Skip to content

Instantly share code, notes, and snippets.

View pranjalAI's full-sized avatar

Pranjal Saxena pranjalAI

View GitHub Profile
!git clone https://github.com/AlexeyAB/darknet
# verify CUDA
!/usr/local/cuda/bin/nvcc --version
# change makefile to have GPU and OPENCV enabled
%cd darknet
!sed -i 's/OPENCV=0/OPENCV=1/' Makefile
!sed -i 's/GPU=0/GPU=1/' Makefile
!sed -i 's/CUDNN=0/CUDNN=1/' Makefile
!sed -i 's/CUDNN_HALF=0/CUDNN_HALF=1/' Makefile
!sed -i 's/batch=1/batch=64/' cfg/yolov4.cfg
!sed -i 's/subdivisions=1/subdivisions=16/' cfg/yolov4.cfg
!sed -i 's/max_batches = 500500/max_batches = 6000/' cfg/yolov4.cfg
!sed -i '968 s@classes=80@classes=1@' cfg/yolov4.cfg
!sed -i '1056 s@classes=80@classes=1@' cfg/yolov4.cfg
!sed -i '1144 s@classes=80@classes=1@' cfg/yolov4.cfg
!sed -i '961 s@filters=255@filters=18@' cfg/yolov4.cfg .
!sed -i '1049 s@filters=255@filters=18@' cfg/yolov4.cfg
!sed -i '1137 s@filters=255@filters=18@' cfg/yolov4.cfg
!echo "Glasses" > data/obj.names
!echo -e 'classes= 1\ntrain = data/train.txt\nvalid = data/test.txt\nnames = data/obj.names\nbackup = /mydrive/yolov4_v1' > data/obj.data
!mkdir data/obj
!wget https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights
!wget https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.conv.137
!unrar e /mydrive/Colab/yolov4/Glasses.rar -d data/obj
import glob
import os
import re
txt_file_paths = glob.glob(r"data/obj/*.txt")
for i, file_path in enumerate(txt_file_paths):
# get image size
with open(file_path, "r") as f_o:
# Start the training
!./darknet detector train data/obj.data cfg/yolov4_training.cfg yolov4.conv.137 -dont_show
from __future__ import division, print_function
# coding=utf-8
import sys
import os
import glob
import re, glob, os,cv2
import numpy as np
import pandas as pd
import glass_detection
from shutil import copyfile
# Convert the model.
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
# Save the model.
with open('model.tflite', 'wb') as f:
f.write(tflite_model)
conda create -n Python-keras python=3.6