnb7PdQCO6ttt53JBdjJj+mV96fr7M35A90N6vYh0Pl06Ya1tCmjCJRERkRhWWr4Cj4O/ZR3HZUE/D8x6gKfPeJob3rmBqqYqnjv7OfLT83d7zZa6LUx5ewqltaVMGTaFrMQs6gJ11DXX0a+2ggsXTKUmIYVfFR7Jk4ue5JUVr/C9kd9j8oDJvLziZR5b+Bh1/joyEzL5YMMHxHvi8Yf8DOo2iPMHns/sTbP5sOTDnfsrSM3j+33OoJvFkeBCxIdCLHGNvFO7lp7x6dzszeO0VTPxnP9nGHlF+EUjr4Dg76B4Rvh54Qk7t+eco745SG1TgCWbqrn/9SWsLasjLzOJUwf3JCXBx9aaRmavLaey3k+iz8M3j+3L3ecMJd4XHpP5jf0c177ZKYf8uxER6Qhdegzr5D9+QreUeP4yZVybb1tERGKXxrAeuo4aw3r3v7/B7C3zmL6hlNl5Q/l2fC3JvmRCLkS8N56sxCweO+0xEn2JdEvohplx+4e3896G93g8azyjP38ZQgHYMStvoDE88VBTLVSspqhwPL/OSmduxRJ8Hh+BUIAJ3YZw29bNFJat443DT2R1ajd8wMe1a1levY6M+HSuyhjK4cSTUVvByOXv4m3tPp7eeAg2g8cHZ/wcjv7OPt9nSWU9L8zZwGtfbKSksoGWf571zU7m/slHcMKg7hoXKSJfWxrD2oqaxsDOQf8iIiISezbVbaZ3IACTH+HoqTdz7qCRvB3czh96n0ViYxXXV8zgjFfCkydOyJvAFYdfwZvr3uS7LoPRc54Jd7XtVrhrRtoeg+HIK8K3PJn7JMM+/CVPravho8GnMC0lhXPKSxk//23IyIfCEzh/0X/CCS9wM7A2bwQ9N64mpTnSBTghHUZdBUdeCclZ4EsMP7YWwfK3IDUHRl4JqTms2FLDszPX8emqcobkpnFs/2yO6Z/NnHUV/OzfS2kKBDluUA8uGJlHSoKP1EQfmUnxnDokZ68xpCIiXUXXTlibAqSpS7CIiEjMKm3ezpH4YNTVULmen370EN8feAo5H/8RgL8ceRGLDj+VyqZKnlr0FJ9u/JRenkS+taYIzv9TOFlsjccLx/4XHHk59snDnDj3aU7010Fy9/BY0jFTwJcA1Zugci1447G1H9F/yWsw9Hw49sZw8uvZRyJZeMJu3XzfWLiJm56fT5zXw/gB2Swo3s5/Fm3eWX/cwO788qLh9OmmL9JFRFrq0tmaJl0SERGJXcFQkC3BRnLjIjOxnvA/+Ja/Sc6q92DcDRCXzIhPf8uI4vlgHo4eeBwP1K/g+2sWkjTmW/tOVltKzoLTfwbH3QbrZ0D/EyGhxcyw6bm7JkLqMwaOv+2g38fsNeV8/8UFHFXQjcevGUNWSjzOOTZUNDBzTRmJcV4mjeiNx6PuviIie+qyCas/GKLRHyJVt7URERGJSWUNZQQMeifnhAt88XDF87BxXvgqJ4QTzpK50FzP2DnP8i9PHCRmwCn3HNzOkrNgyMHdMmcH5xzry+tZX1HPhsgjIc7LqPxMZq4p52+z1pOflcST3xxDZnI8EJ6NtyA7mYLsgq+0TxGRrqLLZmu1jeHxKOoSLCIiEps2VRcD0Cuj767CzPzwY4cJt+xaXvwKvH0PnPEAJO26nUp7CYUcs9dW8OBby1iwYfvO8nivh0AoRMiBx2DSkb354ZmDdyarIiJy4LpstlbbFE5YdYVVREQkNm3augiA3t0OP7AXHHFR+NEGahr9rC+v5/BeacR5PZTVNpEU5yUlwcf7y7fy+3dXsnRTNY3+EL3SE/nxpKEM651BQVYyOWkJ1PuDLCzZTn63ZE3wKCJyCLpstlaz8wqrxrCKiIjEotKK5QDk9hzeptsNhhyBUIgEX+sTJs1YXcZtL37B5upGUhN8JMV72VbThNdj5HdLYl15PYXdU7j66L4Mzk3n3BG5e83im5rgY/yA+qID8QAAD1xJREFU7m0at4hIV9SFE1Y/oC7BIiIisWpTdTHpwSApOcPabJvLNlcz5f/mUlnfzPgB3Tnp8B6cfHgO+VnJ+IMhfvPOCv704WoKu6fw0EUj+KJkOw3NQYb2Tqeqwc/CkiquGFfAlAmFxPs8bRaXiIi0rstma+oSLCIiEts21W8hN+ggOfuQt+UPhnhnyRZ++MpCkuO9XHJUPh+t3MZ7y7YCRfTplkRinJdVW2u5Ylw+Pzp3KMnxPi4dm7/fbYuISPvpstlajSZdEhERiWmbmqvJ8yaCffXbvSzeWMUr80uYuqCU8rpmBuak8sy3xpGXmQTA2rI6Ply+ldlrK1hfXs+jV43m7OG5bfUWRETkEHXZbK1mxxVWJawiIiIxaZNrYkz8Vx8H+tvpK/jt9JXEez1MHJrDhaP6cOLhPYjz7urKW9g9hcLuhVw7obAtQhYRkTbWZbO1HWNY0zXpkoiISGxpqGT1yjeoNeid0usrbeIfn5Xw2+kruXBUHj+eNIyMZLX3IiKdUZdNWGsbA/g8RoImTBAREYkd/gZq/zyB76eGyPJ6OLP/pIPexJLSau58dSETBmbz4MUjdruiKiIinUvXTVibAqQl+rBDGBcjIiIibcstfJkfJTRRHJ/CEyf+hl79Tj3obfzu3RUkxXl55MrRSlZFRDq5qHyKm9mZZrbczFaZ2R3RiKGmMaDxqyIi0iXsr901swQzezFSP9vM+nV8lIBzvDn/j0xPSeaW0bcy9iskq0s3VfN20Ra+dVwhmcnx7RCkiIh0pA5PWM3MCzwCnAUMBa4ws6EdHUdNY4DUBI1nERGRr7cDbHevAyqdcwOB3wAPdmyUYZWrp/NLby3Dk3pxzbBvHvDrAsEQi0qqmLO2gl+9vZy0BB9TxmsSJRGRr4NoXGIcB6xyzq0BMLMXgMnAkvbc6cvzNvD3OcU7n6/aUsuQ3untuUsREZFYcCDt7mTgvsjyP4A/mpk551x7BvbrF77HjOoZO5/XegJU+zzUl1/DxX+edUDbcA5Wb63dOfs/wH+fMlCTLImIfE1EI2HNAza0eF4CHL3nSmZ2A3ADQEFBwSHvNN7nITVh19sdWZDJ5JF5h7xdERGRGHcg7e7OdZxzATOrArKBspYrtXXbHOdNIAHvzucJIS/D6keyLeGwg9rOuUfmcuyA7mQlx+MPhRg/IPuQYxMRkdgQs4M4nXOPA48DjBkz5pC/4Z08Mk8JqoiIyCFo67b55kt+y82HHJWIiHydRWPSpY1AfovnfSJlIiIi0vYOpN3duY6Z+YAMoLxDohMREfkS0UhY5wKDzKzQzOKBy4GpUYhDRESkKziQdncqsGOWo4uB99p7/KqIiMiB6PAuwZGxMTcBbwNe4GnnXFFHxyEiItIV7KvdNbP7gXnOuanAU8BfzWwVUEE4qRUREYm6qIxhdc79B/hPNPYtIiLS1bTW7jrn7m2x3Ahc0tFxiYiI7E80ugSLiIiIiIiI7JcSVhEREREREYlJSlhFREREREQkJilhFRERERERkZikhFVERERERERikhJWERERERERiUlKWEVERERERCQmKWEVERERERGRmKSEVURERERERGKSOeeiHcN+mdk2YH0bbKo7UNYG24mGzhq74u54nTV2xd3xOmvsbRF3X+dcj7YIpqtS2wx03tgVd8frrLEr7o7XWWNvt7a5UySsbcXM5jnnxkQ7jq+is8auuDteZ41dcXe8zhp7Z41bWteZf5+dNXbF3fE6a+yKu+N11tjbM251CRYREREREZGYpIRVREREREREYlJXS1gfj3YAh6Czxq64O15njV1xd7zOGntnjVta15l/n501dsXd8Tpr7Iq743XW2Nst7i41hlVEREREREQ6j652hVVEREREREQ6CSWsIiIiIiIiEpO6TMJqZmea2XIzW2Vmd0Q7nn0xs3wze9/MlphZkZndEim/z8w2mtmCyOPsaMe6JzNbZ2aLIvHNi5Rlmdk7ZrYy8rNbtOPck5kd3uK4LjCzajO7NRaPuZk9bWZbzWxxi7JWj7GF/T5yzi80s9HRi3yfsf+vmS2LxPdPM8uMlPczs4YWx/7PMRb3Ps8NM7szcsyXm9kZ0Yl6n3G/2CLmdWa2IFIeS8d7X5+BneI8l4Ojtrn9qW3ukFjVNsdG3Gqb2y/u6LbNzrmv/QPwAquB/kA88AUwNNpx7SPWXGB0ZDkNWAEMBe4DfhDt+PYT+zqg+x5lDwF3RJbvAB6MdpwHcK5sBvrG4jEHTgBGA4v3d4yBs4E3AQOOAWbHYOynA77I8oMtYu/Xcr0YjLvVcyPyf/ULIAEojHzueGMl7j3qfw3cG4PHe1+fgZ3iPNfjoH7Xaps7Jna1ze0fn9rm2IhbbXP7xR3VtrmrXGEdB6xyzq1xzjUDLwCToxxTq5xzm5xz8yPLNcBSIC+6UR2SycAzkeVngPOjGMuBOBVY7ZxbH+1AWuOc+wio2KN4X8d4MvCsC5sFZJpZbsdEurfWYnfOTXPOBSJPZwF9Ojyw/djHMd+XycALzrkm59xaYBXhz58O92Vxm5kBlwLPd2hQB+BLPgM7xXkuB0Vtc/SobW5Daps7ntrmjhXttrmrJKx5wIYWz0voBA2NmfUDRgGzI0U3RS6rPx2L3XcAB0wzs8/M7IZIWU/n3KbI8magZ3RCO2CXs/sHRawfc9j3Me5s5/23CH8bt0OhmX1uZh+a2fHRCupLtHZudJZjfjywxTm3skVZzB3vPT4Dvy7nuezSKX93apujQm1z9Kht7jhqm/ehqySsnY6ZpQKvALc656qBPwEDgJHAJsJdBmLNcc650cBZwI1mdkLLShfuIxCz91Eys3jgPODlSFFnOOa7ifVjvC9mdjcQAJ6LFG0CCpxzo4DbgL+bWXq04mtFpzs39nAFu//xF3PHu5XPwJ0663kunZ/a5o6ntjl61DZ3OLXN+9BVEtaNQH6L530iZTHJzOIInwzPOedeBXDObXHOBZ1zIeAJotSV4cs45zZGfm4F/kk4xi07ugBEfm6NXoT7dRYw3zm3BTrHMY/Y1zHuFOe9mV0LnAtcFfmwI9Jtpzyy/Bnh8SaHRS3IPXzJuRHzx9zMfMCFwIs7ymLteLf2GUgnP8+lVZ3qd6e2OWrUNkeB2uaOpbb5y3WVhHUuMMjMCiPf1F0OTI1yTK2K9F9/CljqnHu4RXnLft8XAIv3fG00mVmKmaXtWCY8YH8x4eP8zchq3wRei06EB2S3b7Zi/Zi3sK9jPBW4JjJT2zFAVYtuGzHBzM4EbgfOc87VtyjvYWbeyHJ/YBCwJjpR7u1Lzo2pwOVmlmBmhYTjntPR8e3HRGCZc65kR0EsHe99fQbSic9z2Se1ze1MbXNUddrPLLXNUaG2+cu4GJh5qiMehGerWkH424m7ox3Pl8R5HOHL6QuBBZHH2cBfgUWR8qlAbrRj3SPu/oRnYPsCKNpxjIFs4F1gJTAdyIp2rPuIPwUoBzJalMXcMSfcaG8C/ITHA1y3r2NMeGa2RyLn/CJgTAzGvorwGIcd5/qfI+teFDmPFgDzgUkxFvc+zw3g7sgxXw6cFUtxR8r/Anx3j3Vj6Xjv6zOwU5znehz071ttc/vGrba5Y+JU2xwbcattbr+4o9o2W2SjIiIiIiIiIjGlq3QJFhERERERkU5GCauIiIiIiIjEJCWsIiIiIiIiEpOUsIqIiIiIiEhMUsIqIiIiIiIiMUkJq4iIiIjIQTKzfmbWJveBNbN/RO61eaDrP2BmG8ysdo/yBDN70cxWmdlsM+vXou7OSPlyMzsjUhZvZh+Zma8t3odIe1DCKiIiIiISJWY2DPA659YcxMteB8a1Un4dUOmcGwj8Bngwso+hwOXAMOBM4FEz8zrnmgnfR/OyQ3gLIu1KCauIiIiIdCpmdrWZzTGzBWb2mJl5zWysmS00s0QzSzGzIjM7wsxSzexdM5tvZovMbHJkG/3MbJmZ/cXMVpjZc2Y20cw+NbOVZjYust59ZvZXM5sZKb++lXi8Zva/ZjY3EsN3IuW5kSuYC8xssZkd38rbuQp4LbJ+38g+upuZx8w+NrPT93yBc26Wc25TK9uaDDwTWf4HcKqZWaT8Bedck3NuLbCKXQnvvyIxiMQkXf4XERERkU7DzIYQviI4wTnnN7NHgaucc8+a2VTgZ0AS8Dfn3OJId9cLnHPVZtYdmBVZD2AgcAnwLWAucCVwHHAecBdwfmS9EcAxQArwuZm9sUdY1wFVzrmxZpYAfGpm04ALgbedcw+YmRdIbuUtTQCeB3DOrTezB4E/AXOAJc65aQdxePKADZFtBcysCsiOlM9qsV5JpAxgMTD2IPYh0qGUsIqIiIhIZ3IqcBQwN3zxkCRga6TufsKJZyNwc6TMgJ+b2QlAiHCi1jNSt9Y5twjAzIqAd51zzswWAf1a7PM151wD0GBm7xO+OrmgRf3pwAgzuzjyPAMYFInlaTOLA/7lnGv5mh1ygW07njjnnjSzS4DvAiMP+Kh8Rc65oJk1m1mac66mvfcncrCUsIqIiIhIZ2LAM865O1upywZSgTggEagj3N21B3BU5IrsukgdQFOL14ZaPA+x+9/Jbo/97PncgP92zr29V7DhRPkc4C9m9rBz7tk9VmloEQ9mlgz0iTxNBQ4midwI5AMlkSvLGUB5i/Id+kTKdkggnOSLxByNYRURERGRzuRd4GIzywEwsywz6xupewz4EfAckQmHCCdtWyPJ6slA3z03eAAmR8bGZgMnEb5y2tLbwPciV1Ixs8Mi42j7Alucc08ATwKjW9n2UsJdk3d4MBL/vcATBxnnVOCbkeWLgfeccy5SfnlkFuFCwld/50RizQbKnHP+g9yXSIfQFVYRERER6TScc0vM7B5gmpl5AD9wo5mdCPidc3+PjBedYWanEE7+Xo90850HLPsKu10IvA90B37qnCttecsYwsloP2B+ZJKjbYTHv54E/I+Z+YFa4JpWtv1GZL3pkfcwlvD43KCZXWRmU5xz/9fyBWb2EOHxtslmVgI86Zy7D3gK+KuZrQIqCM8MjHOuyMxeApYAAeBG51wwsrmTIzGIxCQLf+kiIiIiIiJ7MrP7gFrn3K/aaftJhJPhCS2SyA5jZq8CdzjnVnT0vkUOhLoEi4iIiIhESWQypx+za9beDmNm8YQng1KyKjFLV1hFREREREQkJukKq4iIiIiIiMQkJawiIiIiIiISk5SwioiIiIiISExSwioiIiIiIiIxSQmriIiIiIiIxKT/D2wKySLqVLd5AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 1152x432 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA7MAAAGeCAYAAABGs1auAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXxU9dn//9c1k30BQgibCAgiIgQiBkQFiWJRXMD1VotfoIhWre1922qV6k/FauuCFVutFi0CiojV1qJ1QVtZpOwIIpvsGNkhIZB9Jp/fHzMZsrEnmYS8n49HHplzzuecc82Imbnm+izmnENERERERESkPvGEOwARERERERGR46VkVkREREREROodJbMiIiIiIiJS7yiZFRERERERkXpHyayIiIiIiIjUO0pmRUREREREpN5RMisiIiIiIiL1jpJZERGRamZmrcxsupltMzNnZu0rHI82swlmlmNmO8zsl+GJtOaY2Vlm9k8z221m+8zsMzPrXKHNfcHnnxN8PaLDFa+IiNQ/SmZFRESqXwnwKXDDYY4/DnQC2gGXAL82sytqJ7Ra0wSYDnQGWgALgX+WHjSzy4GHgAEEXocOwJjaD1NEROorJbMiIlIjzKy1mb0frMxtMrNfBPc3NbNMM7smuJ1gZuvNbFhwe6KZvWpmn5vZATObZWbtgsfGmNmfgo8jzSzXzJ4LbseaWUHw+jFm9paZ7TWzbDNbZGYtgu3OCF7zQPAeL5nZW9X53J1zO51zfwYWHabJcOC3zrks59xq4DVgRFUNzWyLmZ0XfDw0WOntGty+3cw+CD5+3Mz+FnzeB8xsRbA6OtrMdpnZ92Y2sMx1f2Jmq4NtN5rZT8sce9DMFphZRHD7bjNbaWYxx/EaLHTO/dU5t885Vwy8AHQ2s+Qyr8FfnXMrnXNZwG8P9xqIiIhURcmsiIhUOzPzAB8Cy4HTCFTf/s/MLnfO7QNGAq+ZWXMCSc4y59zkMpcYSiC5aQYsA6YE988CMoKPewE7gIuD2xcAa4PXHw40Bk4HkoG7gPxgu7eBJcFr/zbY9nDPo20wGT7cz49P4LVJAloFX5tSy4Guhzml7HPuD2zk0HPuHzxe6hrgTSAJ+Br4jMB7/WnAE8BfyrTdBVwNNAJ+ArxgZj2Dx54DCoFHzKwT8DvgNudcQfA5HOk1eegwz+NiYIdzbm9wu2sVr0GLMsmuiIjIEUWEOwARETkl9QJSnHNPBLc3mtlrwC3AZ865GWb2N+DfQFOge4Xz/+Wcmw1gZg8D+83sdGAe0CmY8FwM/BW4x8wSKJ/YFRNIYs90zn1DIHnFzNoGY7vMOVcIzDazDw/3JJxzWwl0l61OCcHf+8vs2w8kHqb9LGAI8DzQD/g9cBnwCoHnPK5M2znOuc8Agq/v9cDTzjm/mb0DjDezJs65bOfcv8rew8xmBK+/1DlXEqyULwVuBp51zn1d2tg5d1yviZm1AV4Gyo4NTqjiNYDA67AXERGRo1BlVkREakI7oHXZih3wGwJjJ0uNB7oBE8tU60p9X/rAOXcQ2Ae0ds7lA4sJJHEXE0j0/gtcRPlk9k0CVcl3LDAJ07NmFgm0BrKcc7ll7rWlWp7xsTsY/N2ozL5GwIHDtJ8F9DOzVoAXeBe4yAKTSjUmULkutbPM43xgj3POX2Ybgsm0mQ0ys/kWmJwpG7iSQLUaAOfcZuBLoD2BRPSEmFkKMAP4s3NuaplDB6n8GsDhXwcREZFylMyKiEhN+B7Y5JxrUuYn0Tl3JYCZeQkks5MJVFbPrHD+6aUPglXXpsC24K5ZwKXAuQTGpM4CLgd6A7MBnHPFzrkxzrlzgAsJdKcdBmwHkswsvsy92h7uSQS7GR88ws/Q431hguNDtwM9yuzuAaw8TPv1QB7wc2C2cy6HQPfqO4GvnHMlxxuDBWYNfh8YC7QIVlo/BqxMm6sIdN3+N4Fux2XPP9Jr8psy7ZIIJLLTnXNPVQhjZRWvwc4qvtgQERGpkpJZERGpCQuBA8GJhGLNzGtm3cysV/D4bwBHYOzsc8DkYIJb6koz62tmUQTGtc53zpVWa2cRSExXOeeKgJnAKALJ824AM7vEzFKD18wh0O24xDm3hUBld4yZRZlZXwLjTKvknNvqnEs4ws+Uw50bnCypdKmZ6AqTJ00mMB41yczOBu4AJh7h9ZwF3MuhyvPMCtvHKyoY227AZ2aDgLKTQzUDXifwug4HrjGzK0uPH+U1+V3wGo0IVMfnOueqGkc7GbjdzM4xsybAIxz5NRARESlHyayIiFS7YNfWq4E0YBOwh0By1NgCM/P+EhgWbPcMgcS2bMLzNvAYge7F5wG3lTn2XyCWYBUWWAUUlNkGaAm8RyCRXU0g6XszeOzHwPnBaz9GIKmqCfkc6lK8hkPdfAnedwOBLs6zgOecc58e4VqzCIwlnX2Y7ePinDsA/IJAl+UsAq/J9DJNxgP/dM59HKyU3g68fpyTM11HYHzyTypUbtsGY/gUeJZAV+atBF6Lx07k+YiISMNkzrlwxyAiIhJiZhOBTOfcI7V0v8cJTBR129HaioiISN2hyqyIiIiIiIjUO0pmRUREREREpN5RN2MRERERERGpd1SZFRERERERkXpHyayIiIiIiIjUO0pmRUREREREpN5RMisiIiIiIiL1jpJZERERERERqXeUzIqIiIiIiEi9o2RWRERERERE6h0lsyIiIiIiIlLvKJkVERERERGRekfJrIiIiIiIiNQ7SmZFRERERESk3lEyKyIiIiIiIvWOklkRERERERGpd5TMioiIiIiISL2jZFZERERERETqHSWzIiIiIiIiUu8omRUREREREZF6R8msiIiIiIiI1DtKZkVERERERKTeUTIrIiIiIiIi9Y6SWREREREREal3lMyKiIiIiIhIvaNkVkREREREROodJbMiIiIiIiJS7yiZFRERERERkXpHyayIiIiIiIjUO0pmRUREREREpN5RMisiIiIiIiL1jpJZERERERERqXciwh3AyWjWrJlr3759uMMQEZFTxJIlS/Y451LCHUd9pvdmERGpTkd6b67XyWz79u1ZvHhxuMMQEZFThJltCXcM9Z3em0VEpDod6b1Z3YxFRERERESk3lEyKyIiIiIiIvWOklkRERERERGpd+r1mFkRERERETk1FBcXk5mZSUFBQbhDkTCIiYmhTZs2REZGHvM5SmZFRERERCTsMjMzSUxMpH379phZuMORWuScY+/evWRmZnLGGWcc83nqZiwiIiIiImFXUFBAcnKyEtkGyMxITk4+7qq8klkREREREakTlMg2XCfy317JrIiIiIiICOD1eklLSwv9PP3009Vy3fbt25OamkpaWhqpqan885//rJbrlpo8eTLdunUjNTWVc889l7Fjx57QdRYvXswvfvELACZOnIiZ8cUXX4SOf/DBB5gZ7733HgCjRo1i1apVJ/8ETpDGzIqIiIiIiACxsbEsW7asRq795Zdf0qxZM9auXcvAgQMZMmTIMZ/r9/vxer1VHvvkk08YN24cM2bMoHXr1hQWFjJ58uQTijE9PZ309PTQdmpqKu+88w6XXXYZAFOnTqVHjx6h46+//voJ3ae6qDIrIiLSAJnZBDPbZWbfHua4mdkfzWy9mX1jZj1rO0YRkbqiffv2jB49mrS0NNLT01m6dCmXX345HTt25NVXXwVg5syZXHzxxVx11VV07tyZu+66i5KSkkrXysnJISkpKbT91ltv0bt3b9LS0vjpT3+K3+8HICEhgV/96lf06NGDefPmkZCQwMMPP0yPHj3o06cPO3fuBOD3v/89Y8eOpXXr1gBER0dzxx13ALBs2TL69OlD9+7due6668jKygIgIyODBx98kN69e3PWWWcxZ86c0HO4+uqrQ7H169ePhQsXUlxczMGDB1m/fj1paWmh4xkZGSxevJgtW7bQqVMn9uzZQ0lJCf369WPGjBnV9vofjiqzIiIiDdNE4CXgcF/fDwI6BX/OB14J/hYRqXFjPlzJqm051XrNc1o34rFruh6xTX5+frlkbfTo0dx8880AtG3blmXLlnHfffcxYsQI5s6dS0FBAd26deOuu+4CYOHChaxatYp27dpxxRVX8Pe//50bb7wRgEsuuQTnHBs3buTdd98FYPXq1UybNo25c+cSGRnJPffcw5QpUxg2bBi5ubmcf/75PP/88wDk5ubSp08fnnrqKX7961/z2muv8cgjj/Dtt99y3nnnVfl8hg0bxp/+9Cf69+/Po48+ypgxYxg3bhwAPp+PhQsX8vHHHzNmzJhy3YlLmRmXXXYZn332Gfv372fw4MFs2rSpUrt27drx4IMPcvfdd9O7d2/OOeccBg4ceMTXujoomRURkXrLOceH32znym4tifCqs9HxcM7NNrP2R2gyBJjsnHPAfDNrYmatnHPbazq27JzdTP/qNZKT+9CiRRrntUvSpDAiUiuO1M148ODBQKDr7cGDB0lMTCQxMZHo6Giys7MB6N27Nx06dADg1ltv5auvvgols6XdjDds2MCAAQPIyMjg3//+N0uWLKFXr15AIJlu3rw5EBi/e8MNN4TuHxUVFaqannfeeXz++edHfC779+8nOzub/v37AzB8+HBuuumm0PHrr78+dK3Nmzcf9jq33HILf/zjH9m/fz/PP/88v/vd76psN2rUKP72t7/x6quv1lhX7YqUzIqISL3155kbeO6ztRTc0J3/6XV6uMM51ZwGfF9mOzO4r1Iya2Z3AndCoHJxsjZvX8tzu6fSbcUK5mXdxkc/70u30xqf9HVFpP44WgU1HKKjowHweDyhx6XbPp8PqDwjb1VfxHXs2JEWLVqwatUqnHMMHz6c3//+95XaxcTElBsnGxkZGbqe1+sN3bNr164sWbKESy+99ISeT9lrVaV3796sWLGCuLg4zjrrrMO2y8vLIzMzEyCU7Nc0fY0tIiL10tSFW3nus7Vcd+5p3Hhem3CH06A558Y759Kdc+kpKSknfb3khHgAerZtBMC+3KKTvqaISG1YuHAhmzZtoqSkhGnTptG3b99KbXbt2sWmTZto164dAwYM4L333mPXrl0A7Nu3jy1bthzXPUePHs0DDzzAjh07ACgqKuL111+ncePGJCUlhcbDvvnmm6Eq7fF6+umnD1uRLfXggw8ydOhQnnjiidCY3ZqmyqyIiNQ7n367g4f/sYKMzik8e2N3PB51Qa0BPwBly91tgvtqXGx0LACNYgPfuecX+2vjtiIilcbMXnHFFce1PE+vXr249957Wb9+PZdccgnXXXdd6Ngll1yC1+uluLiYp59+mhYtWtCiRQuefPJJBg4cSElJCZGRkbz88su0a9fumO955ZVXsnPnTi677DKcc5gZI0eOBGDSpEncdddd5OXl0aFDB954442jXq+qavKgQYOOeM6sWbNYtGgRc+fOxev18v777/PGG2/wk5/85Jifx4mwwFCY+ik9Pd0tXrw43GGIiEgN8Jc4Vm7bT7G//PvUD9n53P+35XRt3Ygpo84nLqr6vpc1syXOufSjtzw1BMfMfuSc61bFsauAe4ErCUz89EfnXO+jXbM63puzszbRb/pgft74An43fwjjbk7j2nNPO6lrikjdt3r1arp06RLuME7YzJkzGTt2LB999FG4Qzlh77//PtOnT2fSpElhuX9V/waO9N6syqyIiNQ5/hLHz6Ys5dOVO6o83ql5Am+M6FWtiWxDY2ZTgQygmZllAo8BkQDOuVeBjwkksuuBPKBmv14vw+sNjkWzQEVWlVkRkZo3ffp0Hn74YSZMmBDuUI6ZPgWIiEidkZmVR3ZeMW/O28KnK3fwvwM60bNdUrk2BpzbtgmJMZHhCfIU4Zy79SjHHfCzWgqnHG9E6cQqgfUZ84uUzIpI3ZeRkUFGRka4wzhhgwcPDs3YXF8omRURkTrh3cXf8+v3vglt33vJmdz3o8PPmiinrohgZdYRmF1TlVkREamKklkREQm7z1ftZPTfV9D3zGYMu6AdjWMj6X1G03CHJWFS2s3YOT8eU2VWRESqpmRWRETCauGmfdz79lK6tW7Eq//vPBKi9dbU0Hm8gX8DfldCXFSEKrMiIlKlGvvEYGYTgKuBXRVnSTSzXwFjgRTn3B4LzP/8IoGJJvKAEc65pTUVm4iI1JyDhT6yjnFd0G3Z+YyavJjTkmKZMKKXElkBAstCRDiHv8RHTKSXPFVmRUSkCjX5qWEi8BIwuexOMzsdGAhsLbN7ENAp+HM+8Erwt4iI1CMrMvfz49fmc6DQd8zntGwUw+SRvUlOiD56Y2kwvIDP+YmL8lKgyqyI1KKdO3dy3333MX/+fJKSkoiKiuLXv/51uTVjwyEjI4Pt27cTExNDQkICEyZMoHPnzpXajRo1il/+8pecc845x3XtgwcPUrq02uLFi7n//vuZOXMmeXl53HHHHXzzzTc452jSpAmffvopCQkJeL1eUlNTcc7h9Xp56aWXuPDCCw97n+zsbN5++23uueee438BqlBjyaxzbnZw/bqKXgB+DfyzzL4hwOTgzInzzayJmbVyzm2vqfhERKR6lJQ49hwsZGdOISPeWEij2Ej+v2vOwVPFoutV6XtmM1o2jqnhKKW+8Trwl/iJjfSSV3TsX46IiJwM5xzXXnstw4cP5+233wZgy5YtTJ8+PcyRBUyZMoX09HTGjx/PAw88UCkuv9/P66+/flzX9PsDXxju2rWLTz75hEGDBpU7/uKLL9KiRQtWrFgBwNq1a4mMDKwoEBsby7JlywD47LPPGD16NLNmzTrsvbKzs/nzn/9cbcmsp1qucozMbAjwg3NueYVDpwHfl9nODO4TEZE6LLfQx01/mUfv3/2ba176Cge8eXtv/if9dG48r80x/SiRlap4Ab/zExPlJb+4JNzhiEgD8Z///IeoqCjuuuuu0L527drx85//nM2bN9OvXz969uxJz549+e9//wvAzJkz6d+/P0OGDKFDhw489NBDTJkyhd69e5OamsqGDRsAGDFiBHfffTd9+vShQ4cOzJw5k5EjR9KlSxdGjBgRut/dd99Neno6Xbt25bHHHqsyzosvvpj169cDkJCQwK9+9St69OjBvHnzyMjICFVYp06dSmpqKt26dePBBx8MnV/xHIAHHniAp556qtK9tm/fzmmnHUrNOnfuTHR05d5UOTk5JCUdWk7vueeeo1evXnTv3j30PB566CE2bNhAWloaDzzwwBH+SxybWhucZGZxwG8IdDE+mevcCdwJ0LZt22qITERETkSRr4S7pyzl661Z/OpHZ9E0IYp+Z6bQNjku3KHJKSDUzTjSS4HGzIo0PJ88BDtWVO81W6bCoKeP2GTlypX07NmzymPNmzfn888/JyYmhnXr1nHrrbeGksbly5ezevVqmjZtSocOHRg1ahQLFy7kxRdf5E9/+hPjxo0DICsri3nz5jF9+nQGDx7M3Llzef311+nVqxfLli0jLS2Np556iqZNm+L3+xkwYADffPMN3bt3LxfLhx9+SGpqKgC5ubmcf/75PP/88+XabNu2jQcffJAlS5aQlJTEwIED+eCDD7j22murPOeCCy7gH//4B19++SWJiYmh/SNHjmTgwIG89957DBgwgOHDh9OpUycA8vPzSUtLo6CggO3bt/Of//wHgBkzZrBu3ToWLlyIc47Bgwcze/Zsnn76ab799ttQNfdk1WZltiNwBrDczDYDbYClZtYS+AE4vUzbNsF9lTjnxjvn0p1z6SkpKTUcsoiIVKWkxHH/35Yz+7vd/P76VH4+oBNDz2+nRFaqTWllNjbKS16xuhmLSHj87Gc/o0ePHvTq1Yvi4mLuuOMOUlNTuemmm1i1alWoXa9evWjVqhXR0dF07NiRgQMD9bvU1FQ2b94canfNNddgZqSmptKiRQtSU1PxeDx07do11O7dd9+lZ8+enHvuuaxcubLcfYYOHUpaWhpz585l7NixAHi9Xm644YZKsS9atIiMjAxSUlKIiIhg6NChzJ49+4jnPPLIIzz55JPl9qWlpbFx40YeeOAB9u3bR69evVi9ejVwqJvxmjVr+PTTTxk2bBjOOWbMmMGMGTM499xz6dmzJ2vWrGHdunUn8F/gyGqtMuucWwE0L90OJrTpwdmMpwP3mtk7BCZ+2q/xsiIidZNzjic+WsX05dt44PLO3NxLvWSk+nkxSlwJsZFerTMr0hAdpYJaU7p27cr7778f2n755ZfZs2cP6enpvPDCC7Ro0YLly5dTUlJCTMyhYTJlu916PJ7QtsfjwefzVWpXtk3Zdps2bWLs2LEsWrSIpKQkRowYQUFBQahd6ZjZsmJiYvB6vcf1PA93zqWXXsojjzzC/Pnzy+1PSEjg+uuv5/rrr8fj8fDxxx/TpUuXcm0uuOAC9uzZw+7du3HOMXr0aH7605+Wa1M2sa8ONVaZNbOpwDygs5llmtntR2j+MbARWA+8BlTPiGAREal2f565gYn/3czIi87gnoyO4Q5HTlERgM+VEBvlpUBjZkWkllx66aUUFBTwyiuvhPbl5eUBsH//flq1aoXH4+HNN98MTZxUnXJycoiPj6dx48bs3LmTTz755ISv1bt3b2bNmsWePXvw+/1MnTqV/v37H/W8Rx55hGeffTa0PXfuXLKysgAoKipi1apVtGvXrtJ5a9aswe/3k5yczOWXX86ECRM4ePAgAD/88AO7du0iMTGRAwcOnPBzqqgmZzO+9SjH25d57ICf1VQsIiJSPaYu3Mpzn63l2rTWPHJVF+wYZywWOV5eLNDNWLMZi0gtMjM++OAD7rvvPp599llSUlKIj4/nmWeeoWfPntxwww1MnjyZK664gvj4+Gq/f48ePTj33HM5++yzOf3007noootO+FqtWrXi6aef5pJLLsE5x1VXXcWQIUOOet6VV15J2eGcGzZs4O6778Y5R0lJCVdddVWoi3LpmFkI9NyaNGkSXq+XgQMHsnr1ai644AIgUNl966236NixIxdddBHdunVj0KBBPPfccyf8/AAskEfWT+np6a500LWIiNSsT7/dzj1TltKvUwqvD08n0lurE+LXCjNb4pxLP3pLOZzqem++5o0enB2RSFLya0yet5k1vx101HNEpH5bvXp1pa6r0rBU9W/gSO/Np94nERERqXbzNuzlF+8so3ubJrxyW89TMpGVuiUC8DtHbGSgm3FJSf398l1ERGpGrU0AJSIi9cuO/QUMn7CQjXsOUux3nNk8gTdG9CIuSm8dUvO8GL7gbMYABT6//u2JiEg5elcQEZFKsvOKGDZhAduyC7i9bwdiIj3c2rstSfFR4Q5NGgivefDjiAsms/lFSmZFRKQ8vSuIiEg5+UV+Rk5cxOY9eUwc2YsLOzYLd0jSAEVg+F0JMZGBZDavyE9ymGMSEZG6RYOeREQkpNhfwj1TlvD199m8eEuaElkJG69ZYGmeYDJbUKy1ZkVEpDxVZkVEGrCPvtnGU/9aTZEvsI5nsb+EnAIfT13XjUGprcIcnTRkXjz48R3qZqxkVkREKlBlVkSkgZr13W7+751lJCdEMSi1JYNSWzI4rTXjbk5j6PmVF0MXqU1eM/y4UGU2r0jJrIjUvISEhHCHEPL4449z2mmnkZaWRrdu3Zg+fXqV7V599VUmT5583NeOi4tj165doX1ln/tTTz1F165d6d69O2lpaSxYsACAjIwMOnfuTFpaGl26dGH8+PFHvde4cePIy8s7rviOlSqzIiIN0Ndbs7j7rSV0apHI23f0oVFMZLhDEiknAg/5zhGjyqyINGD33Xcf999/P6tXr6Zfv37s2rULj+dQPdLn83HXXXcd1zV9Ph8AzZo14/nnn+eZZ54pd3zevHl89NFHLF26lOjoaPbs2UNRUVHo+JQpU0hPT2ffvn107NiRESNGEBV1+Akix40bx2233UZcXNxxxXksVJkVEWlg1u86wMiJi2iWEM2kkb2UyEqd5DUPvgqzGYuI1JaZM2eSkZHBjTfeyNlnn83QoUNxzvHpp59y0003lWt39dVXA4HK5n333UfXrl0ZMGAAu3fvBmDZsmX06dOH7t27c91115GVlcWuXbs477zzAFi+fDlmxtatWwHo2LFjpUpmly5diIiIYM+ePWRkZPB///d/pKen8+KLL/L4448zduzYw94LqHQOwMiRI5k2bRr79u0rd6/t27fTrFkzoqOjgUDS27p160qv0cGDB4mPj8frDfydnjFjBhdccAE9e/bkpptu4uDBg/zxj39k27ZtXHLJJVxyySUn8V+kaqrMiog0AAcKirlv2nI27D7IngOFREd6efP23jRPjAl3aCJVKl2ap7SbsZJZkYblmYXPsGbfmmq95tlNz+bB3g8ec/uvv/6alStX0rp1ay666CLmzp3LZZddxp133klubi7x8fFMmzaNW265BYDc3FzS09N54YUXeOKJJxgzZgwvvfQSw4YN409/+hP9+/fn0UcfZcyYMYwbN46CggJycnKYM2cO6enpzJkzh759+9K8efNKVcwFCxbg8XhISUkBoKioiMWLFwOBLsOlDnevqs5JSEhg5MiRvPjii4wZMyZ0jYEDB/LEE09w1llncdlll3HzzTfTv3//0PGhQ4cSHR3NunXrGDduHF6vlz179vDkk0/yxRdfEB8fzzPPPMMf/vAHHn30Uf7whz/w5Zdf0qxZ9U8qqcqsiMgprtDn56dvLuHLtbs4p3UjBnZtyZRR59MuOT7coYkcVkTFZFbdjEWklvXu3Zs2bdrg8XhIS0tj8+bNREREcMUVV/Dhhx/i8/n417/+xZAhQwDweDzcfPPNANx222189dVX7N+/n+zs7FAyOHz4cGbPng3AhRdeyNy5c5k9eza/+c1vmD17NnPmzKFfv36hGF544QXS0tK4//77mTZtGmYGELpPWUe61+HO+cUvfsGkSZM4cOBAaF9CQgJLlixh/PjxpKSkcPPNNzNx4sTQ8SlTpvDNN9+wdetWxo4dy5YtW5g/fz6rVq3ioosuIi0tjUmTJrFly5YTet2PhyqzIiKnMH+J475py/jvhr08f1MPbjivTbhDEjkmpd2MY9XNWKRBOp4Kak0p7WYL4PV6Q2NNb7nlFl566SWaNnoxE1UAACAASURBVG1Keno6iYmJVZ5fmngezsUXX8ycOXPYsmULQ4YM4ZlnnsHMuOqqq0JtSsfMVhQff/xfSFd1TpMmTfjxj3/Myy+/XG6/1+slIyODjIwMUlNTmTRpEiNGjCjXJiUlhZ49e7JgwQJiY2P50Y9+xNSpU487rpOhyqyIyCnKOcdj07/l4xU7ePjKLkpkpV7xmhc/qDIrInVO//79Wbp0Ka+99lqoizFASUkJ7733HgBvv/02ffv2pXHjxiQlJTFnzhwA3nzzzVDltF+/frz11lt06tQJj8dD06ZN+fjjj+nbt+8JxXWkex3JL3/5S/7yl7+EkvW1a9eybt260PFly5bRrl3lVQ7y8vL4+uuv6dixI3369GHu3LmsX78eCHS5/u677wBITEwsV/mtTqrMiojUMwXFfh7957es3XHkN4ZCXwlrdhzgp/07cMfFHWopOpHqUTpmNsLrIcrr0dI8IlJneL1err76aiZOnMikSZNC++Pj41m4cCFPPvkkzZs3Z9q0aQBMmjSJu+66i7y8PDp06MAbb7wBQPv27XHOcfHFFwPQt29fMjMzSUpKOuHYDnevI2nWrBnXXXcdL7zwAhCY2OnnP/852dnZREREcOaZZ5Zbgmfo0KHExsZSWFjIiBEjQhNZTZw4kVtvvZXCwkIAnnzySc466yzuvPNOrrjiClq3bs2XX355ws+tKuacq9YL1qb09HRXOohZRKQh8Jc47n17KZ98u4N+nZrh9Ry5C1Pa6U343wGdjtrVSQLMbIlzLj3ccdRn1fXe/Ni0QXyVu5V/j1xJ98c/4/qebXh8cNdqiFBE6qrVq1fTpUuXcIdxwhISEjh48GC4w6jXqvo3cKT3ZlVmRUTqgWmLtvL+kh/IKShmzY4DPHJVF0b1U7VVTl2l3YwBYqO8GjMrIiKVaMysiEgd9/6STB58fwVZeUUkxUUpkZUGoWwyGxcVQZ7GzIpIHaeqbO1TZVZEpA7Zsb+A3360iv35xQA4HPM37uOiM5OZMKIX0RHeMEcoUjsiPF78wd7xMZGqzIqISGVKZkVE6ojsvCKGTVhAZlY+XVo1Cu2/unsrnrouVYmsNChe8+IDcI7YSA8FqsyKNAjOOc3z0ECdyFxOSmZFRMKopMTxwhffsWpbDpv25JKZlc/En/TiwjObhTs0kbAKdDM2KPEHuhkX+cIdkojUsJiYGPbu3UtycrIS2gbGOcfevXuJiYk5rvOUzIqIhIlzjjEfrmTSvC2c3TKRxNhIXr6yixJZEcBb2s24xEdMpJe9uUXhDklEalibNm3IzMxk9+7d4Q5FwiAmJoY2bdoc1zlKZkVEasmy77P561eb8JeUAJCT7+Or9Xu4o98ZPHzVOWGOTqRuibAI/GY4f1FwNmNVZkVOdZGRkZxxxhnhDkPqESWzIiK1YM2OHIb9dQEej5GSEB3aP6rvGYweVH/X1BOpKV5v4COK319IXKSXfI2ZFRGRCpTMiojUsO/35THsrwuJjfLy/t0X0iYpLtwhidR5XitNZou1zqyIiFRJ68yKiNSgPQcLGTZhIQXFfiaPPF+JrMgxivAEZu/2+wsDyawqsyIiUoGSWRGRGnKw0MdP3ljE9v35TBjRi84tE8Mdkki94fVEAuDzFRAb6aXY7yj2l4Q5KhERqUuUzIqI1IBCn5+fvrmYVdtz+PPQnqS3bxrukETqFa8n2M3YV0RsZKBKq7VmRUSkLI2ZFRGpRu8tyWRFZjZrdhxgwaZ9PH9TDy49u0W4wxKpdyJKk1l/EXHRgWQ2t9BPYkxkOMMSEZE6RMmsiEg1+etXm/jtR6tIjI4gOtLDmMFdueG841svTUQCSiuzPn8hjYIJbE5BMS0bx4QzLBERqUOUzIqIVIMPvv6B3360ikHdWvLSj3vi9Vi4QxKp10rHzPpLimgUG0xm84vDGZKIiNQxGjMrInKSvly7i/v/tpwLOiQz7pY0JbIi1SCUzPqLaBx7qDIrIiJSqsYqs2Y2Abga2OWc6xbc9xxwDVAEbAB+4pzLDh4bDdwO+IFfOOc+q6nYRERO1P78YqYs2BJa89JX4pg4dzOdWyYyfth5REd4wxyhyKkhwhuczdhfTKOYwMeVnHxfOEMSEZE6pia7GU8EXgIml9n3OTDaOeczs2eA0cCDZnYOcAvQFWgNfGFmZznnNG2hiNQZBcV+Rk1axKLNWZQtvnZu2YiJP+mtiWlEqtGh2YwLSVJlVkREqlBjyaxzbraZta+wb0aZzfnAjcHHQ4B3nHOFwCYzWw/0BubVVHwiIsfCOceH32xn695c5m3cy+ItWbz043O5unvrcIcmckorO2Y2MViZ3Z+nZFZERA4J5wRQI4FpwcenEUhuS2UG91ViZncCdwK0bdu2JuMTEeHPMzfw3GdrAYj0Gr8d0k2JrEgtiPBEAeD3FxMd4SUm0qPKrIiIlBOWZNbMHgZ8wJTjPdc5Nx4YD5Cenu6qOTQRkZCpC7fy3GdruTatNc/c2B2vGRFezZsnUhu8EYFk1ldSBEDj2EiNmRURkXJqPZk1sxEEJoYa4JwrTUZ/AE4v06xNcJ+ISFh8+u0OHv7HCvqflcJzN/UgUkmsSK0KjZn1B6qxjWIiVZkVEZFyajWZNbMrgF8D/Z1zeWUOTQfeNrM/EJgAqhOwsDZjExHZmVPAjJU7OFjo54UvvqN7mya8cltPJbIiYRDhDXYzLgkms7GR7Nc6syIiUkZNLs0zFcgAmplZJvAYgdmLo4HPzQxgvnPuLufcSjN7F1hFoPvxzzSTsYjUttdmb+T1rzYBcHbLRN4Y0Yu4qHBOLSBSs4JfMr8IeIHXnXNPVzjeFpgENAm2ecg593FtxOb1lHYzLq3MRrD7YGFt3FpEROqJmpzN+NYqdv/1CO2fAp6qqXhERI5mf34xzROj+eR/+9EkLgpv2fV3RE4xZuYFXgZ+RGDixUVmNt05t6pMs0eAd51zrwSX0fsYaF8b8Xm9hyaAgsCY2Q27c2vj1iIiUk+o75yISFBesZ+EmAiSE6KVyEpD0BtY75zb6JwrAt4hsFReWQ5oFHzcGNhWW8FFeEuX5jnUzVhjZkVEpCwlsyIiQXmFPuLVrVgajtOA78tsV7Us3uPAbcHhQh8DP6/qQmZ2p5ktNrPFu3fvrpbgSiuzPn9gBuNGMZHk5BdzaO5IERFp6JTMiogE5Rb5iY3yhjsMkbrkVmCic64NcCXwpplV+uzgnBvvnEt3zqWnpKRUy4293mgA/MGleRrFRlDi4GChlucREZEAJbMiIkH5RX7ilcxKw3Esy+LdDrwL4JybB8QAzWojuEPJbGA+yEYxgW7HOQVKZkVEJEDJrIhIUG6Rj7hodTOWBmMR0MnMzjCzKOAWAkvllbUVGABgZl0IJLPV04/4KErHzJbOZtw4NpjMankeEREJUjIrIhKUV+gnLlKVWWkYnHM+4F7gM2A1gVmLV5rZE2Y2ONjsV8AdZrYcmAqMcLU0aDVUmXXBMbNKZkVEpAKVIEREgvKKfMSrMisNSHDN2I8r7Hu0zONVwEW1HReANyKYzJaZAArUzVhERA5RZVZEBHDOkVfkJ05jZkXqhIjQmNnSymzgi6b9qsyKiEiQklkREaDIX4KvxKkyK1JHhJbmcRUqs0pmRUQkSMmsiAiBmYwBYjVmVqRO8HoDXyyVVmYTYwLbOQVKZkVEJEDJrIgIgTVmAeKjlcyK1AURFkxmXeD/zQivh4ToCHLyNWZWREQClMyKiAB5hYEPyHFR6mYsUhd4PYEvlnzBdWYBGsVEqDIrIiIhSmZFRIC8YGVWE0CJ1A1eC/y/WFqZhcDyPJoASkRESimZFREBcotUmRWpS0LJbMmhbsWNYiI1AZSIiIQomRURAfIKNWZWpC4xM7zO4atQmdU6syIiUkrJrIgIkFdc2s1YlVmRusIL+F1JaLtRbIQqsyIiEqJkVkSEshNAqTIrUld4sXLdjBvHRpKdVxTGiEREpC5RMisiQpmleVSZFakzIihfmW2eGENukZ/cQnU1FhERJbMiIsChymysKrMidYYXyo2ZbdEoGoCdOQVhikhEROoSJbMiIgTGzEZ6jagI/VkUqSu8WLnKbMtGMQDsUDIrIiIomRURAQKVWU3+JFK3BCaAOlSZbR5MZnflFIYpIhERqUuUzIqIEBgzG68uxiJ1SgSGr2xltrEqsyIicoiSWRERIL/Ir/GyInWMF8PPoWQ2ITqC+CivxsyKiAigZFZEBIDcIh/x0epmLFKXVBwzC9CicYySWRERAZTMiogAkFfo1xqzInVMhBl+58rta9kohp0aMysiIiiZFREBIK/YpzVmReoYLx58VKjMNophx35VZkVERMmsiAgQqMxqzKxI3eKtojLbolEMuw4U4CrsFxGRhkfJrIgIwTGzqsyK1CkReCqPmW0UTbHfsS+3KExRiYhIXaFkVkQEyCvyExetyqxIXeI1w0flMbOAxs2KiIiSWRER51wgmVU3Y5E6xYsHf4VktnkomdW4WRGRhk7JrIg0eIW+Evwljjh1MxapU7xWOZlt2VjJrIiIBCiZFZEGL7/ID0C8KrMidUqEeSpNAJWSEA3ADiWzIiINXo0ls2Y2wcx2mdm3ZfY1NbPPzWxd8HdScL+Z2R/NbL2ZfWNmPWsqLhGRinKLfADERasyK1KXVFWZjYrw0CwhSmNmRUSkRiuzE4ErKux7CPi3c64T8O/gNsAgoFPw507glRqMS0SknLxgZVZjZkXqFq95KyWzEFieR92MRUSkxpJZ59xsYF+F3UOAScHHk4Bry+yf7ALmA03MrFVNxSYiUlZeqJuxKrMidUmEefBVsb95YjS7DiiZFRFp6Gp7zGwL59z24OMdQIvg49OA78u0ywzuq8TM7jSzxWa2ePfu3TUXqYg0GHmFwW7GqsyK1ClVdTMGSIqPIiu3OAwRiYhIXRK2CaCccw6qeIc6+nnjnXPpzrn0lJSUGohMRBqa3FA3Y1VmReqSQDfjypLiosjKK6r1eEREpG6p7WR2Z2n34eDvXcH9PwCnl2nXJrhPRKTG5YUmgFJlVqQuOVwy2zQ+irwiP4W+qo6KiEhDUdvJ7HRgePDxcOCfZfYPC85q3AfYX6Y7sohIjdoVnBVV3YxF6pYIjxefASUl5fY3iYsEIDtPXY1FRBqymlyaZyowD+hsZplmdjvwNPAjM1sHXBbcBvgY2AisB14D7qmpuEREylqyZR/Pf76WHm0a0yIxJtzhiEgZgcqsgStfgU2KiwJgX666GouINGQ1NkDMOXfrYQ4NqKKtA35WU7GIiJS160ABj/zjW/bmFvHdjgO0ahzLX0f0wuOxcIcmImV4zYvfgBIfeCND+0srsxo3KyLSsIVtAigRkXDIKShmxIRFzFm3h9hIL307NWPyyN40S4gOd2giUkGEx4sPA3/57sRN4wOVWXUzFhFp2DR1p4ickmas3MGkeZsrDrVj+/58MrPyeX14Ohmdm4clNhE5Nl6LOFSZLUPdjEVEBFSZFZFT0KzvdnPPlKVs3ZeHv8SV+2nRKIaXftxTiaxIPeD1BGczLik/ZvbQBFBKZkVEGjJVZkXklPL11izufmsJnVokMu2nfWgUE3n0k0SkTvJ6IvCbQUn57sTREV7iorxkqZuxiEiDpsqsiJwy1u86wMiJi2iWEM2kkb2UyIrUcxEWgc8M56+ctCbFRZGlbsYiIg2aKrMiUq8453hj7mYWbNpb6djXW7Pxejy8eXtvmmuZHZF6z+sJfEwpKSmi4irQSfGRms1YRKSBUzIrIvXKq7M28syna2ifHEdMZPmPt6c3jWPM4K60S44PU3QiUp1Kk1m/r7hyMhsXpW7GIiINnJJZEak33l30Pc98uobBPVoz7uY0rQsrcoqLCCazPl8BURWOJcVFsXVfXu0HJSIidYbGzIpIvfD5qp089Pdv6NepGWNv6qFEVqQBCFVm/ZW7EyfFRWrMrIhIA6dkVkTqvAUb93Lv20tJbdOEV287j6gI/ekSaQi8nsAkblUls03iosgp8OHzl1Q6JiIiDYM+EYpInbZqWw6jJi+mTVIsb4zoRXy0RkeINBShbsYlhZWOJZWuNZuvcbMiIg2VPhWKSJ2zP7+YV2dt4EBBMZ+t3ElCdASTbz+fpvEVR82JyKnMGxELgL8gp9KxpODfg+y8IpolRNdqXCIiUjcomRWROqWg2M+oSYtYsiWLpLgomsZH8eehPTmtSWy4QxORWuaNaQKAP7/yUlxJcYFkVjMai4g0XEpmRSSsZq7dxZx1e0LbKzL3s3hLFi/d2pOrurcKY2QiEm7e2MYA+HOPkMxqEigRkQZLyayIhNUfPv+OldtyiA2uGRvhNZ66NlWJrIgQEZUIgC9/X6VjTYJjZrPylMyKiDRUSmZFJKwOFvoY1K0lL/24Z7hDEZE6JrQ0TxXJbOkYenUzFhFpuDSbsYiEVV6hn7gob7jDEGmQzOwKM1trZuvN7KHDtPkfM1tlZivN7O3ajM/rCfxt8OdVTmbjorxEeT2qzIqINGCqzIpIWOUW+YiL0p8ikdpmZl7gZeBHQCawyMymO+dWlWnTCRgNXOScyzKz5rUZY4QFl+YpyK50zMxoEhepMbMiIg2YKrMiEjbOOfKL/MRHqzIrEga9gfXOuY3OuSLgHWBIhTZ3AC8757IAnHO7ajPAUGW2IKvK46clxfL9vvzaDElEROoQJbMiEjZF/hJ8JU6VWZHwOA34vsx2ZnBfWWcBZ5nZXDObb2ZXVHUhM7vTzBab2eLdu3dXW4BRnsC42MLC/VUe79wikbU7D+Ccq7Z7iohI/aFkVkTCJq/QD6AxsyJ1VwTQCcgAbgVeM7MmFRs558Y759Kdc+kpKSnVdvOkmCQA9voLwFe5O/FZLRLZl1vEnoPqaiwi0hApmRWRsMkrDiSz8arMioTDD8DpZbbbBPeVlQlMd84VO+c2Ad8RSG5rRXJsMgB7vR7Iq7zWbOeWgaV7vtt5oLZCEhGROkTJrIiETV6hD4A4jZkVOWFmdpGZxQcf32ZmfzCzdsdw6iKgk5mdYWZRwC3A9AptPiBQlcXMmhHodryx2oI/iibRTfDiYa/XC3l7Kh0/q0UgmV27Q8msiEhDpGRWRMImt0jdjEWqwStAnpn1AH4FbAAmH+0k55wPuBf4DFgNvOucW2lmT5jZ4GCzz4C9ZrYK+BJ4wDlXuURaQzzmISkqgX1eL+RWTmabJUTRND5KyayISAOlvn0iEjZ5RcHKrLoZi5wMn3POmdkQ4CXn3F/N7PZjOdE59zHwcYV9j5Z57IBfBn/CIjm6KXs9O6rsZmxmoUmgRESk4VFlVkTCpnQCKI2ZFTkpB8xsNHAb8C8z8wCRYY6p2iTHpQS6GVdRmYXAuNl1Ow9QUqIZjUVEGholsyISNrnBymysuhmLnIybgULgdufcDgITOT0X3pCqT3J8C/ZGVD1mFgLjZnOL/PyQrfVmRUQaGpVDRCRs8oNjZuM1AZTICQsmsH8os72VYxgzW18kxzZjr9eLO7gLq+J455YJQGBG49ObxtVucCIiElaqzIpI2ByaAErfq4kcLzM7YGY5h/sJd3zVJTkmmUIzcnN3VXm8U3BG4/kba21eKhERqSP0CVJEwia0NI+6GYscN+dcIoCZ/RbYDrwJGDAUaBXG0KpVaK3Z/D0kVHG8UUwk16a15o25m7nu3Dac07pR7QYoIiJho8qsiIRNXrGfKK+HSK/+FImchMHOuT875w4453Kcc68AQ8IdVHVJjgkmswX7DtvmsWu60iQukgfeW06xv6S2QhMRkTA7pk+QZtbczK4zs5+Z2Ugz6x2cLfGEmNl9ZrbSzL41s6lmFhNctH2Bma03s2nBBdxF5BSWV+gjTuNlRU5WrpkNNTOvmXnMbCiQG+6gqkuoMlt0+J7TSfFR/HZIN1Zuy+Ff32yvrdBERCTMjpiQmtklZvYZ8C9gEIFuS+cAjwArzGyMmR1Xfx4zOw34BZDunOsGeIFbgGeAF5xzZwJZwDGtkSci9VdukZ+4SCWzIifpx8D/ADuDPzcF950SQsmsPx/8xYdtd3nXljSOjWTeBo2dFREJh10HCvjXN9t5fPpKrnxxDsu+z67xex5tzOyVwB3BmRHLMbMI4GrgR8D7J3DfWDMrBuIIjPW5lENvvpOAx4FXjvO6IlKP5BX5iIvW0H2Rk+Gc28wp1K24oibRTTAIrDX7/UJof1GV7Tweo1f7pizYpGRWRKQ2ZGblMX/jPhZs3MuizfvYvDeXjraNiyK/4zfxG4jcNxpO712jMRzxU6Rz7oFgl6X/cc69W+GYD/jgeG/onPvBzMYCW4F8YAawBMgOXhMgEzjteK8tIvVLXpGfeE3+JHJSzCwFuANoT5n3defcyHDFVJ0iPBEkRSexN6YEZjwMo/4Dnqo7lvXp0JQvVu9kZ04BLRrF1HKkIiKntm3Z+czbsJf5G/cyb+NefsjKpbNlkhHzHWNj19E18Vtii7MAOBDRgpiYw891UF2OWhJxzpWY2a+Bd4/W9liYWRKBb5DPALKBvwFXHMf5dwJ3ArRt27Y6QhKRMMkr9BOrZFbkZP0TmAN8AfjDHEuNaBqbzN6Y5rDsc1jxLvS4pcp2558R6JK8YNM+BvdoXZshioiccg4UFDNvw16+Wr+Hr9btYeOeg3S0bVwWs4YX476ja+IKYoqzwcH+6LbMb9+LxfEJLCrex9qczbyS0IgLazjGY+3f94WZ3Q9Mo8ykEs65E0m3LwM2Oed2A5jZ34GLgCZmFhGszrYBfqjqZOfceGA8QHp6ujuB+4tIHZFb5KOlqiciJyvOOfdguIOoScmxyez1FcBp58FHv4TMRdDnHkjuWK5dl1aJJERHsGDjXiWzIiLHyTnHqu05zFy7m1nf7WbpliySSrK4NGolTyauIa3RcuKK9oCDA5GnM799HxbExbOoaC/f5WzC5a8hqjCK7indubP9QNoktqnxmI81mb05+PtnZfY5oMMJ3HMr0MfM4gh0Mx4ALAa+BG4E3gGGE/imWUROYflFfo2ZFTl5H5nZlc65j8MdSE1Jjknmm93fwI0T4MvfwdI3YftyGPVFuXYRXg/p7ZNYuKnmu7aJiJwKsnKLmLN+D7PW7mb2ut1kHcilp63jxsar+VOT5bTIWwdAoWvG1x3PZUFiExYWZ7Fy/wb8eauILowmLSWNezoMIr1FOqkpqUR7o2st/mP6FOmcO6O6buicW2Bm7wFLAR/wNYFK67+Ad8zsyeC+v1bXPUWkbsot8mk2Y5GT97/Ab8ysECgGDHDOueNabaAuS45NZm/BXkhqD9ePB+fg+wVVtu19RlOeXbuWPQcLaZZQex+oRETqA3+J45vMbGZ9F6i+Lv8+m2Yui0Gx3zI+fhVd3VKifAdwRRFsOf08pqTcxFfkszj7OwoK1uIt9JLaLJXbU2+nT6s+dE/pXqvJa0XHlMya2VfALAJjcuY65w6czE2dc48Bj1XYvRGo2emuRKROySv0a51ZkZPknEsMdww1LTkmmXxfPgeLDpIQlQCxTaCg6iUfBpzdgmc/XcvEuZu5//LOtRypiEjds/tAIbODyeucdbvJySugp2cdQ5us4S9Nl9E89ztwUGitWHT2xcyOj2dO3vd8f/AH2Luddo3acX2n67mw9YWkt0wnPjI+3E8p5Fj79/0/oB9wA/Bc8NvfOc65+2osMhE5pTnnyCv2Ex+lbsYiJ8PMLq5qv3Nudm3HUlO6p3QH4MONH3Lr2bdCTBMoyIGSkkozG3dumcjgHq15/auNDLugHc01Ll9EGqAfsvP5ZMV2Ply+jeWZ+0khm6viVvJGwirO8S4hqjgH8r1sb5vOu+fczBwrZEHWKvJzVxBTEEPvVr0Z1nXE/8/efYdHVW0NHP7tSSa9915IQkgCSQih9yJFAREEC6KiXuwdvXjFgmJF0asgooCCCigIUqSIAhI6IQkJpEEKkN4TUiczc74/AqifLV6dTMp+nydPZibnnFnHMnPW2XuvxRDvIW2y9vV/1dppxjlCiEZAc/lnJBBmyMAkSercmrR6dHpFVjOWpL/vqZ89tqBlltNJWvq3dwqx7rHEuMWwImUFU0OmYm7pQMswQjVYOv5q+7ljQ9l5upB3fzjLqzf0avuAJUmS2lizTs/J85XsyyhhX3oJmcW1dBMF3OOQwMcuCbjVpoMetHoPknoMI87GnriGfM5WZ0NZId423lwfNIVhPsPo69EXC9OOcSOwtdOMs4AyYC0ta1kfVhRFb8jAJEnq3Oo1LR1EZJ9ZSfp7FEWZ9PPnQghf4F0jhWMQQggeiH6Ae767h9VnVtNdU4qv2pSghqrfTGb9nK2Y2d+fz46e5+4hgQS52hghakmSJMOq12j5Ia2EXaeLOHC2lLpGDX1Nz/GgYxpDXRJwqj0LDYIK31i2ht3KAZNmDlemcqk2GdM6U/q492FuyFSG+gwl0C4QIYSxT+kva+38vveAIcAtQG/gRyHEAUVRsgwWmSRJnVq9RgsgqxlL0j8vj044e6qfRz9i3GJ4P/F9AHq5OLO2sfp3t394VDAbT+axaFcGH87q01ZhSpIkGVRjs4596SVsTylkb1oJquZarrc+zRqH00TUn8BMUwW1JpT79WN9RF++1VZwqiINpawYF0sXxviNYZjPMAZ4DmipQdDBtXaa8X+B/wohbIDZwIu09IKVQyqSJP1ProzMWsmRWUn6W4QQ79PSLg9ABUTT0jGgUxFCsHDwQo4UHuG79A3klZ7+3SJQAM425swZ1o3FezJJuFBJjN+vR3AlSZI6giatjgOZZWxPLuD71GK0mgaut0phg9NJwmuPoNI1oWicyQwZygEHF/Y3FZFSnopSkk+IYwgPRD/AMJ9h9HDqgUqo/vwNO5DWTjN+m5aRWRvgMPA8LZWNJUmS/id1TS0js7IAlCT9bfE/e6wF1imKcshYwRiSr50vvna+ZBWcILU8FRp+XsV0FgAAIABJREFUP5kFuHtIIGuOnOf1Hel8ee+ADjmFTpKkrkmj1XPoXBnbkgvYc6aYxqZGxlum8rnTSSJrD2OirUOvdSOh12R2W1vyY3UGhXWnoB4inCO4P/p+RvmOItSpc1d1b+1V5BHgTUVRig0ZjCRJXUeDHJmVpH+EoiirhRBmQPfLL2UYM562YGfpTK1KoG+o5I/GGKzNTXlsTAjzvznN3vQSRoe5t1mMkiRJf5VWp+dwVjnbkwvYfaaYSw1NjLLI4GPHRPrUx6HWVKM0OpAWPo6ddvbsrDxNcfUxLGotGOA1gHsj72WYzzBcrVyNfSpt5g+TWSFEgKIouYqibPydvwvAW1GUPINEJ0lSp1V3pQCUXDMrSX+LEGIEsBrIBQTgK4S4ozO15vn/bK1cUITgUl0J9n+y7U19fVl5MIc3dqUzItQNE5UcnZUkqf3Q6RWO5ZSzPbmQXaeLqKxrZIh5NkucEulnHod5YxnU25DbfTQ7HV3ZUZ1B7qV4TGtNGew9mMf7PM5I35FYqa2MfSpG8WdXkYuEECpgCy1l/ktpKfsfTEt7ntHAC7QUm5AkSWq1KwWgZGseSfrb3gbGKoqSASCE6A6sAzpt1SM7SxcAahpK/zSZVZuoeGpcKA98kcCmhDymx/oaPkBJkqQ/ca6klg0nL7I5IZ+SS430UV/gTZckBpsdwLKhEC5ZUBQyit2uvnxbm0NaZSKiThDrEcvtPe/gGr9rcLBwMPZp/IqiKJRdrMXEVIWTl7XB3+8Pk1lFUaYLIcKBmcBdgCfQAKQB3wKvKIrSaPAoJUnqdH5qzSNHZiXpb1JfSWQBFEXJFEKojRmQodmZ2wFQ01DRqu0n9PQgyseeD/ZncWMfH7l2VpIkoyiuaWT3mSI2J+aTeKGKAFUJ891OMsr8ADa156FaTVXQCLZ5TmFHYz4JpadQLp4mwjmCubFzGR8wHnfr9rdcQqfTU5BZRc6pMnKSS6mtaKLHAA9G3xlu8Pf+06tIRVFSgWcNHokkSV3KlQJQVuZyZFaS/qZ4IcQK4PPLz2fyy6JQnY6dWUsye6npjwtAXSGEYOYAf57emEzixSpZ2ViSpDbT2Kzju9Ri1h+/wOGscixoYrZjMks84vCuiodqFfUBg9ne+1p26io4XHQC7cUMAuwCuD/6fiYETCDAPsDYp/ErWo0O08uz6/asPENWQimmahU+YU70vS6QgF4ubRJHa6sZmwDXAQE/30dRlMWGCUuSpM7uamsetUxmJelvuh94EHjk8vM44APjhWN4V0dmm2pavc+Enh48v+U0mxLyZDIrSZJBKYpCSn41G+Lz2HqqgNqGRm60S+M7n+MEVx1C1dCA3sKfIwPvYrOpln2FR2nMO4+7lTuzwmcxIXACPZx6tLtZJI11zeSmlJGVUEpeWgW3vTwQawdzeo3woXs/D3zDnVC38fKx1s7v2wY0AimA3nDhSJLUVdRrdJiZqjA16Vz9ziSprSmK0iSEWAL8QMt3dIaiKBojh2VQV0Zma5prW72PrYWacREebDtVyHMTwzE3lTfSJEn6Z5XVNvFNYj4b4vPIKL5EsGkJb7rFM8JiD+YNxdDgSmGvG9jq4Mjm0pPkF32PnZkdk4Mmc223a+nt1rtd9oGtKKjj0NdnyUurRK9XsHE0J2KoN8rlDufe3Y13g7C1yayPoiiRBo1EkqQupV6jxVoWf5Kkv00IcR3wIZBFSzXjQCHEvYqi7DRuZIZzNZnV1v+l/abG+LAlqYB96SWM7+lpiNAkSepimrQ69qaV8HVCHvszSjHVN3Kf62lWex3Ao+IEVKqo6Taczb7T2VaXQ3LZQaiC/h79eSTmUUb7j8bcxNzYp/ELddVNZCeWYudqiX+EM2aWplSXNBA12pegGDfcAmzbzahxa5PZnUKIsYqifGfQaCRJ6vRWxGWzZN856pq0uNlaGDscSeoM3gZGKopyDkAIEURLkcZOm8xamlpiiqBG99dqUA4OcsbN1pyvE/JlMitJ0t9SUNXAqoM5bEzIo6pew2ibC3zlc5yoqu8xuXQJxTGAhEFz+NpUy3cFB2k8n0V3x+48GvMo4wLG4Wvbviqr11U3cS6+hKyEEgqzq0GB8KFe+Ec4Y+NozsyXBrSbBPbnWpvMHgU2X27T00zLnV9FURQ7g0UmSVKns/74BRZ+m8bgYGe6u9sS6+9k7JAkqTO4dCWRvSwbuGSsYNqCEAI7lRmX9JdArwdV66blmZqomNLbm1UHc6io0+BkbWbgSCVJ6kzqNVp2nyliR0oR+9JLcKKKF7wSGWvzA9Y1WVBhSWWPa9nq7sem8kSyC3dhrbZmUtAkpnWfRoRzhLFP4Rd+XsTp26XJlF64hLO3Df0mBhLU2+0XrXXaYyILrU9mFwMDgRRFuTI7WpIkqfV2nyniP5tTGN7dlRV3xKKWa2Ul6W8RQky9/DBeCLED+ApQgOnACaMF1kZsTSyoUQnQXAKLP+s2+5OpMd58dCCbbacKuGNQgOEClCSp0zhfXsdnR87zVfxFahqbGWJTzHrvg/Sp+BZR1oTetz9H+0zha10FP+QfoDn7BJGukbw06CXGBYzDSm1l7FO4StOoJedUGWfjiynKquaO1wajNjdhyIwQLG3UOHoYvjfsP6m1yexF4LRMZCVJ+l8czS7n4XWJRPo4sOy2GJnIStI/Y9LPHhcDwy8/LgU6/Rx+O1MralQqaKj6S8lsDw87wj3t2JSQJ5NZSZJ+l16vcOBsKWuOnGdfRgmOoo4FXicZr/kOy5psKFdTHXkj33gG81X+Pi7kbsDOzI4ZoTOYFjKNEMcQY5/CL5Tn1xK/I5fc5DK0zXpsHM0JG+yFrlmP2twEr2AHY4f4P2ltMpsN7BdC7ASarrwoW/NIkvRnzhRU86/V8fg5WfHJnX2xMmvtx44kSX9EUZTZxo7BmOzMbKg2UUFjFeD/l/adGuPNwm/TOFdyiWA3W8MEKElSh6TR6tmcmMfyA9lkl9bR36aYLX5x9CrfiShrAL+BpPadwXp9JTsu7qUp/RC93Xpzf/T9XON/Tbsp5qToFQrOVWFhrcbZ2wZFUcjLqKTHQE9C+rrjGWSPULXPqcN/RWuvKnMu/5hd/pEkSfpTF8rruWPVCWwsTFlzVz8c5fo0SZL+IXZm9uRdGZn9i66P9ub1nel8fvQCL05uX2vYJEkyjromLeuOX2BFXA7FNfXMds3gS989uJYehXILmnpO4zu/nqwvPERy9losTS2ZFDSJm0NvJtQp1NjhX1VVUk/G0SIyjhVxqbyRsEGejLo9DGdvG2a/MRhVJ5sd16pkVlGUBYYORJKkzqXkUiOzVh1Dq9ezfs5AvBwsjR2SJEmdiK2Ffcs048a/nsy62ppzQ29v1h2/wAMjg2RldUnqwirrNHx6OJfVR3K5VN/IYx6nuctyM9bVmSB8yB/2BF9Zqdmcu4vKlDgC7AKY128ek4ImXW0T1l7s+iiFrIRSEODbw5H+k7vRLdoVaCngJEw6/kjs/9eqZFYIsY+WohK/oCjKqH88IkmSOryaxmbuXHWCkpom1v6rv5zGJ0nSP87OwpkalQqlvpL/5fLswZHBfJ2Qx8cHsnn2uvB/PD5Jktq3gqoGVsTlsO74BXTNjcz3OcUM66+xqDqP3jWUQ2Pmsb4xjx8vfo0QgpG+I7kp9CYGeLaPFjV6nZ6LaZXknCpl2C2hqFQCzyAHXP1sCe3vgY1j17hJ19ppxnN/9tgCmAZo//lwJEnqiD45lMOG+Lyrd7wq6zSU1Tax8s6+9PZzNGpsktTZCSGyaGmhFwfEKYpyxsghtQk7K1d0QlDfUMr/UnszwMWaKdHefH70AvcOD8LFpn2sc5MkybDOldSy/McsvknKx1xp5DXfeCbWbsS0rJhGr2i+iJnI2spTXMhai5OFE/f0uocZoTPwsPYwdugAVBbVkXaokIxjRdTXaDC3NiV6jB8O7lZEjW5fvWvbQmunGZ/8fy8dEkIcN0A8kiR1MF8cO8+CbalE+djjZtdyF9DX0ZIZsb4M7+5q5OgkqUsIB/oDQ4FFQohQIFlRlBuMG5Zh2Vm5AFBTV/Y/JbMAD44KZnNSPh/HZfPMhLB/LjhJktqdpItVfLg/i92pRbia1rPc7xjDKzdiUlxJY8Bg1ve/mZVFcZRd2Ea0azQPRj/INf7XoDZRGzv0qwrOVbH5rQRUKoFfT2d6DPQgoKcLJurOtQ72r2jtNGOnnz1VAbFA6+vgS5LUKe1MKWT+N6cZGerKR7fL3rGSZCQ6oPnybz1QcvmnU7O9vFatprEcTwBdMxxbDlG3gLVzq44R5GrDpEgvPjtynnuHBeEki9RJUqeiKAr7M0tZ/mMWR7MrCLCoZX3gQfqWbUJVWEtD8DVsCIzik/y9lOVspp9HP94c9iZ9PfoaO3QAyvJqST1YgLWDGX3GB+ARaMeQ6SEEx7phbS9nk0DrpxmfpGXNrKDlCzMXuNtAMUmS1AEczirj0fVJ9PZ1YOlM2TtWkoyoBkgBFgMfK4pSbuR42oSd+eVktiQVFAVOrYfvnoXSNLh+aauP8/CoYLYlF7DyYDZPjethqHAlSWpDzTo925MLWP5jNulFl4ixq2ZH0D7CirciCppoCJ/MV77hfHJhF+XnvqK/R38WDVtErEessUNH06jl7IliUg8VUpJbg8pU0HOoNwAqE1WXnEr8R1qbzP4b2KUoSo0Q4jkgBqg3XFiSJLVHhdUNvLDlDFUNzZzJr8bf2YpVsnesJBnbLcAQ4AHgHiHEYeCAoig/GDcsw7pSRbSmKhvSt0Pc2yBUkLQWBj4Mbq1LTEPcbbm2lyerD59nztAg7K3az5RCSZL+mnqNlvXHL7LyYA75VQ1c41zG8qDv8CvYiShUURd5I196BrE6dzsVmYn09+zP21Fv08e9j7FDv+rHtRlkHi/G0dOaIdNDCO3vgYWN/Fz6Pa29Ap2vKMpXQoghwCjgLWAZLWt0JEnqAirrNMxaeZzCqgZ6+dgzNMSVFyaH42Alp+VJkjEpirIF2CKE6AFMAB4DngY6dT+sq8msrTtsvg80tTDpPfhuPvywAG76AlStmzFy77BufJtcyI7ThdzSz8+QYUuSZABV9RpWHz7PJ4dzqKpvZpZXIY86bcOlYD9orKnudzdfOLnwRfZWatIPMdBzIPdF3UeMe4xR49bp9GQnlnL6x3yG3xqKk6c1MeP96TXCB/dAu3ZRNbm9a20yq7v8+zpapjB9K4RYaKCYJEkyoh0phaw/cRFF+WU3rgsV9RRWN7J6dj8GBrVuPZokSYYnhPgaiAKygAPA7cAxowbVBq5MM74UMgYOrgC3cOg9C2pLYN9CWOgGLiEwbC5ETIU/uCjs5W1PoIs1W5MKZDIrSR1ISU0jKw7m8MXR89RptDzmf5672YRtcTxYOlE29AnWWJvyZdZW6kvqGek7kjmRc+jp0tOocddVNXEmLp8zBwuor9Zg62xBXVUTTp7WOHvZGDW2f0pZQxkuli4Gf5/WJrP5QojlwDXAG0IIc1oKQUmS1InsSS3mobUJeDta/qpNhZutOc9PDJeJrCS1P68BiYqi6P50y07ERm2DQFDjFACxd0PPqS0jsUMeA1sPqMiCs3tg411w/GOYvhps3X/zWEIIJkV58f7esxTXNOJu1zX6M0pSR3WhvJ4PD2SxMT4PnV7Lf7plM7NpAxbFKWDnQ8HoZ/nEpIFNWVvRKlrGBYzjnl730N2xu7FDR6vRsfbFo2iadPiFO9PrNm/8IpxRqTrHKKyiKHx99mveOP4Gbw1/i+G+ww36fq1NZmcA44G3FEWpEkJ4Ak8ZLixJkgxNo9Xz7OYUKuubL7+iEHe2jF4+Dqy9pz/W5nIdrCR1BIqixAshegohwmnpBX/l9TVGDMvgVEKFjZkNNc2XYOJimnRNvHdiETPDZuIVM6tlo1HPQdIXsPPf8PEouPVL8PjtEZnJUV6898NZticXcveQwDY8E0mSWquwuoFFuzP4JjEfc5XCy0EZ3FC7HrP8THDqxvlxL7FCW8L2nHUgYHLQZO7ueTd+dsabcaFr1pN5opiCs5WMuj0MUzMTRtzWAzd/W+xdrYwWlyEU1RXxzsl32JGzg4GeA9tkBLy1fWbrgU0/e14IFBoqKEmSDC+7rJYNJ/PwcbTEzqKlsMCQYBcWTY+SiawkdSBCiBeAEbT0m91By7rZg0CnTmYBHMwdyK/NB2BH9g7WpK4hvzafd0e+27KBygRibgfPKFh7M6y7BR46Aepfj7wGu9kQ7mnH1lMFMpmVpHamsVnHirhslu7LQqVoeD/0DOMq12F64Ty4hZN17et81JDDrrOrUKvUzAidweyes/Gw9jBazA21Gs4cyCd5fz4NNRqcvKxpqtNiYaMmJPa3Z4l0FIqiXF3PqygKqRWpbMzcyJZzW1BQeKD7zfwr4xCmDTVgadgZfUa5YhVCOAArgJ60tPy5C8gAvgQCaGn9M0NRlEpjxCdJXUFdU8uMxIVTejIi1M3I0UiS9DfcSMua2URFUWYLIdyBz40cU5sY6z+WVadXkV2dzdr0taiEih8u/EBSSRLRbtE/begZBVM+gM+mwIkVMOih3zzeDb29eWVHGifPV9LH37GNzkKSpN+jKAq7zxTzyo5ULlbU86x/BrPrV2GamwdevckY/ggf1aSxJ20ZFqYW3B5+O3dE3NEmazX/SMHZSra+dwpdsx6/CCeiR/vhE+bYIQs66RU9B/IOkFKWQmZFJhmVGRTWFaISKkyFKSYqExq0DZibmDMl6HruMXHBfc9C6nQmVOdm4utk2JuDxhp++S8trX5uFEKYAVbAf4AfFEV5XQgxD5hHS0sgSZIMoF6jBZCjsJLU8TUoiqIXQmiFEHZACdAlGhHeHnE7X6R9wbwD80ivSGdu7Fw+Of0Ji08u5oWBL+Bm5YatmW3LxkEjIWgUxL0FvW8DS4dfHe/W/n4sP5DN6zvT+OregWxLLkStEkzo5dnGZyZJUkbRJV7afoZD58qZ4FLGdr/PsC8+Ae49SR09l+UVSexN+S/Wamvu6XUPs8Jn4WhhnJtQiqKQl1aJTqcnoJcLrv52hA/xoudQb5y8rI0S0z+huK6Y+Yfmc7TwKCqhIsAugGjXaCYFTUJRFHSKDq1ei5+VBxMatdge+RBRls4xJYyFZk+wwKWfwb+M2vwqVghhDwwD7gRQFEUDaIQQ19MyTQpgNbAfmcxKksHUa1pGZq3MTIwciSRJf1P85RlPHwMngVrgiHFDahtOFk5MD53OZ6mfYWtmy/Tu07FSW/HSkZeYsmUKpsKUcYHjmB0xm1CnUBizAJYPhcPvwejnf3U8a3NTHhsTwvxvTnP36nj2ppcgBCy5JYbrImVCK0ltoapewzt7Mvn82AW8zBrYFbKb0LwNCJ0DF8e+wKKGHPadWoyt2pb7o+5nZthM7M3tjRKrXqfn3MkSEnafpzy/Ds9gewJ6uaA2M2HYTcYvNvVXZVVlcbjgMBkVGWRWZnKu6hymKlOe6/04k808sCjLhOIzcO5US4V4YQJCoBQmIZoukaPy4x3NQ9QETeTTm2Jw/n/FRA3BGEMygUAp8IkQIoqWL95HAffLa3EBioDfnEwuhJgDzAHw85Pl8yXpf3VlZNbKTI7MSlJHJVrmrL2mKEoV8KEQYhdgpyhKciv3H0/LbCkTYIWiKK//znbTgI1AX0VR4v+Z6P8Zd0bcycbMjdzY/Uas1FbcGHIjIQ4hFNYVklyazKazm9iVs4s5kXP4V+S/UIdfD8dXwJDHwdz2V8e7qa8vqw7msDe9hFv7+5FZdInHv0zCxcaM/t1kNXdJMhStTs+6ExdZ/F0GlxqaeDs4hcllH6PKq6Kpz52s8vBl5eXlBA9GP8jMsJk/zbwwguykUg5tPEtNWSOOHlaMuj2M7n075lrYrKosliYtZc/5PQA4WzgT6hTKbaG3MK2iBL/NTyIUPQCVajcKhAcgUKHHBB1pmhjWaYZS7dqXR6eGMjbco82qMxvjKtYUiAEeVhTlmBDiv7RMKb5KURRFCKH81s6KonwEfAQQGxv7m9tIkvTnrqyZtZYjs5LUYV3+vtwB9Lr8PLe1+wohTICltLTdywNOCCG2KoqS+v+2s6XlpnO77F3rZuXG9hu242jeMr1QCEG0WzTRRDMhcAL3Rd3HG8ffYNmpZaSWp/L+wEcQqVsg4TMY+MCvjqc2UbHstj5kFF9iUqQn1Q3NTFpykNd3pbP5gcFtfXqS1CUcySpnwbYzpBdd4jafYp5lFZYXU8BvEAf63sJrmevIO/M94wPG82Tsk0Yr7KRpaBkIMLM0RVEULGzMGHxjCIGRLogO2FqnsrGSpUlL2Zi5EQtTC+ZEzOYm2+64VeZBcQpK2lpERTYb9SP4qnko6YovahMnAlysUQnQK6DTK3Rzseaxvr70D3Rq83XBxkhm84A8RVGufClupCWZLRZCeCqKUni59U+JEWKTpC6j4co0Y7lmVpI6ugQhRF9FUU78xf36AecURckGEEKsB64HUv/fdi8Db9COW/K5Wf1+ETt7c3teHfoqQQ5BvJvwLj8ET2GM/2A4+gH0+xeYqH+1T6iHLaEeLSM+DlZm3DkokJe3p5JaUEO4l53BzkOSupq8ynpe3ZHGjpQieto3cTB0Kz7nN4OtJwUT3+KNmtPsTVhEoH0gH4/9mAGeA4wSZ32NhlN7L3L6x3yiRvnQb1I3ukW70i3atUMWdapvrmdD5gaWn1pOvbae6UHX80CTCQ4/vIdoaKm/W2fqyFnhz/uaJzENu5b7+/oR7mWHm615uzrnNr+KVRSlSAhxUQgRqihKBjCali/OVOAO4PXLv7e0dWyS1JXUXZ5mbKmWI7OS1MH1B2YKIc4DdYCgZdA28k/28wYu/ux53uVjXSWEiAF8FUX5Vgjxu8lsR1gCdEfEHXyb8y2LTixicP8HsPzqdkjZANG3/um+02K8eXNXOmuPn2fhlF5tEK0kdW4NGh3L9p9j+YFs1ELLmvCTDM1fgbjYiGbQw6x28eCj1I8QQvBYzGPcHn476t+48WRotZWNJOw6T+rhQnRaPUG9XQmMcgVoVwnd79Erei5eusjRgqMcLTyKXtFjqjLlYP5B6rX1DPEazFxzf7od/AjRUMFhk758rBnBaX0AFSpHQtxsuWtcINP7+LTb8zXWkMzDwBeXKxlnA7MBFfCVEOJu4Dwww0ixSVKXUK/RYaFWYdIBp8VIkvQL4wxxUCGECljM5YKNf6QjLAEyVZnyTL9nuGv3XXyqyed+7z6w+1kIGg22f7zOzcHKjImRXmxOyGfehDBs5IwWSfqfKIrCtuRCXtuRRmF1I08GF3Ff/YeoszMheAyH+9zMa+lryC3cwjX+1/BU7FN42hiv+NqB9ZmcTykndIAHvcf64ejRfisT6xU9aeVppFekk16RTkZlBhkVGdRr6wHwsvbCSm1FXXMd4/zHMtXMneijq6BiHYkmkTzX9ARa9yhmjfXnCW8HQtxtsOgAAx5G+TRWFCUJiP2NP41u61gkqauq12ixlsWfJKnDUxTl/P+4az6/bOHjc/m1K2xp6Qe///IdeQ9gqxBicnsrAtVafT36Msp3FJ+lfc6s6z7AZtU42PYo3LKupTLnH5g5wI+vE/JYf/wC9wzt1kYRS1LncTq/mpe2pXI8t4IR7o1867EBp/M7wcGfjMmLeaf8BIeOv4S/nT8fjvmQwd5tv0a9rqqJk7vPEzXKF3tXSwZNDWbI9BDsXCzbPJbW0uq1bM/ezsqUleTW5AJgrbYm1DGUKcFT6GEXSJRGR2BRKkJRwFIF8Vug6jz5an+e1TxFlv1A/n19GNf29Gyzwk3/FHklK0ldVH2TDivz9n/HTZIkgzkBhAghAmlJYm8Grs65VRSlGnC58lwIsR+Y21ET2SvmRM5h77d7+aoigbtGvwC7n4GkL1p6z/6B3r4OjAh15e3vMhkd5k6TVseWpAIeGhks+3VL0h8or23ire8yWX/iAu6WsDXyML2yVyLqoGbYUyyxVPjy9HtYq615ss+T3Bp2K2YmZm0aY111Ewm7znMmrgBFr+DmZ4u9qyUO7lZtGsdflVKawstHXyatIo1Qx1AWxs4jBjXelQWoik9D9jdQlgmKHp3KDEVliom2gQzL3nyoncQ+ZTD3jwvlw0EBHWIU9rfIT19J6qLqNFqs1PIjQJK6KkVRtEKIh4DdtLTmWaUoyhkhxEtAvKIoW40boWFEuEQwyGsQa86s4dYbdmCR/i3snAeBw8Dh99f7CiF4fWokY9/5kbs/PUF+VQNNWj1F1Y0snhHVbteTSZKxNOv0rDlynne/z6RBo+W18Dyml3+ASWYuSthktoaN4u20T6lqqmJG9xk81Psho/SLPbzpHMn78tDrFHoM8KDPhADsXdvvSCy0TNdek7qGxScX42LhwqIesxmX/iNiw08V2ussPLhoFkSy5U3srPbjsC6MJswQ6HFQmXPjQB++HxaEq63he8EakrySlaQuql4jR2YlqatTFGUHsOP/vfb872w7oi1iagv39LqHu3bfxbrML5k9ZSksGwxbHoRZW0Cl+t39POwteOn6njz2ZRKDg53p4WHHyoM5DAxyZkas7+/uJ0ldzYHMUl7ansq5klpmBDbxgnoN1ln7wCWUzGnLeCVvNwmJi4l0iWTZmGWEO4e3aXyaRi1mFi1pkLZJR0hfd2I7QBKr0+tILElkfcZ6dufuZozHAF4uKcNm5wLqzVzYbDWT3TWBJGt9qWq0xcbclHAvO/pGOfJQDzdszNXUa7SEe9lhbto5rgFlMitJXVS9RifXzEqS1CXFuscywncE7ye+zyCvQYSOfRm2Pw5nd0PohD/cd0pvb3p62xPo0lIIJq2whn9/nczWpAJCPWxJuljF8O6uPDI6pC1ORZLalYsV9by0PZU9qcX0cBLsj96Hf+anCLUltWNeZKm6kXWJb2JrZsuCQQsxuwdrAAAgAElEQVSYEjwFlfj9G0j/tOYmHcn7LpKw+wLXPRiJV7ADQ2/u3m5nVjTrmjlSeIRdObtIKUuhqK6IRl0j5ibmPOA+lDknvkaPCW+LO/ioZiQ9fN3o39OJG73t6ellR4CzdYdbA/tXyStZSeqi6pq0OFm37ZoUSZKk9kAIwYJBC5i6ZSrz4uaxbvwaLH5cBMeW/2kyCxDsZnP18bLb+vDJoRw2xOdxPLcCe0s1H/6YxT1DA7GSNwylLkKj1fNxXDbv7z2LSsDHvXMZk/c+Ir0QJepWvg0dylunP6a8oZwbu9/IozGPtumUYp1OT9qhQk5sz6G+RkNApAuWNi2tftpbIlvRWMHJ4pMczD/I9+e/p0ZTg62ZLf08+jHMZxi9TB0YdjEJq6Ofc9osirtq5uAf0I3PxvWgX6CTscNvc/JTVpK6qIZmHdZmnWOKiSRJ0l/lZOHEwiELuf/7+3n31FLm9b0L9i6E0kxw7d7q49hbqnlsTHceHR2CTq+QcKGKGcuPsPtMETf09jHgGUhS+3A8p4L/bE7hXEktd4Y08Yz+I8zTjoBnNFnXvc4r57dy4sRrRDhH8P6o9+np0rNN41MUhU2LEijJrcEzyJ5xc3riFezQpjG0Rml9KUuSlvDNuW/QK3qsTK0Y5TuSCTbdGFh0FnVWIlR+C3UlKELFOtVEXm+8hf9Mi2R6H99OPwL7e2QyK0ldVF2TDitZgVOSpC5siPcQZobN5Iu0Lxgy+HWGmJjB8Y/gurdaNtDUAQLM/ryiqRACUxNBrL8jPo6WbErIl8ms1Kk1Nut4a3cGKw/l0M1Bxf6YOALSV4C5DfUT3uRD1SU+O74AK7UVzw14jmkh0zBRtd1N9OKcGtz8bREqQa8R3lhYBeDfy7ndjMRqdBrii+KJy48jsSSRjIoMEHBryHTGWXoTUZSJOn4L1OSjN7GgxDGKYuuBHBC+rCqLwNLRg6/m9CXUw9bYp2JU8kpWkrqoeo0Wqw5ahl2SJOmf8nifxzlWeIz5JxexJeJ67JPWwqCHwdoVVoyB2hKYuBjCr2/V8VQqwQ29vVm67xwlNY242VkY+Awkqe0l51XxxFenOFdSywsRpdxR8S6q1ByUyJv5LuIa3kxeRkl9CVNDpvJYzGM4Wji2WWxVJfUc2ZRFdlIpY++OIKSvOz0GeLbZ+/9/iqJw8dJFaptrqWys5FzVOU4Wn+Ro4VEatA2Ym5gT5RrFnaE3M7WsEN/v3wNdE4pKzXmngWywuYVPysKoq7NECIjwsuNfE7y4ua8vDlZyuZhMZiWpC9LrFRqa5cisJEmSuYk5C4cs5ObtN7O522TuzNgNG+4Ez0goSQWXUPjqdhj9PAx9slXHvKG3N+/vPcfGhDweGBFs2BOQpDbUrNOzZO85luw7h481HIrcjXfmanAKomDGpyws2EPc0QWEOYWxeMRiolyj2iy2xrpm4nfkkrI/D5Wpiv6TuxEQ5fLnOxpQcV0xLxx5gUP5h37xupe1F5O7TWKYpRd9ywuwzDsB8TtRmutJcbmWDU392FTmQ22eJZE+9jx+nRcjQt3wdbLsNFWI/ynySlaSuqBGrQ5FQa6ZlSRJAiKcI4h1j2Xd+d3MmvweJhvuhIIEGPgQjHmxJZmNewdi7wLLPx9h6uZqw/DurnywL4sp0d54ObTvdh+S1Bpniy/xxFenSMmv5uEedTx2aREmmZlo+/6Ltb5hLEl8DYCn+z7NLT1uwVTVtmnG9iWnKM6tIXyQJ/0md8Pavu37pzbrm9mYuZFPT39KnbaORm0jKqHi0V5z6Gbphq1WS1BjHU75SXBwNdSVoggVdU7hZDiN58WCfqQV+hHj58icaBeui/QkyNXmz9+4C5PJrCR1QXVNOgCsZDIrSZIEwMywmTy+/3H229oxevg8yDvRMhprooaRz0LGYDi+AoY/1arjLZzSk7HvHGD+N6dZeUdsu1mnJ0l/lV6vsOpQDm/uzsBODbv7HCc0bQlYu3Jh2nKeubCN5MTdDPcZzrP9n8XTpu2m9F5Mq8AzyB5TMxMGTQ3CzNIUF5+2XUOqV/RsyNjA/rz9pJanUtFYQYxbDCGOIZjomrm1IAv/rfN/uY+FAxedBvGddTQrCwMpym9p9XVdpCdLx/fA1+nP1+lLLWQyK0ldUIPmSjIrPwIkSZIARviOwMPag7Vpaxk9biUAX6Z/SXljObN7zsay+3g4+gEMuB/ML4+UKAr8TpLq62TF3HGhvLw9lW3JhUyO8mqrU5Gkf8zFinqe3HCK4zkV3BKs4yX9e6jPnEAJn8LmiDG8nrQYtUrNomGLGBcwrs1u2tSUNXBww1lyTpUxaFowva/xwyuk7dblXlFSX8L8g/M5UniEIPsgBnsNYrzKjqFndiHOnYa6MhRNLQnesyhQ+1LUbMmhajcOlFujq1Lh7WDJ2Fg3Bge70MffERebth9N7ujklawkdUF1Gi0A1uZyZFaSJAnAVGXKzB4zefvk2+zO3Y2HtQevHHsFBYXt2dtZFDWbiMxdsO9VGP8qnPwUfngZpq2AoJG/ecw7BwXwTWI+r36bxugebljLOgVSB6EoCl+euMjL21MRAjb2y6RP2iKEypTKye+xoDqRH+LfpL9HfxYOWYiHtUebxKXV6Ejcc4GTu84jBAyY0o3IEW1XNbyysZKUshRs1DacLjvNB6c+QKfX8bz/ZG4sL0Uk7oaKLJocQ6l1COOSuZ6n84dyPMsPS7UJTtZmhHrY8ki0A2PC3Qj3tJOzNv4m+akqSV1Q/eVk1lKOzEqSJF01M3wmey7s4cXDL+Jk4YS7tTvP9n+Wl4+8zMs5X7Ou778QR5dCXSmc3gjCBNbPhNu3gG9fqC2Fk5+Aaw8In4yJSvDi5AimLTvM0n3neHp8D2OfoiT9qZKaRuZtSmFvegnj/VW8Y7UKy+TvIHAYhwfdw/zE/1LVVMXc2LnMCp+FSqjaLLa9n6Vz9kQxwX3cGDQtGFsnw1cLVxSFI4VH+Dz1c44UHEGraK/+bYhHf56pqsNv/xIUG3dqHML4UkzjtfxI9IUt/1xi/R05MCMaP2c5ddgQ5JWsJHVB9ZenGcsCUJIkST9Rq9S8OexNpm+bzoVLF/hwzIcM9h5MSX0JLx99mYSxT9KntghSvgKffjD1I/jsBlg5Bmy9oKECtI0tbX1CJ4CJmj7+jkyN8WZFXA439/WTF7RSu7Y9uYD535ymQaNjRf8SRp9diCi7RNM1L/OuaT2fH55PkH0Qy8YsI9QptE1iqi6tR21uipWdGX3G+xM+2BOfHk5t8t7Z1dk8d/A5ksuScbV05fawWxlq4YXGxBSLilx6H/kYGirZ6nw3/y4eTUMZ2FqY8vSEYCK87DBVqegX6ISJSo6+GopMZiWpC/qpAJT8CJAkSfo5bxtvPhj9ATnVOQz2HgzApKBJvJf4HmvSPqfP1I/h1DqIuKGlsvHsHZD4OVRkg5kNOAfBrnlwdg/0uBaAp8f1YEtSAV8cP88zE8KMeXqS9Juq6jU8t+UM204VMMBLzXL3LdifWgcevcgYs5R5Z5ZzruocM8Nm8ljMY1iYGn5EVKfVk7jnAvE7cgnt587IWWE4e7dNZV+9ouebc9/w+vHXsTCx4Pnwu7n+Yhpme/4LmktXt6t2jubBpqc5XuTLrf39iPK1Z0R3NxytZf/XtiKvZCWpC7oyzVhWM5YkSfq1aLdoot2irz63NLVkRvcZrEhZwYWGUvxi76JZ18zpkkSiXaMRw5/+aWedFuIWQ9IXV5NZD3sLRvVw4+uT+cwdG4rapO2mZUrSn9mXUcK/NyZTUafhrX71TLu4EJF+Af3gx/nMw4//HvkP9ub2V2cqtIWi7Gr2fZ5ORUEdQb1d6TepW5u8b3FdMUmlSaw6vYrU8lT6ukTyWlUj7t++gGJmS4nfeE6o+2JloiOjXMcbOQF0c7Xlm7tiCPeya5MYpV+SyawkdUF1V6oZywJQkiRJrXJLj1tYfWY1Lxx+geXXLGf+ofnszNnJ/VH380D0Az9taGIKUTfB0WUta2htXAG4ua8ve1KL2ZtewriItimWI0l/pFmn57Ud6aw6lEO4mznbIw7hduoDsPel+JYvmJ+7maMJXzPSdyQvDmpZR94W0g4XsPezdGwczLn2gUgCI10M+n5avZbdubtZk7qG1PJUANyt3Hk16CauO7QSoW3iZNCD/CdvIBmnf7oRZW6q4olrgpkzvBvmpvJ6ylhkMitJXVDDlWrGcpqxJElSq7haubJg8AKeiXuG6dumk12dTbBDMMtOLcPe3J4bgm/gfM15Vp1eRbidC7P12pbR2SGPATC8uytutuZ8deKiTGYloyusbuChtYmcPF/JU70V7q9YgCopGXrPYk/EWBbEv4pGp+GFgS8wLWSawSvuKopCc5MOMwtT/CKc6T3Gj9jrAjCzMOx1ytnKs8w/NJ/U8lQC7AJ4MvphojEn/NRmzL5fRK1jOHfW3k/8GWf6BTjx3wl+jA5zR6vTY6IS2FqoDRqf9OfklawkdUFX1sxaquWdREmSpNaa2G0i2VXZfJzyMZO6TWLB4AU8vPdhXj/+Om8cfwMFBYADplbc1G0EVj++CeGTwakbpiYqpsf68MH+LG5afoRoXwd8HC0ZEuJKoIu1cU9M6lIOni3j0fWJNDZr2TLgLFEpr4K5LXXTP+G1ygS2HHqWns49eX3Y6/jb+Rs8nrqqJvavzaCpvpkbnojB2t6cQdOCDf6+32Z/y3OHnsPWzIZFoXcy9uxhVFueAb0WxcKBfQGPc29Gb3xd7Fl/Sy8GdHM2eEzSXyeTWUnqguo1WizVJqhkdT1JkqS/5KHeDzHQayDRrtGoVWreH/k+B/MPklGZgYWJBQH2ATy892H29pnGxPxE2HQvzN4JJqbcNzyIpmY9x3IqWHUoh2adgoOVmrinR8oRHsng9HqFpfvOsfj7TMJd1Kzz3oxd0pcQNIqkYY/wTPybFNQVMCdyDvdF3YdaZdj/JhVFIeNYEQe/Oou2WU+/SYEogKGvTPSKno2ZG1l4dCF9nHvydkUtTrteQrF2pazXPSSJMN5McyYzXcW0GB9euj5C9ohux+S/GUnqguo1OqzlellJkqS/TCVU9PXoe/W52kTNSL+RjPQbCbRcKHvbeLOt8BATr3sbNt0DR5bAkMewtVAzf2J4y3Z6heO5Fdz80VFWH87loVEhRjkfqWuoqtfw+JdJ7MsoZXa4YH7dy5ikJ6Md9hQfOTrw0Y+P42HtwSfjPiHGPcbg8TTUati7Oo3clHI8utkz+o4wHNwN27Yq71Ie7ya8y5GCI9RoahjiGMY7KXGY67Wc6PE0z5yP5dyxlmVYEV52rL8pXI7GdgAymZWkLqheo8NSVjKWJEn6x6mEiondJvJxyscUD3oJ9x4TYf/rEDEFHAN+2k4lGNDNmdE93Pg4Loc7BgXI0VnJIJLzqrj/8wRKLjWycnAlo848i0Ch4saVPJW/k+PJx5kcNJl5/eZha2bbJjGZqk2oKW9k8I3BRI7yNdhMMa1eS1p5GgfzD/LJmU9QCRXjAsbRR6tiwv730TqGcHvTY8Ql2RDta8NbY/zpH+iEj6OlwdcJS/8MmcxKUhdU16SVxZ8kSZIMZFLQJJYnL2fTuU3cP+FNWNoPvn0SZm6E/3eB/OiYECYvOcTyH7OZOy7USBFLndWXJy7w3DdncLNRc6D/CTxPvgPuPTkz7jkeS3iLysZKFg5eyPXB1xs8lrrqJk7uyGXQtGDU5ibc9GxfVAZsU1XdVM2cPXOuVige5jGA5zQWeJzcDuXnKHOMYkzhw1jYOPHJ7F6M6O4qE9gOSF7NSlIX1NCskz1mJUmSDMTfzp+RviNZkbyCa/yuIXjUc7Dr33B2D3Qf+4ttI30cuD7aiyX7zmFpZsIDI4LkBbX0tzVpdby4NZV1xy8wtps5SyyWYZbwPUTezObwUSw89B+cLZ1ZM2EN4c7hBo/nbHwxP67NQNusJ6iPG97dHQ2WyOr0OvJr85n741yyqrJ4IfoRRtQ34RL3DjRWowSNIt55Mnck96RPiA9LbonB3krOiuioZDIrSV1QXZMWKzkyK0mSZDDPD3yeaVun8e+4f7Nu/BrMDi6G+JW/SmYB3poehUoIFu3OoF6j5alxPYwQsdRZFFY3cN/nCZy6WMVz/RTuuvgkoiif5mvf5A19KV8eW0h/z/4sGrYIRwtHg8aiadBy4MtMMo4W4R5ox+g7wnD0MEz17vrmet5LfI+NmRtp0jVhpjLjv7gxZPPclljconjL9Q3Wn7WlplHLmDA3ls6MkT1iOzh5NStJXVC9RoeLjbmxw5AkSeq0XCxdeHnwyzz4w4MsO72CR3vfBgffgeo8sPf5xbZqExVvT4/CQm3C0n1Z2JiradBo+TohnxV3xBLmaWeks5A6muS8Ku5ZHU9dk5bNw0vonfAfMLej9Na1PHn2cxJLEpkdMZtHYh7BVGX4NGDvZ2lkJ5YSe10AsdcGYGKg0dikkiTmxc2joLaAyUGTiXbqQcyJzwnMOUJ57BPspS8vnRDoFcHESE8GBTtzbS9P1Aac5iy1DZnMSlIX1FLNWP7vL0mSZEjDfIYxJXgKn5z+hHHD3qFH3GJI+AxGPvOrbVUqwcIpPamq1/DGrnQATFSCTw/l8saNkW0dutQB7Uwp5PGvknC1MmVnnwM4H1sKPv1IGjOPJ46/Qm1zLYuGL2J8wHiDxqHX6dE26zGzMGXA9UFEjfLFM9jBIO+lKArrM9bz5ok38bDy4FPvicSc3AaVS1CApfZP8tbBGEBhSLAzr03tha+TYasmS21LXs1KUhdUr9HKNbOSJEltYG7sXOLy4ng+ZRlrg0ZhevITMLcFtSVoG8E9ArqNAFqS13dvjiZ0fxaDglzYlJDHlqQC5k8Mw9ZCTUlNIwkXKvG0tyTK1zDJgdTxKIrCB/uzWLQ7g4E+5nxqtxzzxO+gz518HTKIhXFz8bL2Yvk1ywlxNGwLqOrSBvasOoONgznj5vTEwd3KYC13cqtzWXh0IceKjjHcLZZX8nKwT1kKgcNoDJvOK+lurC3yYf51PRgX4SGT2E5KJrOS1IVodXouNWqpa5IFoCRJktqCvbk98/rP46kfn2Jn99uYlBsH3z370wamlvBIIth5AmBuasJjY7pffqxi/YmLbErIJ62whvUnLgKgErDoxiim9fH51ftJXUuTVsczm1LYlJDPrHA1C+oWoMo5TfOEN3hTKWf9sYUM9hrMG8PewN7c3qCxZBwt5Md1mQiVIGqUr8EKmVU1VrE8eTnrM9ZjaWLJ/IApTD/8KUJlwp7w13gxK5T8tEZMVIL3bu7NdZGeBolDah9kMitJXURxTSM3f3SUnLI6AOxkP0NJkqQ2MdZ/LEvslrCh6gyTni0GzSXQ1EN9OXw0HA68CRPf+dV+kT72hHvasWDbGfQKzB4cwISenvz3h0ye3HCK/KoG5gzrhtpERVZpLUGuNpgYqF+n1P5U1Gm497N4TuRW8soAuDXrUURTDZXTVzH34naOFx1ndsRsHo15FBOV4W5gN2t0xK3PJO1wIZ7B9lxzVwS2ThYGea/D+YeZFzePak01NwRM4MGyMlz3vUeTWxQPNj/G9wnmDA2x4dYB/gwKcqa3n2ELXEnGZ7RkVghhAsQD+YqiTBRCBALrAWfgJDBLURSNseKTpM6kuqGZO1Ydp7imkf9c2wNLtQnX9pJ3KiVJktqCSqiY3n06b8W/RWb1Obo7dgcL+5bR2D53wslPYeBD4Bz0i/2EENw5OIB/f53My1N6MmuAPwAr7+jL3A2nWLwnk7XHLqDV6ymr1TApyot3b4qWCW0XcK7kEnd9Gk9RTSPrR9Yw4ORcsLDnwk2fcv+pdymqK+LVIa8yKWiSwWPR1GvJPV1O7LUB9L0uwCAtd3R6HctOLeOj5I8Isu/GCs+xdD+yEppqOB/2L6amDUenMmfJrT25rpenbG/VhQhFUYzzxkI8AcQCdpeT2a+ATYqirBdCfAicUhRl2R8dIzY2VomPj2+LcCWpw2ps1jFr5TGSLlbxyZ39GBLiYuyQJKndEkKcVBQl1thxdGTyu/m3VTVWMXrDaG4IuYH5A+b/9IdLRfBeb/CMgpu+AGvnX+1b3dCMveWvZ9McySpn2Y9Z2FmY4mJjzqeHc5ka480b0yJ/UaX1XEktjc06enobdpqp1DaOZJVz72fxmJmq2BSbit+xF8GjF0ljn+fhYwsQCN4b9R7RbtEGjeNiWgXeoY6oVIKm+mbMDdSrtayhjHlx8zhWeIwp3iP4T/pRLMsy0foPZanZ3byTYkaElx0f3tZHrovtpP7ou9koI7NCCB/gOuAV4AnRcvtkFHDr5U1WAy8Cf5jMdgV6vYJxbjdInYFWr+ehtYnEn6/k/Vt6y0RWkiTJSBwsHBgfOJ4t57aQW51Lo66R/2PvvsOjrNI+jn+fqZmW3hskIRB6LyqoIAoKKqLYCyt2dF0VF8uu67rq8tqxAtLsvWEBBKmi9E6AkISQ3ntmMvV5/xiqBMUlIQHuz3XNlWTOU85MAjO/OefcT5m9jI6hHXl19FSUeffC9HPh2g8gdn8I8XlBo20yyAKclRLGWSmHwm+YxcCLizLYUVDLE5d24azkMJbvKeOe9zfi8fl44/o+DE4NZ1F6Cd3igkiJsJ6Mhy6a0bwthUz6dAvtQ418kfIDttVvQ6dL+LH/9Tz682SiLdG8NfwtEgMTW6wPHreXnz/dw46VhQy9KY0u58S2WJDdULKBh5c/TK2rlqcSRnHFL3NRjTaW9X2DSZujqLS7uH1IEg9d1IkAvdQCORO11jTjV4C/A7b9P4cB1aqqevb/nA/EtUbH2pLyeidDX1hGXaPnjzcW4nf85/KujO4R29rdEEKIM9qt3W6lpKEEt89NgC6AdoHtWJa3jCUpY7hgwkL45CZ451K49kPI+glWT4Obv4bEQcd1/PsuSKVTtI1/f5vODTPXEGTSU+/0kBZtQ6fVcM8HG7EF6KiyuwnQa3jsks4Emw3kVdoZ3SOGdmEWSmob+XZLId9tLUJVVcb0jmN45yjiQ0zkVznYUVjDOR3CsR2j7oLPp/LlpgLigk1HBG1xYlRVZfqKbKbM38Xg9mbmWKej3zwfdeDdvJuQxourHqdnRE9eHfYqIQEtt060utTOwre3U55XT++LEuk0KLrFzvV5xuc8vfpp4iyxvGVuR6cVb+GIO5vbG+7m51Va+rWzMPeyATLj4Ax30qcZK4oyGrhEVdV7FEU5H5gEjAdWq6raYf82CcB8VVW7NbH/HcAdAImJiX337dt3srp+0m3Oq2bMG6sY2zuO9uGW1u6OOEV1jLIyspusjxXieMg04xMn04yPn8fnYey8sQB8edmX6OpK4N3LoCLTv4FGDx1H+EdrD6gtAq0eLMeeaeNweVm4o5jV2RVoNQqPXtIZVVX560eb0GoUbhjUjlkr9/JzZvnBfTQKdIkNZEdhLaoK3eICUVXYUVgLgEmvxeH2ApAYauaZK7pR43Czp6QejaJgC9CREmnlnV9yWLKrFIBr+yfw+KjOxwy+4vioqsoz3+9k5s97ubqrmSmNT6Mp2IB35BT+T6nko10fcVG7i3hm8DME6Fqm8BJAzrZyFs3agaJRGD6+C+17tNxsr3d2vMML619gcGRfntuXia14G1md7mDsrqEoWh3PjOnOJd2jZW3sGaKtTTM+B7hMUZRLgAAgEJgKBCuKots/OhsPFDS1s6qqM4AZ4H/BPDldbh12p39E9ur+CQxKlk83hRBCiNOJTqPjr73/ygPLHuDLPV9ydaer4S/zYeFj0PlSKNwEq6ZCdR7UFsJP/4Z9q0BvgSumQZfLmjyuyaBlTO84xvQ+cpLbnL8MOPj9eakRrMwsJ8xiIMxqYPbPe1mXU8X9F6Ryac/Yg1OQdxfXsX5fJXtK6kkMNRMXYuKpb9O5adbaJs9t0Gr416VdKKl1MmNFFrmVdt65dcARa3jBf71zh8tLmNV41DEanB427KsiQK8l0KTD54Mwq4GowJYLam2Vqqo8+4M/yP6tr5H7ix9Gqc7FftUsJpcuY1neMv7S9S/8re/f0CjNX3jpcEazntBYKxdO6EJgmKlFzpFbm8sL619gad5SLgrvxZTNS9Ap8Enq80zeEkfPhCDevKEPccEtc35x6mm1AlAAB0Zm9xeA+gz44rACUFtVVX3z9/Y/3T/9XZxewm3vrufbewfTPV6mUAghREuTkdkTd7q/Njc3VVUZv2A8m0o3cUePO7ir513oNPvHGqpzYWpPSB0Be1eAORR63wR7foSC9dBvAgy4A8p2wY6voP9tkDSkxftcY3fzY3oxHSKtdIsLQqsoVDS42FNSR1yIiXZh/tlkX2zI56HPtnBV33jO6xhBbqWdzjE2qu1u/jt/F40uL7PG96dnQhAfr80jvbCWwhoHa/ZW4vL4jjinXqvwr0u7csPAxDNmNE5VVaYs2MX05dn8vaeLuwsmo3gaqbxyJhN3zyG9Mp1HBzzKtWnXtlgfnA4POVvK6DQo5mCfWuL5L24oZua2mXyx5wsMGgN3RJ/L+F/mooakcD+T+T7fwC1ntePxUV0w6Fo2tIu2p62NzB7LZOBjRVGeBjYBs1q5P62uweUfmTUbZUG7EEIIcTpSFIW3hr/Fs2ueZfrW6aRXpPPS+S+xo2IHc7fP5bGOw4nZPR9Ck/2jtrZoOOd++PFx2PAOrN//dkmjg90/wNi3oeuYI0+yfg7Yy2Hwg6DRgtfj//p7oaRyL7jtENnlyO3cDoLMJsb1Szhi8wibkQibEdwOWPQvCIzjyn63kl1ezxtLs/h8Q/4R2/eID6Le6eHm2WuItAWQW2knwmYk0mbkhoGJDEuLREGhttGNRoGP1+Xxj6+38/mGfDQKRNoCOCc1nD6JwSSHW8mttJNeVENlgxutAlf0iT9m4axj8flUyhucaBWFYLOhVS9xpKoqzy/czbMRr60AACAASURBVPTl2TzU083duQ+g6M0UXPs+d256jpKGEqYOncr5Cee3WB8qixqYP20btWUOolOCCYowtUiQ3VO1h5vn30yjt5GxyZdyV10jET/PpCG8O6MrH6DYFcDUa7tzea8zvpyOaEKrjsyeqNP909+P1uby6Jfb+PXRYcQEyXQKIYRoaTIye+JO99fmlvTp7k95evXTpASnkFOTg0f1cGO7i5lcUggjp0BQPF6fF42i8YeK+lLY/iWEtIP4AfDx9ZC3BrqN9QfeyK7w88uw9Gn/CdJGQ1gHWP0WRHeHUS+Asx6Kt0LqRf7AnLEA1r4N2Uv9+wQlQHx/sEZB7q9QtBm6XA4XPw9VOVC40R9gtXqwxfinRRdv9e8b3QPf2Fmsrg0l0KQnIdRMemEtDU4PQ9Miqba7+MvcdThcXv45ugvndow45nPj9am8sTSTZbtLMRm07C1roLCm8Zjbh5j1PHBhR24a1O4PA5iqqizeWcoLC3ezu6QOgPZhZt6+uR+pUbbf3bclqKrKS4syeG1JJn/t4eOB/L+haA3svvIN7l77NE6vkzcueKNFL72TvbmMxXPT0ek1jLyjG7GpLVNUqtxRzg3f34DH52ZO7MUkrp4J9cWUJo/lkszLsNiCefvmfnRshd+DaDt+77VZwmwbNuvnvfznu3S2/OuiP/3pohBCiD9PwuyJO91fm1va/L3zeWzlYwyJH4KKyobiDSwet5gGdwNzd8zlu+zvCNAG8MrQV+gc1vnInV12WPGcP4y66v2jtT4P9LjWfx3bhY/5t+t8Kez7xT9aezhTKDgqITAO+v4FbFGwewGUpkNdkX+UNrYXbHofvK6mH0BAEFwxAzwO+H4S6M1w22L/sQ5QVdj8IdSX4Dv7fhSNBsXr9k+rrtoLO7+FrCX+0WO92X8uSyRc9iqEp+4/hMq+CjvbC2vILmsgPsREj/ggImwB5FXa+e/8nazKrGB0jxieu6oHqgr1To//1uj/Wutws6/Szqfr88guayAp3MINA/2XtJm2PJtGt5dXr+vFsLSoph5pi3llcQavLN7DxB4wqfBBFNXHxstf5N71UzDpTUwfPp0OIR1a7PybFuXyyxeZRLazMfLO7thCm3+tcnZ1Nl9lfsXCnIVUN1Yxp9pD1/JsfAmD+CbibiavNdI+zMz7EwYSeQaulRZHkjB7inrtpz28uCiDPc9cfFThBCGEEM1PwuyJO91fm0+GOlcdVr2VTaWbuGXBLdzf536+yfyG/Lp8zks4jx0VO6hx1vBg3we5LOUycuty+T77e8Z0GENKcArYK/1Tjiuy/OtsB93jD4a5a8Bggehu/m02ve8fjY3qCju+hKKt0O1K6HQJaH9nJVrpTn8Yje0N7QeDMdAfXqv2QVD8oUrLhZtgziUQmgIRHaEsAyI6+YtZ5f7i36b7OEgeCoueOBSu9RbocAHoAvxTnXVGyF4GXrd/xFn1gSUCks71919R/NfkrciE+hIA1HbnMH1lDv+3YBd/9Fa3T2IwNw5qx2Xdo9A1FAMqhZ5Abv9wG+lFtTwyMo07zk1u8bW6qqry8qIMXl2SyR3dNTxa8hCKp5GtY17h9nXPEGmOZMaFM4ixtuwVCtJXFZK/s5JhN3dGZ2jepW6qqvJV5lc8u+ZZvKqXAZF9uTVvNwNKMlnX/yUe2RJNdoWdC9IieWFcT0IshmY9vzg1SZg9RU2Zv4vZP+8l45mLW7srQghxRpAwe+JO99fmk0lVVa769ioyqjIwao1Mv3A6faP6Uu4o56FlD7GxdCMmnQmHxwFAkDGINy94kx4RPY44zsr8ldS6ahmVPOq4z+32uVFVFYP2z4eJxfsWE2mO9Pdj9wL45Ab/yGpkZyjP8E9LHv4v/zTpJf/x7xQ/APr9xT+tOa4vGMxHHrQ6Dz650T/N+XDGIAht71/j66w9dH90DxjxDL/6uvJLVjlWow5rgA6rUYctQIfFoCPQpCfUYiDKZoSMhbD4X/5iWgCBcTiueo9JKxW+31ZExygrQ9MiibT5RwnrGt1YDDpuObt9sxQkOrzY0509DDxS8gCKs45dY1/n1g3/JdgYzNyRc4k0R57wuZriqHNRnldPQpfQg/1p7vDu8Dh4evXTzMuax8CofkyJGEL41s9R9/3ClMDHmV7ahdRIK49d0pmhaS3zOMWp6VQpACV+w+HySPEnIYQQ4gylKArju47nX7/8ixfOe4G+UX0BCDeFM3fkXDaVbuLb7G9JsCUwKGYQDy17iNt+vI3but/G9WnXYzVYWZCzgMkrJuNTfeyp2kP7oPa8tuk1+kT24bGBj6GgkFGVQc/Inhi1Rorqi/hk9yd8secLGj2NDIkfQt+ovkSbo9lQuoGNJRsZ02EM13S6Bq/qJa8uD7vbjlajJcocxWubXuOzjM9QULi609U82PdBzI/kgd50qJCUqh76PjQJPC7ocQ1oficUBifA7UvBUQUBgf5R4JyVULIdKrP9ATh+AATFQU0BLH0W3rmUs85/jLOGP+w/tqr6R3odVeAo9Y9O5++B9XOhZJt/BPni5/2j0itfwvTuKF6//A3O6dCfeVsKmLlyL17fkYNAa3MqeeP6PkcE2rpGN99sLmRFRhk7Cms5r1MEd56bfLDK82+pqspT36UzZ1UO9/QJ4OGih1Aaa8i68i3u2PgcFr2FmRfNbLEgW1FYzw9vbsVp93DzM2djMOmaPcgW1Rdxz0/3kFWdxV1Jl3HX+q/R1n6Jao1iTvB9zCrtyvNXdWdsn/hWLbwlTj0yMtuGTfpsC79mVbDqkWGt3RUhhDgjyMjsiTvdX5tbQ6OnkQDdH68bLLOX8e9f/83y/OUEaANICkryB9WIniQHJ/N5xucApIaksrdmL0atEYfHgU/1EWIMoUtYF34t+hWAoQlDCTeF81PuT5Q7/NN/9Ro9ibZEsmqy6BLWhYL6AmqcNUf149Zut+Lyuvhg5wcMihnEG8PfQK85svZHekU6lY2VDI4bfPA+p9fJ3pq9LMxZyPL85aiqik6jo8HdQIgxhCfPfpLUkNTje9LcDvj2b7D1YwhKBK/TH2KbWusb1c1/iaNe1/sLWQHUl/lHgvNWw5BJMPRxGr0qTo8PVVWxGnV8sCaXf83bQbe4QLrEBKLTaqi2u1i+u4wGl5eEUBOdomysyCjH7fPRr10IY/vEc23/hINh0edT+ec32/lgTS5/62/m/vwHUBrKyb1yGuO3vISKytyRc2kX2O74HveflJdeyYIZ29AatIy6uwdRSYHNfg63z834+ePJrsnmxehhnP3zdNTAGLb3fZbXsqP4cWcZz13Vg6t/UyFbiANkmvEp6p4PNpBRUs/iB89r7a4IIcQZQcLsiTvdX5tPBTvKd/Bd9nfsrdlLkDGIJ856ArPOzKe7P8WsNzMqeRR7qvYwa9ssEgITSAtN4/vs79lZsZORSSO5ptM1xFpjAf+oYWVjJQX1BbQPao9Nb+OjXR/x8e6P6RbWjYExAwk2BuPyuciry6NjSMeDAfWrPV/xxC9PMDZ1LL0iepFVnUX7oPbk1ubyTvo7+FQfD/Z9kH5R/Xh6zdPsrNiJiopW0dIvuh82vQ2Pz4NZb2Zt8Voa3A1cl3YdTq+TQEMgvSN7kxaaRrAxmPy6fDaXbaaooQivz8vY1LFEmSNh/Wx/ZWZTyGG3UDAF+79aIyG8Iz5Uvsv+jhX5K/D4PHQO7cyEzjeim/93/9piWyx0GAbmcH9RLXsF6E18FXYbb6+tpLzeicenEmTS0zshmFvObk/POBtU5VCqjebjDYX8sK2IXcV1PDyiExOHdsDrU3n0y618uj6fyWeZuWvv/SiOKgqvnMH4rS/j8DiYM2JOixV72rW6iKXv7iIkxsyoiT1bpNATwGubXmPG1hk8b0hi5O7lNLQfzi2VE1hfqmLSa7l3WAcmDm25glbi1Cdh9hQ1fs5aqhpcfHPv4D/eWAghxAmTMHviTvfXZvHnvLThJeZsnwOATtHhUT0AXJl6JfXuehbmLERBIcIcwZWpV5IYmMigmEGEm8KPOE6ZvYyHVzzMhpINWPVW7B47PtUHcMS6YQAFBYPWwE1dbuKeXvccNSp8OJ/qY2X+St7c8ibpFelEW6Ix6UzsrdnLWTFn8fy5zxGUuQR2fOWf1ux2gKIBc5i/wnN0d7jpK39IBv9U5ry1sHYGZC6GxmoIaQ+DJqJ2vYIHvsvn682FjD+7PVvzq9mYW80Tg838Zc99KI21lIybzV+2vkR1YzWzRsw6umJ1M1r5aQaVhQ2MvLM7RlPzrzx0+9zM3T6X1za9xuW6MP6TuZmdXf7GuG390et0PHlZV0Z0jSZAL0vqxO+TMHuKunrar2g1Ch/dMai1uyKEEGcECbMn7nR/bRZ/jk/1sTR3KYmBiaQEp1BQX4DL6yIlOAWvz8vUTVNxe91M7DURq8H6h8dze93otXrqXHVsLdtKVnUWBfUFJAUl0S+qH/G2eMod5by++XW+z/6ePpF9eHTgo9jddioaKyh3lFPh2P+1sYKs6izy6vKItkRzf5/7uSTpEjSKhq/2fMV/Vv+HKHMUrw57tenpzbsXwKc3+S9HFJwI7L/2b00uBAT7r+sb3R22fQYF60HR4Eseyq31d7Nsn4vUSCv39NJxxZY7wekPshO2vkKZvYzpF05vkevI+rw+6qudBIaZ8PlUVJ+KthkKWB3O4/OwaN8iZmydQWZ1JhcGpfH0lkX8Gn07E/aeT5/EYF6/vg+xwaZmPa84fUmYPUWNenUl0YEBzBrfv7W7IoQQZwQJsyfudH9tFqeO77O/58lfnqTR23jE/QoKIQEhhJnCiDJHMTp5NBe1v+ioEdzNpZt5YNkDNLgbuLHzjQyKGYTVYMXldVHmKMOgMXCuG5SN7/qvz6uq/hHbxEH+9bcGCz7VhwYFirfBznnw8yt4EwZRdvmHRHuL4L0rwNVA6dVzuXXLiy0aZN1OLz/O3E5ZXj3X/Wtgi4zG1jhruGX+LWTVZNE+sD0PxA5j2OLn2WtI5YKKSYw/J4VHLk5rlgrQ4swh1YxPUQ6XF7NRfkVCCCGEEH/WqORRdAnrwrbybYQFhBFuCifMFEawMRid5o/fX/WK7MUnoz/hiVVPMHv7bN7e9vZR29zY+Ub+fuXMI6r/1jhr+CLjE5bmLmVb+TYGxgzkxs43ctb5j6ALS0X71R1Ezxngn6ZsCqX0mneZsPkFyuxlTLtwWosE2cZ6N9++voWyfbWce23HFgmyXp+XySsns69uH8/3nsRFu5ejmf8k9bZkriubwIQhKTw+qkuzn1ec2SQptWENLg+WZr5YtRBCCCHEmSIpKImkoKT/ef9IcyTTLpxGrauWLaVbcPvcGLQGwk3hfJP5De/vfJ+8ujxSQ1Lxql6KG4pZlrcMh8dB17CuXNXxKpbkLuGen+4h0BDIiPYjmHzhUxgzFsLAuyhLHcaEXx6nxF7CtOHT6B3ZuxkfvV99lZN5r26mtszByDu7k9wrotnPoaoqUzdNZVXBKv5pTGbkl/eD1kBRr79y6eZBxMQF8fCItGY/rxASZtswu9OLScKsEEIIIUSrCjQEMiR+yBH3derfCavByse7PmZVwSo0ioYwUxjDE4czvtt4OoZ0BGBy/8ksz1/OktwlfJbxGbXtR/Dc+O+ocFRw68JbDwbZPlF9WqTva77Jor6qkUvv60lcp5BmP77b6+Y/q//DV5lfcVVAIuN2LsPebyJvOC/mzTW1xAQG8Np1vWVqsWgREmbbKFVV94/Myq9ICCGEEKKtURSFib0mMrHXRA7UoDl8uvEBeq2e4e2GM7zdcFJDUnlpw0vk1uaSVZ2FVqNt0SALMOTajvQcnkB4vK3Zj13jrOHBZQ+ytngtd0YN5p7VH7Iu6mpuXD0Et7eWmwa14+8j07DKsjnRQuQvq41yenz4VDAbZWRWCCFEy1AUZSQwFdACM1VVnfKb9geB2wAPUAbcqqrqvpPeUSHauKZCbFPGdx1PhaOCxbmLGddpHFemXtl0peQTVJRVw4YFOYy4rRuGAF2LBNm8ujzuWXwPBfUFPBsznEt/nUt+YB+u3zeay/vEcu+wDiSFW5r9vEIcTsJsG2V3eQEwy7W3hBBCtABFUbTAG8CFQD6wTlGUeaqqph+22Sagn6qqdkVR7gaeA645+b0V4vSgKAqT+k9iUv9JLXaOvPRKfpi2FUuwEafdjb4FBkaK6ouYsHACDo+Dmdae9PllNqWxF3BR9g1c3qc9L4zrcdwBX4gTIZPX26gGp/+i4lLNWAghRAsZAGSqqpqtqqoL+Bi4/PANVFVdqqqqff+Pq4H4k9xHIcSfsG97Bd+/uZWgCDNjJ/XFGhLQ7OcotZdy+6LbqXfVMcNppc+WL9mTOoEhuRNIiYvimSu6SZAVJ42E2TbK4faPzMqaWSGEEC0kDsg77Of8/fcdywRgfov2SAjxP9u3vYIfpm0lJMbMmAd6Yw40NPs5dlTs4Lrvr6PUXsqbDVrS9q1jYco/uXDbBfRKCOXdWwcQILMKxUkkSamNOjgyK9WMhRBCtDJFUW4E+gHnHaP9DuAOgMTExJPYMyHEAUERJhK7hHHBLZ0JsOib9dhun5sP0j/gjc1vEGIM4r1GCx2LtjIt+t/8344kxvWN55krukvFYnHSSZhtow6umZUwK4QQomUUAAmH/Ry//74jKIoyHHgcOE9VVWdTB1JVdQYwA6Bfv35q83dVCHEsZbl1hCdYCY4yM+qeHs1+/KL6Iu5dci8ZVRmcF9WfJ7PTCSvbzashj/HK3iQeuTiNO89NlqnFolXIxydt1IEwa5E1s0IIIVrGOiBVUZQkRVEMwLXAvMM3UBSlNzAduExV1dJW6KMQ4nfsWV/CZ1PWs23ZUZ9DNYvsmmxumn8TRfVFvJI0jte3LCWstpCXIp/llaIuvHBVT+46L0WCrGg1kpTaKLvLP83YJCOzQgghWoCqqh5FUe4FFuK/NM9sVVV3KIryFLBeVdV5wPOAFfhs/5vVXFVVL2u1TgshDsraWMqi2elEJweSdlZ0sx7784zP+Trza3aU7yDQYGOOy0qnJS/iie7NA977+HZfAM9e0Z0r+0pNONG6JMy2UQ1OKQAlhBCiZamq+gPww2/ue+Kw74ef9E4JIf5QztZyfpy5g+ikQEbf2xNDQPO8X1RVlakbpzJr+yw6h3bmlpQxjNv4NXE1u8ke9DS3bO5MSb2bV67pwZjev1cvToiTQ5JSG3VgZNbcAtcGE0IIIYQQp6bGejc/ztpBeIK1WYMswIvrX+Sd9HcYF96Xf1RUo9nyFqrOyGsJL/LishDiQzR8dudZ9EwIbrZzCnEiJMy2UQcLQEl5cyGEEEIIsV+AVc/Fd3cnIsGGwdR8b+U/y/iMd9Lf4RprKo+v+wolrAPOnjfy930DmLfLwj3np3DfsFRZAifaFAmzbVSDy4NBp0GnlRpdQgghhBBnuuLsGuqrnHToG0lCWmizHVdVVX7Y+wPPrn6Wc4yRPLLtJ6pSx/G67T4W7qigtK6R16/rzageMc12TiGai4TZNsrh8mKRT76EEEIIIc54Zbl1fPvaFsyBBpJ6hqNthuu5urwufi74mfd3vs+64nV0DYjk+V0bKEi+nuHpo9EohQxICuX5cT04OyW8GR6FEM1Pwmwb1eD0YpbiT0IIIYQQZ7TqEjvfvrYZg0nLZff3apYgu2jfIp785UlqXbWEGkP4R9T5XLnmfUqjhnLBzkvomRjC7Fv6E2TWN8MjEKLlSFpqo+wuD2YZmRVCCCGEOGM11DiZ9+pmVBUuv783ttCAEzqeqqq8ueVNpm2ZRvfQzkwMvIgB6QvR73qX6pjBjNh3E/2TIpg1vp8MqohTgvyVtlF2lxezUX49QgghhBBnqsz1pTjq3Yx5oDfBUeYTPt6rm15l5raZjAnuyj+2LMXoWQhhHcgbPo3Ri0OJCg9g2k19JciKU4b8pbZRdpdH1swKIYQQQpzBel6QQFLPcALDTSd0HFVVmbV9FjO3zWScIYZ/bpqPkjKM8gGTeXO3jXd+2EeIWeOfWmySqcXi1CFhto1qcHqJDZb/TIQQQgghziQ+r48VH2fQ7bx4wuOtJxxk7W47T61+iu+zv+diXRiP715Ddd/7+GvxJfw8twKo4Nr+iTw8ohOhFkPzPAghThIJs22Uwy0FoIQQQgghziSqqrL8w92kryoiPN5KeLz1hI5X46zh9h9vZ1flLiYaE7lj18/k9HiIyzcMRKep56/DUrmidxztwy3N9AiEOLlOelpSFCUBeBeIAlRghqqqUxVFCQU+AdoDOcDVqqpWnez+tRUNTg8Wo0wzFkIIIYQ4U2yYn0P6qiL6XtyObufFn9CxDgTZrOpMXndZOHfvz+zpci8j1vWlU7SZGTf1JSH0xNfhCtGaTry295/nAR5SVbULMAiYqChKF+AR4CdVVVOBn/b/fMayu7yY9DIyK4QQQghxJshYW8yaeXvpNDCagZcln9CxDg+yUyvqOLeikB3nvsWoLYPplRDM53edJUFWnBZOelpSVbUIKNr/fZ2iKDuBOOBy4Pz9m70DLAMmn+z+HVBe7+SnnSX41NY5v90lI7NCCCGEEGcCVVXJWFdCbGowQ29MQ1GU//lYB4JsZtUeXq2o4RzVxDf9Z/HwTw0kR1iYM34AFrlihjhNtOpfsqIo7YHewBogan/QBSjGPw25qX3uAO4ASExMbLG+zVy5l2nLs1rs+McjIUQ+MRNCCCGEON0pisLFd3XH4/Kh1f/vEyedXid/XfJXMqv2MLW8mnM0Vv4v6gWmLarjvI4RvHJNL4LMUmBUnD5aLcwqimIFvgD+pqpq7eGfQKmqqiqK0uSYqKqqM4AZAP369WuxcdMah5tQi4Ef/jqkpU7xuzQaiLSd2IWxhRBCCCFE29VY72blpxmcc1Uq5kADWtP/HmR9qo9//PwPNpZu5PnKegbrgvlP2P8xe6ubiUNTeOjCTmg0//uIrxBtUauEWUVR9PiD7Aeqqn65/+4SRVFiVFUtUhQlBihtjb4dYHd5sAXoiA6SQCmEEEIIIZqX1+3jh2lbKc2po/v58ZgD//fL4uyu3M2za55lY+lGHqhtZIQulKdCn2POtkYevLAjf70gtRl7LkTb0RrVjBVgFrBTVdWXDmuaB9wCTNn/9ZuT3bfDNTi9mPSyZlUIIYRoDdmby1j99dHLfS6+qzsh0RZ2rylmw/yco9ovu78X1pAAdqwsYMtPeUe1j324LwEWPZsX57JjZeFR7df+cwBanYb1P+xl95qSI9o0WoXrnhgIwK9fZZG9ueyIdoNJx7hH+gGw4pMM8tIrj2i3BBsY80AfAJa8u5OirJoj2oMiTYye2BOAhTO3U55Xf0R7eLyVEbd3A+D7N7ZQXeo4oj06JYgLbu4MwNcvb6Sh2nVEe0JaCOde1wmAz6asx2l3H9Ge3DOCs6/sAMCH/16Dz+s7or3jgGgGjE7C6/Hx0VNr+K2uQ+LofWEiTrubz6asP6q91/BEup0bR32Vk69f2nhUe79L2pN2VgzVJXa+e33LUe1nXZFCSp9IynLrWPj29qPah1zbkXZdwyjMrGbJOzuPah92c2diU4PJ3VHB8o8zjmofeXs3IhJtZG0q5Zcvj/7bGz2xh/9vb3URa7/POap9zAO9sYUGsH1FAZsW5R7VPu6RfgRY9Gz6MZftKwvwuLzYa1xcNKEr0clBR21/PGqcNby5+U0+2f0JNp2Zf9erjHEqPBvzDHO2NfLAcAmy4vTWGiOz5wA3AdsURdm8/77H8IfYTxVFmQDsA65uhb4d5HB7ZHG8EEII0UqMZh1hcUdfY/PAesIAq77Jdo3W326yGZpu3z/N0hJkJDyhiWt47p+FaQkOOKr98CVRttCj99cbDn0IHhh29P4my6G1ikGRJjwu7xHtlpBDs8GCI838dkJoUOShWhohMRb0vykUGRRhOvh9aKwVs+3IMBt4WHt4vBW388jzB4YfOn9kog3fb6pg2kL97YoCke0C+S1rsNHfrlGabD8w8qjVKUS2/512vabJ9gCr//nTG7VNthvN/vdthgBdk+0Gk7/daNETnXR0+4Hn02Q1NNmu2//7NQU23a7V+f/2LEFNt2u0/t+oNdR4sD2xSyip/ZssE/O7fKqPrzO/5pUNr1DjqmFcQCL3ZfxKoN7Kmwkv8fZWL38bnsr9wyXIitOboqqtVK63GfTr109dv/7oT/6aw5g3VmEL0PHehIEtcnwhhBBtj6IoG1RV7dfa/TiVteRrsxAC7G47E3+ayPqS9fQ2x/NYfhZpNaXQ52beM9/MPxeXcMe5yTx2SefW7qoQzeL3Xptl6PEY7C4PUYHG1u6GEEIIIYQQAHh8HiYtn8TGkg086bExdscvKPH9cY79kNd323j9p0wu6R7NIyPTWrurQpwUEmaPwe7yYjHI0yOEEEIIIVqXqqqsL1nPrG2zWFW4in9W1nKlxwFjprE0YCj/+mQnuZUlXNE7jv+O7S5Vi8UZQ9LaMdhdXsxGKQAlhBBCCCFaT52rjodXPMyqglUE6ixMrnFwtS6c4mu+5smfSlmwYwPJERY+vG0gZ3cIb+3uCnFSSZg9hganR0ZmhRBCCCFEqyluKObORXeSW7uPv2ujGZe1ngBLFJ/3eo0npu3Ap6o8PKITtw1JwqiTQRhx5pG01gSvT8Xp8WEyyH8KQgghhBCidfx3zX8prstnekk5A9RaOOcBPtdezKQFpZzXMYKnx3QjIdT8xwcS4jQlYbYJdpcHQEZmhRBCCCFEq9hWto0leUuYWFXNgLBu+Ma9xxe7G5n8xVaGd45k2o190e2/FJUQZypJa02w77/um6yZFUIIIYQQrWHqhpcJ9ancZE1lYd/p/HfadnIq7PRJDObV63pLkBUCkH8FTWhw+kdmzTLNWAghhBBCnESqqjJn+xzWlKzjtqpqFobfzZ0fbcds0PHadb355M6zMMvsdrvxQAAAIABJREFUQSEAGZlt0sGRWfmPQgghhBBnKK/PS359PjaDjdCA0KPaN5duZvrW6WRXZ+PyuegR3oPekb3pFdmLLmFdMGgNrdDrU5vD42DyiskszVvKMIebswy9Gb7azOW9Yvm/K3sQoJeBFiEOJ2mtCQfCrKyZFUIIIcSZ6OUNL/Phzg9p9DYCkBKUQr/ofvSL6ke/6H7k1ORwz0/3YDPY6BfVD42iYUvZFpbkLQHAoDHQNbwrvSJ70TuiN90juhNuCqfWVUuts5ZYaywaRSYIHs7tczNp+SR+zl/J3+u93FBZyTjfGIakhvPKNb1QFLl2rBC/JWmtCQ37C0DJmlkhhBBCnGlW5q9k9vbZDEsYxvkJ51PRWMH6kvV8m/Utn+z+BACtoiXRGsfssMGEV+SCxwGxIyjv1oHNGh+bq3azqWwT76W/xxzfHABseht17joALHoLnUI60SWsC53DOtM5tDNJQUnoNP63pj7Vd0aFXVVVefKXJ1mRv4J/lldxtT6C97rOZMNaLd+NTJMgK8QxSJhtguPgNGMJs0IIIYQ4tZU7yimzl9ExpCNajf+9TWVjJZ/s+oRIcySdwzqTU5NDqb2UTqGd+Pev/ybZFMXzpWUYdjwDAYHcljAQT8+H2WkNZX39Pkqrspiw+TvCt04BWwxo9LDjK8KB4SgMj0iDuL40dryLdGsQ2312chsKiTNHY9PoyWgoYGfFTr7Y8wWOnQ4AjFojyUHJ1LpqKWooItocTYeQDqQEp5AanEpKcArJQckE6AL+1OO3u+0syFlAjbOGdoHtaB/Ynnhb/MFp0Lsqd7G2aC0x1hiseisF9QX4VB/xtngSbYlEW6JxeV0U24sJNgYTYgxp9nD58saXmZc1j3uq67k6sBPFl3/ElNc3MqpHJN3igpr1XEKcTiTMNuFAASiZZiyEEEKIU5nb5+b2H28nszqTQEMg/aP7kxaaxke7PqKysbLJfTQovFRSgUGbD3F9wVEF62ejW/0m3YHugfHgdYHHCbcuhMRB/h0byqFgIxRuhIINkDGfgM3v0wfoo9FDYCzUFoDPA5YIiOqKN3I4+4Ki2GnQs9NTS0ZNNu0D2zEy/nyKnFVkVmfya+GvuH1uf98UDfHWeDoE+0NuSnAK7YPakxSYhFlvxu62s654He+kv8P28u3E2+IpaSih1lV75GNUNMRaYjHrzWRUZfzuc6hVtHhV78GfTToTsZZY4mxxxFpiibfFE2uNJdYaS7w1nkBD4HGHXVVVmb19NnO2z+Ga+kbu0oaz7pzp3D1jKyrw4IUdj+s4QpypJK01wS4js0IIIYQ4DXy08yMyqzO5Pe1Gyj0NrClaw0+5P5EW0pG321+FzhJBhlZDkqohwu1miw70q16hB0a4YznYovwH8rigZBvkrYO8NVBfAiOehdheh05mCYeOF/lvAKoK1bn+YFu8FapyoNuVYAqBst1QugPt+lkkexpJBkYpGghpD/YKaKwBgxXCOuAJ60NuUDSZAQFkabzscVaRWZvN8vzlR4TMIGMQNc4aACJNEVwWfRZFHjsd9MFcV1NLitNBbmAUOSYL+7QKOT4H5a46/h7Uk4vKC6m0hlKvMxJXV47G5yHPFk5egIV8nRazz0eU20WNVkeBFgpUF4W1eWws2UC9u+GI59yitxBrjSXOGkecNY4YSwwhASGU2kupcdYQbgon0hxJWEAYH+z8gCV5SxjR6OFRp4EVQ2Zw6/sZtAsz8+HtA0mJsLbcH4cQpwEJs02QasZCCCGEOFWUO8qZvX02oQGhDIgeQJewLug0OkoaSnhzy5sM9hm5b/6zKGGpqAkDKU+5iJCN76PbuBiA5MOONfTAN9d+dCjIAugM/lHauL4w6K7j65iiQEg7/63b2Ka38XmhMhtKtkNJOpTvBnO4f5/aIijPQJe3huTtuYf6qWgguB2usBRyg2PICbCwV6tQpLqIQkfHugoGp/+IPn3DofOYQiA0mW4ZS+nm+M2ItKKBuH5ElWaDq8F/bk0A0QXp9K/NB9Xn305vBrf9iF1VoNYWRWFQFAWWEAqMZgq1GgpUN/lVmawpXI1jfxEtAL1Gf3CUGUCv6JjU4OWmukbSR3zKHZ8X0y0uiA9uG4jVKO9Dhfgj8q+kCXaXB0WBAP2ZU3hACCGEEKcWn+rj18Jf+eeqf1LVWIVH3V/AUmcm3hZPVnUWGlQeKchH6XML1Jeg7PqWiMYaCE2G6z8FRQtluyAsBSyRULTJH9rSLvnD86uqys6iOrbkV1PjcJMSYaVDpJXEUDNazXGuKdVoITzVf+t6xbG3czVARRaUZ0D5HijPwFCeQYd9v9DhNwETRQtdx0DnS/2BOCAQuo4Fg9nf3lgDlXuhaq9/anTHERCc2PR5vW6oLQSjzR+IPU7/VOmafKjJR6nJJ6gmj6CafDqX++/D4zj0HAG1ugCqLMFE1pVh8nmp1Wops0ZSag4ioSyThOBkci6dw/WfVhIXbGLO+P4SZIU4TvIvpQkNTi8Wg04qxwkhhBCiTSluKObXwl/5pfAXVhetptpZTXtLLNPM3QkzR7I+MIR1qp08RxnntevE8DXv0i7pArh0qn+k1Ofzh7igeNAZ/QdNHX7oBPF9D37r9ansKa1Dp1FoH2ZBpz30Ib/H6+Phz7fy1aaCo/po0GpIjrCQEmmlw/6AmxplJdIWQEZJHSW1jSSEmmkfZiHErD++91sGC8T08N8Op6pQV+wf3a0t9D+uiE5gPvq6uAcFBPmnR++fIq2qKmV1jYSYDWgUhfwqO41uH9GBAQSadCgh7VBVlRqHG7PBgCEsxR/+m6KqYK+EmrxDYbe2gCBHJdhiwRxKUEM5QfUldKgvgaSLKOr9N66buRmjXss7tw4g1CLX5xXieEmYbYLD7cEk62WFEEIIcRL4VB/byrexPG85gYZABsQMoFNIp4OVhwG+z/6e6Vuns7dmLwARpgjOjR7AILfCBes/wuzbBj4PI7xORgDoLeBuAGMQjH7JH2QBNJpjB7HDvPrTHt5ekU3d/qKYBwJqxygbHaOs7CisZf72YiYOTeHqfgmEWAxkldaTedhte0ENP2wrQlWPfR6bUUe7cDPtwiy0DzMTF2ymqMZBdlkDIRY9ccFm4kNMxIWYiA82EW41ojl81FdRIDDGfztMWZ2T7YU1RNqMpBfWMveXHCrqXUQHBRAbHEB0oInY4AAUReHTdXnsLqlDUUCnUXB7D3XYpNcSGWikssFFXaP/uQgx64m0BRAZaCTCZvR/bzMSGXjg+wAiw7thPnw98TFsL6hh4tyN1Dd6+OTOs0gINf/hPkKIQyTMNsE/MithVgghhBAtq6qxinsW38P2iu1HVM21GWz0i+rHwJiBFDcUM3fHXLqGdubhpDGcVV9Hh9z1KOkz/QdJPBvGzgBrJBRt8Rdoqs6FmJ6QMsxfRfhPWLmnjJcWZTAsLZLRPWJQVcgorWNPST0b9lUxb0shAI9cnMZd5x0Kxr0TQ+idGHLEsRrdXrLLGthTWkdprZMOUVZig0zkV9nJqbCzr6KBnAo7OwpqWLC9GK9PRatRiA8xUW13U+NwH3E8g05DXLCJuGCTP+QG+4NuTJCJEIuenHI7yzNK+WJjAS6P7+B+naJsDE4Np7imkV3FdSzdVYbD7X+uO8cE8tgladQ7vTg9XlLCrZgMWkpqGymuaaSkzkmwSU+7MDN2l5fSukZKa52U1jnJLmugtK7xiAB8gNWoI9JmJNxqxGLUkl/loKLBRbBJT6jFQKBJz8o9ZYRZjMy9tT9dYgP/1O9JCCFhtkl2l0eKPwkhhBDiT3H73ExaNomC+gLOSziPYQnD6BzWGY3SdA2O4oZi7l58N3l1eTzR4VpG1FTRqA9grcXGOk8Va8o2szRvKQBXWpJ5fMty9J6F/mu6JgyEof+AlKEQ28c/4gqQMMB/Ow7FNY2YjVqsBh07i2vJLmsgNjiAyZ9vJSXCwps39CFAf/SH+/VOD/WNHqKD/vh6rwF6LV1iA48Kap2ibUdt6/b6KK5pJMJmPHjeeqeHgioH+VV2Cqod/u+rHeRXOVi8s5TyeudRxzHoNFzVN57RPWKotrsJNus5KznsiOnMqqpS6/BQ43CTEGo6oaVlqqpSbXdTWuc8IuiW1jVSWuekvM5JSa2T9uEW+ieFUuNwU9XgorDawegesTwxugshMrVYiP+JJLYm2F1eLEYZmRVCCCFOZ26vmzXFa+gW1o3ggGCyq7PZVr6N8xPOJ8gY9Lv76bV6ACocFWTXZNM9vDv/t+7/WJK3hK5hXZm5bSYzts4g0hTJ4PjBpIWmsSR3CZtKN9E1rCs2g41VBavQa3S82aBlwKLnQGsk0OdmtOpjNApEpFEQO4jKugK6bV+G0u0q6HENtDsbjMd/yZbtBTVsK6ghOdxCh0grFqOOKfN3MfeXHMA/lfbAKCWAVqPwxd1nNxlkwT/i2BIFivRazVHTbK1GHZ2ibU2GX/CP/BZWOyiqaaSiwUW7UDMdo2x/uFxMURSCzHqCzPoT7reiKIRYDIRYDMfspxCiZUiYbUKDy0uQ6cT/cxNCCCFE27S5dDP//vXfZFZnYtFbGBA9gOX5y/GpPgK0AYxKHsV1adfRKbTTwX2yqrOYvmU6C3IW0CGkA6nBqSzetxiXz4VRa8TpdXKbuQP3VzmpSryGlRYry+qzWZSziC/3fEmMJYZLky5hZ1UGxVXF3Jh4EVdt/YF29ZVwxQzoPNp/GZiCjZC3FvLWELd7IXEuO4x6Efrf9qcfZ12jm7/MXUdZ3aERTINWg8vr48ZBicQFmympbaR7XBCdom3kVzkIDNDRKyG4WZ7nlhag15IcYSVZrscqxBlJwmwT7E4PsccxdUYIIYQQp5Y6Vx1TN07l092fEmWJ4ql+f2dl6SZ+LvyZa5MvZ4Q5gXn2fXyf/T1f7PmCXhG9GJk0ki2lW1iQswCTzsS45EvJrM9jad5SLk0YymBjJL96ajAVbOS+HUsgNJmQrCVcBlxmDMTT7hzyoxJJyFmFdvtU/2Vx9GbYPg3MYXDLtxDX51Ank8/z38BffdjTeOiyMn/Sy4v2UF7vZM74/mg0Clml9eRW2rmgcyRDUiOO2r5b3LFHpIUQoq2RMNsEu8sra2aFEEKIU5Db6+bHfT8yNGEoZv2RAdDj83Dz/JvJrsnmhg5jua9oH+bP7uWKsA6QdC4snwnuBvoYg3ig8yV8FRbFN5VbmbJ2CmadmQnxF3BzfgYhP70O1mgI6wDLZgIqBy9uc+7DMOwfUF8KOSth7wp0e1fQPmM+xPaGIZP813V1VMHIKdB9HFjCj/2ANJrjCrLb8mvQaCAx1IwtQI+qqqzKrOCdX3O4bkAiQ9MiATiv49EBVgghTlWS2JrgLwAla2aFEEKIU82nGZ8yZe0U2gW247+D/0v3iO4H2+bvnU9mdSbPxY/i4pWzwe2AAXdC/jpYPxu6XgFdx8LuHwjaMY/x7gbG22LJST6bkOKdBO2Z7Q+xQx6Ciiwo2+0Pr0lDIHc1WCKg73j/yayR0O1K/w3AWf+n1rkeL7fXx3++S+fdX/cdvC/UYkCrUSircxJpM/L3EZ1+5whCCHHqkjDbhAaXF7MUgBJCCCHaLFVV+WjXR0RbohmWOOzg/V9nfk2CJQ6n18mN82/kig5XMLHXREIDQpmxdTodMTJi5VvQbjCMfhkiOoKqgtsOBov/IF0u869R3fkd7PqW9unzITgBLn/TP5Kqa6LybNK5v9/hZg6yjW4vC3cUM/eXHDblVnPb4CT6tAsht9JObqWd+kYP53WMYHjnqGYpciSEEG2RhNnf8Hh9uDw+LDLNWAghhGiz3tnxDi9ueBEFhafOeYoxHcaws2Inuyp38Vh5JaPiz+Ot5EF8nPUN32Z9S+/I3uTU7uOlkjI0w/7pH109cDkWRTkUZA8wWKDnNf6bz3fo0jetSFVVNuyr4ouN+Xy3pYi6/TU+XrmmF2N6x7V294QQ4qSTxPYb9v2l6WWasRBCCNE2Ldi7gBc3vMiFUQOp97l4YtUTlNpLKbWXYlDhEq+ewD1LmLznJ67vfgXvBNn4Jn8paR64wNoeBj9wKMgejzYQZBfuKGbK/F3sLW/ApNdycfdoruoTz6DkMDSa//0aqUIIcSqTMPsbdueBMCtPjRBCCNHW1LnqeGbNM/SwJfHfdfNAF8A/up/Pa5teA+DihgaCBj8EnS+DFc+TsPUT/uF18bfQJKjKQ3PD56Bpex9Y1zjcfLUxnwaXlwirkTCrgXCrkXCbkcXpJTz57Q7SogN5/qoeXNw9pkWu8yqEEKca+Z/wNxpcHgAssmZWCCGEaHNmb59NtbOa6fl5GEPag9bA8xu+5aKelzOzNp2bG6qh901gCobLX/dXFt78Idatn0KXMdBh+B+e42RSVZXXl2Ty1vIs7C7vMbcb3jmK167rjUlmjgkhxEESZn/D4ZKRWSGEEKItKm4o5r3tcxltd9JFY4abvgRTCCx4lAs3vceFqg/6TfAH2QNs0TDkQf+tjVFVlf/O38WMFdlc3C2ae4d1IDncSnm9k4oGFxX1Tsrrneg0Gi7vFYtO2/rTnYUQoi2RxPYbDU7/yKysmRVCCCHaltd/vBefz819hni4/j0I2l/06LJX4ayJsPkDGHh363byOOVW2Hl5cQZfbSrgpkHteOryrij71/EmhJpJCP3ja8sKIcSZrs2FWUVRRgJTAS0wU1XVKSfz/HaXFIASQghxZvij11xFUYzAu0BfoAK4RlXVnJPdT4Dd+5Yzr2YXt2jDib1pIWh/c7mZiE5w4VOt0bUjOFxeSmobMeg0GHWa/V+1VDQ4mbp4D99uKUSn1VDv9KDVKEwcmsJDF3Y6GGSFEEIcvzYVZhVF0QJvABcC+cA6RVHmqaqafrL6cCDMWqSwghBCiNPYcb7mTgCqVFXtoCjKtcD/Af/f3p3H2FXWYRz/Pkw3aGu1LZLawkyRJaJBrQWJLIqYCqgdVNAqRlAUNagYowZEsXFL6poYFWQTqGyKAmPUUEUiBi20lqELUBhZQmttWZRFa7f5+cd5pz0d7p3OtDNnmXk+yU3Pfe+59z7zztvzm/ee5b63+LTw/TvOZ2J38JGTf/TCiWxF/KXrSc69oZMnntvU8PHRLWLuq6czcdwoJo4bxQeOamW/F40rOKWZ2fBRtRnbkUBXRDwMIOl6oB0YssnsU89v4iNXL91+/+n/bAZg79HeM2tmZsNaf2puOzA/Ld8I/FCSIiKGMtjqR+7hi78/c/v9boKuscHx/z2IM2/8N3DnUL79bukOWL7m38ycOp7PzzmU7gg2bc2+u37ztm4A5r76ZT582MxsEFVtMjsdeDx3fw3w+vwKks4GzgY44IAD9vgNJe10efsJY0cxu3Uy0yb5k1IzMxvWdllz8+tExFZJzwBTgCfzKw16bd6rhbHs/KHyGzZO4Nlx5zJBVfvTZYcz39DG5+Yc6qO7zMwKUrutbURcAlwCMHv27D3+ZHjy+DEsPKt37TYzM7P+GuzafEjr4Vx79rI9zmVmZsNb1a7xvhbYP3d/RmozMzOzwdWfmrt9HUmjgElkF4IyMzMrXdUms0uAgyXNlDQGmAd0lJzJzMxsOOpPze0AzkjLpwJ/HOrzZc3MzPqrUocZp/NxPgncSvY1AVdExKqSY5mZmQ07zWqupK8CSyOiA7gcWCipC3iabMJrZmZWCZWazAJExG+B35adw8zMbLhrVHMj4sLc8v+A04rOZWZm1h9VO8zYzMzMzMzMbJc8mTUzMzMzM7Pa8WTWzMzMzMzMaseTWTMzMzMzM6sdT2bNzMzMzMysdjyZNTMzMzMzs9rxZNbMzMzMzMxqx5NZMzMzMzMzqx1PZs3MzMzMzKx2FBFlZ9htkp4AHhukl5sKPDlIr1Uk5y5eXbM7d/Hqmn0k526NiH0HI8xI5doMOHcZ6prduYtX1+wjOXfT2lzryexgkrQ0ImaXnWOgnLt4dc3u3MWra3bntqqo6+/UuYtX1+zOXby6ZnfuxnyYsZmZmZmZmdWOJ7NmZmZmZmZWO57M7nBJ2QF2k3MXr67Znbt4dc3u3FYVdf2dOnfx6prduYtX1+zO3YDPmTUzMzMzM7Pa8Z5ZMzMzMzMzqx1PZs3MzMzMzKx2RvxkVtKJklZL6pJ0Xtl5mpG0v6TbJd0naZWkc1P7fElrJXWm28llZ21E0qOSVqSMS1PbZEm/l/RQ+vclZefMk3Rorl87JT0r6TNV7XNJV0jaIGllrq1hHyvzgzTul0uaVbHc35b0QMp2k6QXp/Y2SRtzfX9xxXI3HRuSzk/9vVrSW8tJvT1Lo+w35HI/KqkztVepz5ttBys/zm1gXJuL4do89FybK5HbtXloc5dbmyNixN6AFuDvwIHAGOBe4LCyczXJOg2YlZYnAg8ChwHzgc+Vna8f+R8FpvZq+xZwXlo+D1hQds5djJV/Aq1V7XPgOGAWsHJXfQycDPwOEHAUcFfFcs8BRqXlBbncbfn1KtjfDcdG+r96LzAWmJm2Oy1Vyt7r8e8CF1awz5ttBys/zn0b0O/Ztbm4/K7NQ5/Rtbn83K7NQ5u71No80vfMHgl0RcTDEbEZuB5oLzlTQxGxLiKWpeXngPuB6eWm2mPtwFVp+SrglBKz7MoJwN8j4rGygzQTEXcAT/dqbtbH7cDVkVkMvFjStGKS7qxR7ohYFBFb093FwIzCg+1Ck/5uph24PiI2RcQjQBfZ9qcUfWWXJOA9wHWFhuqHPraDlR/nNiCuzeVybR5Ers3Fcm0uXtm1eaRPZqcDj+fur6EGRUhSG/Ba4K7U9Mm0m/6Kqh0OlBPAIkl/k3R2atsvItal5X8C+5UTrV/msfMGpA59Ds37uE5j/8Nkn+D1mCnpHkl/knRsWaH60Ghs1Km/jwXWR8RDubbK9Xmv7eBwGOe2Qy1/b67NpXBtLo9rc7Fcm5sY6ZPZ2pE0Afgl8JmIeBa4CHg58BpgHdkhCFV0TETMAk4CzpF0XP7ByI47qOT3REkaA8wFfpGa6tLnO6lyHzcj6QJgK3BNaloHHBARrwU+C1wr6UVl5WuglmOjl/ex8x+HlevzBtvB7eo4zq3+XJuL59pcHtfmUrg2NzHSJ7Nrgf1z92ektkqSNJpskFwTEb8CiIj1EbEtIrqBSynx8Ii+RMTa9O8G4CaynOt7DitI/24oL2GfTgKWRcR6qE+fJ836uPJjX9KZwNuB09NGkHQo0FNp+W9k57ccUlrIXvoYG5XvbwBJo4B3ATf0tFWtzxttB6nxOLeGavV7c20ujWtzCVybi+fa3LeRPpldAhwsaWb6hG8e0FFypobSsfKXA/dHxPdy7fljzN8JrOz93LJJGi9pYs8y2QUEVpL19RlptTOAW8pJuEs7fRpWhz7PadbHHcAH0xXljgKeyR0KUjpJJwJfAOZGxH9z7ftKaknLBwIHAw+Xk/KF+hgbHcA8SWMlzSTLfXfR+frhLcADEbGmp6FKfd5sO0hNx7k15dpcANfmUtVym+XaXBrX5r5EBa6CVeaN7IpaD5J9onFB2Xn6yHkM2e755UBnup0MLARWpPYOYFrZWRtkP5DsanH3Aqt6+hmYAtwGPAT8AZhcdtYG2ccDTwGTcm2V7HOyor4O2EJ2/sFZzfqY7ApyP0rjfgUwu2K5u8jOp+gZ6xendd+dxlAnsAx4R8VyNx0bwAWpv1cDJ1VtrKT2K4GP91q3Sn3ebDtY+XHu24B/167NQ5/dtbmYrK7N5ed2bR7a3KXWZqUXNTMzMzMzM6uNkX6YsZmZmZmZmdWQJ7NmZmZmZmZWO57MmpmZmZmZWe14MmtmZmZmZma148msmZmZmZmZ1Y4ns2ZmZmZmg0hSm6RB+a5bSTem7xLt7/rfkPS4pOd7tY+VdIOkLkl3SWrLPXZ+al8t6a2pbYykOySNGoyfw2woeDJrZmZmZlZBkl4JtETEwwN42q+BIxu0nwX8KyIOAr4PLEjvcRgwD3glcCLwY0ktEbGZ7HtC37sHP4LZkPJk1szMzMyGDUkfkHS3pE5JP5HUIukIScsljZM0XtIqSa+SNEHSbZKWSVohqT29RpukByRdKelBSddIeoukOyU9JOnItN58SQsl/TW1f7RBnhZJ35a0JGX4WGqflvZ8dkpaKenYBj/O6cAtaf3W9B5TJe0l6c+S5vR+QkQsjoh1DV6rHbgqLd8InCBJqf36iNgUEY8AXeyYDN+cMphVkg8bMDMzM7NhQdIryPYkHh0RWyT9GDg9Iq6W1AF8Hdgb+FlErEyH0L4zIp6VNBVYnNYDOAg4DfgwsAR4P3AMMBf4InBKWu9w4ChgPHCPpN/0inUW8ExEHCFpLHCnpEXAu4BbI+IbklqAfRr8SEcD1wFExGOSFgAXAXcD90XEogF0z3Tg8fRaWyU9A0xJ7Ytz661JbQArgSMG8B5mhfJk1szMzMyGixOA1wFLsp2O7A1sSI99lWxS+j/g06lNwDclHQd0k03i9kuPPRIRKwAkrQJui4iQtAJoy73nLRGxEdgo6XayvZqducfnAIdLOjXdnwQcnLJcIWk0cHNE5J/TYxrwRM+diLhM0mnAx4HX9LtXdlNEbJO0WdLEiHhuqN/PbKA8mTUzMzOz4ULAVRFxfoPHpgATgNHAOOA/ZIfQ7gu8Lu3JfTQ9BrAp99zu3P1udv4bOnq9T+/7Aj4VEbe+IGw2iX4bcKWk70XE1b1W2ZjLg6R9gBnp7gRgIBPMtcD+wJq0R3oS8FSuvceM1NZjLNkHAGaV43NmzczMzGy4uA04VdJLASRNltSaHvsJ8GXgGtLFj8gmdBvSRPZ4oLX3C/ZDezoXdwrwJrI9rnm3Ap9Ie2CRdEg6b7cVWB8RlwKXAbMavPb9ZIc791iQ8l8IXDrAnB3AGWn5VOCPERGpfV662vFMsr3Gd6esU4AnI2LLAN/LrBDeM2tmZmZmw0JE3CfpS8AiSXsBW4A+2IQyAAABFElEQVRzJL0R2BIR16bzU/8i6c1kE8Nfp0OHlwIP7MbbLgduB6YCX4uIf+S/9oZsotoGLEsXXHqC7HzbNwGfl7QFeB74YIPX/k1a7w/pZziC7HzgbZLeLelDEfHT/BMkfYvs/N59JK0BLouI+cDlwEJJXcDTZFcwJiJWSfo5cB+wFTgnIrallzs+ZTCrJGUfyJiZmZmZ2UBImg88HxHfGaLX35tsonx0boJZGEm/As6LiAeLfm+z/vBhxmZmZmZmFZQuLPUVdlxduDCSxpBdmMoTWass75k1MzMzMzOz2vGeWTMzMzMzM6sdT2bNzMzMzMysdjyZNTMzMzMzs9rxZNbMzMzMzMxqx5NZMzMzMzMzq53/A6rXsggwCoN9AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 1152x432 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"def megashocksim(*, T, dg1, dg2, dt=1, alpha = 0.05, seed=4545):\n", | |
" import itertools\n", | |
" from matplotlib import pyplot as plt \n", | |
" import numpy as np\n", | |
" \n", | |
" strats = { f().__class__.__name__: type('',(object,),{ \"impl\": f(), \"lbz\": [], \"ubz\": [] })() for f in [ EmpBernConjMix, GammaPriorNSBet, InvpowPriorNSBet ] } \n", | |
" wrz = []\n", | |
" truemu = 0\n", | |
" truemuz = []\n", | |
" \n", | |
" for t in range(0, 2*T):\n", | |
" datagen = dg1 if t < T else dg2\n", | |
" \n", | |
" w, r, expOp = datagen.genobs()\n", | |
" truemu += datagen.truemu\n", | |
" \n", | |
" for _, cs in strats.items():\n", | |
" cs.impl.addobs(w, r)\n", | |
"\n", | |
" if t % dt == 0:\n", | |
" wrz.append(w*r)\n", | |
" truemuz.append(truemu/(t+1))\n", | |
" \n", | |
" for _, cs in strats.items():\n", | |
" l, u = cs.impl.getci(alpha=0.05)\n", | |
" cs.lbz.append(l)\n", | |
" cs.ubz.append(u)\n", | |
" \n", | |
" fig, ax = plt.subplots(1, 2)\n", | |
" fig.set_size_inches(16, 6)\n", | |
" ax[0].plot(list(itertools.accumulate(wrz)))\n", | |
" ax[0].set_ylabel('sum(wr)')\n", | |
" for k, cs in strats.items():\n", | |
" color = next(ax[1]._get_lines.prop_cycler)['color']\n", | |
" ax[1].plot(cs.lbz, label=k, color=color)\n", | |
" ax[1].plot(cs.ubz, color=color)\n", | |
" color = next(ax[1]._get_lines.prop_cycler)['color']\n", | |
" ax[1].plot(truemuz, linestyle='dashed')\n", | |
" ax[1].set_xlabel(f'examples (x {dt})')\n", | |
" ax[1].set_ylabel('raw bounds')\n", | |
" ax[1].legend()\n", | |
" \n", | |
" pstr = ','.join([f'{v:.3g}' for v in datagen.probs])\n", | |
" fig.suptitle(f'expwsq = {datagen.expwsq} wmax={datagen.wmax}')\n", | |
" \n", | |
" return None\n", | |
"\n", | |
"def flass():\n", | |
" dg1 = DataGen(wmax=10, expwsq=2, truemu=1/8, seed=4545)\n", | |
" dg2 = DataGen(wmax=10, expwsq=2, truemu=7/8, seed=4545)\n", | |
" megashocksim(T=10000, dt=100, dg1=dg1, dg2=dg2)\n", | |
" dg1 = DataGen(wmax=10, expwsq=10, truemu=1/8, seed=4545)\n", | |
" dg2 = DataGen(wmax=10, expwsq=10, truemu=7/8, seed=4545)\n", | |
" megashocksim(T=10000, dt=100, dg1=dg1, dg2=dg2)\n", | |
" dg1 = DataGen(wmax=20, expwsq=10, truemu=1/8, seed=4545)\n", | |
" dg2 = DataGen(wmax=20, expwsq=10, truemu=7/8, seed=4545)\n", | |
" megashocksim(T=10000, dt=100, dg1=dg1, dg2=dg2)\n", | |
"\n", | |
"flass()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "7b1b8ec8", | |
"metadata": {}, | |
"source": [ | |
"# Pareto Simulation\n", | |
"Pareto distributed importance weights with mean 1 and infinite variance.\n", | |
"\n", | |
"NB: EmpBernConjMix doesn't have an asymptotic guarantee here since the variance is not finite." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"id": "c93716ca", | |
"metadata": { | |
"code_folding": [ | |
0, | |
1, | |
19, | |
60, | |
65, | |
71 | |
] | |
}, | |
"outputs": [], | |
"source": [ | |
"class ParetoDataGen(object):\n", | |
" def __init__(self, *, q, vpi, seed):\n", | |
" import numpy as np\n", | |
"\n", | |
" assert 1 < q\n", | |
" \n", | |
" dist, vmu, aone, atwo, expOp = self._getparams(q, vpi)\n", | |
" self.dist = dist\n", | |
" self.vmu = vmu\n", | |
" self.aone = aone\n", | |
" self.atwo = atwo\n", | |
" self._expOp = expOp\n", | |
" self._expOpMemo = {}\n", | |
" \n", | |
" self.q = q\n", | |
" self.vpi = vpi\n", | |
" self.tgen = np.random.default_rng(seed)\n", | |
" self.seed = seed\n", | |
"\n", | |
" def _getparams(self, q, vpi):\n", | |
" from math import sqrt\n", | |
" import numpy as np\n", | |
" import scipy.integrate as si\n", | |
" import scipy.optimize as so\n", | |
" from scipy.stats import pareto\n", | |
" \n", | |
" # w under mu is Pareto distributed with shape parameter alpha\n", | |
" # we need to choose the scale so that E[w]=1\n", | |
" \n", | |
" dist = pareto(b=q, scale=(q-1)/q)\n", | |
" \n", | |
" # r = a1 + a2 w/(w+1)\n", | |
" # vmu = a1 + a2 E_mu[w/(w+1)] = a1 + a2 dmu\n", | |
" # vpi = a1 + a2 E_mu[w^2/(w+1)] = a1 + a2 dpi\n", | |
" \n", | |
" dmu = si.quad(lambda w: dist.pdf(w)*w/(w+1), 0, np.inf)[0]\n", | |
" dpi = si.quad(lambda w: dist.pdf(w)*w**2/(w+1), 0, np.inf)[0]\n", | |
" \n", | |
" # minimize aone + atwo * dmu\n", | |
" # s.t.\n", | |
" # vpi == aone + atwo * dpi\n", | |
" # aone >= 0\n", | |
" # atwo >= 0\n", | |
" # aone + atwo <= 1\n", | |
" \n", | |
" c = [ 1, dmu ]\n", | |
" A_eq = [ [ 1, dpi ] ]\n", | |
" b_eq = [ vpi ]\n", | |
" A_ub = [ [ 1, 1 ] ]\n", | |
" b_ub = [ 1 ]\n", | |
" \n", | |
" res = so.linprog(np.array(c), A_eq=A_eq, b_eq=b_eq, A_ub=A_ub, b_ub=b_ub, bounds=[(0, None), (0, None)])\n", | |
" assert res.success, res\n", | |
" aone, atwo = res.x\n", | |
" vmu = res.fun\n", | |
" \n", | |
" expOp = lambda func: si.quad(lambda w: dist.pdf(w) * func(w), 0, np.inf)[0] \n", | |
" \n", | |
" return dist, vmu, aone, atwo, expOp\n", | |
" \n", | |
" def _memoexpOp(self, func):\n", | |
" if func not in self._expOpMemo:\n", | |
" self._expOpMemo[func] = self._expOp(func)\n", | |
" return self._expOpMemo[func]\n", | |
" \n", | |
" def genobs(self):\n", | |
" w = self.dist.rvs(random_state=self.tgen)\n", | |
" r = self.aone + self.atwo * w / (w + 1)\n", | |
" assert 0 <= r <= 1, r\n", | |
" return w, r, lambda func: self._memoexpOp(func)\n", | |
" \n", | |
" def __str__(self):\n", | |
" return f'vpi={self.vpi:.3g} vmu={self.vmu:.3g} q={self.q:.3g} aone={self.aone:.3g} atwo={self.atwo:.3g} seed={self.seed}'" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"id": "6eef86df", | |
"metadata": { | |
"code_folding": [ | |
0 | |
], | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA7kAAAGiCAYAAAAiKQGxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3wVVf7/8ddJIYEUWkIoofcSiBCKAhIEESsKuqK4gKgIW7+uq4j6U3BxRRdXsK+iUkREsSELigWkLEqTIgQk9ADSEwghhCTn98dMwiUkgYQkNwnv5+Mxj9yZc+bMZ27JvZ97zplrrLWIiIiIiIiIlAc+3g5AREREREREpKgoyRUREREREZFyQ0muiIiIiIiIlBtKckVERERERKTcUJIrIiIiIiIi5YaSXBERERERESk3lOSKSJlmjKlnjEk2xvh6OxYRkdLMGBNrjEnwdhwiIsVNSa6IlGnW2t3W2mBrbUZB9jPGBBhj3jXGHDfG/GaM+Vs+dYcaYzLcZDprib3k4EuIcTxvjDniLs8bY0wedXsaYzYYYxLdup8ZY+p4lE8wxmw1xpwwxmw2xgz2KOue4z5KNsZYY8yAYj6/f7gxpxtjxlyg7hhjzJkcMTYqzviKizGmjTHma2PMYWPMJf/ovTEm2hiz2hiT4v6N9iirYoyZaow56C5jLuE4U4wx4y413ks4fkFe+8YYM84Ys9cYk2SMWWSMae1RXupeD8XJGNPUGJNqjHnfY1usMSYzx3kO8Shf5O6TVbYlj7bfde+fJiVxLiJSvinJFZHL1RigKVAf6Ak8aozpm0/95W4ynbUsKoEYi8pw4FagHdAWuBl4MI+6m4DrrLVVgNrAVuANj/KT7v6VgSHAJGPMVQDW2iWe9xFwE5AMfFX0p3SOeOBR4L8XWX9WjsdyezHGVpzOAB8B911qQ8aYCsAXwPtAVWAq8IW7HeAloBLQAOgE/N4Yc++lHtdLxnDxr/07gGFAd6AasByY7lFeGl8Pxek1YGUu2/fleE1NzVH+J4+y5jl3NsZ0AxoXR8AicnlSkisiXmeMGWWMmZ1j2yRjzMvu7UXGmOeMMSvc3pcvjDHV3LIG7rf/fgU87BDgH9baY9baOOBtYGgRnMt8Y8yfcmxbZ4zp7962xpg/ePT+/MMY09gY8z/33D7KSiyM04O8NEdbhenpGAK8aK1NsNbuBV4kj3O11h6w1u7z2JQBNPEof9pau9lam2mt/QlYAlyZz3FnW2tP5lZojKlujJnjnvcK975Ymlvd/Fhrp1pr5wMnCrpvfowxVY0xc40xh4wxx9zbkR7ltd34jxpj4o0xD3iUjXEfy2nu47zRGBOTY99P3LZ3GGP+UtD4rLVbrLXvABvziL8gx4gF/ICJ1trT1tqXAQNc45bfDLxgrU2x1u4E3sFJ/nJljPnY7SVNMsYszur9NMYMBwbhJJbJxpgvjTH3GmO+9Nh3qzHmY4/1PcbtVTbGXGWMWem2uzIroSyggrz2GwJLrbXb3dEi7wOtsgqL+PVwgzFmk/t82WuM+btH2U3GmLXGGWHxP2NMW4+yPB9nY0xF4/ScHzPGbAI6XsT9kytjzEAgEfiusG3k0a4f8Arw56JsV0Qub0pyRaQ0+BC4wRgTAmCc+bW/Az7wqDMY50N1LSAdeDm3howxr7sfBHNb1rt1qrrtrPPYdR3QOrc2XVcYZ1jor8aY/5dPUj0TuMsjnlY4PUaevYzXAR2ALjg9kG8B9wB1gTae++fHGPNYPuea6FG1dUHO1TjznBOBU8DfgRfyqFcR50PzeUmWMSYIuB2nRzAvrwGpOI/FMHIkTcaY9fmc3+v5tHshN7uJ6UZjzMh86vkA7+E8fvVw7o9XPco/BBJwerxvB/5pjLnGo/wWt04VYE7WvsYYH+BLnMehDtAL+D9jzHVu+d35Pa7GmHoXOsELHSMXrYH11lrPYc/rOfd5YnLcbpNPCPNxektrAGuAGQDW2rfc2y+4vXo3Az8A3Y0xPsaY2kAF3ETROEPJg4H1xvli6784r/3qwL+B/xpjqrt1i+O1/yHQ2BjTzBjjj5Oo5toTWwSvh3eAB621ITj37ffuvlcA7+KMvqgO/AeYY5xh1xd6nJ/G6SFtjPN/ZwgejPPFTV732VyPeqHAM0BeQ7trGGMOuEn2S+75enrO/f+5zJw/1eMhYLG1dn0+942ISMFYa7Vo0aLF6wuwFBjs3r4W2OZRtggY77HeCkgDfHGGT1rArwDHquvuE+ix7VpgZx71G+H06PgAUThDekfnUTcEZwhjfXf9WeBdj3ILdPVYXw2M8lh/Eac3DZzepaU52rdAkwLetxlAC4/1pm475gL7VQNGAV3yKJ+K84H/vHaA3wM78jqG+9idyRHXP3OebwHP831gzAXqtMJJSn2Bq4D9wF0X2X40cMzjOZQBhHiUPwdMcW+PAb7NcdxT7u3OwO4cbY8G3ivkeTdx3s7P2VagYwD/D/gwx7YZWfene99+6j6/mwDbgNMXGV8V9/lW2V2fAozLUWcP0B4YiPOlzwqgBXAvMMfjObUix37LgaEFuK8K+tqvAExy90l3n9MNi/r14NbZjZPIhubY/gZOz7Pnti1Ajws9zsB2oK9H2XAgoRDPsUm4/6fc5/b7HmU13ee3D87/ycXAf3I8F0OAAJwk+wTQ2OPxiPd4bhT4/5sWLVq05LaoJ1dESosPONuDeTfn9uKC8yE4yy7AHwgr5LGS3b+hHttCyWO4q3WGKu6wzpDEDTg9GrfnUfcETm/TQHfTXbi9WB4OeNw+lct68MWcRAEkc/65Jltr871YkbX2KGfnZp7Tc22M+RdOb9Pv8mhnCDAtn2OE4wyPzfm4Fitr7SZr7T5rbYa19n84H95zfSyNMZWMMf8xxuwyxhzH+fBexR1pUBs46j7envHX8Vj/zeN2ChDo3o/1gdo5et0fByKK7EQvcAxz7kWC6nH+cwTOfU38Bee5uRVn7u5MnF7s8xhjfI0x440x29z7badblN/r9QecIdNXu7cX4SRxPdx1cO7znM+RnPf5hRTotQ88hdM7WxcIBMYC3xtjKnlWKoLXA8AA4AZglzHmB2NM1rDn+sDDOR7Lujj3x4WeS7W5xNeYcYaK98aZl30ea+1v7usq01q7A2d0ygCP8p+stSesMwx+KrDMPU+AicAz1tqkgsYlIpIfJbkiUlp8DMQaZ87jbZyf5Nb1uF0PpxfwcM5GjDFvmvOvaJq1bASw1h7D6cFr57FrO/KY25gLy7lDN3OaCdzlfkgNBBZeZLs5ncS52A8AxpianoXGmMfzOddkj6obKfy5+uEMOc1OCowxY4HrgT7W2uM5dzDG1MVJWKbl0+4hnJ6xnI+rZzsb8zm/Ny8y/gvJ77F8GGgOdLbWhuIkYLj19wHVjDvE3iP+vRdxzD3ADmttFY8lxFp7A4AxZlB+j+vFDFe+0DHsuRcJ2o3zfGhrzDlX3W7rbsdae9RaO8haW9Na2xrn88OKPI59N9APJzGqjDPaAs7ez7klellJbnf39g+cn+Tuw0nqPGXf58X02o/GuVBZgrU23Vo7BefCXNnzcovo9YC1dqW1th/O6+1znIuKgfNYPpvjsaxkrZ3JBR5n91zze43Nz+c+m+9Wi8V5DHcbY37DmcIwwBizJq9TIf/Pl56vuV7Av4wzfzvrS6Hlxpi789lfROTCvN2VrEWLFi1ZC848vm+An3NsX4TTa9QKJ+n7GPjALWtAAYcru/uNx/nwXBVnWOR+PIb15ah7PRDh3m4B/AI8nU/bAcAx91xeylF2znA8nGHaQz3WxwGT3dvNgNM4H7QDgTdz7n+R5zoCiMPp8aqN84F+RB51++Mkdj44va0fAWs8ykfj9ObVzOd4j+PMsbtQXLNw5jxWch/bBAoxXBmnVz8Q54uRce5t3zzq9nMfc4NzleC9wJA86r7gPicDcYZuf+b5XMO5yNCrbnlbnB753m7ZGM4d0pn9PMUZKr0GZyh4RXe9DdCxgOdt3GO3ctsOBALcsgIdA2dY7i7gr+7z90/uegW3vDHOfFBf9/VwGGidR1t/ANbifDESBLzu+bzFee19kGOfZji9qfHueihwFDie9Vi6x0/ESaL9gDvd9bBifO0/jfMajcB5Tfwe58unKkX5enDv/0GcHbZ7H7DLvR2Dk8x2dh/zIOBGnCHA+T7OwPMe5xqJM8+6QMOVcV6fNT2WCcBsINwt74nz5YPBSagXcna4dBWcucCB7mM2yL3/mrnlNXK0bXGuVVCxoP8HtGjRosVz8XoAWrRo0ZK1uB8gLfBIju2LcOY7rnA/9H6Z9cGWwie5ATgXczmOk5z8zaMsa/hmPXd9glvnJM4ct2cA/wu0/44bV8cc2y86yXXXn8BJKPbgXJyqMEmuwUnYjrrLC3jMDXTPtbt7+884cwdP4gy3/RB3frFH/KfdfbKWx3McbzNw30XEFQ7MdR+DFcA/KFySO8WNy3MZ6pZ1xxmanVV3JnDEjXsz8Jd82q3tPveSgV9x5kt6JrmRbvxHceaojvDYdwx5JLkebc907+NjwI+4CXIBzjurTc9lZ474L/oYwBU4c8RP4SROV3iU/Q6nJzUFJ4G9Lp92gnGGNJ/ASZQHc26S29RtIxH43GO//XjMGQZWAfNztN3NjTHJ/dutEM+Xgrz2A3EukLbfrb+Gc+e4FsnrASfJ/cp9nI7j/ExPN4/yvu62RDeWj3Hng+f3OOMkqNPc/TYBj1CIObk5Ys353P4bzpdFKTj/p172iC3cjfuEG8OPwLX5tF3g/29atGjRkttirM1t1JCISOlhjFmE86FqsrdjkeJjjBkK3G+t7ebtWERERKTs0pxcERERERERKTeU5IqIiIiIiEi5oeHKIiIiIiIiUm6oJ1dERERERETKDSW5IiIiIiIiUm4oyRUREREREZFyQ0muiIiIiIiIlBtKckVERERERKTcUJIrIiIiIiIi5YaSXBERERERESk3lOSKiIiIiIhIuaEkV0RERERERMoNJbkiIiIiIiJSbijJFRERERERkXJDSa6IiIiIiIiUG0pyRUREREREpNxQkisiIiIiIiLlhpJcERERERERKTeU5IqIiIiIiEi5oSRXREREREREyg0luSIiIiIiIlJuKMkVERERERGRckNJroiIiIiIiJQbSnJFRERERESk3FCSKyIiIiIiIuWGklwREREREREpN5TkioiIiIiISLmhJFdERERERETKDSW5IiIiIiIiUm4oyRUREREREZFyQ0muiIiIiIiIlBtKckVERERERKTc8PN2AMUhLCzMNmjQwNthiIhIObF69erD1tpwb8dRlum9WUREilJ+783lMslt0KABq1at8nYYIiJSThhjdnk7hrJO780iIlKU8ntv1nBlERERERERKTeU5IqIiIiIiEi5oSRXREREREREyo1yOSdXRERERETKhzNnzpCQkEBqaqq3QxEvCAwMJDIyEn9//4veR0muiIiIiIiUWgkJCYSEhNCgQQOMMd4OR0qQtZYjR46QkJBAw4YNL3o/DVcWEREREZFSKzU1lerVqyvBvQwZY6hevXqBe/GV5IqIiIiISKmmBPfyVZjHXkmuiIiIiIhIPnx9fYmOjs5exo8fXyTtNmjQgKioKKKjo4mKiuKLL74oknazTJs2jTZt2hAVFcUVV1zBhAkTCtXOqlWr+Mtf/gLAlClTMMbw7bffZpd//vnnGGOYPXs2APfffz+bNm269BMoJM3JFRERERERyUfFihVZu3ZtsbS9cOFCwsLC2LJlC3369KFfv34XvW9GRga+vr65ls2fP5+JEyeyYMECateuzenTp5k2bVqhYoyJiSEmJiZ7PSoqig8//JDevXsDMHPmTNq1a5ddPnny5EIdp6ioJ1dERETOYYx51xhz0BjzSx7lxhjzsjEm3hiz3hjTvqRjFBEpDRo0aMDo0aOJjo4mJiaGNWvWcN1119G4cWPefPNNABYtWsTVV1/NjTfeSPPmzRkxYgSZmZnntXX8+HGqVq2avf7+++/TqVMnoqOjefDBB8nIyAAgODiYhx9+mHbt2rF8+XKCg4N54oknaNeuHV26dOHAgQMAPPfcc0yYMIHatWsDEBAQwAMPPADA2rVr6dKlC23btuW2227j2LFjAMTGxjJq1Cg6depEs2bNWLJkSfY53HTTTdmxde/enRUrVnDmzBmSk5OJj48nOjo6uzw2NpZVq1axa9cumjZtyuHDh8nMzKR79+4sWLCgyO7/vKgnV0RERHKaArwK5PWV//VAU3fpDLzh/hURKVZjv9zIpn3Hi7TNVrVDefrm1vnWOXXq1DlJ3OjRo7nzzjsBqFevHmvXruWhhx5i6NChLFu2jNTUVNq0acOIESMAWLFiBZs2baJ+/fr07duXTz/9lNtvvx2Anj17Yq1l+/btfPTRRwDExcUxa9Ysli1bhr+/P3/4wx+YMWMGgwcP5uTJk3Tu3JkXX3wRgJMnT9KlSxeeffZZHn30Ud5++22efPJJfvnlFzp06JDr+QwePJhXXnmFHj168NRTTzF27FgmTpwIQHp6OitWrGDevHmMHTv2nGHJWYwx9O7dm6+//pqkpCRuueUWduzYcV69+vXrM2rUKEaOHEmnTp1o1aoVffr0yfe+LgpKckVEpFzadiiZhtWD8PHRxUoKylq72BjTIJ8q/YBp1loL/GiMqWKMqWWt3V8iAYqIlLD8hivfcsstgDOENzk5mZCQEEJCQggICCAxMRGATp060ahRIwDuuusuli5dmp3kZg1X3rZtG7169SI2NpbvvvuO1atX07FjR8BJsmvUqAE484MHDBiQffwKFSpk97J26NCBb775Jt9zSUpKIjExkR49egAwZMgQ7rjjjuzy/v37Z7e1c+fOPNsZOHAgL7/8MklJSbz44ov885//zLXe/fffz8cff8ybb75ZbEO+c1KSKyIi5c6P249w73sr+WPPxvzpmqbeDqc8qgPs8VhPcLcpyRWRYnWhHldvCAgIAMDHxyf7dtZ6eno6cP4VgnO7YnDjxo2JiIhg06ZNWGsZMmQIzz333Hn1AgMDz5mH6+/vn92er69v9jFbt27N6tWrueaaawp1Pp5t5aZTp05s2LCBSpUq0axZszzrpaSkkJCQAJD9JUBx05xcEREpV35yE9w6VStyZ8d63g7nsmaMGW6MWWWMWXXo0CFvhyMi4jUrVqxgx44dZGZmMmvWLLp163ZenYMHD7Jjxw7q169Pr169mD17NgcPHgTg6NGj7Nq1q0DHHD16NI888gi//fYbAGlpaUyePJnKlStTtWrV7Pm206dPz+7VLajx48fn2YObZdSoUQwaNIhnnnkme05wcVNProiIlBsrdhzl3ikrqV0lkA8e6Ex4SMCFd5LC2AvU9ViPdLedw1r7FvAWQExMjC2Z0EREil7OObl9+/Yt0M8IdezYkT/96U/Ex8fTs2dPbrvttuyynj174uvry5kzZxg/fjwRERFEREQwbtw4+vTpQ2ZmJv7+/rz22mvUr1//oo95ww03cODAAXr37o21FmMMw4YNA2Dq1KmMGDGClJQUGjVqxHvvvXfB9nLrfb7++uvz3eeHH35g5cqVLFu2DF9fXz755BPee+897r333os+j8IwznSa8iUmJsauWrXK22GIiEgJWrHjKEPfW0HNyoF8+EAXaoQGFlnbxpjV1tqYC9csP9w5uXOttW1yKbsR+BNwA84Fp1621nbKrz29N4tIYcXFxdGyZUtvh1FoixYtYsKECcydO9fboRTaJ598wpw5c5g6dapXjp/bcyC/92b15IqISJn3yeoERn+2gcgqFYs8wb0cGWNmArFAmDEmAXga8Aew1r4JzMNJcOOBFKB4v5IXERGvmTNnDk888QTvvvuut0O5aEpyRUSkzErPyOS5+Zt5Z+kOrmxUndcGtadaUAVvh1XmWWvvukC5Bf5YQuGIiJRpsbGxxMbGejuMQrvllluyryBdVijJFRGRMunoyTT+MvNnlsYfZuhVDXjixpb4++p6iiIiIpc7JbkiIlKmWGv5cv1+xs7ZyInUdF64vS2/i6l74R1FRETksqAkV0REyoz9Sad48rNf+G7zQdpFVmb8gLa0rBXq7bBERESkFFGSKyIipV7SqTO8s3QH7yzZTqaFJ29syb1dG+Lrc/7PGYiIiMjlTZOXRESk1DqeeoZJ326l2/Pf8/J3W+neNJwFD13N/d0bKcEVEZESdeDAAe6++24aNWpEhw4duPLKK/nss8+8HRaxsbE0b96cdu3a0bVrV7Zs2ZJrvfvvv59NmzYVuO2YmLO/0rNq1arsi2ilpKQwaNAgoqKiaNOmDd26dSM5ORkAX19foqOjadeuHe3bt+d///tfvsdJTEzk9ddfL1Bs+VFProiIlDrWWmavTuCf8+I4lnKGPq0i+GvvprSuXdnboYmIyGXIWsutt97KkCFD+OCDDwDYtWsXc+bM8XJkjhkzZhATE8Nbb73FI488cl5cGRkZTJ48uUBtZmRkAHDw4EHmz5/P9ddff075pEmTiIiIYMOGDQBs2bIFf39/ACpWrMjatWsB+Prrrxk9ejQ//PBDnsfKSnL/8Ic/FCjGvKgnV0RESpWtB05w51s/8sjs9TQOD2bun7vx1uAYJbgiIuI133//PRUqVGDEiBHZ2+rXr8+f//xndu7cSffu3Wnfvv05vZaLFi2iR48e9OvXj0aNGvHYY48xY8YMOnXqRFRUFNu2bQNg6NChjBw5ki5dutCoUSMWLVrEsGHDaNmyJUOHDs0+3siRI4mJiaF169Y8/fTTucZ59dVXEx8fD0BwcDAPP/ww7dq1Y/ny5cTGxrJq1SoAZs6cmd0DO2rUqOz9c+4D8Mgjj/Dss8+ed6z9+/dTp06d7PXmzZsTEBBwXr3jx49TtWrV7PV//etfdOzYkbZt22afx2OPPca2bduIjo7mkUceyeeRuDjqyRURkVIhLT2TV77fyhuLthEc6MfzA6K4o0NdfDQsWUREssx/DH7bULRt1oyC68fnW2Xjxo20b98+17IaNWrwzTffEBgYyNatW7nrrruyk8l169YRFxdHtWrVaNSoEffffz8rVqxg0qRJvPLKK0ycOBGAY8eOsXz5cubMmcMtt9zCsmXLmDx5Mh07dmTt2rVER0fz7LPPUq1aNTIyMujVqxfr16+nbdu258Ty5ZdfEhUVBcDJkyfp3LkzL7744jl19u3bx6hRo1i9ejVVq1alT58+fP7559x666257pM1LHvhwoWEhIRkbx82bBh9+vRh9uzZ9OrViyFDhtC0aVMATp06RXR0NKmpqezfv5/vv/8egAULFrB161ZWrFiBtZZbbrmFxYsXM378eH755Zfs3t9LpZ5cERHxus2/HefW15bxyvfx3NKuNt/9rQd3dqynBFdEREqlP/7xj7Rr146OHTty5swZHnjgAaKiorjjjjvOmffasWNHatWqRUBAAI0bN6ZPnz4AREVFsXPnzux6N998M8YYoqKiiIiIICoqCh8fH1q3bp1d76OPPqJ9+/ZcccUVbNy48ZzjDBo0iOjoaJYtW8aECRMAZ17sgAEDzot95cqVxMbGEh4ejp+fH4MGDWLx4sX57vPkk08ybty4c7ZFR0ezfft2HnnkEY4ePUrHjh2Ji4sDzg5X3rx5M1999RWDBw/GWsuCBQtYsGABV1xxBe3bt2fz5s1s3bq1EI9A/tSTKyIiXpORafnP4m289M2vVK7oz9uDY7i2VYS3wxIRkdLqAj2uxaV169Z88skn2euvvfYahw8fJiYmhpdeeomIiAjWrVtHZmYmgYGB2fU8h+/6+Phkr/v4+JCenn5ePc86nvV27NjBhAkTWLlyJVWrVmXo0KGkpqZm18uak+spMDAQX1/fAp1nXvtcc801PPnkk/z444/nbA8ODqZ///70798fHx8f5s2bR8uWLc+pc+WVV3L48GEOHTqEtZbRo0fz4IMPnlPHM+EvCurJFRERr0g+nc79U1fywldb6N0ygq//72oluCIiUipdc801pKam8sYbb2RvS0lJASApKYlatWrh4+PD9OnTsy/YVJSOHz9OUFAQlStX5sCBA8yfP7/QbXXq1IkffviBw4cPk5GRwcyZM+nRo8cF93vyySd54YUXsteXLVvGsWPHAEhLS2PTpk3Ur1//vP02b95MRkYG1atX57rrruPdd9/Nvgrz3r17OXjwICEhIZw4caLQ55STenJFRKTE7U08xX1TVrL1YDLjbm3DoM71MEZDk0VEpHQyxvD555/z0EMP8cILLxAeHk5QUBDPP/887du3Z8CAAUybNo2+ffsSFBRU5Mdv164dV1xxBS1atKBu3bp07dq10G3VqlWL8ePH07NnT6y13HjjjfTr1++C+91www2Eh4dnr2/bto2RI0dirSUzM5Mbb7wxe6hz1pxccK5MPXXqVHx9fenTpw9xcXFceeWVgNMT/P7779O4cWO6du1KmzZtuP766/nXv/5V6PMDMNbaS2qgNIqJibFZk71FRKR0WbsnkfunruJ0egavD2pP96bhF97Jy4wxq621MReuKXnRe7OIFFZcXNx5Q2Dl8pLbcyC/92b15IqISInIyLS8t2wH//p6CzVCA5j5QGeaRoRceEcRERGRAlCSKyIixS7+YDKPzF7Hz7sT6d0ygvEDoggLPv+39EREREQulZJcEREpNhmZlreXbOff3/xKpQq+TBoYzS3tamv+rYiIiBQbJbkiIlIsth9K5uGPnd7b61pH8I9b21AjJPDCO4qIiIhcgmL/CSFjjK8x5mdjzFx3vaEx5idjTLwxZpYxpoK7PcBdj3fLG3i0MdrdvsUYc11xxywiIoWXmWl5Z+kOrp+0hO2HTjJpYDRv3tNBCa6IiIiUiJL4ndy/AnEe688DL1lrmwDHgPvc7fcBx9ztL7n1MMa0AgYCrYG+wOvGmIL9qrGIiJSI3UdSGPj2j/xj7ia6NgljwUNX0y+6joYni4iISIkp1iTXGBMJ3AhMdtcNcA0w260yFbjVvd3PXcct7+XW7wd8aK09ba3dAcQDnYozbhERKZjMTMv05TvpO2kxcfuO88KAtrwzJIaIUPXeiohI2RccHOztELKNGYeXHNAAACAASURBVDOGOnXqEB0dTZs2bZgzZ06u9d58802mTZtW4LYrVarEwYMHs7d5nvuzzz5L69atadu2LdHR0fz0008AxMbG0rx5c6Kjo2nZsiVvvfXWBY81ceJEUlJSChTfxSruObkTgUeBrN+IqA4kWmvT3fUEoI57uw6wB8Bam26MSXLr1wF+9GjTc59sxpjhwHCAevXqFe1ZiIhInn5LSuXhj9eyLP4I3ZuG8fyAttSuUtHbYYmIiJRbDz30EH//+9+Ji4uje/fuHDx4EB+fs/2X6enpjBgxokBtpqc7KVpYWBgvvvgizz///Dnly5cvZ+7cuaxZs4aAgAAOHz5MWlpadvmMGTOIiYnh6NGjNG7cmKFDh1KhQoU8jzdx4kTuueceKlWqVKA4L0ax9eQaY24CDlprVxfXMTxZa9+y1sZYa2PCw8NL4pAiIpe9JVsPccPLS/h5dyL/vC2KacM6KcEVEZFya9GiRcTGxnL77bfTokULBg0ahLWWr776ijvuuOOcejfddBPg9IQ+9NBDtG7dml69enHo0CEA1q5dS5cuXWjbti233XYbx44d4+DBg3To0AGAdevWYYxh9+7dADRu3Pi8ns+WLVvi5+fH4cOHiY2N5f/+7/+IiYlh0qRJjBkzhgkTJuR5LOC8fQCGDRvGrFmzOHr06DnH2r9/P2FhYQQEOD8BGBYWRu3atc+7j5KTkwkKCsLX15lhumDBAq688krat2/PHXfcQXJyMi+//DL79u2jZ8+e9OzZ8xIekdwVZ09uV+AWY8wNQCAQCkwCqhhj/Nze3Ehgr1t/L1AXSDDG+AGVgSMe27N47iMiIl6QkWl55futTPpuK01rBPP6oA40qVF6hnKJiEj59PyK59l8dHORttmiWgtGdRp10fV//vlnNm7cSO3atenatSvLli2jd+/eDB8+nJMnTxIUFMSsWbMYOHAgACdPniQmJoaXXnqJZ555hrFjx/Lqq68yePBgXnnlFXr06MFTTz3F2LFjmThxIqmpqRw/fpwlS5YQExPDkiVL6NatGzVq1Div1/Onn37Cx8eHrE6+tLQ0Vq1aBThDj7Pkdazc9gkODmbYsGFMmjSJsWPHZrfRp08fnnnmGZo1a0bv3r2588476dGjR3b5oEGDCAgIYOvWrUycOBFfX18OHz7MuHHj+PbbbwkKCuL555/n3//+N0899RT//ve/WbhwIWFhYQV4tC5OsfXkWmtHW2sjrbUNcC4c9b21dhCwELjdrTYE+MK9Pcddxy3/3lpr3e0D3asvNwSaAiuKK24REcnfsZNpDH1vBRO/3cpt0XX4/I9dleCKiMhlo1OnTkRGRuLj40N0dDQ7d+7Ez8+Pvn378uWXX5Kens5///tf+vXrB4CPjw933nknAPfccw9Lly4lKSmJxMTE7CRxyJAhLF68GICrrrqKZcuWsXjxYh5//HEWL17MkiVL6N69e3YML730EtHR0fz9739n1qxZ2Rd4zDqOp/yOldc+f/nLX5g6dSonTpzI3hYcHMzq1at56623CA8P584772TKlCnZ5TNmzGD9+vXs3r2bCRMmsGvXLn788Uc2bdpE165diY6OZurUqezatatQ93tBeON3ckcBHxpjxgE/A++4298Bphtj4oGjOIkx1tqNxpiPgE1AOvBHa21GyYctIiJx+48zfPoqDiSd5p+3RXFXp7q6crKIiJSYgvS4Fpes4boAvr6+2XNZBw4cyKuvvkq1atWIiYkhJCQk1/0v9L559dVXs2TJEnbt2kW/fv14/vnnMcZw4403ZtfJmpObU1BQUIHPJ7d9qlSpwt13381rr712znZfX19iY2OJjY0lKiqKqVOnMnTo0HPqhIeH0759e3766ScqVqzItddey8yZMwsc16UoiZ8Qwlq7yFp7k3t7u7W2k7W2ibX2DmvtaXd7qrvexC3f7rH/s9baxtba5tba+SURs4iInGvehv30f/1/nD6TyYcPduHuzvWU4IqIiLh69OjBmjVrePvtt7OHKgNkZmYye7bz4zIffPAB3bp1o3LlylStWpUlS5YAMH369Oye1u7du/P+++/TtGlTfHx8qFatGvPmzaNbt26Fiiu/Y+Xnb3/7G//5z3+yk/gtW7awdevW7PK1a9dSv3798/ZLSUnh559/pnHjxnTp0oVly5YRHx8POEO3f/31VwBCQkLO6SkuSt7oyRURkTLk4PFUXlsYz9Tlu2hfrwpv3tOBGvppIBERkXP4+vpy0003MWXKFKZOnZq9PSgoiBUrVjBu3Dhq1KjBrFmzAJg6dSojRowgJSWFRo0a8d577wHQoEEDrLVcffXVAHTr1o2EhASqVq1a6NjyOlZ+wsLCuO2223jppZcA54JSf/7zn0lMTMTPz48mTZqc81NBgwYNomLFipw+fZqhQ4dmX0BrypQp3HXXXZw+fRqAcePG0axZM4YPH07fvn2pXbs2CxcuLPS55cY4017Ll5iYGJs1eVpERApnz9EU/rN4Gx+tSiA9I5NBnevz5E0tCfDz9XZoJc4Ys9paG+PtOMoyvTeLSGHFxcXRsmVLb4dRaMHBwSQnJ3s7jDItt+dAfu/N6skVEZFznE7P4N8LfmXy0h34GLi9QyQjejSmfvWCz/MRERERKWlKckVEJNuvB07w1w/XErf/OAM71uWvvZtSq7J+91ZERKSw1Itb8pTkiogImZmW6T/u4p/z4ggO8GPy4Bh6t4rwdlgiIiIiBaYkV0TkMrfz8Eke+3Q9P24/Ss/m4bxwezvCQwIuvKOIiEgJsdbqiv6XqcJcQ0pJrojIZSo9I5N3l+3gxQW/UsHPh/H9o7izo373VkRESpfAwECOHDlC9erV9R51mbHWcuTIEQIDC/arDkpyRUQuQ/uTTjHy/TWs3ZPIta0iGHdrGyL0s0AiIlIKRUZGkpCQwKFDh7wdinhBYGAgkZGRBdpHSa6IyGVmze5jPDh9NSmn03nlriu4qW0tfTMuIiKllr+/Pw0bNvR2GFKGKMkVEbmMzF6dwOOfbqBWlUBm3N+ZZhEh3g5JREREpEgpyRURuUxM/PZXJn67la5NqvPa3e2pUqmCt0MSERERKXJKckVELgNfrN3LxG+3MqB9JOMHROHv6+PtkERERESKhT7liIiUc+sTEnl09no6NajGc/2V4IqIiEj5pk86IiLl2METqQyftpqw4ADeuKc9Ffz0b19ERETKNw1XFhEpp06nZzBi+mqSTp3hk5FXUT04wNshiYiIiBQ7JbkiIuXQqp1HefyzDfx6IJnXB7WnVe1Qb4ckIiIiUiKU5IqIlCOJKWk8/9VmZq7YQ50qFXlnSAy9WkZ4OywRERGREqMkV0SknPgtKZWbX13K0ZNpDL+6EX/t1ZSgAP2bFxERkcuLPv2IiJQT4/67ieOnzvDZH66ibWQVb4cjIiIi4hW6zKaISDmwLP4wc9fv5w+xTZTgioiIyGVNSa6ISBmXlp7JU1/8Qr1qlXiwRyNvhyMiIiLiVRquLCJSxr27bAfbDp3k3aExBPr7ejscEREREa9ST66ISBm2L/EUL3+3lWtbRXBNC11FWURERERJrohIGZV6JoPHP9tARqblqZtaeTscERERkVJBw5VFRMqg3UdSGDljNRv3HeeZfq2pW62St0MSERERKRXUkysiUsYs3HyQm15Zwp6jKbwzJIbBVzbwdkhSzhhj+hpjthhj4o0xj+VSXs8Ys9AY87MxZr0x5gZvxCkiIpIb9eSKiJQRGZmWSd/+ysvfx9OyVij/uacD9aqrB1eKljHGF3gNuBZIAFYaY+ZYazd5VHsS+Mha+4YxphUwD2hQ4sGKiIjkQkmuiEgZcDj5NH/98GeWxR/h9g6R/KNfGypW0JWUpVh0AuKttdsBjDEfAv0AzyTXAqHu7crAvhKNUEREJB9KckVESrmVO4/ypw/WkJhyhhcGtOV3Het6OyQp3+oAezzWE4DOOeqMARYYY/4MBAG9c2vIGDMcGA5Qr169Ig9UREQkN5qTKyJSSllrmbZ8JwPf+pGK/r589oeuSnCltLgLmGKtjQRuAKYbY877TGGtfctaG2OtjQkPDy/xIEVE5PKknlwRkVLoTEYmY+ZsZMZPu+ndsgb/vjOa0EB/b4cll4e9gOe3KZHuNk/3AX0BrLXLjTGBQBhwsEQiFBERyYd6ckVESpljJ9P4/Ts/MeOn3YyMbcxbv49RgislaSXQ1BjT0BhTARgIzMlRZzfQC8AY0xIIBA6VaJQiIiJ5UE+uiEgpsnDzQZ6a8wsHkk7z79+1o3/7SG+HJJcZa226MeZPwNeAL/CutXajMeYZYJW1dg7wMPC2MeYhnItQDbXWWu9FLSIicpaSXBGRUmDn4ZM8M3cT328+SKPwIGYO70KH+lW9HZZcpqy183B+Fshz21MetzcBXUs6LhERkYuhJFdExIvS0jN59futvPnDdvx9DY/f0IKhVzWkgp9mk4iIiIgUhpJcEREv2fLbCR6atZZN+49za3RtHr+hJTVCA70dloiIiEiZpiRXRKSEZWRaJi/ZzosLfiW0oh9v/b4DfVrX9HZYIiIiIuWCklwRkRK052gKD3+0jhU7j3Jd6wj+eVsU1YMDvB2WiIiISLmhJFdEpARYa/l0zV6enrMRgAl3tGNA+zoYY7wcmYiIiEj5oiRXRKSYnUg9w2OfbOC/G/bTqUE1XvxdO+pWq+TtsERERETKJSW5IiLF6MDxVIa+t5JfD5xgVN8WDL+6Eb4+6r0VERERKS5KckVEismvB04w9N0VJJ06w7tDO9KjWbi3QxIREREp95TkiogUgx+3H2H4tFUE+Psy68EraVOnsrdDEhEREbksKMkVESli38UdYOSMNdSrVokp93Yksqrm34qIiIiUFCW5IiJF6Ktf9vPnmT/TomYo04Z1ompQBW+HJCIiInJZUZIrIlJEvli7l799tI52kZWZMqwToYH+3g5JRERE5LKjJFdEpAh8vGoPj36yns4Nq/HOkI4EBejfq4iIiIg36FOYiMglmr06gUc/WU+3JmG89fsYKlbw9XZIIiIiIpctJbkiIpfgs58TeGT2Oro2DuPtwTEE+ivBFREREfEmH28HICJSVn2xdi8Pf7SOKxtVV4IrIiIiUkqoJ1dEpIAyMi3vLt3Bc/Pj6OTOwdUQZREREZHSQUmuiEgB7Dpykkc+Xs+KnUe5tlUEkwZGK8EVERERKUWU5IqIXIT0jExmrtzDc/Pi8DWGCXe0Y0D7OhhjvB2aiIiIiHhQkisiko+MTMucdXt55bt4th8+SbcmYbxwe1tqV6no7dBEypT4xHhu+uymC9Yz5P/FkTGGrrW7MqzNMMIrhRdVeCIiUo4oyRURycNXv+znha+3sP3QSVrUDOGNQe3p26amem9FCiHQL5BW1VvlX8leuJ2U9BRmbp7JR1s+4vZmtzOszTAigiKKJkgRESkXlOSKiOSQeiaDsV9uYuaK3TSPcJLb61rXxMdHya1IYUUGR/LC1S8USVt7Tuxh8obJfLTlI2b/OpsBzQZwX5v7lOyKiAigJFdE5BzbDyXzxw9+Jm7/cUbGNubha5vh56tfWxMpTeqG1GXsVWN5IOoBJm+YzMdbPmb2r7Pp37Q/90fdT82gmt4OUUREvEif3EREXN/FHeDmV5ayP+kU7w3tyKi+LZTgipRikSGRjLlqDHP7z6Vfk3588usn3PDpDYz7cRy/nfzN2+GJiIiXFNunN2NMoDFmhTFmnTFmozFmrLu9oTHmJ2NMvDFmljGmgrs9wF2Pd8sbeLQ12t2+xRhzXXHFLCKXr6VbDzPy/TU0Cg9m3l+607NFDW+HJCIXqU5wHZ6+8mn+2/+/3NrkVj7Z+gnXf3o9/1j+D/Yn7/d2eCIiUsKKs4viNHCNtbYdEA30NcZ0AZ4HXrLWNgGOAfe59e8DjrnbX3LrYYxpBQwEWgN9gdeNMfpRShEpMmt2H2P49FU0DAti+n2ddOVkkTKqdnBtnrryKebdNo8BTQfwafyn3PDZDYxdPpZ9yfu8HZ6IiJSQYktyrSPZXfV3FwtcA8x2t08FbnVv93PXcct7GecSpv2AD621p621O4B4oFNxxS0il5fNvx3n3vdWEh4SwPT7OlGlUgVvhyQil6hWcC2e7PIk8/vPZ0DTAXwR/wU3fnojY/43hr3Je70dnoiIFLNinWxmjPE1xqwFDgLfANuARGttulslAajj3q4D7AFwy5OA6p7bc9lHRKTQ4vYf5/fvrCDQ34f37+tMjdBAb4ckIkWoZlBNnuzyJPP6z+P2ZrczZ9scbvr0Jp7+39PsObHnwg2IiEiZVKxJrrU2w1obDUTi9L62KK5jGWOGG2NWGWNWHTp0qLgOIyLlgLWWD37aza2vLcMA79/XmbrVKnk7LBEpJjWDavJElyeY338+v2v+O+Zum8vNn93MU8ueUrIrIlIOlchlQ621icBC4EqgijEm66eLIoGscUN7gboAbnll4Ijn9lz28TzGW9baGGttTHh4eLGch4iUfcmn0/nrh2t5/LMNdGpYjXl/7U7TiBBvhyUiJSAiKILRnUczf8B8BrYYyLwd87j5s5t5cumT7D6+29vhiYhIESnOqyuHG2OquLcrAtcCcTjJ7u1utSHAF+7tOe46bvn31lrrbh/oXn25IdAUWFFccYtI+XXoxGn6vbqUuev38ch1zZl6byfCggO8HZaIlLAalWrwWKfHmN9/Pne1uIuvdn7FLZ/fwhNLn2DX8V3eDk9ERC6R34WrFFotYKp7JWQf4CNr7VxjzCbgQ2PMOOBn4B23/jvAdGNMPHAU54rKWGs3GmM+AjYB6cAfrbUZxRi3iJRDKWnp3Dd1JXsTT/H+/Z25qnGYt0MSES8LrxTOqE6juC/qPt795V0+3vIxc7fP5caGNzK87XAaVG7g7RBFRKQQjNNZWr7ExMTYVatWeTsMESkl0jMyeXD6ahZuOch/fh/Dta0ivB2SlDHGmNXW2hhvx1GWlYX35sOnDjPllynM2jKLtMw0bmh4A8PbDqdh5YbeDk1ERHLI7725RObkioh4i7WWMV9u5LvNBxl7S2sluCKSp7CKYfy949+ZP2A+g1sN5rvd33HrF7cyavEotidt93Z4IiJykZTkiki5lZ6RyYQFW3j/x9082KMRv7+ygbdDEpEyIKxiGA/HPMz8/vMZ0noIC/cs5NbPb+XRxY+yPVHJrohIaafhyiJSLsXtP86js9ezYW8St3eI5IUBbfHxMd4OS8ooDVe+dFXqtbA9Hp2ce6HJ/bWZ21ZjoF61SkTVqUxUncq0rlOZ4IDivMQIHE09ytSNU5m5eSap6alc1+A6Hmz7IE2qNinW44qISN7ye28u3ncFEZESlnomgzcWbeO1hfFUrujPq3dfwY1RtTB5fIgWkZLh52OoGlThvO15fdee11fwGZmZrNhxlC/W7gOcpLdRWBBtI6vQpk5l2kZWplWtUIKKMPGtFliNhzo8xNDWQ5m2aRofxH3A1zu/pk+DPjzY9kGaVm1aZMcSEZFLp55cESnzrLWs2nWMT9ckMHf9fk6kpnNrdG2eurk11XL5UC1SUOrJvXQxdSvaVQ81yr0wzy+hctlugBqtSK7TnY2B7fnxeBgb9h1nw95EDhw/nd1ck/Bgp7c30unxbVU7lEoViibxTUxNdJLdzR9w8sxJrq1/LSPajaBZ1WZF0r6IiFxYfu/NSnJFpMzKzLTMWbePl779lV1HUqhUwZe+bWpyZ0xdOjeq7u3wpBxRknvpYprUsKsm3JFLSV5duXlszzwDe1fDUXdubEhtaBQLjXtyKLwL6xMD2LA3iQ0JSazfm8ShE07i62OgSY1goupUIapOKFGRVWhVK5SKFXwLfU5Jp5OYtmkaM+JmZCe7D7Z9kObVmhe6TRERuThKckWk3Fmz+xjPfLmJtXsSaV07lPu6NeS61jWLdIiiSBYluZeuyN+bj+2C7Qth20LY8QOcOuZsj2jjJL2NekL9qziQ6pOd8P6yN4n1CUkcTnYSX18fQ9MawdnDnKPqVKZlrVAC/QuW+CadTmL6punMiJtB8plketXrxYh2I2hRrUXRna+IiJxDSa6IlBun0jL4f1/8wuzVCYSHBPDodc0Z0D5SF5WSYqUk99IV63tzZib8ts5JeLcvhN0/QkYa+FaAup2hcU8n6a3VDmt8OHD8NOsTEp2k1+31PXIyDXAS32YRIdm9vVF1KtOiZshFJb5Jp5OYETeD9ze9z4kzJ7im7jWMaDeCltVbFs95i4hcxpTkiki58FtSKg9MW8Uv+5IY0aMxf+rZRD23UiKU5F66En1vTkuB3f+D7Ytg2yI4sMHZXrEqNLzaSXgb94SqDQBnXv/+pNTsYc4b9jrLUTfx9XMT37aRlbN7fZvXDCHAL/fE93jacWZsmsH0uOmcSDtBbN1YRrYbSavqrYr/3EVELhNKckWkzFu3J5EHpq3i5Ol0Xr7rCnq1jPB2SHIZUZJ76bz63px8ELb/cHZ48wnnysxUbZg9n5eGVztJsMtay97EU9lDnLMS38SUMwD4+xqa1wxxf8rI6fFtXjOECn4+2W2cSDvBjLgZTN80neNpx4mNjGVE9AhaV29dgicvIlI+KckVkTLti7V7eXT2esJDApg8JIYWNUO9HZJcZpTkXrpS895sLRzeejbh3bkU0k6A8YHaV5zt5Y3sBH4VcuxqSTh2Kjvhzer1TTrlJL4VfH2cxNed3xtVpzLNIkJIy0zhg80fMG3TNJJOJ3F15NWMbDeSNmFtvHEPiIiUC0pyRaRMSkvP5Nn/bmLq8l10bFCVN+7pQFhwgLfDksuQktxLV2rfmzPcqzVnzedNWAU2A/wrQf2uZ+fz1miZ608dWWvZc9RJfNfvTczu+T2Rmg44iW/LWiG0qVOZ5rX82Z3xDV/tnkVSWhLd63RnZLuRRIVHlfRZi4iUeUpyRaTM2Zt4ij/OWMPaPYnc360ho65vgb+vz4V3FCkGSnIvXZl5b05Ngp3Lzvb0HtnqbA+OOHvV5kaxEForzyastew+msL6hLNXdP5lbxInTruJr38atequITnwW9JsMtHVu/BQzB9pXzO6uM9ORKTcUJIrImXKqp1HeWDaKs5kWP51e1uuj8r7w6RISVCSe+nK7Htz4h7nAlZZS8phZ3t4S7eXN9bp8Q0IzreZzEzLrqMp7jDnRDbsTeKXfYdIC1qCf7Ul+PidpFJ6K6JDB9C6ehS1QoOpERpIRGgANUICqVrJH5NLT7KIyOVKSa6IlBmrdx1j8Ds/EREayOQhMTQKz/+Do0hJUJJ76crFe3NmJhz45Wwv7+7lkJ4KPv5Qt9PZ+by1rwCfC//kUGamZeeRk6za/Rtzts/ml5NzyDAnsNaHzLTqZJ6OyF580iMIC6hLjZBK2Ylv1t8aHn+rVaqgn1QTkcuCklwRKRN+3n2M37+zgvCQAD4c3oWI0EBvhyQCKMktCuXyvflMKuz58ex83v3rAQuBlaFB97Pzeas1ynU+b04pZ1JYvHcxcYd/Je7IVnYkbePAqb1YMgEw+FLBRmDSanI6JZyUk2FOEpxWHXCSaj8fQ3hIADVCA6kREnBeQhweEkBEaCDVg5QMi0jZpiRXREq99QmJDJr8E1UrVWDWg12oVbmit0MSyaYk99JdFu/NJ4/AjqyfKloESbud7VXqnZ3L2ygWKlW76CZPZ5xmZ9JOtiZuZVviNuIT49mWuI2EEwlYnM9wfsafsIBIKvtFUtHWgTNOEpx0IpSDx9M45v7skSdfH0N4cMA5vcA13AS4frVKtKgVSrWgCuftJyJSWuT33uxX0sGIiOQ0d/0+Rn+6gcoV/Zk5XAmuiLcZY/oCk3C6Bydba8fnUud3wBjAAuustXeXaJClUVB1aNPfWayFo9th2/fOXN6Nn8OaqYCBWu3O9vLW7Qz+eY9aCfANoHm15jSv1vyc7afST7EjaQfxifHZie+2xG1sObnEqeAHAWEBNGnckIahjahZsQGV/eoSaOuQfroyh06c4cDxVA6eOE3CsRR+3n2MIyfTzjlGRGgALWuF0qJmKC1rhdCqVigNw4Lw00UARaSUU0+uiHhNYkoa/++LjXy5bh/t6lbhtbuvILJqJW+HJXKey6kn1xjjC/wKXAskACuBu6y1mzzqNAU+Aq6x1h4zxtSw1h7Mr93L/r05Ix32/Xx2Pm/CCshMB7+KUP/Ks/N5a7QGn8InkSlnUtietN1Jfo/FE5/kJMC/nfwtu05Fv4o0rNyQJlWa0LhKY5pUaUKTKk2oHhDB4ZNp7Dh0krj9x53ltxPEHzzBmQzn82IFPx+aRQTTsmYoLWqdTX6rVFKvr4iULA1XFpFSxVrLN5sO8OTnv3D0ZBr/17spI3o0Vu+AlFqXWZJ7JTDGWnuduz4awFr7nEedF4BfrbWTL7ZdvTfncDoZdi07O5/30GZne2BlqBQGgaEQEOr+rZxj3eNvzm1+gbnO/01OS2ZbktPbu/XY1uye34Onzn43Ucmv0jlJb5OqTWhWtRkhflXZfthJfDf/diI7AT6cfLbnt1blQFrUDKFlrVB3CaFBdfX6/n/27js8jupc/Pj3bF/tatV7dZFtuWCMO1UQakhIQkkIkNASElIIvwRS7k2494YkkBuSXMINKVw6CS1A6BAMBgM24IJxL7Ikq/eyWm3fOb8/RsgGXASWvJL8fp5nntmZnRm9uxaM3jnnvEcIMXqku7IQYkzQWrNiZye/f2kH6xt6mZ6Xyl2XLWR2UVqyQxNC7FEENOy13Qgs/tAx0wCUUm9idmn+T631Cx++kFLqKuAqgNLS0lEJdtxyemHaGeYC4G+GmtegcTWEeyHsh4gfOtvNddgP0f6DX9di30dCnIbX6WOuy8fc9/dnHQdFZ9FntVETD1Ad6WJXqI3qQCMrGlfwRPUTQ5dMd6YPJb4VUyo4a0EFU9IXE4442NayJ+nd2tLP6zs7iRtmSQkhfAAAIABJREFUA4rTZmF6fupQ8jsj30dJphu33YprcLFK8SshxCiQJFcIcVhsaurjP57azNrdPRSlu7np3Dmcd0wxDps85RdiHLIBFUAVUAysUErN0Vr37n2Q1vqvwF/BbMk93EGOK75COPrL5rI/RgIi/XuS3g+s+/a9P9IP3bUf3Meef4o0YN7gMsTuoTutgOrUTHa6Uqi2wk5/E093bmQgERk6LC8lz2ztTZ/GKQunclX6VIo882nsjrO1pZ9tLX62tvpZtrWdR9Y07vMjOawWnHbLXomv+do5uO22W8z9Nituh3Xo2EnZHk6syCFDimN9gNZa5lMWAklyhRCHwbr6Hi698x3cDiu/+PxsvrigRJJbIcauJqBkr+3iwX17awTe1lrHgFql1A7MpHf14QnxCGWxgjvdXD4pw4Bo4MCJcqCDTH8Ti/zNLOqqhv4W0Ak00Gq1stNhN5PfqKJ6oJu/Na0kOpg4W1CUpORSkT6NqUUz+ersCqamTcWt8tjeFqStL0w4liAcNwjHEoRiCSIx8/X72+HB7b5glLaYQTieIBRNDJ0XjZtTKlkUzC/L4JQZeZwyI5dped4jOsH7/Us7+NOru5hd5GN+WQbzyzI4pjSDXJmOTxyBZEyuEGJUrd3dzaV3rSbL6+DBry+hMF0qJ4vxZzyOyVVKHQes11oPKKUuAY4BbtVa7z7IeTbMwlOfwkxuVwMXaa0373XMmZjFqC5VSmUD7wJHa6279ndduTePY0YCAu1ml2p/04fWzcT9jdQH26m2KaodDqoddnba7dTbbRiDSacdxWRbKnn2VKyATWusgFWDVRtY0Xtea20uRsLcbxjmfiMxuDYosOcSdZ7NXZ2zWN8SBqAo3c2nKnM5ZUYuSyZn4bJbk/edHWbLt7dz+d2rWTQpE8PQbGjqG3oYUJLpZn5pBufPL+G4qVlH9IMAMbHImFwhRFKsruvmsrveIdfn4sGvLyE/TZ4mC3EY/QmYq5SaC/wA+D/gPuCkA52ktY4rpb4DvIg53vYurfVmpdTPgTVa66cG3ztdKbUFSADXHyjBFeOcxQq+AnNh/kfetgGTDYPJwU5O3yv5DffVU9tbQ/VAEzuj3ewIddBh6cQAEkp9YImjMJQiAcQV5jFAHEgoMCyYv41DmikK/YkvqRh/WvApNqWezcMtqTy6ppH7Vu3Gbbdy3NTsoaQ3bwK3Zjb3hvj+w+uZkZ/KfVcswmW3Eokn2NzsZ93uHtbV9/D6zk7+ub6ZeaXpXPOpCqqm5UiyKyY0ackVQow4rTVPrm/m357YSH6ai4e+vkS6S4lxbZy25K7TWh+jlLoBaNJa3/n+vmTEI/dmgdZmq7DFus8K0Ac+VZPQCRI6QSwR443GFTz43l9Z59+FU2vODAzwZZXGtMoLWZt2Os81Onh5aztNvSEAZhf5OGV6LlUzcpma6yXVaZsQSV4sYXDhX99iW4ufp757PFNyvPs8LhJP8OiaRv706i6aekMcVZzGd0+p4NTK3AnxPYgjk0whJIQ4bNr7w/z7E5t4aUsb80rT+ctX5pObKgmuGN/GaZL7GvACcDlwItAOvKe1npOMeOTeLEbDjp4dPLT5fp6pfZaQEWNOOMKX+gOcmXU0jrlfpjr7UyyrCfHKtjbW7u5hsPAzbruVPJ+TXJ+LPJ+LfJ+TPJ/L3E41X+f5XLgdY7vL803Pb+Uvr9Vw64VH87mjiw56fDRu8MS7jfxx+S7qu4NUFvg4rTKXWUVpzClKoyDNJUmvGDckyRVCjLr3W2//8+nNBKMJrjt9GlceP1mmhxATwjhNcvOBi4DVWuvXlVKlQJXW+r5kxCP3ZjGa+qP9PLXrKR7a8gB1gUbSDTjX38cXg3GKpp0Ncy+kJ+9YVtX10tQTos0fpq0/Yq4Hl3DM+Mh1U102sjwOUl12vE4bqS4bqS774NpcvM4928UZbkoyU3DaRj85fnlrG1feu4aLFpfyqy98vGdX8YTBk+ubuevNWra2+IeS/yyPg1lFaUzO9uB2mFWtXXYLTpuFtBQ7c4vTmZTtkURYjAmS5AohRtXbNV3c9Pw21jf0cnRJOrdccBRTc1OTHZYQI2Y8JrljjdybxeGgtebt1rd5aNtDLK9/BY3mpHCML/X2cKwtA8uc8yGrwqxQ7UofWmtXGn7tpr0/Spt/MPntD9PWF6YnGKM/HKM/HCcQidMfjuMPxwhE4uzrz2iLguKMFCZlez6yFKa7R+Thb1NviLP/8DqFaW4e/9axh1RkKxRNsKXFz+bmPjY29rGp2U9jd5BwPEEs8dEPmOlxcExpBgvKM5hdmEamx0GGx05GiuOIKvYlkk8KTwkhRkV1e4Cbn9/Ksq3t5Pmc/Pq8OZw/v0Rab4VIIqVUP3tPhPohWmvfYQxHiMNKKcWSgiUsKVhC60Arj2x/hMd2PsarLjulOLhgy31MjUTwGQZpCQOfYZBqGNiANGUhzZVGhSsdXGl7JcJeSHWA1Qm2PWttdRLFRsiwETZsDBg2mhJpbI3ksKnPRW3XAGvquhmIJobic9gsFKe7yfI6yPI4yfQ6yPY4yPI6yfQ4yPI6yPY6Kc1M2W/CGI0bfOfv64gnNLdffMwhJ5Zuh3VoyqEPSxiaSNyc1qkzEGHd7h7W7O5h7e4elm1t+8jxTpuFSdkeZhWmMavQx6xCH5WFPnwu+yHFKMTHJS25QoiPzTA0d71Zy3+/uB2n1cI3q6ZwxXGTxvzYJSE+qfHYkquUuhFoAe4HFHAxUKC1viEZ8ci9WSRLNBHlpd0v8dC2h1jfsX6fx3gsdnzKjg8rPsCX0PiMBL54FHc8hs2IYzMS2BJxbEYMuzanQbIxuNYaO5AdT1AYj5NpcaIyytGZ5YQ8pbTZCtht5LItks22oI/WEHQFonQPROkORj/SImy1KKbkeKgs8FFZ4GNGfiozC3zkpDr51XNbueP1Wv73onl85qjC0f769qszEGFnW4DeYJTeUIyeYJTuQJTqjgCbmvx0BiJDx+b7XFTkeZmaay6Ts71MzvGQm+qUrs/iE5PuykKIEdPYE+S6R9/jrZpuTq3M46Zz55CT6kx2WEKMqnGa5L6ntZ57sH2Hi9ybxVjQ2N9IZ6gTf9RPX6QPf9RvLpEPrfd6HU6EP/bPcWGhEDtF8TiF4QBF0TCFsThF8QS5iQReZcPtSke50tCudGJ2H2Gbl6AllT7toSaRy9pgLq92pVPttwxdN8vjoGsgyleWlHHj52eP5Fcz4tr9YTY3+9nS4mdXe4DqjgA72wKEYntatlMcVibneJie52N6vpfp+T7Ks1LI87mk67M4qEPurqyUygWOAwqBELAJc668j47QF0JMSFprHl7dwC+f3YqhNf99/lFcML9YnsAKMXYNKKUuBh7C7L78ZWAguSEJkVzFqcUUpxZ/rHO01sR1nLixn2XwvagRpSPYQVOgieZA89D6vUAT/qj/I9e1AB5ieOnEY3SQGk7gScRJjUUpiseYE4vzWRWjLCcLvJNptpWyLV5Aq7OcKz61dIS+kdGTO1it+uQZuUP7DEPT3BeirjNIbWeAms4BqtsDvL6zg8fWNX7g/DS3ncJ0N8eUprNkchaLJ2eS5XESGBwTrTXkp7lw2Cwf/tFCHLglVyl1MvBjIBN4F3P6ARcwDZgC/AP4rdb6o//lJpE8LRZiZNV1DvCTxzeyqqaLxZMyueWCuZRkpiQ7LCEOm3HaklsO3Ir5kFoDbwLXaq3rkhGP3JvFkaw/2k9zoJnmQDMdoQ4CsQCBaICB2ACB2OA6GiAQC+CP+GkZaCau97R4ZmpFWTRKeTTC5GiM6dEole480vOOgoK5kD/HXHxFH3sO4rGiZyDKttZ+GnuCtPnDtPrD7O4K8m59L4FIfJ/nKAU5XidFGW6KM1IoznCT73NhsSgUYLcqfC47Prcdh81CJGYQiScozkihIteLRWqIjGufuLuyUuo3wG1a6/p9vGcDPgNYtdaPjVSwI0FupEKMjEg8wd1v1vH7l3bgsFr4t7Mr+dKCErkpiCPOeExyxxq5NwsxfDEjRlN/E3X+Our66qjz11HbV0tdXw3dkd6h4woMmBEKUhmNMiMaY4phw+NIxePw4nR6UU4fOFPBmQYli2DG2eDJTuIn+/jiCYPNzX7eqe0mEImT6rLhc9tBQ3NfiObeEI09IZp6zdf7qgi9L6kuG3OL08lPc5HldWBRit5glL5QjGA0QSiaQGtzfHRCa/rDcWIJg5kFPuaVppPvc5HqspPhsZPjdZLtdcrfR4fZIY3JVUpZgPO11o+MRnCjQW6kQhyaUDTBg+/U85cVu2jzRzh9Zh43fn42eT5XskMTIinGY5KrlMoBvg6Us9fwJK31FcmIR+7NQoyMnnAPW7u3sq17G9u6trG1azO7+xvQHyqqbgFStCJFg8dIMC8U5LRgiMU587BXngMzPgPpJcn5EKMkYWh6glEMrUFDNGHQH47TF4oRSxg4bVbsVkVNxwBrdvewqamPzkCEroB5TnqKgzS3DY/ThstmRSkwtEYphc9lQynFxsY+Wv0fHafttluZmutlen4qlQU+Fk/KZFahT4Z1jaJDLjyllFoznm7uciMV4pPRWnPfqt3c9spOOgNRFk/K5JpPVXDslCz5n7Q4oo3TJHcl8DqwFhjq95is3ldybxZi9ARjQbb3bKfeX08wHiQYC35g3RPu4Z3mtxhIhEjVcHIgwGkDIZamTcWZXgYOLzg8g4sXtAGBVuhvwwi00DPQQSA2QJYzHa83H1LzwJsPLh/EQoNL0FzsKZCSBSmZ5tqbB+ml5uJMTfZXtU/v50PD/Vun3R+mMxClP2xWle7oj1DbGWRHWz/bWv10BqIAlGS6mZabitNuwWWzDo0fjiU0faEYkXgCm0WhlNm9OtvrJCfVic9toyzLQ0Wul85AlJ5glHhCk+lx4LAp/OE4VqUoynAzOdtD3NBYlTriWpJHYp7cZUqp64CH2atohda6ewTiE0KMAQlDc8OTm/jb2/UcOyWL2y+exqJJmckOSwjxyaVorX+U7CCEEKMvxZ7CvNx5zMudt99jIokIbzW/xb92/4vl9S/zVOoAbu0nJ7SRlAGN20jgTsRJMRIYQIfDSYfVRqdTE3daAR9g4NEt5AZayOuNkhqPEbbYCFmthCxWQkrh0gYZ7THS4zEyEgmyEwnKY3HKYnFKbF6cviIzEXakDCbEmZA701zyZoE3d7+fYUQYhjmYd6+Edp/JbTQIkX4zcQ/3gr8ZQj2QOZnc3Epy87ygPKAsHxkH3eYP89r2Dv61pZWWvjDhWIJowiASM1AKbBYLPrcdl91CfLB7dcLQbBxsWTY+xuQ3DpuFaNysBZztdTC7KI2jitI4qjidgnQXbf4wa+p6GIjEKUx3M6swjTyfk8k5XqwWRSSeIJ7QuO3WCZUkD7clt3Yfu7XWevLIh3To5GmxEB9POJbg/z28nuc3tXJ11RR+eMZ0abkVYi/jtCX3F8BKrfVzyY4F5N4sxFgSS8R4u/VtVjSuoDfcSygeIhgPmuvYAApFTkouOSk55KbkkuPOwevw0hXqoi3YRnuwnbZgG/3Rftw2N26bmxRbCi6bi3A8TG+kl55wN73hHgLx4NDPVUAONlJQuLXGbWgyY1Gmh/qpjESpjMbISSRQFhtYbGB1QkYZZE+D7Aow4tBdCz21ZsJpH0yU7W6zldjhAavDTE7DfRDdU1Bex4L0DbTTEe0l1e4lL2saKqvCbLm22iHiR3fX0eWvpz3cTYcRxm+1EFQWeq0WWq1Weq1WimNxJsdiuAdzKDsKl9VJReZ0co+6CCZXQWohWIfblvhBWmsCkTg72gLUdg6Qm+ok0+PAalF0BaLEDYNUlx1Da2o6AlS3B4a2G3tCbGzsY2d7/wcSZZtFkeKw4g/vKeDlsFmwWxQDUbOjj9dpY2aBjxkFqZRmppCe4iCeMIjEDfJ8TrK8TkozU8bU0DWZJ1cIsV/+cIyr7lvDWzXd/OwzM7ny+EnJDkmIMWecJrn9gAeIADHMvy+11tqXjHjk3izEkSkQDbC7fze7+3az27+bloEWQvHQ0NIebGe3f/cHxhQrwILCjqIIG+XRKOVBPzGlqHenstthpxeNA4UTcGmNyzBwGwY2bdBvtdJnsRBQoNEYQBBNdK+fkaIVpfEETm1gNQz8VitNNiuh/Tzjz7Sn4nP4aAq2Etur8vX7LBqWhEIsCYcpiGump5ZQXnYyKq0QjAQYMUjEIRogHuqhs6+enkg3ESNOMB4iaERxWRy4bG6sFis5KXnk+kpp6KmmNdhGfzyI2+YiasTpiPUTNRJk2D0Up+TTHeklqhOk2lKYlD6FnOw5NNgm0ZVIISfaiMW/kr5wF15HFg7nVLoND9uiOcQNTT7duHWQ1pibt/pzeKPLR0vEMfS5rCRIsGfO4sk5HtLddo4uySDTY8fQMBCN09wbxueyYWgIRuMkDI3XaUNr6AvFGIjG8TptlGam8Ok5BcwtST/UX60RGZP7BvAa5tieN7XW/Ycc1SiSG6kQw7O6rpvrH32Pxp4Qt1wwl8/PK0p2SEKMSeMxyR1r5N4shNifgdgA27u3s7V7K32RPgxtYGiDSCJCQ38Ddf46Gvz1WC02Sn2llKWWkeXOIpKIEIlHCCfChONhQvEQMSOGz+Ej3ZmOx+HBqqwoFG6bm9yUXLLd2fRF+qj119LQ30A0ESVuxPHavZT4Sij2FpPvySfHnUOaM40UewpeuxeXzWzBjBtxWgItRI3o0BzKwViQlc0reWbHYzSFO4c+V248QVYiQVxBDEVMKQIWCwGLIjGKPeZchsGkWJw0I0G9zU6zfU+rsk1rfIZBSSyOBtptVgaUBZ9hMDkWoywWI0dbcVrshIwoAyTwKQduZcej0onHZhFOpPBybx79CSdOFSXTMsBsdzf+uB2HiuCzBrGqCJGEDQtxXPY+LNYghmGjL5jJ5KVf5bQzP3fIn3MkktxJwAmDyxLMp8Kva63/3yFHNwrkRirEgYWiCX7z4nbuXllLcYabW86fy+LJWckOS4gxazwmuUqpE/e1X2u94nDHAnJvFkIcmrgRx6IsWJQl2aEc0PtzIm/s3MjqlrcJRPzYrHbsFgcOm5MUuwefw0eBt4AsVxZOq5MUewpum3soUU/oBK0DrXQEOyhOLaY4tZhUeyrhRBibxUaOOweXzUXbQBvNA81ku7NxWV30RnrZ1buLXd3b2NWxiUCsnzxPAUvKTqXAW0hrsJVmfwM9A63U9+zCoizkevPxubLoGmihpreGhnAnIb2nW7MVRWKvFnCb1iigMhIlRRtElaLXYqXebsNtaKIKIpYD/xt9P/dELj/rj4f8XR9y4Smtda1SKgxEB5eTgcpDjkwIcdhtbfFz9QNrqesK8tWlZfzozBl4nJ9s3IgQYky7fq/XLmARZqXlU5ITjhBCfHI2y/j4WyXVkcr0zOlMz5zO+dPOH9WfNTl9MpPTP1gi6ejcow/pmlrrofHZHrsHl9VFf6yfQDRAfX89bze+STgeYmvbOkJGHKfVQandw4nZM4nGwzhsLtLcZvIeSUSwW+xkujJJd6YTSURo7G9gUe78Q4pxOIb126KU2gV0An8H7gS+q7U2RjMwIcTIW13XzRX3rMbjsPH3ry/m2Cnja0J4IcTwaa0/u/e2UqoE+J8khSOEEGIcUErhsXvw2D1D+3wOHz6Hj0JvIUsKliQxuuEb7iORPwDHA18G5gGvKaVWaK13jVpkQogRtXxbO1f/bS2F6W7uv3IxRenuZIckhDi8GpFeWEIIIY4Aw+2ufCtwq1LKC1wO/CdQDHuV2hJCjFn/fLeJ6x59j8oCH/dcvpAsrzPZIQkhRplS6jYYGkhlAY4G1iUvIiGEEOLwGG535d9ituR6gZXADZiVloUQY1gsYXDLi9v5y4oalkzO5I6vLiDVZU92WEKIw2PvKk9x4EGt9ZvJCkYIIYQ4XIbbXXkV8N9a67bRDEYIMXIae4J898F3ebe+l4sXl/Kzz8zEZZfOF0IcKbTW9yqlHMC0wV3bkxmPEEIIcbgcMMlVSpVrreu01v/Yz/sKKNJaN45KdEKIj01rzQubWvnRYxswNPzvRfP4zFGFyQ5LCHGYKaWqgHuBOkABJUqpS5M1hZAQQghxuBxsoqnfKKUeU0p9VSk1SymVq5QqVUqdopS6EXgTKWIhxJhR2znA5fes5uq/raMsy8Oz1xwvCa4QR67fAqdrrU/SWp8InAH8PlnBbN++nc7OTgAef/xxqqqq6OvrA+Dhhx+mqqqKYDAIwAMPPEBVVRWxWAyAe+65h6qqqqFr3XHHHZx66qlD27fffjtnnXXW0Patt97KOeecM7R9yy23cN555w1t33zzzVx44YVD2zfeeCOXXHLJ0PYNN9zA5ZdfPrT9k5/8hKuuumpo+7rrruPb3/720Pa1117LtddeO7T97W9/m+uuu25o+6qrruInP/nJ0Pbll1/ODTfcMLR9ySWXcOONNw5tX3jhhdx8881D2+eddx633HLL0PY555zDrbfeOrR91llncfvttw9tn3rqqdxxxx1D21VVVdxzzz0AxGIxqqqqeOCBBwAIBoNUVVXx8MMPA9DX10dVVRWPP/44AJ2dnVRVVfH0008D0NraSlVVFS+88AIADQ0NVFVVsWzZMgBqamqoqqritddeA8x/96qqKlauXAnApk2bqKqqYvXq1QCsX7+eqqoq1q9fD8Dq1aupqqpi06ZNAKxcuZKqqiq2bzc7Irz22mtUVVVRU1MDwLJly6iqqqKhoQGAF154gaqqKlpbWwF4+umnqaqqkt+9QfK7J79770v2795oO2BLrtb6AqXUTOBi4AqgAAgBW4FngV9qrcOjHqUQ4oCC0Ti3L9/FX1fU4LBZ+OnZlVx6bDl269ieMF0IMarsWuuhLspa6x1KKRmUL4QQYsJTWuuDHzXOLFiwQK9Zs+bgBwoxzsUSBg+tbuAPL++koz/CF+YV8ZOzZpDrcyU7NCEmFKXUWq31gmTH8XEope4CDOCBwV0XA1at9RXJiEfuzUIIIUbSge7Nw62ubAXOBsr3Pkdr/buRCFAI8fEYhuaZjS389l/b2d0VZGF5Bn++5Bjml2UmOzQhxNhxNfBt4JrB7deB2/d/uBBCCDExDLe68tNAGNiI+VRYCJEkb9V08ctnt7KxqY8Z+ancfdlCqqbnYNaBE0IIk9Y6opT6X+BlzHv3dq11NMlhCSGEEKNuuElusdb6qFGNRAhxQDUdAW56fhsvbWmjIM3Fby+YyxfmFWGxSHIrhPgopdTZwJ+BXZjVlScppb6htX4+uZEJIYQQo2u4Se7zSqnTtdb/GtVohBAfEUsY/OnVXdz2yk4cVgvXnzGdK4+fJHPeCiEO5rfAyVrragCl1BTMopGS5AohhJjQhpvkvgU8oZSyADHMJ8Jaa+0btciEEGxu7uP6RzewpcXPZ44q4D8+O4ucVGeywxJCjA/97ye4g2qA/mQFI4QQQhwuw01yfwcsBTbqiViOWYgxJhRN8Mfl1fz5tV2kpzj48yXzOXN2frLDEkKMA0qpcwdfrlFKPQc8AmjgAmB10gITQgghDpPhJrkNwCZJcIUYXVprXtzcyo3PbKWpN8S584r42WdmkuFxJDs0IcT48dm9XrcBJw2+7gBkfjEhhBAT3nCT3BrgVaXU80Dk/Z0HmkJIKVUC3AfkYT5B/qvW+lalVCbwMOZ0RHXAF7XWPcosDXsr8GkgCFymtV43eK1LgZ8OXvoXWut7h/0JhRgnmntD/OixDby+s5MZ+ak8fNUSFk/OSnZYQohxRmt9ebJjEEIIIZJpuElu7eDiGFyGIw78QGu9TimVCqxVSr0EXAa8rLW+WSn1Y+DHwI+As4CKwWUx8Cdg8WBS/B/AAsxkea1S6imtdc8w4xBizOsPx7js7ndo7g3zX+fM4uLFpdislmSHJYQQQgghxLgzrCRXa/1fH/fCWusWoGXwdb9SaitQBHwOqBo87F7gVcwk93PAfYNdot9SSqUrpQoGj31Ja90NMJgonwk8+HFjEmIsShiaax9az66OAe67YhHHTc1OdkhCCCGEEEKMW8NKcpVSyzFbUT9Aa33KMM8vB+YBbwN5gwkwQCtmd2YwE+CGvU5rHNy3v/1CTAi/eXE7L29r5+efmyUJrhBCCCGEEIdouN2Vr9vrtQs4D7M78kEppbzAY8C1Wmu/OfTWpLXWSqkRKWallLoKuAqgtLR0JC4pxKh74t1G/vzaLi5eXMpXlpQlOxwhxASilNqFOQXg68DrWuvNSQ5JCCGEOCyG21157Yd2vamUeudg5yml7JgJ7t+01o8P7m5TShVorVsGuyO3D+5vAkr2Or14cF8Te7o3v7//1X3E+FfgrwALFiyQKtBizHu7posfPbaRJZMz+c9zZrH3AyAhhBgBMzFrXJwA/EYpNR3YoLX+QnLDEkIIIUbXsCrbKKUy91qylVJnAmkHOUcBdwJbP1SF+Sng0sHXlwJP7rX/q8q0BOgb7Nb8InC6UipDKZUBnD64T4hxa1NTH1+7dw0lGW7+dPF87FJkSggx8hJAbHBtYD5Ubj/gGUIIIcQEMNzuymsxx+QqzBtmHXDlQc45DvgKsFEptX5w378BNwOPKKWuBHYDXxx87znM6YOqMacQuhxAa92tlLqRPRPY//z9IlRCjEc1HQEuvesdfG47D3xtscyBK4QYLX5gI/A74A6tdVeS4xFCCCEOi+EmuT8CXhgcU/sz4BjMRHS/tNZvYCbF+/KpfRyvgW/v51p3AXcNM1Yhxqzm3hBfudPs6X//lYsoSHMnOSIhxAT2ZeB44FvA15RSK4EVWuuXkxuWEEIIMbqG20fyp4MJ7vHAKcD/Yc5jK4QYJsPQXHHPavyhGPdesYjJOd5khySEmMC01k9qra8HvoHZW+oy4JmkBiWEEEIcBsNNchOD67Mxuzw9C0gfSyE+hmV1qiuhAAAgAElEQVRb29jW2s8vvjCb2UUHHNIuhBCHTCn1mFKqGrgVSAG+CmQkNyohhBBi9A23u3KTUuovwGnAr5VSToafIAshgP97vZaidDdnzylIdihCiCPDTcC7WuvEQY8UQgghJpDhJrlfBM4EbtFa9w5O/XP96IUlxMSyvqGXd+q6+dlnZmKTSspCiMNAa71GKTVbKTUTc4779/ffl8SwhBBCiFE33Hlyg8Dje223AC2jFZQQE80dr9eQ6rLxpYUlBz9YCCFGgFLqPzDnmZ+JOSb3LOANQJJcIYQQE5o0KQkxyhq6gzy/sYWLFpXidQ6384QQQhyy8zFnM2jVWl8OzOUgc9wLIYQQE4EkuUKMsrvfrMOiFJcdV57sUIQQR5aQ1toA4kopH9AOSHcSIYQQE540KwkxivpCMR5eXc9n5xbKnLhCiMNtjVIqHbgDWAsEgFXJDUkIIYQYfdKSK8QoMQzN/76yk4Fogq+dMCnZ4QghjiBKKQXcpLXu1Vr/GXN2hEsHuy0P5/wzlVLblVLVSqkfH+C485RSWim1YIRCF0IIIQ6ZtOQKMQrqu4Jc/4/3eLu2my/MK2JWoQyDE0IcPlprrZR6DpgzuF033HOVUlbgj5iJcSOwWin1lNZ6y4eOSwW+B7w9UnELIYQQI0FacoUYQYahuW9VHWfeuoItzX5+fd4cfvfFuckOSwhxZFqnlFr4Cc5bBFRrrWu01lHgIeBz+zjuRuDXQPgQYhRCCCFGnLTkCjFC+oIxfvDoepZtbefEaTncfO4cCtNlHK4QImkWAxcrpXYDA4DCbOQ96iDnFQENe203Dl5riFLqGKBEa/2sUur6EYxZCCGEOGSS5AoxAjY393H1A+to6Qvxn5+dyaXHlmMOiRNCiKQ5YzQuqpSyAL8DLhvGsVcBVwGUlpaORjhCCCHER0iSK8QhenRNAz/95yYyUhw8dNVS5pdlJDskIYRAa737E57axAenGioe3Pe+VGA28Orgw7x84Cml1Dla6zUfiuGvwF8BFixYoD9hPEIIIcaQhJHgtcbX6Ap3kZ+ST54nj4r0ijHVwCNJrhCfUDAa54YnN/OPtY0cOyWLP3x5HtleZ7LDEkKIQ7UaqFBKTcJMbi8ELnr/Ta11H5D9/rZS6lXgug8nuEIIISaWrlAXt717G7V9taxrX/eB94q8RYTiIRSKfE8+OSk5dAQ7SLGnMDt7NqeXnY5FWXh0x6OcP+18ZmXNGtVYJckV4hPY0dbPt/+2juqOANecMpVrPlWBzSp13IQQ45/WOq6U+g7wImAF7tJab1ZK/RxYo7V+KrkRCiGORL3hXhxWByn2lGSHMmwrm1YyEB9gXu48st3ZBz8hyQxtsKFjA1u6tmCz2Eh3pjM5bTIN/Q10hDp4YucTbOvZRrrdx4/dFZwSgzZ3KputmrdtkG11YWiD1kSIxt5asqxuQvEe7t9yP3dvuhsAh8XO7PQKSXKFGEviCYMHVzfwy2e34HXauf+KxRxfMfb/pyWEEB+H1vo54LkP7bthP8dWHY6YhBATXywRI5wI47V7UUphaIO3W97mke2PsLxhOW6bmy9O/yKXVF5CTkrO0HmRRISa3hp29u6kO9TNwvyFVGZVYlHJaYBIGAluWXMLD2x9YGif1+4l35PPgrwFnFRyEovzF2O32vd7jc5QJ1u7trIgfwFu28crZKq1pinQRCgeYkr6lI98D439jTyy/RGC8SCL8hcxL3cerzW+xr2b76XOX7ff67osDn7tj3N6XzUY2yFrCgXNGzk62MXFOrHf87ocblaXHoNGs7BuNdlTuj/W5/kklNYTb4jMggUL9Jo10mtKjJyEoXnqvSZuXbaTuq4gx07J4n8uPJrcVFeyQxNCHAZKqbVa6wXJjmM8k3uzEGJ/tNa8uPtFbnr7JrrD3TgsDrLcWWg0rQOtpDvT+fzUz9My0MJLu1/Cqqwck3cM/oifzlAnXeEuDG184JrZ7myOKzyOpYVLWVyw+LC1pO7o2cGv3/k177S+wyWVl3BG+Rls6NhAU6CJhv4G1rStIRQP4XP4OLH4RGZnzybTlYk/4ufVxlep7q3GY/NQ568joRNDxxV4CnBanRR6Czmh6ATSnGm8XP8yb7W8xYnFJzI1fSpr29byz+p/UtNXQ2eoE4Bcdy7XLbyOk0tO5t7N9/JKwyvs6t1FQidwWp0MxAaGYq/MmM4l3mksCfgBTYfNzi6ng7JQgPyBXrLqVmJzpEL5cbD0O5A/2zzR3wwN70BqASgFgTYItIOvEBJRqHkNal8zj604A479jvneITrQvVmSXCEOQGvNv7a08ZsXt1PdHqCywMf3T5vGqZW5Y2pwvRBidEmSe+jk3iyE2JfWgVZ++dYvebXxVWZlzeLM8jPpDnfTFe4iGAtySukpnF5+Os5QH9icNET93LvlXjZ1biLLnUW2O5vclFympE9hWvo0fE4fq5pXsaJxBSubV+KP+gGozKzk9PLTOaP8DFxWF9W91TQGGokbcQDyU/JZXLD4E3eH1lrz2zW/5f6t9+Oxe/jBrK9x3uaXINIPhfMgowy8eUQKjmZV/y5eqHuBt5rfoivcNXSNIm8RR+ceTTAWZGr6VI7KOYpna57lvY73aB1oRbMnb7Nb7MSMGDZlI67jQ/snpU1iTvYcZvum4FZWHtr9PJu7Ng+9Pz9vPlNduXzNP0BOLMbbWYU0pKRS2rWbJe/9ExXuA6cPLFYzdiMOViekFUHWVDj9l5Az7RN9RyNNklwhPoHNzX3c+MwW3qrpZkqOh++fNp2zZudjsUhyK8SRRpLcQyf3ZiEEQNyIU9NXw+bOzWzu2swzNc+QMBJ8Z953uLjyYmyWvUZTam22AL79V9jxvJlszf0SLPoG5M00j4n0Q08dtG6Elg0QaIWSxTC5ikRWBdt6trOqZRXL65ezoXPDAWOzW+wsyFvAwvyFzM+bz+zs2TisjmF9rge2PMCvV/+a8yrO4//ln0TaE1dD2G8mhK2bwIjtOThvDsz4NHrqabSlZhNE4zQMClu3oDq2gdUBtSugaQ1MOwumn4XhzSMBbNNB3umvozfSyzRbGqdFDVb7Mum0WskNdLG0bi2W9s3m96EN4llTeHHeedS6Pcxtr+GE3e9CxzZQVnD5zFbX9834DBz7XSheBBYLxKPQuxsyyuEAXauTRZJcIT6G9v4wv31xB4+sbSDdbef7p03jy4tKpbCUEEcwSXIPndybhTiy9YR7+OP6P/Jk9ZOEE2EAPHYPi/MXc93C6yjpboTnf2gmrE6fmYDFQtBTCylZcMxXIdgFGx6BeBjSy8ztaGDPD7GnmMf2NZjbnlwoWwolS2DSCTR5Mlje8CoWZWFK+hTKfGXYLWbyVt1bzeuNr/Nm85tU91YD4LA4mJ09m8UFizmt7DQqMirQWtMV7qI73E1fpA+AtmAbP33jp5yUu4Df9yewbH4C0kvgwgfNLr2JmBlrXyPUvQ47/gX1qwANygI2F8QjsPe41rRSKFkEO16EaP8Hv8ysqeDOhKa1e85RVvO1Kx0KjzYTVXcGvPsAtO9pyaX8BMg/Co67Brx50LIeehsgexrkzhipf+7DQpJcIYYhEk9w1xt1/HF5NZF4gsuOLec7p1SQ5h57T66EEIeXJLmHTu7NQhyZYkaMR7Y/wh/X/5FgLMg5U85hUcEiZmXNosxXhiXUCy/dAO/eD2klMP3TZutsxG8mhzM/B7PPA/tgHZRgN6y7F1reA28++AogrdhsHc2aYnaz7a03x4HWvW4mk7315rlppTDj0+br1o3QudNMmBNRSM2HKafA5JPpzatk3UAD69rWsa59HZu7NmNog7yUPPxRP6F46COfc7KniL/v2oInHocl34RjrwF3+v6/mEA71L8FbZvNRN3uhvLjoXSpGZMj1WxNjQahexf0t4E2oHM77F5lfj/5R5kt23VvmEm0rwjmfhkce3W5TsRg46PQXWu2cFecOkL/ssknSa4QB/D+uNtfPbeV3V1BTq3M5d/PnsmkbE+yQxNCjBGS5B46uTcLMXE09jdy+/rb2di5kcrMSubmzuXonKOZlmmO1Wzqb6K+v57avloe3/k4NX01LClYwo8W/oipGVPNBK9xtVms6N37IdQLS78NVT8Gxyj8/dXXBLtehm3Pwq7lZiKcN9tsuXR4wWKDrmqzi/D7LcPpZVC8AIoX0plXycuRVta0rSXbnU1JaglZ7izSrC6UNogOdDD3+RvwaeCKF8zuvWKfIvEEDqtlRGrbHOjeLFMIiSPatlY/P396Cyt3dVGR6+X+KxdxQkXOwU8UQgghhBjnmgPN1Pnr6Ax10hHsMNehDqzKyuKCxSwtWEqBt2Do+K5QF3dsvIOHtz88dMza9rU8X/c8AE6rk7gRJ7FXt9tyXzl/OPkPVOUtQr19O6y73xznCWCxm5V6z/gV5I3ivKlpRWZ352O+anYLttjMRPfD4lFoXrcnAa9/CzY9RjbwJV8RXyo/AQI7oLMaBjogEdlzrisNLj+yE9yEoekLxYglDILRBG/VdNEXipGb6uSo4jSq2wPc9Pw2fnLWDM6cXXDwCx4CSXLFEal7IMrvXtrO39+uJ9Vl57/OmcVFi0uxy7hbIYQQQhwBXqx7kR+u+OEHpt5JsaWQk5LDQGyA52rNqbLLfeUsKViCx+7hwW0PEklE+PzUz3P13KvJ8+QBZoXk9e3r2dC5AafVSbmvnDJfGeW+ctIdqfDeQ/DoAuhvNrsEL/o6FC+EgrlmN93DyeY8wHsOKF1iLu/zN0PNq4OtwK+YXaPLjzPHs7rTzURdGzDtDMitHPXwx4KO/gi/em4r79b3EI0bxAzN5GwPG5v6CEb3P18uwKRsD5meA/wbjBBJcsURZ/m2dq7/x3v0BGN8ZUkZ1546jQzP8CrnCSGEEEKMd6uaV/Hj13/M3Jy5fO+Y75HjziHbnT00fY7Wml29u1jVsopVzat4cteThOIhTis7je/O+y6TUvLNgkbN70LuTPIL5nJmwVLOnHSm+QMGOqF9K9Q+Auvug7aNUHgMnH8nlB2bxE/+CfgK4eiLzOUI1zMQ5b9f3M6qXZ20+sOcMiOXFIeNcCxBTccA588vZlK2B4fNgt1qYW5xOsUZbnZ3BdnR1k+218miSZk4bKPfqCRJrjhihGMJbnpuK/eu2s2M/FTuv3IxlQW+ZIclhBBCCHHYbO7czLXLr2VS2iRuW3ojacEeaN1mTr0TaINAO0pZmVq6hKnlZ/GVmV8hlojRE+kh1+qG1XfCqj/CQLtZvXf93/ZcPKMcogNmV9699513J8w61yykJMadhKHZ2uLnl89uZc3ubqbmpnLXpQs5dmr2sM6fWehjZuHh/ZtbklxxRNje2s93/r6One0Brjx+EtefMR2XfR9jMYQQQgghJqjavlquXnY1Ga4M/lx6Lmm3LTArC+/NlWZW5H37T+Z2TiX28uPIdabCmrsh3AuTT4YT74ay48yEtmWDORVN60ZweiGn0uy6mzvTrFo8AkWGxOHR7g/z0tY26ruD9AVjxA3Nsq1t9AZjWBT8+ryjuGBBSbLDPChJcsWE99R7zfzoHxvwumzcd8UiTpwmhaWEEEIIcWRpG2jjGy99A6UUfyk/n9wnr4GiY+C4a81E1Jtrzitrd5lJbvN6cwqe3W+aY2qjAZh+NpzwAyiev+fC3lxzWpoJNDXNkSgcS3Dryzu5841aonEDh9VCWoqdSCxB1fRcTp6Rw7FTssnzuZId6rBIkismrFjC4Obnt3HnG7UsLM/gjxcdQ+44+Q9TCCGEEGKk9EX6+Oayb+KP+rlrysWUPfNDKFkEFz8KztSPnmC1Q8lCcznh+2bSG+4Dz/C6p4qxTWvNG9WdbGzqozDNjVJw67Kd1HQOcO4xRVx90hSm5HixWMZvC7wkuWJC2tHWz0//uYl3aru57Nhy/v3sSqmcLIQQQogJK2EkqO2rpTvcTXekm55wD91hc722bS27/bv506QvMvOFG6B0KVz0iNm1eDisdklwJ4jWvjC/eHYLz2xo+cD+wjQXD1y5mOMrJsa/syS5YkJp6A7y+2U7eOLdJjwOG//zpaP5/LyiZIclhBBCCDFqNndt5uerfs6Wri0feS/NmUa2K5tbSs9h8bKbofx4uOhhcHiSEKk4HLTWrNjZyfZWP/lpbk6faU71dP0/NvD0e80oBT88czoXLy6jqScEwOQcz4SqVyNJrpgQugei3LpsB39/px6LUlx1wmS+edIUmRpICCGEEBNWMBbktndv4+/b/k6mK5OfLfkZ5b5yMlwZZDgzSFdWbMFu2PkSvPBjmHwSXPggOFKSHboYBf3hGPe8WceT7zVT3R4Y2p+RYsdutdDeH+FbVVP4wrwiKvLMbuppbnuywh1VkuSKcS0ST3Dvyjpue6WaYDTBlxaWcM0pFeSnydhbIYQQQkxcy+uX86t3fkXbQBtfnHYB16RMxbf+6cFpgMypgIgF95ww5RS48O9gdycvaDGi2v1hXtzSRmGai65AlNuW76SxJ8TCskxuuWAup1Xmsbmlj4dXNwDwmaMKOW2wVXeikyRXjEtaa17Y1MrNL2xjd1eQk6fn8G+frhx6KiWEEEIIMRG1DrRy8zs383L9y1RkVPCb2d/i6LfuhLpbIK0EMidD8SKz6rE3F7x5ZvXksuPMsbVi3BiIxElxWFFKEUsYbG/tpz8cx+u0sa3Vz83Pb6NrYM8UUCWZbh79xlIWlGcO7Tt2SjbHTpkY42w/DklyxbizvqGXXz67hdV1PUzL88q0QEIIIYSYsOJGnOreajZ0bGBDxwaW1S8jYSS4ds43+GpLHfaHrwSXD87+LRxzGVjlz/vxrqk3xC+f3cJzG1vJ9jpIcdho7QsTTRgfOK4i18udly0kYRikpzgoz/JgHccVkUeS/Fcgxo3OQIQbn9nCk+ubyfY6+NUX5vDFBcXYpGqyEEIIISYAQxt0BDvY1LVpKKnd3LWZUNwsDpTpyuSEwuO5xlFEyUu/hXAvLLgCTv53SMk8yNXFWBaKJvjf5Tv5x9pG2vwRnDYLVxw3if5wjGjCID/NxezCNLI8DvzhOCWZbqblpcrsIfshSa4YF3a09XPFPatp74/wnZOn8s2qKXid8usrhBBCiPEjEA2wo2cHbcE22oPttA600h5spz3YTluwjY5gB3EdB8BmsVGZWcm5FecyJ2s2R9l8FLdXo9beDa0bzO7HZ/0a8uck+VOJgwnHEuzqCLCrYwCtNU6blfQUOw6bhb5QjNW13Ty5vpmm3hCnz8xjQXkGZ84qoDRLCoR9UpIliDHvtR0dfOdv63A5rDz6jaXMLUlPdkhCCCGEEAeltaa2r5YVjSt4vel11rWtG0piAdw2N3kpeeSl5LEgbwG5KbnkefKoTK+gMhLD2bQGdq2C5X+BULd5UnopnH8XzDoXlHRNHasCkThfu3c179b3EokbBzzWalEsKjeLRS2dknWYIpzYJMkVY9r9q+r4j6c2Mz3fx52XLqAwXSoCCiGEEGLsCsVDrG5dzYrGFbzR9AZNgSYAKjIquHTWpczPm0+Bp4BcZzqpwV6Uvwn6GqCvERp2Qs9L0LxuT2XkjEkw/SwoXQplx5qFpSS5HdMShuZ7D77L6roevrq0jCyPg7IsDxV5XmwWC+FYAn8oRiRh4HPZmJqTSlqKFAUbSZLkijEpYWhufGYL96ys41MzcvnDl+fhke7JQgghhBhFwViQ7nA3PeEeusPddIe7CSfCaK3R6KHj3t/W2tyn0cSMGGvb1rK6dTWRRAS3zc3igsVcOedKTsiZT37HTnO+2nVPm0ltoO2jAXjzIb0E5n0FypaaiW1q/uH6+GIEaK351XNbeXlbOzd+bhZfWVqe7JCOSJI1iDEnEIlzzYPv8sq2dq48fhL/9ulKqRQnhBBCiENiaINX6l+hob9hKIHdO6HtCfcQToQP6WeU+cq4YNoFnFB0AgssqThqX4W3HoDd34JEFOwpUDQfKk4zp/tJKzGT2rRi8BWBzTkyH1YkRcLQ3PDkJv72dj2XHVsuCW4SSZIrxpTm3hBX3LOane0BfvH52VyypCzZIQkhhBBinIsmovz0jZ/yfN3zADitTjJdmWS4MshwZTAlfQoZzgwy3Znm2pU59L7b5kYBSoNCowC0RqHN9eBrixEnpXk9VC+DN68yW2sBcmbAoqtg6qlmy6zdlayvQYyC1r4wK3d1sqnJz9rd3bzX2MfVVVP44RnTkx3aEU2SXDEmtPaF+b/Xa/j7O/VYleLuyxbK3LdCCCGEOGR9kT6+t/x7rG1by7XHXMuXyz+NOzKACnXDQCcEuyDYCd2dEKwe3NcJA4P73x8bO1yOVJh8EpzwAzOxTS8ZnQ8mksYfjvHEuiYefKeeba39ALjsFqblpUojzRghSa5IqjZ/mP9ZtpPH1jaS0JrPHlXA906dxqRsT7JDE0IIIcQ41xRo4lvLvkVDfwP/XXEJZz33Cwh9f98H29zgyYaULHOdPQ1SssGRAsoKymIWfFLKfM3gemi/FQr+f3v3HV91df9x/PXJ3hMIZLE3speiWDdOah211ta6tdb6a62te1Zrh7WtdY+KW0ttna0LFRwMQWTKDJCEhACZZOfe8/vjXjBgkABJ7s3N+/l45JF7v/d7v/eTL4fcvO8533NGQs4kCNckQqGivslDdb2HyHBj+44Gnvp0Ay9/nk9Ng4eR2cnceNJQDhuQzpCeSbq8Logo5ErAFJbXcs6jn7Glsp6zJ2Rz2dT+5KRpPTARERE5eCu2r+DK96+k3lPPI1knMeHdeyBjBBz+C3+Y7Qbx6f7v3SAquD9gr2/yMGtlCVV1TZw9Qb3DbaXR4+WjVVtZWVRJaU0DpdUNlFTWs6Wqjq1V9VTVNe22f2S4cerITH4ypQ8js7WsZbBSyJWA2Fxeyw8enUt5TaPWvhUREZE2NadgDtd8dA2p0Sk8ETWQfrPvhyGnwPceDfow25xzjkWbynllUQGvf7mZSn/gOmFET5Jj1Vt8MIoqanl8Th7/+aKQ7dUNACRER5AaH0lGYgxDeiYydWB30uOjSIiJoMnjiAg3TjqkFxlJuq462CnkSofbXF7LOY/Opay6gWcunqSAKyIiIm1m5uqZ/HbubxmU0p8HyuronveSr/f26FsgLCzQ5bVKfmkN//6ikFcWFbBhew2xkeFMG9GTbglRPDYnj6KKWoXcA+Cco7K2iUfnrOOJj/PweB3HDs3gzHHZTBnQjZjI8ECXKG1EIVc61JotVVz89Oe7Au5oBVwRERFpA8457v/ifh5b+hiH9xjHveuWEVe6AaY/CGN+GOjyvlWjx8uSggo+W7eNj1ZvZcGGMgAO7ZfOlUcN4MRDepEQHcEXm8p4bE4em8trGdIzKcBVB58mj5dFm8opKKthc3ktheW15JfWkl9Ww7aqemobPXj9yx1PH53Jr44frEvlQpRCrnSIJo+Xx+bkcd+7q0mIieDpiyYq4IqIiEibaPQ0cuunt/L6+tc5o+cUblr8NhE4+PGr0GdKoMv7Bq/XsbK4ks/WbefTdduZn1fKjnrfUORhvZK49oTBTB+dSXbq7gEsMyUWgMLyg1vPNxStLKrk1zOXsLSwYte29PgostPiOCQrmR6JMcRHhxMTGc6Rg7ozIis5gNVKe1PIlXa3tqSKa/65hC/zyzlxRE/u/O4IuiVosXMRERE5eFUNVfzig18wr3geV2VM5ZJ5L2GpfeDclyC9f6DL28XjdbyzvJjXl2zms3XbKatpBKBft3imj85kyoBuTO6XTlp81F6P0T0hmshwY3N5bUeVHfTqmzw88ME6HvxgLSlxkfzprFGM651Kr+QYDT/uwhRypV1tLq/luw98SmS48bcfjOHUkb0w0/TqIiIicvCKq4u54r0r2FCxgbtTx3Pq3Geh33fgrKcgNjXA1fnUNXp4ZVEhj81ZT962ajKSojlqSA+m9O/GYQPS6ZUc2+pjhYUZPZNjFHL9Zq/eym2vLWf9tmpOH5PFLacMI/VbPiSQrkMhV9rVnW+soMnr5c2fT6V3eueZzVBERET2n3OOsvoyNlVuIr8qn/yqfDZVbSK/0vfd4/WQnZhNTmLON74y4jMIs9ZPDLWqdBU/fe+n1DRV81BEDpMXvQLjLoCT/hgU69RW1Dby7NyN/OOTDWzbUc8hWck8cO5Ypo3oeVDrqWYmx1LUBYcrryqu4qviSgCcg3dWFPPW0mL6pMfx1AUT+M7gHgGuUIKJQq60mw9WlfDfZcVce8JgBVwREZEQ4ZxjW+02NlVt2hVmm9/e0bhj176GkZmQSU5iDsf3Pp4wCyN/Rz6rylYxK38WTd6v1yCNDItsMQBnJ2aTnZBNVPjXPXSfbv6UX374S+LDY5mxI5xBRXNg2j0w6XII8Iix4oo6nvh4Pc/P20R1g4epg7pz+dR+HNo/vU1Gs2WlxDIvr7QNKu083l+5hSueXUSDx7trW0xkGL86fhCXTO1HdISGJcvuFHKlXdQ1erj11eX06x7PxUf0DXQ5IiIish+8zktJTQmbKjf5Amyz3tj8qnxqm74eLhtu4WQlZJGTlMPoHqPJTcwlNymXnIRssogkqnQdlHwFW7+CpjpIyoKciXgSMymOiiE/zEN+fSn5lfm7en8/L/6cmqaaXa9hGD3je5KTmEP3uO68nfc2/eJ78cCm9fSsrYIfvAiDTgjEqQJ8wX9lURVPfpLHq4sL8To4ZWQvLp3aj+GZbTvBUWZKLMWVdXi87qB6hDuLd5YXc+XzixjaK4k/njmKyHDfz5weH01yXOB77CU4KeRKu3jow3VsKq3h+Ysn6dM1ERGRIFHXVEdZXRmldaVsr9u+6/bOr+112yneUUx+VT4N3oZdz9vZy5qbmMvEnhPJTcr1hdnEXHom9CSyphy2rvSF2fULoeQ53/3asq9fPCYZohKgqgicl3Agy/81OSoRkrN8ATg5G5c1gdL4VPIjI96n8HwAACAASURBVMnHQ76nmvwaX11zN8/liOSB3L38YxJi0+CidyBjeIeex8q6Rr7ML+eLTeV8samML/LLKa9pJCYyjB9O6s1Fh/dtt6VpeqXE4PE6Sqrq9ut63s7of8uK+NnzXzAiK5kZF07U2sDSagq50ubytlXz0IfrmD46k8MGdAt0OSIiIiGrydtEeX0522u37xZWmwfZ0rpSSmtLKasvo7qxusXjRIdHkxaTRlpMGrlJuRyRfQQ5iTm7wmxGXAbhYeFQvQ1KVvp6Zdf+y/d961dQs73ZwZKhxxAYehr0GArdh/i+J2T4hhJ7mmBHMVQUQmWB73tFAVT6vxcvwaq3kg6kA6N3Hjcu3ReC47vByrchewKc8zwktO+1mF6vY+3WHSzaWOYLtfllrCnZgXO+H2dQj0SmDe/JmNwUjhvW81tnR24LO5cR2lxeG7Ihd1lhBf/4ZAP/WVzIqGxfwE2MUcCV1lPIlTZVWt3A1S9+QXREGDeeNDTQ5YiIiHQqXuelsr5yt8D6bV8V9RUtHifcwkmLSSM1JpW0mDSyu2fvCrG7vmK/vh0XEbf79aLV233htWAZlMz03S5ZCTXbvt4nOskXYIecDN2H+oJt9yGQ2Ovbr4sNj4DkbN8Xk1rep7HOF3orC1sIw5th7Plw4u8hsn1CXlVdI++t3MKbS4qYt76UKv8atilxkYzJSeHUkZmMyU1lZE4ySR0cvrKarZU7rneHvnS7+3BVCQ9+sI75G0qJiwrnvEm5XDttCAnRiiyyf9RipM3kl9Zw/pPzKSyv5YFzx9IjKSbQJYmIiHQKjd5GHv7yYZ5a9tRuw4SbS4lO2RVKB6YMJDUmlfSY9F2BNTU6lbTYNNJj0kmMSmx5pmLnoL4Sqop9w4Y3f+X7vvN+VTGUroPqrV8/JyrRF2AHn+jvlR3iC7VJme03yVNkjG+N2w5c57a6vmlXsP1w9VYamrxkJsdw2uhMxuamMrZ3Kn3S4wK+FGKvZN/fV6G0jFBtg4ffvrmC5+ZtIjs1lptOHspZ43M0PFkOWLuFXDN7EjgFKHHOjfBvSwNeAvoAG4CznXNl5vtt8VfgJKAG+IlzbpH/OecDN/kP+1vn3Iz2qlkO3LLCCi54agENTV6eu3gS4/ukBbokERGRTmF9xXqun3M9K7avYFqfaYzuMXpXYN0ZalOiU4gI28efbfVV/pD6ZbPQumX3ELtjCzTWfPO5UYmQmOHrhR14wtdBtscQ3xDhEF3jvrbBw6yvSnhz6WZmfVVCXaOXjKRofjgpl1NG9mJMTiphQTa5U2JMJEkxERSFSMhdvrmCq19czNqSHVw2tR/XHD+YqIjWLyUl0pL27Ml9Cvg78HSzbdcB7zvn7jGz6/z3fwOcCAz0f00CHgIm+UPxrcB4wAELzew151yzWQwk0BZtKuPHT8wnKSaCF644lAE9EgNdkoiISNBzzvHiqhf58+d/JiYihvu+cx/H9j72mzvW74DSDb7rWJv3uFbtcb+l620j43zBNbEXZI313+7p+57gD7WJGRDddd676xo9fLhqK28uLeL9lVuoafDQLSGKs8blcMrIXkzokxZ0wXZPmSmxFIbAWrnPzN3Ina+vICUukmcvmsThAzWXi7SNdgu5zrnZZtZnj83Tge/4b88APsQXcqcDTzvnHDDXzFLMrJd/33edc6UAZvYuMA14ob3qlv1T2+DhFy8tJiUukpmXH0bPZA1RFhER2ZeSmhJu+eQWPtn8CVOypnDnYXfSvSwf3r3Fd81p8xDbUPXNA0TEfh1We43yLZ+z837zEBudGLK9sPtr0/Ya/vr+Gt5eXsyO+iZS4yKZPjqLU0f2YlK/9E61HE9mSmynHq7c6PFy++vLeXbuJo4a3J17zx7d7hN2SdfS0dfkZjjnivy3i4EM/+0sIL/ZfgV8Pat8S9u/wcwuBS4FyM3NbcOS5dv86Z1VbNxewwuXTFbAFRERaYV3N77L7Z/dTn1TPTdOvJ7ve+OwF86D/LkQHuW71jWhp29ZnAHH+kNrz91DbHSSwmsr1TZ4eOijdTz80ToiwoxTRvbilJGZHNo/ncjwzjksNjMlhkWbOufAxvKaBq58fhGfrN3OZVP78etpQzrVBwzSOQRs4innnDMz14bHexR4FGD8+PFtdlzZu4UbS3nykzzOm5zLof3TA12OiIhIUNvRsIPfzf8dr617jeGpQ/hd8mj6vv07KN8EKb3hhN/BmPMgJinQpYYE5xxvLy/mzjdWUlhey2mjMrnhpKEh8aF8Zkos5TWNVNc3Ed+JZh5eW7KDi2csYHN5HX88cyRnjc8JdEkSojr6f8UWM+vlnCvyD0cu8W8vBJq38mz/tkK+Ht68c/uHHVCn7ENdo4drZy4hMzmW607UUkEiIiLfZuGWhdz48Y0U7SjisrgBXLbsMyIb3oHcQ+H4u3zL8ISFB7rMkLG2ZAe3v76cOWu2MTgjkRcvnczkfqHzgfzOZYSKKmo7zVwo767Ywi9eWkx0RBjPX6JJSqV9dXTIfQ04H7jH//3VZtt/ZmYv4pt4qsIfhN8G7jazVP9+xwPXd3DN0oK/vLeG9VureeaiiVq7TEREZC8aPY08sPgBnlz2JNlEMqOomNENBTD8ezD5Ct9kUNJmdtQ38bf31/Dkx3nERoVz26nDOG9ybyI66bDkvclstlZusIdcr9fxt1lr+Mt7axiZnczD543bVb9Ie2nPJYRewNcL283MCvDNknwP8LKZXQRsBM727/4WvuWD1uJbQugCAOdcqZndCSzw73fHzkmoJDCcczz92UYenb2O74/P4YiB3QNdkoiISFBau20l18+6iq9qt3BG1Q5+XeOIG/9TmHiJ77pbaTPOOV5dvJm731pJSVU9Z4/P5tfThtAtITrQpbWLnSEx2JcRqqpr5Jcvf8m7K7Zwxths7jp9BDGRGrEg7a89Z1f+wV4eOqaFfR1w5V6O8yTwZBuWJgdoR30Tv/nXEt5cUsQxQ3pw86nDAl2SiIi0AzObhm/9+nDgcefcPXs8/kvgYqAJ2Apc6Jzb2OGFBilv9Taen/Vr7ts+nwSvl7/Vx3DU5Jth5DkQFRfo8kLOis2V3PraMhZsKGNkdjKP/GgcY3JT9/3ETiwjMZowI6hnWP6quJKfPruIjaU13HrqMH5yWB9Mk6VJB9E4U2mVVcVVXPHcQjZsq+Y304Zw2dR+Qb+GnIiI7D8zCwceAI7Dt6rBAv8a9Sua7fYFMN45V2NmVwB/AL7f8dUGma2r2PLpfdxU/AFzY6I40uK5bdJv6Db0uxAWWsNlg0FFTSP3vruKZ+duJDk2knu+dwhnj8/pEn+fRISHkZEUE7Rr5f7z83xufnUZSTGRPH/xJCaF0PXQ0jko5Mq3qqhp5P5Za5jx2QaSY6N47uLJmklZRCS0TQTWOufWA/jny5gO7Aq5zrkPmu0/FzivQysMJs7Bulkw90H+V/Qpd6an0RgTwy3DL+LMcVep56odeL2Olz/P5w9vr6K8poHzJvfml8cNIiWua62zGoxr5dY2eLjl1WX8c2EBh/VP56/njKF7YmgOGZfgppArLWr0eHl+3ib+8t5qymsbOXtcDr86YbB+UYmIhL6W1qif9C37XwT8t10rCkaNtbDkJZj7EJXbV3F3RiZv9ujGyLSh3H3kH+md1DvQFXZKzjkqa5sorqyjuLKOLRV137hdVFFHaXUDE/qkcvtpkxiW2TWXXMpMiWVJQXmgywB8nSL/WlTA059tYGNpDT8/egBXHztI699KwCjkyjd4vI7LnlnIrK9KOLRfOjedMpThmcmBLktERIKMmZ0HjAeO3MvjlwKXAuTm5nZgZe2oqhgWPA6fPwk121nQayg3DBjO1qZqfjryMi4ZeQkRYfrzqiVer6Ooso7iijq2NP++x+26Ru83npsWH0VGUgw9k6IZmZ3MYf27ccrIXl26pzwzJYa3l9Xh9bqADNF2zrFoUxnPzdvEm0uKqG/yMionhRnTRzB1kCYmlcDSb2H5hr+8t5pZX5Vw8ynDuHCKJgkQEeli9rZ2/W7M7FjgRuBI51x9Swdyzj0KPAowfvx41/aldqCiL+GzB2HZv8DbRMOgE7g/I5MZBe+TG5vLM4c/zCHdDwl0lUGppqGJf35ewGNz1lNQtvvw2qjwMDKSo+mZFMOIrGSOHZpBz+QYX6BNjqFnUgw9kqKJjtCMvHvKSomlweNlW3U9PRJjOvz173hjBf/4ZAMJ0RGcOS6bcyflqlNEgoZCruzmf8uKuX/WWr4/PkcBV0Ska1oADDSzvvjC7TnAuc13MLMxwCPANOdcSceX2EG8Hlj9P1+43fgxRMbD+AtZPfQErlv6AGsK3uPsQWdzzfhriIvUrMl7Kq1uYManG3j6sw2U1TQyrncqlx/Zn6yU2F0hNjUuUn9rHKBeyTuXEarr8JD7r4UF/OOTDZw3OZfrTxxKfLQihQQXtUjZZW1JFde8vJhROSncPn243nRERLog51yTmf0MeBvfEkJPOueWm9kdwOfOudeAPwIJwD/97xWbnHOnBazotlZfBV88B/MehrI8SM6B4+7EO+Y8nsl7nb9+fC1JUUk8cMwDTM2eGuhqg05+aQ2Pz1nPS5/nU9fo5dihGVx+ZD/G90kLdGkhJTPFF2w3l9cyKielw153WWEFN/x7KZP7pXHbqcOJCNfM4RJ8FHIFgJKqOi59ZiGxUeE8fN5YLdQtItKFOefeAt7aY9stzW4f2+FFdYTyTTDvEVj0DNRXQPZEOPZWGHIqRbVbuWnOtcwvns9ROUdx22G3kRaj0NbcssIKHpm9njeXbCY8zPju6CwuO7IfA3okBrq0kJSV4uvJLezAGZbLaxq44rmFpMZF8fdzxyrgStBSyO3iquoaeWz2eh7/OI8mj+OZiybuGv4iIiIS8pyD/Pkw9wFY+TpgMGw6HHolZI8H4M31b3LX3Ltock3cftjtnD7gdI128nPO8cna7Twyex1z1mwjITqCS47oxwVT+tIzueOvE+1KkmMjiYsKZ3MHrZXr8TqufnExWyrqeemyyXRL0IobErwUcrsor9fx1KcbuH/WGspqGjl5ZC+uOW4Q/bonBLo0ERGR9udphBWvwtwHoXAhxCTDYVfBhEsgxTfvVkV9BXfNvYv/bvgvo7uP5u7D7yYnKWcfB+4amjxe/rusmEdmr2NZYSXdE6P5zbQhnDspl+TYyECX1yWYWYeulfvX91bz0eqt3HX6CMbkpnbIa4ocKIXcLqi8poGrX1zMR6u3cviAbvxm2hAOydZseCIi0gXUlsHCp2D+Y1BZCGn94aQ/wagfQPTXH/TOLZrLjR/fSGltKVeNuYoLR1yopYGA2gYPMxfm89icPDaV1tCvezy/P+MQvjsmSzMgB0BmSiybK9o35BaU1fCPTzbwxMd5nDUum3MnhshyYBLS9Nu6i1lWWMEVzy2kuKKOu04fwbkTczXkSkREQt+2tTDvIVj8PDTWQN+pcPK9MPAECPv6usJ6Tz1/WfgXnl35LH2S+vC3k/7G8G7DA1h4cCirbuDpzzYy47MNlFY3MCY3hRtPHspxQzMCskar+GSlxLBic2W7HPuLTWU8/nEe/1tWDMD3xmRx53dH6O9G6RQUcruQ17/czK/++SWpcVG8fNmhGmoiIiKhzTnI+8i3BNCatyE8Cg45CyZfAT2/uabtV6Vfcf2c61lbvpZzBp/DL8f/ktiIrj1PRX5pDU98nMdLC/KpbfRwzJAeXHZkfyb0SVXYCQK9kmPZtqOeukZPm00aunBjGXe/tZKFG8tIjIng4sP7cv5hfchM6dr/F6RzUcjtIrZU1nHtzC8ZkZXMIz8ap8kCREQkdDXWwbKZMPch2LIM4rrBkdfB+AshMeMbu3u8HmasmMH9X9xPanQqDx37EIdnHR6AwoPHis2VPDJ7HW8sKcKA6f6ZkgdlaKbkYLIzeBZX1NGnW/xBH++9FVu48vlFpMdHceupwzhrfA4JWgNXOiG12i7iz++sxuN13Hf2aAVcEREJTTtKYMET8PkTUL0VegyH0/7u672NbHmm38Idhdz48Y0s3LKQ43ofxy2TbyElpuPWHA0Gzjm2VzdQUFbLxu3V/GtRIbNXbyU+KpwLp/ThwsP7auWFINV8rdyDDbmvLCrg2plLGJ6ZxFMXTCQtPqotShQJCIXcLmBVcRX/XJjPBVP6kpseF+hyRERE2lbxMl+v7dKXwdPgu8720J9C3yNhL0NqnXO8vv517p53NwC/nfJbTut/WsgOwa2obSS/tIaCshoKymrJL60hv6x21/2aBs+ufbslRHPtCYM5b3JvzZQc5NpqrdwnP87jjjdWcFj/dB798Xj13kqnpxbcBfzuvyuJj47gZ0cNCHQpIiIibcPrhTXv+Na3zZsNkXEw5ke+6227DfzWp5bXlXPH3Dt4d+O7jO0xlruPuJushKwOKrx9VNc3UeAPrc0DbH5pLfllNVTVNe22f0J0BNmpsfROj2fKgG7kpMaRkxZHdmos/brHa6bkTmLnWsQHulauc4773l3N32at5YThGfz1nDFtdm2vSCAp5Ia4T9Zu48NVW7n+xCGkatiJiIgEktez7332pbEGvnwR5j0M29dCYiYcexuMPR/i0vb59E8KP+HmT26mrL6M/xv7f/xk+E8IDwv+P+rrGj0Ultc264X19cAW+ANtaXXDbvvHRIaRnRpHTmos4/ukkp0au1uQTY6NDNle664kOiKc7onRB7RWrnOO215bzozPNnL2+GzuPv0QIsLD9v1EkU5AITeEeb2Ou99aSVZKLOcf1ifQ5YiISFe2+Qu4Y98htNUyx8IZT8Cw6RC+7yG1tU213LfwPl746gX6J/fngWMeYGj60Larpw1U1TWytLDCP6x49yHFWyrrd9s3KjyMrNRYslNjOSEz2Rdi03yhNjs1jm4JUQqxXURmcswBrZU7e802Zny2kQun9OXmU4aqvUhIUcgNUc45HpuznuWbK7nv+6M09ERERAIrsRcc9fM2OJBB3yMgZ9Jer7fd04rtK7huznXkVeRx3tDzuHrs1cREtDwRVUeqqGlk/oZS5q3fzry8UpZvrsDrfI+Fhxm9kmPITo1l6sDuu3pgd37PSIzR+rQC+GZYXr2lar+f98hH68hIiua6E4co4ErIUcgNQRU1jVz/7yW8tbSYo4f0YPqozn2dkYiIhIDEnnDkrzv0JT1eD08ue5IHFz9IWmwajx73KIdmHtqhNTS3fUc98/NKmef/+qq4EucgKiKMMTkp/OzogYzvnUrfbvH0So7R0FFplcyUWD5ctRXnXKvD6pKCcj5dt50bThpCVITamYQehdwQs3BjKT9/YTFbKuu47sQhXHpEP33SKyIiXU5+VT43zLmBxVsXM63PNG6afBPJ0ckdWkNJZR1z80qZn7edeetLWVOyA4DYyHDG9U7ll8cOYlK/dEZmJ2vElRywzJRYahs9lNc0tnr+lUdmrycxOoIfTMxt5+pEAkMhN4QsLajg7EfmkpUSy8wrDmN0Ttda509ERMQ5x3/W/od75t9DuIXzuyN+x8l9T+6Q4ZiF5bW7Au28vFLytlUDvpmMx/dJ5Xtjs5nYN41DspLVeyZtJsu/Vm5heW2rQu7G7dX8d2kRl07tT2KMloiS0KSQG0Ken7+JqPAwXvvZFFLiNJOyiIh0LaV1pdz+6e3Myp/FhJ4TuGvKXfRK6NUur+WcI7+0lrm7Qu12Csp8k/8kx0YyoU8a507MZVK/NIb1StLQY2k3mf61cjeX1zIia9+jFR6fk0dEWBgXTOnTzpWJBI5Cboioa/TwxpLNnDiipwKuiIh0ObMLZnPLJ7dQ2VDJr8b/ih8N+xFh1nbB0jnH+m3VuwLtvPWlFFf61iZNi49iYp80Ljq8L5P6pjOkZ6IuFZIO0yv565C7L9t31PPy5/mcPiaLjKTAT74m0l4UckPEeyu3UFXXxPfGZge6FBERkQ5T01jDvZ/fy8urX2Zg6kAeOe4RBqcNPujjer2ONSU7dgXaeXmlbNvhW8ane2I0k/qmMalfOpP7pjGgR4Jmp5WASY+PIioijKKKun3uO+OzjdQ3eblkar8OqEwkcBRyQ8QriwrplRzDof3TA12KiIhIh1i6dSk3fHwDGys3cv6w87lq7FVEh0cf0LE8XsfKokrm+SeKmp9XSllNI+Bbh/SIgd12Bds+6XEKtRI0wsKMzOQYCvfRk1vT0MTTn23guGEZDOiR0DHFiQSIQm4I2FpVz0ert3Lp1H6Ea3iUiIiEuCZvE48tfYxHvnyE7nHdefz4x5nYa+L+HcPjZdnmSuat9wXa+RtKqaprAiA3LY5jh2YwqV86k/qmkZ0aq1ArQS0zJXafw5VfXpBPeU0jlx+pXlwJfQq5IeDVxYV4vI4zxmo9XBERCU5N3iZKakoO+jildaXcOfdOlmxdwsn9TuaGSTeQFJW0z+c1NHlZUlC+a43ahRtKqW7wANCvezynjMz099Sm7brGUaSzyEyJ5eM12/b6eJPHy2Nz8hjfO5VxvdM6sDKRwFDIDQGvLCpkVHYyA3okBroUERGRFq0qW8Ux/zymTY6VGJXIH6f+kWl9p+11n7pGD4vzy3dNFLVoUxl1jV4ABmck8r2x2Uzql8bEvmn0SNQEPNK5ZabEsqWqjkaPl8gWZvJ+c2kRheW13Hba8ABUJ9LxFHI7uZVFlawoquR2/dISEZEglhmfyS2H3nLQxwkjjMOzDicjPmO37TUNTSzaWL5roqjF+eU0eLyYwdCeSfxgYi6T+qYzsW8aaa1YS1SkM8lMjsE5KK6oIyctbrfHPF7HIx+tp3/3eI4Z0iNAFYp0LIXcTu6VRQVEhhunjsoMdCkiIiJ7lRqTylmDzmqz41XVNfL5xrJdPbVLCypo8jrCw4wRmUn8ZEofJvVNY3yfNJJjI9vsdUWCUfO1cpuHXOccN/1nGSuKKvnrOaO1tJV0GQq5ndjSggpmLizgqME99Km0iIgEtcLyWm76z9KDPo7H61i+uZJlhRV4HUSGGyOzU7h0aj8m9UtnXO9UEqL15410LTtD7p7LCP3h7VW8MH8TVx7Vn+mjNXeLdB16F+iEvF7H4x+v549vr6JbQjT/d+ygQJckIiLyrSprG/nv0uKDPo4Z9O+ewM+OHsikvmmMzU0lNiq8DSoU6bwyU3zXlTdfRujhj9bx0IfrOG9yLr86/uDXjhbpTBRyO5mSqjqueflL5qzZxgnDM/j9GSNJiVMvroiIBLehvZL4/ObjAl2GSEiKi4ogNS5y1zJCL8zfxD3//YrTRmVyx2kjtASWdDkKuZ3Im0uKuOk/S6lt9HDX6SM4d2KufmmJiIiIyK61ct9Yspkb/r2Uo4f04N6zR+k6XOmSFHI7gbLqBm5+dRlvLCliVHYy9549SssFiYiIiMguvZJjWbChlI/XbmNC7zQeOHdsi8sJiXQFCrlBbvbqrfzy5S+pqG3gV8cP4vIj+xOhX1giIiIi0kxWSgzv1TYyIiuJx38yXteqS5emkBukvF7HQx+t40/vrGJgjwRmXDiB4ZnJgS5LRERERILQdwb3YN3Wav5yzmiSYrRslnRtCrlBqLKukWte/pJ3V2zhtFGZ3HPGIcRF6Z9KRERERFp21JAeHDWkR6DLEAkKSk5B5rN127nh30vZVFrDLacM44IpfTS5lIiIiIiISCsp5AaJzeW13PXWSt5cUkRWSizPXzyJSf3SA12WiIiIiIhIp6KQG2CNHi+Pzl7P32etxescVx8zkMuP7K/JAkRERERERA6AQm4ALSus4NqZS1hZVMnxwzK4+ZRh5KTFBbosERERERGRTkshNwDqGj389f01PDp7PWnxUTzyo3GcMLxnoMsSERERERHp9BRyO5jX67j82YV8uGorZ43L5qaTh5Ecp2neRURERERE2oJCbgd7bM56Ply1ldtPG875h/UJdDkiIiIiIiIhJSzQBXQlizaV8ce3V3HiiJ78+NDegS5HREREREQk5CjkdpCK2kZ+/sIXZCTFcM8ZI7X2rYiIiIiISDvQcOUO4Jzj+leWUFxRx8uXH0pyrK7BFRERERERaQ8Kue2oocnL/5YX8/SnG/h8YxnXnTiEsbmpgS5LREREREQkZCnktoPq+iYen5PHs/M2srWqnt7pcdx66jDOP7RPoEsTEREREREJaQq5bcg5x+tLirj7zZUUV9bxncHdOf+wPhw5sDthYboGV0REREREpL0p5LaRVcVV3PLqMubllTIiK4kHfjiWcb01NFlERERERKQjKeQepPomDw/MWsuDH64jISaCu04fwTkTcglXz62IiIiIiEiHU8g9CAs3lvGbfy1hbckOTh+Txc2nDCMtPirQZYmIiIiIiHRZCrkHwDnH/bPWct97q+mVFMM/LpjAUYN7BLosERERERGRLk8hdz95vI5bX1vGs3M3cfqYLO787ggSonUaRUREREREgoHS2X6ob/Lwi5cW89bSYi47sh/XTRuCma69FRERERERCRZhgS6gtcxsmpmtMrO1ZnZdR79+UUUtF/xjAW8tLebGk4Zy/YlDFXBFRCQk7es918yizewl/+PzzKxPx1cpIiLSsk7Rk2tm4cADwHFAAbDAzF5zzq1o79feWlXPgx+u5bl5m3DOce9ZozhjXHZ7v6yIiEhAtPI99yKgzDk3wMzOAX4PfL/jqxUREfmmThFygYnAWufcegAzexGYDrRbyK2ub+L+WWuZ8ekGGjxezhibxVVHDyQnLa69XlJERCQYtOY9dzpwm//2TODvZmbOOdeRhYqIiLSks4TcLCC/2f0CYFLzHczsUuBSgNzc3IN+wYhw440lmzlheAZXHzuIvt3iD/qYIiIincA+33Ob7+OcazKzCiAd2NZ8p7Z+bxYREWmNzhJy98k59yjwKMD48eMP+pPk6Ihw3vnFVOKiQuYUiYiIdKi2fm8WERFpjc4y8VQhkNPsfrZ/9skywAAADNtJREFUW7tSwBURkS6oNe+5u/YxswggGdjeIdWJiIjsQ2cJuQuAgWbW18yigHOA1wJck4iISChqzXvua8D5/ttnArN0Pa6IiASLTtFV6b/e52fA20A48KRzbnmAyxIREQk5e3vPNbM7gM+dc68BTwDPmNlaoBRfEBYREQkKnSLkAjjn3gLeCnQdIiIioa6l91zn3C3NbtcBZ3V0XSIiIq3RWYYri4iIiIiIiOyTQq6IiIiIiIiEDIVcERERERERCRkKuSIiIiIiIhIyFHJFREREREQkZCjkioiIiIiISMhQyBUREREREZGQoZArIiIiIiIiIUMhV0REREREREKGOecCXUObM7OtwMY2Olw3YFsbHSuU6Ty1ns5V6+g8tZ7OVesczHnq7Zzr3pbFdDX+9+ZyoGIfuya3Yp9QbvOt+fk7cw1tdeyDOc7+Pnd/9m/NvmrjauPteZwDeV5Ht/G2at97fW8OyZDblszsc+fc+EDXEex0nlpP56p1dJ5aT+eqdXSeAs/MHnXOXdoG+4Tsv2Vrfv7OXENbHftgjrO/z92f/dXG901tvH2PcyDP6+g23hHtW8OVRUREpKO83kb7hLJg+Pnbs4a2OvbBHGd/n7s/+6uN71sw/Pyh3MYP5Hkh18bVk7sPofxJWlvSeWo9navW0XlqPZ2r1tF5Ch36t5RQpzYuoUw9ucHh0UAX0EnoPLWezlXr6Dy1ns5V6+g8hQ79W0qoUxuXUNbu7Vs9uSIiIiIiIhIy1JMrIiIiIiIiIUMhV0REREREREKGQu5emNk0M1tlZmvN7LpA1xNMzCzHzD4wsxVmttzMrvZvTzOzd81sjf97aqBrDQZmFm5mX5jZG/77fc1snr9tvWRmUYGuMRiYWYqZzTSzr8xspZkdqjb1TWb2C///u2Vm9oKZxahN+ZjZk2ZWYmbLmm1rsQ2Zz9/852yJmY0NXOUiIiLSlhRyW2Bm4cADwInAMOAHZjYssFUFlSbgGufcMGAycKX//FwHvO+cGwi8778vcDWwstn93wP3OecGAGXARQGpKvj8Ffifc24IMArfOVObasbMsoCfA+OdcyOAcOAc1KZ2egqYtse2vbWhE4GB/q9LgYc6qEZpY2YWb2YzzOwxM/thoOsRaWtm1s/MnjCzmYGuRaQ9mNl3/b/DXzKz49vimAq5LZsIrHXOrXfONQAvAtMDXFPQcM4VOecW+W9X4QsjWfjO0Qz/bjOA7wamwuBhZtnAycDj/vsGHA3sfKPSeQLMLBmYCjwB4JxrcM6VozbVkggg1swigDigCLUpAJxzs4HSPTbvrQ1NB552PnOBFDPr1TGVyr601Cvv397SKKvvATOdc5cAp3V4sSIHYH/auP/v0a764aV0UvvZxv/j/x1+OfD9tnh9hdyWZQH5ze4X+LfJHsysDzAGmAdkOOeK/A8VAxkBKiuY/AX4NeD1308Hyp1zTf77als+fYGtwD/8Q7sfN7N41KZ245wrBP4EbMIXbiuAhahNfZu9tSH9ng9uT7FHr/y3jLLK5ut/S08H1ihyMJ6i9W1cpDN6iv1v4zf5Hz9oCrlywMwsAfgX8H/Oucrmjznf2lRden0qMzsFKHHOLQx0LZ1ABDAWeMg5NwaoZo+hyWpT4L+edDq+DwUygXi+OTxX9kJtqPPYS6/83kZZFeALuqC/a6ST2M82LtLp7E8b98+T8XvgvztHix4svRm0rBDIaXY/279N/MwsEl/Afc4594p/85adw/3830sCVV+QmAKcZmYb8P0nPhrfdacp/qGmoLa1UwFQ4Jyb578/E1/oVZva3bFAnnNuq3OuEXgFXztTm9q7vbUh/Z7vfPbW+/4KcIaZPQS8HojCRNpIi23czNLN7GFgjJldH5jSRNrE3n6PX4Xvb5wzzezytnghhdyWLQAG+mcsjcI3sctrAa4paPivK30CWOmc+3Ozh14DzvffPh94taNrCybOueudc9nOuT742tAs59wPgQ+AM/27dfnzBOCcKwbyzWywf9MxwArUpva0CZhsZnH+/4c7z5Pa1N7trQ29BvzY/+nxZKCi2bBm6UScc9XOuQucc1c4554LdD0ibc05t905d7lzrr9z7neBrkekrTnn/uacG+dv5w+3xTEj9r1L1+OcazKznwFv45u99Enn3PIAlxVMpgA/Apaa2WL/thuAe4CXzewiYCNwdoDqC3a/AV40s98CX+CfbEm4CnjO/8HSeuACfB/EqU35Oefm+WfXXIRvlvMvgEeBN1GbwsxeAL4DdDOzAuBW9v576S3gJGAtUIOvvUlwU++7hDq1cQl1HdbGzXeJkoiIiEjw8E9s+IZ/uSz8Q/JX4xvBUIhv1NW5+hBaOiu1cQl1gWzjGq4sIiIiQcXfK/8ZMNjMCszsIv8M4jtHWa0EXtYf/9JZqY1LqAt0G1dProiIiIiIiIQM9eSKiIiIiIhIyFDIFRERERERkZChkCsiIiIiIiIhQyFXJESZWR8zW9ZGx5ppZv32Y/+7zCzfzHbssT3azF4ys7VmNs8/697Ox673b19lZif4t0WZ2Wz/bHwiIiIiIvukkCsi38rMhgPhzrn1+/G014GJLWy/CChzzg0A7gN+73+NYcA5wHBgGvCgmYU75xqA94HvH8SPICIiIiJdiEKuSDsws/PMbL6ZLTazR8ws3MwmmNkSM4sxs3gzW25mI8wswczeN7NFZrbUzKb7j9HHzL4ys6fMbLWZPWdmx5rZJ2a2xswm+ve7zcyeMbPP/NsvaaGecDP7o5kt8NdwmX97L39P6WIzW2ZmR7Tw4/wQeNW/f2//a3QzszAzm2Nmx+/5BOfcXOdcUQvHmg7M8N+eCRxjZubf/qJzrt45lwes5euQ/B9/DSIiIiIi+6SQK9LGzGwovp7HKc650YAH+KFzbgHwGvBb4A/As865ZUAdcLpzbixwFHCvP/gBDADuBYb4v84FDgd+BdzQ7GVHAkcDhwK3mFnmHmVdBFQ45yYAE4BLzKyv/3hv++scBSxu4UeaAiwEcM5txNf7+hBwDbDCOffOfpyeLCDff6wmoAJIb77dr8C/DWCZv2YREZFOTZcSiXQMNU6RtncMMA5Y4M+qsUCJ/7E7gAX4gu3P/dsMuNvMpgJefOEuw/9YnnNuKYCZLQfed845M1sK9Gn2mq8652qBWjP7AF8vaPPAejww0szO9N9PBgb6a3nSzCKB/zjnWgq5vYCtO+845x43s7OAy4HRrT4rB8g55zGzBjNLdM5VtffriYiIBLuDuJTo78CaPbbvupTIzM7B92H29/e4lCgTeM/MBjnnGsxs56VEzx3szyLSHtSTK9L2DJjhnBvt/xrsnLvN/1g6kAAkAjH+bT8EugPj/D2qW5o9Vt/suN5m973s/iGV26OGPe8bcFWzmvo6595xzs0GpgKFwFNm9uMWfp7aZvVgZnFAtv9uQotnYO8KgRz/cSLwhe3tzbf7Zfu37RSN74MBERGRA6JLiXQpkXQdCrkibe994Ewz6wFgZmlm1tv/2CPAzfg++fy9f1syUOKcazSzo4Deex6wFab736DTge/g66Ft7m3gCn+PLWY2yP9m3hvY4px7DHgcGNvCsVfiGza90+/99d8CPLafdb4GnO+/fSYwyznn/NvP8Q+Z6ouvl3m+v9Z0YJtzrnE/X0tERATQpUT7oEuJJORouLJIG3POrTCzm4B3zCwMaASuNLMjgUbn3PNmFg58amZH4wuMr/uHIH8OfHUAL7sE+ADoBtzpnNvc/JoafAG2D7DI/ya9FfguvkB8rZk1AjuAlnpy3/Tv957/Z5iA748Ej5mdYWYXOOf+0fwJZvYHfG/ScWZWADzu781+AnjGzNYCpfiGQeGcW25mLwMrgCbgSuecx3+4o/w1iIiIHChdStSGdCmRBDuFXJF24Jx7CXhpj81zgaf9j3uASc0eO3QvhxrR7Jg/aXZ7Q/PHgCXOud0CavN9nHNefJ8uN/+EGXzDk2bw7WYCH5jZrc65j4DJzV7jey09wTn3a+DXLWyvA87ay3PuAu5q4aFzgev2UaOIiMi32Xkp0fUtPLbzUqJIfJfnVLP7pUSNZraB9ruU6O1vFOsL1yfju5Toz865p/fYZV+XEu1P8Nx5yVCBLiWSUKHhyiLyrfyfQt/K10OUOoyZReH7FHt1R7+2iIiEFF1KtHe6lEhCjnpyRTq5ZpNatedrfONT5o7gnGvA3/stIiJyoHQpkS4lkq7FfB/UiIiIiIhIWzCz24Adzrk/tdPxY/EF6CnNgmeHMbNXgOs00kqClYYri4iIiIh0IrqUSOTbqSdXREREREREQoZ6ckVERERERCRkKOSKiIiIiIhIyFDIFRERERERkZChkCsiIiIiIiIhQyFXREREREREQoZCroiIiIiIiISM/wdfVw8oBkyqRwAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 1152x432 with 2 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"def ultrasim(*, T, datagen, q, dt=1, alpha = 0.05, seed=4545):\n", | |
" import itertools\n", | |
" from matplotlib import pyplot as plt \n", | |
" import numpy as np\n", | |
" \n", | |
" strats = { f().__class__.__name__: type('',(object,),{ \"impl\": f(), \"lbz\": [], \"ubz\": [] })() for f in [ EmpBernConjMix, GammaPriorNSBet, InvpowPriorNSBet ] } \n", | |
" wrz = []\n", | |
" sumwrz = 0\n", | |
" \n", | |
" for t in range(T):\n", | |
" w, r, expOp = datagen.genobs()\n", | |
" for _, cs in strats.items():\n", | |
" cs.impl.addobs(w, r)\n", | |
" sumwrz += w * r\n", | |
" if t % dt == 0:\n", | |
" wrz.append(sumwrz)\n", | |
" sumwrz = 0\n", | |
"\n", | |
" for _, cs in strats.items():\n", | |
" l, u = cs.impl.getci(alpha=0.05)\n", | |
" cs.lbz.append(l)\n", | |
" cs.ubz.append(u)\n", | |
" \n", | |
" fig, ax = plt.subplots(1, 2)\n", | |
" fig.set_size_inches(16, 6)\n", | |
" ax[0].plot(list(itertools.accumulate(wrz)))\n", | |
" ax[0].set_xlabel(f'examples (x {dt})')\n", | |
" ax[0].set_ylabel('sum(wr)')\n", | |
" for k, cs in strats.items():\n", | |
" color = next(ax[1]._get_lines.prop_cycler)['color']\n", | |
" ax[1].plot(cs.lbz, label=k, color=color)\n", | |
" ax[1].plot(cs.ubz, color=color)\n", | |
" color = next(ax[1]._get_lines.prop_cycler)['color']\n", | |
" ax[1].plot([datagen.vpi]*len(cs.lbz), color=\"black\", linestyle='dotted')\n", | |
" ax[1].set_xlabel(f'examples (x {dt})')\n", | |
" ax[1].set_ylabel('raw bounds')\n", | |
" ax[1].set_xscale('log')\n", | |
" ax[1].legend()\n", | |
" \n", | |
" fig.suptitle(str(datagen))\n", | |
" \n", | |
" return None\n", | |
"\n", | |
"def flass():\n", | |
" from matplotlib import pyplot as plt\n", | |
" import numpy as np\n", | |
" q = 1.5\n", | |
" dg = ParetoDataGen(q=q, vpi=1/2, seed=4554)\n", | |
" ultrasim(T=10000, dt=100, q=q, datagen=dg)\n", | |
"\n", | |
"flass()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "4e017ca3", | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8.13" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment