Skip to content

Instantly share code, notes, and snippets.

View pratos's full-sized avatar
🎯
Focusing

prthamesh pratos

🎯
Focusing
View GitHub Profile
@pratos
pratos / nb.md
Created May 10, 2017 10:36
Run remote jupyter notebook

Run the notebook in the server (remote) * jupyter notebook --no-browser

Run the ssh in the local shell

  • ssh -N -f -L localhost:8888:localhost: user@ip
@pratos
pratos / commands.md
Created May 5, 2017 14:40
Google Cloud Platform Commands
  • Command to authenticate glcoud

    • gcloud auth login
  • Command to chose an existing project

    • gcloud project list
    • gcloud config set core/project <project-name>
  • Command to create and choose a new project *

@pratos
pratos / success.txt
Created April 26, 2017 11:13
'Deep Learning Environment' blogpost
(dlgpu) user@user:~$ python
Python 3.5.3 |Continuum Analytics, Inc.| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import keras
Using TensorFlow backend.
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcudnn.so.5 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locally
@pratos
pratos / deviceQuery_out.txt
Created April 26, 2017 09:52
'Deep Learning environment' Blogpost
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "GeForce GTX 1060 6GB"
CUDA Driver Version / Runtime Version 8.0 / 8.0
CUDA Capability Major/Minor version number: 6.1
Total amount of global memory: 6073 MBytes (6367739904 bytes)
@pratos
pratos / machine_specs.txt
Last active April 26, 2017 07:36
'For blogpost' : Deep Learning machine setup
$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s): 1
NUMA node(s): 1
@pratos
pratos / Dockerfile
Last active April 24, 2017 20:47
'Docker for Data Science' blogpost
# Base image
FROM python:3.5.3-onbuild
# Updating repository sources
RUN apt-get update
# Installing cron and curl
RUN apt-get install cron -yqq \
curl
bleach==2.0.0
cycler==0.10.0
decorator==4.0.11
entrypoints==0.2.2
html5lib==0.999999999
ipykernel==4.6.1
ipython==6.0.0
ipython-genutils==0.2.0
ipywidgets==6.0.0
jedi==0.10.2
@pratos
pratos / softmax.py
Created April 12, 2017 09:42
CS231n Softmax (Cross-entropy loss) - Vectorized
import numpy as np
W = np.array([(0.01,-0.05,0.1,0.05),(0.7,0.2,0.05,0.16),(0.0,-0.45,-0.2, 0.03)]) #Weights
xi = np.array([-15,22,-44,56]) #Input
b = np.array([0.0,0.2,-0.3]) #Bias
delta = 1
y = np.sum((np.dot(W,xi),b), axis=0)
@pratos
pratos / hingeloss.py
Created April 12, 2017 09:30
CS231n Hinge Loss SVM Snippet - Vectorized
import numpy as np
W = np.array([(0.01,-0.05,0.1,0.05),(0.7,0.2,0.05,0.16),(0.0,-0.45,-0.2, 0.03)]) #Weights
xi = np.array([-15,22,-44,56]) #Input
b = np.array([0.0,0.2,-0.3]) #Bias
delta = 1
y = np.sum((np.dot(W,xi),b), axis=0)
@pratos
pratos / jupyter_connect.md
Created April 4, 2017 05:14
Connect to remote Jupyter notebook

Starting notebook in remote

$ ssh remote_user@remote_host
$ cd <repository>
$ jupyter notebook --no-browser

Connecting to the remote notebook

ssh -N -f -L localhost:8888:localhost:8889 remote_user@remote_host