Created
February 25, 2019 05:41
-
-
Save prl900/43cdf53f523dc503151e0596abb6e5d1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.image.AxesImage at 0x117153550>" | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAADT1JREFUeJzt3X+oX/V9x/Hna0lM/VFNNG5mMWqHInN21SpREYZoBZViBrMjMlotSlipqx0rtN3Ase6P6f6w0Fo67JRpKa1FW5cVh1hU2rLqvIZo1cw2FYZBmVZtbKami33vj+/R3d7c5HPd99zzvTd5PuDLPed7Pvf7/ny54ZXzPed8zztVhSTty29MegKSFj6DQlKTQSGpyaCQ1GRQSGoyKCQ1jRUUSY5Mcl+Sn3Q/V+5l3JtJtnSPTePUlDS8jHMdRZK/B16uquuTfAZYWVWfnmXczqo6bIx5SpqgcYPiaeC8qno+yWrgwao6eZZxBoW0iI0bFD+vqhXT1l+pqj0+fiTZDWwBdgPXV9Xde3m9jcBGgCUsOeMQDv9/z22hyrKlk57C/Fm6f763k0757UlPYd48+uijP6uqo1vjmn/ZJN8Fjpll01+9g/kcV1XPJfkd4P4kP6qqn84cVFU3AzcDHJ4j66xc8A5KLA5LV/3WpKcwb371m7Meolr07p3620lPYd4k+c+5jGsGRVV9YB9F/ivJ6mkfPV7Yy2s81/18JsmDwOnAHkEhaWEa9/ToJuCKbvkK4J9nDkiyMsnybnkVcC7w1Jh1JQ1o3KC4HrgwyU+AC7t1kpyZ5B+7Mb8LTCV5DHiA0TEKg0JaRMY6+lRVLwF7HEioqing6m7534D3jlNH0mR5ZaakJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSUy9BkeSiJE8n2dZ1DJu5fXmSO7rtDyc5oY+6koYxdlAkWQJ8CbgYOAW4PMkpM4ZdBbxSVScCnwduGLeupOH0sUexDthWVc9U1S+BbwDrZ4xZD9zWLd8JXJAkPdSWNIA+gmIN8Oy09e3dc7OOqardwA7gqB5qSxpAH80iZ9szmNnQdC5jfq336Ls4ZPyZSepFH3sU24G109aPBZ7b25gkS4EjgJdnvlBV3VxVZ1bVmctY3sPUJPWhj6B4BDgpyXuSHARsYNRqcLrprQcvA+6vcdqoSxrU2B89qmp3kmuAe4ElwK1V9WSSzwFTVbUJuAX4apJtjPYkNoxbV9Jw+jhGQVXdA9wz47nrpi2/AXyoj1qShueVmZKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkpqF6j16Z5MUkW7rH1X3UlTSMsW+uO6336IWM+nc8kmRTVT01Y+gdVXXNuPUkDa+Pu3C/3XsUIMlbvUdnBsU78quVh7LzwrN6mN7C8sbK/ffT3q6V+2c72RNvuHHSU5i4oXqPAvxRkseT3Jlk7SzbSbIxyVSSqf/ZtbOHqUnqQx9BMZe+ov8CnFBVvw98l//rbP7rvzS9peDyw3qYmqQ+DNJ7tKpeqqpd3epXgDN6qCtpIIP0Hk2yetrqpcDWHupKGshQvUc/keRSYDej3qNXjltX0nCG6j36WeCzfdSSNLz991ydpN4YFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpr6ail4a5IXkjyxl+1J8oWu5eDjSd7fR11Jw+hrj+KfgIv2sf1i4KTusRH4ck91JQ2gl6Coqu8xurv23qwHbq+Rh4AVM27hL2kBG+oYxZzaDtpSUFqYhgqKubQdtKWgtEANFRTNtoOSFq6hgmIT8JHu7MfZwI6qen6g2pLG1EunsCRfB84DViXZDvw1sAygqv6BURexS4BtwGvAR/uoK2kYfbUUvLyxvYCP91FL0vC8MlNSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpaaiWgucl2ZFkS/e4ro+6kobRyz0zGbUUvAm4fR9jvl9VH+ypnqQBDdVSUNIi1tcexVyck+QxRo1/PlVVT84ckGQjoybGLDlyBc+dv0czsUVv6RGvT3oK8+aoFftnG8jjDn9l0lOYNz+d47ihDmZuBo6vqvcBXwTunm3Q9JaCSw47dKCpSWoZJCiq6tWq2tkt3wMsS7JqiNqSxjdIUCQ5Jkm65XVd3ZeGqC1pfEO1FLwM+FiS3cDrwIaue5ikRWColoI3MTp9KmkR8spMSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpKaxgyLJ2iQPJNma5Mkk184yJkm+kGRbkseTvH/cupKG08c9M3cDf1FVm5O8G3g0yX1V9dS0MRcDJ3WPs4Avdz8lLQJj71FU1fNVtblb/gWwFVgzY9h64PYaeQhYkWT1uLUlDaPXYxRJTgBOBx6esWkN8Oy09e3sGSYk2ZhkKsnUmzv/u8+pSRpDb0GR5DDgLuCTVfXqzM2z/MoefT1sKSgtTL0ERZJljELia1X1rVmGbAfWTls/llGzYkmLQB9nPQLcAmytqhv3MmwT8JHu7MfZwI6qen7c2pKG0cdZj3OBDwM/SrKle+4vgePg7ZaC9wCXANuA14CP9lBX0kDGDoqq+gGzH4OYPqaAj49bS9JkeGWmpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUtNQLQXPS7IjyZbucd24dSUNZ6iWggDfr6oP9lBP0sCGaikoaRHrY4/ibftoKQhwTpLHGDX++VRVPTnL728ENgIcvvpg/uScH/Y5vQXh1IO3T3oK8+a9y/fPnk6/d9DBk57CvFkyx3FDtRTcDBxfVe8DvgjcPdtrTG8peMjK5X1NTdKYBmkpWFWvVtXObvkeYFmSVX3UljT/BmkpmOSYbhxJ1nV1Xxq3tqRhDNVS8DLgY0l2A68DG7ruYZIWgaFaCt4E3DRuLUmT4ZWZkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU193Fz3XUn+PcljXUvBv5llzPIkdyTZluThrv+HpEWijz2KXcD5Xc+O04CLkpw9Y8xVwCtVdSLweeCGHupKGkgfLQXrrZ4dwLLuMfMO2+uB27rlO4EL3rp9v6SFr68GQEu6W/W/ANxXVTNbCq4BngWoqt3ADuCoPmpLmn+9BEVVvVlVpwHHAuuSnDpjyGx7D3v09UiyMclUkqnXXtnVx9Qk9aDXsx5V9XPgQeCiGZu2A2sBkiwFjgBenuX37T0qLUB9nPU4OsmKbvlg4APAf8wYtgm4olu+DLjfTmHS4tFHS8HVwG1JljAKnm9W1XeSfA6YqqpNjHqTfjXJNkZ7Eht6qCtpIH20FHwcOH2W56+btvwG8KFxa0maDK/MlNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1DdV79MokLybZ0j2uHreupOH0cRfut3qP7kyyDPhBkn+tqodmjLujqq7poZ6kgfVxF+4CWr1HJS1i6aMPT9fT41HgROBLVfXpGduvBP4OeBH4MfDnVfXsLK+zEdjYrZ4MPD325OZuFfCzAesNxfe1+Az53o6vqqNbg3oJirdfbNQx7NvAn1XVE9OePwrYWVW7kvwp8MdVdX5vhXuQZKqqzpz0PPrm+1p8FuJ7G6T3aFW9VFVvdR3+CnBGn3Ulza9Beo8mWT1t9VJg67h1JQ1nqN6jn0hyKbCbUe/RK3uo27ebJz2BeeL7WnwW3Hvr9RiFpP2TV2ZKajIoJDUd8EGR5KIkTyfZluQzk55PX5LcmuSFJE+0Ry8eSdYmeSDJ1u4rA9dOek59mMtXISbpgD5G0R2A/TFwIbAdeAS4vKqemujEepDkDxhdMXt7VZ066fn0pTuDtrqqNid5N6ML/f5wsf/NkgQ4dPpXIYBrZ/kqxEQc6HsU64BtVfVMVf0S+AawfsJz6kVVfY/RGab9SlU9X1Wbu+VfMDrVvmaysxpfjSzYr0Ic6EGxBph+Kfl29oN/dAeKJCcApwMPT3Ym/UiyJMkW4AXgvqpaMO/rQA+KzPLcgklx7V2Sw4C7gE9W1auTnk8fqurNqjoNOBZYl2TBfGQ80INiO7B22vqxwHMTmovmqPsMfxfwtar61qTn07e9fRVikg70oHgEOCnJe5IcBGwANk14TtqH7qDfLcDWqrpx0vPpy1y+CjFJB3RQVNVu4BrgXkYHxb5ZVU9Odlb9SPJ14IfAyUm2J7lq0nPqybnAh4Hzp90x7ZJJT6oHq4EHkjzO6D+w+6rqOxOe09sO6NOjkubmgN6jkDQ3BoWkJoNCUpNBIanJoJDUZFBIajIoJDX9L78xFBQmQfhlAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"%matplotlib inline\n", | |
"\n", | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"\n", | |
"arr1 = np.arange(16).reshape((4,4)).astype(np.float32)\n", | |
"arr1[0,3] = np.nan\n", | |
"arr2 = np.zeros((2,2))\n", | |
"\n", | |
"plt.imshow(arr1)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 2.5, 6. ],\n", | |
" [10.5, 12.5]])" | |
] | |
}, | |
"execution_count": 13, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"for i in range(arr2.shape[0]):\n", | |
" for j in range(arr2.shape[1]):\n", | |
" arr2[j,i] = np.nanmedian(arr1[j*2:(j+1)*2,i*2:(i+1)*2])\n", | |
" \n", | |
" \n", | |
"arr2" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.7" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment