Created
May 3, 2018 18:59
-
-
Save protoget/9b45881f23c96e201a90581c8f4b692d to your computer and use it in GitHub Desktop.
TF cudnn_lstm working example
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import numpy as np | |
| import tensorflow as tf | |
| shape = [2, 2, 2] | |
| n_cell_dim = 2 | |
| def init_vars(sess): | |
| sess.run(tf.global_variables_initializer()) | |
| def train_graph(): | |
| with tf.Graph().as_default(), tf.device('/gpu:0'): | |
| with tf.Session() as sess: | |
| is_training = True | |
| inputs = tf.random_uniform(shape, dtype=tf.float32) | |
| lstm = tf.contrib.cudnn_rnn.CudnnLSTM( | |
| num_layers=1, | |
| num_units=n_cell_dim, | |
| direction='bidirectional', | |
| dtype=tf.float32) | |
| lstm.build(inputs.get_shape()) | |
| outputs, output_states = lstm(inputs, training=is_training) | |
| with tf.device('/cpu:0'): | |
| saver = tf.train.Saver() | |
| init_vars(sess) | |
| saver.save(sess, '/tmp/model') | |
| def inf_graph(): | |
| with tf.Graph().as_default(), tf.device('/cpu:0'): | |
| with tf.Session() as sess: | |
| single_cell = lambda: tf.contrib.cudnn_rnn.CudnnCompatibleLSTMCell( | |
| n_cell_dim, reuse=tf.get_variable_scope().reuse) | |
| inputs = tf.random_uniform(shape, dtype=tf.float32) | |
| lstm_fw_cell = [single_cell() for _ in range(1)] | |
| lstm_bw_cell = [single_cell() for _ in range(1)] | |
| (outputs, output_state_fw, | |
| output_state_bw) = tf.contrib.rnn.stack_bidirectional_dynamic_rnn( | |
| lstm_fw_cell, | |
| lstm_bw_cell, | |
| inputs, | |
| dtype=tf.float32, | |
| time_major=True) | |
| saver = tf.train.Saver() | |
| saver.restore(sess, '/tmp/model') | |
| print(sess.run(outputs)) | |
| def main(unused_argv): | |
| train_graph() | |
| inf_graph() | |
| if __name__ == '__main__': | |
| tf.app.run(main) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://github.com/yjchoe/TFCudnnLSTM in this you can use training saver and ckpt form training ,but you also can't restore .meta