- install and enable datalab as pip package https://github.com/googledatalab/pydatalab
- enable per notebook:
%load_ext google.datalab.kernel- alternative, enable globally in ipython_config.py:
c = get_config()
| $ python -m venv projectname | |
| $ source projectname/bin/activate | |
| (venv) $ pip install ipykernel | |
| (venv) $ ipython kernel install --user --name=projectname |
%load_ext google.datalab.kernelc = get_config()
| #!/bin/bash | |
| # gcloud builds submit --config cloudbuild.yaml . | |
| # docker run -v `pwd`:/workspace -w /workspace -it refresh-metadata | |
| # gcloud components install docker-credential-gcr | |
| # docker-credential-gcr configure-docker | |
| # gcloud components install cloud-build-local | |
| rm -fr /workspace/* |
| wget http://www.image-net.org/challenges/LSVRC/2012/nnoupb/ILSVRC2012_img_train.tar | |
| wget http://www.image-net.org/challenges/LSVRC/2012/nnoupb/ILSVRC2012_img_val.tar | |
docker run \
-v "${PWD}":/local-drive \
-it gcr.io/aihub-c2t-containers/kfp-components/trainer/dist_xgboost:latest \
--output-location /local-drive/xgboost-output \
--training-data gs://aihub-c2t-containers-public/release-0.2.0/kfp-components/trainer/dist_xgboost/data/csv/iris/train.csv \
--validation-data gs://aihub-c2t-containers-public/release-0.2.0/kfp-components/trainer/dist_xgboost/data/csv/iris/valid.csv \
--target-column target \
--data-type csv \
--number-of-classes 3 \gcloud ai-platform jobs submit training my_xgboost_job \
--stream-logs \
--scale-tier CUSTOM \
--master-machine-type n1-standard-8 \
--master-image-uri gcr.io/aihub-c2t-containers/kfp-components/trainer/dist_xgboost:latest \
-- \
--output-location gs://REPLACE_WITH_YOUR_OUTPUT_BUCKET \
--training-data gs://aihub-c2t-containers-public/release-0.2.0/kfp-components/trainer/dist_xgboost/data/csv/iris/train.csv \
--validation-data gs://aihub-c2t-containers-public/release-0.2.0/kfp-components/trainer/dist_xgboost/data/csv/iris/valid.csv \PROJECT_ID=REPLACE_WITH_YOUR_PROJECT_ID
docker run \
-e "GOOGLE_CLOUD_PROJECT=${PROJECT_ID}" \
-v ~/.config/gcloud:/root/.config/gcloud \
-it gcr.io/ml-pipeline/ml-pipeline-gcp:latest \
kfp_component.google.ml_engine deploy \
--model-uri gs://REPLACE_WITH_YOUR_OUTPUT_BUCKET \
--project-id $PROJECT_ID \
--model-id xgboost_model \| from kfp import dsl, gcp, compiler, components | |
| deployer_component = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/b850360cd6388cce127b8d079c2c6e7d54519ef2/components/gcp/ml_engine/deploy/component.yaml') | |
| def xgboost_component( | |
| output_location, | |
| training_data, | |
| validation_data, | |
| data_type, | |
| target_column, |