Last active
July 29, 2023 10:06
-
-
Save prasadwrites/cae481cd46c2f9a7a8a824682b120931 to your computer and use it in GitHub Desktop.
Lab_2_fine_tune_generative_ai_model.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/prasadwrites/cae481cd46c2f9a7a8a824682b120931/lab_2_fine_tune_generative_ai_model.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "gkhDQ9ReEAw2" | |
}, | |
"source": [ | |
"In this notebook, you will fine-tune an existing LLM from Hugging Face for enhanced dialogue summarization. You will use the [FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5) model, which provides a high quality instruction tuned model and can summarize text out of the box. To improve the inferences, you will explore a full fine-tuning approach and evaluate the results with ROUGE metrics. Then you will perform Parameter Efficient Fine-Tuning (PEFT), evaluate the resulting model and see that the benefits of PEFT outweigh the slightly-lower performance metrics." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "crTN094GEAw3" | |
}, | |
"source": [ | |
"# Table of Contents" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "iMIRZTcoEAw3" | |
}, | |
"source": [ | |
"- [ 1 - Set up Kernel, Load Required Dependencies, Dataset and LLM](#1)\n", | |
" - [ 1.1 - Set up Kernel and Required Dependencies](#1.1)\n", | |
" - [ 1.2 - Load Dataset and LLM](#1.2)\n", | |
" - [ 1.3 - Test the Model with Zero Shot Inferencing](#1.3)\n", | |
"- [ 2 - Perform Full Fine-Tuning](#2)\n", | |
" - [ 2.1 - Preprocess the Dialog-Summary Dataset](#2.1)\n", | |
" - [ 2.2 - Fine-Tune the Model with the Preprocessed Dataset](#2.2)\n", | |
" - [ 2.3 - Evaluate the Model Qualitatively (Human Evaluation)](#2.3)\n", | |
" - [ 2.4 - Evaluate the Model Quantitatively (with ROUGE Metric)](#2.4)\n", | |
"- [ 3 - Perform Parameter Efficient Fine-Tuning (PEFT)](#3)\n", | |
" - [ 3.1 - Setup the PEFT/LoRA model for Fine-Tuning](#3.1)\n", | |
" - [ 3.2 - Train PEFT Adapter](#3.2)\n", | |
" - [ 3.3 - Evaluate the Model Qualitatively (Human Evaluation)](#3.3)\n", | |
" - [ 3.4 - Evaluate the Model Quantitatively (with ROUGE Metric)](#3.4)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "uWVcRTE-EAw4" | |
}, | |
"source": [ | |
"<a name='1'></a>\n", | |
"## 1 - Set up Kernel, Load Required Dependencies, Dataset and LLM" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "ujX8G-8nEAw4" | |
}, | |
"source": [ | |
"<a name='1.1'></a>\n", | |
"### 1.1 - Set up Kernel and Required Dependencies" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "J0xn93EJEAw4" | |
}, | |
"source": [ | |
"To begin with, check that the kernel is selected correctly.\n", | |
"\n", | |
"<img src=\"images/kernel_set_up.png\" width=\"300\"/>\n", | |
"\n", | |
"If you click on that (top right of the screen), you'll be able to see and check the details of the image, kernel, and instance type.\n", | |
"\n", | |
"<img src=\"images/w2_kernel_and_instance_type.png\" width=\"600\"/>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "-4DxqtQ0EAw5" | |
}, | |
"source": [ | |
"Now install the required packages for the LLM and datasets.\n", | |
"\n", | |
"<img src=\"\" alt=\"Time alert open medium\"/>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "oEOqAJDIEAw6", | |
"outputId": "8231fd5f-381c-4b0e-d928-b2ece43698ef" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Requirement already satisfied: pip in /usr/local/lib/python3.10/dist-packages (23.1.2)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m887.5/887.5 MB\u001b[0m \u001b[31m1.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.6/4.6 MB\u001b[0m \u001b[31m84.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m849.3/849.3 kB\u001b[0m \u001b[31m59.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m557.1/557.1 MB\u001b[0m \u001b[31m2.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m317.1/317.1 MB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.0/21.0 MB\u001b[0m \u001b[31m72.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", | |
"torchaudio 2.0.2+cu118 requires torch==2.0.1, but you have torch 1.13.1 which is incompatible.\n", | |
"torchtext 0.15.2 requires torch==2.0.1, but you have torch 1.13.1 which is incompatible.\n", | |
"torchtext 0.15.2 requires torchdata==0.6.1, but you have torchdata 0.5.1 which is incompatible.\n", | |
"torchvision 0.15.2+cu118 requires torch==2.0.1, but you have torch 1.13.1 which is incompatible.\u001b[0m\u001b[31m\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.8/6.8 MB\u001b[0m \u001b[31m40.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m468.7/468.7 kB\u001b[0m \u001b[31m33.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m81.4/81.4 kB\u001b[0m \u001b[31m7.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.8/56.8 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m236.8/236.8 kB\u001b[0m \u001b[31m16.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m63.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m110.5/110.5 kB\u001b[0m \u001b[31m11.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m212.5/212.5 kB\u001b[0m \u001b[31m16.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.3/134.3 kB\u001b[0m \u001b[31m14.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m227.6/227.6 kB\u001b[0m \u001b[31m21.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25h Building wheel for rouge_score (setup.py) ... \u001b[?25l\u001b[?25hdone\n" | |
] | |
} | |
], | |
"source": [ | |
"%pip install --upgrade pip\n", | |
"%pip install --disable-pip-version-check \\\n", | |
" torch==1.13.1 \\\n", | |
" torchdata==0.5.1 --quiet\n", | |
"\n", | |
"%pip install \\\n", | |
" transformers==4.27.2 \\\n", | |
" datasets==2.11.0 \\\n", | |
" evaluate==0.4.0 \\\n", | |
" rouge_score==0.1.2 \\\n", | |
" loralib==0.1.1 \\\n", | |
" peft==0.3.0 --quiet" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "-6zBKPZuEAw8" | |
}, | |
"source": [ | |
"<img src=\"\" alt=\"Time alert close\"/>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "hTVaoFU3EAw8" | |
}, | |
"source": [ | |
"Import the necessary components. Some of them are new for this week, they will be discussed later in the notebook." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "FTWxH-S0EAw8" | |
}, | |
"outputs": [], | |
"source": [ | |
"from datasets import load_dataset\n", | |
"from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig, TrainingArguments, Trainer\n", | |
"import torch\n", | |
"import time\n", | |
"import evaluate\n", | |
"import pandas as pd\n", | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "t5KnHOQOEAw9" | |
}, | |
"source": [ | |
"<a name='1.2'></a>\n", | |
"### 1.2 - Load Dataset and LLM\n", | |
"\n", | |
"You are going to continue experimenting with the [DialogSum](https://huggingface.co/datasets/knkarthick/dialogsum) Hugging Face dataset. It contains 10,000+ dialogues with the corresponding manually labeled summaries and topics." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 519, | |
"referenced_widgets": [ | |
"1096c91e9b894ac6ba5bfccf064f6aba", | |
"5b9c0116d8fb4e79a3157e93b0893a41", | |
"d2aa98675f2e4b03b8610e288c0d69bc", | |
"912007d0b7c74b4c9f8c00674b371d0e", | |
"5f2e006bd66b4b07934350133a95ebd4", | |
"c86322e47baf4379ac91eafdf7656f0e", | |
"7fd49a6e66114972863dcd8670bd2b29", | |
"5bd0c1718f3a4840a3a03c78246ee9f9", | |
"0a92a83c454d494285b1f888e9d74e6e", | |
"bc5a06121c0642a9b99732609366fd17", | |
"920f53e00fb54b7aaa99cf5f5ae74333", | |
"c5c6f4ce01ad40e5b28d9a9d5c412705", | |
"606db3fecdf449b09b10badd4a5ee258", | |
"43aeadc663f243e2a5258864769400ef", | |
"a9339e3512fe418c9e02505db8a2957b", | |
"336911ced5464006abfe3ad3e22ef320", | |
"93c38bf896f447cfbcf26d7aa678ed12", | |
"3393511265e042029f67795475ee5a80", | |
"1b77791d24984827ab829baff551ce38", | |
"f32f49c424bf485c93d09a1353f00c42", | |
"3045e200414a4db89db9e01dd10d1883", | |
"8aadcc2fe84d4a37917e18a8ea5c2cd6", | |
"b2f99933110a4ad0a2167c0f7c8965d0", | |
"79a6a72520a84e45bc3363cbd04667c1", | |
"d50b4107a8244c6187e6ca7d1631e496", | |
"e35b371d716e434b92f9f1abba175663", | |
"2ff36758ca534d9eb96812aebef0f537", | |
"a9455ec8d0e94de9bc9729e6559e1d23", | |
"01303552b86246a2b8098b9d41470b89", | |
"e2d2b4ad57f748b29ad0f4a9c5531417", | |
"bf6c1e1e6bce44db88499da220321be2", | |
"7eafef4d01d442cb8cbd5661a454f98e", | |
"eb382d85c8904497bbf8e9cf410564a8", | |
"4dea35a56f3247f4a9c25d153b9e42ee", | |
"d6f4d1efc00d4911b342bd293cb8ad10", | |
"d0a3cb92961b4252a55cd978fbb8dce9", | |
"9cfbd004397c4196bda57c523bf3c9ed", | |
"14e850bff4964cc9a8cd200e215d4581", | |
"7a6d450616854a75af86c10af47c008c", | |
"afe660e760e64c718e64e6aaa2bb579a", | |
"00e4837333ed4532b48ef389ebc15986", | |
"7789a7b1bf5b458fbf6e659b82ba2df7", | |
"55104855344440d3b71e52e467f3900c", | |
"043ba44201654a41bde3ececb33e5697", | |
"ceaffba27a1b4e2593c68e3f4d80c50e", | |
"c7be92c74ed544a28bbdab3918989a8e", | |
"369718b7a8644d4097a29c41c4be2bfa", | |
"76f0879b32904b08bf786769e0f6c6bc", | |
"4fd1add2959d4501aa57e32d201b08cc", | |
"c8800346491140f682d77f23dddb2b0f", | |
"509e71963e084d13adf26b5a19f3fea4", | |
"bdf56b395f0949f18c5b2caaf697362a", | |
"97a0139d61b0432783a9d2dba6f58ac6", | |
"e93e352853fd4145aee0b7e57e632388", | |
"ae548746efda48b0982770f146f3005b", | |
"1e906ba4afbc4528949ce4a2d7915465", | |
"8c8d1f934546422f8ff16e6bdfe2f877", | |
"e7d4eaa4040d443a90563380877914b2", | |
"b450fb441cf7413ea5c16469a2de4f56", | |
"11ec3355fb9144a79e278cdf2920b6c9", | |
"0ef507a9a8724eae8446049b954a11e5", | |
"b9d6b45d0c1e43e790db94dedeb4b675", | |
"b5eb86c855d34d38abb9a11066e4ebea", | |
"ff4f2550b60d47ebb865bac02909ebda", | |
"5dfbacc96d0d418da04c40ab0a4260e3", | |
"e7dbac3120344567aac338d1f49df4a8", | |
"b1857a9bba584998b3ef5b226e03d8f3", | |
"1422eb48090a4860954cfff4794c1b79", | |
"857cf3d5c3b24cd5bdbe7e1bd2ad3fdd", | |
"44f4796a71494bb3b140b5a183ca8379", | |
"64bf0a03aff3479f90f5b65282468383", | |
"336ba2958a3143ccba8edd32ec3e0e7f", | |
"9697c0ebeef349069216d6436a4214b5", | |
"76fbc2ad90e1476483761b22af6ddeab", | |
"842bc6165d9547dbbcee93fd4f19ca22", | |
"ade66f7596444b578dfcc47e2757b6b8", | |
"7ea12742e48e47b5b985d5dbd64260d3", | |
"4a874a806ff44d03ac6bbf284f7c2a90", | |
"79bb8e7e61704f75a35296e31683a203", | |
"b5e9295ddc05492281b37c3156603878", | |
"32081592140442c2996a3ef3d87c4ea5", | |
"c59dad50f0dc4999897e34237bc6d94d", | |
"5780b845877744afb83d530304fdf543", | |
"b030f3290622473ea44a4503f599152d", | |
"b91bc6ffab5b408797775495756a1044", | |
"527461c1e134495cb4fc87e3ea608a68", | |
"e022ba76a8514c9c9d37d5399d233b82", | |
"ed2bc3d03e734da6b3138cb90d4e6578", | |
"4f892161e6a6450ab4944d7a58f4c661", | |
"07d45d8d71c74d83bedab2a1bbe90520", | |
"61b5a9d355ef49e29923d4ef1c763123", | |
"8f8569c9be974f2e9f8b5c0a30c3f83c", | |
"bd91a0e6c0d34594b0b946a022d143b0", | |
"6c528e10dde24dfaa13e836aad6cde9f", | |
"0c3ae02fdc4e43a786d2e01de26f2ac9", | |
"4bb840b66b9f48b9a37b542a029093a1", | |
"4b9a522cdc364da5bbca5f3bcdefb06b", | |
"17c39390353044658503ef18b743dd13", | |
"e91bf91b580846f7b65f37bd496347df", | |
"08a82f0f6a52461e86435edf76de69e9", | |
"23e8757a0e974473868db1099ee05de0", | |
"10a447944d1e4ad182f61ac3cd1ed46b", | |
"a9d4181acc0446a3b2e9adf845f84a07", | |
"01e36a5c848044399cca88f46892259e", | |
"b1e16280af974793827ea68fae0085f8", | |
"153432075eba4bd3895da98db1e90ea8", | |
"e048a045c2b74d869acec0c55ddfaed2", | |
"08c4ddec24494d9093e84b99f218a72d", | |
"5195caeef26447e2aa23d647818beefa", | |
"92ab3399866a4edd947d58620eac93c5" | |
] | |
}, | |
"id": "GJQ60WaoEAw9", | |
"outputId": "c8a7c2b2-836e-425a-88a5-3e29bc679b43" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading readme: 0%| | 0.00/4.56k [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "1096c91e9b894ac6ba5bfccf064f6aba" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Downloading and preparing dataset csv/knkarthick--dialogsum to /root/.cache/huggingface/datasets/knkarthick___csv/knkarthick--dialogsum-c8fac5d84cd35861/0.0.0/6954658bab30a358235fa864b05cf819af0e179325c740e4bc853bcc7ec513e1...\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading data files: 0%| | 0/3 [00:00<?, ?it/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "c5c6f4ce01ad40e5b28d9a9d5c412705" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading data: 0%| | 0.00/11.3M [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "b2f99933110a4ad0a2167c0f7c8965d0" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading data: 0%| | 0.00/1.35M [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "4dea35a56f3247f4a9c25d153b9e42ee" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading data: 0%| | 0.00/442k [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "ceaffba27a1b4e2593c68e3f4d80c50e" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Extracting data files: 0%| | 0/3 [00:00<?, ?it/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "1e906ba4afbc4528949ce4a2d7915465" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Generating train split: 0 examples [00:00, ? examples/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "b1857a9bba584998b3ef5b226e03d8f3" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Generating test split: 0 examples [00:00, ? examples/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "4a874a806ff44d03ac6bbf284f7c2a90" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Generating validation split: 0 examples [00:00, ? examples/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "4f892161e6a6450ab4944d7a58f4c661" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Dataset csv downloaded and prepared to /root/.cache/huggingface/datasets/knkarthick___csv/knkarthick--dialogsum-c8fac5d84cd35861/0.0.0/6954658bab30a358235fa864b05cf819af0e179325c740e4bc853bcc7ec513e1. Subsequent calls will reuse this data.\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
" 0%| | 0/3 [00:00<?, ?it/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "08a82f0f6a52461e86435edf76de69e9" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"DatasetDict({\n", | |
" train: Dataset({\n", | |
" features: ['id', 'dialogue', 'summary', 'topic'],\n", | |
" num_rows: 12460\n", | |
" })\n", | |
" test: Dataset({\n", | |
" features: ['id', 'dialogue', 'summary', 'topic'],\n", | |
" num_rows: 1500\n", | |
" })\n", | |
" validation: Dataset({\n", | |
" features: ['id', 'dialogue', 'summary', 'topic'],\n", | |
" num_rows: 500\n", | |
" })\n", | |
"})" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 3 | |
} | |
], | |
"source": [ | |
"huggingface_dataset_name = \"knkarthick/dialogsum\"\n", | |
"\n", | |
"dataset = load_dataset(huggingface_dataset_name)\n", | |
"\n", | |
"dataset" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "SudjvAGYEAw9" | |
}, | |
"source": [ | |
"Load the pre-trained [FLAN-T5 model](https://huggingface.co/docs/transformers/model_doc/flan-t5) and its tokenizer directly from HuggingFace. Notice that you will be using the [small version](https://huggingface.co/google/flan-t5-base) of FLAN-T5. Setting `torch_dtype=torch.bfloat16` specifies the memory type to be used by this model." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 241, | |
"referenced_widgets": [ | |
"326bada422ce479c928a25ea2504106c", | |
"07943c3a575c4676a3e9b74a808dbff4", | |
"9aee77e78dde4f34af3295d5d9d8efa0", | |
"44f01a82773347d2b4c5ed8eee92466d", | |
"629cb55774864fc2abc209791ed04a26", | |
"c393ac64aaf54b409b72e8b32bb71849", | |
"aed7842d105146378727f679a97c15f0", | |
"6322f64714cd433db2e4a97fc27253da", | |
"f898281e30b848f8aaedc5271d81b5ea", | |
"c4eafedcfc0f4277a164be28ed91f7f5", | |
"8d95672f4e8f419b92b3e6610e043fa9", | |
"c9b6d6cc13464da0b86e47521365691a", | |
"b46640318d21480a86c5f26a6f377871", | |
"577172c87ffa4c7f8efaa747ea280db7", | |
"d5bbde84d96f4f83a904764f1935c075", | |
"3cf95acb25d7477fbe657d4e4724ccf5", | |
"d57a6648b04f436a925f5b321fad133a", | |
"48a313f83d624b6e8def9e5066777b9d", | |
"fc3b5fa5771f48dcabfa8993bed2d888", | |
"17e282275c994a788d118c9586f17b1b", | |
"edcd543dda2b468b8b0c7171b09c21e9", | |
"0cbee7ac328f4fd8936cbb1d15cc0295", | |
"0aa3cf691f264b54b33ce675720a822b", | |
"49d5e569cd7443b98d8ef57f2a22dfe0", | |
"2a04ae2583ec4849972702662c100513", | |
"dcf330e521344e028a602040ecf8b925", | |
"46196727e65b44abbe70e80ce93fa04c", | |
"b7ed61860be543fe87aef3a9c0d0e186", | |
"801f25cf519a4d88903091d37923c4d0", | |
"7ab7d7dd3ba643f284115ff5e60c35de", | |
"bbcbf14111d64e6eaf001b09f44986da", | |
"f773efbdbc5649cbb41ae6e524ed0658", | |
"45facab4790f4704867dbaea42075f58", | |
"c5763ee5f0b74473ac578ee6bf18f45f", | |
"0f5f782ffd2a4029988db283a08771c2", | |
"a83df1fdfde747dca52a20382369487d", | |
"06fa5c3caec14dcea5bd8000a9b31ba9", | |
"ab545dcba59b4d0abf4edbb58ddf6eb4", | |
"bc726731ae184decb5449571d637b293", | |
"2c8a21d2d40942b5b72131a88c92550a", | |
"d4795ea60745414882c223185216aae2", | |
"75f51be04d434025908e1ab58592f107", | |
"fd872046fca245f78afcd8a5bf6d4211", | |
"77b63c424df44f15928f395003645d52", | |
"531ab63415c84817955f21dc53244ccf", | |
"dcd648c491f34917a50f7fa1b40c5e79", | |
"0b5f859196f34d1e98c0bf659b21d895", | |
"d2a61d6a06034f40a8a3dcd44353a236", | |
"3e83e3390cd140a7a60ab8a84b29b5ed", | |
"08d48b97dd5d42098df360be26017b8c", | |
"59bb1701d3bf4d088ce01628a7360c37", | |
"9b4a2fd0872f48baa2575da99a9f8af0", | |
"4e7b515ea90f469fb9f8e86efb50a395", | |
"1235436a544e47bf926327fe1a86949d", | |
"5336af12fdc848838d974556b929afe7", | |
"45c1dd52b196455fab81a45d04269639", | |
"d77adf5a8c2641e9b50e80811b8f9788", | |
"4e6e89e3f30246b6a5574a78f79f4efd", | |
"93021034833341a7ab303c32640d47a1", | |
"6da7fc36c03c42248f3c30fdd829213f", | |
"5b756d27f5874adcbbbb3a9abc49123d", | |
"0437110583cb40aca002d85cd41b0570", | |
"b1b1858c4036480bb3cea7b03095d47f", | |
"7198de671f924f7bbd93d9925a23c088", | |
"1ab69e6fb35e4a20a051487136d7c3d5", | |
"ee6362ae8f7441338b2394d9d68d819c", | |
"8765b7fc8c3245038fd551aef4af2b34", | |
"1d9e1bf3966140509612ac96ba7d7d77", | |
"4bd84fbbe85d48849e56a96cf3e1df77", | |
"2d3cf7e9e57d493b8c98a806791acf37", | |
"7d71824251c24e159a428c104b4c2cd5", | |
"958f053835a7435c8e4dac63a7ee7d4d", | |
"203f73973e7e4a218edf2b1ec4866e23", | |
"9d490f5e188342cdad257973d668f565", | |
"78297beb30b44a74b5668f58df114130", | |
"64f315562e474fd79dbff2aab5ed7ecf", | |
"970ea2d0bc984a1ca079f8c8e893486a" | |
] | |
}, | |
"id": "WZJMGMciEAw9", | |
"outputId": "099122d8-b16e-4721-ae7c-12a689d21022" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading (…)lve/main/config.json: 0%| | 0.00/1.40k [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "326bada422ce479c928a25ea2504106c" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading pytorch_model.bin: 0%| | 0.00/990M [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "c9b6d6cc13464da0b86e47521365691a" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading (…)neration_config.json: 0%| | 0.00/147 [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "0aa3cf691f264b54b33ce675720a822b" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading (…)okenizer_config.json: 0%| | 0.00/2.54k [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "c5763ee5f0b74473ac578ee6bf18f45f" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading spiece.model: 0%| | 0.00/792k [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "531ab63415c84817955f21dc53244ccf" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading (…)/main/tokenizer.json: 0%| | 0.00/2.42M [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "45c1dd52b196455fab81a45d04269639" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Downloading (…)cial_tokens_map.json: 0%| | 0.00/2.20k [00:00<?, ?B/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "8765b7fc8c3245038fd551aef4af2b34" | |
} | |
}, | |
"metadata": {} | |
} | |
], | |
"source": [ | |
"model_name='google/flan-t5-base'\n", | |
"\n", | |
"original_model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)\n", | |
"tokenizer = AutoTokenizer.from_pretrained(model_name)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "iJwOCGWbEAw9" | |
}, | |
"source": [ | |
"It is possible to pull out the number of model parameters and find out how many of them are trainable. The following function can be used to do that, at this stage, you do not need to go into details of it." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "kM0PP5LeEAw-", | |
"outputId": "ff7aa1f9-47bb-4ba5-8711-689c412eb3c9" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"trainable model parameters: 247577856\n", | |
"all model parameters: 247577856\n", | |
"percentage of trainable model parameters: 100.00%\n" | |
] | |
} | |
], | |
"source": [ | |
"def print_number_of_trainable_model_parameters(model):\n", | |
" trainable_model_params = 0\n", | |
" all_model_params = 0\n", | |
" for _, param in model.named_parameters():\n", | |
" all_model_params += param.numel()\n", | |
" if param.requires_grad:\n", | |
" trainable_model_params += param.numel()\n", | |
" return f\"trainable model parameters: {trainable_model_params}\\nall model parameters: {all_model_params}\\npercentage of trainable model parameters: {100 * trainable_model_params / all_model_params:.2f}%\"\n", | |
"\n", | |
"print(print_number_of_trainable_model_parameters(original_model))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "ghqQ-y7dEAw-" | |
}, | |
"source": [ | |
"<a name='1.3'></a>\n", | |
"### 1.3 - Test the Model with Zero Shot Inferencing\n", | |
"\n", | |
"Test the model with the zero shot inferencing. You can see that the model struggles to summarize the dialogue compared to the baseline summary, but it does pull out some important information from the text which indicates the model can be fine-tuned to the task at hand." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "hjgBeEzGEAw_", | |
"outputId": "4960aaa8-b243-4606-8f8e-e7b41402f564" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"---------------------------------------------------------------------------------------------------\n", | |
"INPUT PROMPT:\n", | |
"\n", | |
"Summarize the following conversation.\n", | |
"\n", | |
"#Person1#: Have you considered upgrading your system?\n", | |
"#Person2#: Yes, but I'm not sure what exactly I would need.\n", | |
"#Person1#: You could consider adding a painting program to your software. It would allow you to make up your own flyers and banners for advertising.\n", | |
"#Person2#: That would be a definite bonus.\n", | |
"#Person1#: You might also want to upgrade your hardware because it is pretty outdated now.\n", | |
"#Person2#: How can we do that?\n", | |
"#Person1#: You'd probably need a faster processor, to begin with. And you also need a more powerful hard disc, more memory and a faster modem. Do you have a CD-ROM drive?\n", | |
"#Person2#: No.\n", | |
"#Person1#: Then you might want to add a CD-ROM drive too, because most new software programs are coming out on Cds.\n", | |
"#Person2#: That sounds great. Thanks.\n", | |
"\n", | |
"Summary:\n", | |
"\n", | |
"---------------------------------------------------------------------------------------------------\n", | |
"BASELINE HUMAN SUMMARY:\n", | |
"#Person1# teaches #Person2# how to upgrade software and hardware in #Person2#'s system.\n", | |
"\n", | |
"---------------------------------------------------------------------------------------------------\n", | |
"MODEL GENERATION - ZERO SHOT:\n", | |
"#Person1#: I'm thinking of upgrading my computer.\n" | |
] | |
} | |
], | |
"source": [ | |
"index = 200\n", | |
"\n", | |
"dialogue = dataset['test'][index]['dialogue']\n", | |
"summary = dataset['test'][index]['summary']\n", | |
"\n", | |
"prompt = f\"\"\"\n", | |
"Summarize the following conversation.\n", | |
"\n", | |
"{dialogue}\n", | |
"\n", | |
"Summary:\n", | |
"\"\"\"\n", | |
"\n", | |
"inputs = tokenizer(prompt, return_tensors='pt')\n", | |
"output = tokenizer.decode(\n", | |
" original_model.generate(\n", | |
" inputs[\"input_ids\"],\n", | |
" max_new_tokens=200,\n", | |
" )[0],\n", | |
" skip_special_tokens=True\n", | |
")\n", | |
"\n", | |
"dash_line = '-'.join('' for x in range(100))\n", | |
"print(dash_line)\n", | |
"print(f'INPUT PROMPT:\\n{prompt}')\n", | |
"print(dash_line)\n", | |
"print(f'BASELINE HUMAN SUMMARY:\\n{summary}\\n')\n", | |
"print(dash_line)\n", | |
"print(f'MODEL GENERATION - ZERO SHOT:\\n{output}')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "v8yStlr-EAw_" | |
}, | |
"source": [ | |
"<a name='2'></a>\n", | |
"## 2 - Perform Full Fine-Tuning" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "ZL90EiD5EAw_" | |
}, | |
"source": [ | |
"<a name='2.1'></a>\n", | |
"### 2.1 - Preprocess the Dialog-Summary Dataset\n", | |
"\n", | |
"You need to convert the dialog-summary (prompt-response) pairs into explicit instructions for the LLM. Prepend an instruction to the start of the dialog with `Summarize the following conversation` and to the start of the summary with `Summary` as follows:\n", | |
"\n", | |
"Training prompt (dialogue):\n", | |
"```\n", | |
"Summarize the following conversation.\n", | |
"\n", | |
" Chris: This is his part of the conversation.\n", | |
" Antje: This is her part of the conversation.\n", | |
" \n", | |
"Summary:\n", | |
"```\n", | |
"\n", | |
"Training response (summary):\n", | |
"```\n", | |
"Both Chris and Antje participated in the conversation.\n", | |
"```\n", | |
"\n", | |
"Then preprocess the prompt-response dataset into tokens and pull out their `input_ids` (1 per token)." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 17, | |
"referenced_widgets": [ | |
"558a191ed32a4109ad48de643df8a0a4", | |
"70ecbd3b3c1547369180128e1ec79aa6", | |
"9f7d4c0891b0425dbd33bc58ae3bc801", | |
"31bd5275da364f3c83c4137742f0f357", | |
"e5862963d91b469e96c02ba02fb4d98e", | |
"4502917400964580ab5516b73b845c19", | |
"7789eaf6317e41178354b81ea84099c6", | |
"48b7c941386249ff92b6f2a6f148937f", | |
"91149940feb54b25a8bfcc5008f5174b", | |
"4e962b431a574bb2b2f8cb3552f682c5", | |
"3d985dd6e85e4f1a97749f9978913e81", | |
"72c2dadb3f3b4295b3e68fff13547a88", | |
"ab72b7fd930948de9b0efce7039f3cf2", | |
"0f3f1bcaba0846c6a0019f175feaf9b9", | |
"298ddade07df4081a8d624e7fc500dcb", | |
"0243a32f0fbd48baa44688b86f16bab5", | |
"c4b86c1a570940d989750e3ca323c5a9", | |
"26336a992866434b88475ce00347ef31", | |
"003724e0e64a406f9ae4db96c8437ee7", | |
"d4e5b775152e43aab43285dc6dc16d9c", | |
"e363ccb35b1b4b399e8fecaf491e999a", | |
"0d3625bf98d641659c312071d30249a6", | |
"9c6ac910df4c415da00260c181e311e8", | |
"9e5db0c70f894ce5843cdb29f1850188", | |
"617216dc46d447c9807ad19f1907064d", | |
"5782dbc7b9de425ca848890752dc6dc0", | |
"60c65dc5c1be4d3fb4fa45db298420ef", | |
"be79fd20d82d43988e3969d8d56f0f07", | |
"473757f1644d41abb9f34b2f59e9eddc", | |
"e5a8de9d09924a2b9cc910af047c1219", | |
"576c6fe6993f444998a3a7d4a414aba2", | |
"2563a937aa6946f09012f1cd8dca5d9a", | |
"c17ab8f0f27a4ac8b04a4b46efeeac10" | |
] | |
}, | |
"id": "KPmKn78wEAw_", | |
"outputId": "e3bea34c-a9dc-4bb9-9614-3d37aabe32fd" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Map: 0%| | 0/12460 [00:00<?, ? examples/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "558a191ed32a4109ad48de643df8a0a4" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Map: 0%| | 0/1500 [00:00<?, ? examples/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "72c2dadb3f3b4295b3e68fff13547a88" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Map: 0%| | 0/500 [00:00<?, ? examples/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "9c6ac910df4c415da00260c181e311e8" | |
} | |
}, | |
"metadata": {} | |
} | |
], | |
"source": [ | |
"def tokenize_function(example):\n", | |
" start_prompt = 'Summarize the following conversation.\\n\\n'\n", | |
" end_prompt = '\\n\\nSummary: '\n", | |
" prompt = [start_prompt + dialogue + end_prompt for dialogue in example[\"dialogue\"]]\n", | |
" example['input_ids'] = tokenizer(prompt, padding=\"max_length\", truncation=True, return_tensors=\"pt\").input_ids\n", | |
" example['labels'] = tokenizer(example[\"summary\"], padding=\"max_length\", truncation=True, return_tensors=\"pt\").input_ids\n", | |
"\n", | |
" return example\n", | |
"\n", | |
"# The dataset actually contains 3 diff splits: train, validation, test.\n", | |
"# The tokenize_function code is handling all data across all splits in batches.\n", | |
"tokenized_datasets = dataset.map(tokenize_function, batched=True)\n", | |
"tokenized_datasets = tokenized_datasets.remove_columns(['id', 'topic', 'dialogue', 'summary',])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "ThMSNSuwEAxA" | |
}, | |
"source": [ | |
"To save some time in the lab, you will subsample the dataset:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 17, | |
"referenced_widgets": [ | |
"ecc14ddd2ce9431ca332f784bf025bcb", | |
"a8af69cad5ec46f99a4879488c211de3", | |
"2b3b8ff697e34ea199e2e95c2770f0aa", | |
"fe557a19be0f4d099f7763e9ba120d10", | |
"b870f390fcd14b23839f3c260c53554e", | |
"24e89cf83ca045c28c32d625fe12bfd7", | |
"3f1a584e2ce345ec945d86c009e37de8", | |
"8e4c6623f58a45cab54b3694db2116b8", | |
"31de4552ec1e40858fb99890c2eb0bc5", | |
"9dd6dfe205444393be17c4f20c5ea4b3", | |
"6a26a7e5509d4ca6a4932538db801a82", | |
"55e6587e847645ae934c18bdeefd8aac", | |
"8f737c1823054eff8e3f796903c3a291", | |
"63f0d8a9c76941cea36df0e2965f9d4b", | |
"f6649f305f1f4558a8e8edba1d51751b", | |
"7fa33286b5a2429c8e22502c301a7d5f", | |
"dd1fe652a733458e99e15e11e50b206e", | |
"54b0fac1e9264aa7b7f2c2f658061149", | |
"0a17a79e6d8b49fabf1385a74832938e", | |
"2efaf87e29004c0ea7faf31d76129bf9", | |
"1df90dfc5db542c59552e4b8e6b6cc10", | |
"b2ecee78f07743dd9c3d90b123a0ff77", | |
"b8129fb0a72d4706b91948701ca80952", | |
"3e7063891a7b41cb8f13c7dace3e6924", | |
"472eb935a0b0473883617f662946d7bd", | |
"ea6745f1dd8d49eead6642f4618112f5", | |
"de6048abfa1d47598cd094a4d9078089", | |
"16bf286e1dc34f598331c2d9df3f8032", | |
"a0706c11bdf64951a9129e6edea0f06e", | |
"910a3bfa24b74b7abb73383bae73c427", | |
"93b452580d824693affff7b5ea6bf75d", | |
"186a694237444a1a97108b70649c35ac", | |
"e082af912d2a4b1ea6e8bb160fcea318" | |
] | |
}, | |
"id": "DqUVNZKiEAxA", | |
"outputId": "30e87a1a-13b1-4bb9-db85-873c03ba0a89" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Filter: 0%| | 0/12460 [00:00<?, ? examples/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "ecc14ddd2ce9431ca332f784bf025bcb" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Filter: 0%| | 0/1500 [00:00<?, ? examples/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "55e6587e847645ae934c18bdeefd8aac" | |
} | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"Filter: 0%| | 0/500 [00:00<?, ? examples/s]" | |
], | |
"application/vnd.jupyter.widget-view+json": { | |
"version_major": 2, | |
"version_minor": 0, | |
"model_id": "b8129fb0a72d4706b91948701ca80952" | |
} | |
}, | |
"metadata": {} | |
} | |
], | |
"source": [ | |
"tokenized_datasets = tokenized_datasets.filter(lambda example, index: index % 100 == 0, with_indices=True)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "b_U0-iMvEAxA" | |
}, | |
"source": [ | |
"Check the shapes of all three parts of the dataset:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "T_e6PegbEAxA", | |
"outputId": "6625f99e-fe19-4c6e-da0e-9e87a59a976f" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Shapes of the datasets:\n", | |
"Training: (125, 2)\n", | |
"Validation: (5, 2)\n", | |
"Test: (15, 2)\n", | |
"DatasetDict({\n", | |
" train: Dataset({\n", | |
" features: ['input_ids', 'labels'],\n", | |
" num_rows: 125\n", | |
" })\n", | |
" test: Dataset({\n", | |
" features: ['input_ids', 'labels'],\n", | |
" num_rows: 15\n", | |
" })\n", | |
" validation: Dataset({\n", | |
" features: ['input_ids', 'labels'],\n", | |
" num_rows: 5\n", | |
" })\n", | |
"})\n" | |
] | |
} | |
], | |
"source": [ | |
"print(f\"Shapes of the datasets:\")\n", | |
"print(f\"Training: {tokenized_datasets['train'].shape}\")\n", | |
"print(f\"Validation: {tokenized_datasets['validation'].shape}\")\n", | |
"print(f\"Test: {tokenized_datasets['test'].shape}\")\n", | |
"\n", | |
"print(tokenized_datasets)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "pyrbBNEoEAxB" | |
}, | |
"source": [ | |
"The output dataset is ready for fine-tuning." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "4tU-48DnEAxB" | |
}, | |
"source": [ | |
"<a name='2.2'></a>\n", | |
"### 2.2 - Fine-Tune the Model with the Preprocessed Dataset\n", | |
"\n", | |
"Now utilize the built-in Hugging Face `Trainer` class (see the documentation [here](https://huggingface.co/docs/transformers/main_classes/trainer)). Pass the preprocessed dataset with reference to the original model. Other training parameters are found experimentally and there is no need to go into details about those at the moment." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "_xcdkJ6pEAxB" | |
}, | |
"outputs": [], | |
"source": [ | |
"output_dir = f'./dialogue-summary-training-{str(int(time.time()))}'\n", | |
"\n", | |
"training_args = TrainingArguments(\n", | |
" output_dir=output_dir,\n", | |
" learning_rate=1e-5,\n", | |
" num_train_epochs=1,\n", | |
" weight_decay=0.01,\n", | |
" logging_steps=1,\n", | |
" max_steps=1\n", | |
")\n", | |
"\n", | |
"trainer = Trainer(\n", | |
" model=original_model,\n", | |
" args=training_args,\n", | |
" train_dataset=tokenized_datasets['train'],\n", | |
" eval_dataset=tokenized_datasets['validation']\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "lt3lDUMgEAxB" | |
}, | |
"source": [ | |
"Start training process...\n", | |
"\n", | |
"<img src=\"\" alt=\"Time alert open medium\"/>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "RK5lj5WuEAxB", | |
"outputId": "2441a615-117f-46cd-af56-a66af56e1c6e" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.10/dist-packages/transformers/optimization.py:391: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n", | |
" warnings.warn(\n" | |
] | |
} | |
], | |
"source": [ | |
"trainer.train()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "bvTHfogiEAxC" | |
}, | |
"source": [ | |
"<img src=\"\" alt=\"Time alert close\"/>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "LqZ46G__EAxC" | |
}, | |
"source": [ | |
"Training a fully fine-tuned version of the model would take a few hours on a GPU. To save time, download a checkpoint of the fully fine-tuned model to use in the rest of this notebook. This fully fine-tuned model will also be referred to as the **instruct model** in this lab." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "Z_xTaAofEAxC" | |
}, | |
"outputs": [], | |
"source": [ | |
"!aws s3 cp --recursive s3://dlai-generative-ai/models/flan-dialogue-summary-checkpoint/ ./flan-dialogue-summary-checkpoint/" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "yLSSCM1DEAxD" | |
}, | |
"source": [ | |
"The size of the downloaded instruct model is approximately 1GB." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "1pArzaonEAxD" | |
}, | |
"outputs": [], | |
"source": [ | |
"!ls -alh ./flan-dialogue-summary-checkpoint/pytorch_model.bin" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "O0AZH8zNEAxD" | |
}, | |
"source": [ | |
"Create an instance of the `AutoModelForSeq2SeqLM` class for the instruct model:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "sa5islhuEAxD" | |
}, | |
"outputs": [], | |
"source": [ | |
"instruct_model = AutoModelForSeq2SeqLM.from_pretrained(\"./flan-dialogue-summary-checkpoint\", torch_dtype=torch.bfloat16)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "7W0f4dJTEAxN" | |
}, | |
"source": [ | |
"<a name='2.3'></a>\n", | |
"### 2.3 - Evaluate the Model Qualitatively (Human Evaluation)\n", | |
"\n", | |
"As with many GenAI applications, a qualitative approach where you ask yourself the question \"Is my model behaving the way it is supposed to?\" is usually a good starting point. In the example below (the same one we started this notebook with), you can see how the fine-tuned model is able to create a reasonable summary of the dialogue compared to the original inability to understand what is being asked of the model." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "vVvCnPlwEAxN" | |
}, | |
"outputs": [], | |
"source": [ | |
"index = 200\n", | |
"dialogue = dataset['test'][index]['dialogue']\n", | |
"human_baseline_summary = dataset['test'][index]['summary']\n", | |
"\n", | |
"prompt = f\"\"\"\n", | |
"Summarize the following conversation.\n", | |
"\n", | |
"{dialogue}\n", | |
"\n", | |
"Summary:\n", | |
"\"\"\"\n", | |
"\n", | |
"input_ids = tokenizer(prompt, return_tensors=\"pt\").input_ids\n", | |
"\n", | |
"original_model_outputs = original_model.generate(input_ids=input_ids, generation_config=GenerationConfig(max_new_tokens=200, num_beams=1))\n", | |
"original_model_text_output = tokenizer.decode(original_model_outputs[0], skip_special_tokens=True)\n", | |
"\n", | |
"instruct_model_outputs = instruct_model.generate(input_ids=input_ids, generation_config=GenerationConfig(max_new_tokens=200, num_beams=1))\n", | |
"instruct_model_text_output = tokenizer.decode(instruct_model_outputs[0], skip_special_tokens=True)\n", | |
"\n", | |
"print(dash_line)\n", | |
"print(f'BASELINE HUMAN SUMMARY:\\n{human_baseline_summary}')\n", | |
"print(dash_line)\n", | |
"print(f'ORIGINAL MODEL:\\n{original_model_text_output}')\n", | |
"print(dash_line)\n", | |
"print(f'INSTRUCT MODEL:\\n{instruct_model_text_output}')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "G24gh9S7EAxN" | |
}, | |
"source": [ | |
"<a name='2.4'></a>\n", | |
"### 2.4 - Evaluate the Model Quantitatively (with ROUGE Metric)\n", | |
"\n", | |
"The [ROUGE metric](https://en.wikipedia.org/wiki/ROUGE_(metric)) helps quantify the validity of summarizations produced by models. It compares summarizations to a \"baseline\" summary which is usually created by a human. While not perfect, it does indicate the overall increase in summarization effectiveness that we have accomplished by fine-tuning." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "rJPL4tCEEAxN" | |
}, | |
"outputs": [], | |
"source": [ | |
"rouge = evaluate.load('rouge')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "kfN4QTeuEAxO" | |
}, | |
"source": [ | |
"Generate the outputs for the sample of the test dataset (only 10 dialogues and summaries to save time), and save the results." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "9hmkLHspEAxO" | |
}, | |
"outputs": [], | |
"source": [ | |
"dialogues = dataset['test'][0:10]['dialogue']\n", | |
"human_baseline_summaries = dataset['test'][0:10]['summary']\n", | |
"\n", | |
"original_model_summaries = []\n", | |
"instruct_model_summaries = []\n", | |
"\n", | |
"for _, dialogue in enumerate(dialogues):\n", | |
" prompt = f\"\"\"\n", | |
"Summarize the following conversation.\n", | |
"\n", | |
"{dialogue}\n", | |
"\n", | |
"Summary: \"\"\"\n", | |
" input_ids = tokenizer(prompt, return_tensors=\"pt\").input_ids\n", | |
"\n", | |
" original_model_outputs = original_model.generate(input_ids=input_ids, generation_config=GenerationConfig(max_new_tokens=200))\n", | |
" original_model_text_output = tokenizer.decode(original_model_outputs[0], skip_special_tokens=True)\n", | |
" original_model_summaries.append(original_model_text_output)\n", | |
"\n", | |
" instruct_model_outputs = instruct_model.generate(input_ids=input_ids, generation_config=GenerationConfig(max_new_tokens=200))\n", | |
" instruct_model_text_output = tokenizer.decode(instruct_model_outputs[0], skip_special_tokens=True)\n", | |
" instruct_model_summaries.append(instruct_model_text_output)\n", | |
"\n", | |
"zipped_summaries = list(zip(human_baseline_summaries, original_model_summaries, instruct_model_summaries))\n", | |
"\n", | |
"df = pd.DataFrame(zipped_summaries, columns = ['human_baseline_summaries', 'original_model_summaries', 'instruct_model_summaries'])\n", | |
"df" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "ct_zRsghEAxO" | |
}, | |
"source": [ | |
"Evaluate the models computing ROUGE metrics. Notice the improvement in the results!" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "VzQyHvPsEAxP" | |
}, | |
"outputs": [], | |
"source": [ | |
"original_model_results = rouge.compute(\n", | |
" predictions=original_model_summaries,\n", | |
" references=human_baseline_summaries[0:len(original_model_summaries)],\n", | |
" use_aggregator=True,\n", | |
" use_stemmer=True,\n", | |
")\n", | |
"\n", | |
"instruct_model_results = rouge.compute(\n", | |
" predictions=instruct_model_summaries,\n", | |
" references=human_baseline_summaries[0:len(instruct_model_summaries)],\n", | |
" use_aggregator=True,\n", | |
" use_stemmer=True,\n", | |
")\n", | |
"\n", | |
"print('ORIGINAL MODEL:')\n", | |
"print(original_model_results)\n", | |
"print('INSTRUCT MODEL:')\n", | |
"print(instruct_model_results)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "s9QIkOTlEAxP" | |
}, | |
"source": [ | |
"The file `data/dialogue-summary-training-results.csv` contains a pre-populated list of all model results which you can use to evaluate on a larger section of data. Let's do that for each of the models:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "D1fct5M_EAxP" | |
}, | |
"outputs": [], | |
"source": [ | |
"results = pd.read_csv(\"data/dialogue-summary-training-results.csv\")\n", | |
"\n", | |
"human_baseline_summaries = results['human_baseline_summaries'].values\n", | |
"original_model_summaries = results['original_model_summaries'].values\n", | |
"instruct_model_summaries = results['instruct_model_summaries'].values\n", | |
"\n", | |
"original_model_results = rouge.compute(\n", | |
" predictions=original_model_summaries,\n", | |
" references=human_baseline_summaries[0:len(original_model_summaries)],\n", | |
" use_aggregator=True,\n", | |
" use_stemmer=True,\n", | |
")\n", | |
"\n", | |
"instruct_model_results = rouge.compute(\n", | |
" predictions=instruct_model_summaries,\n", | |
" references=human_baseline_summaries[0:len(instruct_model_summaries)],\n", | |
" use_aggregator=True,\n", | |
" use_stemmer=True,\n", | |
")\n", | |
"\n", | |
"print('ORIGINAL MODEL:')\n", | |
"print(original_model_results)\n", | |
"print('INSTRUCT MODEL:')\n", | |
"print(instruct_model_results)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "ZFdtINnvEAxP" | |
}, | |
"source": [ | |
"The results show substantial improvement in all ROUGE metrics:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "E1VSj7GbEAxQ" | |
}, | |
"outputs": [], | |
"source": [ | |
"print(\"Absolute percentage improvement of INSTRUCT MODEL over HUMAN BASELINE\")\n", | |
"\n", | |
"improvement = (np.array(list(instruct_model_results.values())) - np.array(list(original_model_results.values())))\n", | |
"for key, value in zip(instruct_model_results.keys(), improvement):\n", | |
" print(f'{key}: {value*100:.2f}%')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "SgLUf7-wEAxQ" | |
}, | |
"source": [ | |
"<a name='3'></a>\n", | |
"## 3 - Perform Parameter Efficient Fine-Tuning (PEFT)\n", | |
"\n", | |
"Now, let's perform **Parameter Efficient Fine-Tuning (PEFT)** fine-tuning as opposed to \"full fine-tuning\" as you did above. PEFT is a form of instruction fine-tuning that is much more efficient than full fine-tuning - with comparable evaluation results as you will see soon.\n", | |
"\n", | |
"PEFT is a generic term that includes **Low-Rank Adaptation (LoRA)** and prompt tuning (which is NOT THE SAME as prompt engineering!). In most cases, when someone says PEFT, they typically mean LoRA. LoRA, at a very high level, allows the user to fine-tune their model using fewer compute resources (in some cases, a single GPU). After fine-tuning for a specific task, use case, or tenant with LoRA, the result is that the original LLM remains unchanged and a newly-trained “LoRA adapter” emerges. This LoRA adapter is much, much smaller than the original LLM - on the order of a single-digit % of the original LLM size (MBs vs GBs). \n", | |
"\n", | |
"That said, at inference time, the LoRA adapter needs to be reunited and combined with its original LLM to serve the inference request. The benefit, however, is that many LoRA adapters can re-use the original LLM which reduces overall memory requirements when serving multiple tasks and use cases." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "_o3lDrh-EAxR" | |
}, | |
"source": [ | |
"<a name='3.1'></a>\n", | |
"### 3.1 - Setup the PEFT/LoRA model for Fine-Tuning\n", | |
"\n", | |
"You need to set up the PEFT/LoRA model for fine-tuning with a new layer/parameter adapter. Using PEFT/LoRA, you are freezing the underlying LLM and only training the adapter. Have a look at the LoRA configuration below. Note the rank (`r`) hyper-parameter, which defines the rank/dimension of the adapter to be trained." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "9xICIgHtEAxR" | |
}, | |
"outputs": [], | |
"source": [ | |
"from peft import LoraConfig, get_peft_model, TaskType\n", | |
"\n", | |
"lora_config = LoraConfig(\n", | |
" r=32, # Rank\n", | |
" lora_alpha=32,\n", | |
" target_modules=[\"q\", \"v\"],\n", | |
" lora_dropout=0.05,\n", | |
" bias=\"none\",\n", | |
" task_type=TaskType.SEQ_2_SEQ_LM # FLAN-T5\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "gyk3gVAEEAxR" | |
}, | |
"source": [ | |
"Add LoRA adapter layers/parameters to the original LLM to be trained." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "U6hPaxbOEAxR" | |
}, | |
"outputs": [], | |
"source": [ | |
"peft_model = get_peft_model(original_model,\n", | |
" lora_config)\n", | |
"print(print_number_of_trainable_model_parameters(peft_model))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "FmT8AFlHEAxS" | |
}, | |
"source": [ | |
"<a name='3.2'></a>\n", | |
"### 3.2 - Train PEFT Adapter\n", | |
"\n", | |
"Define training arguments and create `Trainer` instance." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "TfjWpO7kEAxS" | |
}, | |
"outputs": [], | |
"source": [ | |
"output_dir = f'./peft-dialogue-summary-training-{str(int(time.time()))}'\n", | |
"\n", | |
"peft_training_args = TrainingArguments(\n", | |
" output_dir=output_dir,\n", | |
" auto_find_batch_size=True,\n", | |
" learning_rate=1e-3, # Higher learning rate than full fine-tuning.\n", | |
" num_train_epochs=1,\n", | |
" logging_steps=1,\n", | |
" max_steps=1\n", | |
")\n", | |
"\n", | |
"peft_trainer = Trainer(\n", | |
" model=peft_model,\n", | |
" args=peft_training_args,\n", | |
" train_dataset=tokenized_datasets[\"train\"],\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "wNTWrPq4EAxS" | |
}, | |
"source": [ | |
"Now everything is ready to train the PEFT adapter and save the model.\n", | |
"\n", | |
"<img src=\"\" alt=\"Time alert open medium\"/>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "2o3xyowvEAxT" | |
}, | |
"outputs": [], | |
"source": [ | |
"peft_trainer.train()\n", | |
"\n", | |
"peft_model_path=\"./peft-dialogue-summary-checkpoint-local\"\n", | |
"\n", | |
"peft_trainer.model.save_pretrained(peft_model_path)\n", | |
"tokenizer.save_pretrained(peft_model_path)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "3Wm-BRfaEAxT" | |
}, | |
"source": [ | |
"<img src=\"\" alt=\"Time alert close\"/>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "NhOlcAt1EAxU" | |
}, | |
"source": [ | |
"That training was performed on a subset of data. To load a fully trained PEFT model, read a checkpoint of a PEFT model from S3." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "hRk-k8zqEAxU" | |
}, | |
"outputs": [], | |
"source": [ | |
"!aws s3 cp --recursive s3://dlai-generative-ai/models/peft-dialogue-summary-checkpoint/ ./peft-dialogue-summary-checkpoint-from-s3/" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "u_es2k_aEAxU" | |
}, | |
"source": [ | |
"Check that the size of this model is much less than the original LLM:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "95o3Ky3PEAxV" | |
}, | |
"outputs": [], | |
"source": [ | |
"!ls -al ./peft-dialogue-summary-checkpoint-from-s3/adapter_model.bin" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "YG9WZsgTEAxV" | |
}, | |
"source": [ | |
"Prepare this model by adding an adapter to the original FLAN-T5 model. You are setting `is_trainable=False` because the plan is only to perform inference with this PEFT model. If you were preparing the model for further training, you would set `is_trainable=True`." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "KfYnO-pbEAxV" | |
}, | |
"outputs": [], | |
"source": [ | |
"from peft import PeftModel, PeftConfig\n", | |
"\n", | |
"peft_model_base = AutoModelForSeq2SeqLM.from_pretrained(\"google/flan-t5-base\", torch_dtype=torch.bfloat16)\n", | |
"tokenizer = AutoTokenizer.from_pretrained(\"google/flan-t5-base\")\n", | |
"\n", | |
"peft_model = PeftModel.from_pretrained(peft_model_base,\n", | |
" './peft-dialogue-summary-checkpoint-from-s3/',\n", | |
" torch_dtype=torch.bfloat16,\n", | |
" is_trainable=False)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"tags": [], | |
"id": "QZVdZLeBEAxV" | |
}, | |
"source": [ | |
"The number of trainable parameters will be `0` due to `is_trainable=False` setting:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "z4eyyUS2EAxW" | |
}, | |
"outputs": [], | |
"source": [ | |
"print(print_number_of_trainable_model_parameters(peft_model))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "UIE-oGmCEAxW" | |
}, | |
"source": [ | |
"<a name='3.3'></a>\n", | |
"### 3.3 - Evaluate the Model Qualitatively (Human Evaluation)\n", | |
"\n", | |
"Make inferences for the same example as in sections [1.3](#1.3) and [2.3](#2.3), with the original model, fully fine-tuned and PEFT model." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "9F1obOzJEAxW" | |
}, | |
"outputs": [], | |
"source": [ | |
"index = 200\n", | |
"dialogue = dataset['test'][index]['dialogue']\n", | |
"baseline_human_summary = dataset['test'][index]['summary']\n", | |
"\n", | |
"prompt = f\"\"\"\n", | |
"Summarize the following conversation.\n", | |
"\n", | |
"{dialogue}\n", | |
"\n", | |
"Summary: \"\"\"\n", | |
"\n", | |
"input_ids = tokenizer(prompt, return_tensors=\"pt\").input_ids\n", | |
"\n", | |
"original_model_outputs = original_model.generate(input_ids=input_ids, generation_config=GenerationConfig(max_new_tokens=200, num_beams=1))\n", | |
"original_model_text_output = tokenizer.decode(original_model_outputs[0], skip_special_tokens=True)\n", | |
"\n", | |
"instruct_model_outputs = instruct_model.generate(input_ids=input_ids, generation_config=GenerationConfig(max_new_tokens=200, num_beams=1))\n", | |
"instruct_model_text_output = tokenizer.decode(instruct_model_outputs[0], skip_special_tokens=True)\n", | |
"\n", | |
"peft_model_outputs = peft_model.generate(input_ids=input_ids, generation_config=GenerationConfig(max_new_tokens=200, num_beams=1))\n", | |
"peft_model_text_output = tokenizer.decode(peft_model_outputs[0], skip_special_tokens=True)\n", | |
"\n", | |
"print(dash_line)\n", | |
"print(f'BASELINE HUMAN SUMMARY:\\n{human_baseline_summary}')\n", | |
"print(dash_line)\n", | |
"print(f'ORIGINAL MODEL:\\n{original_model_text_output}')\n", | |
"print(dash_line)\n", | |
"print(f'INSTRUCT MODEL:\\n{instruct_model_text_output}')\n", | |
"print(dash_line)\n", | |
"print(f'PEFT MODEL: {peft_model_text_output}')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "zMzeSAbcEAxX" | |
}, | |
"source": [ | |
"<a name='3.4'></a>\n", | |
"### 3.4 - Evaluate the Model Quantitatively (with ROUGE Metric)\n", | |
"Perform inferences for the sample of the test dataset (only 10 dialogues and summaries to save time)." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "hvdVyhxyEAxX" | |
}, | |
"outputs": [], | |
"source": [ | |
"dialogues = dataset['test'][0:10]['dialogue']\n", | |
"human_baseline_summaries = dataset['test'][0:10]['summary']\n", | |
"\n", | |
"original_model_summaries = []\n", | |
"instruct_model_summaries = []\n", | |
"peft_model_summaries = []\n", | |
"\n", | |
"for idx, dialogue in enumerate(dialogues):\n", | |
" prompt = f\"\"\"\n", | |
"Summarize the following conversation.\n", | |
"\n", | |
"{dialogue}\n", | |
"\n", | |
"Summary: \"\"\"\n", | |
"\n", | |
" input_ids = tokenizer(prompt, return_tensors=\"pt\").input_ids\n", | |
"\n", | |
" human_baseline_text_output = human_baseline_summaries[idx]\n", | |
"\n", | |
" original_model_outputs = original_model.generate(input_ids=input_ids, generation_config=GenerationConfig(max_new_tokens=200))\n", | |
" original_model_text_output = tokenizer.decode(original_model_outputs[0], skip_special_tokens=True)\n", | |
"\n", | |
" instruct_model_outputs = instruct_model.generate(input_ids=input_ids, generation_config=GenerationConfig(max_new_tokens=200))\n", | |
" instruct_model_text_output = tokenizer.decode(instruct_model_outputs[0], skip_special_tokens=True)\n", | |
"\n", | |
" peft_model_outputs = peft_model.generate(input_ids=input_ids, generation_config=GenerationConfig(max_new_tokens=200))\n", | |
" peft_model_text_output = tokenizer.decode(peft_model_outputs[0], skip_special_tokens=True)\n", | |
"\n", | |
" original_model_summaries.append(original_model_text_output)\n", | |
" instruct_model_summaries.append(instruct_model_text_output)\n", | |
" peft_model_summaries.append(peft_model_text_output)\n", | |
"\n", | |
"zipped_summaries = list(zip(human_baseline_summaries, original_model_summaries, instruct_model_summaries, peft_model_summaries))\n", | |
"\n", | |
"df = pd.DataFrame(zipped_summaries, columns = ['human_baseline_summaries', 'original_model_summaries', 'instruct_model_summaries', 'peft_model_summaries'])\n", | |
"df" | |
] | |
}, | |
{ | |
"cell_type": "raw", | |
"metadata": { | |
"id": "V7tSkmCCEAxX" | |
}, | |
"source": [ | |
"Compute ROUGE score for this subset of the data." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "bTHi7-WREAxX" | |
}, | |
"outputs": [], | |
"source": [ | |
"rouge = evaluate.load('rouge')\n", | |
"\n", | |
"original_model_results = rouge.compute(\n", | |
" predictions=original_model_summaries,\n", | |
" references=human_baseline_summaries[0:len(original_model_summaries)],\n", | |
" use_aggregator=True,\n", | |
" use_stemmer=True,\n", | |
")\n", | |
"\n", | |
"instruct_model_results = rouge.compute(\n", | |
" predictions=instruct_model_summaries,\n", | |
" references=human_baseline_summaries[0:len(instruct_model_summaries)],\n", | |
" use_aggregator=True,\n", | |
" use_stemmer=True,\n", | |
")\n", | |
"\n", | |
"peft_model_results = rouge.compute(\n", | |
" predictions=peft_model_summaries,\n", | |
" references=human_baseline_summaries[0:len(peft_model_summaries)],\n", | |
" use_aggregator=True,\n", | |
" use_stemmer=True,\n", | |
")\n", | |
"\n", | |
"print('ORIGINAL MODEL:')\n", | |
"print(original_model_results)\n", | |
"print('INSTRUCT MODEL:')\n", | |
"print(instruct_model_results)\n", | |
"print('PEFT MODEL:')\n", | |
"print(peft_model_results)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "zGa8C_cVEAxY" | |
}, | |
"source": [ | |
"Notice, that PEFT model results are not too bad, while the training process was much easier!" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "koXa3pU4EAxY" | |
}, | |
"source": [ | |
"You already computed ROUGE score on the full dataset, after loading the results from the `data/dialogue-summary-training-results.csv` file. Load the values for the PEFT model now and check its performance compared to other models." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "5LmuTg0tEAxY" | |
}, | |
"outputs": [], | |
"source": [ | |
"human_baseline_summaries = results['human_baseline_summaries'].values\n", | |
"original_model_summaries = results['original_model_summaries'].values\n", | |
"instruct_model_summaries = results['instruct_model_summaries'].values\n", | |
"peft_model_summaries = results['peft_model_summaries'].values\n", | |
"\n", | |
"original_model_results = rouge.compute(\n", | |
" predictions=original_model_summaries,\n", | |
" references=human_baseline_summaries[0:len(original_model_summaries)],\n", | |
" use_aggregator=True,\n", | |
" use_stemmer=True,\n", | |
")\n", | |
"\n", | |
"instruct_model_results = rouge.compute(\n", | |
" predictions=instruct_model_summaries,\n", | |
" references=human_baseline_summaries[0:len(instruct_model_summaries)],\n", | |
" use_aggregator=True,\n", | |
" use_stemmer=True,\n", | |
")\n", | |
"\n", | |
"peft_model_results = rouge.compute(\n", | |
" predictions=peft_model_summaries,\n", | |
" references=human_baseline_summaries[0:len(peft_model_summaries)],\n", | |
" use_aggregator=True,\n", | |
" use_stemmer=True,\n", | |
")\n", | |
"\n", | |
"print('ORIGINAL MODEL:')\n", | |
"print(original_model_results)\n", | |
"print('INSTRUCT MODEL:')\n", | |
"print(instruct_model_results)\n", | |
"print('PEFT MODEL:')\n", | |
"print(peft_model_results)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "LQCLDj0hEAxZ" | |
}, | |
"source": [ | |
"The results show less of an improvement over full fine-tuning, but the benefits of PEFT typically outweigh the slightly-lower performance metrics.\n", | |
"\n", | |
"Calculate the improvement of PEFT over the original model:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "JC0jrdIoEAxZ" | |
}, | |
"outputs": [], | |
"source": [ | |
"print(\"Absolute percentage improvement of PEFT MODEL over HUMAN BASELINE\")\n", | |
"\n", | |
"improvement = (np.array(list(peft_model_results.values())) - np.array(list(original_model_results.values())))\n", | |
"for key, value in zip(peft_model_results.keys(), improvement):\n", | |
" print(f'{key}: {value*100:.2f}%')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "BIoi8NOjEAxZ" | |
}, | |
"source": [ | |
"Now calculate the improvement of PEFT over a full fine-tuned model:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"tags": [], | |
"id": "Fdh0QDCtEAxZ" | |
}, | |
"outputs": [], | |
"source": [ | |
"print(\"Absolute percentage improvement of PEFT MODEL over INSTRUCT MODEL\")\n", | |
"\n", | |
"improvement = (np.array(list(peft_model_results.values())) - np.array(list(instruct_model_results.values())))\n", | |
"for key, value in zip(peft_model_results.keys(), improvement):\n", | |
" print(f'{key}: {value*100:.2f}%')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "BXjoruG_EAxa" | |
}, | |
"source": [ | |
"Here you see a small percentage decrease in the ROUGE metrics vs. full fine-tuned. However, the training requires much less computing and memory resources (often just a single GPU)." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "S4YvW8CgEAxa" | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"availableInstances": [ | |
{ | |
"_defaultOrder": 0, | |
"_isFastLaunch": true, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 4, | |
"name": "ml.t3.medium", | |
"vcpuNum": 2 | |
}, | |
{ | |
"_defaultOrder": 1, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 8, | |
"name": "ml.t3.large", | |
"vcpuNum": 2 | |
}, | |
{ | |
"_defaultOrder": 2, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 16, | |
"name": "ml.t3.xlarge", | |
"vcpuNum": 4 | |
}, | |
{ | |
"_defaultOrder": 3, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 32, | |
"name": "ml.t3.2xlarge", | |
"vcpuNum": 8 | |
}, | |
{ | |
"_defaultOrder": 4, | |
"_isFastLaunch": true, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 8, | |
"name": "ml.m5.large", | |
"vcpuNum": 2 | |
}, | |
{ | |
"_defaultOrder": 5, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 16, | |
"name": "ml.m5.xlarge", | |
"vcpuNum": 4 | |
}, | |
{ | |
"_defaultOrder": 6, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 32, | |
"name": "ml.m5.2xlarge", | |
"vcpuNum": 8 | |
}, | |
{ | |
"_defaultOrder": 7, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 64, | |
"name": "ml.m5.4xlarge", | |
"vcpuNum": 16 | |
}, | |
{ | |
"_defaultOrder": 8, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 128, | |
"name": "ml.m5.8xlarge", | |
"vcpuNum": 32 | |
}, | |
{ | |
"_defaultOrder": 9, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 192, | |
"name": "ml.m5.12xlarge", | |
"vcpuNum": 48 | |
}, | |
{ | |
"_defaultOrder": 10, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 256, | |
"name": "ml.m5.16xlarge", | |
"vcpuNum": 64 | |
}, | |
{ | |
"_defaultOrder": 11, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 384, | |
"name": "ml.m5.24xlarge", | |
"vcpuNum": 96 | |
}, | |
{ | |
"_defaultOrder": 12, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 8, | |
"name": "ml.m5d.large", | |
"vcpuNum": 2 | |
}, | |
{ | |
"_defaultOrder": 13, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 16, | |
"name": "ml.m5d.xlarge", | |
"vcpuNum": 4 | |
}, | |
{ | |
"_defaultOrder": 14, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 32, | |
"name": "ml.m5d.2xlarge", | |
"vcpuNum": 8 | |
}, | |
{ | |
"_defaultOrder": 15, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 64, | |
"name": "ml.m5d.4xlarge", | |
"vcpuNum": 16 | |
}, | |
{ | |
"_defaultOrder": 16, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 128, | |
"name": "ml.m5d.8xlarge", | |
"vcpuNum": 32 | |
}, | |
{ | |
"_defaultOrder": 17, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 192, | |
"name": "ml.m5d.12xlarge", | |
"vcpuNum": 48 | |
}, | |
{ | |
"_defaultOrder": 18, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 256, | |
"name": "ml.m5d.16xlarge", | |
"vcpuNum": 64 | |
}, | |
{ | |
"_defaultOrder": 19, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 384, | |
"name": "ml.m5d.24xlarge", | |
"vcpuNum": 96 | |
}, | |
{ | |
"_defaultOrder": 20, | |
"_isFastLaunch": false, | |
"category": "General purpose", | |
"gpuNum": 0, | |
"hideHardwareSpecs": true, | |
"memoryGiB": 0, | |
"name": "ml.geospatial.interactive", | |
"supportedImageNames": [ | |
"sagemaker-geospatial-v1-0" | |
], | |
"vcpuNum": 0 | |
}, | |
{ | |
"_defaultOrder": 21, | |
"_isFastLaunch": true, | |
"category": "Compute optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 4, | |
"name": "ml.c5.large", | |
"vcpuNum": 2 | |
}, | |
{ | |
"_defaultOrder": 22, | |
"_isFastLaunch": false, | |
"category": "Compute optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 8, | |
"name": "ml.c5.xlarge", | |
"vcpuNum": 4 | |
}, | |
{ | |
"_defaultOrder": 23, | |
"_isFastLaunch": false, | |
"category": "Compute optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 16, | |
"name": "ml.c5.2xlarge", | |
"vcpuNum": 8 | |
}, | |
{ | |
"_defaultOrder": 24, | |
"_isFastLaunch": false, | |
"category": "Compute optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 32, | |
"name": "ml.c5.4xlarge", | |
"vcpuNum": 16 | |
}, | |
{ | |
"_defaultOrder": 25, | |
"_isFastLaunch": false, | |
"category": "Compute optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 72, | |
"name": "ml.c5.9xlarge", | |
"vcpuNum": 36 | |
}, | |
{ | |
"_defaultOrder": 26, | |
"_isFastLaunch": false, | |
"category": "Compute optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 96, | |
"name": "ml.c5.12xlarge", | |
"vcpuNum": 48 | |
}, | |
{ | |
"_defaultOrder": 27, | |
"_isFastLaunch": false, | |
"category": "Compute optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 144, | |
"name": "ml.c5.18xlarge", | |
"vcpuNum": 72 | |
}, | |
{ | |
"_defaultOrder": 28, | |
"_isFastLaunch": false, | |
"category": "Compute optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 192, | |
"name": "ml.c5.24xlarge", | |
"vcpuNum": 96 | |
}, | |
{ | |
"_defaultOrder": 29, | |
"_isFastLaunch": true, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 16, | |
"name": "ml.g4dn.xlarge", | |
"vcpuNum": 4 | |
}, | |
{ | |
"_defaultOrder": 30, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 32, | |
"name": "ml.g4dn.2xlarge", | |
"vcpuNum": 8 | |
}, | |
{ | |
"_defaultOrder": 31, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 64, | |
"name": "ml.g4dn.4xlarge", | |
"vcpuNum": 16 | |
}, | |
{ | |
"_defaultOrder": 32, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 128, | |
"name": "ml.g4dn.8xlarge", | |
"vcpuNum": 32 | |
}, | |
{ | |
"_defaultOrder": 33, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 4, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 192, | |
"name": "ml.g4dn.12xlarge", | |
"vcpuNum": 48 | |
}, | |
{ | |
"_defaultOrder": 34, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 256, | |
"name": "ml.g4dn.16xlarge", | |
"vcpuNum": 64 | |
}, | |
{ | |
"_defaultOrder": 35, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 61, | |
"name": "ml.p3.2xlarge", | |
"vcpuNum": 8 | |
}, | |
{ | |
"_defaultOrder": 36, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 4, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 244, | |
"name": "ml.p3.8xlarge", | |
"vcpuNum": 32 | |
}, | |
{ | |
"_defaultOrder": 37, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 8, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 488, | |
"name": "ml.p3.16xlarge", | |
"vcpuNum": 64 | |
}, | |
{ | |
"_defaultOrder": 38, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 8, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 768, | |
"name": "ml.p3dn.24xlarge", | |
"vcpuNum": 96 | |
}, | |
{ | |
"_defaultOrder": 39, | |
"_isFastLaunch": false, | |
"category": "Memory Optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 16, | |
"name": "ml.r5.large", | |
"vcpuNum": 2 | |
}, | |
{ | |
"_defaultOrder": 40, | |
"_isFastLaunch": false, | |
"category": "Memory Optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 32, | |
"name": "ml.r5.xlarge", | |
"vcpuNum": 4 | |
}, | |
{ | |
"_defaultOrder": 41, | |
"_isFastLaunch": false, | |
"category": "Memory Optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 64, | |
"name": "ml.r5.2xlarge", | |
"vcpuNum": 8 | |
}, | |
{ | |
"_defaultOrder": 42, | |
"_isFastLaunch": false, | |
"category": "Memory Optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 128, | |
"name": "ml.r5.4xlarge", | |
"vcpuNum": 16 | |
}, | |
{ | |
"_defaultOrder": 43, | |
"_isFastLaunch": false, | |
"category": "Memory Optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 256, | |
"name": "ml.r5.8xlarge", | |
"vcpuNum": 32 | |
}, | |
{ | |
"_defaultOrder": 44, | |
"_isFastLaunch": false, | |
"category": "Memory Optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 384, | |
"name": "ml.r5.12xlarge", | |
"vcpuNum": 48 | |
}, | |
{ | |
"_defaultOrder": 45, | |
"_isFastLaunch": false, | |
"category": "Memory Optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 512, | |
"name": "ml.r5.16xlarge", | |
"vcpuNum": 64 | |
}, | |
{ | |
"_defaultOrder": 46, | |
"_isFastLaunch": false, | |
"category": "Memory Optimized", | |
"gpuNum": 0, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 768, | |
"name": "ml.r5.24xlarge", | |
"vcpuNum": 96 | |
}, | |
{ | |
"_defaultOrder": 47, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 16, | |
"name": "ml.g5.xlarge", | |
"vcpuNum": 4 | |
}, | |
{ | |
"_defaultOrder": 48, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 32, | |
"name": "ml.g5.2xlarge", | |
"vcpuNum": 8 | |
}, | |
{ | |
"_defaultOrder": 49, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 64, | |
"name": "ml.g5.4xlarge", | |
"vcpuNum": 16 | |
}, | |
{ | |
"_defaultOrder": 50, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 128, | |
"name": "ml.g5.8xlarge", | |
"vcpuNum": 32 | |
}, | |
{ | |
"_defaultOrder": 51, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 1, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 256, | |
"name": "ml.g5.16xlarge", | |
"vcpuNum": 64 | |
}, | |
{ | |
"_defaultOrder": 52, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 4, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 192, | |
"name": "ml.g5.12xlarge", | |
"vcpuNum": 48 | |
}, | |
{ | |
"_defaultOrder": 53, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 4, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 384, | |
"name": "ml.g5.24xlarge", | |
"vcpuNum": 96 | |
}, | |
{ | |
"_defaultOrder": 54, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 8, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 768, | |
"name": "ml.g5.48xlarge", | |
"vcpuNum": 192 | |
}, | |
{ | |
"_defaultOrder": 55, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 8, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 1152, | |
"name": "ml.p4d.24xlarge", | |
"vcpuNum": 96 | |
}, | |
{ | |
"_defaultOrder": 56, | |
"_isFastLaunch": false, | |
"category": "Accelerated computing", | |
"gpuNum": 8, | |
"hideHardwareSpecs": false, | |
"memoryGiB": 1152, | |
"name": "ml.p4de.24xlarge", | |
"vcpuNum": 96 | |
} | |
], | |
"colab": { | |
"provenance": [], | |
"include_colab_link": true | |
}, | |
"instance_type": "ml.m5.2xlarge", | |
"kernelspec": { | |
"display_name": "Python 3 (Data Science)", | |
"language": "python", | |
"name": "python3__SAGEMAKER_INTERNAL__arn:aws:sagemaker:us-east-1:081325390199:image/datascience-1.0" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.10" | |
}, | |
"vscode": { | |
"interpreter": { | |
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49" | |
} | |
}, | |
"widgets": { | |
"application/vnd.jupyter.widget-state+json": { | |
"1096c91e9b894ac6ba5bfccf064f6aba": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_5b9c0116d8fb4e79a3157e93b0893a41", | |
"IPY_MODEL_d2aa98675f2e4b03b8610e288c0d69bc", | |
"IPY_MODEL_912007d0b7c74b4c9f8c00674b371d0e" | |
], | |
"layout": "IPY_MODEL_5f2e006bd66b4b07934350133a95ebd4" | |
} | |
}, | |
"5b9c0116d8fb4e79a3157e93b0893a41": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_c86322e47baf4379ac91eafdf7656f0e", | |
"placeholder": "", | |
"style": "IPY_MODEL_7fd49a6e66114972863dcd8670bd2b29", | |
"value": "Downloading readme: 100%" | |
} | |
}, | |
"d2aa98675f2e4b03b8610e288c0d69bc": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_5bd0c1718f3a4840a3a03c78246ee9f9", | |
"max": 4563, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_0a92a83c454d494285b1f888e9d74e6e", | |
"value": 4563 | |
} | |
}, | |
"912007d0b7c74b4c9f8c00674b371d0e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_bc5a06121c0642a9b99732609366fd17", | |
"placeholder": "", | |
"style": "IPY_MODEL_920f53e00fb54b7aaa99cf5f5ae74333", | |
"value": " 4.56k/4.56k [00:00<00:00, 99.1kB/s]" | |
} | |
}, | |
"5f2e006bd66b4b07934350133a95ebd4": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"c86322e47baf4379ac91eafdf7656f0e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"7fd49a6e66114972863dcd8670bd2b29": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"5bd0c1718f3a4840a3a03c78246ee9f9": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"0a92a83c454d494285b1f888e9d74e6e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"bc5a06121c0642a9b99732609366fd17": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"920f53e00fb54b7aaa99cf5f5ae74333": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"c5c6f4ce01ad40e5b28d9a9d5c412705": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_606db3fecdf449b09b10badd4a5ee258", | |
"IPY_MODEL_43aeadc663f243e2a5258864769400ef", | |
"IPY_MODEL_a9339e3512fe418c9e02505db8a2957b" | |
], | |
"layout": "IPY_MODEL_336911ced5464006abfe3ad3e22ef320" | |
} | |
}, | |
"606db3fecdf449b09b10badd4a5ee258": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_93c38bf896f447cfbcf26d7aa678ed12", | |
"placeholder": "", | |
"style": "IPY_MODEL_3393511265e042029f67795475ee5a80", | |
"value": "Downloading data files: 100%" | |
} | |
}, | |
"43aeadc663f243e2a5258864769400ef": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_1b77791d24984827ab829baff551ce38", | |
"max": 3, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_f32f49c424bf485c93d09a1353f00c42", | |
"value": 3 | |
} | |
}, | |
"a9339e3512fe418c9e02505db8a2957b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_3045e200414a4db89db9e01dd10d1883", | |
"placeholder": "", | |
"style": "IPY_MODEL_8aadcc2fe84d4a37917e18a8ea5c2cd6", | |
"value": " 3/3 [00:01<00:00, 3.39it/s]" | |
} | |
}, | |
"336911ced5464006abfe3ad3e22ef320": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"93c38bf896f447cfbcf26d7aa678ed12": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"3393511265e042029f67795475ee5a80": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"1b77791d24984827ab829baff551ce38": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"f32f49c424bf485c93d09a1353f00c42": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"3045e200414a4db89db9e01dd10d1883": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"8aadcc2fe84d4a37917e18a8ea5c2cd6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"b2f99933110a4ad0a2167c0f7c8965d0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_79a6a72520a84e45bc3363cbd04667c1", | |
"IPY_MODEL_d50b4107a8244c6187e6ca7d1631e496", | |
"IPY_MODEL_e35b371d716e434b92f9f1abba175663" | |
], | |
"layout": "IPY_MODEL_2ff36758ca534d9eb96812aebef0f537" | |
} | |
}, | |
"79a6a72520a84e45bc3363cbd04667c1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_a9455ec8d0e94de9bc9729e6559e1d23", | |
"placeholder": "", | |
"style": "IPY_MODEL_01303552b86246a2b8098b9d41470b89", | |
"value": "Downloading data: 100%" | |
} | |
}, | |
"d50b4107a8244c6187e6ca7d1631e496": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_e2d2b4ad57f748b29ad0f4a9c5531417", | |
"max": 11321474, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_bf6c1e1e6bce44db88499da220321be2", | |
"value": 11321474 | |
} | |
}, | |
"e35b371d716e434b92f9f1abba175663": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_7eafef4d01d442cb8cbd5661a454f98e", | |
"placeholder": "", | |
"style": "IPY_MODEL_eb382d85c8904497bbf8e9cf410564a8", | |
"value": " 11.3M/11.3M [00:00<00:00, 37.2MB/s]" | |
} | |
}, | |
"2ff36758ca534d9eb96812aebef0f537": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"a9455ec8d0e94de9bc9729e6559e1d23": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"01303552b86246a2b8098b9d41470b89": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"e2d2b4ad57f748b29ad0f4a9c5531417": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"bf6c1e1e6bce44db88499da220321be2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"7eafef4d01d442cb8cbd5661a454f98e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"eb382d85c8904497bbf8e9cf410564a8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"4dea35a56f3247f4a9c25d153b9e42ee": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_d6f4d1efc00d4911b342bd293cb8ad10", | |
"IPY_MODEL_d0a3cb92961b4252a55cd978fbb8dce9", | |
"IPY_MODEL_9cfbd004397c4196bda57c523bf3c9ed" | |
], | |
"layout": "IPY_MODEL_14e850bff4964cc9a8cd200e215d4581" | |
} | |
}, | |
"d6f4d1efc00d4911b342bd293cb8ad10": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_7a6d450616854a75af86c10af47c008c", | |
"placeholder": "", | |
"style": "IPY_MODEL_afe660e760e64c718e64e6aaa2bb579a", | |
"value": "Downloading data: 100%" | |
} | |
}, | |
"d0a3cb92961b4252a55cd978fbb8dce9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_00e4837333ed4532b48ef389ebc15986", | |
"max": 1353147, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_7789a7b1bf5b458fbf6e659b82ba2df7", | |
"value": 1353147 | |
} | |
}, | |
"9cfbd004397c4196bda57c523bf3c9ed": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_55104855344440d3b71e52e467f3900c", | |
"placeholder": "", | |
"style": "IPY_MODEL_043ba44201654a41bde3ececb33e5697", | |
"value": " 1.35M/1.35M [00:00<00:00, 22.9MB/s]" | |
} | |
}, | |
"14e850bff4964cc9a8cd200e215d4581": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"7a6d450616854a75af86c10af47c008c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"afe660e760e64c718e64e6aaa2bb579a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"00e4837333ed4532b48ef389ebc15986": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"7789a7b1bf5b458fbf6e659b82ba2df7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"55104855344440d3b71e52e467f3900c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"043ba44201654a41bde3ececb33e5697": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"ceaffba27a1b4e2593c68e3f4d80c50e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_c7be92c74ed544a28bbdab3918989a8e", | |
"IPY_MODEL_369718b7a8644d4097a29c41c4be2bfa", | |
"IPY_MODEL_76f0879b32904b08bf786769e0f6c6bc" | |
], | |
"layout": "IPY_MODEL_4fd1add2959d4501aa57e32d201b08cc" | |
} | |
}, | |
"c7be92c74ed544a28bbdab3918989a8e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_c8800346491140f682d77f23dddb2b0f", | |
"placeholder": "", | |
"style": "IPY_MODEL_509e71963e084d13adf26b5a19f3fea4", | |
"value": "Downloading data: 100%" | |
} | |
}, | |
"369718b7a8644d4097a29c41c4be2bfa": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_bdf56b395f0949f18c5b2caaf697362a", | |
"max": 441935, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_97a0139d61b0432783a9d2dba6f58ac6", | |
"value": 441935 | |
} | |
}, | |
"76f0879b32904b08bf786769e0f6c6bc": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_e93e352853fd4145aee0b7e57e632388", | |
"placeholder": "", | |
"style": "IPY_MODEL_ae548746efda48b0982770f146f3005b", | |
"value": " 442k/442k [00:00<00:00, 8.44MB/s]" | |
} | |
}, | |
"4fd1add2959d4501aa57e32d201b08cc": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"c8800346491140f682d77f23dddb2b0f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"509e71963e084d13adf26b5a19f3fea4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"bdf56b395f0949f18c5b2caaf697362a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"97a0139d61b0432783a9d2dba6f58ac6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"e93e352853fd4145aee0b7e57e632388": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"ae548746efda48b0982770f146f3005b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"1e906ba4afbc4528949ce4a2d7915465": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_8c8d1f934546422f8ff16e6bdfe2f877", | |
"IPY_MODEL_e7d4eaa4040d443a90563380877914b2", | |
"IPY_MODEL_b450fb441cf7413ea5c16469a2de4f56" | |
], | |
"layout": "IPY_MODEL_11ec3355fb9144a79e278cdf2920b6c9" | |
} | |
}, | |
"8c8d1f934546422f8ff16e6bdfe2f877": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_0ef507a9a8724eae8446049b954a11e5", | |
"placeholder": "", | |
"style": "IPY_MODEL_b9d6b45d0c1e43e790db94dedeb4b675", | |
"value": "Extracting data files: 100%" | |
} | |
}, | |
"e7d4eaa4040d443a90563380877914b2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_b5eb86c855d34d38abb9a11066e4ebea", | |
"max": 3, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_ff4f2550b60d47ebb865bac02909ebda", | |
"value": 3 | |
} | |
}, | |
"b450fb441cf7413ea5c16469a2de4f56": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_5dfbacc96d0d418da04c40ab0a4260e3", | |
"placeholder": "", | |
"style": "IPY_MODEL_e7dbac3120344567aac338d1f49df4a8", | |
"value": " 3/3 [00:00<00:00, 38.70it/s]" | |
} | |
}, | |
"11ec3355fb9144a79e278cdf2920b6c9": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"0ef507a9a8724eae8446049b954a11e5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"b9d6b45d0c1e43e790db94dedeb4b675": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"b5eb86c855d34d38abb9a11066e4ebea": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"ff4f2550b60d47ebb865bac02909ebda": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"5dfbacc96d0d418da04c40ab0a4260e3": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"e7dbac3120344567aac338d1f49df4a8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"b1857a9bba584998b3ef5b226e03d8f3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_1422eb48090a4860954cfff4794c1b79", | |
"IPY_MODEL_857cf3d5c3b24cd5bdbe7e1bd2ad3fdd", | |
"IPY_MODEL_44f4796a71494bb3b140b5a183ca8379" | |
], | |
"layout": "IPY_MODEL_64bf0a03aff3479f90f5b65282468383" | |
} | |
}, | |
"1422eb48090a4860954cfff4794c1b79": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_336ba2958a3143ccba8edd32ec3e0e7f", | |
"placeholder": "", | |
"style": "IPY_MODEL_9697c0ebeef349069216d6436a4214b5", | |
"value": "Generating train split: " | |
} | |
}, | |
"857cf3d5c3b24cd5bdbe7e1bd2ad3fdd": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "info", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_76fbc2ad90e1476483761b22af6ddeab", | |
"max": 1, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_842bc6165d9547dbbcee93fd4f19ca22", | |
"value": 1 | |
} | |
}, | |
"44f4796a71494bb3b140b5a183ca8379": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_ade66f7596444b578dfcc47e2757b6b8", | |
"placeholder": "", | |
"style": "IPY_MODEL_7ea12742e48e47b5b985d5dbd64260d3", | |
"value": " 10000/0 [00:00<00:00, 17388.71 examples/s]" | |
} | |
}, | |
"64bf0a03aff3479f90f5b65282468383": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": "hidden", | |
"width": null | |
} | |
}, | |
"336ba2958a3143ccba8edd32ec3e0e7f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"9697c0ebeef349069216d6436a4214b5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"76fbc2ad90e1476483761b22af6ddeab": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": "20px" | |
} | |
}, | |
"842bc6165d9547dbbcee93fd4f19ca22": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"ade66f7596444b578dfcc47e2757b6b8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"7ea12742e48e47b5b985d5dbd64260d3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"4a874a806ff44d03ac6bbf284f7c2a90": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_79bb8e7e61704f75a35296e31683a203", | |
"IPY_MODEL_b5e9295ddc05492281b37c3156603878", | |
"IPY_MODEL_32081592140442c2996a3ef3d87c4ea5" | |
], | |
"layout": "IPY_MODEL_c59dad50f0dc4999897e34237bc6d94d" | |
} | |
}, | |
"79bb8e7e61704f75a35296e31683a203": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_5780b845877744afb83d530304fdf543", | |
"placeholder": "", | |
"style": "IPY_MODEL_b030f3290622473ea44a4503f599152d", | |
"value": "Generating test split: " | |
} | |
}, | |
"b5e9295ddc05492281b37c3156603878": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "info", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_b91bc6ffab5b408797775495756a1044", | |
"max": 1, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_527461c1e134495cb4fc87e3ea608a68", | |
"value": 1 | |
} | |
}, | |
"32081592140442c2996a3ef3d87c4ea5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_e022ba76a8514c9c9d37d5399d233b82", | |
"placeholder": "", | |
"style": "IPY_MODEL_ed2bc3d03e734da6b3138cb90d4e6578", | |
"value": " 0/0 [00:00<?, ? examples/s]" | |
} | |
}, | |
"c59dad50f0dc4999897e34237bc6d94d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": "hidden", | |
"width": null | |
} | |
}, | |
"5780b845877744afb83d530304fdf543": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"b030f3290622473ea44a4503f599152d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"b91bc6ffab5b408797775495756a1044": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": "20px" | |
} | |
}, | |
"527461c1e134495cb4fc87e3ea608a68": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"e022ba76a8514c9c9d37d5399d233b82": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"ed2bc3d03e734da6b3138cb90d4e6578": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"4f892161e6a6450ab4944d7a58f4c661": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_07d45d8d71c74d83bedab2a1bbe90520", | |
"IPY_MODEL_61b5a9d355ef49e29923d4ef1c763123", | |
"IPY_MODEL_8f8569c9be974f2e9f8b5c0a30c3f83c" | |
], | |
"layout": "IPY_MODEL_bd91a0e6c0d34594b0b946a022d143b0" | |
} | |
}, | |
"07d45d8d71c74d83bedab2a1bbe90520": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_6c528e10dde24dfaa13e836aad6cde9f", | |
"placeholder": "", | |
"style": "IPY_MODEL_0c3ae02fdc4e43a786d2e01de26f2ac9", | |
"value": "Generating validation split: " | |
} | |
}, | |
"61b5a9d355ef49e29923d4ef1c763123": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "info", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_4bb840b66b9f48b9a37b542a029093a1", | |
"max": 1, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_4b9a522cdc364da5bbca5f3bcdefb06b", | |
"value": 1 | |
} | |
}, | |
"8f8569c9be974f2e9f8b5c0a30c3f83c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_17c39390353044658503ef18b743dd13", | |
"placeholder": "", | |
"style": "IPY_MODEL_e91bf91b580846f7b65f37bd496347df", | |
"value": " 0/0 [00:00<?, ? examples/s]" | |
} | |
}, | |
"bd91a0e6c0d34594b0b946a022d143b0": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": "hidden", | |
"width": null | |
} | |
}, | |
"6c528e10dde24dfaa13e836aad6cde9f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"0c3ae02fdc4e43a786d2e01de26f2ac9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"4bb840b66b9f48b9a37b542a029093a1": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": "20px" | |
} | |
}, | |
"4b9a522cdc364da5bbca5f3bcdefb06b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"17c39390353044658503ef18b743dd13": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"e91bf91b580846f7b65f37bd496347df": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"08a82f0f6a52461e86435edf76de69e9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_23e8757a0e974473868db1099ee05de0", | |
"IPY_MODEL_10a447944d1e4ad182f61ac3cd1ed46b", | |
"IPY_MODEL_a9d4181acc0446a3b2e9adf845f84a07" | |
], | |
"layout": "IPY_MODEL_01e36a5c848044399cca88f46892259e" | |
} | |
}, | |
"23e8757a0e974473868db1099ee05de0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_b1e16280af974793827ea68fae0085f8", | |
"placeholder": "", | |
"style": "IPY_MODEL_153432075eba4bd3895da98db1e90ea8", | |
"value": "100%" | |
} | |
}, | |
"10a447944d1e4ad182f61ac3cd1ed46b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_e048a045c2b74d869acec0c55ddfaed2", | |
"max": 3, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_08c4ddec24494d9093e84b99f218a72d", | |
"value": 3 | |
} | |
}, | |
"a9d4181acc0446a3b2e9adf845f84a07": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_5195caeef26447e2aa23d647818beefa", | |
"placeholder": "", | |
"style": "IPY_MODEL_92ab3399866a4edd947d58620eac93c5", | |
"value": " 3/3 [00:00<00:00, 81.76it/s]" | |
} | |
}, | |
"01e36a5c848044399cca88f46892259e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"b1e16280af974793827ea68fae0085f8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"153432075eba4bd3895da98db1e90ea8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"e048a045c2b74d869acec0c55ddfaed2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"08c4ddec24494d9093e84b99f218a72d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"5195caeef26447e2aa23d647818beefa": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"92ab3399866a4edd947d58620eac93c5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"326bada422ce479c928a25ea2504106c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_07943c3a575c4676a3e9b74a808dbff4", | |
"IPY_MODEL_9aee77e78dde4f34af3295d5d9d8efa0", | |
"IPY_MODEL_44f01a82773347d2b4c5ed8eee92466d" | |
], | |
"layout": "IPY_MODEL_629cb55774864fc2abc209791ed04a26" | |
} | |
}, | |
"07943c3a575c4676a3e9b74a808dbff4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_c393ac64aaf54b409b72e8b32bb71849", | |
"placeholder": "", | |
"style": "IPY_MODEL_aed7842d105146378727f679a97c15f0", | |
"value": "Downloading (…)lve/main/config.json: 100%" | |
} | |
}, | |
"9aee77e78dde4f34af3295d5d9d8efa0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_6322f64714cd433db2e4a97fc27253da", | |
"max": 1404, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_f898281e30b848f8aaedc5271d81b5ea", | |
"value": 1404 | |
} | |
}, | |
"44f01a82773347d2b4c5ed8eee92466d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_c4eafedcfc0f4277a164be28ed91f7f5", | |
"placeholder": "", | |
"style": "IPY_MODEL_8d95672f4e8f419b92b3e6610e043fa9", | |
"value": " 1.40k/1.40k [00:00<00:00, 52.7kB/s]" | |
} | |
}, | |
"629cb55774864fc2abc209791ed04a26": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"c393ac64aaf54b409b72e8b32bb71849": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"aed7842d105146378727f679a97c15f0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"6322f64714cd433db2e4a97fc27253da": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"f898281e30b848f8aaedc5271d81b5ea": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"c4eafedcfc0f4277a164be28ed91f7f5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"8d95672f4e8f419b92b3e6610e043fa9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"c9b6d6cc13464da0b86e47521365691a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_b46640318d21480a86c5f26a6f377871", | |
"IPY_MODEL_577172c87ffa4c7f8efaa747ea280db7", | |
"IPY_MODEL_d5bbde84d96f4f83a904764f1935c075" | |
], | |
"layout": "IPY_MODEL_3cf95acb25d7477fbe657d4e4724ccf5" | |
} | |
}, | |
"b46640318d21480a86c5f26a6f377871": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_d57a6648b04f436a925f5b321fad133a", | |
"placeholder": "", | |
"style": "IPY_MODEL_48a313f83d624b6e8def9e5066777b9d", | |
"value": "Downloading pytorch_model.bin: 100%" | |
} | |
}, | |
"577172c87ffa4c7f8efaa747ea280db7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_fc3b5fa5771f48dcabfa8993bed2d888", | |
"max": 990402637, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_17e282275c994a788d118c9586f17b1b", | |
"value": 990402637 | |
} | |
}, | |
"d5bbde84d96f4f83a904764f1935c075": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_edcd543dda2b468b8b0c7171b09c21e9", | |
"placeholder": "", | |
"style": "IPY_MODEL_0cbee7ac328f4fd8936cbb1d15cc0295", | |
"value": " 990M/990M [00:13<00:00, 21.2MB/s]" | |
} | |
}, | |
"3cf95acb25d7477fbe657d4e4724ccf5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"d57a6648b04f436a925f5b321fad133a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"48a313f83d624b6e8def9e5066777b9d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"fc3b5fa5771f48dcabfa8993bed2d888": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"17e282275c994a788d118c9586f17b1b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"edcd543dda2b468b8b0c7171b09c21e9": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"0cbee7ac328f4fd8936cbb1d15cc0295": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"0aa3cf691f264b54b33ce675720a822b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_49d5e569cd7443b98d8ef57f2a22dfe0", | |
"IPY_MODEL_2a04ae2583ec4849972702662c100513", | |
"IPY_MODEL_dcf330e521344e028a602040ecf8b925" | |
], | |
"layout": "IPY_MODEL_46196727e65b44abbe70e80ce93fa04c" | |
} | |
}, | |
"49d5e569cd7443b98d8ef57f2a22dfe0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_b7ed61860be543fe87aef3a9c0d0e186", | |
"placeholder": "", | |
"style": "IPY_MODEL_801f25cf519a4d88903091d37923c4d0", | |
"value": "Downloading (…)neration_config.json: 100%" | |
} | |
}, | |
"2a04ae2583ec4849972702662c100513": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_7ab7d7dd3ba643f284115ff5e60c35de", | |
"max": 147, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_bbcbf14111d64e6eaf001b09f44986da", | |
"value": 147 | |
} | |
}, | |
"dcf330e521344e028a602040ecf8b925": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_f773efbdbc5649cbb41ae6e524ed0658", | |
"placeholder": "", | |
"style": "IPY_MODEL_45facab4790f4704867dbaea42075f58", | |
"value": " 147/147 [00:00<00:00, 3.96kB/s]" | |
} | |
}, | |
"46196727e65b44abbe70e80ce93fa04c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"b7ed61860be543fe87aef3a9c0d0e186": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"801f25cf519a4d88903091d37923c4d0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"7ab7d7dd3ba643f284115ff5e60c35de": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"bbcbf14111d64e6eaf001b09f44986da": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"f773efbdbc5649cbb41ae6e524ed0658": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"45facab4790f4704867dbaea42075f58": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"c5763ee5f0b74473ac578ee6bf18f45f": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_0f5f782ffd2a4029988db283a08771c2", | |
"IPY_MODEL_a83df1fdfde747dca52a20382369487d", | |
"IPY_MODEL_06fa5c3caec14dcea5bd8000a9b31ba9" | |
], | |
"layout": "IPY_MODEL_ab545dcba59b4d0abf4edbb58ddf6eb4" | |
} | |
}, | |
"0f5f782ffd2a4029988db283a08771c2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_bc726731ae184decb5449571d637b293", | |
"placeholder": "", | |
"style": "IPY_MODEL_2c8a21d2d40942b5b72131a88c92550a", | |
"value": "Downloading (…)okenizer_config.json: 100%" | |
} | |
}, | |
"a83df1fdfde747dca52a20382369487d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_d4795ea60745414882c223185216aae2", | |
"max": 2537, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_75f51be04d434025908e1ab58592f107", | |
"value": 2537 | |
} | |
}, | |
"06fa5c3caec14dcea5bd8000a9b31ba9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_fd872046fca245f78afcd8a5bf6d4211", | |
"placeholder": "", | |
"style": "IPY_MODEL_77b63c424df44f15928f395003645d52", | |
"value": " 2.54k/2.54k [00:00<00:00, 60.2kB/s]" | |
} | |
}, | |
"ab545dcba59b4d0abf4edbb58ddf6eb4": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"bc726731ae184decb5449571d637b293": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"2c8a21d2d40942b5b72131a88c92550a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"d4795ea60745414882c223185216aae2": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"75f51be04d434025908e1ab58592f107": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"fd872046fca245f78afcd8a5bf6d4211": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"77b63c424df44f15928f395003645d52": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"531ab63415c84817955f21dc53244ccf": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_dcd648c491f34917a50f7fa1b40c5e79", | |
"IPY_MODEL_0b5f859196f34d1e98c0bf659b21d895", | |
"IPY_MODEL_d2a61d6a06034f40a8a3dcd44353a236" | |
], | |
"layout": "IPY_MODEL_3e83e3390cd140a7a60ab8a84b29b5ed" | |
} | |
}, | |
"dcd648c491f34917a50f7fa1b40c5e79": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_08d48b97dd5d42098df360be26017b8c", | |
"placeholder": "", | |
"style": "IPY_MODEL_59bb1701d3bf4d088ce01628a7360c37", | |
"value": "Downloading spiece.model: 100%" | |
} | |
}, | |
"0b5f859196f34d1e98c0bf659b21d895": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_9b4a2fd0872f48baa2575da99a9f8af0", | |
"max": 791656, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_4e7b515ea90f469fb9f8e86efb50a395", | |
"value": 791656 | |
} | |
}, | |
"d2a61d6a06034f40a8a3dcd44353a236": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_1235436a544e47bf926327fe1a86949d", | |
"placeholder": "", | |
"style": "IPY_MODEL_5336af12fdc848838d974556b929afe7", | |
"value": " 792k/792k [00:00<00:00, 16.8MB/s]" | |
} | |
}, | |
"3e83e3390cd140a7a60ab8a84b29b5ed": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"08d48b97dd5d42098df360be26017b8c": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"59bb1701d3bf4d088ce01628a7360c37": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"9b4a2fd0872f48baa2575da99a9f8af0": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"4e7b515ea90f469fb9f8e86efb50a395": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"1235436a544e47bf926327fe1a86949d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"5336af12fdc848838d974556b929afe7": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"45c1dd52b196455fab81a45d04269639": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_d77adf5a8c2641e9b50e80811b8f9788", | |
"IPY_MODEL_4e6e89e3f30246b6a5574a78f79f4efd", | |
"IPY_MODEL_93021034833341a7ab303c32640d47a1" | |
], | |
"layout": "IPY_MODEL_6da7fc36c03c42248f3c30fdd829213f" | |
} | |
}, | |
"d77adf5a8c2641e9b50e80811b8f9788": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_5b756d27f5874adcbbbb3a9abc49123d", | |
"placeholder": "", | |
"style": "IPY_MODEL_0437110583cb40aca002d85cd41b0570", | |
"value": "Downloading (…)/main/tokenizer.json: 100%" | |
} | |
}, | |
"4e6e89e3f30246b6a5574a78f79f4efd": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_b1b1858c4036480bb3cea7b03095d47f", | |
"max": 2424064, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_7198de671f924f7bbd93d9925a23c088", | |
"value": 2424064 | |
} | |
}, | |
"93021034833341a7ab303c32640d47a1": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_1ab69e6fb35e4a20a051487136d7c3d5", | |
"placeholder": "", | |
"style": "IPY_MODEL_ee6362ae8f7441338b2394d9d68d819c", | |
"value": " 2.42M/2.42M [00:00<00:00, 27.8MB/s]" | |
} | |
}, | |
"6da7fc36c03c42248f3c30fdd829213f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"5b756d27f5874adcbbbb3a9abc49123d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"0437110583cb40aca002d85cd41b0570": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"b1b1858c4036480bb3cea7b03095d47f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"7198de671f924f7bbd93d9925a23c088": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"1ab69e6fb35e4a20a051487136d7c3d5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"ee6362ae8f7441338b2394d9d68d819c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"8765b7fc8c3245038fd551aef4af2b34": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_1d9e1bf3966140509612ac96ba7d7d77", | |
"IPY_MODEL_4bd84fbbe85d48849e56a96cf3e1df77", | |
"IPY_MODEL_2d3cf7e9e57d493b8c98a806791acf37" | |
], | |
"layout": "IPY_MODEL_7d71824251c24e159a428c104b4c2cd5" | |
} | |
}, | |
"1d9e1bf3966140509612ac96ba7d7d77": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_958f053835a7435c8e4dac63a7ee7d4d", | |
"placeholder": "", | |
"style": "IPY_MODEL_203f73973e7e4a218edf2b1ec4866e23", | |
"value": "Downloading (…)cial_tokens_map.json: 100%" | |
} | |
}, | |
"4bd84fbbe85d48849e56a96cf3e1df77": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "success", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_9d490f5e188342cdad257973d668f565", | |
"max": 2201, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_78297beb30b44a74b5668f58df114130", | |
"value": 2201 | |
} | |
}, | |
"2d3cf7e9e57d493b8c98a806791acf37": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_64f315562e474fd79dbff2aab5ed7ecf", | |
"placeholder": "", | |
"style": "IPY_MODEL_970ea2d0bc984a1ca079f8c8e893486a", | |
"value": " 2.20k/2.20k [00:00<00:00, 99.3kB/s]" | |
} | |
}, | |
"7d71824251c24e159a428c104b4c2cd5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"958f053835a7435c8e4dac63a7ee7d4d": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"203f73973e7e4a218edf2b1ec4866e23": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"9d490f5e188342cdad257973d668f565": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"78297beb30b44a74b5668f58df114130": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"64f315562e474fd79dbff2aab5ed7ecf": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"970ea2d0bc984a1ca079f8c8e893486a": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"558a191ed32a4109ad48de643df8a0a4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_70ecbd3b3c1547369180128e1ec79aa6", | |
"IPY_MODEL_9f7d4c0891b0425dbd33bc58ae3bc801", | |
"IPY_MODEL_31bd5275da364f3c83c4137742f0f357" | |
], | |
"layout": "IPY_MODEL_e5862963d91b469e96c02ba02fb4d98e" | |
} | |
}, | |
"70ecbd3b3c1547369180128e1ec79aa6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_4502917400964580ab5516b73b845c19", | |
"placeholder": "", | |
"style": "IPY_MODEL_7789eaf6317e41178354b81ea84099c6", | |
"value": "Map: 100%" | |
} | |
}, | |
"9f7d4c0891b0425dbd33bc58ae3bc801": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_48b7c941386249ff92b6f2a6f148937f", | |
"max": 12460, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_91149940feb54b25a8bfcc5008f5174b", | |
"value": 12460 | |
} | |
}, | |
"31bd5275da364f3c83c4137742f0f357": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_4e962b431a574bb2b2f8cb3552f682c5", | |
"placeholder": "", | |
"style": "IPY_MODEL_3d985dd6e85e4f1a97749f9978913e81", | |
"value": " 12460/12460 [00:14<00:00, 804.45 examples/s]" | |
} | |
}, | |
"e5862963d91b469e96c02ba02fb4d98e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": "hidden", | |
"width": null | |
} | |
}, | |
"4502917400964580ab5516b73b845c19": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"7789eaf6317e41178354b81ea84099c6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"48b7c941386249ff92b6f2a6f148937f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"91149940feb54b25a8bfcc5008f5174b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"4e962b431a574bb2b2f8cb3552f682c5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"3d985dd6e85e4f1a97749f9978913e81": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"72c2dadb3f3b4295b3e68fff13547a88": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_ab72b7fd930948de9b0efce7039f3cf2", | |
"IPY_MODEL_0f3f1bcaba0846c6a0019f175feaf9b9", | |
"IPY_MODEL_298ddade07df4081a8d624e7fc500dcb" | |
], | |
"layout": "IPY_MODEL_0243a32f0fbd48baa44688b86f16bab5" | |
} | |
}, | |
"ab72b7fd930948de9b0efce7039f3cf2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_c4b86c1a570940d989750e3ca323c5a9", | |
"placeholder": "", | |
"style": "IPY_MODEL_26336a992866434b88475ce00347ef31", | |
"value": "Map: 100%" | |
} | |
}, | |
"0f3f1bcaba0846c6a0019f175feaf9b9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_003724e0e64a406f9ae4db96c8437ee7", | |
"max": 1500, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_d4e5b775152e43aab43285dc6dc16d9c", | |
"value": 1500 | |
} | |
}, | |
"298ddade07df4081a8d624e7fc500dcb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_e363ccb35b1b4b399e8fecaf491e999a", | |
"placeholder": "", | |
"style": "IPY_MODEL_0d3625bf98d641659c312071d30249a6", | |
"value": " 1500/1500 [00:01<00:00, 993.68 examples/s]" | |
} | |
}, | |
"0243a32f0fbd48baa44688b86f16bab5": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": "hidden", | |
"width": null | |
} | |
}, | |
"c4b86c1a570940d989750e3ca323c5a9": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"26336a992866434b88475ce00347ef31": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"003724e0e64a406f9ae4db96c8437ee7": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"d4e5b775152e43aab43285dc6dc16d9c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"e363ccb35b1b4b399e8fecaf491e999a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"0d3625bf98d641659c312071d30249a6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"9c6ac910df4c415da00260c181e311e8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_9e5db0c70f894ce5843cdb29f1850188", | |
"IPY_MODEL_617216dc46d447c9807ad19f1907064d", | |
"IPY_MODEL_5782dbc7b9de425ca848890752dc6dc0" | |
], | |
"layout": "IPY_MODEL_60c65dc5c1be4d3fb4fa45db298420ef" | |
} | |
}, | |
"9e5db0c70f894ce5843cdb29f1850188": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_be79fd20d82d43988e3969d8d56f0f07", | |
"placeholder": "", | |
"style": "IPY_MODEL_473757f1644d41abb9f34b2f59e9eddc", | |
"value": "Map: 100%" | |
} | |
}, | |
"617216dc46d447c9807ad19f1907064d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_e5a8de9d09924a2b9cc910af047c1219", | |
"max": 500, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_576c6fe6993f444998a3a7d4a414aba2", | |
"value": 500 | |
} | |
}, | |
"5782dbc7b9de425ca848890752dc6dc0": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_2563a937aa6946f09012f1cd8dca5d9a", | |
"placeholder": "", | |
"style": "IPY_MODEL_c17ab8f0f27a4ac8b04a4b46efeeac10", | |
"value": " 500/500 [00:00<00:00, 954.57 examples/s]" | |
} | |
}, | |
"60c65dc5c1be4d3fb4fa45db298420ef": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": "hidden", | |
"width": null | |
} | |
}, | |
"be79fd20d82d43988e3969d8d56f0f07": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"473757f1644d41abb9f34b2f59e9eddc": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"e5a8de9d09924a2b9cc910af047c1219": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"576c6fe6993f444998a3a7d4a414aba2": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"2563a937aa6946f09012f1cd8dca5d9a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"c17ab8f0f27a4ac8b04a4b46efeeac10": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"ecc14ddd2ce9431ca332f784bf025bcb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_a8af69cad5ec46f99a4879488c211de3", | |
"IPY_MODEL_2b3b8ff697e34ea199e2e95c2770f0aa", | |
"IPY_MODEL_fe557a19be0f4d099f7763e9ba120d10" | |
], | |
"layout": "IPY_MODEL_b870f390fcd14b23839f3c260c53554e" | |
} | |
}, | |
"a8af69cad5ec46f99a4879488c211de3": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_24e89cf83ca045c28c32d625fe12bfd7", | |
"placeholder": "", | |
"style": "IPY_MODEL_3f1a584e2ce345ec945d86c009e37de8", | |
"value": "Filter: 100%" | |
} | |
}, | |
"2b3b8ff697e34ea199e2e95c2770f0aa": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_8e4c6623f58a45cab54b3694db2116b8", | |
"max": 12460, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_31de4552ec1e40858fb99890c2eb0bc5", | |
"value": 12460 | |
} | |
}, | |
"fe557a19be0f4d099f7763e9ba120d10": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_9dd6dfe205444393be17c4f20c5ea4b3", | |
"placeholder": "", | |
"style": "IPY_MODEL_6a26a7e5509d4ca6a4932538db801a82", | |
"value": " 12460/12460 [00:07<00:00, 1505.48 examples/s]" | |
} | |
}, | |
"b870f390fcd14b23839f3c260c53554e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": "hidden", | |
"width": null | |
} | |
}, | |
"24e89cf83ca045c28c32d625fe12bfd7": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"3f1a584e2ce345ec945d86c009e37de8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"8e4c6623f58a45cab54b3694db2116b8": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"31de4552ec1e40858fb99890c2eb0bc5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"9dd6dfe205444393be17c4f20c5ea4b3": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"6a26a7e5509d4ca6a4932538db801a82": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"55e6587e847645ae934c18bdeefd8aac": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_8f737c1823054eff8e3f796903c3a291", | |
"IPY_MODEL_63f0d8a9c76941cea36df0e2965f9d4b", | |
"IPY_MODEL_f6649f305f1f4558a8e8edba1d51751b" | |
], | |
"layout": "IPY_MODEL_7fa33286b5a2429c8e22502c301a7d5f" | |
} | |
}, | |
"8f737c1823054eff8e3f796903c3a291": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_dd1fe652a733458e99e15e11e50b206e", | |
"placeholder": "", | |
"style": "IPY_MODEL_54b0fac1e9264aa7b7f2c2f658061149", | |
"value": "Filter: 100%" | |
} | |
}, | |
"63f0d8a9c76941cea36df0e2965f9d4b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_0a17a79e6d8b49fabf1385a74832938e", | |
"max": 1500, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_2efaf87e29004c0ea7faf31d76129bf9", | |
"value": 1500 | |
} | |
}, | |
"f6649f305f1f4558a8e8edba1d51751b": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_1df90dfc5db542c59552e4b8e6b6cc10", | |
"placeholder": "", | |
"style": "IPY_MODEL_b2ecee78f07743dd9c3d90b123a0ff77", | |
"value": " 1500/1500 [00:01<00:00, 1070.05 examples/s]" | |
} | |
}, | |
"7fa33286b5a2429c8e22502c301a7d5f": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": "hidden", | |
"width": null | |
} | |
}, | |
"dd1fe652a733458e99e15e11e50b206e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"54b0fac1e9264aa7b7f2c2f658061149": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"0a17a79e6d8b49fabf1385a74832938e": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"2efaf87e29004c0ea7faf31d76129bf9": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"1df90dfc5db542c59552e4b8e6b6cc10": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"b2ecee78f07743dd9c3d90b123a0ff77": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"b8129fb0a72d4706b91948701ca80952": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HBoxModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HBoxView", | |
"box_style": "", | |
"children": [ | |
"IPY_MODEL_3e7063891a7b41cb8f13c7dace3e6924", | |
"IPY_MODEL_472eb935a0b0473883617f662946d7bd", | |
"IPY_MODEL_ea6745f1dd8d49eead6642f4618112f5" | |
], | |
"layout": "IPY_MODEL_de6048abfa1d47598cd094a4d9078089" | |
} | |
}, | |
"3e7063891a7b41cb8f13c7dace3e6924": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_16bf286e1dc34f598331c2d9df3f8032", | |
"placeholder": "", | |
"style": "IPY_MODEL_a0706c11bdf64951a9129e6edea0f06e", | |
"value": "Filter: 100%" | |
} | |
}, | |
"472eb935a0b0473883617f662946d7bd": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "FloatProgressModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "ProgressView", | |
"bar_style": "", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_910a3bfa24b74b7abb73383bae73c427", | |
"max": 500, | |
"min": 0, | |
"orientation": "horizontal", | |
"style": "IPY_MODEL_93b452580d824693affff7b5ea6bf75d", | |
"value": 500 | |
} | |
}, | |
"ea6745f1dd8d49eead6642f4618112f5": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_dom_classes": [], | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "HTMLModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/controls", | |
"_view_module_version": "1.5.0", | |
"_view_name": "HTMLView", | |
"description": "", | |
"description_tooltip": null, | |
"layout": "IPY_MODEL_186a694237444a1a97108b70649c35ac", | |
"placeholder": "", | |
"style": "IPY_MODEL_e082af912d2a4b1ea6e8bb160fcea318", | |
"value": " 500/500 [00:00<00:00, 1004.11 examples/s]" | |
} | |
}, | |
"de6048abfa1d47598cd094a4d9078089": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": "hidden", | |
"width": null | |
} | |
}, | |
"16bf286e1dc34f598331c2d9df3f8032": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"a0706c11bdf64951a9129e6edea0f06e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
}, | |
"910a3bfa24b74b7abb73383bae73c427": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"93b452580d824693affff7b5ea6bf75d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "ProgressStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"bar_color": null, | |
"description_width": "" | |
} | |
}, | |
"186a694237444a1a97108b70649c35ac": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"model_module_version": "1.2.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.2.0", | |
"_model_name": "LayoutModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "LayoutView", | |
"align_content": null, | |
"align_items": null, | |
"align_self": null, | |
"border": null, | |
"bottom": null, | |
"display": null, | |
"flex": null, | |
"flex_flow": null, | |
"grid_area": null, | |
"grid_auto_columns": null, | |
"grid_auto_flow": null, | |
"grid_auto_rows": null, | |
"grid_column": null, | |
"grid_gap": null, | |
"grid_row": null, | |
"grid_template_areas": null, | |
"grid_template_columns": null, | |
"grid_template_rows": null, | |
"height": null, | |
"justify_content": null, | |
"justify_items": null, | |
"left": null, | |
"margin": null, | |
"max_height": null, | |
"max_width": null, | |
"min_height": null, | |
"min_width": null, | |
"object_fit": null, | |
"object_position": null, | |
"order": null, | |
"overflow": null, | |
"overflow_x": null, | |
"overflow_y": null, | |
"padding": null, | |
"right": null, | |
"top": null, | |
"visibility": null, | |
"width": null | |
} | |
}, | |
"e082af912d2a4b1ea6e8bb160fcea318": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"model_module_version": "1.5.0", | |
"state": { | |
"_model_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_model_name": "DescriptionStyleModel", | |
"_view_count": null, | |
"_view_module": "@jupyter-widgets/base", | |
"_view_module_version": "1.2.0", | |
"_view_name": "StyleView", | |
"description_width": "" | |
} | |
} | |
} | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment