Skip to content

Instantly share code, notes, and snippets.

@prl900
Created November 27, 2019 10:57
Show Gist options
  • Save prl900/0df3493c49ba41b025df4998ea720798 to your computer and use it in GitHub Desktop.
Save prl900/0df3493c49ba41b025df4998ea720798 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"\n",
"import numpy as np\n",
"from matplotlib import pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"625.0"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD6CAYAAABnLjEDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAOUklEQVR4nO3dX4hc93nG8e8zs7te/bErKxGKojW1i02CKY0NwnVwL4pcg+qESBcm2ISigEA3LTg0ECstFAK9sG/iBNobEZuoEGKnTkDCBIqqKIRCsC3ZjmtbJFIMITKypWIJR3Vje7VvL/ZYWcs7u7Mz53f2HL3PB5adc2bmd949M8+eeX9zdlYRgZld/XqrXYCZNcNhN0vCYTdLwmE3S8JhN0vCYTdLYqywS9oh6ZeSTknaV1dRZlY/jfo+u6Q+8CvgHuA08BzwQES8Oug+U7omplk30vauGurcwEWU2w3d2g+1WPAj/9/cRd6b+/2iO2FijE3cAZyKiNcAJD0B7AQGhn2adfy57h5jkwOUeoBVf5ejXndqBaBQvSr1mPUK7Ie6ai1RGx/elz+/eHDw5sfYxlbgtwuWT1frzKyFxjmyD0XSXmAvwDRrS2/OzAYYJ+yvAzcsWJ6p1n1IROwH9gP80cTHo7/+ujE2SbGXlV17Gdyl1qX1rUCJfVnoJfuytb7TH3jVOBU9B9wi6SZJU8D9wKExxjOzgkY+skfErKS/A/4D6AOPR8QrtVVmZrUaq2ePiB8DP66pFjMryGfQmSVRfDb+Q3p9dN21K7tPsfdjOzRxVmwyrp5xY5X25Uing7V8X37ESvftucHHbx/ZzZJw2M2ScNjNkmi2Z+/3iGuXOYuuQz1VFOvTahqnQ/MHrd+XV2rp8zSWOJnHR3azJBx2syQcdrMkGu3Zo9djbv30H5ZLfc5ATe/7FukjS/3MxXrpIsMWfF+6/iGLzSeUGLY/eFAf2c2ScNjNknDYzZJw2M2SaHaCri/ev3ZqvEEKzZW0fbLwSl2aOCtXa3vHXa1JvVji8O0ju1kSDrtZEg67WRINf3gFzK4b/OmXi1mqBxlLsd6/OyfidK2XrqXezp18tLKbh0+qMTOH3SwJh90sCYfdLInmT6pZt/Tvl7ZMdAyjS7VCTZOHbZ58W0yyen1SjZk57GZZOOxmSTT8STXw/to/NCVt7XuaHreek0VqGGMRXXuMunRSU5F5JPfsZuawmyXhsJsl0XzPvq6dPVXXetNO9ehdqhU6/Zi5Zzczh90sC4fdLIllwy7pcUlnJb28YN1GSYclnay+X1+2TDMb1zATdN8F/gX4twXr9gFHIuJhSfuq5YeWGyh6MLvMf2z+iK5N7pTQtX3QsXHbfFLTij+pZpwJuoj4GfDWFat3AgeqyweAXSsrycyaNmrPvjkizlSX3wA2D7qhpL2Sjkk6NvvO/464OTMb19gTdBERQCxx/f6I2BYR2ybWrht3c2Y2olFPqnlT0paIOCNpC3B2mDtFDy6tWeY2xXqfgb+PRuaed16r90Opn7nMsON/eMUS9x/1yH4I2F1d3g0cHHEcM2vIMG+9fR/4OfApSacl7QEeBu6RdBL4q2rZzFps2ZfxEfHAgKvurrkWMyuo2T+EEcyuWdDtdK6HLNSptXk/tLkfX0SZP+Tp0OPuP4QxM4fdLAmH3SwJh90siWb/ZXMfLq2bq3/cYpM9BSZm6qq1U3/I06EJrqLjNrAfeoO34SO7WRIOu1kSDrtZEs327ApizaUxx6inlI+OW08/VeIfknSt51Xn6i0xaJl9sGyp7tnNzGE3S8JhN0ui2Z69F0ysmV3yJuX6vfrHLdLrUW4fdK/efI/ZuOP03LObmcNuloTDbpaEw26WRKMTdL1esGbtu5eXS50f0+vQhFHJcXsl/jt2sVrbMcG1mGLPpwJj9nuD/9DMR3azJBx2syQcdrMkGu3Z+705Nqz5fe3jdqlHL1VrsXFr+N8nbe/zOz/ugsdowj27mTnsZkk47GZJNNqzT/Tm2Dj9zlhj9FTgAytpd5/W5n580XGL7csyj32/xNzMKu3biSX2kY/sZkk47GZJOOxmSTjsZkk0O0GnOTZNX1zRfdo8KVNuEqZbk5B9ulPv1b4PJnuDP73ZR3azJBx2sySWDbukGyQdlfSqpFckPVit3yjpsKST1ffry5drZqMapmefBb4aEc9LuhY4Lukw8GXgSEQ8LGkfsA94aKmBJnuX2HzN25eX+6V600K9tOstOIfSsfmPOuotUdukxujZI+JMRDxfXf4dcALYCuwEDlQ3OwDsGrtSMytmRT27pBuB24FngM0Rcaa66g1gc62VmVmthg67pPXAD4GvRMTbC6+LiIDFX9dI2ivpmKRj75x/d7GbmFkDhgq7pEnmg/69iPhRtfpNSVuq67cAZxe7b0Tsj4htEbFt7fXX1FGzmY1g2Qk6SQIeA05ExDcXXHUI2A08XH0/uNxYU5plZuqtEUsdrEsnSpSb5GvvyUeLjltDvW2efFt03AYe+ykN/vdqw8zG3wX8DfDfkl6s1v0D8yH/gaQ9wG+AL45arJmVt2zYI+K/GPwR13fXW46ZleIz6MySaPQPYSZ1iU9Onh9rjFJ9T7GTOor10u3dD+V66fb+zFdarfmEsU6qMbOrg8NuloTDbpZE4z371okLK7pPuT+QKPX+cXs/FKPce+al5jvq1y/0r4NLHTX7K7z91BLzGj6ymyXhsJsl4bCbJeGwmyXR6ATdFHN8sv/ekrfpq8wMSh2/1foDzxoeT+8jP3M92ylRb6/Q8aHc416m3l6h50Jf49U7qcEnrfnIbpaEw26WhMNulkTDJ9X02TKx/vJy7xMnm9y82VXv+Es6Pug6H9nNknDYzZJw2M2SaLRnZ/JP6X3iWKObNLN5PrKbJeGwmyXhsJsl4bCbJeGwmyXhsJsl4bCbJeGwmyXhsJsl4bCbJeGwmyXhsJsl4bCbJeGwmyXhsJsl4bCbJbFs2CVNS3pW0i8kvSLpG9X6myQ9I+mUpCclTZUv18xGNcyR/V1ge0R8BrgN2CHpTuAR4NGIuBk4D+wpV6aZjWvZsMe8i9XiZPUVwHbgqWr9AWBXkQrNrBZD9eyS+pJeBM4Ch4FfAxciYra6yWlg64D77pV0TNKxc+fO1VGzmY1gqLBHxKWIuA2YAe4APj3sBiJif0Rsi4htmzZtGrFMMxvXimbjI+ICcBT4LLBB0gefTjsDvF5zbWZWo2Fm4zdJ2lBdXgPcA5xgPvT3VTfbDRwsVaSZjW+Yz43fAhyQ1Gf+l8MPIuJpSa8CT0j6Z+AF4LGCdZrZmJYNe0S8BNy+yPrXmO/fzawDfAadWRIOu1kSDrtZEg67WRIOu1kSDrtZEg67WRIOu1kSDrtZEg67WRIOu1kSDrtZEg67WRIOu1kSDrtZEg67WRIOu1kSDrtZEg67WRIOu1kSDrtZEg67WRIOu1kSDrtZEg67WRIOu1kSDrtZEg67WRIOu1kSDrtZEg67WRIOu1kSDrtZEg67WRJDh11SX9ILkp6ulm+S9IykU5KelDRVrkwzG9dKjuwPAicWLD8CPBoRNwPngT11FmZm9Roq7JJmgM8B36mWBWwHnqpucgDYVaJAM6vHsEf2bwFfA+aq5Y8BFyJitlo+DWxd7I6S9ko6JunYuXPnxirWzEa3bNglfR44GxHHR9lAROyPiG0RsW3Tpk2jDGFmNZgY4jZ3AV+QdC8wDVwHfBvYIGmiOrrPAK+XK9PMxrXskT0ivh4RMxFxI3A/8JOI+BJwFLivutlu4GCxKs1sbOO8z/4Q8PeSTjHfwz9WT0lmVsIwL+Mvi4ifAj+tLr8G3FF/SWZWgs+gM0vCYTdLwmE3S8JhN0vCYTdLwmE3S8JhN0vCYTdLwmE3S8JhN0vCYTdLwmE3S8JhN0vCYTdLwmE3S8JhN0vCYTdLwmE3S8JhN0vCYTdLwmE3S8JhN0vCYTdLwmE3S8JhN0vCYTdLwmE3S8JhN0vCYTdLwmE3S8JhN0vCYTdLwmE3S8JhN0vCYTdLwmE3S0IR0dzGpHPAb4CPA//T2IbH06VaoVv1dqlW6Ea9fxwRmxa7otGwX96odCwitjW+4RF0qVboVr1dqhW6V++V/DLeLAmH3SyJ1Qr7/lXa7ii6VCt0q94u1Qrdq/dDVqVnN7Pm+WW8WRKNhl3SDkm/lHRK0r4mtz0MSY9LOivp5QXrNko6LOlk9f361azxA5JukHRU0quSXpH0YLW+rfVOS3pW0i+qer9Rrb9J0jPVc+JJSVOrXesHJPUlvSDp6Wq5tbUOo7GwS+oD/wr8NXAr8ICkW5va/pC+C+y4Yt0+4EhE3AIcqZbbYBb4akTcCtwJ/G21P9ta77vA9oj4DHAbsEPSncAjwKMRcTNwHtizijVe6UHgxILlNte6rCaP7HcApyLitYh4D3gC2Nng9pcVET8D3rpi9U7gQHX5ALCr0aIGiIgzEfF8dfl3zD8pt9LeeiMiLlaLk9VXANuBp6r1ralX0gzwOeA71bJoaa3DajLsW4HfLlg+Xa1ru80Rcaa6/AaweTWLWYykG4HbgWdocb3Vy+IXgbPAYeDXwIWImK1u0qbnxLeArwFz1fLHaG+tQ/EE3QrE/FsXrXr7QtJ64IfAVyLi7YXXta3eiLgUEbcBM8y/0vv0Kpe0KEmfB85GxPHVrqVOEw1u63XghgXLM9W6tntT0paIOCNpC/NHpVaQNMl80L8XET+qVre23g9ExAVJR4HPAhskTVRHzLY8J+4CviDpXmAauA74Nu2sdWhNHtmfA26pZjSngPuBQw1uf1SHgN3V5d3AwVWs5bKqh3wMOBER31xwVVvr3SRpQ3V5DXAP8/MMR4H7qpu1ot6I+HpEzETEjcw/T38SEV+ihbWuSEQ09gXcC/yK+V7tH5vc9pD1fR84A7zPfE+2h/le7QhwEvhPYONq11nV+hfMv0R/CXix+rq3xfX+GfBCVe/LwD9V6/8EeBY4Bfw7cM1q13pF3X8JPN2FWpf78hl0Zkl4gs4sCYfdLAmH3SwJh90sCYfdLAmH3SwJh90sCYfdLIn/B+oP2faTJb0tAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"arr = np.arange(50*50, dtype=np.float32).reshape((50,50))\n",
"\n",
"arr[arr > 50*50/2] = np.nan\n",
"#arr[arr.T >= 50*50/2] = np.nan\n",
"#arr[(arr.T + arr) > 50*50] = np.nan\n",
"\n",
"plt.imshow(arr)\n",
"\n",
"np.nanmean(arr)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>bits</th>\n",
" <th>values</th>\n",
" <th>description</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>cloud</th>\n",
" <td>6</td>\n",
" <td>{'0': False, '1': True}</td>\n",
" <td>Cloudy</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cloud_shadow</th>\n",
" <td>5</td>\n",
" <td>{'0': False, '1': True}</td>\n",
" <td>Cloud shadow</td>\n",
" </tr>\n",
" <tr>\n",
" <th>dry</th>\n",
" <td>[7, 6, 5, 4, 3, 1, 0]</td>\n",
" <td>{'0': True}</td>\n",
" <td>No water detected</td>\n",
" </tr>\n",
" <tr>\n",
" <th>high_slope</th>\n",
" <td>4</td>\n",
" <td>{'0': False, '1': True}</td>\n",
" <td>High slope</td>\n",
" </tr>\n",
" <tr>\n",
" <th>nodata</th>\n",
" <td>0</td>\n",
" <td>{'0': False, '1': True}</td>\n",
" <td>No data</td>\n",
" </tr>\n",
" <tr>\n",
" <th>noncontiguous</th>\n",
" <td>1</td>\n",
" <td>{'0': False, '1': True}</td>\n",
" <td>At least one EO band is missing over over/unde...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>sea</th>\n",
" <td>2</td>\n",
" <td>{'0': False, '1': True}</td>\n",
" <td>Sea</td>\n",
" </tr>\n",
" <tr>\n",
" <th>terrain_or_low_angle</th>\n",
" <td>3</td>\n",
" <td>{'0': False, '1': True}</td>\n",
" <td>terrain shadow or low solar angle</td>\n",
" </tr>\n",
" <tr>\n",
" <th>wet</th>\n",
" <td>[7, 6, 5, 4, 3, 1, 0]</td>\n",
" <td>{'128': True}</td>\n",
" <td>Clear and Wet</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" bits values \\\n",
"cloud 6 {'0': False, '1': True} \n",
"cloud_shadow 5 {'0': False, '1': True} \n",
"dry [7, 6, 5, 4, 3, 1, 0] {'0': True} \n",
"high_slope 4 {'0': False, '1': True} \n",
"nodata 0 {'0': False, '1': True} \n",
"noncontiguous 1 {'0': False, '1': True} \n",
"sea 2 {'0': False, '1': True} \n",
"terrain_or_low_angle 3 {'0': False, '1': True} \n",
"wet [7, 6, 5, 4, 3, 1, 0] {'128': True} \n",
"\n",
" description \n",
"cloud Cloudy \n",
"cloud_shadow Cloud shadow \n",
"dry No water detected \n",
"high_slope High slope \n",
"nodata No data \n",
"noncontiguous At least one EO band is missing over over/unde... \n",
"sea Sea \n",
"terrain_or_low_angle terrain shadow or low solar angle \n",
"wet Clear and Wet "
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import datacube\n",
"import xarray as xr\n",
"\n",
"dc = datacube.Datacube(app=\"recap\")\n",
"\n",
"query = {'lat': (-35.25, -35.35),\n",
" 'lon': (149.05, 149.17),\n",
" 'time':('2001-01-01', '2001-06-01')}\n",
"\n",
"\n",
"ds = dc.load(product='wofs_albers', **query)\n",
"\n",
"from datacube.storage import masking\n",
"\n",
"masking.describe_variable_flags(ds, with_pandas=True)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (time: 25, x: 492, y: 500)\n",
"Coordinates:\n",
" * time (time) datetime64[ns] 2001-01-03T23:40:40.500000 ... 2001-05-27T23:40:29.500000\n",
" * y (y) float64 -3.953e+06 -3.953e+06 ... -3.966e+06 -3.966e+06\n",
" * x (x) float64 1.542e+06 1.542e+06 1.542e+06 ... 1.555e+06 1.555e+06\n",
"Data variables:\n",
" water (time, y, x) int16 0 0 0 0 0 0 0 0 0 0 0 ... 8 8 8 8 8 8 8 8 8 8 8\n",
"Attributes:\n",
" crs: EPSG:3577"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.QuadMesh at 0x7f3312ee57f0>"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAacAAAEWCAYAAADCeVhIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2de/gcRZnvP18SSCAQkoDGSJAgBBBYQYzAuq4LcosuGgXWdfUIIshBAW/rKpcjYUU8UTy6sLqwWQgXD4iIcshxkRAUhLNyCxIugSghgCRyFSFc5JLkPX9UTdLpzKVnpnu6Z+b9PE8/v+7qquqanvn1t9+qt96SmeE4juM4VWKDshvgOI7jOGlcnBzHcZzK4eLkOI7jVA4XJ8dxHKdyuDg5juM4lcPFyXEcx6kcLk59hqQ3SXpB0oiy2+I4jlMULk4VR9LDkvavHZvZ781sUzNbVWa7GiFplKTzJT0i6XlJCyW9N5VnP0mLJb0k6XpJ26TKz5G0QtLjkr6YOLeRpCviPTFJ+2RoT7NrfVjSr+O5GzJ+tkZt21nSAkl/itt1knaO534eXyhekPSapFcTx+dK2lvSfEnPSHpK0o8lTUrU/QVJS+N1/yDpu5JGZmjv38T79PVU+hdi+1fEzzOq6LokTYnlX0hsX81yb+P5jn4z3ZZ1SsTMfKvwBjwM7F92O9po7xjgNGAK4eXnYOB5YEo8vyXwHPB3wGjgTOCWRPn/CdwEjAfeAjwOTI/nNgI+D7wLeAzYp0VbWl1rf+DDwKnADRk+W7O2jYufWcAI4LPA3XXquBD4eirtvbGNY4FNgDnANYnz2wHj4v4E4JfAF1u0dUNgIXBL8nrAQcATwC7xc9wAzCq6rnhvDBjZwb3t5jfTcVnfyt1Kb4BvTb4c+AGwGvgz8ALw5fQ/eXwgfB34dczzf4EtgEuAFcDtRGGI+XcC5gPPAL8FPtyDz3E3cGjcPwb4deLcmPj5dorHfwAOTJw/HbisTp3LaC1OTa+VSD+abOKUtW0jgeOAl+qcu5CUONXJswfwfINzWwDXAf/Woo4TgW+lrwdcCnwjcbwf8HjRdaV/t+3c225+M3n93nzr/ebdehXGzD4O/B54v4WuvG81yPoR4OPAVoS37JuBCwhv2fcDMwEkjSEI06XA62O5f6t1P6WR9G+Snm2w3Z3lM0iaCOwALIpJuwB3JT7ji8CDwC6SxgOTkufj/i5ZrlWHhtdqt6KsbZP0LPAy8K/AN9pvMgDvZu39qtX7UUkrgKeB3YB/T5z7maQTE8fbAJ8Evlan7nXuSdyfKGmLvOtqwCOSlkm6QNKW8Rqt7m03v5le/t6cHHFxGgwuMLMHzew54OfAg2Z2nZmtBH4MvC3mOxh42MwuMLOVZnYn8BNCl8d6mNlnzGxcg+2trRolaUOCBXeRmS2OyZsSulmSPAdsFs+ROl871wnNrtVJXbXyDesys3HA5sDxwJ3tXkTSWwndjP+UqvdSMxtLEPpzCd1ptXMHm9msRPazga+a2QsNPkf6M1D7HHnWleJp4B3ANsDbY55LEvUky9f2N0uc7/Q308vfm5MjLk6DwROJ/T/XOa79E24D7JW0gICPAW/Iu0GSNiB0S75KeFDXeIEwtpJkLGFc6oXEcfpcq+vVvBhfkFSrp9m1WtV3bqK+k9tpW3w7Pxe4WNLrW10rcc3tCS8XnzOzm+rlMbMHCFbVvzWo4/3AZmb2owaXSd+T2v56nyPPuszsBTNbEF+KniD8Jg6UtBmt7203v5lCfm9O8bg4VZ88w8Y/CvwqZQFtamafrpc59YBOb4vqlYnlBJwPTCSMNb2WOL2I0C1VyzuG0BW5yMz+RHB02C2RfzdSXVz1sLVejJuaWU2MG14rQ33HJur7Rgdt24Dg3LBVq2vFtm1DGEs63cx+0CL7SMLnqMd+wLToefY48PfA5yVdFc+vc0/i/hNm9seC60pT+11vkOHedvObKeT35vSAsge9fGu+ETykjkkcT2F9h4ijE+e/DlyYON4fWBL3NwMeIYxPbRi3dwBvybnN58Z2b1rn3OsIXSeHErynvsm63lOzgF8RvKd2Ijw8pifOj4rllgEHxn01aEera42I6ccCN8b9DZt8roZtAw4gdJ+OILx9n00YbB+dquNC1vfW24owDvKlBtc9Gnh93N+Z8PD8ToO8mxEs4dr2I+C7wIR4fjrBI21ngofhL2nsYZdnXXsBOxJEe4tY1/UZ723Hv5luf2++lbeV3gDfWnxBMIPgFPEs8CW6EKd4vCPwn8BTwB/jA2X3HNu7TWzfy4Ruk9r2sVSbFhO6HG9gXW/CUQRX6hWE7skvpup/ONaf3KY0aU+za32iTl0XNqmrYdsI43aL42d9Kt7jt9ap40LWF6eZ8drJ+/VC4vwF8Xovxs9/JgnRI3QFntygzfWu98VY34pY96iC6lpU+96BfwAeip/hMeBi4A1tfO/d/GY6LutbeZviF+Q4juM4lcHHnBzHcZzK4eLkOI7jVA4XJ8dxHKdyuDg5juM4laNlZGOnNRtplI1mTNnNcBynD3iePz1tZq/rtPxB+46xPz6TbVGCO+5+ZZ6ZTe/0WmXi4pQDoxnDXtqv7GY4TikctGgF83ZJB2FwGnGdXfFIN+X/+Mwqbpv3pkx5R0x6YMturlUmLk6O43SFC1NvMWA1q8tuRuG4ODmO4/QRhvFaNdcazRUXJ8dxnD5jGCwn99ZznILRyA3XOT5o0YqSWuIMAoaxyrJt/YxbTo6TMxq5IbZybSD25D74GI3TPatzXaygmrg4OU7OpMXIcfLEgFUuTo7jOE7VcMvJcRzHqRQGvNbn40lZcHFyHMfpIwwbim4999ZznD5m5PZvLrsJTq8xWJVx62fccnKcPmblkqVlN8HpMSFCxOBTiuUk6XRJd0taKOlaSW+M6eMlXRnP3SZp10SZhyXdE8ssqFPnP0oySVvGY0k6W9KSWN8eibxHSHogbkck0t8er7EkllVR98DfeJ1O8N+NA2JVxq2fKatb70wze6uZ7Q78DDg1pp8MLDSztwKHA2elyu1rZrub2bRkoqStgQOB3yeS3wtMjdsxwDkx7wRgJrAXsCcwU9L4WOYc4FOJcrlH8x25/Zv9AeN0xMjt3+yWkhMdIpRp62dKESczS06RHwNrRvd2Bn4Z8ywGpkiamKHK7wJfTtQDMAO42AK3AOMkTQIOAuab2TNm9idgPjA9nhtrZreYmQEXAx/s/FPWZ+WSpWu2RngEASeNC5NTI8xzcsupMCSdIelR4GOstZzuAg6J5/cEtgEmx3MGXCvpDknHJOqZASw3s7tSl9gKeDRxvCymNUtfVie9UfuPkbRA0oLXeCXDJ86ORxBw0rgwOUlWmzJt/Uxh4iTpOkn31tlmAJjZKWa2NXAJcHwsNotg4SwETgDuBGrhd99lZnsQuuuOk/RuSZsQugJPpceY2Wwzm2Zm0zZkVK8v7zjOkDIsllNh3npmtn/GrJcAVwMzY3ffkRAcGoCHgKWxvuXx75OSriSMF/0J2Ba4K/ouTAZ+E62u5cDWietMjmnLgX1S6TfE9Ml18juO41QGQ6zKya6QNAc4GHjSzHZNnftH4NvA68zs6fhMPgt4H/AS8Akz+00uDalDWd56UxOHM4DFMX2cpI1i+tHAjWa2QtIYSZvFPGMIzg/3mtk9ZvZ6M5tiZlMIXXF7mNnjwFzg8Oi1tzfwnJk9BswDDoyegeNjXfPiuRWS9o5fwuHAVQXfCsdxnLbJsVvvQuo4frXjZFYUZc1zmiVpR4K7/iPAsTH9LcBFkgxYBBwV0ycCV0braCRwqZld0+IaVxMUfglB5Y8EMLNnJJ0O3B7zfc3Mnon7nyF8WRsDP4+b4zjA8pPfuWZ/q2/8usSWDDeGeNVG5FOX2Y2SptQ5VXMyS76gr3EyA26JxsSk+GKfO6WIk5kd2iD9ZmCHOulLgd0y1DslsW/AcQ3yzQHm1ElfAOy6folycA+twaNfv9OkMNWOXaDKIUzCzdzptWVqXuhsM5vdrEDSySw11bORM1kh4uThiypMJw8xn0NVLun7nz7uR2ECt5SqRhsOEU/XHLfi1kqYSnMyS+PhiwaMfn349SvNXgbSVlK/Wk31cLEqDzOxygqzK7ajfSezQnBxKolBelANAzURWrlk6TqC1Ex80t9vv3/fLkjVYXVBbuJmdg/w+tqxpIeBadFbby5wvKTLCBF2nitqvAm8W6800g+1dvHuu95SL6rHoImP0x8Eh4iRmbZWSPohcDOwo6Rlko5qkv1qwtSeJcB/EBzICsMtp5Lp1ILyB2F5+L13yqRNh4jmdZn9Q4vzUxL7DZ3MisAtpxJwq8dxnG5YZcq09TNuOZWIi5TjOO2SZ4SIKuPilBONuueyDp73kuTgfhXa4zhOe6wuzluvMrg45YBGhYhLaSGqN+el1XIZRdJIKOudb5avLFxAHacW+HXwxWnwP2FJVK3LrpUwpUWztl+lz+HC5DihW+81G5Fp62fccuoxrUSi7DakBaq2cq8Lg+NUAzOKnIRbGVyccsBeebVuN16NKjzYG7Wv3vhTvbKO41QFFTYJt0oMvvz2kCwTNcukUftadeFVpWuvKu1wnDIxguWUZetn3HIqgJqVUiVhStJudIqqfg7HGVaGwSHCxakgqvxAb+VVmMxTpc9RpbY4TlkYmRcS7GtcnIaQtGXXbLysahZgJ6JZdRd5x2kHA17LEDev3xn8T+jUpdHDOTkXq/ZQr4pAdTrmVIW2O05+rFmraaAZ/I5LpyFJ8amX3iqt1yQtvapRc7lvdS+bWahVuMdO/uT9vRohQkSWrZ9xy2mIadSdV8WHf42qta2RkHfiFFO1z+bkQxHfq1tOzkDTynU8/U9V1pt9I6ukLLK0p57F1MxSdWEabPL87ZrJLSdneGkWyLaXD9KqPcjTwl3vuN32uTD1D+nfY6ux22S+NWUf6K4NwSGiv0MTZcHFaYhp5qUH5Y8zVSHUU5p2V8NNO5i0uudO9Wj1P9IoVmVxqO8n2GbBxWnI6YeHZVWEKU2z+5blgVW2FehkI6//kby+6+AQ4WNOzhBQhUH7rF5tVaFV+zzyxuBQb6mbMpe+gRAhIsvWz7jl5ADN3w6L/iescsDcRjSLR1hv6ZEabi1Vn3T3a7JLtlE3bi8jquQZIULSHOBg4Ekz2zWmnQm8H3gVeBA40syejedOAo4CVgGfNbN5uTSkDi5OTlN67fxQxblMzQQoSzur+rmGmVZikj7fKl+jckW9jKzOzyq6EPgecHEibT5wkpmtlPRN4CTgK5J2Bj4C7AK8EbhO0g5mtiqvxiQpRZwknQ7MAFYDTwKfMLM/SBoPzAG2A14GPmlm98YyDwPPExR7pZlNS9R3AnBcPPefZvblmF5X5SVNB84CRgDnmdmsmL4tcBmwBXAH8HEze7XAW5E76X+Gdt7oynpwVmncK2s7WnltuYVUXZLfXbPvsZvvr8jv3wxeW52POJnZjZKmpNKuTRzeAhwW92cAl5nZK8BDkpYAewI359KYFGVZTmea2VcBJH0WOBU4FjgZWGhmH5K0E/B9YL9EuX3N7OlkRZL2Jdy03czsFUmvj+l1VT4W+z5wALAMuF3SXDO7D/gm8F0zu0zSuQRhO6eAz18IVXnAd0LZD/JuuhaTc5gaRXzvdGKu01uyvszVE7VeTWgP3XqZxWlLSQsSx7PNbHYbl/sk8KO4vxVBrGosi2mFUIo4mdmKxOEYggMKwM7ArJhnsaQpkiaa2RNNqvs0MCuqOWb2ZExvpPIAS8xsKYCky4AZku4H3gN8NOa5CDiNPhKnRv8I/jDsjKzjCfXiENYbk3JhKpe8Xt7qTXHo9YthGxEink72MrWDpFOAlcAlnZTvltLGnCSdARwOPAfsG5PvAg4BbpK0J7ANMBl4giBg10oy4N8T6r8D8NexvpeBL5nZ7TRX+UdT6XsRuvKeNbOVdfLXa/8xwDEAo9mkvQ/fQ/xh2JxmFlM786z8xWCwaNQ9XqPM77UXruSSPkFwlNjPzGrGw3Jg60S2yTGtEAoTJ0nXAW+oc+oUM7vKzE4BTonjQscDMwlW01mSFgL3AHcSxosA3mVmy2O33XxJi83sxvgZJgB7A+8ALpdU+GtMFMfZAGM1wVpkdypElrfcrK7tLj79Q7tjm/W89hrl6y1tdeu1X3sYk/8y8Ddm9lLi1FzgUknfIQyVTAVuK6odhYmTme2fMeslwNXAzNjddySAJAEPAUtjfcvj3yclXUnooruRYOH8NKr7bZJWA1vSXOXrpf8RGCdpZLSeCn0rcHpPEQ8R76obbJqF8SqT1TkFfpX0Q2AfwtjUMoKRcBIwimAEANxiZsea2SJJlwP3Ebr7jivKUw/K89abama1CFMzgMUxfRzwUvSQOxq40cxWSBoDbGBmz8f9A4GvxfL/h9AteH10eNgIeJrGKi9gavTMW05wmviomZmk6wmeKZcBRwBXFXojnMpSJQ9CJx/y+D6z1lHkC0vw1ssntp6Z/UOd5POb5D8DOCOXi7egrDGnWZJ2JLiSP0Lw1AN4C3BRHFdaRPCWA5gIXBlVfCRwqZldE8/NAeZIupcwaeyIaEU1VHlJxwPzCK7kc8xsUazrK8Blkr5O6FJs+CU5Tju4hVUe7YhSu2ONjeooEl+mvUDM7NAG6TcTHBzS6UuB3RqUeRX4bw3O1VV5M7ua0JVY7zp7ptOd/ibPt916kQPyur5TLskJt2nvyypYTEny6tarMh4hwhl62nmgNJrA2coycqupOFp51nVSX7PjshmWwK8uTs5A0+rBUm+eSrtC0smSCk4xdCoknc5XKuu77feFBLPg4uQMFavGjQFgxLMvAo2XWW9GFaK4O2vpZiJsK4srT4ssL8zEyiEQp8H/hI6TYMSzL64RJme4aVd4qvSisdqUaetnXJwch9Yr2iapxdKrypu005yatVwjHV6qVbdsltWie/lbqI05uTg5Th+TdQntpAdeu8thuEhVg0bfV9pS7ublot7vo12PvjwYBnHyMSdnoGm1lHo3D5QqdfM4xdFo+kBZQX19npPj9DFZArpmCebZTMC6nazp5E/eUcKr+r0Owzwn79ZzBo4sYwTtjDF1ks8phyzddf3+HZrBytUbZNr6GbecnIGjVXddvfOtFgtsltaIrFGtne4oKnpDO+t59Rrv1nOcPqfRon+N6HTsoNUcGRem3pClW68dt/EqWmE+5uQ4A0S7c1o6iRSQFLYyXIyHkazWbVkr1haFuTg5vcRD3eRHJwvD5fEASy/T7t9nsaS7aLuxmNLfVdaXmFK69YbAIcLFqSIMyhtdVckiSq3ytcrvQlQOeYQYaiVMVfpuzXzMyemAVm9Svtx3tejEWkp+x7U3d7d6q0G7c9eyrHJbz7OzrDlOAbGqzz3xsuDilAMatVFY5jAD/gDrLa0eVJ2+aacFKllXevzJKZ9WDivtlK1125YpUD7m5GTCXnkV5F1zacp+QDfqcivqe0paUU75NHIF72QZlSRlf7/Dsp7T4NuGPSQ5EO4Eyv5HrlFksNa0CGb9HRy0aEXubRl2skyyzvN/tBTHFwvjTlm2VkiaI+lJSfcm0iZImi/pgfh3fEyXpLMlLZF0t6Q9ivuQLk5OgQya+26Sbj/bQYtWMG+XsXk2yWlApzEUWwlOmS+iq1GmLQMXAtNTaScCvzCzqcAv4jHAe4GpcTsGOCeXD9MAF6cCGcSHciPKdPRoZIH04trtWsu1trow5U8zl/JuwlU12pJ5ermMikWHiCxby7rMbgSeSSXPAC6K+xcBH0ykX2yBW4Bxkibl9LHWw8ecCmRYu/jSY01F3ofaw77RQ7/da5c9TuZ0TlnfWxnTCbJ02XXBRDN7LO4/DkyM+1sBjybyLYtpj1EALk4DRJUerFXyXKt1obUa45m3y9iOrKBk+WR3Xb2uO7eYnDxow1tvS0kLEsezzWx29uuYSSpWChvg4lQwvXwwdxoTLo/21bOUejH/Jy06jQQoi/NBli63ZvWkrbh6+V2cBpdeWk1tiNPTZjatzUs8IWmSmT0Wu+2ejOnLga0T+SbHtELwMacC6YcxpyL/oZJ983nei6K93NyLzslKWRHnC14Jdy5wRNw/ArgqkX549NrbG3gu0f2XO245OYWTp/VUzzrJStJqKUuA3CHCyYO8xpwk/RDYh9D9twyYCcwCLpd0FPAI8OGY/WrgfcAS4CXgyHxaUR8XpwJJT8qs0nhQL9uSx7W6FZNmYz/16i7a1dtFanDo9f+1IVbnFL7IzP6hwan96uQ14LhcLpyBUrr1JJ0eJ3EtlHStpDfG9PGSroznbpO0a6LMw5LuiWUWJNJ3l3RLLV3SnjG94YQxSUfECWYPSDoikf72eI0lsWyu07CrEj0gSzyxKpG3MLWqe94uY+uW8e4+J01ZL5yWcetnyhpzOtPM3mpmuwM/A06N6ScDC83srcDhwFmpcvua2e6pAb5vAf8c6zo1HkODCWOSJhBM172APYGZtRnQMc+nEuXSk9Paptn8CCcb3VgXnTo3dJPXcQolOkRk2fqZUsTJzJL/6WNYK/I7A7+MeRYDUyRNpDkG1J5AmwN/iPuNJowdBMw3s2fM7E/AfGB6PDfWzG6J5uvFrJ18NtBU2Wqq0Y5ANbJ8nO7QyA3LboJTYwhMp9LGnCSdQbCOngP2jcl3AYcAN8XuuW0I7opPEG71tdHn/t8TvvqfB+ZJ+jZBbN8Z0xtNGGuWvqxOeqP2H0OwyBjNJpk/N1RnPlI7EbvLbm8zy6WREHViNfVa1Lod2+rkvnSKrXxtnev6C0B59LtVlIXCxEnSdcAb6pw6xcyuMrNTgFMknQQcz1ovkbMkLQTuAe4EVsVy7zKz5ZJeD8yXtDiG3vg08AUz+4mkDwPnA/sX9blqRHGcDTBWE9p+RylToIpYprwoevnw7aQNZZF13lZR98iFqTwMWL16iMVJUqtfv4DHzGyHeifNLKtAXEJwUZwZu/uOjNcX8BCwNNa3PP59UtKVhPGiGwl++J+Ldf0YOC/uN5owtpzgOplMvyGmT66TvzCSAtULsWq1GmyjNpQlolURhSzRJZqVhfwstarcE6dEDBgCy6nZmNODZja2ybYZ8GInF5U0NXE4A1gc08dJ2iimHw3caGYrJI2RtFnMMwY4EKiFeP8D8Ddx/z3AA3G/0YSxecCB0TNwfKxrXjy3QtLeURgPZ+3ks1xpJABFePM1C0iZdtKoFxyzqsKUd1dYKxHplto4WLrdBy1aUajguJgNJnktmVEUkla02J6X9LtmdTTr1js0Qxuy5KnHLEk7AqsJk7yOjelvAS6K40qLgKNi+kTgyujZPRK41Myuiec+RegKHAm8TBwHosGEMTN7RtLpwO0x39fMrBaV9zOEEPIbAz+PWyEU+dBvZSFlIc/25T2np9N6slgvzcav8nrQ1xNCH8Nx2qL6zg4PmtnbmmWQdGez8w3FyczWPJ0kbQNMNbPrJG0MjDSz55N52sHM6oqamd0MrNdNGK+zW4My/w94e530hhPGzGwOMKdO+gJg1/VL9BdlOy8kqcKbe6s21IQhL7fzenVnqc8FyslGX7iJd23ctHSIkPQpgjUyAdiOMBZzLnVmEDvdUSVR6ZY8Js4WaamkKVIY2p1PVQWBatb16VSAiltOWQyXVnmyeOsdR3A+uDVW+ED0mHOcNdS6Eve7amHd83kN/PsDsjekBd3ve4UwsD721pN0j5n9Rat8WcTpFTN7tRbJJ47tVFy3+5OqzH9qh+T4ViNhyouyHpC97ppsZj0V7bjR6HpO1ai2OEk6pNEp6k8xWo8s4vQrSScDG0s6gOA08H+zNdFph5rHXr30qpOnMJUZMXxYHsbJe9xqrG1Y7klfUX3z4EeEaUL1Wjo6SwWyFv6GkjYgeM0dSFC9ecB51qrgEDFWE2wv5T8EV6UIDTVGbv/mjoUoy0Ou6Em3eY9j5Vlns2s0Iuu1ux3Dc4HKj+vsijs6WABwDaO2nWyTZp6QKe8jR57Y1bU6RdIdwBFmdm+dc4+a2dZ1iq1DU8tJ0ghCfLqPAf/RcUudjqiKINUIb9HFtKnIeU3pevIQk16MxWSxWrIuP9/tZ3YHiQrRH5NwPw80+tF9KEsFTcXJzFZJ2kbSRmb2arutc/KjKuNRrRwVsixj3utxk3ptqGp99eovwsXd6W+q3m9lZjc1Obeg0bkkWcaclgL/JWkuiYgQZvadLBdwuqcqce4avYEXFYInKWJZx0gGkXbmSvUS9+QrkYp760k6JhGcu6M8WZbMeJCw5tIGwGZx27Sdhg4z9YSlKmLTLumHZFFLU6TrrRfyp5u6i6DoB3R6efpejTVloWyRHEZk2bYSOVHSIU22Q1kbE7UuWSyn+8zsx8kESX/XTasHnVaODJ10z1WhS6/2AG72IO7kYThvl7Etuy2r+nZeT0SLelhnEaZ696mXAlXV72mg6I+1mn4FvL9FnvnNTmYRp5MI0b5bpQ01aWsoTzGpgjC1QzsP6VreXn3GXrzl98KTr9V12zmXZxtdpHqBcnWIkPQFQqBtIyxVdCQwCbgM2AK4A/h4O34HZnZkt+1qtmTGewmBU7eSdHbi1FhgZbcXHjRaPVzrWVNZuvf6TZiS9OKNvV2aRT7oxOLLkqfXgthJ2ap9T04LcrKcJG0FfBbY2cz+LOly4COEZ/93zewySecSphOdk89Vs9HMcvoDsAD4AEE5azwPfKHIRg0KjcSn1oWVFJ5meWv0o1A1emiW/TDsZfdXPzz8826jT94tmNW51jaSEGThNWAT4DHC8kMfjecvAk6jKuJkZncBd0m6NOZ7k5n9tmct62M6EZRm+Wr1VcWdfFhoZFV18tBNWmx5jU3l/fDvBxF1yHWeU1xd/NvA74E/A9cSjJFnzazWQ7YM2KrdumMAh8PM7PJO2pZlzGk68G1gI2BbSbsT1kD6QCcXHAbyFpC0hdXPAtUvD7/0g7+ItajaHZvrxXhOnk4dPv5UHG144m0pKTmvaHbSfTsuuDoD2BZ4luBLMD2PNprZaklfBgoTp9MIUclviBdcKGnbTi7mdE+z5dT7gbKcBbJQhfbUE4csXpJFtKMK96Off+uFkl2cnm4Rvmh/4JhXYA0AACAASURBVCEzewpA0k+BvwLGSRoZrafJwPIOW3qdpC8RYu0l58k+07hIIMs8p9fM7LlUWvUdGStEs6XSO2GQ/lmr8ACsUdYbfr0l3KtgbVShDTXy/P9x1uH3wN6SNlFYemI/4D7geuCwmOcI4KoO6/97wrJLNxK6C+8g+DK0JIvltEjSR4ERkqYSPDt+3WFDh4YiXcsHjSoNnlelHUnKjI5RtgVV+79pFLF/WMlrgq2Z3SrpCuA3BC/sO4HZwH8Cl0n6ekw7v8P6O+5ly2I5nQDsArwC/JAQzO/znV5wENl8l1Xr/QOnxcj/sdannsXgrKUq96Xd76iodvsLXsQI4YuybFmqM5tpZjuZ2a5m9nEze8XMlprZnma2vZn9nZm90klTo0X2PyTNjsdTJR2cpWxLy8nMXgJOiZtTh+cWjaj7D1nm25731Q8OZYtU7Tc8b5elbUdAL7vtA0v/DKxcQOjKe2c8Xk5wuvhZq4ItLSdJ0yT9VNJvJN1d27pq7hCRZS5T0dd1+pcqPNyTc/KyWFFlOHAMG30QW6/Gdmb2LeA1WGPsZDLpsow5XQL8EyGsRb5TvxzHcZz2qYbwZOFVSRsTWyxpO8IQUUuyjDk9ZWZzzewhM3uktnXR2KGj9ubp1oyPvQ06ZTpPDNIKAC2xjFv5nAZcA2wt6RLgF8BXshTMYjnNlHRerHSN4pnZT9tv5/DgYz718XsyGJTtxdcOg/a/WKEuu5aY2bVxyfa9Cd15nzOzp7OUzSJORwI7ARuytlvPABenJgzSP4PT/yw/+Z3rHG/1jWJng/R6vCltIQ2sxVSj4osN1pD0CzPbj+Cank5rShZxeoeZ7dhNAx3HGQ7KcILIIkyDaD1VGUmjCUFkt4whkmpqOpaMcfqyjDn9WtLOnTWxPpJOj15/CyVdK+mNMX28pCvjudsk7ZooM07SFZIWS7pf0l/G9AmS5kt6IP4dH9Ml6WxJS2J9eyTqOiLmf0DSEYn0t0u6J5Y5O86YdhynDmmvvCp45zWymAZJmIB+GHP67wQX8p1YGxniDkKkie9lqSCL5bQ3sFDSQ4QxJwFmZm/tpMWRM83sqwCSPgucChwLnAwsNLMPSdoJ+D4hnAbAWcA1ZnaYpI0IqgxwIvALM5sl6cR4/BXgvcDUuO1FCPe+l6QJwExgGuHru0PSXDP7U8zzKeBW4GpCAMSfd/E5HacSFNmN1+7S8TWKFrOBE6QafTDmZGZnAWdJOsHM/rWTOrJGJc8VM0v+isewVuN3BmbFPIslTZE0EXgZeDfwiXjuVaC2KuMMYJ+4fxEhQO1XYvrFZmbALdHymhTzzq8FHpQ0H5gu6QZgrJndEtMvBj5IG+JUe2sb2H8Kx8mRosNWDVpX3jpUXJxqmNm/xh6wnYHRifSLW5XNEiGiELdxSWcAhwPPAfvG5LuAQ4CbJO0JbEOIiLsKeAq4QNJuBPPwc2b2IjDRzB6L5R8HJsb9rYBHE5esrUnSLH1ZnfRG7T8GOAZg9BojznGGiyp47Q1j3D31yYxTSTMJBsHOhN6o9wL/D2gpTg3HnCT9JsOFG+aRdJ2ke+tsMwDM7BQz25owyff4WGwWIVT7QkJMvzsJwjQS2AM4x8zeRgi9fmL6mtFK6sk7hZnNNrNpZjZtQ0a51eQ4HZCXsCXnEvq8wkpxGGFo5nEzOxLYDdg8S8FmltNbWoQpUrOLmNn+WRpAEKergZmxu+9ICA4NwEPAUsL40jIzuzWWuYK14vSEpElm9ljstnsypi8Htk5cp7YmyXLWdgPW0m+I6ZPr5M+E/yM4jtMz+qRbD/hzXHRwpaSxhOfz1q0KQXNx2ilD+VVZLpJG0lQzeyAezgAWx/RxwEtxTOlo4MYoWCskPSppx7hUfG3NEYC5hPVGZrHuuiNzgeMlXUZwiHguCtg84Bs1rz7gQOAkM3tG0gpJexMcIg4HOhrIc5xhIa8Vc6vg6dc39IFDRIIF8bn+H4ThmBeAm7MUbChOBYcomiVpR8Kk3kcInnoAbwEukmTAIuCoRJkTgEuip95SooVFEKXLJR0V6/pwTL8aeB+wBHiplj+K0OnA7THf1xKrMn4GuBDYmOAI4Z56jlMynYrXQIten4iTmX0m7p4r6RqC01mmwOFZvPVyx8wObZB+M7BDg3MLCe7f6fQ/stbdPJluhBUY69U1B5hTJ30BsOv6JRzHSZOnI0SjZTa6EZiihalU8esTcZL0A8IquDeZ2eJ2ymaZhOs4jtMzDlq0Ys2WR11FkRamXnktiuCtl2WrAHOAScC/Sloq6SeSPpelYJb1nE5IjM84juMUwgFj7uOAMfetk9atZdJLV/fatQq/Xsa1nKowLmVm1wNnAF8ljDtNAz6dpWyWbr2JwO3RbXwOMC92mTld4u7njrOW+S+uGyWt9rAvSqCK6JJLClShXX598gSW9AtCoIWbgZsIsVqfbF4qkGUS7v+Q9FWCV9uRwPckXQ6cb2YPdt5sx0XJceqTHndKp3VTX9Z6O1luvmcTknMUp+hNdx5hvN2ATwK/BX4ETAEeBj4cQ7y1y93A22PdzwHPSrrZzP7cqmAmhwgzM0mPEyIwrATGA1dImm9mX+6gwY7j9DlFdZklhaBI66Nn3XAFkHOXXb24pSdTP2ZpW5jZFwAkbUYIP3cB8AZgVKuyLcUpDl4dDjxNUNd/MrPXJG0APAC4ODnOkJK3QNXEKA9rKQ/Kvn5DchInSZtTJ25pjOSzT8yWjFnabv3HA39NsJ4eJgwN3ZSlbBbLaQJwSHreU5z1e3B7TXUcZ9Co1wXXbT29EoW8xrWgh4JquXribUuduKU0jlnaLqOB7wB3mNnKdgq29NYzs5mNJuSa2f3tXMxxnMGm3oO55oWX9sRrVa5X5Hntnn2O7Os5bSlpQWI7JlVTy7il3cQsNbNvm9mt7QoT+Dwnx3FyJvmArglS2hNvUOnZXKfsruRP1wJUx212qqplrB+3dA9izFKAVMzSnlFKhIhhZKDXlnGcFGtWx2VvAL798C1N8/U7PXeqyGnMycwebxC39D7qxyztGS5OPWDY1ppxnDRfmrL3OseDFPeuE5fzrsh/YaB6cUs3oH7M0p7h4uQ4TikMkkD1EpGvK3mjuKXUiVnaS3zMqQd4d57jBNLRE/pxjlGaNV2YPRTafglf1A0uTj3CBSpfNHLDspvgdEj6Yd6vE2FLJbu3Xt/i3XqO4/SM5KTdebuMrbs8hnf3ZaDPhScLbjk5fYmtfK3sJjgd0kh4yugey4uetrmPopJ3g1tOjuP0nE5Xtu207MDR58KTBbecKoa7nTtOf9OL8bM+WmywY1ycKoY7TjhOffrFw68Xlp136zmO41SIbh/8aWFLCl7fdBcOgCdeFlycHMcZSnq5hHvuuDg5juP0H42cJ1od9wN5R4ioKj7mNMS480U+jNz+zetsTvm0Izr9OAlYqy3T1s+45TTEuPNFPtTuY02Yan/9/pZHO2LTd9aTjzk5jtOMViLkIlUe9QSnnmD1nTBFvFuvICSdLuluSQslXSvpjTF9vKQr47nbJO2aKDNO0hWSFku6X9JfxvQzY9rdsey4RJmTJC2R9FtJByXSp8e0JZJOTKRvK+nWmP6jGELeGWBadcWlz6Wto+R+K5FynNzw2HqFcaaZfRVA0meBU4FjgZOBhWb2IUk7Ad9nbdj2s4BrzOywKBqbxPT5wElmtlLSN4GTgK9I2hn4CLAL8EbgOkk7xDLfBw4grAJ5u6S5ZnYf8E3gu2Z2maRzgaOAcwq8D07JpLvk0seN8qeFqJUA+WKT5dOvVlI93HIqCDNL2tdjWKvxOwO/jHkWA1MkTZS0OfBu4Px47lUzezbuX5tYn/4WYHLcnwFcZmavmNlDwBJgz7gtMbOlZvYqcBkwQ5KA9xCWKQa4CPhgpg8ktfPxnQqSFKWk0GQVlJVLlq7ZnN7SzvhSzfkhbyeIUlbCdcupGCSdARwOPAfsG5PvAg4BbpK0J7ANQWxWAU8BF0jaDbgD+JyZvZiq9pPAj+L+VgSxqrEspgE8mkrfC9gCeDYhdMn8rT9PagkHD0zafyQFKovINMrXyvpy8qNdURgI68n6PzRRFgqznCRdJ+neOtsMADM7xcy2Bi4Bjo/FZgHjJC0kLB18J0GYRgJ7AOeY2duAF4ETU9c7BVgZ6yscScdIWiBpwYaTXuTQe5avs2nkhuttVcAfmK1px/ppx33cXc3zpypi08sJvbV5Th6+qEPMbP+MWS8BrgZmxu6+IwFiN9tDhDXtNwGWmdmtscwVJMRJ0ieAg4H9zKz2lSwHtk5cZ3JMo0H6HwnCODJaT8n89T7fbGA2wDa7brbez+DQe9Yv+pO/WNcQK8u68vGPfFi5ZGlT9/Hk+SR+/wefwsMhWZ8rTwbK8tabmjicASyO6eMSHnJHAzea2Qozexx4VNKO8dx+wH2xzHTgy8AHzOylRL1zgY9IGiVpW2AqcBtwOzA1euZtRHCamBtF7XrgsFj+COCqPD93zaqqUYZV5Q/F9mlm8dRzjMhiHbkFlR9Vs55qFlSRlpRbTsUxKwrNauARgqcewFuAiyQZsIjgLVfjBOCSKChLiRYW8D1gFDA/GFvcYmbHmtkiSZcTRGwlcJyZrQKQdDwwDxgBzDGzRbGurwCXSfo6oUvx/Pw/en2rCvK1rLK4N7tQZaPVfUqeT1pSNQcJF6LhIS2UjQLNdkUBzg6SRgALgOVmdnB8ob+MMBZ/B/Dx6EDWM0oRJzM7tEH6zcAODc4tBKbVSd++yXXOAM6ok341oSsxnb6U4M1XCjXRqolU0qJqV6iaPRT9gVkcfm+dJEVZdQU4RHwOuB+oNbj0aTUeW6+CpJ0rgI6cK5q98bvV1Dv8Xjt5k+dig5ImA38LnBePO59WkyMevqgPSHcD/uQvturKqnJ6g3edOoVgtOMQsaWkBYnj2dGZK8m/EMbtN4vHXU2ryQsXpz6kyp6ATn2aee7VzjtOVtpwdnjazNYbDllTj3Qw8KSZ3SFpnxyalhsuTgNCUrDcsqoOrawnFyWnI/JziPgr4AOS3geMJow5nUUb02qKwsecBpAquKwPM1kFxx0nnE7IcxKumZ1kZpPNbAphWs0vzexjFDytJgtuOQ0wh96znAPG/G7N8fwXd1iv+w/csiqC9ATdRm7lPi7VHI3c0H+faawnCwn2ZFpNM1ycBpz5L+7AAWN+x/wXg4d+lvEqcMHKA3cr756ifod9L3oFaJOZ3QDcEPdLnVYDLk4O649XQXdzrJzsuNVUDv3+m+736A9ZcHEaEtLde41wy6oYvPvOyQ0Diu/WKx0XpyGg1rXXKc0sKxep5rgg5Uffd8XlyeBrk4vTIJEcW0rTrUDVaOayDi5WjfCxp+7J47c1KC9V3q3nOE3wycCNSXfj1QsO6/SeQfk99sBbr3RcnIaQmgXVbOypU3zMKtBqNVzv7nM6ZgCWYM+CT8IdIFqJTRFilIX0pGBgaCYFuwg5eRMm4VqmrZ9xy2mIaTZGVQSD7ljhcfL6l75ztsh/yYzK4eI0YPRacDpl0MarGrmK+/hSf9BPvzWg762iLLg4OZWh3tIgaar8EHHLyekJQzLm5OI0YPSD1ZSVfljHKm0ZtfLKc+FyuqcnsfVKx8VpCGjU1ddvQjYIXYFuXTm54N16ziCQFKF+E6RW+DpWztBh2Zdg72fcldwZGKqwjlWzeU1uLTm5YZZt62Pcchoy+sWbrxvKngjcbP0m8C49Jwf6W3cy4eI0ZAy6MDWilXMFdCZWWdds6heXch8T6w+0evD79VycnKEkT0/AeqGKGs176oeHfj+0cagxfBKu4wwLeThW1BOpflsN14Wp+oj+D02UBRcnx0nR7ZiVP+CdwhkCcSrFW0/S6ZLulrRQ0rWS3hjTx0u6Mp67TdKuiTLjJF0habGk+yX9ZarOf5RkkraMx5J0tqQlsb49EnmPkPRA3I5IpL9d0j2xzNmSVPzdcPqBLMFrW0Ugd9FyciMnbz1JW0u6XtJ9khZJ+lxMnyBpfnxGzpc0vvDPlKIsy+lMM/sqgKTPAqcCxwInAwvN7EOSdgK+D+wXy5wFXGNmh0naCNikVpmkrYEDgd8nrvFeYGrc9gLOAfaSNAGYCUwj9N7eIWmumf0p5vkUcCtwNTAd+HkBn9/pUxpZVSO2nwIMViBbp6LkO+a0EvhHM/uNpM0Iz8P5wCeAX5jZLEknAicCX8ntqhkoRZzMbEXicAxrHSN3BmbFPIslTZE0EXgZeDfhhmFmrwKvJur4LvBl4KpE2gzgYjMz4JZoeU0C9gHmm9kzAPGLmC7pBmCsmd0S0y8GPoiLk9OCQ+9ZzgFjrgfWekOu1w04coR7wjm5kZe3npk9BjwW95+XdD+wFeH5uU/MdhFwA8MgTgCSzgAOB54D9o3JdwGHADdJ2hPYBpgMrAKeAi6QtBtwB/A5M3tR0gxguZndleqF2wp4NHG8LKY1S19WJ71R+48BjgGY8MZR2T+4MxSkHSxWLXl4jXU1cqepsHKVi5TTIW1NsN1S0oLE8Wwzm10vo6QpwNsIPUcTo3ABPA5M7KytnVPYmJOk6yTdW2ebAWBmp5jZ1sAlwPGx2CxgnKSFwAnAnQRhGgnsAZxjZm8DXgROlLQJoSvw1KI+RyPMbLaZTTOzaZuOH/xF85zOqY1XffDK/1qbOHJEECnHaRejnTGnp2vPqbg1EqZNgZ8An0/1bBF7n3rugVGY5WRm+2fMeglhfGdmvClHQnBoAB4ClhLGl5aZ2a2xzBWEPtDtgG2BmtU0GfhNtLqWA1snrjM5pi1nrblaS78hpk+uk99xWjL/xR04YMzvWkbg+P61F6zZP+7AI3OZCOwMITnOc5K0IUGYLjGzn8bkJyRNMrPH4nDIk/ldMRtleeslXxlnAItj+rjo7ABwNHCjma0ws8eBRyXtGM/tB9xnZveY2evNbIqZTSF0xe0R888FDo9ee3sDz0UzdR5wYPQMHE9wpJgXz62QtHcUxsNZdwzLcTJxwJjfNTyXFK7vX3sB5y69nnOXXr/GukrGAxyWpeyd9slrmfb4rDsfuN/MvpM4NReoeTIfQQnPwrLGnGZFoVkNPELw1AN4C3CRJAMWAUclypwAXBLFaynRwmrC1cD7gCXAS7X8ZvaMpNOB22O+r9WcI4DPABcCGxMcIdwZwukJNYtrEJYFcXpAfvOc/gr4OHBPHE6BMFQyC7hc0lGEZ/SH87pgVmRDMJmraLbZdTM7+Sd7tM7oDDxJq6nW1Zc8rpcvSbMuwX5bGdipz3V2xR1mNq3T8puPfoO9801HtM4IXPPAt7q6Vpl4hAjHyZF6glQ7rv2d/+IOdUWo1ZhV2dHWnQoxBEaFi5Pj5Eynkd/TwpaFtMs6VGsi8EGLVjBvl7FlN2PwcHFyHKdb0qJTzzrKY52tepHW0/RasFyYCsCA1S5OjuPkQHq8KS1GNQHLc70t7wbMRqPlTaqLgQ3+mhkuTo7TYxoJUNLCyiJSnYhZnutYDQr9JUwEy2mVi5PjOD2kHbHJw8qqiVV6vAqGU6j6Bh9zchynLNqxorqlmWMFuFBVDhcnx3F6Tdpjr5ciBT5WVX3aCvzat7g4OU5FaNeNvJe4YFUIA3JaMqPKlBJbz3GctWQVpaqJV5bVgZ2CyGkl3CrjlpPjJMjbnTsL7Uy+7XUXXxbqWVXgMQGLw9xbz3H6iTwe3L186GeJXl41a6kd0k4W7mCREwY2BPOcvFvPcSpMI7HsN9GqdQHWBMuXBemS1ZZt62PccnIGkjK65/Kk39vfDHeuyIE+H0/KgouTM5BU/cGexfJpJVCDJGCtIleAi9UazNxbz3H6iUZLUVSReu1Mpk0ZuRlTRm7Wsp5+697LSrobENwTcB3cW89xnLLpZCmNQcIdK9IYtmpV2Y0oHBcnx6kI9QSo1nXXTKAGqXuvFb6MPb5khuM42Wm0HHszmi3j/qnNH2tYv7MuVVzHqnCGwJXcxclxuqSbWHjp+Uy1vw+vzD7uNCxWU1YGfVkQAyxHy0nSdOAsYARwnpnNyq3yLnBxcpwu6NaiSXbJ1fbXCtTzMdekrq4x7AxcV6Dlt9igpBHA94EDgGXA7ZLmmtl9uVygC9xbz3G6oJWrdzflk+fdOsqXfo8JaKtWZdoysCewxMyWmtmrwGXAjEIbnxFZn7sbVgFJTwGPlN2OBFsCT5fdiDbop/b2U1uhv9rbT22Fztu7jZm9rtOLSromXjsLo4GXE8ezzWx2oq7DgOlmdnQ8/jiwl5kd32n78sK79XKgmx9aEUhaYGbTym5HVvqpvf3UVuiv9vZTW6G89prZ9F5fswy8W89xHGd4WQ5snTieHNNKx8XJcRxneLkdmCppW0kbAR8B5pbcJsC79QaV2a2zVIp+am8/tRX6q7391Fbov/auh5mtlHQ8MI/gSj7HzBaV3CzAHSIcx3GcCuLdeo7jOE7lcHFyHMdxKoeLU8lImiPpSUn3JtJOk7Rc0sK4vS9V5k2SXpD0pVT6CEl3SvpZIm1bSbdKWiLpR3HQE0mj4vGSeH5KosxJMf23kg4qor2Sxkm6QtJiSfdL+suYPkHSfEkPxL/jY7oknR3bdbekPRJ1HRHzPyDpiALa+gVJiyTdK+mHkkaXfW8lTZH050T6uYkyb5d0T7zO2ZJU5r1t1FZJm0j6z/gbWCRpVqKutu+hpOkxbYmkE4u4t4myc1N15XZvnYiZ+VbiBrwb2AO4N5F2GvClJmWuAH6czgN8EbgU+Fki7XLgI3H/XODTcf8zwLlx/yPAj+L+zsBdwChgW+BBYETe7QUuAo6O+xsB4+L+t4AT4/6JwDfj/vuAnwMC9gZujekTgKXx7/i4Pz6vtgJbAQ8BGyfu5yfKvrfAlGS+1Lnb4j1SvGfvLfPeNmorsAmwb+I3cFOirW3dw7g9CLw51nUXsHPe9zaeP4Twf5asK7d761vY3HIqGTO7EXgma35JHyQ8LBel0icDfwucl0gT8B7CAxeCIHww7s+Ix8Tz+8X8M4DLzOwVM3sIWEIIcZJbeyVtTnhYnB/rfNXMnq3TrnR7L7bALcA4SZOAg4D5ZvaMmf0JmA9Mz6utkZHAxpJGEh6of6jCvW3wGSYBY83sFgtPwYsbtKun97YeZvaSmV0f918FfkOYZ5Nua5Z72DQMTx7tBZC0KeEl8OupU7ndWyfg4lRdjo/dAHMSXQSbAl8B/rlO/n8BvgwkI0JuATxrZivj8TKCJUD8+ygEd1LguZh/TXqdMnm1d1vgKeAChW7I8ySNiecmmlltvYjHgYnp9qba1Ul7M7fVzJYD3wZ+DzwGPGdm11LyvY1sG+/fryT9deLayxpco5R726Sta5A0Dng/8It0mzLew17cW4DTgf8FvJSqpxf3dqhwcaom5wDbAbsTHoj/K6afBnzXzF5IZpZ0MPCkmd3Ry0YmaKu9BEtkD+AcM3sb8CKhK2Qd4pt/3nMd2r234wlvv9sCbwTGSPpvObepGY3a+xjwpnj/vghcKmls1kp7fG+btjVapD8EzjazpTm3Kbf2Stod2M7MrmxWaUH3dujwSbgVxMyeqO1L+g+g5uCwF3CYpG8B44DVkl4mvHF9IA7ojgbGSvrfwMcJ3Qgj49tnMjRJLWzJsvhw2Bz4Ix2EM+mgvVcAy8zs1pjvCtaK0xOSJpnZY7H748lUe9PtWg7sk0q/Ice2PgE8ZGZPxTI/Bd4JXEKJ99bMXgFeift3SHoQ2CHWNzlRRfIapdzbJm1dELPPBh4ws39JVNfJPSz63r4DmCbpYcKz8/WSbjCzfSj43g4lZQ96+bb+ACwwKbH/BUIfe7rMadQfzN2HdR0ifsy6g/afifvHse6A8+VxfxfWHXBeSmLQPq/2Ega/d0ycOzPun8m6A8vfivt/y7oDy7fF9AmEcaLxcXsImJBXWwmitYgw1iTCeMIJZd9b4HW1sgQngOW1z836DhHvK/Petmjr14GfABuk7kNb95AgFktjWs0hYpe8722TunK9t76Zi1PZG6E74zHgNUK/81HAD4B7gLsJca4m1Sl3GtnE6c3xYbWE8DAdFdNHx+Ml8fybE2VOIXg+/ZboPZV3ewldKQtimf/DWi+wLQjjDg8A1yUeYiIsivZgvNa0RF2fjJ9jCXBkAW39Z2AxcG8sP6rsewscShDNhQRHgvcn6pkW2/og8D3WRoIp5d42aivBWjDg/nhuIWs9ONu+hwTPuN/Fc6cUcW8T9U1hXXHK7d76FjYPX+Q4juNUDneIcBzHcSqHi5PjOI5TOVycHMdxnMrh4uQ4juNUDhcnx3Ecp3K4ODmO4ziVw8XJcZqQXD4hp/p2V2qZjozltlNYviEdCspxBhIXJ8dpzYNmtntOde1OmCy6HjFMT13MLM82OE7lcXFyhhZJ74gRqUdLGqOw4N2uLcpMUVgc70JJv5N0iaT9Jf1XXDRuz5hvTIx0fVuMbj1DYTHCrwF/H62gv1dY8O4Hkv4L+IHCgpFnSro9tu2/9+BWOE7l8MCvztBiZrdLmkuI77Yx8L/N7N4WxQC2B/6OEH7mduCjwLuADwAnE9byOQX4pZl9Mi4HcRshrM2phBA2x0NYjZWwgN67zOzPko4hLMvxDkmjgP+SdK2FtYscZ2hwcXKGna8RBOZl4LMZyzxkZvcASFoE/MLMTNI9hJhrAAcSIsXXlnsfDbypQX1zzezPiXJvlXRYPN4cmEoIDOo4Q4OLkzPsbAFsCmxIEJAXM5R5JbG/OnG8mrX/UwIONbPfJgtK2qtOfclrihD1fF6GdjjOwOJjTs6w8+/AVwnrM30zx3rnASdIEoCkt8X054HNWpT7tKQNY7kdEqsEO87Q4OLkDC2SDgdeM7NLgVnAOyS9J6fqTydYY3fHrr/TY/r1wM41h4g65c4D7gN+I+legnh6D4czdPiSGY7TBElTCOtjNfXi6xWSXjCzTctuh+MUjVtOjtOcVcDm4tsLSQAAADpJREFUeU3C7ZTaJFzCsvGOM/C45eQ4juNUDrecHMdxnMrh4uQ4juNUDhcnx3Ecp3K4ODmO4ziV4/8DbNgy5swV3i8AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"ds.water.isel(time=0).plot()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x7f3312d5f630>"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAQGUlEQVR4nO3df+gc9Z3H8efr8rNe0ZhUQsw3XCwGSv64pvLFRLw/RBGjVxr/8IpSzlAC+ceCxUKNd3BH/6v/NK1Q5MJFmkJp7dlCQhBCjJHj/mg0OdNUDalfy0kSo0GbpB7lcqZ93x/7+Xrjut/s7O7Mzuz383rAkpnPzM6+95t9zWdmdmZWEYGZ5eUvmi7AzMbPwTfLkINvliEH3yxDDr5Zhhx8swzVEnxJmyWdkjQjaUcdr2Fmw1PV3+NLWgD8FrgbOAO8AjwUEW9U+kJmNrQ6evxbgZmI+F1E/C/wM2BLDa9jZkNaWMMyVwOnC+NngI1Xe8JiLYml/GUNpZjl60MuvB8RN/SaVkfwS5G0HdgOsJRr2Ki7mirFMnHgnePcc+OGpssYmxfiubfnmlbHpv5ZYE1hfCq1fUJE7IqI6YiYXsSSGsow+6ScQt9PHcF/BVgn6SZJi4EHgX01vI6ZDanyTf2IuCLpG8ABYAHwTES8XvXrmNnwatnHj4jngefrWLaZjc5n7pllyME3y5CDb5YhB98sQw6+WYYcfLMMOfhmGXLwzTLk4JtlyME3y5CDb5YhB98sQw6+WYYcfLMMOfhmGXLwzTLk4JtlyME3y5CDb5YhB98sQw6+WYYcfLMMOfhmGXLwzTLk4JtlyME3y5CDb5YhB98sQw6+WYYcfLMMOfhmGXLwzTLk4JtlyME3y5CDb5ahvsGX9Iyk85JeK7Qtl3RQ0pvp3+tTuyQ9JWlG0glJt9RZvJkNp0yP/yNgc1fbDuBQRKwDDqVxgHuBdemxHXi6mjLNrEp9gx8R/w78vqt5C7AnDe8B7i+0/zg6fgUsk7SqqmLNrBrD7uOvjIhzafhdYGUaXg2cLsx3JrV9iqTtko5KOvoRl4csw8yGMfLBvYgIIIZ43q6ImI6I6UUsGbUMMxvAsMF/b3YTPv17PrWfBdYU5ptKbWbWIsMGfx+wNQ1vBfYW2h9OR/c3AZcKuwRm1hIL+80g6afAHcDnJJ0B/hn4LvBzSduAt4GvptmfB+4DZoA/Al+voWYzG1Hf4EfEQ3NMuqvHvAE8MmpRZlYvn7lnliEH3yxDDr5Zhhx8sww5+GYZcvDNMuTgm2XIwTfLkINvliEH3yxDDr5Zhhx8sww5+GYZcvDNMuTgm2XIwTfLkINvliEH3yxDDr5Zhhx8sww5+GYZcvDNMuTgm2XIwTfLkINvliEH3ypx4J3jTZdgA3DwbWQH3jnOPTduaLoMG0Df386z9in2rm0IXBtqsME4+BPonhs3fBz+uXrbq216lwlq98rFvfr8os4P3DbrWi2PjfrUj+/aVYy6T321EA+ybK8M2uuFeO5YREz3muZ9/EzNFW4fpMuDgz9BDrxzvHXBbGNN1p/38SdAd7DKBK17E7zucPoYwGRxjz8PDRvAUVcO7vknR9/gS1oj6bCkNyS9LunR1L5c0kFJb6Z/r0/tkvSUpBlJJyTdUvebmM8GDZN7XSujTI9/BfhWRKwHNgGPSFoP7AAORcQ64FAaB7gXWJce24GnK686I2WDPOhR+nHvCli79N3Hj4hzwLk0/KGkk8BqYAtwR5ptD/AS8Hhq/3F0vif8laRlklal5VgNZkPcht5+2H397hVPG97LfDbQwT1Ja4EvAUeAlYUwvwusTMOrgdOFp51JbQ7+gEY9CaeO51bpau/PBwvrVfrgnqTPAr8AvhkRfyhOS737QGcCSdou6aikox9xeZCnZq/NgShbW5ldC+9+1KdU8CUtohP6n0TEL1Pze5JWpemrgPOp/SywpvD0qdT2CRGxKyKmI2J6EUuGrX/emutDP2jou0+9LZ7uO6zZ5cw+5nq9MjVVzSuLcsoc1RewGzgZEd8rTNoHbE3DW4G9hfaH09H9TcAl79//v1E+mKOEfna8jmB0rwCaDF+bt4bapMw+/u3A3wO/kTT7P/oPwHeBn0vaBrwNfDVNex64D5gB/gh8vdKKJ9i4AlHV1sLVlu+ATbYyR/X/A9Ackz91ZU3a339kxLrmlbZcRltlYIvL6rWiaWLl4BVSeT5zr2ZV9fKDfKCruvKun367DnVeQXi11/R+fn8Ofo2G/QBW8cFtc89X5ZH/Xstt83tvCwe/IsNcSFNmOcMapCdu4ij7KNcT1HV+Q04c/ArNfijr3Pwtq18AinfwGeb5VRjkNbr/rsXx4t/dm/nl+LLcMRtm/7uuEPZ7vasdvKtKmfMKBl2R+vTf/tzjj2iuXmauD9s473xTxeZ0FXU13Qs3/fpt5B5/RN091qA3sqxTm66vn12WrwpsB/f4LdR9Ouyw+69t38Tt936qOL247Gvlxj1+BaoKWK/lNB3eqvfzy942rI6gzrXVkSPfXrtmw9wfb9yvP5dB79c/qnHuJuUQft9eu0G9rmAblzouCGo6MFX9PXPf9Hfwx6SJFUDxNee6jHbY5VZt0GVW8V5yDr+DP2ZVBnCQ1+xXzzDLrPPYxjiemzMf3GtIG3qbYmiGDdAoX8+1IbS5XtHnHr8BbQh9XbpD1L1yqeNCmiaPo0wq9/gNaMvdaurSL4R1hbSurwHnI/f4LTDuD2uT3zK0JZi5byE4+Jmarx/8uq71n28c/IblsH/avZ9fd+jK/E3n+9+8HwffxqKuA3v9XrNfe64rAAffLEMOvmUn9/17cPBtnst1U74fB9+ylOsZe7McfJv32nifg6Y5+Jad3EMPPmXXMlE8f6Dpm6O0gXt8sx7m+5F/B98sQw6+WYYcfLM5zOfNfQe/RvP5g2OTzcGv0Xw/MmzltLEDcPAtC03+bHkbOwAH36yPXj/JPTs8yDLapG/wJS2V9LKkX0t6XdJ3UvtNko5ImpH0rKTFqX1JGp9J09fW+xbMrq6un/8apCcf90+d91Omx78M3BkRXwQ2AJslbQKeBHZGxM3ABWBbmn8bcCG170zzmc0bo4S46vsODntHo77Bj47/TqOL0iOAO4HnUvse4P40vCWNk6bfJUkDV2ZWkapv5T1KeHv9CvJc6tyVKHWuvqQFwDHgZuCHwFvAxYi4kmY5A6xOw6uB0wARcUXSJWAF8H7XMrcD2wGWcs1ARZs1qcpfEGrqzsOlDu5FxJ8iYgMwBdwKfGHUF46IXRExHRHTi1gy6uLMrqqq3wxs20G6YQ10dV5EXJR0GLgNWCZpYer1p4CzabazwBrgjKSFwHXABxXWbDaUUYJb141Ci5v93W1lzD5v0LrKHNW/QdKyNPwZ4G7gJHAYeCDNthXYm4b3pXHS9BcjIgaqyqwmc916u98Pi9ZtlB9THeY5ZTb1VwGHJZ0AXgEORsR+4HHgMUkzdPbhd6f5dwMrUvtjwI6BqzIbo3Hf9rsN1IbO+Fotj426q+kyLFPF++8Nu8ndhH61vhDPHYuI6V7P9Zl7lr1JDH1RXZv6Zlno/o69zYY9qDfLwTfrMkm9/bAcfLOCYk/a5l5/1JWTg282hybPrKubj+qbdZkvv7Ljo/pmAyi7mT/JWwMOvlkPk9Tj13JZrpn11pav/oY5EOngm41gmPPr61hRVH6RjplVb677+I2Lg29Ws1736iv20E0cT3DwzcagV49ePEYw7vA7+GZj0PT1/t0cfLMMDXTrLTMbXHePPsr9+aviHt+sAU3f9cfBN6vQOL+WG+W1HHyzivULZNO9PTj4ZpWbhPP8HXyzCTXKCsZH9c0qNO7efthvCNzjm02w7tN/yx7wc49vNg/46jwz68vBN8uQg2+WIQffLEMOvlmGHHyzDDn4Zhly8M0y5OCbZcjBN8tQ6eBLWiDpVUn70/hNko5ImpH0rKTFqX1JGp9J09fWU7qZDWuQHv9R4GRh/ElgZ0TcDFwAtqX2bcCF1L4zzWdmLVIq+JKmgL8F/jWNC7gTeC7Nsge4Pw1vSeOk6Xel+c2sJcr2+N8Hvg38OY2vAC5GxJU0fgZYnYZXA6cB0vRLaX4za4m+wZf0ZeB8RByr8oUlbZd0VNLRj7hc5aLNrI8y1+PfDnxF0n3AUuBa4AfAMkkLU68+BZxN858F1gBnJC0ErgM+6F5oROwCdgFcq+Ux6hsxs/L69vgR8URETEXEWuBB4MWI+BpwGHggzbYV2JuG96Vx0vQXI8LBNmuRUb7Hfxx4TNIMnX343al9N7AitT8G7BitRDOr2kC33oqIl4CX0vDvgFt7zPM/wN9VUJuZ1cRn7pllyME3y5CDb5YhB98sQw6+WYYcfLMMOfhmGXLwzTLk4JtlyME3y5CDb5YhB98sQw6+WYYcfLMMOfhmGXLwzTLk4JtlyME3y5CDb5YhB98sQw6+WYYcfLMMOfhmGXLwzTLk4JtlyME3y5CDb5YhB98sQw6+WYYcfLMMOfhmGXLwzTLk4JtlyME3y5CDb5YhB98sQw6+WYYcfLMMKSKargFJHwKnmq5jAJ8D3m+6iJImqVaYrHrbXutfRcQNvSYsHHclczgVEdNNF1GWpKOTUu8k1QqTVe8k1drNm/pmGXLwzTLUluDvarqAAU1SvZNUK0xWvZNU6ye04uCemY1XW3p8MxujxoMvabOkU5JmJO1oQT3PSDov6bVC23JJByW9mf69PrVL0lOp9hOSbmmg3jWSDkt6Q9Lrkh5ta82Slkp6WdKvU63fSe03STqSanpW0uLUviSNz6Tpa8dVa6HmBZJelbS/7bUOotHgS1oA/BC4F1gPPCRpfZM1AT8CNne17QAORcQ64FAah07d69JjO/D0mGosugJ8KyLWA5uAR9LfsI01XwbujIgvAhuAzZI2AU8COyPiZuACsC3Nvw24kNp3pvnG7VHgZGG8zbWWFxGNPYDbgAOF8SeAJ5qsKdWxFnitMH4KWJWGV9E57wDgX4CHes3XYO17gbvbXjNwDfCfwEY6J8Es7P5MAAeA29LwwjSfxljjFJ2V5p3AfkBtrXXQR9Ob+quB04XxM6mtbVZGxLk0/C6wMg23qv60efkl4AgtrTltOh8HzgMHgbeAixFxpUc9H9eapl8CVoyrVuD7wLeBP6fxFbS31oE0HfyJE51Veuu+CpH0WeAXwDcj4g/FaW2qOSL+FBEb6PSmtwJfaLikniR9GTgfEcearqUOTQf/LLCmMD6V2trmPUmrANK/51N7K+qXtIhO6H8SEb9Mza2uOSIuAofpbC4vkzR7+nixno9rTdOvAz4YU4m3A1+R9F/Az+hs7v+gpbUOrOngvwKsS0dKFwMPAvsarqmXfcDWNLyVzn70bPvD6Uj5JuBSYfN6LCQJ2A2cjIjvFSa1rmZJN0haloY/Q+dYxEk6K4AH5qh19j08ALyYtl5qFxFPRMRURKyl87l8MSK+1sZah9L0QQbgPuC3dPb1/rEF9fwUOAd8RGcfbhudfbVDwJvAC8DyNK/ofCvxFvAbYLqBev+Gzmb8CeB4etzXxpqBvwZeTbW+BvxTav888DIwA/wbsCS1L03jM2n65xv6TNwB7J+EWss+fOaeWYaa3tQ3swY4+GYZcvDNMuTgm2XIwTfLkINvliEH3yxDDr5Zhv4POLxiUMI+95gAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"#water\n",
"\n",
"plt.imshow(ds.water.isel(time=0).values == 128)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x7f330acfccf8>"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAXAUlEQVR4nO2dbchlV3XHf6uTN8VqnHEI48ykE8mIhKKjDDpiP0iCGFNr/BDEIHUqA/MlhYgWTVpoEfqhfjEqFenQiLGIiW80QxAGO0kpBU1MTIwmIfGxKJnJmGniJFoCqWNXP9z96Jnrufe87rP3Oef/g4fnnnPuvWfdc/Z/r7XXfjnm7ggh5sUfpDZACDE8Er4QM0TCF2KGSPhCzBAJX4gZIuELMUOiCN/Mrjazx81sw8xuinEOIUR7rO9+fDPbAjwBvAM4AXwPuN7dH+31REKI1sTw+G8GNtz9v9z9f4HbgWsjnEcI0ZLzInznTuDJwvYJ4C3rPvCqrVt8z+7zI5gixHx54OEXn3H37WXHYgi/FmZ2GDgMcOnO87jv2O5UpoiZ8M5X7+PYUw+lNmMwtuzY+NmqYzFC/ZNAUcW7wr5zcPcj7r7f3fdv37YlghlCnMucRF9FDOF/D9hrZpeZ2QXA+4GjEc4jhGhJ76G+u581s78EjgFbgC+4+yN9n0cI0Z4obXx3/xbwrRjfLYTojkbuCTFDJHwhZoiEL8QMkfCFmCESvhAzRMIXyXnnq/elNmF2SPgiKXMbRpsLoxO+vMO0kOjTMCrhS/TTQPcxPclm57VB3mH8KLTPg1F5fDFuJPp8kPDFYEj0+SDhCzFDJHwhZoiELybJO1+9T70Ha5iU8HWj05Dzdc/ZtpRMSvhNkkcqEP2hpN34mJTwm6DC2oxiRalKc/z0/iSdNux/w0Ved3ntNn3B6j+uZlPMx5566JzXYrxs2bHxgLvvLzs2Oo+/WRjreh2Jvh7HnnronOukazZtRif8pqgAN0fXbPqMSvhFL6/CKUR7RiN8JZeE6I9RCH+znb6ZeIrt7VWxiKmTxbTcJx5+aen+ZQGmFL2aGWJKZCF8qOdlYwqurrDV3SWmwChCfRh27HXZeYrdXRK8GDtZCP+1r3+hUkzL/cyx0SQPMWWyEP4mZcIeSvCb5ykbxKIKQEyNrIQPeYTUxR6ETdGn7k5U5SP6JJvk3jIp29Fl49aLx1LYpryC6JPsPH4OVEUdqbxvk/kJylHMlzr3PVuPnztDe/4mIlZ0MG/q3H95/BWUCa0s7J8rVb99ztcmJXWvuzz+Csoy+mVt/qHtGZrl37s8bFqDmfKi7rD2SuGb2ReAdwOn3f2Pw76twB3AHuCnwPvc/YyZGfAZ4BrgBeAv3P37HX5HMlZ5/KG7+FIIa91vq9O7oTUQ0tJXqP9F4OqlfTcBx919L3A8bAO8C9gb/g4Dn69p62iJWQGk6ELsY+i0RB+HdQnbps3QSo/v7v9hZnuWdl8LvD28vg34d+DjYf+XfLGe13fN7GIz2+Hup6rOkxurwvqqSCCmPUPR5lzy8vGo06Xc9Nq3beNfUhDzz4FLwuudwJOF950I+35P+GZ2mEVUwKU780w11G3TxyjwqdrOVU2ZsklKxUFOEn+/tI30jj31EFt2rD7eOasfvHvjFTvd/Yi773f3/du3belqRjSGCmtzyoI3tSX1SMupE2MtxLau9unNEN7MdgCnw/6TQHG53F1h3ySJJfrUmfKqSKcsoy/Rx2M5kurjWrf1+EeBg+H1QeDOwv4P2oIDwPNjbN/Xoc+Cvmpy0tAsd10uF7bidnFVJNEvxSTequvbdXRm5br6ZvYVFom8VwFPA38H/CvwVeBS4GcsuvN+Ebrz/pFFL8ALwIfc/f4qI5qsqx+DHNqmQ3r5tqG86I9Vaz5sHlt3zavyL5ufXbeufp2s/vUrDl1V8l4Hbqj6ztTkIPRlhrJnXaFZ9b7l8QtDrX04N+pEUVWVdt17oiG7M2dVQSsL7Tf3F/fllJQcC3UHSK2ja6U7ukdoiXasCi1TJxLnRlNhlw2ZXvVdy/ewU6gvxk3b4beqCOJQd2xIVSa/a6SlUH/CdCkcCuPzoW/Rgzz+rEk523CuNLneTSaFNY3Q5PEnyhCCVqXRjKbirSvmNs0yCX+C1ClgqwpLjLBS1Geopd4U6s+MKu+wvNCoknzdaSvcmBPE5PEnRtUY+7Llwtd9T50x++Jciteuqejrir3rcGl5/BmxLOa6o/hEM9okTcs+E3O1J3l8IRJSx3PHqIgl/BlTNfNLxKMo+FXXu2qZrS73SEN2J0iTpNBQY8PnSB+V57ohusvHl1k3ZFcef2LUGXpbtahDMXmkOffpaSr4Okj4E6KvhUCLizwo5G9PV3F2mZ5bhYQ/EepOxtHS2MPRR1dorIpXwp84bYS8LrxXBFBNVaRU557UqaC7VNIS/sQpW8hz3XTcshC/ScZZrKeJWGOOs5DwJ0Zxqeu6w3NFf9RpVvUREXRlEsJXAV5Qd337pgVLK/W0o83ovTrXt4/yPnrhayLJgrJZdVUrudb9rrbvEe1pkpBtw6jG6sfoz5wT69ZxqxonrutcjzbTmtd9ZnnMRXHUXpd7ksXIvZfbVn/u1LbUZkyGqoU161D28AzRnKaLb9SJxOpWxhq5NxPWJY26tAs3Kw0N6BmGIfr4swj1X/v6F4Bpe/whvWaM6Zzy+O0pe0JOm666Pu+nPP6ADOUtu3rmqlljq84pzmXdvIkuPS91e2/WkYXHnxpl3n2MK9o2CTkVEZxLH8tmlbX/i6LvknjN1uOPTSR16Escq9rbqcQn0f8+fXjlVd/ZB1lk9Yeejz+kh4q1eGVVP2/Xfvrl75dXz4s63l6P0CowdAEuS+z0TZsFHZskkdat+KLKYJxkG+pDnHA/dTicSxMmRrefGAYN2R0ZXW9Yjv3oOdo0Fyad1R86NI85RLXtd64KvZucK7Y4lQMYllksvTWkV5nCGnN9VTBDf14MR6XwzWy3md1jZo+a2SNmdmPYv9XMvm1mPw7/Xxn2m5l91sw2zOxhM3tTW+PGLsA+aDO1c+5MvQIaaiGOs8BH3f0K4ABwg5ldAdwEHHf3vcDxsA3wLmBv+DsMfL6LgalXek3dhq37u5sO9Ry6KTAkqvyqqRS+u59y9++H178CHgN2AtcCt4W33Qa8N7y+FviSL/gucLGZ7ejD2KELZ9UClrmIJcZgkba0vSZa2XdYGiX3zGwP8EbgXuASdz8VDv0cuCS83gk8WfjYibDvFD0QI4lU9p2rBsjEXiBhlQ3LdDl3DhUEVFesudg5RWon98zsZcA3gA+7+y+Lx3wx/K/REEAzO2xm95vZ/f/97G+afLR3loWdu8fJWRB9TinN/T6MmVoe38zOZyH6L7v7N8Pup81sh7ufCqH86bD/JFAcf7sr7DsHdz8CHIHFkN06dhTnhfe5DlxTzzqE8PpaYbUsQunqTddFR3W+O6agFSnUo05W34Bbgcfc/VOFQ0eBg+H1QeDOwv4Phuz+AeD5QpOgM8VEX5fRcFXtyVUJxZiVTBVdRL+5HWs05Krm0NBI9PWo4/HfBvw58EMz27yqfw38A/BVMzsE/Ax4Xzj2LeAaYAN4AfhQrxb3xKqJLTELzpDz8cvoc4KQBDZuKoXv7v8J2IrDV5W834EbOtpVmz7nuQ8xiSalYPqeHbgu4kpROahCqs8oRu5VkfPNTlEpDbV8U1XToeu52tzXMSRnc2D0ws/xJnftj+7jN+VcGcZaTDKn8Qy5M3rhL68Am6oiKM5Z71Lw+rK/iSeOnWUvo8t8gljjG+bE6IUP6YefLi9UETP8rUvdLrXYicB1NDnHsuCL2zlU/GNjlktvxaBugWvT/h56tl3fFWmXfv0+krdzjQL0QI2IrPIyqwrbkCvf9BFO92FXai+c+vw5kv1CHG0Ysltn2SM1XcgyJjnNr181ylKiTMOoPP7c2nHLD7aY2tz8qt/T5xiNuZSZumTp8Vd50FwLcl92pZoXsI6+Fwmt8z19Cr7s3KmvaQ5kJfxcRrj1RZMCnOPvLat0Y3rOsvPFaBpohF9GWf1X/vDPGnfvLJPzzUzR9xxrQlAs8Xe9/zHPN0bWZfWzEf6q7rw2NzjnG5qiwlr2cHXD7arv7JNUC4TmXFa6Mron6SzfzKaZ8pzbcimmr667Dm1D+D5D/65rAyhx15wshd+mIKSYZtuFHAprH4nTLm3wHO5NzmUkJqPqzmtKrjc0B9HHYvmaL1cuMSbSrFo0RawmS49fJOewvS25rFYTi6p7FeteDh32jzlayNbjbw5YmUNtPrT4U13PnAZfTb1MVZGt8DfJpaBMjakW/Fhz/bucK0eyFf4Q4XAOlcocIprldn7s617nmk79mleRrfAh/s2Z+80fkliJvapzVu3PcfDUEGQtfCHGSu5OJXvh534BxfgYwhvL4/eAxC/akkvZyalHAzIWfk4XSaQlhmhi9sEPuZhpW7IVfi41tUhL2RyMpqRc5yBH0UPGwhciFjFF30dFNQTZT8sVoq9h20NNICqbXZpieK9W2RWjJsUgp1zWG4hFVsLPOTQSoi05luvsZ+cJMTbGsIR4Vh5fiJzoS7C5hfmQmfBzvEBdyLGmFwIyE/7UmFpFJtqRowOQ8MUsaCu+qc7bl/CFqKDskdybr5t8R05UCt/MLjKz+8zsB2b2iJl9Iuy/zMzuNbMNM7vDzC4I+y8M2xvh+J64P0GI9cR6/FcTT57bvP86Hv9F4Ep3fwOwD7jazA4AnwRucffLgTPAofD+Q8CZsP+W8L5eya32FPOi66i+Pstv2xWNKoXvC/4nbJ4f/hy4Evh62H8b8N7w+tqwTTh+lZlZY8vWkGObSeRL30t5dxFvcRRi1ffEbErUGsBjZluAB4DLgc8BPwGec/ez4S0ngJ3h9U7gSQB3P2tmzwPbgGeWvvMwcBjg0p0aRyTGQ59PR041T79Wcs/df+Pu+4BdwJuB13U9sbsfcff97r5/+7YtXb9OiLX0IdYpPa6rkat19+fM7B7grcDFZnZe8Pq7gJPhbSeB3cAJMzsPeAXwbI82C9GKLsKNtVBo2TMI2zw1uKldlcI3s+3Ar4PoXwK8g0XC7h7gOuB24CBwZ/jI0bD9nXD8bs9h7q8QtHvY5xA5pa4PDm1KHY+/A7gttPP/APiqu99lZo8Ct5vZ3wMPAreG998K/IuZbQC/AN7f2CohRFRGsRDHmJ9RJvJnlffPvcxVNQ9GvRCHRC9ik3JNvj5oY2v2whdiCDb719vkAFLQdTmy7IU/pppXTIM5lLnshS/EkBQ9ac5ev2vlJOGPjJwL49RIObIuNqPI6gsxJFNJKI86qy/E0NQN88ccDUj4QpQwJo8fZVquEKKcXLr+2iQiJXwhOtDmKT8xKoqmNkj4QiRg1Tp+QyHhCxGZsrX6ih46RT5BwhdiAMo8ejFHMLT4JXyxkuVQNHUSa8ysE7Y8vsiKslVnJP5poFUuxe9RtX5815lhc6Pq6bny+CI6y4WuLISv+5hnef/2xFrDry5ZePwnHn5pahNmRR2PM4ZnvOfIkIm6LufKxuMrgTQMy91IdQtOm4Eqc6WqDKf29pCR8IukrADmUPHUEfEcrkMsxlBBZhHqryKHJMicKVvMcXlcuBJ96ehyzbOYj/9y2+pvsasafSZmQZvKfOwmlAl4VcU71lVpp8g65zjJ+fhdcwIKZc+lLPxfbovKu+fH8n2rW66zDvXr0qZJkHK45JhYdW1yX5Nubmh2Ht2jAVUEq5HYp8EkhV+kbteKWI+u07SYRKhfxbqZUaI565pHajqNg8l7/FVosFAcJPpxMNruvFio4K5nuW9fYy3yZZLdebFQJCDmgIS/gmLPgCqC36GhvgvG/jsl/JqoAhBFxt6kmUVWv0/Upl0/eGeO12OMyON3ZK7NgRymlor21Ba+mW0xswfN7K6wfZmZ3WtmG2Z2h5ldEPZfGLY3wvE9cUzPjzlWAnP6rVOiice/EXissP1J4BZ3vxw4AxwK+w8BZ8L+W8L7ZsdUK4Ap/qYUpL6OtYRvZruAPwX+OWwbcCXw9fCW24D3htfXhm3C8avC+2fJ1KKAdTP1FPbXJ/W1qpvc+zTwMeAPw/Y24Dl3Pxu2TwA7w+udwJMA7n7WzJ4P73+mF4tHzNQSg1OpzOZIpcc3s3cDp939gT5PbGaHzex+M7v/17zY51ePhrFFA2OxU1RTJ9R/G/AeM/spcDuLEP8zwMVmthkx7AJOhtcngd0A4fgrgGeXv9Tdj7j7fnfffz4XdvoRUyDnCkALcEyPylDf3W8GbgYws7cDf+XuHzCzrwHXsagMDgJ3ho8cDdvfCcfv9hwmBIwEzSQUXag7O7JLP/7HgY+Y2QaLNvytYf+twLaw/yPATR3OIcgjGihbYHMTLb2dD3Xvg2bnjZQhhFa2yu7y/iHtEc3Q7LwJkltiMBc7RD00Vn8CTK2bUMRHHn+CxIgEVoX3GrM/TiT8CdN3BVD2pF0xTpTcmyFNvXNZkm9V4i8FWuCznHXJPbXxZ0jTnEDuD8+Q6Jsj4Yta3lvimhZq44tzqLvWoJJ67cglcpLwxVpyGiswBXKpKCV8UQtVAGmIdc2V1RedycWLiXNRVl9EJaeuPVEPhfqiV9QkGAcSvoiCKoC8UagvoqIJRHki4YtBUT4gDyR8kQxFA+lQG19kg3ICwyGPL7JCy3oNgzy+yB71EPSPPL4YDUoM9oeEL0aJEoPdkPDFJFA00Ay18cXkUE6gGnl8MVnUHFiNPL6YDYoEfoc8vpgdigTk8YWYZSQgjy9EYE6jBuXxhVjDVKMBCV+IGkytAlCoL0QDppIYlPCF6MBYKwKF+kL0yFiaBBK+EBHIvQJQqC9ERHJtCkj4QgxILhWBQn0hEpKqSZDFs/PM7FfA46ntaMCrgGdSG1GTMdkK47I3d1v/yN23lx3IJdR/fNXD/XLEzO4fi71jshXGZe+YbF1Gob4QM0TCF2KG5CL8I6kNaMiY7B2TrTAue8dk6zlkkdwTQgxLLh5fCDEgyYVvZleb2eNmtmFmN2VgzxfM7LSZ/aiwb6uZfdvMfhz+vzLsNzP7bLD9YTN7UwJ7d5vZPWb2qJk9YmY35mqzmV1kZveZ2Q+CrZ8I+y8zs3uDTXeY2QVh/4VheyMc3zOUrQWbt5jZg2Z2V+62NiGp8M1sC/A54F3AFcD1ZnZFSpuALwJXL+27CTju7nuB42EbFnbvDX+Hgc8PZGORs8BH3f0K4ABwQ7iGOdr8InClu78B2AdcbWYHgE8Ct7j75cAZ4FB4/yHgTNh/S3jf0NwIPFbYztnW+rh7sj/grcCxwvbNwM0pbQp27AF+VNh+HNgRXu9gMe4A4J+A68vel9D2O4F35G4z8FLg+8BbWAyCOW+5TADHgLeG1+eF99mANu5iUWleCdwFWK62Nv1LHervBJ4sbJ8I+3LjEnc/FV7/HLgkvM7K/hBevhG4l0xtDqHzQ8Bp4NvAT4Dn3P1siT2/tTUcfx7YNpStwKeBjwH/F7a3ka+tjUgt/NHhiyo9u64QM3sZ8A3gw+7+y+KxnGx299+4+z4W3vTNwOsSm1SKmb0bOO3uD6S2JQaphX8S2F3Y3hX25cbTZrYDIPw/HfZnYb+Znc9C9F9292+G3Vnb7O7PAfewCJcvNrPN4eNFe35razj+CuDZgUx8G/AeM/spcDuLcP8zmdramNTC/x6wN2RKLwDeDxxNbFMZR4GD4fVBFu3ozf0fDJnyA8DzhfB6EMzMgFuBx9z9U4VD2dlsZtvN7OLw+iUschGPsagArlth6+ZvuA64O0Qv0XH3m919l7vvYVEu73b3D+RoaytSJxmAa4AnWLT1/iYDe74CnAJ+zaINd4hFW+048GPg34Ct4b3GolfiJ8APgf0J7P0TFmH8w8BD4e+aHG0GXg88GGz9EfC3Yf9rgPuADeBrwIVh/0VheyMcf02iMvF24K4x2Fr3TyP3hJghqUN9IUQCJHwhZoiEL8QMkfCFmCESvhAzRMIXYoZI+ELMEAlfiBny/1tfSq4AFpjxAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"#High slope\n",
"\n",
"plt.imshow(ds.water.isel(time=0).values == 0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment