Last active
July 13, 2022 04:48
-
-
Save pshriwise/1495b67f2c0bd8f4f38524c7a4e053bb to your computer and use it in GitHub Desktop.
Example of fuel material per compact in TRISO problem
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Modeling TRISO Particles\n", | |
"OpenMC includes a few convenience functions for generationing TRISO particle locations and placing them in a lattice. To be clear, this capability is not a stochastic geometry capability like that included in MCNP. It's also important to note that OpenMC does not use delta tracking, which would normally speed up calculations in geometries with tons of surfaces and cells. However, the computational burden can be eased by placing TRISO particles in a lattice." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline\n", | |
"from math import pi\n", | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"import openmc\n", | |
"import openmc.model" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Let's first start by creating materials that will be used in our TRISO particles and the background material." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"fuel = openmc.Material(name='Fuel')\n", | |
"fuel.set_density('g/cm3', 10.5)\n", | |
"fuel.add_nuclide('U235', 4.6716e-02)\n", | |
"fuel.add_nuclide('U238', 2.8697e-01)\n", | |
"fuel.add_nuclide('O16', 5.0000e-01)\n", | |
"fuel.add_element('C', 1.6667e-01)\n", | |
"\n", | |
"buff = openmc.Material(name='Buffer')\n", | |
"buff.set_density('g/cm3', 1.0)\n", | |
"buff.add_element('C', 1.0)\n", | |
"buff.add_s_alpha_beta('c_Graphite')\n", | |
"\n", | |
"PyC1 = openmc.Material(name='PyC1')\n", | |
"PyC1.set_density('g/cm3', 1.9)\n", | |
"PyC1.add_element('C', 1.0)\n", | |
"PyC1.add_s_alpha_beta('c_Graphite')\n", | |
"\n", | |
"PyC2 = openmc.Material(name='PyC2')\n", | |
"PyC2.set_density('g/cm3', 1.87)\n", | |
"PyC2.add_element('C', 1.0)\n", | |
"PyC2.add_s_alpha_beta('c_Graphite')\n", | |
"\n", | |
"SiC = openmc.Material(name='SiC')\n", | |
"SiC.set_density('g/cm3', 3.2)\n", | |
"SiC.add_element('C', 0.5)\n", | |
"SiC.add_element('Si', 0.5)\n", | |
"\n", | |
"graphite = openmc.Material()\n", | |
"graphite.set_density('g/cm3', 1.1995)\n", | |
"graphite.add_element('C', 1.0)\n", | |
"graphite.add_s_alpha_beta('c_Graphite')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"To actually create individual TRISO particles, we first need to create a universe that will be used within each particle. The reason we use the same universe for each TRISO particle is to reduce the total number of cells/surfaces needed which can substantially improve performance over using unique cells/surfaces in each." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Create TRISO universe\n", | |
"spheres = [openmc.Sphere(r=1e-4*r)\n", | |
" for r in [215., 315., 350., 385.]]\n", | |
"cells = [openmc.Cell(fill=fuel, region=-spheres[0]),\n", | |
" openmc.Cell(fill=buff, region=+spheres[0] & -spheres[1]),\n", | |
" openmc.Cell(fill=PyC1, region=+spheres[1] & -spheres[2]),\n", | |
" openmc.Cell(fill=SiC, region=+spheres[2] & -spheres[3]),\n", | |
" openmc.Cell(fill=PyC2, region=+spheres[3])]\n", | |
"triso_univ = openmc.Universe(cells=cells)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Next, we need a region to pack the TRISO particles in. We will use a 1 cm x 1 cm x 1 cm box centered at the origin." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"min_x = openmc.XPlane(x0=-0.5, boundary_type='reflective')\n", | |
"max_x = openmc.XPlane(x0=0.5, boundary_type='reflective')\n", | |
"min_y = openmc.YPlane(y0=-0.5, boundary_type='reflective')\n", | |
"max_y = openmc.YPlane(y0=0.5, boundary_type='reflective')\n", | |
"min_z = openmc.ZPlane(z0=-0.5, boundary_type='reflective')\n", | |
"max_z = openmc.ZPlane(z0=0.5, boundary_type='reflective')\n", | |
"region = +min_x & -max_x & +min_y & -max_y & +min_z & -max_z" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now we need to randomly select locations for the TRISO particles. In this example, we will select locations at random within the box with a packing fraction of 30%. Note that `pack_spheres` can handle up to the theoretical maximum of 60% (it will just be slow)." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"outer_radius = 425.*1e-4\n", | |
"centers = openmc.model.pack_spheres(radius=outer_radius, region=region, pf=0.3)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now that we have the locations of the TRISO particles determined and a universe that can be used for each particle, we can create the TRISO particles." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"trisos = [openmc.model.TRISO(outer_radius, triso_univ, center) for center in centers]" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Each TRISO object actually **is** a Cell, in fact; we can look at the properties of the TRISO just as we would a cell:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Cell\n", | |
"\tID =\t6\n", | |
"\tName =\t\n", | |
"\tFill =\t1\n", | |
"\tRegion =\t-11\n", | |
"\tRotation =\tNone\n", | |
"\tTranslation =\t[-0.33455672 0.31790187 0.24135378]\n", | |
"\tVolume =\tNone\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"print(trisos[0])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Let's confirm that all our TRISO particles are within the box." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"[-0.45718713 -0.45730405 -0.45725048]\n", | |
"[0.45705454 0.45743843 0.45741142]\n" | |
] | |
} | |
], | |
"source": [ | |
"centers = np.vstack([triso.center for triso in trisos])\n", | |
"print(centers.min(axis=0))\n", | |
"print(centers.max(axis=0))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"We can also look at what the actual packing fraction turned out to be:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0.2996893513959326" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"len(trisos)*4/3*pi*outer_radius**3" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now that we have our TRISO particles created, we need to place them in a lattice to provide optimal tracking performance in OpenMC. We can use the box we created above to place the lattice in. Actually creating a lattice containing TRISO particles can be done with the `model.create_triso_lattice()` function. This function requires that we give it a list of TRISO particles, the lower-left coordinates of the lattice, the pitch of each lattice cell, the overall shape of the lattice (number of cells in each direction), and a background material." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"box = openmc.Cell(region=region)\n", | |
"lower_left, upper_right = box.region.bounding_box\n", | |
"shape = (9, 9, 9)\n", | |
"pitch = (upper_right - lower_left)/shape\n", | |
"lattice = openmc.model.create_triso_lattice(\n", | |
" trisos, lower_left, pitch, shape, graphite)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now we can set the fill of our box cell to be the lattice:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"box.fill = lattice" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Finally, let's take a look at our geometry by putting the box in a universe and plotting it. We're going to use the Fortran-side plotter since it's much faster." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAGQCAIAAAAP3aGbAAAgAElEQVR4nO2de/BlVXXnF4LKGBzRAWLPWIYgo+I4MBK10FR3wJYy0BlR4gOMIYqlPdJYxDIKSXiExxgeMYYKjWktMDJGWiyJGBuHQcTQZaR8YElSvkIIY2WqjbQUlmj5CMn8sfwt1m/tvddZ+3HO2fvc/a37x/2ds++553fvuZ+z1tprr7XP1e+/BubWde95xdynAADwpX/3hblPAfa+8AVznwIAwB/vf9/cpwBX/Zfz5z4FAIA/O3HX3KcAR517wNynAABwzq88c+5TgEfNfQJdXV1dVnVgdXV1NaMOrK6urmbUgdXV1dWMOrC6urqa0X5zn0BXV1djOuaN71b23vm+t4731h1YXV1dJrmc2nPbFnq+YfMuPmwkbHVgdXV1DetjH/wkPuGQ4hLwGglbHVhdXV2avKi68r7veAefdeghOBINrmPe+O6yzOrA6urqCsqlFUfV20+5B59csfNwvvesQw/B8WhqFWRWB1ZXV5dfglaEKuIUiW+5YufhHFtlmdXTGrpG1M9t/yE95j6XrkRxWr39lHtcWgnRAHwJvlyfWLSrA6urvLyQ6uRqS2heCVoZX0tcK86s7hK2pB3XfNW7fesbnjXxmSgaRNLPbf/hD7Y9bpqT6UpTDq1Ibz/lHnQPMRJfRB1YDSjEKXfA7ORyaUXBVzGsM6sheWm1adc5/M87tlyqHKFUMKsDq2pxVIXyX1BIBBw/F7YErfgJu9jqzKpcItAuJGhFWwS2ihtZHVj1img1mP9Cs8gAsGHzrlmwxWml5xYStjqz6hRNDqJc88qlFd8VMrUoOStHTQLr5Pu+Sc9vPPTpM54J6n9+7Qliy+8f8b3MYyJ0vMkvsHYNuckvwC6LHdd8dXYPsatpee+OCq1oAGcWGln0Z6ZX2B6wOK3ozxmx5dIKN+Ywi9MqOfkFZmKW7rpCoTttV1sq5RU2ltYgaDW4fUZ5QWaRkVZC3olkMATsu7pche46g+bV2GoJWEuiUkgurSypeiQvsyZQcnbVKqRl/eOhu/Ex94mkKCGbAcbkWkvAak45OMtJfoH1zOpG1lwSnGoXW/WovRjWgoWAI8vIkvyCUuaSpwkY/WDb49JspQXPEobY9I+H7v7F+zZOfDKx2rB5F16HV+w8POGuqedk5ahbWCMqOe4emp0JWdrudm5nQTeyfDr7jBHDMbol1a6dlUyiUnlYLQGrhgwGofz0BZJuXlnmkkudSaYGDbrZpwjPPuMcpBU+KU6udnlUROOZV9AWsBQtiWWueWWEkRhGyJsmksWdOwVJfNcs/qAXT6NaW141ATWvWRTLI0rCwq8+c2lOIrAeOvtI8cg5Cbu8YJqXVl4wZVpeaVMz4ENbaGnF2PIyqwbbat4TaEIve+0JwL4snvaJCjHrji2XenfNufg5xKaHzj7ygMvuzj6fYS3JmBLyJiLU4+sNSoTedTwtONy+JJ116CFX3vcdN/RutLNc2GUqzsLSLanJ7Kwuo5IttWQZMdRpVflEoTCy0oS0QvOqiD8IUcCy8Kgzq+sH2x6n8EjfuwxVDqNYIXGu2Hl4lLk0Bq2g52F1jaTFUylHTRDtZa894WMf/CQmZKFjCOa0LE6rsrJaWHbTqRtZ9ah4BKF1XXa1P/IS2p6sJpA0KO4YnnXoIRZTi/YSrQqaV5BjYfECTEVOpcurO7Zc2lDcvX5ddvWlYq6wOK1QyCyRvtAcyLidBWsxeFDvhQJVULSdancJK1Lmegjwzd2MYZa3rpEI5VXNhKJCfWhJhUTMAgB0D2kXT5oRV9oYtIIcYNGvq2tsFTGyejG/LpQoKAoGciGzYA1D9MN3b4fc3yrepx7swDrgsrvd4FR3Bgvq94/4Hq7OIauby8IsYV6JDOOuLvDRyt3rxdbLXnvCOb/yTGzVNXhFjYEqVHmXsGz6aKgGVoXpo0WkeIU6s8bOMO5agHRa8WEhU4tI5G0yOB6nSBHA8hpZI2mwVh8NWCS59PRiS3slYV51f7BL0ErEc2LN8AnY5FVhCyvfvOKosjS2Ovm+by6GWegV8swXb/R9cFXEeFkwNYvP/U0ZVm9R7i9LNDRSjKx5FQcs5JHXziriCRKt9MZW1B4GADZs3jV7H4qC2vqGZ+245quDzFLkZhgv27zSqy90cqG4eaXYAfX3B0mp1nDAZXdzPIk/k4Xc2XPbFqpojg93JN9Fn36FFd9zRNl6YM7/FDl7i6eVpZRVL88gZJ/ZNwa8Jla6SzhGcN3eKgZ/mVQFGNZMrQXYWWhkwVoAnuws3Ov9TGivyNlbNq34n0pE5uwzzul21mJUReKoSytLVyvwNeNbKrNg7ZMJWVtuevGK0MprMoiITGeWXbFeoTtdOGo8fp/vXf3H4x3doh1/sBEiaSXk+kFHf/rmhDM55crHJ7yqrF5xxt/zPw97yen4xGjJ06V27y3X5pzGrf/8H3JeXkRPvCT4L7zqmzfhE8vHQp/JDU8/KeE0nnrUNQmvKqv3v+nMzCPsOH4nPhn8xDittt56Ct/1hQ+8kZ7f9cHNg2969GtvizhFm2a2sPJpBeubxBQ/w3l17y3XIrPoMvJecPwiy0RV/YqilXhhGrO6uDiqQl8BXpA4siy2qnAJQaWVmy2pzOujQXvXi05MM7IqFAFIkEsZuYIKTSVDCzNfU8q+ok6YV8BQ5R6BIjN8wBjYmhNY3LwCH630rlYcWws2skirzCNXeuILrE3ITHhGVWvrraeQV6gwSyG761S6H7tYCy2wVYRZVXTNCbXh01+lN4m560UnFjq7ropE/mCU+ip9odgWIUgrkXKEu95+yj3igdvdxCNL2GtQM7uEoSspuThBv6+umqLaAq1yGIsbWTC0Fof7g0Qr/HMw1kwz+MASj0rZWVVYWJDaLqFXtuuK0srSCuWGpQaHccZBzMwYWVvCzsrUbMDCABZk9A11JbzCrlVQN6ijpDNr662neAckz+O7zMp0DGuxsLq6LCITKWrir88SciGVBJi8qOLOYE7WEZRr6FtLWkOyNu06J7Z3dtfC5C152C2vQRk9RCiedZQRyWoeWF21aetp6+JEO65LmdeziE/PK3jKzHRfcenRFW/0xrUhCmYdNe8SdvOqHm097SRBq9DGHEVxpzuDyRLhdnuapL4rM748P7Bc6OYzqObL9B03beSPuU+njAapVBZbPJKlfNd8VzevklU2TRKVHHqfzSXc+ge7aaKwlGruGxpiE22//KTd3gH1y06iraedNIaHKFq5gHPH6rRajGa2sOjCEqwxGlmttOGzWFKLsbYwH5oeI73LDU8/SWAIrS3X5uq0qkf5c4VVBN3TGluFulqhKln8LDCk11p4x00b711fXqZ+cfPKUpqqrJF1w9NPUhbrLBJVPLRkn+YrqxkTtucEFnqFCY2tQvYXL4lVm/RC2rB22oe95PS+yDlKnEoIr+VxSsS/vdunhFeRzr5pqsLCgqHGVoOq3LyyeEa03qpRZun/4zQ1XpaHqmM+chA910ssILzmsrmMaj6tYesf7IakhgtcbsXRGuSlFbXPUFpsNKS0ib+yWQ4LFtFKRAPFlcPDhTuO3xkyx5KVRpmR8o3mT2tAJTOrVH3kCaR0AMLndFFSZeSu1dQxHzkIaeU2kaKrxb3zcWyNfYaxPBKdfZMz3ecHFhpZ4DBrEFverla10UqpdtbV5RU3rIDd0tzKU6L+FH9VPrPQuwzN40OYWXdsudS7q8gM/vzAAkYZzixYQ5L4pPjGsw49pE5axeYouEZWE0qb7xtvsc4C5NIKWKkWr3ghF14XoaCdFXJ9kE2EpxCqCiZIVgEs8DGLYAQMUrwBH6GqNloVUXNeoR49rCe22IQSCiR4609lMksYWYpCqAJv0Cajhl8twAKAoz99M0KH5/4RucRDDFsYrRpV6MrutDKK4laQWs6lOLNIaXNifHyRy6CWtAbS0Z++Gcux839PWXXRUTWvdlx3E5/1E6tk3Gu0+4MhGWklEqBcu6ZsQxYsrOw2IbeQ1G1IDtntc+ZvpAoAX9j0fe92vZFEcVQVbKTq5jQMBt1F6+Z5U7FiG6kaMxWiaKU0Up1SkzVSJWCFaKXkarrYumLn4dwLy8zPciv5ec+Qvzs+EVd1fuOc6iwsrnatp8tP2i3i7t7lR3wvPmnUexJ2VmjMNCfTrhJa3tFel1kFG7IIOwsPPugeFqcVVBXDWqQsAKpzwXasdlx3UwhJyq4uFE0OptVycccU729AAXg+LeYd6Q00L6GR6qqJbk3uRhTRrcWlOagOpuIqsmpvx/E781ftHP3a27COFUUqLYVeoWi3+g6ssUReoWi0G/qOG3UGu0pJ8QeNch3D4m06ET0cW6jQWtGCqEJ1YPnlZn4mFNjjzALVOOdfdrvmVVdx1dl5k2ML5dKqOKpQHVjrpGSo8112ePHouxdb4pvutOpqRTqSvEWQFz5LOKXuetGJ72B/DlbaS2MWqK7f5SftfoXxoF1dVUov1k57e5uvLFHC12BRJ3yyYfMuZJARWzhMMd/aLeje1YXiqNJLd+HgNGZ1YP2MVqLeUGgwhjApxBhrauGTBTSe6JpGM9b2tItQJTjFf0f0w8E/sZ0qxJtaqw4sQSv+EYvJGkyTwwFnHXpIGrNQnVNdrpRa4UbN0pPFpVWo7hs/Jfr5xJpaKw0sL61C1wpuJ2xlMqury6giRtZIpZMFrZT7Pfhu+bBmatmZtbqZ7pxWvEaa/ipvEY+uVvSqb96Ej7lPROrOV+7FJ8k2UaiJ1Hj5fV5aibKCXHyXKABn76u6usByZbfDXWYtpqvg8kSQ4pzybpxdSptOvSTxeBU+B5VWugsM5QC8qrpaw3gS5hUkpRe7lcnyHcNX1NGXMLZag1BoIfTE1Ro4jPQ8FZS36c701Rogr7wMsCuzSKkG0hc+8EZ6jjZRzi8orbDfSsewIINWXa4GCzbQgLGXHBKq7Hkq+KoZG4Xd+cq9x3zkIFF5yr0yB7s/cBCMqsz7Pa/bheFgSzBrFYHl5jF4NXGltNY12AIa9bN7/mknwWjYcmmlex88AFywFStvKShEESt3OzELt8TOGLpmyxjhdhFysliCEP4FRb31KgJLyPhxe0sOkaZpFFqnCFWDaTg0hrBVnFlIHBdV3m85lKqSY2opnBJjQthC8bJTCeU9x6MVV+hO4J3WDP2Com75qxjDEgGssqUdM8NYzcWwXFoNmjP4hPgeYlZCDIvTylIYk+QaJgQsewzL0qUZxe9tLra8jXMg/I9wI2VUWlEM664Pblb8QT0JY/AXpHuFK21h9V6BmRK0ik3DKWtnubSKmvYV8ZRYI0tQBuW9wMgDBYANm3e51hY6hrCWSmqs8CnuBOPZVhZ/UJHuqQxqv623/9fkF5fSi7c+edo3/NF4h37GN2/MefkHPvCWUmeSoyMffrFt4L1gNgSUzNutp5300VcfJsZf9fD59hO+/R++AnlhYC+zjnvaUd992/DFefcxt+ATF9yuCNnAIgnHfOSgI+98ySOD3vazY7ql8ryONooMt7/91hPPhFsGTztWn3jWlwHgd9UxaTmu3Ct85bOepoxcaQurK0e//uEIWpEIW4JZpaTTiv+c9FkU+4khWYxRMxS+C6y3NO8+5hbOLHwusAW+6T9xnn/7rSdaTjtfszgoHVhdKUqjFclFw69/+F7XyDKKm1dehWLA4GBLzPze/g9fOVJ9ay+tClLbxZaiyVA1o1Y60z00NxHysb3xwsLn1KxqyGVLiAEre2PXXSUEzuhV+F7kWgr97beeSA/7rrE1SzbPSgML5YWOyyY9Uoh3v5uOeGvBEzPqwg8d5j4me/ecvEFY/3NFqy1NoYLoOf1mUCGIwHrzqlSjZuXtUJxQFZpUaQF1O/tW0SV80p79H9jwI9EbwpXxo58ra1SnEu294DXpFAiJ+4O6iAU5E0O60B/MVHL7hqiVNN4Pobn04z98532/+3uH0p+xqa2ZV8KqW1h4laR5dnP5g9yG2nPbFu/DO3gkhX6o/LfqtXRyFsG6co8zauk7YQp5s/nECbhbhIxGVg1SAmoKkpSgCh7wD995n/6+KwqsJ+3ZH9Z/6LH0cVMNp/EHBar4Lv6LFeQaiVlRrKm/ciYpqgtpbOtTd1cN4b80RUWBQyCLMi1X0SUUoibyduN2svWlQsgdJTXRW5QWeXrhhw4bwz30qiE25Sg5cDZ2Z/mxZfEKLa5fgo+yohYWrDey6EKxfIJizGTmlaAVFR0EVhqN106jAWRqTRmMX7byvbYQ1BoqCcl/OwnocX2UQX8QVhlYJJdZoU+fdp116CETO4OcVrw+qre6o1LasTOrrEoF4JrzChEuycxKoxWsOLDQyAL2uQtsiQfuEou2pqcVbrRc4t6odkFmFQlh1KyVrcBhVwKzciIqKw0sWM8sji3xadJGuifMmHgFedmJxWVJZNMLYxY5Dfc4yYjs+cAWkU0kmBXyUfgucdc3mlfQg+6wxqwHNvwIhhZtwfpb7pTTgmWX9WYG4D/66sMsSZ7TmFTHPe2o/FSsWRpkLUAUfReFJSAMfbe+kJ1W0C0s0pP27E8AQgPK+8ABNx3x1ultq0FaKZNTY4RIisdck9cSArv63fYNg68N9ZtBrSui4KhzTdhZMOSjiMFRtIJuYQkhhk762ruVvVPKzWNw5c3PVEo7Lrg4KmWocOl9/RSiKZ/SkXe+JHOicPquXOMJofO7v3conbylsEQsqlAdWB7NFZkalL046mCZtCJe4WDHhJDKmlfoFSqdk/GjiOo3Y3nf0Ds20V++uAhbYMBuGq2gA6sV5U+fJxT8t0gwC4bcT2/p8YIq1W8GT+y4px31Xds7uu8VYlZoecoyvEsiEc8sdfcmq8ewGlZC4ZSCRdfIJjImsnlTQ8ShknXc046CvLCal1axL+fydj+11PzQo2at6A/feZ/7yD9st7C60kXThTmTRPm0QnHH0G7xoVxaDQrDWA21EVyGuoXVlSVhZ8H6/Fsu7yRRKVqhXDsL1KULfK+glcW8QlOo7BL6ZZhX46lbWIuV994+xp2c21mgZrHB+p93WVqhhJ0FQxYf+Iy+KGeQDpKzhL7TyqgOrIZVz2wUoodjyzJ+JBGzYH2/GWAhvFC/mVhUCccQWD8uvQkFP40WUxnmUgdWG/JORUGYWbOUn+fY0seMLUp/j8oMSjCsYD2zYL2pRWPcKVrXrOvmlUUdWFXrgtfcy9cqh8K6lgwjEv5CxquNNQ2SBoX0oVU7uhWThioSMQsCPQTd5szirDqtjOrAakB8Kso7oE9FhcRJJJYcZkJKiHLfLYE86KhKVQdWY4qt+S80tnlVs8oSylWohyDCy2vidVrFakRgHf3XB4otd/3Kg+O93VKFXmHyIhgY2byqIWJVlYhBtNjQRVXnVLLKA8vllLurkytKyczyzkaVMq9cVLmmBI5ZQWxBp9I4KgksgSpvjQG8mnFkx1asotK4x5s7J1R5v2K+Ed90lbHVVVbFgEW00muh8Jvw9NjCKn1CVHS0rHiNmvzyDzRd6E35CcmdO880r7yoCk0FYCkbYNgqxaxQxb6xo1Rds2ufU155a/5RED3Gi5ie069oJGQIeWlFetKe/d//ojeXei+3opaRWXc95y3KXt6UkDZ6P2rv52yn1ZEPv9jd6NJKvDWae3rCkZ1ZV33x8WKLvbJoQXJ99y+eXOpQyfqL//j5uU8BAOATH/zy3KdQAliCVt6LGAKpKNMwS0cVqVQZLG/9vyLAgvUtJAZrtCcbVi6wBK2MvTC8bqmRWRxYHFX6f52fCCrUgUVaArBCtIqNrYwHLC+tQjPNRZiVU7B0EFgot/MNfQXuP5XgBoaAlVBaPplZCCxCVZpRmc+sDixS88Dy0ip59mokZnFgKfMApHxmTQAslN6wKydcJYCVTCtSQonRq774eEErl1MWJzSTWR1YpEUBK/Y6noZZg7RCFe+FM1IMazJxYOXTCkXMMgKroBOaw6wOLFINwEqvh5VDq9jBY4uzLGQfRUngqdoi8VFSvuVNu84RD+U4+GnrGadeWnnbXAuJltf48vw+YF2VqFgBvwQAuReWMTqeoJF6iCrCVmCzNAQrKG5eeRXCk7vR24ZaV+btsDNrecoCViiyIFRJzaauHHmpEVtUnl6uG1lFnNAEPnbVr8TEUWX9DRddsvjELSrAmxKnnUlXzfJ2G7N83TqtjCXAqAoVtmK8/R++0jNLW1cZlzAU1xjc0lW/yB+MMq9ih5HI7ArZdEorRqVR0PQxga4xlAuskMmdwKZRL6lehbYhha4Ey0Ulxgje9UhW6+pdcwBGSGtYhvSJvDSJMJb+jmlTyS7XeiRrMcoFVuWxJ57YFTKyuvFVoVzEJMcTdER2taX9/vk5SSt+//p6fX9CQxcEx+fu3ZpyPoo+C8/45Sv5W0B4ac5L9337S785ZxXW+/d55YzvTnr2Ex4PAPACeN/nPjPSW+CH/7+/9VS+8X1Q5u28wX7U07/x91GH+vmrR2/eMag9nz1u7lMAALj8kDfOfQqFXEJvkZPYPt1TasPmXV5azXIyKyV7856qUou7KlGiNfHJ3z71hD8ZMLKgmuYI3/jsWQCP2FnBMZseM+pptK60cvKxdymv41ZwfnnHfj/c+i+PK3W0romVZWHxnuATtL3LFGLLuz20qwvCMb5ke1m/P40dUuy0alpzxmvcFfxjg6ODKVneJmODkUoBNXFXe+MLjjW+ez09rrvmVbqF9cnfPhUyjKz6LbIuWGMKWT3ut6bYWd5d9gLzOVdIPdHSrrIqYGGV6ubSzZ/KFfqKjXSY6xZF79vzVxagrBgWGlkksrP0S7PTqi1xIys5Xum6/15/kDa6cS670dTNqwUr18LC6UI0soBFOmK7uXQV1Oe++iVl7wue9Uv5bxE1Y2ikFYkuJ/EuyZGsytObu+wqkIdFwSy6CSvXB99LtOrmVSl97qtfErTac9sWkSjgjhmUMLLsdhaZ2wm9Eb1XkW493bHl0lCYH9/aOEW4Y78f0uOi67Zbz7hrfO1z3DvLRBYoLcuyAIIuXITdYa+s4gb49grysO5/xqfTXsgZZO8rE7K2fpbpvl6Y9e5tj+RaW26TJHrfwclBeiO9xqnY4rLMZaUOrB37/VA/sfNP26YPGEl7PrtnlvcV+lEFme7FgAWMWSj3ZyNusBQC68AipQGLaGVvLUPfhZdZXmABPLJSJ9TVbfDtLKkMnIzJBfyiaCVQJS5dcd1Oj60OLFJJYKEsGfAiWt+BRUoAFtLKSBDUILZCwAJYt7owypq2Z11BNrPSaGXv8zgxszqwSOWBxcXhJSDF1YFFigVWiFaxfSHtwEINYktYJVG04m8R1TIH5Y2ahYDlpZWAvrfj4ZTM6sAijQssozqwSFHA4rRK+ElDmFmDwEJZajkkoAr1qN2fR5q4rQNC/6P3/4IhWg360fyYKDzyZMzqwCJ1YD2itoDF41ZRtCK5lggxywgsLoJXMqGEHrX78+AwZdDhdb1do20ljkyfpLdL68R2VgcWqQPrEbUIrFKR6XxgFRcCC8IxJkKMSIAYRJV7zEHzTZn0nIBZHVikORc/dyXLTqtQvyIh7Cvzua9+qUhaaVkhd3bs90NRf9FN1OKBM0vKld2bxl2ILez6g59YzP/RVUAdWEvQYKYSPRfkKtJmrbgz6BVhC4YSUNMKyFjsU+ob1jWXOrDaVmzXIqV2cJSR5Q23i41j8IvDiCdPRUEqFMu3ixtZF123fa6E0hVUB1ar0tvHKy8UzIq1Gix5WGgB4cjxzK6Cpfjs4b9uZM2rDqz2JFYCpvU3FbJ4hW6aO385sKASDdiwedfY2OpaKa0EsNxq7n25dawsi3L4FoQXRabf97nPdGZ15WuxwNJbTtDepsk1WX/Q0LJnJYGTbC7qqNaZ1ZWvBQKLo0oJ9OCdHwc3ii1vnfXiSlgiQ0kAHFudWV35WhqwiFaDS8N4nOVnr+p9CR3lLELm2KqcWfZ6hD3iPq/KNFKtQc/45SuRO1Sy7sr7voMPMVJsJ3J9/OErJjzfsVSwQHCRMi/4ksm8V7t40edY9RKmc2khFpYwrIxFC9w4y8cfvqL+/s8veNYv8YnC2P6mSjObkDIL6VEqQCVG1tZ/eZxbq8/yMQrzauIl0F2wDGB5aTV48YXiLE0wC1jhc1dK7fNQWU4SZY2KQLv7eSq5qd43qnZFC29EYC/Lo8hbVblzrYiW4xImx1m4z4IHacg3DJVXd6ubu1vEQUIc8Xpzg9leYoBwDC11aUYVJp3Sv0wMCoWoXFq55tVF123Hh/cI+t4uo5q3sChuBXlxlvwldVMKvULFyEINxrP0EHLIvDLmpoZS6qsysqIaPoW6PQkM6RUN+1KeHLVtYVlotWnXOe7DPRS9cDFG1qCUeliKBRSVSV9zf3la2ePaWV65tELucFq5PYq8u7qplazmLSyUl1bKr0WPs4xwguXFjayottsohVZcxWf36BOePfQOLPrO7Sz9JSFaGdt/0PQOdFMrSW1bWJDntnjjLNCOkYWIET2ZB02tnF6ByxO3s/SPgg8I0cqbRuPu4qZW1tmvnhq2sGhy0L1E7J6IW26lISOLRHYWAKCphdsFxJWymUpJGX6QTBcvttSBt1FgwSINdEB6Iwu+hVkUVbOUrq6qAnkF9b8+d4Ky9zdf8MnM4zcMrDFUT2A41JxZkAX/5AF4whYEAlvG1oSlpFTgCulnEbRAW1OCS0Fy8eqAisScIDjxdb1mqZdZi3EMBar4J0NXGo1JJlfbwPL6g7FWQMIvajwNNpGnAZwyFM+CcPlgLkvz51KK+mxFsF+fbtux3w/LWlveo/386a93NwpXLiH1rzkrXhFHlfcrc+GFL0nAVtvAGkl0PU2ZRMpDZpZe80guwg2lv4vC5+4LSUZU8Vi+kpJqPJSyV6m3xcXj1mgTFXcSjcpJpllMzVKilaWzEV9Vgq+NZVYHVhUiWumTTe5MEzYh+HAAACAASURBVK9oTO4h/qm4tBV2mvDSyjjdVtzUGlVLqlmKtPKiyhs/dRfDxTIrHVgn/Mn1SjPnLruQVpYbFG9sRV+5qMLOn3MHMw1SxSvYkCvEcxos1QFJvLophRrnYlZyrvICxGk1uHqX93kUUbwoZkUAi/ed927p/EpQiFZ6c2Ox/jHUOSLZknrjC44N5Y5GeYU8gEVmhTD9BK3qn27zhtuj1NzKClcurYzUpv8d2AVsZ5YpD+uEP7me2IQJu+LBh7lca050GY0dwOK0ojwdWt7oFd/L1z8ORusTRCAQLowxjh4Vbndv1IP3apHWNDjHV6fw5NtKyEqmFUos4I3SALAIQIJNQi65Ys8jTd5baz1TfroErWAIVVzeNdtjMAsCS38GP2QxgKeqAvMHvXacZbqt2jJbK6VBWinGuMjT1hO4SJpLSKgS5xcSD6zgaydzEmNrQnFZ3JZRVWTNdnHPCL1CvvRHDMDPzVIPC6Uk1peabmsr+t6oRKB9sO5QqIkvin99FscwCCxBq9i+A3hdThOYd39O9jjLXOaYCF2FJP4LpTYeqmyvec4sCNwVLB+guA2UWkLY7nQbP+12qwDG1h1yF/AmxPL2Of6r33W3Hn/svRDZdwAlLH/8Mm79zGH6qzZt/m/G0xV67MM34nnGLn4muZ4LGQJ/97ED087Kome/7EEInzmETz5UgY9O+8LtBX7D37jmG/jkQ3ftC3kWkLtu8TVHPzzewZ+8++NRRxjUe67+9+7Gl19/LGScuXvaf3nqZ5TxX/p2FXHh/3H0y57yrnXRq7S6Q65PQx/FP71twMLyxLBcWkXFVkBdAjqSvITWb/5uQbvJ/EGiFf5ppxWsVcvhW8TLL9hWcood4RK7vhrlXWVNtCqitEjWtze+lB4FT2allLOAl0tcvQhERRJYXlrFnoEIp+Exx9CP9z0ZwpNZECiz6d0obMNRzStSWjFP+6GKSDDLgi2OqvFoJYQXm84gF1L55IqtR9ZLZbhXuP3qDcawMvsOwPpw2vHH3jvoGGZKqQllLLxZwzVUZzHP1xz98Ifu2pfWKrplIVy5S6xHpdWgBpH07Y0vtbuTf3nqZ15+/bGi4mtCGws6mvF9a5DiGUygdRYWN6+8JxQq1xnyUyZwDLmRlVZ706XVBObVvN96ggg3VBYKrafQg4+ESWilxLCMBlSCnSV6henXnigMvyTzarLSsv48rIJ9B2BaxzAqzuINskzjDLao1xz9sMCW9ycndvFXFZdw5O1SkgqNEmYRZ5a4/MQWQau2zKvZ9YhLqJtXaa4KTFUP78f7nvzYh2801rGDcBOUTqtBIX1wgg9UM2GQU+Rp0lWXk08XkrCbOKf4CmoanOAYwnpPGfe6t0zXTV4MrTLLeNjliWGViv/DtPXwiFngXD3GOnadVnYVN5qKr7L2KlStKfniRGaBryo8X6nOX7I8Wk2p8uVlZqyHh8yCtWuCsBUSv0x/vO/JAJ8e+wy7BmU3siZIwrKIMwsYE91rj19v7dJKTyQeW+uAVaSApyvyCieYK8R4FscWOPdVcTvFl0ysst96ownfsN4rNHZgRo33L0d5hShiFhhC6e2iSlfO8hKC+2Di6DIL+BGDBLlCw+qR8VsP2bDtTjxFMcsbwC5lXqUdhzBE5FLGLEDJLnxmtvYygUWqEElcoUXFOrO8tGq3shIaWfSn24GZ137jL6wzOWBJVHL1T2/75FPedULIP5jg0m2+L2GLwui+nqAfem0oR59UZC3hxOLJ9MDy41FuooBIoAezWRTKw0g98ZVWaD1c6OodvHQH/UFYvIVVv0IJ+m7xFoViddoaURLJ9BAz3abT6sm7P84zG0R6etMf2izSjSyUvYZH7KW7Dljek8jPsKDrbOyIe0P6u48d+OyXPahUm0IZFxXB2lfeonlFIt8warotIeSk/DxmmWdsV8p6OF0urSzmFYxhYbVS8LM2ZX7ryxCPZw3ede1wEUZW/gFXXNzIImaBeZ1ZztJdD7By6uF5zyzhtFZBrpFl/9a902RjmFc8HO5qjDU3IpPeqwSyDDKr0ypKglmwtrZEv3pD65OM5hWIAn60OmeMengQdgmTC/iV1d9/dIbEUVEby9g1B5xM/bK0cotqKXGfkZYKfvrKUW5yLrZ0VHkL+E2segr4iS28nh84i2So07V4VTKtIAQs8JUThCFmhfoODNYdXWVgwRqzwNfnKqRpaGVZHjxePYaRgBWrDiySCyxgJfeMHXBRabQCt0SybmShLPWwXDe1A0uRYBZJfPHer7wgrbyoCgHUPZmyzOrAItUMLFhfJnTwJpeMKlQQWJDX1dboDKI6sFCELVC/eO6RjUerwbbjqPEK9XmBNX0cqgOLFAIWarC6MSkNVShPE4pMZvEgy9hNKMpqdmDBembpGsMNFMEI+4K+Meogc2C5nFJiamWx1YFF0oFFUsiVgypU211zyqoGYH30/x1Ez73tJMaYCuS0ivq6USN1miBgEa3s7gaUw1YHFskIrFHlz8O69TOHHX/svd56eMbZK7p0erJosubKAk1oOyL6uX7orn2LMMuLKiWmxgvyJRRd6KpffgsLJWqQgqHzMz6JpVW3sEjcwppGrnmlz7SEEoOL21mUihU1ay4uwnxmWSyssSs0dAuLpAELWCF2YwHsNMOqA4s0C7B0WiW0dM0HlqCV0VEdo+yMDiwFVVyZ2BoE1iW371D2nnvc1px3JzUALBTvH+Ell4h6xrqBHVikiYElzKvYVGEvswgW+cBKmPkpzqwQsASqBn8XOcwKAcvllF6rMpNczQALNdj2Jjlc1YFFmgtYLhTSqkcWMbIyW9iXZZbSqh4ic2uTmeUFFtEq6hxymFUDsCIWP/fw+SKV2SGxeAn/TFoBa30ykry0csO7FE2jJhcvv/7YIiEtF1WDwWWajsDXlnISp1ddBfwe+/CN+Jj7RFZClDZRtk8SPsns+uceUAh794Y6+/I+vpYW9na5tLryvu94ecG302BjzEuRoBV/l7efco94iDOh09BjXjWrFmAJTnVsNaTiDen0NZUupLzYGrWhi2LaiPctyywEDXWBJQuU40mcDO0iZuFrG2VWFcAKsakzq1HRr1SvEuNKjI9afu/dVbbXoWCNWL1EaHANHHySaXVyxJDRZOQyMYubWi0yqwpgdXUJeUETa8oV90/50ZS1lu72gtzkMyRRVqQwtRrV/MAanHzs6jJKJ1qpMJaQTg2xF2GX4BWSM6i8KY/r6dE9aNbImh9YurpX2KLGqNqcHCkrZVB4KWO3cfJPQwnthfAU2i5i8KPqKe86gR75R6sdWJU3FuwCtYp/Qh7WNL+iZNmLLBYU2UFppYDFAOEYjmFkhSCVT675gdXTu+YSLa52DaLk1KpexX9iGQ1PL7NgnNuDhUfJ2JofWF3zSunnalHxJkkh0iW/0TK6CmXm94KKtlJGFscQ5k94H3x87FtUAayQ39f9wRllAUR+5/FGNeX/SLGzgvm9oQPmyF4omWMrlllVAAsAfrzvyYQnfN5pNYGEVyiMLKXtOKidx/OrNYTaoOuv8i5sJBUpj5Xs6i6b48KwwueY9iUe9JI0ZtUCLFTnFMpba3Q84Y8w9ItyseUFWZGuroJxUV6qgrMiATXvMsDBMxQD5g3tcYtsjJUAg8uVILBiyc6s8p2fu5L17Jc9+Gz4WU13zqxRS49euP3wC7bdg9VlIdyAWrduylbvo5MJnUZs36YxRP2Gle6hIZwlL4FOKKcxgQRuvHUWUfSBYH1aYCvDjWoeWN5ErebMNL33xAXb7pmmXHJC23EYraY7nYx7JlEB+FKlR/kBkaecWWDoLbTsmVP3HuN+cbyQBjEL9ZR3nWBpUVGXS2iXXtehVNUHew+bsd9lVCcRaUiOoTee5dUVOw93aZUphB33UhOmL0cyr8gyov+UvwV+GvSg7eI0cirM8MMmTJsWn9KFsHmlLFfyZv8btd+PPvSEyDMsr5+cEVE57/F/GtG8D5n1/bccaDnyVy9ZVyToVV+8DNZocsNzz7afYayeDZeJLbyZAumCbfe86aAXjnUSB8F79/4NviN2HiFTC3wXn2I+nHz/Az+6Je9kDn4SrBkyip0VksvQy19/DFybeC5P3bjuz50b4ZQz7gSfneXK2/j2xxsjXbnr74wbb5O4DfzR1zaGRpKu3vQ8d+PpAOD8Eo1fljCy/s8BnuMLNeYSEq2U2mnkG+OfGzbvwlcZsYVCWk0g8Ub8/3Kx9d69fzMes9500Avfu/dvgJEC1j5br43j/TWefP8D+Wdy8v0P3Hjwk/gbGZnlrTV6+euPyT8lrzizaKP4EdJIfLLz6vSTUchYieyn5y2yePqFB117wV79hc0Ay0WVMg2BT0RU7/F/+mAUs6aX12CMjUrmCGkoTC39JWVRRUJmCSsmzeIrrp1XH4NGFvjmB8Qnxk8jjVb87YTu2HKpPfTu+oN0qvs/+YMJJzaL2gCWoJWlhwp2yoP19WHtzLrhuWdPYGTxt6hnDR03tXCL3tqgLKpIl7/+mHe8/06BTsXiA1+juZHMK0QP+Ya0ndv13pckKzSNa2RWKEOtuXmANoCFiqrzTU3rxARqFLNyz7iQpjSyUMSgG9fCSfqwkYTMgoDz5dXYqOJybR/vB5WJKi6vVzjIrCUtSGgAWGhepXUl4E2JxzvDBSsNSTwClQk15A6ZWhA2RTksJqAVimDkem0FObX/kz/4o2+/VsmVU5g1uCBhFn/QayMPBrCgfmDl0ArlNlKvP5gl1ITdziEV2p4ML8IWDH0aAlXveP+d08CrIJ68QmZBeArCmLIwUsIHn9IFNZk2U7UDi2Tpoo5yv7lqmcUjZUp6d+XiSNLNHxyZiS1YI5e73btXH9yWklM9UG7CR755de0Fe0+/MK6ZppjMjVLVwOLmFZhbEuBGga0mfEMvs2o2rwhV4rTFRC2sT9G48eAnFfETXQk2KWNaxBZ3DBPWJIxBK1d69j/4nMEFLs1JaEmgNPicPoZtl2CWOM8RE0fjhbTSs0z4Rj5dm2lqueKoGkwnhgldxbISzAKAQWyFEj6K08qbSausUhDZJ5YAFgDss/Hcf8k902wd+9h/9G5//J8+SNGr2LKwKHc2l39Mwiv85OfmaYdrz5+YDFh7v/YJfQCnlaV/jDelE1RmHfOOE41na6QVKWom8anD2dej63UXncn/xGAWxNRrFgkfabS6euuvhnaRV2hpRu2mHBtpBTVbWHwJTrJcO6tCr9CY81WPeeXSKjbLhJtamXYW0UpvHI8SucRN21mwfk0CSpi0/FWE6RCtiIPu2w2eEkWyRAKKdxWKe0p21QssUvFCixVKZ1Y9qIIkWpEokgjs2s1nFthu7OCratIuswAA3UPcEspT41DwoifEKd8AzQ5ymeU9H/es7OYVNAGsgvKuYKpEmKf6qft2Y5Y5qipUQR6tUOtMrexgooiyK85pfiWmCkXYgiFrZRBVuiuNB0ceKXzhzAodVpxnFK1g1YDVhGqDlJBOK6/xG0o0gTVqZBpZlgVbBEpwmNWokUXiMBLm0qD3N+hH81IChC0Ls1AKRmNRherA6rJKpIYaaQWBRBPIjieieRVV2IRAWWEos4gs8SY9Zk8fIH1Q+CePPA4yC5+E8rPSUIVaLWBV6w+2otC0lCWqKCZAyhpZmYVNWjey7EJauSE/b3VQei5KCQwyC5UDppAaqDhasM1nV7IGzSuLXK6VLfAUdVZTtmuvRJxW1AzCLQHqisbwDy02wb2I6gVWkaUzSg2grjQVnLQdtf9wlyI7qrhqYNZ0wPrv7/0yPeyvCvUlTm7zSaphLWGjylnXWiolxbIKJ6SR1uVWLuEMKh/Cpl3nhL4mzqxZNG4MK8Qmvv2v3vScweMklAEarKrRFSuvHZQPIIp/F0nI6vJKOIPeMeKrpD+9y3JhLfhoCWYV1FjA4kjSV/DjSK+98/23HMjz3e1lgKbvUtc1sai2X4JmnHvhZbPGrkjjlTcfJWFZLq99UvwkFZUHVghV7qIBY58IvaSGPQCvrCLs6hpPoYrsE8Mr5Awmz/CSaTylkVUYWESrtEX8bpkqNLKKlAHqWryiro0JmpsKVClp3zhyJGxR4lXOhIlS/mRKlQQW0sqS4oHyph3rpfVimeUtEtDNqyUpttal9+41RhIW0UqZAxVNK0bFVlmJSNZk71tslpDTypjiwZM7+FypqNOAfBG9dkVzXa8obtVpVUTe6zL/rkuBxdiIu6AMHUe5MEJVbsrqlDPuRPTsuW0L/0WEHnwkhF3IIqphhjdHZSwsQSuIXMEP6wuPuHYWOYbA+hIDu/7EegKSKAPUaVVEORW7x3Ar3NJxoqZd6KpAlTWvhGGlFwvjy194DPuUM+4sa2eNPcM7WRircB5W2gp+8OWkee0sWEMP2k38psptLr53w+ZdnVYFVXDhQX6iCbFGGOB0fNcSd3sXFlSIViFXA7e7Fz+MbGe1qwIWlghdWfpEwFCrCO8bIXG4qQVqpgK/IjutMiVaMRdp5wklEk1CvQvdALNb6BLGiV4luBpun5TiZ7UMlXEJlYS0qBX8IpLnDcBTcpbxS+2oKq4i7TyFeZWTMuoyC2yl48ZwBpOLhbnMKu4YLkC5LqHIZY9N8fAOGEz8//5bDsRH5piuKCFTQoulAOCOLZd63UN3uzGP9x3vv9N9eEdy35CCAEJie1W0Qrm+YSnHcOwJk/bysJJTPPSqI/prO4/mkpJfMvgzcPtNCfMKK0OE2ETbBXFE7rty8UxQSWa8wEimapswiVUBYFmWU+pSctIq6XjaheKRrLQ8Xp1Wlp6s9EK3w2Co06o7YAyVCozwA1YbzJprZe5YawkzZ0yXWhBSCBtPYDX3VuRlFthuVy6tSN6erKGivTzf0tsYdeJqfMJxi71zh5yMRw6e10NQtLnnu4yzJVBNpaasGBYFsGYsN9GoXvXFy6hNDn/ehHgwi9JHlFRenl7g7Uvo0ooyKl2JfEvcmFNtpqASOv5GHSpHBSs1iSMsoVpDjmrubVNEXjy96ouXNWRqkZ0Fa6m8wLoQe+UmQHFa2Vd0wfpFXbQQtc4yx2mR3PHkdeTxrUOn6j2xCVZielUjsJYtxZh61Rcvg7pb5nAhs2DtqhUdPb1yGz57O0hHtWUFliNeJ7NyVCqMJXrce803IzFF9GpK8wrqLJG8bPNqSTr5/gcIPYP5BHp7+oSivd4c8Up8w0yNURMVG+pwxzDhhzZ7XbkyFlaI2V2rIBGHClkELqeEM5j2Kx07D2CR4i68/WN3o5ATm1eQCay/etNzQkWQ7bMPXctQbKq61xkUSmvLugDHcKSkAXIMgRURsEzyeqtc2Gk12KvCfqgCFlZofZldyoxpT8JavGKL9o7UlnUkJa+yHEmU4kDxLHBmS7yzXmLOxIIYwSmlfiGOtBxzxKB7mpE1Y6uIwdyCsWfxbnju2W+6b9R3qEvFi/bC3EZWwdjIePAVzAJnuTinlXfFeBSt7PULLdjKBRZ5hWkLYiEpIU1UnuFKs8jcA4qPElUkz/OG557tJWNDOQ35ooBX2aK9cxlZO68+hueOxpay0LOcdl59zOsuOrPQmf5MGIAn9xCGJnkzUaVDnOemwFBprTIWluIVKt+W0okL5dJHQRUfYMcWP6D3VuCSKz9hCl/OsbVStBpJcxXtJfFaEUJRvwJ+wDJnFhBhy/heCbSKrV+IZ6Iwq6RLONjYRl85pazbAAdV3iuDXmXEFh1TXw7Ce/zgWxRJ8lxxSHn9wdgYQiWdEbgK/gqm0f5r636oV4V3LwAA/Kp+KC+t9CLp+ITP8+rtDvd5zOmn6ydh0SWfeLP9LL1yaXX/lttp78G7jqPng23NOez4QYTomEbDFZy44xv+b/kJgd96wluLHzNBd//ni0Y9/pn3P0xXSw6wYP0v/4qdh9MldNpDF5c4U/jwW7YZR/74/XLeM/9X8NjXPwAAG3/Og5Lp9a43DPz0jnrONkj9BLwTkV/58nYxrIyFde6vveeST7w5eRG/blu5ZIHwslhYbwodvOs4L7PEMS2GKzgNfq75hQfHYJZFmw68wLv9jgcvnPhMahN9R9cdcF4pZkUp81fQrnJoBetXLygGZrFM93N/7T3AFsSCubGNl1ZEGa8dpC+LFeO5dSYUVXib3oK/9ppfGIipldWmAy/AR/KArvGE1hCJfgWW13rtC3HAmmWk1aZd59DDexx6FR4KD8tVMoYl7CxYn9/B/wHvvKlLK5LXaxOfSMgOcs8TEZazfm36qSjOIN0pxn9504EXrKa1RV/NLObVY1//wI/f/0jle0tmpkAVNEgrrhCtXEIpsTyltn3hPCxiFqxfxA++W403xSMUuoIhuBBQwJneDjmG4rUWuYW3J3AMiVZ6uE14xPiq1cTWjCJmQUYdi7Zoxc0riMyqc7El1lod9ZxtPJJVPnEUmQW2RfyWAHmUKURz2yFIu+bVGAtNS8mIKrGL/+PVmlreJIDYZOPapghRyCxwMjNh/dcnfheN0oorOWnWPts7SqY7xrM4tnTpcXEuC1y8CwsGjSy7JjOyBK2SC0VVyyxUTpVxcRx8UkNZYYQOmVoQ7krHz7ZdVOUsWnClpNSNuDQHsQVr5FLGnPVvzwwN0BfH6tK7vNVvXqGijMFQoahqmbWAor2KCFswhNF2UaUoilbKugXuFZYBlhdJBCx6kqnYSFORN51LaF6lua5ifqBCZl118L5n3v9wTltWfTnLLBH3kAhGSC7vrnZFE3nTFJjKApZiOvG9pYBVSoOpp8BuDl7Xemwg5tCK1EqhqIRVqFUV7bVrAXiaXYnA4qgabMeEg2vDVhOyTxKDGoFuzsgCZy0LDC1ngbXrrSrzqqusUhJHiVZ7btsiss9FVicfoJtjdWqWSShuXoGZVrCWlce38ArCNUvPscTG0fUsvuuaUdHAomWDIvWc/yrEFhpcCbMsXoPyC4GpVlGk9YzyMgvWCFhVEvxVB+8L8asjuNxlEt28mkvT3DPigMUXOcP6pTC4foUe7oB8ZtkvZcvIqJUTE6vsJDFUbGQJZtm/FO+irk6r6eWuTyZlOiheAkbEsFxaQTgYLApHAJtiv+QTb7bHs/TGRLomiMIWL9tAFlDZynY1i4JZ4BQaR/Frib9QJIin0eq6A85zN3bwxWqMOukkzkSrhSUsI/vUlVg2bLezvHmexnvv4NE4xWKNrOaCJsIrrFBoZ8F6U4s+Yd44Wuyl7mEJiLnugPO8tIIAxboSZLxxhpJUXGsjziXMSQtKFo9xwBBf3KWkQpxcCdCp04V01VzLoqsO3pfcQ7pMiU38gbv4sDRaZQ7ocuX9QQ0yS0lScWUCVn59PrfhZYKRJW65YrC4CeMTtxYgScR6Lf+FtwbIXCWxFiluaukPHHbaQxeP5751ZhmFLhtv0SoGKMxS6qR7a/hN16o+J9lS1OvAjaGjuWvfhe7fcjtfqGjszualVVdxEbPOvP/h0JhMSHUSjaexK0THAUsvzeU9P/cIyvo+VwSXUEsirsF6NeKwLgfd6l3eQC8dvFrzqqGge0hTRr69TZIA4LoDznss9PT0YX3ly9uPes42S7XVwWwhvUSyNYalx2tD1bl0GVMciDgJ0Q2lQgPuEgekvSLQywfUT6uQulXoVbVzEW2JO4YJOUMWWoHFwkrOnHIn15O9Qu7E0fy3O0z8IAfryZCdBeHqH6G3GJtWOWUMhFqZKKhBc7UIy9SnrrrZu/3FZ5445Wl47SwYCnlHBVuiY1j2lSJlhfQR2NIHGw9LLieEb7bi7caj1R0PXsiT0dOyWuqvu1KtmqNVCFVi72TkEswCW510cGgVykedLuheRAJboQHJxxy8XqdxA73VOKFE3ZV6Fj/XI+VLP+2hiz8M1jZfE4ujavBG+6mrbp6eWZBaJ13Jnm8MWKhStUPFMc+5+uWhLjizhKu8wUvkUVQb4T6tuTwRrfQAHG95Nz2zgDkuuo1vQRUqGlj2ZvQtTlTVEEdHr1BfkySwNVh3hY5c+mSb1GkPXWzJbKh2gY6XVnpfklmYBWvl/fjNkjPUHT+oYWBRUwlFxnhwj/4axZkF4UiWfkvQ29NWrjPvfzjElCIcMTKrQrm0GuxLwgv8T8ksWI8tVDKqUFYLKxRVIXFmDdpWeNLKEmglSoUawyusU/bZFi6XVq2YV0q+KIpAk0kuhVkN2VZRnTrpINPPHpY6VJxLmJwSBrY1w4JTLiIJzzhywdjyOoaWSUPvJHETtCJUDSZG4T+FuMmBC76WY6taVHG5tDJ26mw0aYPLBCze0nm8U3G70rsSGcnLxpZgFoRniFGhpZT108qLKkuzWAC47oDz8k2tnJdPJpHBENupE4XMmt7IKqXooLtuZIXkeijcH3RRpVe/4j45FO05WJuIWWCYIQbfJHFztBJfvVgjJZrFAsCGzbvymdWQovoKc9XfjsQiK7C4kRXLLD36yyvEg+qT09HcUOLimQXmGWJgH3IrtLJUhRQ5h6Iq5Eoxi2T8AS6g6x0puqZ7VAVubx1b8PVYFbVreJ1lIdpF9ZfxtYNx+nZ1x4MXEnpEfRWSKL3CX1KtOK3o2zRWhXQLFjU66zel+Melp8hXqwiXkPIb3EgwjfGyPEQrUkKlLW+v0AXbWbBmLtHCnVD0tH5OuUousiYugNW0s1ZKcTEsl1m4PVSjyi1NxWlVpC7gSjEL2uSRV8IZVL56pYJSK81iu0opOujOmQWGIgfcEIillZuM6l61/ZJtUcIZ9I4R334oy4+M+m5krYJSGqme+2vvIfSEQiq0y32JkJdWbk9QZbtosrDgYNbyFPXt097QcXplK12NLnvgSgEWSjAoVHXbiyrRMSy2+55yyXa1opzei6FmsajVib7nzP01moeVDiwU8silknejq+Tue3p/466aRYlXmb0XxZaVumNFBUAWk9MAZcvL2Nujgi3aqsutaEqRrMWH3oXcaXDxjgAAEvRJREFUBvSLic0bJSJZc5/OKHrxmSd+6qqbxYKTwXTIhTVPybWwyqq5bnrzatOBF+AjalcNyr9dwcpfLZZOnaE2nY36gzALsChZNN+G55dsZrvW5iRgtOe2LfQQw6rFltCKA8giBA3vnIJP3BRub1J36+YVNFpxVNeCnQIUB5A3Zuc2rdp04AWr4CRSTGDxyQ32Tp1uLmS75hUsElj1aIyCy0QrgSpurtI1ypeIrwKzViEXDyNZYOjU6S2X3jStAGC/W26Zusb+F+Bfp3iX+2+LfcmLz3hlkbc+dddefQCB7PotB4ldDxzxQuWF2/Ycj0/0sha8pAEwk3PTgRds33Crfm6oVx3+W5Zhibr/2hEPDgAAdx99wO/AZUUO9bEdTylynBwdt3m9Hb1x+8bd6yqmgy15e/fG7bu/kj6N/plv/Vvya0upW1glxVGlJ1jgNYTjXWzpCtGKF2yjAYJZ2/Ycb2TWqPLWVktuvLiC2r3GLAh3qBOBkd0bi5X9nFFzAivUYcEu7/qyuQJYRCtLFTrurJ26a6+FWWheDVabdAtICWZVpbTGi6iqvv3phQAS2FJGLkMzAOt5j37UF37q9wpz7rHzZschrYy2j1vPK9bUstRvo9QksdCyEiMLVri79fmP+brYctFPnpl2KIIRkcu7dzGazcIabAkzqHr6G3NaKSjRS9DhcbZv8L+FMK9Cb+G+Y4Ulvb+z8fRDdueGser59u1yOeXuyifXsjVzDCv5Hhvqb4w/yJuff265cxyQSytjCTpw6nkZ3zG2cFid1kfojpXT3Ro/w7uPPqDwuWaLo0rv0owjk7FVg8476Uzv9otvuir/4PNkuj/v0eveV/b7HOoSpvQ3nlhptCK5ZTNpHnDZ+s7G0/EJla7le+/YcmnoGnB3WboxzajzH/N1opVI66Uiq+5e/qpWdN5JZ+IjeYBF+9z+n76U8/pkYRiLfure37mxoTRdspnm1fcO/rOo8VG0clc+ktwq0m6MibuEsWT0ribTw1ivPPx648GThV5hTvlG1BU7D+f/V3Hz6mN3pqc1cFThk8HuKviEzG00tY7b/Jbkcyioz/yOP62BM8gyOY5KM7hmcwkx9K5HsizN7mu4wRoLEOol6JQahNzsWkxNAoxkpbU1IdXp7aIErfTuKrwnEA8RnP+Yr1fuHhKt7JPjALBh8y58YSy2qlj87PULLHJtk8miV2Ja0FIule/Sy+MojmG1vk+yRFsT46u8/U3qiV55aaV0V+G7KESAr63ZN0To0Kmik8vnnfj/y/fSDyfWQ5wTWBjJimrDwzUjrbi8N5OEKnShQ8GQ+2ZUhdVFKJKV3IqpTlqRkrurNGFHE61gfdMjl8suuYBhLopZs8WwSDyYBYYMI341l6VVVAzr1F17QwE4eyaRGz+m/0hAKj+GZQ9gwVAMy01KIPQkiI5mDPSAL9YzHq0SYlhoE+WE59yvrIasBR7DErSC7KCq0TecH1iwxizIuGSL2FZ2YIlwO/+qYvMeObPE7AHHigsssF0iCRF3CANLz58qiy1wLgPhDk9AK4gHVj6tUBUyi4CVQyuSuNqNwKpiLeHNzz/3xM9fAr7mxt4iBCi6XmfxBFETm+6iI6RdRSJfg9meh+y+NplZlE06uKCXe7UVuoFCxunv5tpBWWgVmmVCiSKx5510poVZVQAL1qAjsAW+S5ZfrzOiagwpSZ7bN9zqRuLt5XFRRvPKK2Nueiaz6I0GY201o0ppXxYywJXei1DZOlAKOdm78ynk4onTFmbVAiyUiy195AKk5Gd55W27HZomR1UYbldEvPv2D2448q6HxN6aOQXOjF5mFVxxA9u4e1uOV1hwsaGSbKWHRMTVnmBF1gUsFIcRwsvdvoISRtZgqUkaJg6S8NauecUv2fFQWDmeFKXNHXvvXvleoRdVfJcdW7p5ZZwcd5kFZiuyijwsRTc//1x6zH0uoyjKvELc8JLeyqXM9+Y4g67EDVb8mb+wuaugFFpFjRlUkRZtgykONVpYKytLDhraWcZSk9COJ1iVuCt6ZKHVyPaGm1H3MF2CRIpdbPc3vcnSk1VerN3CqlyzzOCQocQ7bLvie7dvuLWSGlg168i7HsKHuwtXI9ecdO5KoRU4K7Hd8a4y1y1zeftdWbogdwsrRddvOShUuD2qBJ1S1EnnC49nDdpQHVWD4pBaZPmX0D+VNv84YyJ+t7DSRd90bHkcr0RRp0FZjKaRDCtxhuLPnPTR6UUmlejqSAvf6MfJByRYW8aropQ/yM0l3XLhe4sEs0ZVt7By5U3jTKhCB0kO5jTWk1sjdBmhMTKs0roQ1V9KAWx+VkOqDlg8jwEqTmVAr1Apj6MwK1TSC0pP5xWUsa5xQ+YVGVb4p2URq1uMP8SstNvYXJUpq0pM1VWRS3ji5y8RtKKN7vaqFCqNguUx6SoUf5JqKOlVRI3SSlQaCL2El3/hNVK4b4jwCsUKQPX4Bm9js68lJM14rVYBLAuSKmQWNrmxlHNSav4mlFKYS9/ZeLqCpHZphRujyr8Aq5ECgZJVoV+190oIXR5V3caKFGVHuWv+wRZnmB9Ybssvim4K97tpZnnVEK1ILrZ0kDWhhEr8IQkP0Xs9kK0dMrrdFyabVxYKRPmDXvuxYO6YrvmBxeVCSmxphVmD2PIWzGxICKkWUeWaV6GCCvRw97rdQ4SRlXwPQ811beR4nXZmKdNNg0bczMDi5pUyndEWszi2OLzEFlEwE+J71nflSCk24Bbjd7GllAblkawidncCR/hLdORFAZGAEmp3NHgEvUXboOYElpFWxgHzipglsIUSNhdHFY6/fstBnVYTSMwMxlbiF1tEirYbyarH7g4dim+3Y1E5MZ1Z+S3a5qw46hYaJdH8Md84diWs2DZfrnj6u73fEUfVA3eN3l/LognafA3q2z+4ofgxCVjJxQZCPzn8QnkAS+maI95agEzQ6qKfPDO5zZebCMr71ohdg8DiFUfzC/iB06KtpQJ+JP69isIa9WeLIHoQW5ZT7VZVPSq+OPminzwTmUUlzHA7L2TGxS910ZcwWbs3bhfMCl2WsV6npT+b/kEJZ7ClEsmKqi0Rq4gwFFpv2Dk1oxR/MEF6OSfEzfmP+XpCdY1SOfQus9wBsce8+KarzjvpzOSekqLPQJSmABaPVYkm9ctWB1MXrDe1cIsbLhCwK7vih5AkyJUzJ+hlFgzdBlxURZlXML2F9YWf/utKMaurC5iphX8q4YJRFyeWzZUXzAIAwhaK4KUH6aLyUUcHlpsXqksswmrOH+zqCsmFURPLpxURs8DX7MrLKVQaraCSGBYtIUaFIFVDX6+uroJqmlYoZBYY+rOhklGFGh1Yz3v0o0JGlrKrq2skKQU2EhSb97hIIXo4tizj0zSFhUVgUqJXwsjyDsAn3bzqGkPGUrGTLZprToShUCXlImunJ3IJQ6jiRlaIWQu4d4n8hj57WFaiCrulOVhC92zlUEWOsxgVLOrgav4YlmCWPrgh8yqUhCV2dXgly9stgm93yXX30QfwVwmvEK0nxc4KrYNDLSAgVb/mBxYA3Pz8cy1LmluhlXGBDtIZB3dsRclFlXfFCQ5zsSW6Zwt5fUO9XtUCnIBWVAWwYH2T+tDeJkS04qgSPwwqDQ4dW/HSO9y45Dryroc4s9DI0kPvlkBVN69mUS3AQjUEJlcuqkJREt7UQGBr+4bRz7NpuW0jSO7KU1j7YAWzSAnLSlBN1zJrWnNWayBd+Jzfm/sUAPKqNQhaWQrvimUKvOlp8mmUUp3VGry0Ct0VxOIPWO8bGsv4eeXSamzzKrlaQ1lRtYYZtc8zXv2Suc8BrvzIH819CgAAv/H8X0x74dn3fg0cw8r4AxAlgfAH8K13zUzwjz5xftP7Ub8pfx5nPfpiMBiwj4x3mHXlT8/zHs1Y2d17j/nw60ZvB336i84Y+y0suvzOp8a+ZNvVf+7dvv2M16Wdw/zX5ZIU29EA1pb7e+t/LUZvPf0i/ue7rz0/4SAKrdxPG8lCTqK3lMKVPz3vrEdfrCyF85/GeghOQKtGFUKV2BtLrm5hPaI0C4ubV1fe953k5GlRzGxeI6uIhSU45UonF7ewkFaQ4XHD2gfLjSz3yCjXdvOug5uMVs1ZWIJWIuAobh5RzOoWVpYErbxjvHk93nkotAjQHHjq2945u2OYLIGq0PWKw+wGlziOfm+gSlV6STW0s8C2FI7/0rptFRLRKpTTI2Zyt13953ZmdWCVUWzJXdzFsUW+YeuOIdHKeL2+9fSLopxEe4Y6MYvrrEdfLIws/JNjS1dHlaIQrfjMOG0kV93OrA6sXIUqWFoWpol6u3r5yibkpZU3DQ1Y5kGsqQWR9UK56Rocs0YxchKFOqcG5dLKvbsIcsUyqwMrXegPgu9bMRYIB1+NcDKySnmFT33bO+n5qG4mcicqDQ3qo7Owv578xt+Y60zakoVWXPqUSEgdWGVUpEA4BLyYBHFIhbaXhZdCK/Hh0D8oLtlY37CrQoVo5a0+KgIgFiOrAytL3jCN3byi8W4MPtnu4EgKRZHwyDiyCLZElF2fxcON3syDzqxGJaYFldsV//ZJ9qu9l1dfjp76tncSrfbctkVEkfDB9+IA/qpMRSVh0t5SZV66KlToGgh9+3r2FnRgLUYuqghSotUj38ixlfzW3BmMSp0VVy0eYTB7CxXlOPdFf9Nogvbs3SVcghA3bvggRA2vO1Yw8ys20T/q4Pbae94ji5h6V3ElrPcAs1fYLazmxWlFptPbT7lHuVxoLze1IM/OypSFQeKC1kmX062zawKlzVN1YLUtQSsYQhUXxxbkMSut7AGdhjiO6xXK9TRrDLpi5+FebBnX5XSNIeMdIm02vJhL+Ibb19Xeu+a4hitbZcrYzoCPz3/TNFjA+gx78g3BPFVnDDnli69VhvWOYejSd6s1+IcFMkU73TIVVWhsulnCN9x+iaBVaOPyRJ9ykeQpiGwbJUJX3otj065zxMMdw+2s+kWfzFmHHqLczPXaMo8MC9BK39XllX1aI/R7GczDygLWIJXqYdbdB/3I+yhycPdnYzea3JFRMRdl3XUIT97tBLuoqbqJRcThPwzEFn5o9DyfVsYBXSgBGu6zu4P5xtgI4+gxrNmZpYMph1mXHXYE/1N8NxZm6V1Y9Dk7CjbFrrtWBtRvZHFmifu5uPT5gDRaoV79571Ye4RcIwvjjPxBu4w+O1c6sFwS8XREfeRksvAo09TCz9p7o9CZ5d1bJGPIGEETw4SRZRQmpvMPIdY75uPxOHqyO6cPUol/XO4WI63o6nX//c4si0JGVkjuAMvi5zIWlviaJ8gfs0hgiF+Rpc4QjSwlknXHlktdMHk3iuiVJSVKj15Z5KKNjKyJvcIo1+DKn54nMORyyjssJHE9VHIBNypLkNFbENGixFnCQaNJpIG94fZLJp43dGklBvCuKu74BCktWAbdQ1HZfVDCH+SKXck4huzTQzmTFaGCMLGze1481VZDogltP+N1uLaGd3HXr+pHeq/Y6mEVsLDqvx0pZ8h3UbmYKHEjK8cnqqE+cpql5nqFkLF0JmHxM1pS9Ih9eVdBEXdcg1eID7BXHB0x6F4JyCY4DS+zLL9YGjYjrQpaZFHMEv9712LE6SNcdfqTs6yWmu4zWtRR/l0R4/+yw444+96vhVqwhApCQX0NvtL07mvP5zEvyurE/9T+7/faMssQMoiXXvD+xBKafRUAFvdXQ1qFxHdiFgBwbEHA1nDndC877IhTJzrZ8kJmjZGJPra8F3APYOWLeCSKxiQ3JYRkYF1z3Lk87u5+5ZV83xO7pcgsYC1YjBFHcLK6JhOfECiSr8+ZhVuMXbOmNK+oWQ6dA79UKrl6F6McQgkVcwnr/I4t1l9ZIXc4tmCoL1sOquy1ViYQEgftLGD/taVr1uzOoHIB9/YT9SgdWMLI0kcmv0ujIgYJcnnHJOhb7/q9UFmF2KXXQvkhcIpnGXk9F6qEkRVSp1VVyrKwLMyahVZH7t3fHncf1TYc1dEj+zFqWTyXkiCWwxEytfDP0Cc8u1U1yKwrf3rek6F3zalIuS6hzqwabCvdK6whipQp1ys0GlmhlYylCE48Eknzs3OKi3dR9e7qqkoFYlhEJSJXDZziRlaIWXXG3YxCrzBkZA0yy0urkVKiqiKUV51NrahkHlYNnApJxFNcVB25d384bOqzKiXvqiBCkiBXyA3MTDfv6ppAS25C4Y1kea2qI/fuP8kZFRY3svJXMsK65NUlXxhd7WrhNd2P3Lv/IIwapRUKM+NLrWTs6qpcCwcWyost3Ng0rbgSmFXDSsauriitkOW/GDYJUU6W8A1xr+shLm8lY9fqaIWAtWC5zAJ1GSP41vF1WnXVrw6shQhxgzF4MCxjhI6qrgbVgbUocVOLNuorYzqtuhpSB9bSRACixYbeTI7Oqa4W1YG1WHUkdS1PK5HW0NXVtQx1YHV1dTWjDqyurq5m9P8BbR0wxowLR14AAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<IPython.core.display.Image object>" | |
] | |
}, | |
"execution_count": 12, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"universe = openmc.Universe(cells=[box])\n", | |
"\n", | |
"geometry = openmc.Geometry(universe)\n", | |
"geometry.export_to_xml()\n", | |
"\n", | |
"materials = list(geometry.get_all_materials().values())\n", | |
"openmc.Materials(materials).export_to_xml()\n", | |
"\n", | |
"settings = openmc.Settings()\n", | |
"settings.run_mode = 'plot'\n", | |
"settings.source_mesh = None\n", | |
"settings.export_to_xml()\n", | |
"\n", | |
"\n", | |
"plot = openmc.Plot.from_geometry(geometry)\n", | |
"plot.to_ipython_image()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"10009 geometry.xml\n" | |
] | |
} | |
], | |
"source": [ | |
"!wc -l geometry.xml" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"If we plot the universe by material rather than by cell, we can see that the entire background is just graphite." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAGQCAIAAAAP3aGbAAAgAElEQVR4nO2dLdNkNw7vtbcuH7w8XyE0ZOHAIcvDwrdqYOBUhQ8LDwkcGBKar7A8eL7BBb6j9SPbsizLtnxav3rATPfp7vPi8z+yrJd//PzzzxAEQXAD/+f0DgRBEEgJwQqC4BpCsIIguIYQrCAIriEEKwiCa/i/p3cgCILL+PrhM/Puu99/WvfTIVhBEIgodeqf//qC//77j/f5ZotkKwQrCII+qFa5SOUQ8VokWyFYQRBwVKXq46/fVzf+9ONfactkcH398NlWs/4Rke5BELQo1SqXqv/8+7/pH7/89l3+qSRb8G2eaKhZIVhBENQhaoVShTpVBcUryZatZoVgBQvJ3bRLF4+CFaTLl6sVL1XIOs0KwQrsObjsHVihViskyZatZoXT/SZaQuBKAni1ggWO2MCcebVKH/nlt+8+/vo9urTmCcG6AIkEpH8cF4JWqA4G6eBmx3c1kFNVqx++fMz/++f7T8w3pHXD+eseU0LX5Pd/K/4lkSvCKS0galXuMJGt0Cy3fP3wmTeviFohpWzhxNBkVhgWll/k8S+ffvwLt1kXs8cj0VZibYWd5RPy4JGrVXqrZWphcNYMVwqWt7Wnch40v1e5EwEKnUpjCNdi0rurY/aCV6P6dGTUCjfINSt5svC/k8PyPsEi6nDEmih3oHxxZpdKlyfUHnT5K8m7Cd+srYOaxU9dwehJG9yFlev9svIyLfdz1y29H/UuCdWK8J9//zdtkz6CquHwzAT+aT11uubVam4SLIf3nvkuVZeT5SvKVc3awKQ6P5uvHz6nv9M7okERzQArde0mwbqOmTE6E/wCbzXr0lvlARCdule2/BCC5QjiaG8Fv5R/ZJv9dpbaU/bgZYGL3Bcl6GQkWc1C+JisGUKwFqK+G1urMy1Lm9csuOQm2czSc8J/+b2XQ61EVsHuNwmWw6ex4S7x5pVkLdlqTybprgAeXyLEqdki79K9emTCOvMK7hIshidpWWleCcWIbIaSt8eTlR8vI0nHI/JbYSgedsMbVbNoVI9wUmkS6a4ULHw0bV4BqR7tWbVasUu6pRmoSVurMuRqqprlwbY6uwNXkEYv48Zqadaf7z9V3zqZ/My4EvcIx5OMKULVQe5nrtfl3e8/5cODlyeH1zEo+fTjXx9//f6X374jD1GhnaXz2TOMWVhPdSU+FbWlpkYoQ6FWzs8AMbJ0rKiHNSBYEj0KzQre/f4TMy75d5/Bww4wKc4vv303ZC6tUCu4MZcwuIKH3bS2XHFy0gT/7z/e//NfX9LEEADKuWGVXK1skVpYctMpjCw/mHsQbqelFOYKcoUkdcknhp9+/EtiauG7ixrn6C2svACTya4EVf58/+kiv7t/yMoALBOX9LV7fmsduZ0F33zwwD4LiVSB6VHHlNAROCyEhndJuXazwiy/nZ2q4VmhhJW1UbMAIE0P8a08aIaMtBVqBTOChXdXsBoTI8vznRPspHTadJULzVKUrfR6+ThcHRg8UNNd7pyKe0NHXkh7qC5tgphXtrW0g2cguYuZoSIUgXWDzX5KaLuvVzS2MoSZFfJ21uoI4+ABCOWGCQLH16tfteGuHBCs0lu5josaW62ADy+WtFeyTeAKHgDf02h06ezUiBpr89XVEavmCwlhY6sn3Y0mDSwXxew5x1trEm9I7qzjqeldNH0J11mDwsZW+UznebI1qVmvplb8Q/TZxy7nMXaAvpGq+aSMb2xVJb8tDffkLES15ZqF08AXUavjDuCLqJoCVZwbWV46P4+2iiE3Jzzr/qxqVqJ6Tp59NqoMeWQefB6EhGBZop4EPdimKEcYb3IuDS/2hnCC4/ze24lcsGBwCK3oIsxwXrDm3cwP9toMjTN4DbWClbffUzG3sCbjudQcTs0xWRRLvbCtWsu6gkQYQ2PAvZQpMSri+Qcff3I2IF9tXNGV3UsuIaNWZbQkU+0wtUF/0tAkoXpMvMxjDlkBs5SchsT2PXKKPKOuHE7MoyKd//ycwxrZOjklJObVaDJKZKK8JmQ1GdrevZfy63WZjMNy4lR10TWn1YaP/9TZJjHBEXSXNbL0CaMtQvAhgeZFvpRP/tLruA2efJNb8rBgtUaSujjBqSYxwSmGrvgrP8aIgfP3H+/JX2vjaoAkkaccIltgqlkuLCzQtkuIynbBEK88JQRVixAiMfKVMZQtolmTHBMsPBHqvqElZFYYvALPWxpeSrdWX3UD9Tp+qVmTRpYXCysIJODtNLTwF6uEOUmViDBVpcoq6gjsfDVewhrU/PDl42jv7OBhYKFx8uKRnbkI+QTZT9TR9YIVeGNb24U8pIiRp4hpmIH3rlS9N6UNYRjaff2UMMwrP3z98LlaL9x2bW5Id2IyqIZctaEwSeatSf/yecEqRXdegzwP03QD49/p3bGheyy2B5t7sphr/VIZS+uwDZNMqAfDsSnhioLLnvuGtg72AbWeh5rsrjhM0soForzMczlsYeHAIlojNLJuacMnuaUfY22leGj8W/Qr5aqWJAYyOMv8WqELp3t1lafbjK+aS4g4GaZ8nbkE3mA35mx3M9TyPFiwPkbeTr/uZErwULr+YMD2ScEiXbDlja1a9hepmOwKxtYgqe2PvM3WUYZlP+8Edv0JsPeoTTr76nBhYUGvsVUX5+aVZGaEVVAu1Sz+GPfUeLnxvPGcLT5lzrzH5rBg5UZWS7O6lBVHPaDoAHQdOr/bpYq8n9YDr1p8CgBSTCZYy1bVY9NlUbyRFwtLrVkX1UeuXvV88N1uZAVWSIpPkVc+/fgX+hY2jJ/RWaFVZ9/zgpVXAc41C3qJS1d0oBjqWhYE0O6Z1Lod0o2AceRWRXcXuZgnOd+EIsE0toK3lyp3V7ntajVanhEcHwuPorvBLYd2BFddKeXJz0m5WlJlOA3yIlggdvoknFe/nRcscHZELaLjli3e+n7j/qirNdju0vkpIZIOI1mh8O2aSZJaIe4BH7QaHPhZCXHOfDmXPM3YtiGLbk0snw+ZDANHgpUoG1tBZF04hoRukiyZcozG9WohVCviNipnYbZd76rr+K19I5QNyWF6ADiaEpbwq+aeh/7r+LASwviGuw5qM93JF7MqV8rWL799t9SZVd3D/NfTP8xHtWvBuhp5Nyq41oGV09Ws645oM18/fFa3vIP1Xe+qrSh4VjyDz5eXeTaSefvVsaNIqxw4/1aQYFocgCx3j+96N0+6gphb/unHv1rjNr2F9p3tjMGdD+vBpEtYxvvhv+81r5B799wtJll7Jq534l9OXq3WxovWxEKwVkECYvH11jWOpbQXBweJruUd1GoTW7neEVzKh2JZrDqAzR9gIVh1So+M4tSXT6TWlhGiEVTx2Xkzl63EtuXgEKw3MJ5jXSmPfNW/KlsRpRFcCj9Wq7fS/PAOwfr/rKu0V41Uam0p/M4g8Em3tH/6x8XJzx4QJsSp63iUJnR1gyC4F3npLphYBAjB0gRM6erA4JYPaDwR7OFgbU85fN2uBN446b/q0l2vHjjKhMORxZqySsQDohACJzBh7nLBKmNHN1ReGk3qmIyRfmkLq6pWrUXl9Hpeeyjq7QUbMDGy9qgV87yH7N6BiXKDrxvpTtKjhMnx//n3f9M2aft1bayCFbjtX4t3rDpsqtVEal18X6t0F94jhPwtlLb0WfkVeV3BKpEH7JWa5fAeCBLVPts+m28zbTr5EunVd/ekfCmK4RDNGuJFfVjzhYfgqnLym2mpwObz0123chUEZ1VeBhZkPqv3lkF3+7y6YKnVCkKwCuTWyuoTNdRgDdysn1z0HM1rS8DGO+gVne5lHEOVzZXSbmeoVvLSJnqKdavcAWy1Y4qwO9L3AWqtH3i2qVX+X4klCO07aOinX1GwCMLTXWaW5uxpFOoTeRgObrNudbUVp1K9yuW61fyOScxMiSxibQ+hZh1pItV6ElSXNVt30NAj/xWnhMTwdlXa8To2h+FIdkZeGBMxMUyENib0ct11bb4Se4YiPx/kgzAm76CXtrCiV+Akk2E4tnbWjANovneDvOcTzkChMQktO3XCN1OL2YFtJbYl80EGfqbSJcIagllKQ4AJw0n/JlFs87EFJv1mQBuqUgo3RvaV5G+1zgDKDanwSaZO+OKi8p4KdDGuctPhpS2sYAbd/AsTBki2gBWSfp8JfhVFvmNDXrNE+hVgLc2yVF6r8d2p4IwjE5QQrECD2luEWxq2z+su+7Z8wFDIFln57e7VUHZX/isgU+1WhU9m42fz0lPC1tpEa45d9Rca79O1qAv7GqLwATPvjuZdKRxnIJuEpi4e1V4ezFurORLN89KClaiKTqlNvKfwoO8gzzLZn26ijhu0TW9qFUSf6TeT6Bah3ew4yxXKoUmlc6jLte8Vp4RleF4V4ak/FTW6urRj98slBghqwczCkGRnJlG3bxjKpKmehOvCj0kF3dHQ1smR8OoWVholupndqflgbkP9819fqn/VjRfRulHze7Vq6cwkwZaU37O09F13dZ+cgeorhIsS6RmHGiNJjFNFOEd5UcHCrpD4yqj6nEokJFKVv5XfsUS5Ft0DQ1rjv3ImMtSFdLT1afmWB/efjiEvcEvIhkzLV5wSEj79+Fcac3LjNlernXSrOVeL0u6vMniRNs2gdpxVgycfNiuUTP0Uc5QXtbDgrZGFA0VyBsk228yrcgWdxGqS2mm4AZpaV8w1rmD+TLZE7aKSkPm9o5Ae3RzldQULKTWrdfbxrTy2GLarVV4ftRpWblLaMZBg5YC7blZYPu+HNEvtUXlpwcoTICCTIfimTeQvvbUtaQtRR2lWvdqGmmXiwvDMy1bgkKPQrBmPyksLFlybtDUTnWiOJJCNL4xpshvl96glMuKBJZTPe8ie9OX2+Vvqp3443QeStuDtI3fnsuBkdKJhHgwUPtcWe0wq4c7wlLt6i//7LK3CEtAW/cn6Qq9uYSF53HAyoKp/5cbb6KoVszi1wkVyxOfK70y5JxLRbPWbSUjK7L0yxM6C3hyFbDx60cPCegPfU36/SEliyqvxmUxpxwcXR8UIlRy+rx+jaMxZmjfr9nflWgfeNbjzksIS0areDIcpWgl5cdRumTSTWSFOBOSVfBO25hXJtSr3JJ2KoX4zkt9t/eIV/eXN2VNYIgTrDuaXzxUF/yUQzYLe9LNaetwQRj2700OdjI6ada30lGfMLvGMVS3QeVMgfFgXoyicYlh0rbpIBO1AtmpoCPmqyZ2ZcatNGn3lz1W7n7qt+WEOqSph5fYNCyvQs3+RqLszoxZfolQr3c9NmnVBl7Cwgilai0TlliaLRJKdkacu5O8StZLs2L0p9PcSFtZjqT7bVzzJczsL2Cg2WB/IRgwf6Fl8YGT0TabQh1oJCcG6GD+rUUMrRLD4zkTNAgCUrQS68IieqqWqqo/dqejqlYcH84qNVC+i2/MVGs51filq6fOcD1DaZkSQ3WjFsplYfK3GOUi5RLt6dvxUQrC8w3fZTQxFGL3U7EMY3jl/NoYaqeK/Q61GCcHyjsTI6hLuEmg3K13x/d0885AqHeHDuozRmv+El1UrWH/ULUdeEq+qo+o1L8QMCy2s0hqPy6NjsmDDUvPKicfKIcyZeeXTMom9YEm8BnHBRtFpVnU1yurklxe6ZUrE5Q6ssBQsybrM/npSz4D4dCV1R1tr54sczFXicge2mAmWfBDDuXG8KCGz+1smP1Ge4W5ioPnauXwtbMWvl7tBCE18PDaC1W0/hRxc093pbVnkvzu7dt5VzGTu8QFHM/sgL0EVyvVUDASLj5rDOUs+jjdHzW0LxmF+bsWX71w7V8xJwc6JJj/qmIQ+m1nBaqnVqG9l3diqysdS9/CGCUvL4Q2LD0qxUjl5uSMgM8iZEqyqWh1fvaruZKK7DmCyG9s8LNsmufONMHShFS2zDlk9CQ28YSZYo+N4j2YJpxLm84gnxaDNq1ViNDfo7CQ08Im+HtbkOHbV6jbXMpM+o+QOecYNwyczkj/meyQ9qKtqVW1zTSAtr6Pf9cMwK+CnEKCdA2tRD1EG28qwp+i27WnJU/litQ01z+TjMDTreUwJVsuzQHBSsymYoaoao0Xl8eO8iJhMQhX6GPhHKVjC5xU+flvP4RhVz0bdCINXq3IGyowuCCPrQdhMCYWF5cLUuhGcDw6ZV6ObISgrLZuOacXI6ON+n0CwglnBaj0tFdq0dEhFFdqLaI0EyaAi2xC9CyPrdqJrDkCERzdYcXuTaRr/i7ql5FLXwufwGGYFy3k/tVx9WkZWGF8OKSVG7U/gJTK4i1UWVrd/ZMki4SCalf7y/7Y2DpaejaXPifCWPhUbwao2fRvt072TUqog1GoL8lajrkKLAycoa7pj70weJ32682Lb/DYBg66c/OhTqjpxM7SYvn74HNf6XqYsrLwn+GiT7v20huntweirac3d1PYy/3xa7VKMa301J7vm7O89FYNVDbZiz+m2niaiRp5q8svhp8d1cBa9hZVGm9rI8m+RBfD2KkPtqjF2VvUteXP2mRHix1sa2GJgYf39x/t//utLegIL3RxRA+RGWpdYqA6nHlH4uxG/8gCmfFhEYtDO4odmqNVdTJrSCeH0H18s/VxyoynMqwcza2Gl5cJkZEHm6eDHdFnTPTBkw3ro0IrhqLMShxP5FbUny3l4cyDHsmsOCDpQReHtpaxrbqorh63ojUhqy1RLNbQ+W9pWo2VO831AYnz64XBfwhgKVmzoK8O0RyplpWySJL/o+EN8jVPyCqNWILPsuqGFMVyPs7Xzc+TBLELRWkb3zBht5qr7OZMCfkNqxQ/dGLd+sBSshCQCPi65IXxfyCozsjXUGFH3EzCtWTq12tnnMdBhL1g55u3aA8KpvpAbmqeVmgUjTeSE81CJcRqOVz+sFaxgKZO3NJg2ZG4x35u+bB3QOsZRH3/ZYoOxT0vZCs3aTwjWreSmwZBaIbapUbg/trfx6IRXPtvlu7Timax2aQ076xQhWLdi65n2bDK0fEwoMSTMSh48AWLzbWbRMzAkBOtK5GqVlv9bwd/788/VSJz98ogN3Ww6kjSOc7JaQ2BFN1IJ/02U6z///u8vv3338dfvZ2LBF00GCXlRMz5BQrcbEvs0nS7FlwdWhGDdzWjXoh++fGxZW//815e//3gvrG9XdbdvCBDPv1O9Bt3y5ctJEj90xgITQrBuhW8fz3yQaNao1SCfmqUt193Mht8sd/+FkXWWEKz74Hth6dKDJbNCJsAy2Sn4DbhBMkAgHD2BES8hWOX8Je6fUSRJOfkrSbzSpAmiknpgxGMFi49p3OMnXs22/qCj8fTJkQ8AydED30ytq8924IEHCpYw2W2Pn2Up1Trr5igiANK7RLZCs4J5niZY8tSw8LNImAlPzWXLuWbJ6xGGx/0sqzo/7+frh894d+ENlv7IluR1VC5JZpx/DAsEmwTTp49sm73KyYs+jxIlTE/xEAurlWnBFy241M9CutiO9jdlmtm0mCykh6EAToysahtgyWkk5lVEuu/nCRZWVa3+8+//dv0s+PBPH0kfv8XOYqK9h1pvtXoFEkd7tVRxNYSi9Xp+kl2BYj3UPIUhGfvkz2RXgycIVkLtZ8nnLHdpFrTb2Pz5/hPRpvIV8iUtBazO5rrRXmQDMjE8foZJv8WuZpVqVZpXvDaFcplw/ZTQys8yn1K3E9KsqEXXn8XbFC3zShib2gqpx+AsDww1fGp1e+oWB88/cnxGfDV3W1gStUozFPJXfhV+8DFGVhemVANz+EOR9J77y+PBlnZWlValLRJG03qE5G+FqaXm7vIyfHuV7t1CDJArikPlzFiXfGEZ5sSOalB+kh2e4aFuT9BWK3n7j/JLAjl3W1gwN22p+lngHiOr2pO5a2rhNrzr6kXI7Sz+VOQbtNSqGkZTvvWwSJqdXOzDwotdDhG5FVCWW7nIk4UkR0za7Y+/fo+aRURcVzZzxrwqv0pdGQIxt0ryKAeJfJMdGKpZiqPLlSPPkNVdxy8WrBX4cQy3Ljy55Pioz53H8O3+qarDZGvCUZgKXC3254GW3ihms3w3yESSmZLj0CKa9RgfPLPykC84pH+oD/luwarOB0etAMUdtY7uPVO95LhoCN/OCW8kqps/Kxg6t2eX23TNGUHsQCS5Sqp99Eg3e7cUL3Uy3N2CtQgcTzuffqO95sklx3kN3s9WnbfzEPA/33+amRXy80Gh/xvTEmBi3JswE0zjP79SyFAz8DyrBFT3VwiWC4SLTXnadnnJybyGmdI6vD1Gl9smx/1BnlSzlGnCVvWfzifD6QXrrlHiGXnrvbyxVeuSm1Q9R8wr2OBUqLqf8pPgpECgOlb5AQzVHcr7PM548QYEq3SvbGg68HgUtfHg7ZOKueTqK1JND04MzQrLICxoh4nfstxWdbcPcV1mRYk6BhCPHVSF0kRxWHlgbgrYJX/5Zg8ILalaASsgV12Stp2/uzr/EYWATGGEfvQhd3v5oO4+q0lY06UD78adn8yHIwm8Q3QEixSZ4tMO9ofDVR+tfpb8eKpXXf6Y2pazXU396Z7kVhZB+i+fAyRZbnNbZuul6KoVY4zr4rS5KWFp+vLjgzhWYOMkcbQmVI5k2rIUk5xt85lRnl9d9WSl8yaph5VgAutjue0iJHWHqv+tDozRy9cULIVvhcxLYZcrtLyd5H6WU+aY0A9CjoKpjYdfaxtOmYekVp8KkhNIHgNWe3jvclu+237SKkcZrTuU3ioLeAz58upTwhnfCk5SVk/OSUkjnZ+lZJsDK8EXmShfZL5kaW08k5oQBJPSQPuppnAqvudGjztvXikSeBHh6K0I1qRvBdgU0EVUrz2vWWVBu23zwVGjmrzVytnOv9wKXX51opplbfsY0HmyohDoPDMJvDmjo5cK1vxDL1e3s0YWNMpsVl9seYWXoivmKf8qE4hmSWQrl6p1akWQDLZSpOaVa9TIilIZ5QiXj96mD2uy7wBs94YmT5bOz+JnDPks5klyFcuyECWbU6y7SJI05XtYrfiqaGOB3yb8XQ8wM4MNvBEs9VTFxJ2mo1zMGl0xXD1tqXL2qisguYooWww7U6yBvXZCA0rxWCWrqPzYI4Xhn2RebSstW3e6G/YdgL0TwyE/ywYny5N49/tPpNxd9ZYjb+WfMofx6PMwQYVCyEHlbSzI8COvyCuRBSX/s7Dm/f9wrh4esbOArWMHsiYoQRXDFOtyYjUTT9eCKVmTZ1DjxoqJIbydKad3y0emt2myIZNlPORUfFhW/n/YWw+PGT0e6tg9DPNzZZ5lXaVVrUk9OPOZMqlElmeq5x+J8TaDfXmZg/XwRv0sm50sgQS5keVkOl+OuvR6OfaeMd74QOLVvPFhmRTwLNnZPlPiZ9npZGnBhGIouDTgG2r+R5AdzrpDVozSfPzg6Cr/cON71YpBbqaUW8rDiZ5ZwI/k1rYMfofjRugLaA2Oexee5pfbrK6m7nskLR0djjc16in8ZLT2MwULcT5EWknFvGZV1erGPI8Eqb1VdmDOa7/lH/QZHOB8yE3Cp5duGLrX9yW8EUmAfuuzrRh98uV3QU4IxscnykABEkAP4qNuxWFod/ylaeXDtUavydB9uIXln1awa1m8hVExn7bGEEzjn8nlNmLBkfD0q0/aEWxreIwO3f+1qsc4LPPu5LhPNz7810HSNnULLg6bv88gbB00utwm96PffgL3MJ9xrF7htbewbin46Q3FIrE6ztst70aaMI9GeEo2E37hi1PNhwOxbM2k7lYsLKg98Gf6Djzm+W/OUN+RnKXLZOUetlh3QVf87qljeSrVGp/86J3PT/qfYAE7KwSZZpVrlsfj+pyj65oDi5OKynub8fvcdVnLQ7tr/13Bd6jDTtfkUzPZlHXBgoZXZWjNMswrIUyfqxZ71EqSHhyJJi/OaAfchHrYvBEs6BlZCUk9LCdpE7fQ0ghy4U0u+ehutAS03Jm4xK+JcKkkMTlum4IFc2W2YzKoYNEa2eivdxuakpAosldLr3X4odyyZymWChZMa1buZAm1GuXUArzCgQpHff+P8ak9j6XJSRXBgunVqygyZUL1wq+TA8XlTqye/st9as8ohxAw1AULplevwhd7EfMhrIs0S+dTi7H3YJqCBarOz+kfMWIuQugB4Pv3wgLNKtVKsmp+xLp/kQoNHuAECwZXuCGk6kK+fvjMq1UrloVZGp4Xi9YKgCIu8eAiALL6dnidtYiOYCW6q1fh9byUyfSGqmaZpI6qV35OrQN074v9axHwxBtTJFiJ7sPkAafj1ZjPeF8RLWy4Tg2n1wFg2bTDwz7sZyD5+fZDDapMdkg0L+Fv0nt8ac1o4VIAetOwyYVVO+Gud6/cE+wPlD577708YGFtAK/EvSf0IqwKCjEJpIrrKFyy7FYK27ZwuXklSh7fC7UQ39tNLS8VR79++JxPOcl/A8+YN6Tjcyp/+PKR/GL5Cixuqc2oFfld3AA/MjOwUc2JBZr+yu3zt9LG+NlL7y8XgtU6d5ee00DdJ4lsP5R+X33Lttch2T1i3aA0EAUpNWv+1z/++v3QfBk1C2UL7ry/XAhWEBCqQjNqyuHNPKkUBMlcjLxuqJv5FH7IiiSm1qWcF6wbZT7wCa9oi0YarxrkXbVpQ6K4W8G95I/Zn0uNrPOCxXPdCQ1gTdVmtafMyqCoDkW5jTO/G4xrryVPrdfzieFqkj/ayivtXbAuXct4KZiwBsXl23MXqZEXWTQEb3VdKWCyAZkYrrAJWiI1r1znBSsk6RR45kuDSB1aNdrIN5hEaHhWNQvWPB4keqSWrfOCFZyF6ecqwbxJUkvp1D/0jK5Ck/G9wEqblZGVy1CKn6j+zfyuC8FqGVlhfB1EIhDznccvZecxkvlgzmQE3LqYD95wy2VrVLO8dH5O2nR73sB1YMO+agPqsvt0DtN5fD6yPO1P+YuKNiiIybgijaPlPFvHFa0odBlLLiws5N3vP1wYefsAAB7oSURBVIVawfa10TRuWnfUn+8/ESEoXwGjrq7k6g/NUhmT0MShVh2Z3T0kG5x17eVyvyITIE8AaJlv+VsKO8uLhRXA28uW/3upiOddfKHdgJqfIdom7jFWTMvoWySgDGgDMi27W3KmPjnqfM+lMAkA8Haf8YR8/PX7dGnQzhJyvWBtK3y+FP4JY5Xl30XRdhyWpRlXZ6mJIQe8eXkZ1NNcs0DQW+jZK6flM6a8cHkhDdSshHCQ+5oSyuEDOqwC1fZMzYTLwOt2IA0UnBimYSSZjv3y23elWtnujHBPyh2DBeYV3lF4pPlPpLOBf/g62Y0Z6cy/VrFsar6kC23ziklXqkb/C7lPsIaWTmdkK33wSN0Isvqb788iUCaIUpB7D8lfX1S3RK1ZS7v48JpFQPUHf+aVbckwMlyF5rlimfKyKaFkMQLnxum/uqJl20SKqbSLRdfyjdfNDXHFME150mnMpzyEdW2ocU/wh1pzQ8Lmmu753BBfJDMd3DL9w3zl1BXy3asWWZQM72sES144DV8nXr1tniA1Vdt41Cs5AwaXpF9E2WJYVBCOLAXkzjUYrFRnTq6n5foAOWPzZd2JfOd04zzIxuQV3FXn90XOHYKl6KHyy2/fpc1IfVjhtWFGiSHyWLud5KZWeuVIawPULMikk7H4YGOjuTxsMD8buV1f/Yia1jKuULNaEWreJqpd7hCsxFCdb2xaRxZQhzRrdo+N2GlkJfDYy3uyutm63chnqSDwo+8sAVw+1aonynBPTOJp8aus9monFwjWTFeCNFWuuhUCCTNtb2a+gXwcTS1om6JH+tQTZa++ZfIrfKwco1lLExLUVG1kyZ74akJRMt9DBRYvG80gnBIeuRVHkcygrfovyH/Cv+NSztdey1sJqxt0r255e41gSbqoJ3b2UJlHolnOBWv/IRDlKkWK+azDEyhk/uG9tJPQkH85/YP4HK8XrG7HJ2bqvrSRuiFMWEPCc/PeapQJFAu1yGoHk3ydxNVplDMqDTnrntmkfPPSzmN3CJau0GKrKTFMN1I3pLzH8pvfv1oJ2/PB4iW8J02ueVqnXZLPuGiGIQ85ytHFG3sXrJZ5pW6k7nxWyONkh6HxqAfBbbMiLH40OuT2ZqIttxGDYvI1s0v8XpUhx/L98StY/HxQFy/nc1YIWzzWhqidKSTFb4XTN9G6W7YFaq2mOxmH8fl4axAKT5E8C0W+SyUXCJZhI3W3ggWsZjncT7XrNze1TFTD1cx0MybLHYYGfktGFXvV4oI4LEOqGUxOqEb0eLuX5heq3gT0/usv4qTT7Q/CTE7nKzE5pBVw39qSIJ9KY3Jb66vwV/gciXI/R0f4awnWFXgTKQKvVlXjt1yxxSfHaPpBd5eqewWZUEKhWbfHauU7zwd8lJsJKxrnefj86SLR/4yM6s55CFYghdwM8iiT9HopW5MZCGQy2Nor8i7RrIchUQHeZ48nEE9U+q88J5eJ/pfvZIvXEiy388FbaC1LSbyKP3z5mGuWrZG1obDJM5BHRZDSxnkpAeH1WnFKLyjgZ9jmM1DTNa8klLpmW+BpaK92tmt3AnFB4rxeUkog7xedvmF/YUvwLFgm8szUAAp0GHbHW9p/OGCQS1WOB83aJ1hYZ33oIFt9idVtPpEXmQKsYKZDlFWvl5lbZUWHK/+QySBzEn748rF1mXLNOsJaHxbTJAL/LREORRmgblWNYJSqHTQvQOj/fh1H0n5amQk55FLif8mtZOt8HGWVYMlD2pjgDrJEKi8DtL9LXbCZmZKwB9dejgfZKdJyyWoJfg864M13ksFesFpSVSYNCPtEYE+EaicCuQPeYRZh8ApYzTMmaU0G1Su8R0xjY8ES5kAS8WLiO/Jai/LuKYSIZngRhsbGhuam8tpBisZOit2YWTCp2ln7sRQsXeGLobDjUc3a3Pcp2E/+MAOBZqmL844iSawjTSuWypYtxJO17XfNBEtRWixPK4N2TBrT8UkyNFcX1ngdypZWMNhpqoq62dS7WvtCYDWrVeXGltH6UPkkAxbPsCZXeI8bWTaCNdknArL2NrxmwbeOT6TdE8knQEKtVqCYlSMrRjx5mMG3YdAdFQnbUcEkvrTKb5IHNizQrMes8BrHYanL43dj0vB0YAfzvA84aaqev4vt10OtTDBMPJgPNCGjAt7uHhkVZIMV5hXTkaGVkl0NIodDceT+MbCwJAFppZa3MviZrFTS8anbqO4B9XD9wHea0rXzBItAk1bvwnIWVha6hDUDQzHVyAf/A+rerMNmSsgEpA1l8Eti0sqaOzwhVeaYtPM07I5Xaha0pXDdY2yyWFipWRFJWzI7JeRzYrtP3eoG3cD/d7//lP4mtwmGSCezlSwFAH++/1SdHpavC+N483QuPq8rnxuiE4BAXnelVol1yXrVEzLvT1QvmKgxWyVUh3jwVUf4z4YenYKJL+neBt1+U/xdiu9WQ/bwv+al44ZY5xiZxNuCySgGgiVJp+RhlkvDKnbFfBwvr1ZD3brKqKWlpeO6WDlG8i9068w6lZm7KpdwcsX0qQUhCRcFCiJVzQLZ46pUK2SoaG83qWvzKZ0sFtaaZOCXTx4O2p6l81EeRuekUtOUD4sJ+Q94cnfMaMmd4+TOLAwfKQMIkDy8oNqXsBpp2RpU6S2fQQBD5pXiq2YwrNREvuEJ1Rpm8NzbxoTq3XXX5LcM5QUAtLaqtPprjWZ0wdukLmGh8VPoPLnrqE7k00+3drW6YxsyMat4FKxnw9gCPm+5FiS+BGWLoYx+UmR0gTip6wFYubHKiXy5jVAxDeNRFHgskfxs8+pJ5IEj3XgCPlZTUbTXT6Fxc1bURC2jUhQ32vG6cjYWVkuzg1eA+KFaFkGpU/KivQyr4wAeST6Fl5/2bjzKBqYEi6n6OJ/EH9zF6NhVFO1NrG7L6oFFQQPVIgLywiegVauu2Sv/KgMLq5VfJodZMb195AVdRov2LmrLugh1luUiSBpTdbWkuuqlKHyyon7hQqe7zsg62CrC8Dmg49XU2bxoL5w2sgx9I+vEt5sunquVOmN8Uf3Cf/z888/d3+7uGRr28vblSBni0TU7GWXRDdPyC8mpnP8J/udMvvYicD5YmldDD7l88KCH5Yh7Jb8LYFCCmUTLv/94v+5AhHkFMC1V3fqF8l+xsbCYWSFjZzGduBItNy3DaOx495qVymUSeUx++qXUahGnivYi1YqsiaG7IP9Cmz1rkI9DyW8p1Gq0fiH0QupsLCyyfy1PFp85Jc8yg4a4kJPePb/CdJBtdZReh5ZVrvAhECNrg2FSZc9dsJR5w7+qVqM5W8AeuIFgwcjVamGSE5sQlhAZNVxB5XcMqjxPsGD9XeCfmTMgXIi0mRJOJvEzObEwmBaLm/G1sRWGKww2+FnKkWoEV3C8j/TkXXAv8/ULIevt0NrMLNKdJMSCLJSWz4kFVVos2Z5xew0V3safyD+7Oa6aL2In2SBYB9FHvAskn729H51QrX748hH/qt+Dn2rdX5ZhDcTOgrfxHfkBVNdNGfdQddZGzkjLDir3cz5/bX+8z+iCzgOCJ3WcjeB7N96SjkgVXKhWOS21KhWK8eUxte1tfFg5ct9Q15nN9CBp/Xqr8Vz5tWrbdb+jQXhKL1oceKQPC1m6ru8QckMpoupagR3l/WUfODqUxC9xkI82ZyW1R6qF4iZrb29jaOjjW0s73FlRDQIYDTb2ULS3pBWZCW8vH7kvLlWrHHXQrLy6zpJId5P4jqojRiIu1cQCw/t2W3cTtYF5RaEoZKbKOPme9A8PZYXxFsCdaXWle0YzupmkhRImpG5heRl5bxtmAz45locUpay+69m8ShBjsGtgYsWVK4quzLRldVK0l6Fafof8lVs+hiG1KjfGuz4fvZat6gl4AQxNG/mWr7xITNYHjgdhlLybbsvqp2hvF6Y1hqv91LG5TvqUYPHPbXzX21Xphp5CpvfVB/5qQTRxtN1SKErRltVV0V453m6EG1EK1mQ7pkCIfJEY2MnUdUYWZIfDPzzgdNHeYCcaH1buDCbR5ySqM9/ArRuF4cgiVLcOJ9PkjryVVxD2DB9jmRpHS5LvgsczLFh4O5HQ8/yuIK/gxk40SzJrYO4Q2JVFoesZVdUscOl912VH5NyefPck9jwzxgSr7MhE8lrwr9xg/oaRD2XJlkOZE5uxXSQGx0ZWq8Vh94PVpK5Qq/0w53xyglJVwAEfVrV/XMsZjK9P9mLiGxPxbPDCmt8nzJqLXK22NbkzgSk0nsjHUv5Bk1yWKKZowoo66Uh+OaQWFrmu8qUrkjYst7Oqg0b47O1+W65io0bWdU4TMit0SB6sBN9MLTzDeeNo8i6GMikkhskSdzVxvhrhg7MVpFJaG2NTwpmwIDW5jwN6+lKmkhLyka0QHZ9TyJLrWhZh5GQeTonalP+lt7qNDnmEpWuDIao3VFezmCCVEpFgzYcF6RpeVut1QMM1Sx7C6R/M45f4eiVHcXsNEP9048J3BoiHZgnJHZFQu5sYzWLqpFfvr32t6meCLUm9jvRi69vK3HcCaaco7M7WqgMR2MLEhZfb6AglWkerciGJqlMHqYjKyzA9ThAyB6nukK4dyGjF0UR3vlBdQ0B4R++6xPoV7WTATd0VJ2xukvQi7KkQLbWweH9ttTpXd+4qXC4s69UAq8HC9Pey1ho0WrMlbi9aBGEVNnC7FnEX5nXSq/dXX7DU9nOpWepZYT6Jy2WLMNo1hyyog8ANv02tykgOXWNauGehwAOnWoRN4qTGf1WzoGdqDTlbhn1YilapJpBefvxRya9T1XwrGZVCNcS/potq8V93xS3XqZW3AgS6Oukgdrbsc7qbQGSrtYH6O7vjdc+Fr1bjhMfVXXECc9E9ny5JAQI8tJ1572UkMHxztjCeFpBNXy4TrMSKU89L4ZGBW3UEJD0aaiMcy5rPo7oSVSJpebeCoTrpMOJpGRYseTP6i7JDEA9P1NIRUG5DZKtbdwW/2Xpnr4TMu5nNNuyMAkWnziOaBbWJS66h5fZd+oIlubpCf3B4f4V0a0Ul+EcC357WOeuCsPBLLo3GUvQlOVjgv5y4TAaOSC2sllcFyTWra1t1Y8S7g8nt088c+WpLzr2VDORJM5NHxGiW23PFq1W3Uyd+yf7VQ6uvGgschYmKvZJbiAygUiK3rdZ5QNfw9d78IaFfBqw7zeSjzvmJakU7j2ZoOD9MBmkjVUmwO09XsOTjFayHrFuYcPzyEtzbQ3hRMsPDULR9S5B8l1tGRZVhwYIF3ZJfrVPuEEMnp7yf/Z+Z1n2YWFoM6y50Fjc8y8gaaFWv1qyq97fMcS3Ha/X777Uj1AhbfiAX6fhQVUjkSXegnBmj4V6fJmFYsGC8ETEMqtWrPTSE8A6+G717apMh8ZibUMi8YMH9p2tAsKBnvUMjW5AJul8603wkT1o/3eAYfRIhWDAaOJoHsObRq60iB7yzyaQuoOf+xit4zNF1u5khTAWlW5rFBlYMR7pbFXuRqFUZjFqO2hiyN1KdDBLI1W9F+aFR/yJPrBdH00g1r0tLStbmCEvZVtWq7AnKvO659V7AM3T18d3W90RlK55L0x5yNIKVIBo0VHWbnw6M9gpNuG29F1SZ6b3YahabeJ0n1kyu26V2qF6wEkmPSlWqvlii7r7H9zcOPGPVe5G88lJPrCEHyJNyeGcFK6clXlUk3lYeZsi+zjM2kVrs5X+n92g3r/DEIs1pEl0xeljzFEvBmue6bnpnYeTJuXLNP67g5UeLpFNnq03npfNBOCJYzIxglHzITrZrvY4yjhT/yGZuZYvw4gIkgRhZTKfOau/O280ruLTiKM+lfQTkdDN1yqZVL7LYj9Etjz9eeafOhyXePlCw/LCi3FKrpkVuruIYPVUh9xSvEItHgreh6FCHPLKyRQiWPetK0AkrN+CLByvknuXZh6kO3n7AaQnBskReVgEVBMaHEd+tOp8X4BTJm2ZVC9iqGy++IJJOnTfmw3c5KVitDgtyqvllpxxYQ1XoFJM1YbVJUkCq1CxX6BovJlxd/f3IO3U+Q6oSBwSLqaU984w9Gx3HlAaFwvaptgaAkYElKcaCSXbHS3q3eNnu1uX4V1+RslKTyde65ZiF1W0J08VPf2NhXSfS9jaXra6pRQSx9RPlL+aa5cTIMulY4+fqy2GOer6zxvO0qcphH5b6Gdvqb7y/0I+uSA7aXAopGSrFU61Q5oHWE2umu7XbMk/yLs06t6YrlvYiOhPpTnad3FHdLmFMf+PNTJb0ShvnlQZuCfKcBAdAumrlAGiNgfIt0mHBG3ngLgnr/fjr9/nTOn/3onBfpJtcYZJ9MVZx1BByq1fvc2FDaRyymx+wQ2r1w5ePfH9mSQO0J1WbNOkdBwC//Padq+PKeZHuKqOL4wndoR2bEkqaG0ua3Xt4wAoLEPIl6JgahPmAeExNgnwAYLPYUc3yOdtNDHVXQVcjiN2aTlAsjoNqoSlxzMICi2fswZLeXQtR4YgRtkF7hoUFc8fl9qASk91VbukIJVkch0bldJ0VebJaQ57Jib4M+TPTSQOC6sNEUYWu9VVgdFwOq4vkdWtBPAZwg08//nX86vMohDh3azqHPLPxMPEPtySvoNNW4bc9aWElRrtv56P54Hj9+uFzy7ySRxIxRla1LbaTnnSGYUQw7ugB976eq6cOQk45Vc8LFlgM2f1qBY354GjcY65ZzOqBk66//MPQPKmbDAPi43uqWiU8a5bJMerWylzkEpbJnGUDMXA5Xjeb7rmLeuiDJosSkqTumbhHYULv/ErTToTL39e1g5KoVWuVKaFrd+RCsOBtYhQ/ZO8ar0MwQZ7V6PDushr5tpkHtdDRMKlZ8HYMdDf2CdO+rGWAM70XwVkeKCnAKVluYpRrtKmoF8FKyIes5/E6BBOfVYUYWUmSWsvkCYfudobq8mj1XYeQHZ6sgkseYJMhDobJhkywFe8SIaNdYUX6EqxEa8g6H6yrIUZWt9Qkbka+RPHT5VjPh+w6Kbz3iuvWjqtPr/lZYTeHUX6eefNKuDheahaIrUhfTShKhjrx3MiQeVWW9GaGcv6urdeWPGDLKvImvxKYILkcJpfMpEVbd088WlgviyQGDQPEQVBqEu6ZCbpixVRU3nBz6BnGU3YqwX+TgSGfb1Y7Hm2rvOjdwnLOkRWcPN6S0aNu/+2AcG/btCqMWkGRiV1u3/3CGar9riQ9JcPC0mBVg5Ap6sTrS1khl99YuD8vy+PLv7QOSrf+eDAQPywsPXilR8vjVCFFnbpIjKZFhhXZw6trh6PdRLo6plyTvAJMvoHC2hKOCqv5oLyCQv6ufxMyLKxZqmGciip0oJpg7lGH0qJ8hmvsFboQSeZZF+FOsMiN4XZAdMvjMJrVKukF/pIwEGFdY4d73kKRxFotxl89ZN1j7FRlSleBqTyOpoRVM/sKZ2e1bCZ8K4+Jo5D8F/FQ0suES9WKVBpofQTfxe3LYgMk7qQ6JFrff9Fj7OBYdSFYEklyqFnV8jjVLZmav55zXAm8R8ztbpeoM8nzzbqFrVt3dXUktIaHq8eY4SUuc/5B5mc4L1jVKGriAW1teRy5ZlW5SK2QUrYeEDOhqMTfgu9XkEBbu2V0lx9Un2GJCgzNB6v2o2HsGM95wcopRYq8cotmdWUrr0IHF/qw781AEJZG+eHLR/wr3+12D1E/wxKnxsbM1ZRrljqaB47Xw9pZvn4pklqx1UKx4KNOzuuAV0pebCAx1P3EQ8FF4c01emflpSthPJ2w1fRIeKQnLSy5Wkk2OAvaWfhozb0PxObKa/vidQq12gB5rgxV4i/fIiHapfnvx+5ufZXODmB2jLez5lu0nW9CATUxwvXj/EXnRhY8yGB8Krx5pe7gyxhZ0CiPRdqA52/N9GggMGU2StEZqtkwX8APVC3a3AnWjVVxCXJHm+ejeCSMYOkSqvgZjbwFFrwd6objXDgah37o1UskM7gtEcuAp741VkKnDsLMBxXw5ZywIKWiuobVIOlG/Cp+6N1cT0nSZ2CIHYL1skX4XupggxakXD3U3AVL8zFbT9CZX6lqFvQeA6VUja4q7Lawrki/CgJb8trfwDqtl94d5jqYaxYAoGwlVjRSXS5Yo5FTJAnruvlgELQo78zbn9+knCRpdtWK44GJma8LHxamECdaInWFxz0I5DxgJMv7syUm7+LlgsX4/IQFAILAEKbAhoLRKmaPZKg/G8zJ9A4LC4WJ2VFiZFU3wG+z3b0gAHGp2G1Jc9exZ3F805Swta+k1G9Vsx7w7LqlyNelKE6vons281Um3/MYlg7vw7mEiUdGWq4I2Atyume4em67UdqMncVklvz9x/u4lBtwIVggu71vGRCLkk4DZCbjhERpt0o1kFdaFWDuKg30ALwIVuIBoeGj+UYhW6PMPw+6BRskhHl1BF+CdTXCjgY5UWFmFD5hvnQnVU/sfCrcjZUXn0EIlg2t1HzmTiBpCqFZXXS5xOaaFWp1kBAsA6rV+4Q3ACkJFDcAA18lsWRUs2AwFS4uVhdzJ08IlgHEJwKDU4z8NnjkPWAS1cGoVXm2hUm2owrY/cIAWbRKHoI1i2TVScLzlpx0YQf8V6ln3MBqFvSmmYuKVT0VcumJw3GmNEUI1hQSV0g1rofvTni7ZpmPV92kWziDizqxtjALIwSF9IdgTTFZcneyIL9PVoxXdSfBaon0VkBp99uEe/vKtK4+XrXJGsIuqjVcTauCpSQx7YcvH3PN4stXXsFQGFre8B0GhWBo6p0iHvizGnVi55FE9hDlwosirLQTgqUHL095VeQFwolmQRZPZFUsaVvFV6EPuzVknRDCpGM0DhHH+dAACMGywaRAOGRG1iQtM2GdeMlX8fAAyZC9vZpdAL3WnPC2qh+J9ZUMgBCsKapuGrl5hduXPni13SFxIaMRDkayRfSRdzPlbWVDs55BawBAMQaqTYXlo91Xq/pghq8fPudmOfEipb/8XWz/aVVGccgpju9alXkJHNIaA62r3x2KYWE9BKEHgdTLz93eatNGvYSH89/cKS7ck6F6oeaNlIMqG9qzh2A9gZb/qHVLr56OyaVE4bOT196rfnNMOVejy/cQzgpjSng9xMDBiDBmuOC7uD1OD/fsc4lEg8iA5pVupltnsAHdOlUI1t1UQ+2FQyGXLZjTrJlSLfn2rX0gZhFq0C+/fVeVrfmGnYEa4RNCtxpuNiWMsuWIsJ1Bvv38j6pr0aVJmcKLlNhmlOVtO+HtxLA19MtqDVUiUnQRQ37GfauE1WUmw7Unz+BZNgmegsG2UcR11ar2S/7KbXI7yz94Zj79+BfzMBcWR2RG6SsMYFvkyxqt+2VtHFb3ivoJq1n6FC3dwHIjqzSvhnwuZG0up7UD6XXyuyQryM+Fy8l7dqJM592GhRVHkYsGsHNIj1G8I6pGVq5Wox7G5T6s448p3tab2T0ylMlDQzLRqyY/t76fQBKDRjMZqxv4N7LwnPz9x3vyPC+zak2ynY8P4LsojazkZ8z/8C3hnD1HL1jVziUkXrG15TYkPz05e03nuvqg4DWr+q5JxJDQuCOboeQNRdMkLchPwujsON9e4hrP302qlJ+u8hWhWuHodTWAL6K1MNKi3EBizNpYWOQyb4gfk1BWZWIGpY78doXavfrn+0+lMFVfJN4rycXjvVcSSmlDI2vzXTo0NXj3+0/k/JQ6Vd2sBRkPTgbwpUicjK3GUV2UPqzuaCZhYPt9AXwNOXwFd3J+D9O8vTpp704PSWX3LiaFItYhXx6aWaxoFYQZvY5VefJWQ+IKeCdjldF6WAYWlv/HEbOH+Vs6m8JqTuSh1qjOUivPAAyehMljT5YU/o1+PDCEcTISuk7GKgud7k6EbMNuVDVLcsfiZgfVytAiG9IscuzBY2CcjPhfdbHphbmEBy3qIVvJxPjPwxrTHZimh+ndVkEoeEooNrOqDS9w+AEhXcd8SFRvMcXlNhCsfL7a4hUGImoWAOSyBQ1b42Ftn9dFoq+mOoDDgTWPlZMxRylY5IlaXnIn13vztDR3OkImWy08dGHJFwRM4vVzzUqvOOyaxQ9gJ6P3MRheWbMpoc9rLLH+bMmNYTwnhn3ZCPJaKxvAY0e9Tq+3VNuDXiOS/hTBcfSCRZ5R/JbqX7kUYgxbTeDzz7ZO/mjqNWHeBU7MTFip1zMIB/ALjl7PTFlYkkt+5HrLxRQW24ZLDx/tx6G0+BwmQGxSTyHzXLTO8HEt6I6T43sYEGbDGuRZFKfoBoPgvz3srYLSJhLWq2llMlopeCswylXAFLMnTvYwyLHs/IwPKydXuts/xsncRM1M3+lW02mICIPAMZZxWJ6HOPGnlEaE553vUs0KQkkiytWyv0KtAv9YWlgOefyyQLVE8uiXoHkVahU45+E13SW+kqvvT9tMxiBwzsMtrJynVp0nHQnldhbp1BDmVeCfFxKsB1PVrISwQG2oVXAFIVgPQdj5GXlYJmPwIoRgPYpSthhCqoLriFb1j6JMiwGvmTFBoCAE62mUNT3MMxmD4BQhWI8lJCl4Hg+PwwqC4EmEYAVBcA0hWEEQXMP/A4SonjfevYplAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<IPython.core.display.Image object>" | |
] | |
}, | |
"execution_count": 14, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"plot.color_by = 'material'\n", | |
"plot.colors = {graphite: 'gray'}\n", | |
"plot.to_ipython_image()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# END OF ORIGINAL NOTEBOOK" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Material\n", | |
"\tID =\t1\n", | |
"\tName =\tFuel\n", | |
"\tTemperature =\tNone\n", | |
"\tDensity =\t10.5 [g/cm3]\n", | |
"\tS(a,b) Tables \n", | |
"\tNuclides \n", | |
"\tU235 =\t0.046716 [ao]\n", | |
"\tU238 =\t0.28697 [ao]\n", | |
"\tO16 =\t0.5 [ao]\n", | |
"\tC0 =\t0.16667 [ao]\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"fuel_cell = cells[0]\n", | |
"print(fuel_cell.fill)\n", | |
"fuel_mat = fuel_cell.fill" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"geometry.determine_paths()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"inst_per_compact = fuel_cell.num_instances" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"932" | |
] | |
}, | |
"execution_count": 18, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# noting that the number of instances is not the same as the number of TRISOs\n", | |
"len(trisos)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# create a lattice to place our \"compacts\" into\n", | |
"upper_lattice = openmc.RectLattice()\n", | |
"upper_lattice.pitch = (1.0, 1.0)\n", | |
"upper_lattice.lower_left = (-0.5, -0.5)\n", | |
"upper_lattice.universes = [[universe, universe], [universe, universe]]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# create a bounding cell for the lattice, variable name mashing because I'm lazy\n", | |
"min_x = openmc.XPlane(x0=-0.5, boundary_type='reflective')\n", | |
"max_x = openmc.XPlane(x0=1.5, boundary_type='reflective')\n", | |
"min_y = openmc.YPlane(y0=-0.5, boundary_type='reflective')\n", | |
"max_y = openmc.YPlane(y0=1.5, boundary_type='reflective')\n", | |
"min_z = openmc.ZPlane(z0=-0.5, boundary_type='reflective')\n", | |
"max_z = openmc.ZPlane(z0=0.5, boundary_type='reflective')\n", | |
"upper_region = +min_x & -max_x & +min_y & -max_y & +min_z & -max_z" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# upper level cell and root universe\n", | |
"upper_cell = openmc.Cell(fill=upper_lattice)\n", | |
"root_univ = openmc.Universe(cells=[upper_cell])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.image.AxesImage at 0x7f91e1928d60>" | |
] | |
}, | |
"execution_count": 22, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAANDCAYAAABSUqWJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9f6xmW5rXh31Xd4+BG6dvrjNOqpshmFinE2MDwXN1RshdN6A+wHhyBPmBwhTJlQkcdeMwWCGqKzixA1cT0CnZR4qJsGWP6k5i6ipVcdyJNTk1ZEJVQL4lQFV9CRfDIKjriRN6lBNkhqSCBoEarfyx97P2s9Zea//+sfbe30/p7b7nffe73/W+e+312evZz1rLWGtBCCGEEEIIIWRevrB2AQghhBBCCCHkCLDzRQghhBBCCCELwM4XIYQQQgghhCwAO1+EEEIIIYQQsgDsfBFCCCGEEELIArDzRQghhBBCCCELMEnnyxjzk8aYv22M+auJ13+jMeb/a4z5y+Xjj6jXftgY8zeMMZ8bY/7wFOUhhBBCCCGEkNwwU6zzZYx5D8DfA/CnrLX/XOT13wjgvrX2PHj+iwD+JoDfDOC7AF4BuGet/dnRhSKEEEIIIYSQjJjkzpe19j8C8AsD3noK4HNr7c9Za/8hgCcAfvsUZSKEEEIIIYSQnFhyzNdvMMZ8Zoz508aYf7Z87pcD+Ftqm++WzxFCCCGEEELIrvjSQp/zlwD8Smvt3zPG/AiA/xDASZ8dGGO+CeCbAPB95os/+P2/9D8/eSEJIYQQQgghJOT/9ff/P/+ZtfafHLufRTpf1to36r9/2hjzbxtjvh/AzwP4FWrTHyifi+3jJwD8BAB89a137Le+9o0ZS0wIIYQQQgghBR9+9u3/xxT7WSTt0Bhzxxhjyv8+LT/376CYYOPEGPOrjDH/GIAfBfBTS5SJEEIIIYQQQpZkkjtfxpjHAH4jgO83xnwXwB8F8H0AYK39dwD8DgD/sjHmewD+PoAftcU0i98zxvwYgJ8B8EUAP2mt/WtTlIkQQgghhBBCcmKSzpe19l7L638SwJ9MvPbTAH56inIQQgghhBBCSK4sNeEGIYSQnWPRbd1IAzNzSQghhGyJI/mDnS9CCCGD0cJ88/EL/YKPqZ7/8vtfL5/avkQJIYQM46j+YOeLEELIICxsJUwLT5hfOXvqbXf77Nz9/eZR8Z49SJQQQkh/juwPU8x7sS041TwhhKyHRCvffPzCCVNk2ZY6YmAqmRq4SOYWBUoIIaQfW/bHh599+1Nr7btj98POFyGEkM6E0cpQmpcfnbrXHCpl5OripXtaRzPZASOEkH2zdX+w88XOFyGELEpMnJ40lU4+uPe5e8/145PavmISZQeMEEL2yR78wc4XO1+ENBLevudFLRlDSpxamiLMtv1cPz5xKSMiUXbACMkH+oNMyV78wc4XO1+E1GiaOUgGpwIUKemPk2dEnF2kGe5LRzPZASNkfegPMhd78Qc7X+x8kQF0Gcy5VbzIUvOGvLglvZhSnOF+RaJOoM/PAQu8/f7dScpOyFTQH6A/SG/25A92vtj5Ih1JRvPqG242upcUp3z18KtQoKQjw8QZ80q8rllYXD85cSkkvPtFcoL+AP1BBrM3f0zV+eI6X2S3eNOZFk/Ez2nFm0cvvOlLgfwlGhWnmr7VWyNDvoopvisFSgbRIs73nl76z1jgk/Or8q9IfVPn5Z2zG9w+P8ebRy9494usBv1Bf5CZoD9454vsk9rifei+joSevhTIW6I1cQbfNdy2JlFGMEkLFhZvHr3oGLWsi9N71UnUr2+p6GXO8iT7hf6gP8g07M0fvPN1ILY+61BKVnN9D32bG6iid8l1JII1JO6c3XgL+cm+cpNMTJwxaQoGpopkPq8kmnuEiKxHeC6VTw4SJwAYA9y9uYwKVD7DwBTRy2fnsLBZnXNbhP7o/3n0Rx36g/SF/kjDzlfmxBrInCNpIU255HPIKJZfHE5nKv//wb3PEc6ac/mwEKsM3pSTeHdpFhapFGpCotTOo+DVNnEKlUAfVM/B4P6917h+fFJdbPPCbjT0x8DPoz+aoT9IT+gPH3a+MiYqHoNsI2khjbMnzSCj5MDO4sVotMXAeM+LTLVENyHQlqilxkWGnp+3b0zIkpjiAlYvoEmGQX8M/Dz6oxH6g2TLhvzxhbULQOK0TvtaNuSbZsLv0DSjTvo2d6xIhUzv33sNoIpk3jm7cdG+zf/uEdrGMRAfq/7tntYLs+5Ry9qOySzQH/2gP8ZxiHZwQugPf4Mj+oOdrwzpvN5GxvT5DmMboLapTIesIyG3sYGIQCco81gmrSM7vSCYAxHmm49fFI9HL44jUaDXhWgTkjpCpof+GPhZ9Mcw6I/O0B/0h8DOF1mXiRvu7mtIpB66aAmBIhPZHKS9zgUtTUeZxiUS3Sv6u+35e5KNQX8Mh6fxotAf9f8+Mux8kU0TRi3LJ5Oz6cgt7tijiKR0F+iajYiB8Rb0HIXdxpTea/7eXdO4dikWA2+KaT3BgNB3xZJiyuAH7RsSMiP0xwTQH50+m/4A/aFg5ytX9nAOdvkOEzbc3gDpyKsiyRTVreyEQE0l0BxTLXbZcEOlaqgUjSW/a+cUnQzrxDIYtQDmSCzw4OLVNPs6MntoCuiPRaE/5vt8+qOJY/qDna8MmTQqtRJLfIfuUcv+05hGzW/r/726sNRaM7KuRftb7GZmqvJSNSRFY8E0jSFjI1avE3PS8NW6Ri/3ELXMGfqjG/QH6I+FPr/ve3YL/eE4dOfLJv5lQ1NRNnKrf6nvkI5a9p9JJyZQnT4ClKkjK0eqahcoHQRaE2fG9ajLVNPZkWu5xqCqk0zhW69jRfSyTaCp1y0srp+cuP++fX6edd0E6I9FoD9mg/7IsJ3OtVxjoD+iHLLzVZtxRj8yybt1DWNiXG/OlUpY/DtMNJMO0DCbjk4dyQVdXZVAY/+2FrEk6+LOYZ23D/iLWaqtRaCpxyfnD9JRy42kjNAfy0B/LAT9QWaC/khzuEWWuw58zGEhRAOzCUk2Mft3sNX0wLEXh60f0fx5OSGN25tHRVpF+WQ3SW7kIoxkQBC9vPzoFNePTyIXq6Z3SoiLWmZ2bsWgP5aF/pgX+oMsAv1R41B3vvoOfMwhgknyIUwdyYVahLiNDUW/s6BPM7DD3zUavVRjVsa0k1qcDy5eZZ0yQn+QMdAfB4X+oD8iHKbz1fs29B5zb8lukQhxU5qOlmbuDVMu7GHygsmI5O5fPzlJpJB02d12xEl/kD1Df8wD/aE4sD9iHC7tsC8WdvX0EUK6sodUI4cFsjn1upRlI43+EHR60u2zc9w5uynSR8rxK9ePT1xUv629FNFqce4V+oNsCfpjJugP+iPgEHe+GqOWOqoTwujl5um7eF/jvlDNqEPmxUuFibGgqDql5Rwgw0xHcSV95MHFq2gUs+mfbKcjljlHLemP40J/bBP6Iz+O6o8Ux77zZav1PbY0kw/x0bes/UhzMXvO5IOmySJ4g8EDlm5gJSJsYbMoz5To86ct6hiLYAKoRTHLjcMPcv8v0Uqv3d2QOAHQHzuB/tgn9Mcy0B/DOHbnC0wL2TzlIE5ZNyU2g461xdS/fUgu5KeiLWR+ckuDya08Q9H1193VsfDGJ6TaRU+gZbRR0kjkPRa2NqW2FqZ8vrwf2JY4Bfpj49Afuya39jq38gyF/hjPcTpfsZxb3fCSbWIT/+0oopd3by57C7TLZ2/thCckmUZn4iKNSTSMKmuJCpJOoj/XbVt+xmbOIfpjn9AfhPSC/pgGY6dMal6Ir771jv3W177R6z2DF91b6OC2RcIYXY0jt/HlpL18eIr7915Hfi/bWaCxqKWeWefq4uXm8osJAQa0g6VEm9qfWipN0zmmmrktnTv0xz6hPwjpDv0BfPjZtz+11r47dj/HufMF9J/9ZubGMXrrNlGOLrdzD0sQgZaZc/zfqYpgAvE0EolDtK2gzpQRskWi4kxMFKH/+82jF43toE6lSY1pEDZ9sUl/7BP6g5BW6I9pOcydL2BYr32Ogy2Nr75F2wmDTpGEI6FPVh29BJCIYBbvEolqUtJk1HIawosO1uHlSIlTJozQ27mFME21Hdsc+mOP0B/bgf5YD/qjYqo7X8frfEmvusOtzbnEGUpTz5gVw8D4lRrN+bRHY5hAu+97ywv5rU0yOs9o/KLU5BkRZ7j97bNzT6BHr+/0xz6hP/KF/sgD+qOCna8BnS8hKdGZZ01xFVhJUzculx+dxt5UG3joKvXOIgpj0L/tFAKV40JxDqMWnW/emPV4RvqKU79PD27mMSqgP/YH/ZEX9Ec+0B8+7HyN6HwJYX7p3Pn50rhraV5+dNotbaSUpYg0jGLuoVKPwR3L8neKCVRoG/wJVNIEKM6+DMoN31HjnBvh3ZIu4pT3eWtXse570B/7gf7IB/ojL+gPH3a+Juh8LUVMnFqa4boisfe7hefgRzJFomx42gUqz2uRhsSkCYDi7EgsSgYcMzc8F0bJc2TqSFMqHOkG/bEM9Mf60B/5QX/4sPO1kc5XkzjbpBnbV0yiFGhFGI3W60aEi/al2MPq6WswJD2hJlEKdHKGylPe2/ccaJ2Fj+M1OkN/LAv9sR70R57QHz7sfG2g8zWlOMP9ikSdQBlZ80hFMYFuaSPAtldPX4MpG2kKdDqWShvpPQufulgq/uTx1tAf60F/LA/9kSf0hw/X+cqcYeJM1TYT/GVw/95rXD85weXD00KgtvpcNjqRFdTVIHMt0pC9rJ6+NG0NdKf0AYviGHVYG4QMZ+o2wpNmed4Afh2QbeRzdcRa3sdOWAX9sS70x7LQH9uB/pgGdr4WoF2cRcV672l97RBrgU/Or8q/gkql2qM7Zze4fX7ORkeRWrxPDzavwUjl5Lj6X38BVxcvYcp/UofJDKgLE1lQtpekEheSqYsmW/4TpP3T443kIjYm0a0IdAnoj3WgP/KA/sgA+mNymHY4A9Go5cPTpDhj0qxt5SRaVaowfYS5+2Qtwjqvn4+Ks9rAHyOhIsy8gJmO2HiKJoF2SRlpmvrcHfOmmzE2MvkDx23QH+Rw0B95Q39UTJV2+IUpCkPSNDce3cQJAMYAd2/8bSV9RLhzduNuuROyFNGpgQcg0Uu9XzIh+ucsI5g28a8tghxeLOnUuMuHpy595IN7n9ce9++9dmVx26Nsv8oI65tHL3j8QX+Q/UN/bAT6Y1KYdjgX1u/JxzboKs7ajsMevUGVu09IJrRGLZtg3v6keGNYjHuyW5pOELWMRan7TAZhYPDBvc+9Oy/Sft05u3ERzEMff/qDHBz6Ix/oj+nhna8lGDk7lRCLXsr+o/9NyNoMrY9MG5kcEWjnYxKZNCAWpR46C59IVO6+1CKYYPQaAP1Bjgv9kQ30x7Sw8zUxunKlIzdDo5Z1dOpIeNudkMWw+j+rmYkYTc8LT6BqZikPJc3kBUyvWfjayxQV6AFT4OgPckjoj01Af0wHO1+bJN/ePDkerkEu/qjPBtaxunbJFSfjkVnc3n7/bl2kDdIcPv157FEv0/17r10KnHsr8o5ebhP+niQf6I9tQX9MA8d8bQxJHfnk/MHaRSGZEWtk1pq1TNYCkeilaxADZKYqsg56Ou0+dBVn8/TnkbqpqjCnP58e+oOkoD9IX+iP4bDzRcjGqa0MX72w7MKDMpa/jF7KYFoD0ypJL2rJfP18aZ0IotowlRpXdQB8gTYt/ksImQf6gywG/eFg2uHcJA7+0OXVil7/caKWsWlMSYH8Hm8+fhGfqtcUQpVpV+f87WKDcbt+JtNF8ic6HXQyatk+Jqma/CFSP8qn9Bikw5739Mco6I809AdZCvqjDjtfc6AOfnzAqCl77VN/7D4aIS1KEYN7KBHkeEItRaM0QwKJzkUtd//5ubcWSEh0TRBGLbNnybWnyiezHjg9OfTHKOiPdugPshb0RwHTDidGr4egGwzJYdZYW1SgMVhYXD85yfr2ah+iERKNUekRdt6VzHMl+RvF6oDx/3uR/Gcph6SQPD8HLGozqdUu9ChOojjixTH9MQ76ox36gxyB3P3BO19zEczaI4vB6Q0+Ob/qlT6STBmx2x94qiOV6snmyW42spL57JS/iawULw+33oUNN583eunNglS9UEQy1SMsP8VZ57ApU3rWqiNCf/SC/hgB/bFb6I984Z2vuVD1XGbrqUcvC4HevblsjGCKYENxRqOWG2yEotJEtfp5bHt3YVIK9CgRzNhvlfqdDIwb3OpktVD0UkfwgxcKVJ3dWn2dk1CQ4bF2aTkledV5G1/El/SH/ugM/dEd+mPf0B/bgZ2vGXANx8cvcPvs3N0uv358gvv3XicFmqJxgHQZtXQN5NaDGw0yEDwpPDs/nEAHITNJLUg4Da2FdTKlMH1Emjolyvv/EncxYuDJNI96X7RlUy0AfFTojxHQH/NAf2QN/bE92Pmak0j0Mi3QfjNQ7TJqGYgzdZtcfjuZzeb2+fliEbms6HChAQS/k3trfQzJ3AxdE2TvhOcAED8P5HjpyL3IdHGJzn2RrjoFh4X+aIX+GAH9sQvoj/j+c/cHO18zEYteNgu0O1qcW45atokzOiOOhZsBzP1+Kiq3hhSWonUweVeOeKGRIV60UkkzzM+XxSj1zHd68Pnts3NPonPX/7aFT7tOBHG0ac/7QH+0Q3/0g/7YF/THtv3BztfclA17SqBA92iDnFApce6lMWycitRUjcmDi1eMXpJNErtwFGlK/VYbAwgGEJdpI1cXL70UqlnTp2xVdv09xoxDqn9E1THYY9vWG/qjN/QH2Tv0R+ojtuMPdr5mxBs0GhNoWUn0ugS16YRVRXVpInsTp4paNq8BEb5Nnbgr5KSvwlG+545JidNJ06YWn6zeL7PfXT48dRHNO2c3swl07DgkEWlq8ofgC2afMrIE9EdH6I/uHOV77hj6Yx/+MLbPXLWZ8NW33rHf+to31i5GZ9xA0TLaIBUvFokIF4i7fnIiOwHgV6otizOVMtJHnnKSyfvk99jzwOnwd7tzdtPpu3ozVm20zuyBNnE2STO2Lz0FuUhU8vmnPg/0gHfXhnUqdzWLVZM0m9Lhjlxf6Y869Mcw6I9tQ3+s748PP/v2p9bad8fuh52vhdAVD6gqn4EpTp6WNQlq0ix2utlGcDZ5ls9v9XdpIzZVcJtAvd+mfM9ef5/cccdvpDjDfYpEFxFoWf47Zzeu3RozBkn2y45XGvrDh/4YBv2xbeiP9H6X8sdUnS+mHS6EzNQjEg1Xba8NAi4RYYZyANgAHhadOqLSkYo/jdosuNgiqzJMnLHgmAn+Mrh/7zWuH5+4NBIZxzLLGBZVpDFjkKrd2eoODSIXe4T+INNBf2wS+iO1u236g52vhQkXD5R1RgB4MhVqK7mD0jwy4TiQ8snaxRiQkCajlqvQX5zFyR6ueVLM8HRV/lVJKiZQaS+mnMFN17+mMUhdU5kAeFOee7n6rKs16A8yBvpjm9AfsW+4bX8w7XBlwnSSJnKuSH0JxzF4aSMPT7sNCk7k7O/pd0rh/X7d33SI3yZHaukWLeJsW2iykmj9Tsf145MqfWSmcyKav69S38KxRzH0eKSjnsdjoT9AfwyA/tgW9EedtfzBMV876XwdmbBB0YsAtubtHzBfP8S78GqSKCPeqyPHykUtH54OFqfbMiLQMH9fcvfnOPYxgQJKoh3qJLCfSSDIstAf46A/tgP9UXuzY2l/TNX5+sIUhSFkFKYa4OmwiKcrl6+JOI+MjAP58vtfr36vyOPt9+9SnCuiB7k3Xxh2FydQTL+rp+MFqvQR+W+R2hzT7koKCVBIT87hq4uXVdpK4vHg4hUeXLzC1cVLd/HLjhcZBP0xCPpjG9Af9cce/MExX2Rd1OBfyS02MC6aEZvFS4vzqFFLjUiUbJl+4gzfGwsTOmHOuHhsbQySGjsiqSuynRZ4bOY94JjnLxkB/TEa+mMP0B/Ats5fdr5IJ1KRjzEDMVOLiMprItGmMm1hVhtCoAZKo3F2qn5I9LK2/onxF9Cck3AmPqA+0YPMnlVjg9Ik/aE/CBkB/bE7f7DzRZJoYXprg1QbuNvGQl+Z1gQazLoU2190CtyDRi3JHhgTtcyHmESF22fn0TQwaT9iF+d7Xej2KNAfhCwB/bFFf7DzRWpIRQ4XY4zhzZhkhy3KV5v+NjH1rVCLgFCchGRDWxpT60V5sZF3YZ67SEkF/UEIGcpR/MHOF/HQgzu1MGUq39j2erDzm0cvXKXvU+HD3F9PounCAqA4CdkCtYvypkkRgu2GXJST5aE/CCFzsDd/sPNFHHrqXsBfO6VpthuZ5ldEKvvoW+GTt531LlQxKE2yF6wt8u/3iCdNJUzdvmh0WyIMvSgny0F/ELIO9EfFVvzBzhcB4IszrNRuatOYP8tFLmVg5p2zm6LSm6rCD0kjETGGIqUwyVYJZ2uqzguDT86vdpG3HxLeCYldkHtTJwdtyRQX5WR+6A9C5oX+2Jc/uMgySYpTVlEXwhl29IJ8oURFoDlVdkLWIFwMVs4r/3yyuHtz2Tt6WSyU6c9UJeelTLe91vonMXF2uiAHau0J4K/lxDYlH+gPQuaD/kBW/phqkWXe+To4oTi9yt0ypamBwQf3PvckKtOThhFMRhxJX3Skb/MXXzbx344Zo5cZidNdkJe/Qax9CdsToJCo7OP22fnguyJkWugPkiv0x3SfTX9MD+98HZiYOHVEoe9aErrSexFMMHpJ2glzt8MBs5qt1SVJf5LZ1y4fnuL+vdfB9yiil0C3/P1k1PLJiYv6rRG1bBNnn3YlbFNcGslK0VhSQX+QnKA/6I/Yvqb2x1R3vr4wdgdkhwwQJ1A0aPfvvQZQRRyksXjz6EWtcSTTY1v+5YiU7c3HL4rHo+KhI1zynLye+3eKYvzUh+vHJ0H5DT45f4BPzq9gbSHHGPJabWFMtwEaF5ddjJHiBOptivu93P9t6PgfBfpjs9AfGUN/7MofvPN1UJJRy4HiDPct0ZO184aPgG5AkuteFBtmtfaFlFvPkAZ0n5Z6S2NC9MB/Hb0EEIlgVu+SSKYmJc2sopYTtyu8K5IX9Md+oD/ybz/oj3z8MdWdL3a+Dkq3QZz1d9WpV9poRac8Z8G7RV880Y6STvHn8uKJpRbI810JB9AC836XLmVr+vyoQMvzLi3Q7mXL4YJVvmN3cTaNmK7vW9oVXpSvC/2xD+iPAvqD/ugKJ9wgg4lFF7q8KxzMWdy6vkJY0eVW7/WTEzeAukebSDrQFvULj6k0zDr6t9bUq7r+SZmlvOEMaTXULEYioDmnke0cFS42bpS4Wwj24xe4fXZelL/c/fXjk0EClfJlI86gPraJMzZAvLVdqaXbkCWhP7YP/UF/6PLRH8vDzhcpGFDJjQHu3lxGK7rsEygqvcxeZWEXbaj3SFPUz5NQ9QZvylU964/MJraUQGMXbjrC1VQPdeRKz2I0x8xo3sVJ8USnC0AtcSARyVT7keNy+fDUCTT5vkj5rp+cuH3mdDfIO6aJLVIzc7W2K0DtopztysrQH5uB/qA/6I/1/cG0wwMSzat9eJpotNKV3G1h43nE0tjldFJvnZg4a8JsuhNvI2tfLJT73pTPDYybxQiYbgxQ+BsD3dNavDEFiEvUpY+Uv3uYww/ASTSFliaQhzi7p4y0tylAOoLJdmVd6I/tQn9U+6I/QH8M+M5MOyST0B5hILmQEmcozda1L8rjHYv6zSXQqQfS6hSCcG2gMd8j9RtHI8L+G10Z3HS2iXQWlz5SClRSSMIoZrlx7XP0/4tAshBnr5SRdqoIZnqAOFkX+mM70B8V9Efxf/THenCqeUK2RkKcH9z7PNlYyYKm9++9dg2cN52zhRPo9MUdKk4bPHzapqYeU86wrJcfnRafERZJFe3y4ak3nW34u+rGXgQqT90+P3dRz6uLl3hw8apKi1CPBxev3GtXFy+dNLdzV6Bb1LIV40d6CSEdoT8A0B/0x7r+4J0vQjZAUkDFi50jRCJRiWSGUT/5rLnSR9rFWQlGN7JVCkHxLeD+Kx3B7PM9wt83LCvQ/hvr3xRoH09gYPD2+3fh0khQzeomFwE6xUc+w21XPQkgH3HybggheUF/0B/yGW676kkA9MfSsPNFWiu5td1WTCfzMJU4NeGMYg8uXhUN/fPzyQYdp8retHXTINr3nl5G87ijs6Oh++DpNnHOfWESlajk/seXb/HO2Vyk6bFzcRIF/ZE19Af9ERSY/sgAph0eHAPjGpt4w2bciukxGgdLy6DOjWAb/mXJyJxo2Ufxfzb+94RMMYhW8rijrXP5lMyOJp85bTnbaUtnSZVJJCoPl1YSPPQ2OYpTtykxNjjHE0lAf1TQH5G/J4T+oD+A/fiDna+jEjaSBtUgzRqVQMNHajCj/1H5zlSlBfnm4xfxR9ng5SDSfg17Ot8dUI18mf/spDN17r6KCI4Rpyt3RKBaWLpOt32PYeMJmscShOXxBNrjtw1lmqssHdHrmfBJo9J/xn3Wg4tX4/dDhkF/AKA/6A/6YzIO5g+mHR6QpsX60nnOppMoPWw1m05uSJm6rsOht2tcg2Ni+qVdVO8Cqpz31JSrweaTHydd9qlJzmRk4KWOdKKzOP3fFUByLEHxV3qx2DnHRayBnoErvCCPzp7WIRWt68U5WRb6g/6IbE5/0B+DOaI/eOfryKhG7eripavsYxvR3FNGdJRSpPmVs6fe487ZjfffWq46mrnSF2hd0FQ38E2pFmH0ci68cQaR8k74QfH/TpTJXRSp9zStVxSWVcYSJFNZVDlmiwznhFHjDZK/f3MqGpAWp25bcr4jcgjoD/qD/qi9n/4YwYH8MUnnyxjzk8aYv22M+auJ1/8Hxpi/Yoz5j40xf94Y8+vUa/9p+fxfNsZ8Z4rykHbcVKVhZR8pUFe5bR4L98XKF5NmmKMvU77K7yAybZr+dYmyJ9cJaaES6H7RqRo6b78Lzb9tu+BTFyjRdJY9oy4Uuo4F6p2OlkHKyNGhP0B/7Az6IwMO5I+p0g7/NwD+JIA/lXj9/w7gv2mt/bvGmH8RwE8A+CH1+m+y1v5nE5WF9CGIXl4+PHUCvX/vda9b26E4cyNMwZDnAHizPwkukleuJC+NgZ59aM6FJfszcRTwCOh0nGjUsvtvWqWyRFJ0dDrLTh0aTR1BU1vSLxVNty8kE+gPAPTHYaE/JuNo/pjkzpe19j8C8AsNr/95a+3fLf/8iwB+YIrPJeOIRS/dya0imG0RF9kmrNg5RS1jue8SrdKLH8pCk/IIF5UUobooJpaPYJLxRFNGJiAZIQ5TR3aO155gfDpa7ndEjgj9QX8cFfpjXo7gjzXGfP1eAH9a/W0B/F+MMZ8aY765QnlIKcuaQAFcPznxJBr7d/3kxKvYuVRuISZOWXU+FGaIrL3hRAq4lJIwB3sRgbblodPhvRmTjtMFnTqyd5IX5Bgu0BzFSRT0B/1xYOiP6TiSPxbtfBljfhOKztcfUk9/3Vr7zwP4FwH8fmPMe4n3ftMY8x1jzHd+8Xv/YIHSHgNX2SMC9ST6+MRJ0j0eFw+J+knFzqVyA2lxli/2WocjnP7VNQQqh39Oxqypk8XMP4l2cw7huzpI1iF2QQ7ULsTTb/cvzqV9IXlBf9Afi0F/HIcD+GOxzpcx5tcCeAjgt1tr/448b639+fL//zaA/yOAaAjBWvsT1tp3rbXvvvWlX7JEkQ+DJ1AAt8/PvUr/4OJVJVL1kCilvC4NVi7ibKSnOIXk+hvOo7OYICxE7zV1UuKcvXFS6RLx6XsnWrcD6ruQVWm6IAfUhXjDHRF9gZ7rhTkpoD+6Q3/0hP44HEfxxyLrfBlj/isA/g8A3rfW/k31/H8OwBestf+/8r9/C4AfX6JMxEcW5LOwLgInlVRyjMPGT4vCRYnKp9au2EBD1LKTOMszP4Jbf+Nxsf7Gg4tXxSDq5+d48+jFpN89OghViXqyNXVmIDWANlbuLut2hNtHv6MduDYQ020mRR97Eeidsxt3bOTC8/rxSf00kwt0VBd0XiQ6A3ESH/qj/m76Yxz0x3E5gj+mmmr+MYC/AOC/Zoz5rjHm9xpjfp8x5veVm/wRAP9FAP92MKX8fxnAC2PMZwBeAnhqrf0/T1EmMgyRaC2S2fR4du4qfK6rqHcTZxWWraZ9VWeyIjoF7JwNcNkAuQhgY/SyG4vlQuvpqBErd/u6HV65I+KMRi3bvkdrVJWMoXZH5Nm5O1e63BGRuyG6XuYiThKH/qA/6A8yBXv3xyR3vqy191pevwBwEXn+5wD8uinKQKYlFslMkUtl1sSilm3vCKeElb+rVegjobVyClgXvSwbiMmnDg7TUlqjlxmhfnqZjrpe7kKgMtNTLIopcm2LynqNbYK5oqqNYrfdyrYnwnbk9tm5m3q77Y6IN+YiI2mSdugP+mMy6A/6Y4f+WCTtkGwXqfy7IBm1bF6Lo1p/I56m4G+M+VJHPn7hbr+LhGQNDNmuC9I4LRG1jJUdSK3dIekuNjrdbtdxB71SRlRKg5TLryOV1NsEypnC0kTT0kSkKdTvuZs26GDQH/TH1GUH6I+jsUd/sPNFdo9OGRm7J32269z9WQZKJz6+JtBSHG0S9aRZ7s8T59xlLwnFP2bxxKlSXyR1ZExUNVbmUWLfIfpivO2uSI7CJMeD/pC30x8p6I9l2JM/1ljni5CM6LYCfXLxQ8CljsxJ4wxAZXvcdQYgqNxorzGf6da8Kzuap47tyyTiDNNxkFpPpBB6bCawrtMw5zTTUg6ISFMPQvKH/nDQH16Zwm9Bf0zL1v3BO1+EbITOMwClpsstfbDGDEC67EMjr9XXaEh7maJMH80XVSWEkDWgP6So9AdZH975ImRDxCKY0iinZv/RkcraehfAYpG0ZASzY+TVi8A+TohzQLrIl9//uj+jVvnbjkkHmiqdhRBCpoL+oD9IHvDOFzk8XWYjakwNWDgy5UUw0b6eTlVMW21fPAFg2cY8FS0E4K/dUWxcYf3/ji2aCIz4LpExBVKWPgPSlxyMTghZH/qD/qA/SF/Y+SLHIOm17rMR5URyUdMurCBNjSdQJX6RqIGBToMBqlQXAJNHXmNC16k4YVqLfl94wRQbEzH7YHRCyLzQHxX0R7o89AfpiLEbnN/yq2+9Y7/1tW+sXQySMVoqsk7L5cPTRB528Y6UQPvMRLRWhEp/3zZyiZ55ZTbuSReBTTFX5FWXR5fBGwyvynn/3mt/fMSKYyIIIdNBf6TJpR2jP8gafPjZtz+11r47dj/sfJHdIo2hNITSCMbXaineMXR9kKuLl0wNGEhU/PHrG485fmdXlmAhx1g0NURLE8A06SyEkFWgP7YB/UGWhJ0vdr5ICxYWbz5+Adiu0ct++84lark3UlHYpX7XWkQ1Ek2V+hMbp8FoJSHbh/7YJvQHmZOpOl8c89WD1IDYsQ0xmREr/1cdu/Q0sEM/Yllxdh2YvdV6qRdSXPPzvfEQz86jqS21fHyZHQwUJ/GhPzYI/bE56A+yBXjnqwXdUL35OJITbeGmPwW222DtlVgettz6HyLQNWcjks+u1UOposHsTlIvWSfH03VMBIVJNPTHtqE/WCengP7YD0w7nLnzFW2omn6q8vYyG6z80OkjMYEC3aeBdQNkFxSnVxcjdVBSYtw6IwLrJCGrQH/sB/qDdZIQgZ2vGTtfrrEt/nB85expcnvXcGXeYDWlHKxR1rA8c5QhNQhWD34Np4GN4aaBxfjFGbuWG/ClKXWwS+pIrE7OfYzbypXb+UDI1NAfy0F/NJcboD8ImRJ2vmbqfOkoF9C9sZLZbNZosLriXRTUX1xc+LXyzPh7xQRam4Go6WMXngY2vIAL6+HlR6d64wKVU64XytQRzTl+39bUqmpDpliRXUN/0B+JHQCgP1JlFegPkjvsfM3Q+QpnN5LngERjBbjGOFzgzw2wzECgyVzv+MaLRbhSYyDmTL/YwjSwMXF69TA4ZT+49zksLK4fnyAkJtGpjm+tXnVtSjKP7hMyBPoD9EcC+iNeToD+INuCna+JO18pcTppqp9J1vmINVi1xqpsKNYaSNkWrQRQj9jNLNAuEdRZP7vjNLCyvWbuaWBT4tTSTK8z4+/n+vFJ7eJuCoGmxhBoycfYQnSfkCHQH/7z9Ee1vYb+oD/ItmHna8LOV6M4OzZYczZWQ4lKKtLYeY2Z2m7WFI6W9IK5LzZqElWfrWXqTQWrfrtZo6vh2jJlPewizXBf+uJuijrZFFUFGtJZglQWXY6hZSEkB+gP+kN/Nv3RoXzFH/QH2RzsfE3U+WoTZ58GKzeBxnLiWwd9ByKZfRX4+AbrLIjYwiJCn0ic4X5Foq5ODphhqzGqWj6nWSudhZCloD+qbemPZugP+oNsH3a+Zup8jW2wQoGutXp9H3Hq94SLAS4ygNl/4ZBrXQyrh6lzt368LKybbevq4mVvYU2ezlKy9gUmIWOgP/z30B/rQH/QH2QZpup8fWGKwmyVOSJFBqaYdtZWn1H+h/93hhgYP3/doHNUb8hnffn9rxe/i3ocUZwh7fWw+LHee3pZe9y9uURSqurpO2c3nY9vmzg/uPd55/PFwOCDe5+7qZllkLrUuzePXmR9jhAi0B8+9Ece0B/5niOECIfufEXpLM7mgaH3770GTNE4OCnNKKNGOkQt18DA4O3373qPIxJLXWraWkQZwxhEBerqJNT6NH0v6Oa4yEQg0LXOEUKmgP5YDPqjgP6gP8j2YOcrlnvc9gZY1UA1NDwbiFaSvGgWk01KU9NFoEA3WfWP7tuGR1DOKYROyJrQHyQj6I/qcwnJmcN2vlpnTEq8S6JGxqDxNn0YvSRkSVICLV7sWSc7iTOdyuKfJx2EDkYvSd7QH2TP0B+EzMthO19RWganxqJGVSPVbf9rwUhQ5uiUkRFRS02vuhktUnWB2SWi2lS+totNIEixAuss2Rj0B1kL+oP+IJuCnS+ohqFhi74NV0htMPKSGH9NDHJwbOK/E9s2jyPod27EIqo6eumEydx9shHoD3Io6A9CRsPOl7DHIIkN/2z+km5KY/X+ow5iXoph6UvD0aJquqBLLbA6Zr0YV4aGiGqYu0/IJthjfaU/sof+8KE/yFZg5wtFIxKunh6yteXQvKl4iydw++wcVv0T5G9PnGQ5Mq9b6cj+2Ih+PHq5apSfkJ7QH/THqmRet+gPQuqw8xUQj+4ZfHJ+NUqga8jJCbR6ArfPz4uHEqk8FxSYUcsFqB2jBVnzgmnseAJCcoT+cAWmPxaA/iBkmxy78xXK0MBbPT18UQQaPj45fzB3SccRm6lViTS2PcW5LnMNFrawuH6SquONb5wkZaT/x2Ye1iXHhf6gPzKF/pCPpT9Innxp7QKshUSMvBXR1RoRBib6rq6idI2UBR5cvFqtEZCFKC1sMQA19rWEsogU5zrowcLXj09qsrK2iPh13t/YCzuLhvSN8ZMItFIOmmZ9JLlBf0SgP1aF/gigP0jGHPvOF+By2V3efmP0crt4OfyJx9vv32VDtRZ6RrHoddb41CVHeUHXq0yx3cx9PcgIOskd+oP+yAH6I/IB9AfJl8Pe+XKoaGX4dzx62WWX9ajl7fPz1RsDiWKSDFEiurp4icuHp5E6WAj07s1lawQzFrXU9VJ/btc64ZenKMvs0UtCcob+IDlAfxCyKQ5958tF81SERmatun58MijVY3BONDkssXoIpOpgeuxIp3Ek4QVd90JOGtHfxFgXQhqgP0gO0B+EbA/e+QKKSE7ZcH3l7KmLHF0/PvGmL23fjRJnZlFLsgEi0Uupg/UIZj/xRKOWPcqTel/fcQTpj6rKp88ZQrKH/iA5QH/QH2QzHPrOF1Bfz0RujbsI5pMTF0Fq++caJ4pzV3Q59mMHxIfRy3AMyZj9D0ljCqcwlvPBL8ewcQSMWpK9QH+QNugP+oOQEN75gj9z1e2zczdDj0SPALSngihpFn9y0cmtI6J48/GL8IUC4z8nshk61kPvOxxDEo9gtu2qePOo8SOlzOWcqM+i1X0cAdAyyHqCmd1i7x11PAhpgf4gMegP0B+EJDB29ilnpuerb71jv/W1b0y+Xws1na4tpkk1MLCwTqIptDQBeLe9GbXcFjVpBqfIV86eFhIKZ3Iq680Yibo6iHj9kzSmpv170izLX8vT7yDPsCwAcPnwNCFx6xa9TEk0FbHUkdWri5e9o/1amLELHR2BpUjJXNAfBKA/UmUB6A+yfT787NufWmvfHbsfdr4CYgIV2horAL0aJ5IfFrYmza+cPXWvNeFkqiQ6hUAFdwFX7l+LVKOlCQwTp1eWj1+4c0FLPP7dKomGtImzb2Q1GlmOHSJTvTZJdJmQBPTHsaE/ImWhP8iOYOdrps4X4Dde+sRLLRjopYcwWrlZtCiAKkIpXH6UiF7bKqcd8GecGtpYN13EtUXRBZ2CMTSSnopeAk0C7b7vMeKMRZblQkdv50WYR17YENIG/XFM6I+GcoD+IPuAna8ZO1+CJ1Ghfrfcg9LcJlqcOlLphNnxNKlJtGysh9SL2kWckmhTwz91JL1NoG3lSe1zKnFqYTbl7DuRUqBkAeiP40B/dCsH/UG2DjtfC3S+QmIypSy3TyhOaYAvPzp10vQHCcf3cf34xDXMIlGJmo1pqJskGmOOSHpSoEEKS9t3bBzEXZa3qayx6LLeby26rI6FjH8II8sUKFkC+mOf0B/9ykB/kC3DztcKnS+yP2Li1NHKNmmG+9ILSU4pUFfWpkh65FSe8uKuKYLZNo5A0GvFjBFnozT176DSvmoSLSOlFCghZAj0x7DPpz/IVmHni50vMpIw/eDO2c1gcYb7FYk6gc6wXk8o0yWi6K2DuYUGqQ8ZSxBLFfEudNTnyHHzLmYiEmUKCSFkKPTHuM+kP8gWYeeLnS8ykmTUslWccs405817099OFL3MgVDa4YxuempjoJpGW94L9BtL0CrOltSemkQTAmUKGCGkK/THMOgPsmXY+WLni4xgmDiLc+W9p5flmiNX6jUTbDlv9FIPDF5Lxn3HEgC+NIFuv8VUqT3huIpBi4YSQg4P/TEe+oNskak6X1+aojCE7IIWcb73tFp/xBi4vyuRVhIzMLh/7zWun5zg8uFpIVAre7KDZnfS6EieXgRSf/7cGBi8/f5dT6LeWjUa6///JKLqmdqjj0nxdndA3N9bjyoTQlaC/ugF/UGODDtf5PDoqGVqCy3OEGOAuzeXNYGWby22gcGdsxvcPj/Hm0cvei1SCaC+JokqqzeIWuWgy+fOjUhUmHJWt8ao5VAsAFOMM3hw8WrQcSGEEID+GAv9QY4IO1/kuNj6QpixjZrEKVQCfVA9J5GyxyctnxH7VCVNCyfL2JoktXVIUAl1SYkKoUxnYeCA9jB6SQghg6A/ZoH+IEeAna8DkGq4j3qLPFzro3wy0hh3E2crZZRML6DZqXxlufS0uPpYSrRV7/fO2Y23Hol8zz0M1CaELA/94UN/EELGws7XDknmd/sbebnebFjzILYIZGzRznLj4vlgml6R6Z2zGy+SSYESQtqgP7YL/UHINmDna0d0ye/WvHn0YpUc75wIp7Vdk1h+ujeeoCVVQmZjku9zdfHSzR51++ycAiWEJKE/+kN/EEKGwM7XTghTDYD6Ku4anVoArJvjvSYGBlcXL1cXaNPUxV3z0w0MPrj3eVKiexMoZ5ciZBroj2HQH9uF/iBrws7XxqkNrIUf9QJQn93H+qkFzPFOY20xGHrWz2gQ59BBwaFEnUA3PCuTN7WvAa4fn/T+fdzipYQQ+mNm6I98oD9ITnxh7QKQ4UijqxveO2c3rvG9fFg8JPrlHoB77fLhqWuU7pzduNffPHoRjXjuhshXq39fEyyEOUcxhi7WGXv4yMxMgMrrV2uSbIZSlrfPzl2kuXpp4PewxSKZhBwV+mME9Me0X2RO6A+SIbzztVFiMxr1TTU4ao63gcGX3/+6f4HQEAnrEr0sFsp8kHixaKjbGvp2cRbvj82gVS3UCUQX63xcROt0+sgWopfuWIWD/lX08v69153qaCxqaWFx+/wcsOm1ZJqO297ODXIM6I/h0B/0h36O/iBD4J2vDdImzg/ufd4rx1tHt0SkItFdRzDLaBiAhoheEb20thBUiDwfE2c0RUE10mHUUl5PifO9p5fJqYuNKaR69+ay+jIB4bHd1HFVx8dFL5VAu1yYuGPRIWpp1T+5O1B7lOdGOIUzITlDf0wE/RHdLkvoD5IZ7HxtmYlzvMMUgztnN4BBbbX53aDau6uLl64hrmPwyfkDT6JamsmIZfkZErW8fX7esJmtj61Qr3ZdL0YW69RfLpo+gu0cV4leysVOk0BT/2LijEUtY8JEQ5ZOKFJCNgP9MQ76o9M+14b+IDnCtMON0T/Hu+mENsFfVYqBW9QxiBjtBZ2OcPvs3BuvkP6uplmUCtdgt7Wn6jjGj2H/hTpFoEUaiSlLXh1bA+Ot4bIZVO6+DPR3M40ZtA+EjonTe9n66SnlsXNR5druqtne5CLzaLO9kW1Bf0wD/UF/0B9kDLzztSH6ibMIr0iqQfioolt+666jXMABo5folobQvMtKnF7UMpYy0rKnvuIUqghmvHyx/84ZF71UAq1FMFseUXGWxyRMxZJzTM/8Fv4DqkkKvEgmo5gkQ+iPGaA/Bu1/aegPkhvGxhKRM+erb71jv/W1b6xdjMXR8rxzdtMozq6NbjXQtoq0WFiXPnF18dJFZ/Y4eNrCugsDyWWX1Aq5iOj6naXBbBOn+9zWYzlcngBqYwm01K8uXrYOFM4Rd7zKxV3lmHUdMA2gVZzh+kbJdB5bXXB56x6phWf3dr6Q7UJ/TA/9QX/QH8fiw8++/am19t2x++Gdr61h2wbX9mtw23K8gX1HL8N8cMCPYIa54DF0XnhUnDkxMtbSlBe/BLUI5vNzF8Vs+3f7/LyTOGX7y49Ovdnfag/ATcktUVQXxdzp+TIFXY4VI78zQX9MCv3R9+30B/0xjr34g2O+NoI7yS3ciV2vX8MiXVWOdz0fPczd3wJtJ140mlS+RfLBRX6XD0+LKG4ZjdIXFYIejAtExNklOjhx1NLbcSRvv98eqt8zmepSRuqEOSN2eqrn8onuFynlV6kdjzAVS22bmoTAwrq6IedJOB5CpEqqehQbF+Ew1fNL1acjQH90h/4Idkx/VNAfq7E3f7DzRRTxhnYLA2w7NfDFhrWT0sBUUaxHagA14EkUSMxmFUiztzhnoumiqAudGjuFjgDOnTIRHrOupFJ3aoOio3cF6mXQFyM1gT7fzno4c1KrR6oO6d/dwnptjE4P4kD0LUB/0B8V9Af9MQV79Qc7X1vCNs1sNC7S1dTQajHlFomJnpgtUdbUSakjYpLPLhKVRrGpDKE0gX7iDH/bLotzNu7PNizc2aEsbY1duP0aMzeJRPvifT/1XN8pt2WabUkbcpH+YoduvzmdM0sSq0euDUP9LoOcb4LUKbnI4TiIEdAfNeiPhv3RH0noj2XYsz/Y+SLNqFvi0ijmEolJnZjyWgxvYCvqJ2WYkqBlGJ7YgpeyMECaZcFw/fhENdrF4pzTpI5I0bpNXxzLY9evpZBGMecGr0aYLtJDnLF9yfny4OLV4aOXOjIM1MdDlBvVKS9sry5eunPO1anyoizb+kR86A+3f/qD/mjbF/1RsXd/HL7zdeSowpZpOjGBxAxDthoM3XRSplIS3ExEwT51AzC4kcxkTERKnI2/a7mt/LaeRE1eDd5cuBSStrViDkKYkuNJU50z4YWKGweBata4q4uXXp3KqT7RH9uE/pgH+mMY9IfPEfxxqM5XLOqib29r1j4wJE0s17oWDUnISBZUjEVGwpMyTEmI5YePikiVZfQWeww3GZk6EvtMGVsAm8hhL7fTt/cbI00l0jDWBg5nFvEOmSRqWe3M7fOoxMSppdn0G0sajuzHW7AXcHVqDYHSH/uA/hgB/VGD/piWvfoj5BCdr6YBe0AwpWeQy108RZHmQuzEBODN3tV0cnqREdXYdzkph+aHx9DpKekxEUXqyN2by94CbVqjxY0tUOdBSpx7nLkpVYfGoqOX4SxvuXz3uWkSZ98LEz0gXUcxl07HoT/2A/3RDfojDf0xH3v0R4pdr/Mltypl1XDpOcvK4+HDW2n80YssVxtvKsss62XbamV32HUXVEydmJcPq5OzywxDH9z7vJjyt/y95MSUKOaix1ytDwPArQujN/jk/KrXsR0zUDolzrbf1q3to35TEcae1/lp4mjffZw44xXcO19Rnav6omQu6I9JPpD+mBP6Y7cc7bvvzR9t7LbzFUpTC9Im/gFFAyoPLVK9zWoEDW2skd0rbSfmkKhI7KTUAl0EdQj14pw+lUCbJCqvh+LUUcvYhZAXtYyUr+/MTffvvXYRTFdHM2jsyHK0i9N6j2qh3njOl7s4K5n7Qpf+2Bf0B/1BtsPW/dGFXaYdpnK6AT+9oIlaPneGM+/4sxsVDM3x7ptmsCbdIyKxApvgL//WtJtlqFz1fqnFHmVtGMndr3+2KY+PNDR1GqOVNli8M/bTTHCrX+9LBMqZm/ZPNBWnQZyxWdjkuaItko5A/fyTlJy56hT90X9f9Af9QX+QoezJH13ZXeerNae7pUGQ3ONajmgOU1UGUa56Izssx3tUmsEC9M+xLl4PT9DqpEwLVO97iZPSCfRjf3HO68cnuH/vdaSemV7HKnURNOf32sTMTWEkVf099Nx2v7X6e4nfOzf0xVfs1bbpr40pzt3wfG0aEzFl2ekP+gOgPwD6Iwn9MRtb9kcfdpV2OHlON/x0gjXzb6WRjeV4h1v2yfFu3C6RZrAmXW5Hv/f0MnqCykKgqVvTQHG8Xa41FkxzSKSPDE1XkvfV0kUi2001wDWyc/cZ43ZTT+8aQ3guyWxhMLHzaVCBk7/3HondKYrXn34L+Vbna203xesTn6f0R7El/UF/0B9p6I9p2Ys/+rKbztccOd1aoNkM1Is0svWytOd46/zuZI43VPRlJbqfmMULXaMi4Umpj7etzs5FLpRcY47qwkgLtI9EtTSvH1fiXDqK5n5PM3yQq3yXNx+/qB5q/Mzk5+Da5/YOcO1u5JXhC75Wx2Ou85T+0NAfKegP+qPhA3uVj9TZqj+GsIvO17Doi008KsIoJrDuQL2m6GVcoA88iepHTJqAEmfOUcvEq/1PznT0suHlWUgJNCXR1L9QmlcXLxcXZ+r7dY38h9IMdlQT6WCCVBEdvey73/C8Wfuicy8ko5f6omwk9Af9QX/QH72hP7JnCX8MZZdjvtpnSanncwPYzEA9fV5L7v4UOd7JBiD7QE5/ccpJqX8bnbsfrjGyBN4A6vJ3l0HUANxxbkQdO68Bz+QCqA13IdwFM3wMTWqsBCycQOPnU7zMyfEJG/ndR2O7DJTOH/qD/ugC/ZEn9MdG2Yk/+rD5zlcsatkkzqZGtnWg3uP1F79rmuFITnjZrisSpUmJc/WT/0Anpj6+AKISTR1bOY6hNIH1j2GX+tQoTrmAq18bjruILWV5++wcXzl76s4lLdDqo4x6W3VF6cTJqGWCMSkj80J/0B97gv6gP/ZHvv4Ywy7SDoWp0gr8gbXlc4isE7D24Gm053g33f7OJb+b+BgYvP3+3eIYl4fv9vl58SinMI79c9tItLk8fq3HMJGrPiYlI5p+NGxH7uLJrZ0UKdaQsrrzKPj++uL4+smJOz9q6TnlQ8pUEyfPH8csC/hODP1Bf+wB+iMoG/2xebbgj75s+s5X96jlNGkFQg7TVKYimFK+68cnRZTHwpO+JnbiU5z5IBK1sN5FWjKVRdXHrscumj6hUieWihJHo5ZWDZIvyyrn+e2z8yqKOSJ6mUrVkfNB54V7qSHqt5aLA4ozRTGBQ27RS/qD/tgz9Af9sQ/y9MdYNt350uhc/fCVcQetbEmwfk53SJccb6Bh+tON53cfBZHoUp91dfHS3QFYOi3KEYhT4869iVIzvFSdMoVEcvi1GLVIdTRWIp5HP3909Hi1ejMQ+oP+2Cv0hw/9kSdb9scQdtP5moOm6GUuFWVojnfO+d0xcvm9d0uYOqKil10HDle7Sg+8n7NujakXNYGq80iQ80k+S9jC+TM7+qIjEfW2Fr0W79069Ec+5PJ77xb6g/4YwwH9sf0xX7Zp/Y6ZBurpaSpXytv3ixPJ8X7WnOM9OL97DfTUyImFDKfICXaN/sGITUHt0qJ6Tp272m84wXno5fCHYyUaHtmfP0sTrSpGzQTYY1cW8dn27ERTmdMf9AfojzHQH7IL+mMStuSPEfDO147Q6QU6zzua2jIgvzsLGk7MuzeXnSMjyZPSfcxWpkmekFKWs8zcNHcDN9H+U+dQE5s6f+ZCnSdSb2KR5D7Ry9g5qqPihzxHZ4T+oD9GQX/QH0M5oD/Y+dopS+Z5z06nE7O7QBvFqRr9IxGmH8nv6wQKX4xapLGBxFNMmbt2etCuzqEZSa15U08dqc5RoFmiPEfXZVd1n/6YHfqjzq7OoRk5qj+2n3ZIdk0spQFIpTIUJ6e18TQSeT41BqOW7nCwga/hFNTy+z64eFWlkZS/a2yqXGnUBk+Zq4+Z8cvgb8Z1ULIkuMgtnoqdow+88zT24DlKpoD+WA76g4ziYP7YxZ2vpsG0exukd1gi0cv4VLamPPGsi5AITWki8hlhqsPRSM2ABsw7c5OOfqknvUiYQHHmR1P0Mj7g3rSfj4qmQfhjoT8OAP2xCPQHGcKW/TEUYze4etlX33rHfutr34Bb26E8wWWq4CkHTYe9aAuL68cn1QF8dn6o6NZa6GMta3VcPjztPZNSat9yYl5dvOQ6NVD56sY9UZNYjDEzN9U+s/sbD32sckGPcZC6IhdZkmY05Fyda/Yz+uM40B/LQn+QvmzFHx9+9u1PrbXv9n5jwC7ufDkS/cih0cu2QbVkYaz8nxqgqwby9j0xZT/hibkGXT93qRz2MIcfpmPEcIA0o5/Z9WtSnNmQWrjXLdoL9LrYTZ2fs0Wu6Y99Q3/QH5HPoz/yYPP+6Mn273xFesr1A2R7zWTk3hWLWjLCtRpNkRGge3QkPCmBhWdWCsoBwE+XqKc5u+clp37JgcRdZ20CpvndvM9Lfc0RkibzEp6nBsbdaQD8wfZAVZfDC8jkzGflc2OPPf1xLOgP+kNtNNnnkWnJ3R9T3fnadOcLiKSOlAeonsvdT6DJaSp1ygjluTgxgQJwU9rC1k/OkPCklP0uLU4nzOAUdOsOSbkiUz2vIdGlaZI2z7m8aTxPheB8jc16BszT8fLKSX8cBvqjgP7gOZczOfsjq86XMeYnAZwD+NvW2n8u8roB8CcA/AiAXwTwu621f6l87V8C8K+Vm/4xa+2/1/Z5tc5Xp+hlsXXbNJXyczStD8Co5bp4ud02HsUEEI96RU5KAIsdT/k8ueADKlm2pY5IBEjL9Mvvf33XAiXbJXWehpHMGPqiFoA3OHrKc5T+OB70B/1B8idXf+TW+XoPwN8D8KcSna8fAfAHUHS+fgjAn7DW/pAx5p8A8B0A76L4aT4F8IPW2r/b9Hm68wWko5fp/ND6TEZC4xSVEw/4JsMJo1o6OtJ0ckZPyuKJRcSpo5Uy8FuQAf81ysZHpl8NJZpDFDO3MQckD2opQB0H3gtzdbo09MfxoD/oD5I/Ofojq84XABhj/ikAN4nO178L4M9Zax+Xf/8NAL9RHtbab8W2SxHtfDXMkjLmhHX53UwXyZI1ZlUagr7AA9SMW4Eww3QnSVXSiESBcu2aslFauj5uZcwBWZ9aClCXw7/kuUl/HBL6g/4g+ZOTP7bW+boB8MBa+6L8+zmAP4Si8/VLrbV/rHz+fw7g71trr5s+K+x8Ae0CBYbNZqQH1TJdJE+iud1Nh1pV+UXz84NoZXxq6+b9aJGKRHUEcykpDR5zUIqeEj0uXQfgL9nG0h/Hhf6gP8h2WNsfh+t8GWO+CeCbAPD29/2yH/yDv/pHamWYazajNXK7yXDaTs7FL+rC9WVUtLKrOMN9ikSXFuiYMQdAVU4tUQqU5AD9QQD6g/4gJM3WOl+zph1q2qapBDrOZlT+LHPOtEX2T1SeD09bpKnPybhY1hBobMyBPA+Ukdhq4wKVMlJLdynJSaBdLgByKSuZHvqD5AT9Uf1Nf5Ac2Frn678F4MdQTbjxv7LWnpYTbnwK4J8vN/1LKCbc+IWmz2rqfAHxCGaXGVI0sWglQHGS7jRFLePyLCrZe0+LwfzFdNVX6nUTbB0R6EyR9abB3rGB3h/c+9wrnyYm0bUF6kVkmzfMJuWFg9Tngf4gOUB/0B9zQn8MI6vOlzHmMYq7WN8P4P8N4I8C+D4AsNb+O+VU838SwA+jmGr+f2St/U753t8D4H9W7uqPW2v/122f19b5AuqpA+FsRk3vExitJGOQOtguTl+a0X05kTYLVGQ0+XTcEXH2TX9xZQ1m31pToFFpNjWJweDvtcoLdChzMD6ieIoi7QL9QdaG/qjvh/4YB/0xnqw6X0vTpfMl9J2qMpzFCKA4SX+6p4vYRml6W7YIVMtoyoa9fwS2eV+5CDQ16FsP+A63X3PMQddB6rJtaqA6Bdod+oOsAf2R3hf9MQz6YxrY+erY+RK6zpAiUJhkDFo4d85uErLpLk73johA9axqU8+oNqU4vfIqga4xBXdq/IG8FkOk48S0kJBSg9S7po0A9TESAKOYfaA/yJLQH837pD/6lRWgP6Ziqs7Xl6YozBYwMFkIUVf4o1bew6Bz20fIRmMMcPfmsr6Yq0389wiGizMsgAn+Mrh/77VLd3HnhPs/O7uMOg/8rt7kLVJ65+zGCfTNoxeLDlK35T9XztTxVtFhuVtz++zcHVNGMbtDf5DFoT+k1MFf9MeYstIfeXCYO19rU8sNzmjgJZmWuaKW7p2p6KVeyPXZ+eiLxf4zbdXHHviDvtPjDZaKXjaJMyVNr9iljGQChjkjmPr3B7ovrCrvTS2umutMYSQN/XEc6A/6Y9Ky0h+TMtWdry9MURjSjJwE3gBHU4j0zaMXXjSTkDYkehlD16VJ6lUYtWzY8L2nl7ULAmMKmRbl9csjEczJytqHJnHa6nH/3mvvb5hi7SeJrt45u3HP90lLay+ef+Fy5+zGE+cH9z53jxgGxr0uv7HM1Hfn7MZFMtn+5A/9QaaE/pgA+gMA/TEGdr5mxouUxJj4pCMHxqhFYUfWq2i9TaaLtEdhm4QPqHLP2I7HvlNMnFpMNQmlBDpjOaWMlw+HjZXQFymXD089ibL9yRv6gywG/dEI/UF/TAk7X4SQRpqjln3TX9LRSy2iWaNpqWhsi5hcWZVA9XuL/5uw3JG0o/T6PrGHX/ZYFHOWchNCSAn9EZSV/iBg52tWWqOWwbaE7Jm26KU7B9aIpnWMCGrZF29T0csJyh2mizSXrZCkpOvoR5Wmk75YAeClj6yNDf4dHfqDkAr6o0sx6I+t+IOdrxzgrVsyBbYYeLzkBw4d9F0jjAROTOOF7IBUDADzlbnTOIn4GAlXtIaxEoKXPoLlL+BDWcq4Jj2WaSsiXRX6g0wB/ZGE/qhDf4yDna+56XLcZ5ydh6yETfy3fnpgm1DMAPWgZaMJ6pT11y/ZBZ0HgC+PFnw4ODrcsutFSxUtripbmMMvLHkBX5NleGEjE0oEIj0c9McxoT/yhP6gPyaCna8ZMTBuOmByHMLjLlO0+ie/UVPojsOiXCSz/O/b5+ct7+i378bX82rPDkD/aHGbQBcbK4EqWqmna259HHRmP/rjmNAfZD7oj1xg52sJ8jneZEmMWhPDoLZuBtBfPp2illNh/DU9YhtMdQGwfMoL8jwvO+Xq96fT9NIzp6/Vpkwvv2vTw03FLBLNTKCLcLCvS0roj+7QHwX0x2b8wc7XzLgoVjh2UfXMmTKyUyKpI7HopbXdJNoozrnl01C+rUUvZZCzRJRzIJoyEtlqsjESwsxjJYRYtFKvk5P6Z2B8iWYm0LmhPw4M/ZEl9IeC/hjMl9YuwBEwMHj7/btFBSojAxTmPMgJtzZy0STH++riJS4fnuL68UkQjTKlEK2LLJmg+CKnmDhdyohVKSNTXZC5gJZx5a//vsUFQJdGPSZ/XX79ubOcH2Xje/vsvDYWYVC9WSPaOpryR9B/zv6JthatlOcBpMdO2CrlSlJbbp+dO4F++f2vZ3Guzw39sRz0B/2RLgDoD/pjMnjna0FEohTntHgz3gSz3OQQ4ZDUi3juvlBIVEcy5VE83yzOqRtxPe5ApxXEUl8AtEZfu6S7TD3eQJMcP1O65PrxSae6osdH6OfmKveUhKkj4bTBsxOI8/Kj09o6Od7DwC0OKhc3YQTzSNAf80B/0B9t0B/0x9TwztcGaTrJc4jaLYX8DuFMN97fFqtFOFz08uMXuH127galXj8+8Qarhu/qkpMfinPyqGVVnKrsKvWlHr30o68hXeS/5IWOTh25fHjqBJo+LnFxBhtM99vX8vVnSBlZAC9qqZ6rSRP+97WwxYWagUttubp4WUUwy4uVXO5UbAn6o4D+oD+GQn8sw579wc7XRtANS9N6Ezo6M0elyuViJ3ZSRsnhFrNygk4fAYD79173KpfUg0XEWXygQ5c9Xu5u4o9/zIzfwf8g74KgJtDyd41F9Dxxhr/9LEX1zzVr6ylFm8Empp2uXSQUSFTVRcpLgboIvYpe8k5QO/RHvRz0B/0x4IPojzXYoT+Ydpg5Lh1CrVmA8PaqPFBUprnWNgjTMtaiUZzqt3CsOMhSpyvo9BFJIZF0hbbfVF6/fnISF+ecZTf11JeuaRYp5kx5SeFNXlB+Jx3BdF+nlGj4KAseL/MMEWM/RWf8zGCLznSGDlHLhDgFA4MP7n3uXch46SOkFfojUQ76g/7oCf1Bf0wJO18Zo6UpJ62eQjN8eLO6oBTpRLJzJ4JaMyEr1O/jTS8q5CLQ5+dREV0/OamJVP+T13Xj7Ylzzoifko2e5WmIQPX3qX2PuaOWCHL3UwINLkj13w8uXjlxzpqrv0A1bU2Dme6D6lHLFnHG9iHRy/pL613I5wz90QP6g/7oAP2hP4L+GAPTDjNEKoOTJqpV1eW12gwvtmqM5Xa4hcXts3O3n6GpE51TNBYgWpbg5JTpReX7u6+84m3mcPYqSVuQYyaNQmpAsjTcxX9aTzjAfNIJy61Fo1NI9Pbx4qt0F/V9lhRnUCCXD65TSHRE0sL6qQrqeQDTX7iUx9JLZQk32XDqiBe17IFLIYmJnqmHNeiPNPQH/TEJ9Mfi7M0f7HxlhicH60vz8qNTP5oSoE82LVKJlI3KXZfGJjdiUZGScHDl2oRTRos0tERTA3X1/ztpLiQcLVA98Nsbf2CK8qRmP/LSLjB/yksT4QWBFmi4nb5gEbwyT3QMdJn0Z8nFimz1yfkV7t5c9hZoMmVEXcQsfgFDJof+6An9sUi56Q/6g/iw85URKXE6aXa41WpRzPIiIr26eOlF8YYItNbYrEQtatkgzuCNWYk/FsUU+cRykcPGeo1GzhOokr40vF0ir0DVUC8VeU1RWzvJ1H9nfSxqkp+r3IHI4+v69BNo2/o44bEg24T+aIb+AP0xEfQH/TEWdr5yJCLOrvmtMshQSzScYnPIbVZpbLZGbtFLQf+ergFHNTDZQzVqbccgzF+ecoauVOoLAFfH2sq22DiDjkQvDCWdJCFMYObxESVtC5N2EWjjIGm7/BTNZAHoj8mgP+iPJugP+mMo7HxlgovKjRCnRk+1KQItP8h9Xg5T/pJxFyZhwxdboyb8rDHUUl9aoq4aLU3AF9Ca9TF1IROy1GDuMD0nPjVzJdAm2tbHWWrMhK0aHncXoesxbxzYncEFWA7QH8eF/qA/pBz0R/y9OfrD2KZlxTPlq2+9Y7/1tW+sXYzJGCbO2HFLLOxX3soXgUp0bNW1Swagb/GXT7iBrk3vmSPHem28QfXFE82UghOZTnXca7KJ7TYom8hXI+lMIVuqn1Mhv6nIU1Jy+q7pk9r3UjOFeedr2LYVG3TqGHjyXKDcW4P+6Ab9UUF/7Bf6I1Hm8j1jy/3hZ9/+1Fr7bs+vU4OdrwzQ8rxzdtMizuJ4hauVF7eHZR0HE7wjItCNXrjE8vabBLo3eXrSVKeujF3QUpLfRMZrlE86iU4tplTUL4xQuvK373By2W8B/TvGBAoM+z2WFKf+zFrHoFyQFLb9+8TEKc9vtQ2bGvqjO/QH/bF36I9ImYs/JvEHO1876XylKldKnKE0a1s4iUYEWp44VxcvXWO6NZHU5Fk8GRVoTZzltlv7zoKuK0BVXzQ6KuRShRR6TMCSYuodaQW8CPXWouxjaRIo0F2iun6ssTZO2DGQKcydQIuN2mc5K7dbdH2iDUB/9IP+oD+OAP2hylztbBJ/sPO1w85Xc9SyXZxuy4hAdfTSVcBn55trlGqpI9ULtZzxvYpTS1PLsg0tU51rP3cdiEWb22YZWyramjMxgQKIRv5SNE7RvMD5EKaOJAXavBMA7HjFoD/6QX/QH0eB/nA7ATCdP9j52lPn69GLlqhld3G6dzQIdBepIzGBtr9xc98VSES39Zo9aM591hdOQH3sBjCfmDxxqoirvNaEXuj18AINBqXXFtCMXExq9KxUXc77LsemK60CjZVffYdw4dKttltzQH/0h/6gP44C/TG9P9j52kHnq3vKSH95AqhNE1pLHdmoPIGeAi2r+Ga/50SzmMXGbgBVYzq1mEJxhtJsXK3eVtMPU6D+WAgdxaxJqCS5uGfDuaC3bRxTYf1Z0LrOOBUTqLxWuxhAXZruO5Rl2OL5PCX0x3DoD/rjKNAf0/qDna+ddb7SKSPDxAkk5Kkazy3LE6g3Kqnozaa/34TTR8s+wyimFtOUv1VYfnnOk2as+VG53CmBbvWYjsGr7xNMz6z3C/QcT6HK0HXsRyoK2/TemjTL8h3x+IfQH+OgP4btk/7YJvSHe3LU8Z+q88V1vg6EXrtlD7Str7HlBra/OJtaPKP+K7KI6lk1gN5imvVSann6CMRZFjf8Lp7cDeqLvE5czi0RrpEDwB/XEGLRXZpq29hA/LAcekyFvL8touwtSGp8sacuAkJppr4LmR/6YzvQH6A/AuiP9HdZA3a+yC4Ys9BktvQQZyq6nZpCOryQunN2g9vn53jz6MW0v2P4HcrnUpHXUO5Rgc5Rzg0R1vXYhSPQnpMfpvSIMGMXOeUHu2gyUAnPSbRca6ezQNV+a5Mb+IVt/T6EjIH+oD+OAv2RB+x8EZIZOmqpnoyO5QDqa/ZojCleT00hDVRyks8bGxWMpYs0f49IubXcS4HqHO4pyrkX+l44hvUrdnETRpZ1RFnn119dvPQk2lWgTXccQnKTJiE5Q3/QH32gP9aBna+cSNyptbZoBMfvvhowTTInErUMN+gzlsMY4O7NpSfQpaKXtTz9rmWW8pXT3drK7oDBoaOXQ4mlI4V1LHZxIxFlvR9JOwIqiXYVqN4vj+FE0B9EoD/ojxmgP6bjC2sX4PCUFdbARBc1BIy67U/2TizXvWu0rw0RaAwXjZrzwmrM9yijl5I6QvqTGgdy+bBKSep6fESmsk6M1B85Nm8evagudsh80B9EQX8koD9GQ39MCztfI7HBvz5I/qrsR++z9jk962E4U5Xaee32O8mTdMRv+Axm8n5BooPy31mKad9t8CqE40CapanySAJ0/fEEWkaWSTP0B5kL+qOE/pgc+mM87Hz1JJTlm49fVI+yt95bpsZfsLA+m1QRvewq0KQ4619ms7dsD8NEUUuhKXrZdgHXhWjkdQS6cSbDiY6jaKxb1j3ee3pZ1hmLmEhjAq0yfHjlo6E/yKLQH/THBNAf08MxXx3xptUsnvD/vyRcR6HTGgZB6sjlw1PUB4MWAr17c9mYv58Sp87Xt7DegnkkM2zTdK1jo5YJ1KxQo/Phy5z6IxEeq5wGcqfSReLnf3wQvgy8BxAdfB8d//Hs2LOKaegPshj0x+agP47nD3a+WkhJM1xtXaitYVDKNCVRPXWm3tf14xPcv/c6KdAUbeJ8cPFq19EEsi6uPk8UvXR1NzPCc8j7vuqiWchFpmG6SPhqlwuz2OB7jVyEiUCPPKsY/UFId+gP0B8H8Qc7Xw14t8CVNHVKSLjaeriGAVBNoQk0LyR3++wcd85uXPQyLdAOKSH1L+PEKVHLvUYUSL5svSGtXUwXT8bvYJjq9U53MOZER8NHiFNonP3sycl0UfANQ38QMi30B/2xF9j5SqBvtQLpaTXDk8blrKoF5eS9qWk0dbTn9tk5vnL2tEWg3b8DAE4PTFbDRfjKVJLB9Tm8+FuB2MU0EFmLptxWj8ORtmRpiep2LJ0uMiwVqRJocDFvE/99IOgPQsZDfxTQH/uDna8IsRxXr+K1DGK18BeU09HMxnUM1CBDnb8vDQ7Q/aTTqSKMWm6PptSeqdbtmZVSluHFYB+BNqaMLFiHvWhlcDGtXw8J717ofXRdx2QbVIM0dO6+zH6mLyKOAP1B1ob+oD+2wzH9wc5XQOPgwhZpCrKGgUi0y0JyOndf0kfkPZcPT50I9cw9+uQLT2Cdoy+vU5wbwcCrA36qRTFuY/JB03o8x8g6EubthxeDWqCyfVUMNW5FxLli1DKMVtYupsvno6i7F3Isb5+du1SKVQTasQ3rSjJ6Cf9Ybj1dqCv0B1kd+gMA/TEL9MdksPOlaBLnkAoXk2hngZai0zn8QDmNcHlSapHqhkb+Xw+Opji3y/Xjk1r9Gxq97DyN9BSo6OWds5u6QCMXhLVIpY2sK7RQPU6JM5RmrG0I714A/sXzogK1G5/9bCPQHyRH6A/6Y+QXoT9mgOt8JegmTpt4+PRZSM4tnFnuRm65Xl28xIOLV0VlLF+7fnziHvLRDy5eue0k0kNxbgxVhSTlyG/4+q3b0/xRVWrGlJFBrx6XAtURTHeqlBKVhypYPPK+EI3iVHcxUm2DXDh/cO/z+Llffve9LyR5VOgPshr0B/1Bsod3vkpiUcu0OItWK9bjr9YwAFLrGLgeva0+OxxA/fb7d4syBVFMoGpQU98DQNXQlJ9BcW6DcPC8HPN69LLbuj2aZNTSzjOFtI7EhxFM+Tw3wUCAlibg1+dF6/IEdzFi577OZd9jSsXRoD9IDtAfBfQHyR12vjSxCEVko6bbrLKYXOeF5J6nF5LzGh9U+b5dvgeluXGC6GXbwqlAOo1EIpyhOPWg+q5jOpoEGxNASqBCLSUk+BwvWrl0ushE6WNAs0CXSB/Z/AD8LUB/kFygPwDQH1NBf0wP0w4R3CKunhy1loEMJEwYuIrYtASLJIr59vt3q9vwLQ/ZnuLcJi7lwsCb6ef68UmkESzW7ZE0ktijeD0tzpTA9Lby783HL+KPcpFX+Rf9PpJCUqYySSpJ7J9LdyoKkLk4p08fm5SgHsVSkCZH16udp6zRHyQn6A/6Y1Loj1ngna+AdNSy/8DCxoXkgqk0u9w6FpGSgxCJXqan2e2+eGoozlTUUhpZb22Shos9tzCkra9HEkbhyyeb8/Bzib7PkT72pJ4+tggmPgB/KIsOwN8A9AfJBvoDAP0xKfTHZLDzJdguufr96TSV5k5nc5kD+c32nuMcmzp6zLo9QhdxetJUwkzPeFTh1iMpJaklqi/+ZDxKE6udDzOnj8lnAOh9AT0Im/hv/fREqSOpVKTdQ39sAvqD/pgd+mPERx3HH+x8dWKG6TSNv4AmaSZs0Jde6X0N2gQKoJNEtfCi4gy2DWdpkuedTOIf4q1HAhQiTS0KmWMUXqeMqCdHXUjHLp713Yu5L6DDiHF8/Ef/wfdAQ9TSzjMAf7vQH2tDf9Afc0N/0B99OPyYL91YNDYO038w6YjOFQdQNDQqT3zPuHx3+NNGy0WXTBWdyn2XSNL1k2pK6Zo4y6ilJw9bXxDy8mE1TW7tgeJi0G0HNSUusLlj1dwWDLmYjnx3g+RsXZPTOv7DeOM+2oiJ00Ut/Sezu0iaEvojf+gP+mNp6I9m6A/e+VqFcNYqksaLpIWsudL7gjQtngrAi2RGKRtDkWZ4Oz8UZyhNEWRbBM/CXxhSRzKXmpVpfsaM3WnIbZ/7uiIx/qM+/fQDANbNgJYi+V0i6UhkWuiP7tAf9Ede0B8A/QGw80UyplGcwkHGO9SmjY5INCUliVDFopXyfGqGpi7S1GX84N7nTqISlVt6WtzNEMnbn4Om9KP4GJjug++FVK7+3s9Lki/0RwX9sUPoj01z+LTDGgv0tKO3VwlpQfLc3bS76Dft7u2zcyfEVKOmxfnBvc8H5auLRFeZFncj6GmDl/q81PTT8Smou6PF2Tbt9O6hP0im0B/7gf7YPrzzBXgRBOnR1zaZaDYXQsYiErXwZ3xKRr5Uekj9pXrUsjla2dTImuCv+sKQ8nZ/wC5ZjCB9BMDgGdBEuF2mne5evO4Sz6b+0B9kQ9AfZDD0x2QcvvOlb6nqA+ef3MVgwslnrCJkBGNnfGpMF4lsDcTXJAHQvi5Jmct/5+wGt8/PN53qM8WFdCrNYk6axn7EZkDT74tJTco/Vpx6396aQPEv4V7PYcY6+oNsFfpjHeiPgqP74/CdL0d5O1VubccWkhty0nSaTjPD3NYtRRDIeMJ0kfDVtgvH1nVJgO1FL6OnQP8L6ZwWkvTGfqg2T9oiJ1ElKVnU02Gr/48Nwu8rztgirDJFdbitjs5nNW04/eFBfxwL+iMC/UF/NMDOl2AT/+0YtpZB/WP6Ryy6iGyqiiOfVRuorItg/OdnrbwWsXbYez23C49N0Zou0m92pmpmpkqgm4peRlLIYpKfJI3MrrOeSW3wvXQa4KeSCDLFtCB5+bWZz3qci147o4SpB/fHCNcB0vtYdSA+/eF9Fv1xEOgPH/oDAP3RBWO7TMqfGV996x37ra99Y9J9Sv6zHJzLh6e4f+915GDYTgKVnzW6lsHjk063WZMiq284WmC1zwqqhV4s0csND27jTl15vbz0+qHIr/HdCDpl5M7ZTSJqOXxx2DBaJ/UeKBpoqUO5Hb9aO9AQze3aDiTXM9HpFs/OV/ktaueX9QXVRGzms86fGSzEKu2PWxunKW3EVpIH/LEqa3XA6A/640jQH3Hoj/3748PPvv2ptfbdzgVOwDtfGuP34mUQYX0azStvHQM5gXQ/NnabWJ806slaxYtKs6mPbMbdQq3duoUvS/3/QHFySR6vq7gzrZmSGhwM5NfwkpAq7Kyjl3NPjTsa3Q4kU1yGtwOapfL1U8TOr9tn5613C/T/TyFOPTU1EB+wry/A9DTUso/Vp6KmP+gPMiH0B/0RvnU//uCdrxJdeXT0EkAiglm9U06gphMlGq2IRC29ylU8ASCewyrba4HJe7pWoFhllucBxFdpDyIHQB7RZ9Idqe+u8Xp4OlnU0u0hEb1cO1rXRC7twJrELlQ1Q8vZJs4+01KHkXBB2qGl26Bc6g39QZaA/oiTSzuwJnv3x1R3vtj5Ugw/cdr321uciQhijFgUsYtAR9++LV+/unhZK8MWBNqWK517+cewpjylsbt9dp5lPQlTaoBl24G9on/XMeLU+xOBApVE1/pN6Q/6Q5N7+cdAf6ShP+YhF3+w8zVD5wtoFygw0ToGxQb1VeLL5ztFEMtt9Qr1TmAtAm2MIpTPAe23b3UO7RYEqoXZOBZCpeAA+xPpavIsz4Wri5fZisO1AWXd1r8RMEyg7rsXfxxOnsPEGbop/puHUcw12x/6g/4oN6Q/6A/6YyJy8sdUna8vjN3B3nAreaO6BSly0qt5y78Q/dr1kxM308tQcV5+dOoLLXyYQqx6Vh2Xa2w6rAafEGfT6vTeCvTlT1D7/C6fvSByTN58/KJ4PHoR/z1V3vCbR9W2bVFOsh9cG1AecqnXuh1Inf8hui2QukVxtomz+KHee3rpHkVKjjo5FTIeRJBOzxrtD/0B+oP+ODT0x7Ts1R+885UgFsEE1BSaZVQjXFBORycAf1rN1OwuYeWS59qiiK0RxPLkDHvwycpcflbfW7hh5ABYb+xFjFQ6Tq9UHGSyntBErJk2knPOvqa1DUD9/A/REyToaYGPIk7Ab2/SM6MVWwLphVgBJBdjTbVBa89+CNAfbdAf24P+aIf+mIbc/MG0w5k7X4A6eSJTaOoTKEa4/oKekaYpT3+IzFzFCabR1OkjTbLudgu3GR2dySUyI79/ai2ILqk4QpdUnC0hdVunRoXyHL0m0cblCcTbALmw8tqAyDTWQpcL6L0SbWtqda3Ysv/Co/5irLmlJdEf3aE/tgX90Q36Yxw5+oNTzS9AbTG58mDcObupNa4h4YnSerKMiCJ6ixCaoiF8cPHKLUYo5ZGTfmpx6u8gnxX+vcrYi8hFif6+uoELuXx46l2M6KltV53OekqCqbH941RMhTvVOi1bpW1ByahIUV9IEkhfQB8F79wbSbUYa1DHbOK/V4D+6An9sS3oj1boj+nYmz/Y+Wph0DoGQsuJ4jXwkff2kZkTaJm24gmszJ+f84TVnx/Ke+mV6BujwaU0O0eDUYhUBApg/fWEZuL68Uk9NcliVPTS7UdFlXRUewuEbYCOYmuRajxhFk8cJlpZQ52D8XNvTIpS2cAh6EQA7oJ3jYt3gf7o//n0xzahP+LQHyPZqT844UaATfwDior/9vt3q8GULQ/ZvsOH1qOWw7+Ai166wcsN33WyqGWOJKKzXaPBblA4it9TolN6QGZT3n/2qKJL4+9/nyJ62TczORm1tFVEb4uIRPVg6ttn57h9nng8O+/fFhyO4eKU6GX9BX9s1ZITN9AfO4L+aIb+6AX9MQfb9QfvfMFvMJoiiXrq2FlPhIEyC6OXkxdKfVKnzVZg6rQYkahEMnUUc42o7FS4dIiPX3ipEPXoZSHQrvn7MXHqqKV6cpO/G1BJFICLZsbY6vebCn0uTpkykhv0R8dCqU/qtNkK0B/doD+GQ390Y+/+OHTnyxtQWzzReHD1wMlNz1xk22drCt8g0YWmXOzwtu3S9Bdn0/c3wV9+WszVxUv39jXTmkYTRC/1lM8VlUDdM+plHdlM5unb+kD6PaBFSo4F/UF/pKE/KuiPFPTHcTls5yvM6waqaXrldUEaEotq6lhppPeWt70Xuogzdbs6NR1p+TbHnqOX9YUgjRKj9UTaNDA6lau/xd+LEIH+2Df0Rzv0ByHDOeSYLx3hkiiXns1IGl69+KTI9CtnT6tFKLHdvO2+Zba2OWq5NmHUsnyytziBIirnL8xXPg/j5fDLZ8jnb5ZI7n7zQpCFSOWR3q0/fTQ5OBs+RTT0B/1BfyjoD7IEGz5FYhyu8xU2suEUsiJMEStQDpZVIgWURDGPQGdtjE21iGW3xt+0NpSyj3nGC/SjeeB59wGasQGZ0dXQFx7UPyUSvQSqOqEFKhLtg5xPua3bQ1agrDoGJjm9+paWmqQ/QH/QHw76g8zKzvyhOVTnKxbdctJ86E8jqx/37732RaokOpVAbWUxwGBQ3ntfebkKPfDzsqM1ajl0ZpzIcTXtC6VuhZRAY1HMWDQzfO36SSHducQZfl6qXGRddL3Sx8Y/TkalaE3ETJFy+sOH/uix4xD6w0F/kBh780fIYcZ8NYkz3tBWyIxF8p7rxyfufXoBxUFrd5SyvH12jq+cPS0GrZZRN4uBA3HDRiu5Wb0RnGr8wZKRKn1s9TENtxoizhwW41sCvRhkuBjs5cPT6uKqnDBAR2/dBZv8Dqr+TVkPpL62zSjHMTSZoRdjNdOtB9QpjW3CCzb6I9yM/miD/qA/yEh24I8Yh7jz5RrX4LkhU8i6tIFSet56KD3TB3TPXspU/oerZF2jMY1Ry7ACKWGHnzeUME1gf8Rz99vWwtkSrj6WX1VHMR9cvPJm6JKUEolQynGX7USaU4rzzccv0uIsvsBmx9Achuih6b8eUOOU1FAX7xNAf9Af46E/6A8ymg36I8UhOl8OO93aHTqVxJOe/rtHuURmLpUjEGhqn/pWveyrSV6hsAHUpr3tS990la2RXIxvh3gLQQJusUepF5JOEnvoSKWbDnhCcXb8AhRobqhDEV+MFegj0MaI5ZwX7/QH/TEA+oP+ICPYiz8Cdt/5CtNFxopTCGcumjJ6WRPok5No3rTLj46Is/V2fUzYaJd1fTd1cS+ZMkLmIRbFFCk2Pp750lzl+G94APvecPVI3ylB6q5MJVB5CPq5mDijUcspL9zoj/CHoT9IEvqDTMHW/dHEYcZ89SMmjnpCqV4UMoxeDvpIldsqQnODcg0a00KAiDgT6Pxs2V5/nqR/6LxsnQetK31SnGTz6AUgLWwnIU3dWDVGLfW5Fsn3nnIMChlJEL2UcSBd1wPqMyX1+lFr+oP+IPQHmYwd+sPYDc7T+NW33rHf+to3Om2rI5d3zm46RC3rA2urRRPrJ2LswN0+O+89cNM1TuWAVMkDNzBFtLVhZiQtTQCVvFp67rpBFGF7n2XchvEBsuVrUgZPnAtGLbsd46EzVcWjJRbFwHl9zBmlnZ6kPK0/8UH0go2R82wI2xqgmu2tLtB++51zSmr6g/6QreiP7UF/7IOc/PHhZ9/+1Fr77qAPVBzjzpdKGWnbMNbAVjMWxQVa221527rPietFEw28GYOA5jzUmjTLMrV9vjdDkVqhXiqhFrY3mFp932i0dO1GK3GYh8yI0/5R1clKFkKJUz93tCBlW3uWU9Q21taEEUzZrgvy3RdZC4j+aP1M+mPoR9Efi0N/AKA/gIX8kWDXnS8d0RpLaspYnToy+jOCdI6YRGOE0gS6V57UFLFA+8BDndu/ujjL763TX/y0gSIfeGj00v+oKlpC1kfGyxwlXUnOucZB5BbeWKAcRNomUCCdqgYsn65Gf/T7TPqj60fRHzlBf0Q3oj9mZtedryjJlJHhaQVTInnSXo60QXvF6CnN8DO1tLsI2203weePRZffVhadZD2I5Mw42YwvOSbh734Ecdak2VL19Ha5rF+TEiiASqKRtYCAYD2gtdLV6I/oZ9IfceiPPKE/QH9g3XTn43W+NkJUog2MrTCxz+sq7Ck+fxL0Ynxl2WLRSxmE2SbRxrUgrPdkHt//KHS8mNzTMfHGLpR1r5Y6E2zvZocq09iyFGiwICtQ5fLX7gYpYRZ/Wi9VBNjXMR8D/TEA+uMY0B8A6I+1/XHIzldqFps5crrHomcMWvLzukg7u8ZJCU3fjvajlzIbjo1KVM8/07YWBPP1F+KA+fiaUJxamk2RcxmndPvsPGuBAohKVLYD/O/ppaqVUcwl2yL6o/3z6A/6IxvoD/ojI38I++98RQYzx9IJdFQrJtDGhdl2yNLSHktTPnD8YqkuUaD7lKTqyU39TkPpkh4zR6McTiTQiR0dk5Q45XhcfpSYxc5WC1LeObtxUczcBNp4t0SlrtUi1UtJk/4YBP1Rh/5ohv6YHvpjZX80sOvOVzSXu+UdMYE2zcY/ZvBsn3zvHCp77rjj/bE/+1bzbDim00VR05Ske6bT4Nxiw9kG6PYS6I6OR5M4PWnGvrOBmzL76uJlFcV8fp6VQIHmuyUu9SX4jktIk/44FvTH9NAf60F/rOuPNnbd+XK05nL7G+u8bqB7xLLLVJVamK0DH9U6KdIw5VLhsyaWPqIW/uy7fg6w7pSka+BJUw1QbUKvMzR1fY3N5BYUGMB+jkcncZbfuTYpAGyV726KHHiXilGm4PSdynwJsr1bQn8cC/pjNPTHutAf+XOMRZbDxdlaF8rsRlM0K1YJYoMegfjAR2/AIzBbo7RHosdcrTnTNB2p3gcALyp9BHHWpIl6qkIMWWBVD9KV+jp1XY1FuPZ2LPQ05ylxtrVfTqLlsdALugL5zGCVM/TH8aA/hkN/5AH9MR9TLbI8SefLGPPDAP4EgC8CeGitfRC8/r8E8JvKP98C8F+y1v4Xytf+EYD/uHzt/2mt/W1tn9en8wX4FfHO2c0kK2PLfrvIM9Ug9UkbWaJR2hMxgQJKoonpSIVQmrLPvYszjJbpOhpGzAC431EPcgXgXfixrvYjdRz6iFPvS+ry1cXL6iJnx/V4auiP40F/9If+yAP6Y16y6XwZY74I4G8C+M0AvgvgFYB71tqfTWz/BwD8emvt7yn//nvW2n+8z2cO6nwlIllDBdpHnKkGKdoYRdANExul7rjjXjbwUYk2oKUJYNcNjr7ABIIGO6if0nB76QmKWH1lXe1OGLUcKk7ZVzR6ueO6PDX0xzGhP7pDf+QD/TEvOXW+fgOAD621v7X8+xIArLVXie3/PIA/aq39M+Xfs3e+gHr0EvAFCnRLxWjM4S42cBWyMQKhfvbUyRA2TmyU+uOlGEQkGp0yOrDF3tcRijXWQP/0qlR9ZV3tR1KeA1PdwuglwGPSF/rjmNAf7dAfeUF/zEtOna/fAeCHrbUX5d/vA/gha+2PRbb9lQD+IoAfsNb+o/K57wH4ywC+B+CBtfY/bPvMwZ2vSBTr8uFpMoVAbrFq9CrZY8Q5KPpQwhOgPzWJFk96IhXC6UqBfUoTaG6ogRGNdVlfWVf7M5s8iz8YvRwA/XFs6I849Ed+0B/zstXO1x9C0fH6A+q5X26t/XljzH8VwP8VwDestf9J5L3fBPBNAHj7+37ZD/7BX/0jvcvaKFD3QW5j3L/3uqp01U4ANIvTfdaEJ4Dsk43SOGKDbZvYe8NSG8/SuY5Ku5EecF6rqwdtrPtCeeYJ/UHoDx/6Iz/oj3mZqvM1xVTzPw/gV6i/f6B8LsaPAvj9+glr7c+X//9zxpg/B+DXA6h1vqy1PwHgJ4DizteQgobrPejFFCVKqUV6/bi+/opUvGnFmfo6JvjLFEJ/fOKm/7xzduPWXjjaSTCErU1HOifRdJHGBrqqp+89vSwXjtXZxUb9V72uytstUtN0E5Iv9AehPyroD0KGM0Xn6xWAE2PMr0LR6fpRAL8r3MgY818H8A6Av6CeewfAL1pr/4Ex5vsB/AsA/vUJypQkXO9Beu8SxRSRxohJExgjzmIH7z29RIjfMLFRItPSli4Sbg3U66kx1XNVfY3XVaA4x26f8UKPbBf6gxD6g5CxfGHsDqy13wPwYwB+BsBfB/DvW2v/mjHmx40xetr4HwXwxPp5jv8MgO8YYz4D8GdRjPmKzpI4JRK9+vL7X3eNxe3z8+Lx7NxJMvwn28DCRSubGoE2cb739DIqTqBqmIrFOv0WTRol4c7ZjVv4jpC+jKmngjGI1lXh8uEpDIy7SA3HwpBujPrdYuOMSG/oD0Iq6I/tQH/kw+jOFwBYa3/aWvs1a+0/ba394+Vzf8Ra+1Nqmw+ttX84eN+ft9b+Gmvtryv//6MpytOVmkRFpM/OK5kqqbZJM4wGlU8mG6ROZezQKMnnENKLCespEK+r+kLPNfy80OuPBWAQnZp5zD4ZQR4O/UEODf2xHeiP7Jik87V1RKLy8GQaCLNrZXPRoMgrfRokoL1RAsCI0ESkotZ7Qs+kNmU9BXRdrcMLvR4EqWB6mvA+9dEbLE1mgf4gAv1RbUV/rAj9kT3sfEUIZdqrd98aDRpYplSjZFSjxIjQILQk33z8ov549GK3Ip2P+IWeTh0hcWRckUzq4FDRyy71sHGWKjIb9MexoD/mgP4YCv2xDdj5WpRh0aBwH01/kn6Ewiyf9B8GUZFumpku8oDm6CXpQSx6GQg0Vg/l+VCc4b6ZMrI16I/coD9Af+QK/ZE17HxNRLdb8eMIG6UwdWTr7fmS6Ehl+YR7fOXsqXvcObuJi7SU6D6Z4iIvtWcb/W/iE0YvowJ9cuJJVEtTi1Ng1DJf6I9tQX80QX+sDf2RP1NMNU8yQG7He7eZN0JbIzr19Mc1aUJF8SLlkdcsbPX7lik6XJy0B2WK09XFS/f7MXrWQilKWVNKBKpTxaI5+WUVloilJ05GLUkA/dHv8+iPFaA/+kN/ZAs7X2QVtKCcyOIbFhGckrGiCsWpxSh4UWcLb7CqrGly++ycAu2Lyhsn7aQW9QWq31Ev6qvRaSIUJ9kb9McBoT96QX/kDTtfZFGk4aylazQgjYcW6RBZNYmzluYjZTJKprZaRNVFiTcs0CaJWVukKc344WzEO1ATaLCoby0Xv0QfW4qT7AX6Ix/oj/yhP/KFna+5YHCmRlO6Rls0S9I1ZB2cUbJKiVMV4YN7nxf5z3pdDJX2EBPophqmIBImOeHy4ifnV7Pl7ZN+eAItnqhJNMTLzS/r9abq59GhP2rQHxlBf2wG+iNP2PmakrKS1vJq9SYjIkLWAp+cP0h8tHUnVI44cSpp6tl2agIz7o24unjpGgkn0TJaWGza/oPqz0+JM5yxycC455xIYwItGypfQNvi+vFJ7fsPratbrqdjSV0Ejq0XMn25hfWmA28cAE1pbgv6Iwn9kTf0xzTQH8eBna+J0NGFcEaeuSJCbjrQzBuiUFwizcuPTquyl/8fixjKRUgo0TFRzDZxhsjMYKFAXdm3Fr1svdCbrq5upZ4OpXX8yYTjTkSi8rlN6zJtpi4S+qMB+iND6I/JoD+OCTtfUxPcjp8qIpSMBmU+CDUmTifNhLR0xFD2cf34pCbRrikbsailerHzGiUxgT64eOVFL7dAtwu98rmedXWr9XQIfcafTDXuRKNFujWWnqFuM9AfHvRHftAf00B/DGcP/mDna2oiEaFY9PLuzWXnRinWIOlokL4Vn9PJ1CTOPosyiky1RD2Bol/KxtBySFnu33sdn551g4QXevfvvY7WVaBZoras91usp32JShPx6ablt9TTTOuIu95m76w1Q92moD8c9Ef+0B/9oT+GsTd/cJHlCXEL28GvKN6g23LLT86vYG3V6KRoyn+WaFCOjBNnOu9ZFgWVKKY0/GstWuk+0wZ/Z46uq0A1HbIsuqi3/OT8gVdfY49im7Q4c62nfZF67caflPX7ztkNrPp3+dGpu3CW3/PO2U216CqOsNhqgfwG8ru9eVT9dtEHivNZ/z57/40A+kNDf+QN/TEM+qM/e/WHsW2td4Z89a137Le+9o21ixFF59FKw3758DSICPnvkMhQjJg4daN0dfEyu2hQf3H6dfDuzSU+Ob9SzwSpDKhy+qXRb/oNpoqgep+vVoCXdIjcjkMbqboKoKG+9tv/9eOTzf4+Ia4eFX+4ugREBvyHlCkjes0fSXuCHTn7WsaEvxnQf4Y64QiRXvqD/sjlOLRBf/SD/uhPjv748LNvf2qtfXfUTsC0w8lx+dAfv2i5JV+9IxmZjBBGg3Ls0Wu6iDM2KFeeK6JiIlJT/m+VO+8GLqvIof6NvZNXypNYWPBoxOqqpDql62s7Uif3NEg6JU49/gSI13F9sRcdd4LtrvXThL5oBTrMUAd4Fxl6GuSxEyRsBfrDh/7IF/qjO/RHf/buD975moG2iBAwfJHHUJy5RYOiUcKHp73EGd2vk6gvxuvHJ43RS3csypOSkUuf8PcZU19j0tzybyO0ibNPHQqj7gZm879PjFg7AMCfoa6kNh23EER7dSQzF4HOAf1Bf2wF+qMd+qM/OftjqjtfHPM1AzofWg64zomWvOguUUedB5y7OENcA5N4tc80tMYgmV7jIpGRnzPMTZ+U8FjMhE38mwL3+1i4mdaAdH1t+nf9pNhWfperi5ebqKedmeDiKxx34o6jirxvnVSa1uXD6jfTD0EmRvjg3ufFb1T+FHp8ztpjdJaA/iigP6b6GPojC+iPThzFH7zzNSOxCCYAL21BTqQUOkIG5C9O+c7NUct+4nTv6hK9fHZei2qkTmbYYbnpS13ISOPQtvbHFHcAdF0F0vU1MezEIQOjvQuKDOtpV5rqzpCot95vbdxJeeGy5bs6U/9eYTSzyxidvUB/0B9joD/Wh/7oxxb8MdWdL3a+ZsY1SsFteaClUQoOi87Pz1qcrSkjw8Tp3m39QeRaZKnB47pcXlpEeUx63/ZfIGXElbl9w0kb21R9lfSG2HgHLUxBfg8gv3ralWEiSLWn9eMTFWim53YXhotT/2bxehz+Vnu40OgC/UF/DPqe9Mfq0B/92Io/OOHGRtALEgLVySGDU1ONUtgg6QZ6CyeXPnEW+LBu25RpEV85e1oMDC5TWiy6r/Gi9zfX9LedxQm4RUKnEmhTfQX82ZZ0ed22xRObqKODSIqg+A1iF4axQf/Ff1Vr/oQD/zdLZ3FWXzQ+OQIQ/a1Kgcpg8z0ONNfQH4t8WLdt6I8Ou6M/GqE/mjmQP9j5WgBZSVzfmm9rlA7VIPWmNCHqJ1UMPStT8W7r7UZmZpJt459YvCdcHHPqqGUvcQqlQKeqG9H6KoNVU21UWT+BndXRiAxiGzVF440pBJFcc6ncp4FxUhh0QddCU477FNNCS9Syizhjv5f8TgCiKWKCt0ju8/NJ636O0B9TQ3940B/zQX903vfR/MHO14L0apSs//+7apBGIAOn+0yv7IhFL8v0EUk9SY2h8KQZpossQdjuLRCokfpaFcHP69fsrX5qGagnR+Xpu50kInK2suikQmgc+1EWaZLxH9afmSq1UZe0seo8rwTaNEX4EaA/xkN/lNAfs0J/DPqgQ/mDna8V6NIo7a0xWpswHUIiQ06gxUa1yKRHeaLW0kXmjlraamFB2c4tsBi8f87b52G9PQpjopaaxgs/U0XkpqRTJNxg1Boo3aOWw2aoSwkUwKyR3lyhP5aH/hgP/RF/lf44pj841XwGSKOkHyRO8tZ7B8IpnCXCItPaQlIfEo8HF69cxHKuGapqBOKU76EH3pdPJqOKR8Im/uXFMuWJijOs1xoz5xS8wyZKSE4RbuBd9B657tMf3aE/6I8m6A/9KfTHnPDOF5mPBdoIPVtVF3QEMxw30TYAOjqOgqyObuzbplUGpplaWXbcVwij0p56kBJnNAIOVFHwoQPwdcpILWo5boY69wG6PEE6D9kh9AdZAPqjDv0xP7zzRaZFDf5M3QJfe3WD2sKQz89dJLPp3+3z89raI4wyr4cclzcfvygej17Eo84ohCDb5BnNnI4u4gSK8+ArZ0+Li0frvdA5EjhogH9PwuilXmg0GsUn24X+IAtBf8ShP5aBd77IZOiooG6c/Hxag0/Or3D35hKm7+y8qZQRNYBZpNanrOUT3QY/rzCA/UjjWbrgDQBWghQ5hGKU6bglSifHfIpBwtaidz1enIg4NXqWLD842K/eNY9tIKQZ+mMe6A8f+qMn9Mcs8M4XmR6jZuECItP4FgIdG8F0KSPlf/edOUrGSrgoZofH7NHKSB51LKpa+65zjx3IBB2pFClI9E1+m8uPTqvHw1Mn0ztnN1WkDvAimcMwwboiHco/YsxJp/2HkcQWcQq1CCDHgJC1oD+GQ380Qn+07J/+WAze+VqB2Mm6q8iU+noyG1Q9CtI9gimSbY1aDiSXWZi8aKr/Uy03JXHGODGoSKUcdy9iFlQFvQCtpDK5SB065qg3VK9so5cdxRm+Z09N0R6hPwD6I14O+iMN/dET+mNW2PlaEO92t//CTAM6l0cvSHn77NxFQ2QhypRA3TPlyzqqGZOmHijtInk7iN6FC3p2Ygffuw0tTpGml6ZQG6Rbf7+s7wHALbIIIL3S/QwXgcmo5QQXgWNx6SNjLtQOkjKyBvQH/dEG/RGH/pgf+qMfTDtcgHBgZ41ynYTxt7EzImh4APgLAToMPjl/UD6KVBJpZORR33UlzrYZpjaLykVv2+6I4pS0EJFm2+KVBgYf3PvcDbSVlBKgmq1Mn3tuUH1rClSxdVsaVEqc0dSnrR3T8ns3TZJAhkN/0B+9oT8c9EfmHNQf7HzNTFKaYT64MOtaCcsQrocCtAm0emdKmEIozs02OA1ExxKEqDEEeyYlzvLFVmmGuJmOyvSIy4enVb56LE89IoZ4/TXexV/4aMzTn/EicO52RJ/r4SQJXjlGFCP8/caO1dkS9Af90Rf6o4L+GAf9MR/sfM1IbfBi8aRrCPRgT6+RPIhA+3w/2X7v4tQ0Deg+/DTFjeJMXZkWeAKFauiDv1NiSF8AGi/i3hR9l32KBHTRJzuuQdS1jVEi0p9lwgjvNBMkHA36g/4YA/3RAP3RDv0xK+x8LYmSpia6XsIBBKolGso0fP76SbF9TZwHQCSqH0cgGbVMirOQ5XtPL92jGA9Sl6he68NLH0nM0tQvAt/tu0UvBKfAhn8OKGdfidv6f/ufO0ygbdODDyrrVqE/6I8B0B/0R8+d1z5ryD7oj2aM3WB38qtvvWO/9bVvrF2MRmpRS9tt5hgL66+XsIMLCwvrGiQ9HambRUh9V2nQvIhOWUX1gFKJWALb/31IHC3PO2c3reJ87+ll5PnyVYtyWl9/VLOFdVG2q4uXTpJ68HRYDqCqu3qxxq7fCcCsEfhY23Pn7KaxjDV59yyLnOPu90keK9t5jaaYOPVFx9XFy93euaA/KugPMgT6Yxj0RzMffvbtT62173Z+QwLe+ZqBruKMpU7EVtzecvQSCCKYz8+9KNDVxUsvsCQRTfdc2cBcXbx0J7g+YSjOfRJGLcsnB4kTgFrlPh3BBBqilxZeaoSLYD6pR+Bj38WLwM8VsQzLKwRr/cTKNkacGpc6Eo1eFoUJxzZ45VHPN4lztxMlgP4IoT9IX+iPkdAfs8M7XzPgyTMiTqlQ0ru/unjpRRX2GL0E/AgmDLxIUBvu5Ga08hB0j1q2i9PbOhLB7BINc3U3qLd6DRh5TcsYUFF41dTWxDnxOe6V13/BO+ei4h5Yllr0UkV301FT600V3jpZwuOT3Y/XoT/i0B+kK/THOOiPNFPd+WLnawaa5Onyjv03xAU604m1Np5EgfZF+VQV3dPvQNJ0k2c/cbp32cjsR5HUkbCuhfVWJGFgivP6YXBeB0i0banUp6RA028YVZZYelg3gbbvF8Ah0g0B+qMN+oO0QX+Mh/6IM1Xni4ssDySW7jGYcsrSHG6FLoEMAAYiIo1AYR4UWw2Ujkctp0FSR64fn7i0rdgsT1Jvpc5KAy6iCC+A/a9ifWmW32/Ouu0WXG27UJ1I4PrzZIFcWVxUFsmV7boQShN2/YVEp4L+GA79QTpBf4yC/pgXdr4GEMvJr61uTjqhRUrIFgilpGWYSoMKc+KBZS4Ku1yoTlmONoEC9bSa8I6NoNNtRJp7SDekP6aD/iBbg/5o/ryj+IOdrykoB1h2Ppjl4EtCyDYJo5iCF/Esc/gB9f9Yr9Ff6kI1JVAAnkRjYxy88Q3lbzb3+IbVoT8IORT0R/PnHMEf7Hz1pBa17Pge6Z3LSudhfu9RUkYI2RMpIYlUc2jk18ATqEqvkdQaPcbBW1BTCbP4049WAnmIcyj0ByFEoD/iHMEf7HwNoUvkUbYpp+nUg6YNTKMsc+ylE7IGOo1AX4TmDtOhEuk1wRiHFLVB5XtqB+kPQhaB/tgue/cHO1898SqEmso3uo2KcG7pxCckC8oLT1k75frxSW3QtLXotOBiE3qq4DBKRsYRS6/xpkFPodJtcpPmGOgPQhaC/tg8e/YHO18DCHvkyYMbRC+7rBIOLDebTY7EZqLhRce2meSYRmVWLLjYf52W9FogZB44Q10F/TEf9Mf+oD/IHv3BztdA2m4L1yKcOgqTYJaVyjMnbFhr4yHKmcA0lGn+6OPadkyTx9NWr8s4l9gdAFmqcFQEM7NpaPcMU2roj6mgP/YJ/UFS7MUfXGR5ZnovVFe9cRcVLIU0Unox0VbK2W2k4aVE86N2XKsXKoz/fOp4pla8j6/XUqx0nxKoNHNh1FKnjLhZkZ6d7/rcI9uB/ohDf+wT+oPkzlSLLLPztQDebdKOuap7Pnm9Gb/K7ysDylMpBtKolU9QohkSW79I0Me3Np1uuW241lFqxfv0aveFQGOkUkUsLK4fn/jT0e78wpVsC/rDh/7YJ/QH2QLsfG2o8yXsJVd1KF5US0lTC/Pyo9PwTbVZbWISpUDXpemCSG8TyrHtWLr9lrMcSfQyLdB+ZWbUkmwF+oP+2Cv0B9kK7HxtsPN1ZMLGVUvz8qPTzrMDaZG6WW8o0FWJHVv9mnD58LR2IeRFpSPHMhW9BMYJNCpORi0JyRL6Y7/QH2RLsPPFztdm0NEnoBKnlmY8D9vfh15MTxphnYJAgS5PSpzehVH6zd6iiUMFCnRPHZJyUZx50TZQnef1caE/9gv9QaZgSX+w88XO1ybQ4oxFK9ukGdufSNSLYrLxSzLn9Mvh8ZXnPGmmmphSlCmB6mPZJFCgkmgbIk2A4syB5AB7f6Nus5uR3UF/rA/9UUF/5MUa/mDni52vTVDLue4RrWzaZxjFlAgmo5cFk0zV2+EzGsXZcJzdMUwJFN0GUAO+RJNfRTVzekpginM9agPsiyfrRGY34zl+DOiPdaA/ah/ooD/yYC1/sPPFzlf2xKKWlw9PG6TZVBfrJ4s0wGEKyZEFGo0ENTVIA2f9So3B0OLsnAoUE2hCat7U27aSqLzPE6niwcUr937g2AvR5kBsgD0QH2Rfm92MHbBDQH8sD/1Bf2yBNf3Bzhc7X1kTFWcyVaSog6mV5otV5a/Kv/xIVphCcuRI1JINUmPUskc6UCjQMJUjViZv1rdAom1oaQLHrCdr0zTAXl4XorObsQO2e+iP5aE/2qE/1mdtf7Dzxc5X1qTSRWLiTEmztk8n0bRARQpHaxS7zhgl6MHI4aBz/Xrr5w2MWob7klx6Lwodyd2vlUFPvd1xDSTgePUjF9oG2APw6pEel9M2sJ7sB/pjWegP0B8bIAd/TNX5+tLYHRCSRDWsY8UJAMYAd28uPYEaGNy/99oJ9M7ZDW6fncPCznpRFgppzQtALTKg/9o3sv3ts3O3n8Fy6SlOD1Pk3z+4eFUcx+fnLZsbV86aSCNQmOvSJM7orGamLlID485xGODNoxc8rnuF/lgE+oP+2AJ78wc7X2RydGOuUwnCrfqIU6gEWl9x3q0DMsNJFcoyzInXA5CB5WQ6dLaoxkap3MeW7ihokZL86CVOXV9N9f9yfru6+nybdZU0Q3/QH0tDf+TNHv3BzheZnzHRrKadJqKXMVkM/5RgALKF//8lYQ75kEHIQ8o2ZLYob7avWKP07BxvHr1gSheZng4XeVJfw3qqI9tue9792j/0xyzQH2Rz7Mgf7HyRebD19AX94pCopdAUvQwjcENJSTOVCx9OcysynUuiXiRIPdclb97A4IN7n1eNUyIqxItaMgWtdbV4olZfY/VU3ptL9JLMBP0BgP4gZK/++MKin0bIBpCT3eXBlxcCd85uYNW/y49Oi8fDUyfSO2c37gEUEn3z6EXiImKSwg4esCwRX4kA6e9R/V//cs/2Xck+aamvrp4Wf9SngzZoHa9ByFLQH6A/yHJs1B+880WIIjX4ODr2QP23O6HVmiPeQOQJ0zCmnCnKS7mJDFjuFb0sJXz9+GRYmpANpgom+yKYRW2qffKGF8kF+oP+IDOxM3+w80VISUxKnjRbxKRzjN3gbWC5PPiBYyOcQJ+clLvpF3mUW/ZXFy+dxLvexnfTBMdfZNrKDhl8sReIMkwdIWRN6A/6g8zPXvzBtENCkI4GXj6s1pdpO8klx1hucV8+PHURTZ1Gkm1ahUofcX+jQabl9t74CBW9lIuP9McpcZZRS3IQep4CXuoIIZlBf4D+IMuxA3+w8xXBRv6Raclpbe9kGkZHaYbEJApMLNBEWYcSNk4SFUrlQxuYYjC4EqxEL51An5x4Eg3/xcTpUkZaopapffJ8zR9XT0q6HK/GCHdmsD7OD/1Bf9Afx2Qv/mDaoUIOYjizCuwyU7/uDX1S+GkEBp+cXw2escpaRGeqmoJuMkqd7Cb4q8qHlzSSsTNBadGvjQj0zccvcPvsHHfObqr0ETWGobHRi4mzBfcbNOyT0xznSS2daMQYj671ZSnoj2mhP+gP+oNo9uQP3vlCFQVxMxSFmEKoWd/yb2HxSE+QTuDWW9BlmuhjdVSj7wkVRi3LJxMnc5G4/97Ty9rj7s2le12jI4Kd0zG2hkofkcbxwcWrKoqpfxbrP6LibIhatooTcNHW3fy+eyCVYuT+s2N6UWLfa47toD/oD/pjBPQHaWOH/jj8na9OJ6NQnpRbiooko7H+RtN/p/Jc0JGsWPTy7s0lTI+PTUYtbTXT0ZCyhikYsY2aIq3GAO89vSzLdwUdxQwX8dzTOiguevnohWscJT1GJAqUEWG9wGGJHK/JxFkVbHPn6l7REW7ATzG6/OjURS9TOfmeODMb27H3Okl/dCsr/TEM+oO0sVd/8M5XijDiImwoKtIYjdWo7zTF93L53PAjEvXoZSHQrhHMmDijUY2OkQzdGDeni3Rf1FMW8EzldYTRy0GEkc+VI6Fe/r4pRChRTPkXilT+3T4/HyfOIBIaFGwz5+ohaIpeyhiPyENv2zfFaDV2UCfpj5b90R+TQH+QTuzMH4fufEVPyPIk/MrZU7cwYuqkzJmm7xZtbFRqzJTIiSIDJOsNWSXQlETltWSevp1zfY/u4hRiAg0HJEt0r2/D7kRVNkJu8KmJp+Z0JbwIcb9lxwsRT6BaohGRuueVNIeKU87TLZ+rR0BfUAN+9DJ64ROSiliumHJIf6jX6I8E9Af9QcayR38cuvNVQ52Mgpu1J3Jwc42IpMSpGxqvsbH1948lbOQFmb0o3PqT8weeRPWjeK0uzmiuft+TyXbJ1e9PJdDwBX9Bzakb9tHHbsRteQODt9+/60s0FGkgTDlevRtAW19wselcJZmgopeN4zuCh66TOUQto9Af7v1joT/oD/qD1NiRPw475qtP/m90Mbay4cst57pJnCEGxuWq3z47L9LMp851Vg2Z5O5Lfm59/6bzLFROnHZYrr4eKJ3O1e8ftezwwZPux0sdUbnPfY5d64DUnohEZd+xC4RR502iPstnc+HdPOk6viNFn/Edc0N/0B/0R7UP+oPMzZ78AfDOV0XDCam32RwdvpeL+FRPTBJR07eKw/SRLosoxpD3hOIcFLVchHTqyFBiUWFvfZRodDhVOqv/mPz3FJGGD3JMuozvEGzwr+v4jlWgP/QT9Mdk0B/0BxH25A92vjpSE8wW6HJBEGw/NW0CDRdRjBer+icLL25BnMnUkalQt+BrC1S2XJx4v6e6ECFkbrqO79CpRl3Hd+QK/TEM+oP+IESzF38cNu0whuSQpl7L/VZ0n1SYkDlvt+vbxXKrWAQqaSQwACyikT29kr2WZs7inBvvFjyquusWqJTFKdt+0+LN9VmAMv9Nm85Vkj8S0a6lFRnU2yB1/bfVOkl/DIf+mB76g/7YMnvwx7E7X2WvGYCXQ9rppMy8cckNT6Bl4xxKFEjMuFSePDVplq8d9Tjo9S903XUCLUnm46vftfgz4wvEjudq1t+B1Jh9fMec0B+LQX9MD/1Bf2ydLfvjsJ2vcOG28klvEJ9mcyekRXZpLmG0LSbR2IWLpD6E0gQmPLFmSJkJpzfWYw2m/aDi/3TdDRenjKG3AfIZiBrS51zd3HlKHFqkuUN/LA/9QX8Mgf44BlvyB3DgzpdDR0SA+G3LLVI2Lr1y9hcgdrvYzZSVEH5tellM1LjbqkxhtM9tYovc+1wJf099QSLEcvF1Pv9sFyRTM+RczexCgOwM+mNR6I9poT/oD7IOh+58hVNXdibnEzJsYDIldbvYW71cmKFR18c+nCGnip4WC3hOOl2wHTa1cRvRqHD5ea2R+NyliYHnas7nKdk89Md60B/0Rx/oD5Ibh+58AQNOyoxPyNjt9a4DS9fMdV71dnGQfnD9+KS2UOaQ6GWYMhLfaPoLgtgg1OhxzXQQahPhBUJjtc74PCX7gf6otqM/6I+coT9ITnCqeUSmrgyDSur5TZyQUn61Enjz5rYWydrE95wC9dPIuAH/9yqil7ZHoDEmTpevj/kvVPTaKLV6rerxFtdMke+W+l6bOk/JLqA/6A+A/tgC9AfJBWP7tAqZ8NW33rHf+to3Ztt/GPnZ2olYmzI4SB2QSGYtZ1ttv7XvPBT3W5W/keTt37/3Ooj4Wm/NlVgkU06lpDht/mvLEELGQX9s7zsPhf4g5Fh8+Nm3P7XWvjt2P+x87RAn/9htdSXSVDrBkRp0faEkv0taoNW7YotfptJELCyuH59QnISQ7KE/ukN/EHIs2Pli56sRL/rKAaaNDBNo931L1PLq4iXFSQjJHvqjO/QHIcdhqs4Xx3ztlGhucwzmOVdjNkw1W5bk718/Pmkd8xBDpuLV6SKEELIF6I/u0B+EkL7wztdB2Nrq30vjpdrYeARTSEUytWT1YphMFyGEbBn6oxn6g5BjwLRDdr7IxLQJVJ7XItXIbFShNAFQnIQQsmPoD0L2Dztf7HyRGQgjvHqWLyfRFmLSBChOQgjZM/QHIfuGnS92vsiMpKKYQix1RKeNuJnAGK0khJBDQX8Qsk/Y+WLni8xMbZyDcS/UZAr4whQoTkIIOR70ByH7g50vdr7IgqQGnMegMAkhhAj0ByH7YKrO15emKIwx5ocB/AkAXwTw0Fr7IHj9dwP4NwD8fPnUn7TWPixf+5cA/Gvl83/MWvvvTVEmQqZEpl4mhBBC+kB/EEI0oztfxpgvAvi3APxmAN8F8MoY81PW2p8NNv3fWWt/LHjvPwHgjwJ4F8XN9k/L9/7dseUihBBCCCGEkJyYYpHlUwCfW2t/zlr7DwE8AfDbO773twL4M9baXyg7XH8GwA9PUCZCCCGEEEIIyYopOl+/HMDfUn9/t3wu5L9njPkrxpj/wBjzK3q+lxBCCCGEEEI2zRSdry78nwD8U9baX4vi7lbvcV3GmG8aY75jjPnOL37vH0xeQEIIIYQQQgiZkyk6Xz8P4Feov38A1cQaAABr7d+x1kqP6SGAH+z6XrWPn7DWvmutffetL/2SCYpNCCGEEEIIIcsxRefrFYATY8yvMsb8YwB+FMBP6Q2MMV9Rf/42AH+9/O+fAfBbjDHvGGPeAfBbyucIIYQQQgghZFeMnu3QWvs9Y8yPoeg0fRHAT1pr/5ox5scBfMda+1MA/hVjzG8D8D0AvwDgd5fv/QVjzP8CRQcOAH7cWvsLY8tECCGEEEIIIbnBRZYJIYQQQgghpIGsFlkmhBBCLLoF8wzMzCUhhBCyJY7kD3a+CCGEDEYL883HL/QLPqZ6/svvf718avsSJYQQMoyj+oOdL0IIIYOwsJUwLTxhfuXsqbfd7bNz9/ebR8V79iBRQggh/TmyPzjmixBCSC8kWvnm4xdOmCLLttQRA1PJ1MBFMrcoUEIIIf3Ysj+mGvPFzhchhJDOhNHKUJqXH5261xwqZeTq4qV7Wkcz2QEjhJB9s3V/sPPFzhchhCxKTJyeNJVOPrj3uXvP9eOT2r5iEmUHjBBC9ske/MHOFztfhDQS3r7nRS0ZQ0qcWpoizLb9XD8+cSkjIlF2wAjJB/qDTMle/MHOFztfhNRomjlIBqcCFCnpj5NnRJxdpBnuS0cz2QEjZH3oDzIXe/EHO1/sfJEBdBnMuVW8yFLzhry4Jb2YUpzhfkWiTqDPzwELvP3+3UnKTshU0B+gP0hv9uQPdr7Y+SIdSUbz6htuNrqXFKd89fCrUKCkI8PEGfNKvK5ZWFw/OXEpJLz7RXKC/gD9QQazN39M1fniOl9kt3jTmRZPxM9pxZtHL7zpS4H8JRoVp5q+1VsjQ76KKb4rBUoG0SLO955e+s9Y4JPzq/KvSH1T5+WdsxvcPj/Hm0cvePeLrAb9QX+QmaA/eOeL7JPa4n3ovo6Enr4UyFuiNXEG3zXctiZRRjBJCxYWbx696Bi1rIvTe9VJ1K9vqehlzvIk+4X+oD/INOzNH7zzdSC2PutQSlZzfQ99mxuoonfJdSSCNSTunN14C/nJvnKTTEycMWkKBqaKZD6vJJp7hIisR3gulU8OEicAGAPcvbmMClQ+w8AU0ctn57CwWZ1zW4T+6P959Ecd+oP0hf5Iw85X5sQayJwjaSFNueRzyCiWXxxOZyr//8G9zxHOmnP5sBCrDN6Uk3h3aRYWqRRqQqLUzqPg1TZxCpVAH1TPweD+vde4fnxSXWzzwm409MfAz6M/mqE/SE/oDx92vjImKh6DbCNpIY2zJ80go+TAzuLFaLTFwHjPi0y1RDch0JaopcZFhp6ft29MyJKY4gJWL6BJhkF/DPw8+qMR+oNky4b88YW1C0DitE77Wjbkm2bC79A0o076NnesSIVM7997DaCKZN45u3HRvs3/7hHaxjEQH6v+7Z7WC7PuUcvajsks0B/9oD/GcYh2cELoD3+DI/qDna8M6bzeRsb0+Q5jG6C2qUyHrCMht7GBiEAnKPNYJq0jO70gmAMR5puPXxSPRy+OI1Gg14VoE5I6QqaH/hj4WfTHMOiPztAf9IfAzhdZl4kb7u5rSKQeumgJgSIT2Rykvc4FLU1HmcYlEt0r+rvt+XuSjUF/DIen8aLQH/X/PjLsfJFNE0YtyyeTs+nILe7Yo4ikdBfomo2IgfEW9ByF3caU3mv+3l3TuHYpFgNvimk9wYDQd8WSYsrgB+0bEjIj9McE0B+dPpv+AP2hYOcrV/ZwDnb5DhM23N4A6cirIskU1a3shEBNJdAcUy122XBDpWqoFI0lv2vnFJ0M68QyGLUA5kgs8ODi1TT7OjJ7aAroj0WhP+b7fPqjiWP6g52vDJk0KrUSS3yH7lHL/tOYRs1v6/+9urDUWjOyrkX7W+xmZqryUjUkRWPBNI0hYyNWrxNz0vDVukYv9xC1zBn6oxv0B+iPhT6/73t2C/3hOHTnyyb+ZUNTUTZyq3+p75COWvafSScmUJ0+ApSpIytHqmoXKB0EWhNnxvWoy1TT2ZFrucagqpNM4VuvY0X0sk2gqdctLK6fnLj/vn1+nnXdBOiPRaA/ZoP+yLCdzrVcY6A/ohyy81WbcUY/Msm7dQ1jYlxvzpVKWPw7TDSTDtAwm45OHckFXV2VQGP/thaxJOvizmGdtw/4i1mqrUWgqccn5w/SUcuNpIzQH8tAfywE/UFmgv5Ic7hFlrsOfMxhIUQDswlJNjH7d7DV9MCxF4etH9H8eTkhjdubR0VaRflkN0lu5CKMZEAQvbz86BTXj08iF6umd0qIi1pmdm7FoD+Whf6YF/qDLAL9UeNQd776DnzMIYJJ8iFMHcmFWoS4jQ1Fv7OgTzOww981Gr1UY1bGtJNanA8uXmWdMkJ/kDHQHweF/qA/Ihym89X7NvQec2/JbpEIcVOajpZm7g1TLuxh8oLJiOTuXz85SaSQdNnddsRJf5A9Q3/MA/2hOLA/Yhwu7bAvFnb19BFCurKHVCOHBbI59bqUZSON/hB0etLts3PcObsp0kfK8SvXj09cVL+tvRTRanHuFfqDbAn6YyboD/oj4BB3vhqjljqqE8Lo5ebpu3hf475QzahD5sVLhYmxoKg6peUcIMNMR3ElfeTBxatoFLPpn2ynI5Y5Ry3pj+NCf2wT+iM/juqPFMe+82Wr9T22NJMP8dG3rP1IczF7zuSDpskieIPBA5ZuYCUibGGzKM+U6POnLeoYi2ACqEUxy43DD3L/L9FKr93dkDgB0B87gf7YJ/THMtAfwzh25wtMC9k85SBOWTclNoOOtcXUv31ILuSnoi1kfnJLg8mtPEPR9dfd1bHwxiek2kVPoGW0UdJI5D0WtjalthamfL68H9iWOAX6Y+PQH7smt/Y6t/IMhf4Yz3E6X7GcW93wkm1iE//tKKKXd28uewu0y2dv7YQnJJlGZ+IijUk0jCpriQqSTqI/121bfsZmziH6Y5/QH4T0gv6YBmOnTGpeiK++9Y791te+0es9gxfdW+jgtkXCGF2NI7fx5aS9fHiK+/deR34v21mgsailnlnn6uLl5vKLCQEGtIOlRJvan1oqTdM5ppq5LZ079Mc+oT8I6Q79AXz42bc/tda+O3Y/x7nzBfSf/WbmxjF66zZRji63cw9LEIGWmXP836mKYALxNBKJQ7StoM6UEbJFouJMTBSh//vNoxeN7aBOpUmNaRA2fbFJf+wT+oOQVuiPaTnMnS9gWK99joMtja++RdsJg06RhCOhT1YdvQSQiGAW7xKJalLSZNRyGsKLDtbh5UiJUyaM0Nu5hTBNtR3bHPpjj9Af24H+WA/6o2KqO1/H63xJr7rDrc25xBlKU8+YFcPA+JUazfm0R2OYQLvve8sL+a1NMjrPaPyi1OQZEWe4/e2zc0+gR6/v9Mc+oT/yhf7IA/qjgp2vAZ0vISnRmWdNcRVYSVM3LpcfncbeVBt46Cr1ziIKY9C/7RQCleNCcQ6jFp1v3pj1eEb6ilO/Tw9u5jEqoD/2B/2RF/RHPtAfPux8jeh8CWF+6dz5+dK4a2lefnTaLW2klKWINIxi7qFSj8Edy/J3iglUaBv8CVTSBCjOvgzKDd9R45wb4d2SLuKU93lrV7Hue9Af+4H+yAf6Iy/oDx92vibofC1FTJxamuG6IrH3u4Xn4EcyRaJseNoFKs9rkYbEpAmA4uxILEoGHDM3PBdGyXNk6khTKhzpBv2xDPTH+tAf+UF/+LDztZHOV5M426QZ21dMohRoRRiN1utGhIv2pdjD6ulrMCQ9oSZRCnRyhspT3tv3HGidhY/jNTpDfywL/bEe9Eee0B8+7HxtoPM1pTjD/YpEnUAZWfNIRTGBbmkjwLZXT1+DKRtpCnQ6lkob6T0Ln7pYKv7k8dbQH+tBfywP/ZEn9IcP1/nKnGHiTNU2E/xlcP/ea1w/OcHlw9NCoLb6XDY6kRXU1SBzLdKQvayevjRtDXSn9AGL4hh1WBuEDGfqNsKTZnneAH4dkG3kc3XEWt7HTlgF/bEu9Mey0B/bgf6YBna+FqBdnEXFeu9pfe0Qa4FPzq/Kv4JKpdqjO2c3uH1+zkZHkVq8Tw82r8FI5eS4+l9/AVcXL2HKf1KHyQyoCxNZULaXpBIXkqmLJlv+E6T90+ON5CI2JtGtCHQJ6I91oD/ygP7IAPpjcph2OAPRqOXD06Q4Y9KsbeUkWlWqMH2EuftkLcI6r5+PirPawB8joSLMvICZjth4iiaBdkkZaZr63B3zppsxNjL5A8dt0B/kcNAfeUN/VEyVdviFKQpD0jQ3Ht3ECQDGAHdv/G0lfUS4c3bjbrkTshTRqYEHINFLvV8yIfrnLCOYNvGvLYIcXizp1LjLh6cufeSDe5/XHvfvvXZlcdujbL/KCOubRy94/EF/kP1Df2wE+mNSmHY4F9bvycc26CrO2o7DHr1BlbtPSCa0Ri2bYN7+pHhjWIx7sluaThC1jEWp+0wGYWDwwb3PvTsv0n7dObtxEcxDH3/6gxwc+iMf6I/p4Z2vJRg5O5UQi17K/qP/TcjaDK2PTBuZHBFo52MSmTQgFqUeOgufSFTuvtQimGD0GgD9QY4L/ZEN9Me0sPM1MbpypSM3Q6OWdXTqSHjbnZDFsPo/q5mJGE3PC0+gamYpDyXN5AVMr1n42ssUFegBU+DoD3JI6I9NQH9MBztfmyTf3jw5Hq5BLv6ozwbWsbp2yRUn45FZ3N5+/25dpA3SHD79eexRL9P9e69dCpx7K/KOXm4T/p4kH+iPbUF/TAPHfG0MSR355PzB2kUhmRFrZNaatUzWApHopWsQA2SmKrIOejrtPnQVZ/P055G6qaowpz+fHvqDpKA/SF/oj+Gw80XIxqmtDF+9sOzCgzKWv4xeymBaA9MqSS9qyXz9fGmdCKLaMJUaV3UAfIE2Lf5LCJkH+oMsBv3hYNrh3CQO/tDl1Ype/3GilrFpTEmB/B5vPn4Rn6rXFEKVaVfn/O1ig3G7fibTRfInOh10MmrZPiapmvwhUj/Kp/QYpMOe9/THKOiPNPQHWQr6ow47X3OgDn58wKgpe+1Tf+w+GiEtShGDeygR5HhCLUWjNEMCic5FLXf/+bm3FkhIdE0QRi2zZ8m1p8onsx44PTn0xyjoj3boD7IW9EcB0w4nRq+HoBsMyWHWWFtUoDFYWFw/Ocn69mofohESjVHpEXbelcxzJfkbxeqA8f97kfxnKYekkDw/ByxqM6nVLvQoTqI44sUx/TEO+qMd+oMcgdz9wTtfcxHM2iOLwekNPjm/6pU+kkwZsdsfeKojlerJ5sluNrKS+eyUv4msFC8Pt96FDTefN3rpzYJUvVBEMtUjLD/FWeewKVN61qojQn/0gv4YAf2xW+iPfOGdr7lQ9Vxm66lHLwuB3r25bIxgimBDcUajlhtshKLSRLX6eWx7d2FSCvQoEczYb5X6nQyMG9zqZLVQ9FJH8IMXClSd3Vp9nZNQkOGxdmk5JXnVeRtfxJf0h/7oDP3RHfpj39Af24GdrxlwDcfHL3D77NzdLr9+fIL7914nBZqicYB0GbV0DeTWgxsNMhA8KTw7P5xAByEzSS1IOA2thXUypTB9RJo6Jcr7/xJ3MWLgyTSPel+0ZVMtAHxU6I8R0B/zQH9kDf2xPdj5mpNI9DIt0H4zUO0yahmIM3WbXH47mc3m9vn5YhG5rOhwoQEEv5N7a30MydwMXRNk74TnABA/D+R46ci9yHRxic59ka46BYeF/miF/hgB/bEL6I/4/nP3BztfMxGLXjYLtDtanFuOWraJMzojjoWbAcz9fioqt4YUlqJ1MHlXjnihkSFetFJJM8zPl8Uo9cx3evD57bNzT6Jz1/+2hU+7TgRxtGnP+0B/tEN/9IP+2Bf0x7b9wc7X3JQNe0qgQPdog5xQKXHupTFsnIrUVI3Jg4tXjF6STRK7cBRpSv1WGwMIBhCXaSNXFy+9FKpZ06dsVXb9PcaMQ6p/RNUx2GPb1hv6ozf0B9k79EfqI7bjD3a+ZsQbNBoTaFlJ9LoEtemEVUV1aSJ7E6eKWjavARG+TZ24K+Skr8JRvueOSYnTSdOmFp+s3i+z310+PHURzTtnN7MJdOw4JBFpavKH4AtmnzKyBPRHR+iP7hzle+4Y+mMf/jC2z1y1mfDVt96x3/raN9YuRmfcQNEy2iAVLxaJCBeIu35yIjsB4FeqLYszlTLSR55yksn75PfY88Dp8He7c3bT6bt6M1ZttM7sgTZxNkkzti89BblIVPL5pz4P9IB314Z1Knc1i1WTNJvS4Y5cX+mPOvTHMOiPbUN/rO+PDz/79qfW2nfH7oedr4XQFQ+oKp+BKU6eljUJatIsdrrZRnA2eZbPb/V3aSM2VXCbQL3fpnzPXn+f3HHHb6Q4w32KRBcRaFn+O2c3rt0aMwZJ9suOVxr6w4f+GAb9sW3oj/R+l/LHVJ0vph0uhMzUIxINV22vDQIuEWGGcgDYAB4WnTqi0pGKP43aLLjYIqsyTJyx4JgJ/jK4f+81rh+fuDQSGccyyxgWVaQxY5Cq3dnqDg0iF3uE/iDTQX9sEvojtbtt+oOdr4UJFw+UdUYAeDIVaiu5g9I8MuE4kPLJ2sUYkJAmo5ar0F+cxckernlSzPB0Vf5VSSomUGkvppzBTde/pjFIXVOZAHhTnnu5+qyrNegPMgb6Y5vQH7FvuG1/MO1wZcJ0kiZyrkh9CccxeGkjD0+7DQpO5Ozv6XdK4f1+3d90iN8mR2rpFi3ibFtospJo/U7H9eOTKn1kpnMimr+vUt/CsUcx9Hiko57HY6E/QH8MgP7YFvRHnbX8wTFfO+l8HZmwQdGLALbm7R8wXz/Eu/Bqkigj3qsjx8pFLR+eDhan2zIi0DB/X3L35zj2MYECSqId6iSwn0kgyLLQH+OgP7YD/VF7s2Npf0zV+frCFIUhZBSmGuDpsIinK5eviTiPjIwD+fL7X69+r8jj7ffvUpwroge5N18YdhcnUEy/q6fjBar0Eflvkdoc0+5KCglQSE/O4auLl1XaSuLx4OIVHly8wtXFS3fxy44XGQT9MQj6YxvQH/XHHvzBMV9kXdTgX8ktNjAumhGbxUuL86hRS41IlGyZfuIM3xsLEzphzrh4bG0Mkho7Iqkrsp0WeGzmPeCY5y8ZAf0xGvpjD9AfwLbOX3a+SCdSkY8xAzFTi4jKayLRpjJtYVYbQqAGSqNxdqp+SPSytv6J8RfQnJNwJj6gPtGDzJ5VY4PSJP2hPwgZAf2xO3+w80WSaGF6a4NUG7jbxkJfmdYEGsy6FNtfdArcg0YtyR4YE7XMh5hEhdtn59E0MGk/Yhfne13o9ijQH4QsAf2xRX+w80VqSEUOF2OM4c2YZIctyleb/jYx9a1Qi4BQnIRkQ1saU+tFebGRd2Geu0hJBf1BCBnKUfzBzhfx0IM7tTBlKt/Y9nqw85tHL1yl71Phw9xfT6LpwgKgOAnZArWL8qZJEYLthlyUk+WhPwghc7A3f7DzRRx66l7AXzulabYbmeZXRCr76Fvhk7ed9S5UMShNshesLfLv94gnTSVM3b5odFsiDL0oJ8tBfxCyDvRHxVb8wc4XAeCLM6zUbmrTmD/LRS5lYOads5ui0puqwg9JIxExhiKlMMlWCWdrqs4Lg0/Or3aRtx8S3gmJXZB7UycHbckUF+VkfugPQuaF/tiXP7jIMkmKU1ZRF8IZdvSCfKFERaA5VXZC1iBcDFbOK/98srh7c9k7elkslOnPVCXnpUy3vdb6JzFxdrogB2rtCeCv5cQ2JR/oD0Lmg/5AVv6YapFl3vk6OKE4vcrdMqWpgcEH9z73JCrTk4YRTEYcSV90pG/zF1828d+OGaOXGYnTXZCXv0GsfQnbE6CQqOzj9tn54LsiZFroD5Ir9Md0n01/TA/vfB2YmDh1RKHvWhK60nsRTDB6SdoJc7fDAbOardUlSX+S2dcuH57i/r3XwfcoopdAt/z9ZNTyyYmL+q0RtWwTZ592JWxTXBrJStFYUkF/kJygP+iP2L6m9sdUd76+MHYHZIcMECdQNGj3770GUEUcpLF48+hFrXEk02Nb/uWIlO3Nxy+Kx6PioSNc8py8nvt3imL81IfrxydB+Q0+OX+AT86vYG0hxxjyWm1hTLcBGheXXYyR4gTqbYr7vdz/bej4HwX6Y7PQHxlDf+zKH7zzdVCSUcuB4gz3LdGTtfOGj4BuQJLrXhQbZrX2hZRbz5AGdJ+WektjQvTAfx29BBCJYFbvkkimJiXNrKKWE7crvCuSF/THfqA/8m8/6I98/DHVnS92vg5Kt0Gc9XfVqVfaaEWnPGfBu0VfPNGOkk7x5/LiiaUWyPNdCQfQAvN+ly5la/r8qEDL8y4t0O5ly+GCVb5jd3E2jZiu71vaFV6Urwv9sQ/ojwL6g/7oCifcIIOJRRe6vCsczFncur5CWNHlVu/1kxM3gLpHm0g60Bb1C4+pNMw6+rfW1Ku6/kmZpbzhDGk11CxGIqA5p5HtHBUuNm6UuFsI9uMXuH12XpS/3P3145NBApXyZSPOoD62iTM2QLy1Xaml25AloT+2D/1Bf+jy0R/Lw84XKRhQyY0B7t5cRiu67BMoKr3MXmVhF22o90hT1M+TUPUGb8pVPeuPzCa2lEBjF246wtVUD3XkSs9iNMfMaN7FSfFEpwtALXEgEclU+5Hjcvnw1Ak0+b5I+a6fnLh95nQ3yDumiS1SM3O1titA7aKc7crK0B+bgf6gP+iP9f3BtMMDEs2rfXiaaLTSldxtYeN5xNLY5XRSb52YOGvCbLoTbyNrXyyU+96Uzw2Mm8UImG4MUPgbA93TWrwxBYhL1KWPlL97mMMPwEk0hZYmkIc4u6eMtLcpQDqCyXZlXeiP7UJ/VPuiP0B/DPjOTDskk9AeYSC5kBJnKM3WtS/K4x2L+s0l0KkH0uoUgnBtoDHfI/UbRyPC/htdGdx0tol0Fpc+UgpUUkjCKGa5ce1z9P+LQLIQZ6+UkXaqCGZ6gDhZF/pjO9AfFfRH8X/0x3pwqnlCtkZCnB/c+zzZWMmCpvfvvXYNnDeds4UT6PTFHSpOGzx82qamHlPOsKyXH50WnxEWSRXt8uGpN51t+Lvqxl4EKk/dPj93Uc+ri5d4cPGqSotQjwcXr9xrVxcvnTS3c1egW9SyFeNHegkhHaE/ANAf9Me6/uCdL0I2QFJAxYudI0QiUYlkhlE/+ay50kfaxVkJRjeyVQpB8S3g/isdwezzPcLfNywr0P4b698UaB9PYGDw9vt34dJIUM3qJhcBOsVHPsNtVz0JIB9x8m4IIXlBf9Af8hluu+pJAPTH0rDzRVorubXdVkwn8zCVODXhjGIPLl4VDf3z88kGHafK3rR10yDa955eRvO4o7Ojofvg6TZxzn1hEpWo5P7Hl2/xztlcpOmxc3ESBf2RNfQH/REUmP7IAKYdHhwD4xqbeMNm3IrpMRoHS8ugzo1gG/5lycicaNlH8X82/veETDGIVvK4o61z+ZTMjiafOW0522lLZ0mVSSQqD5dWEjz0NjmKU7cpMTY4xxNJQH9U0B+RvyeE/qA/gP34g52voxI2kgbVIM0alUDDR2owo/9R+c5UpQX55uMX8UfZ4OUg0n4NezrfHVCNfJn/7KQzde6+igiOEacrd0SgWli6Trd9j2HjCZrHEoTl8QTa47cNZZqrLB3R65nwSaPSf8Z91oOLV+P3Q4ZBfwCgP+gP+mMyDuYPph0ekKbF+tJ5zqaTKD1sNZtObkiZuq7DobdrXINjYvqlXVTvAqqc99SUq8Hmkx8nXfapSc5kZOCljnSiszj93xVAcixB8Vd6sdg5x0WsgZ6BK7wgj86e1iEVrevFOVkW+oP+iGxOf9AfgzmiP3jn68ioRu3q4qWr7GMb0dxTRnSUUqT5lbOn3uPO2Y3331quOpq50hdoXdBUN/BNqRZh9HIuvHEGkfJO+EHx/06UyV0Uqfc0rVcUllXGEiRTWVQ5ZosM54RR4w2Sv39zKhqQFqduW3K+I3II6A/6g/6ovZ/+GMGB/DFJ58sY88PGmL9hjPncGPOHI6//T40xP2uM+SvGmOfGmF+pXvtHxpi/XD5+aorykHbcVKVhZR8pUFe5bR4L98XKF5NmmKMvU77K7yAybZr+dYmyJ9cJaaES6H7RqRo6b78Lzb9tu+BTFyjRdJY9oy4Uuo4F6p2OlkHKyNGhP0B/7Az6IwMO5I/RaYfGmC8C+LcA/GYA3wXwyhjzU9ban1Wb/d8AvGut/UVjzL8M4F8H8DvL1/6+tfa/MbYcZCBB9PLy4akT6P17r3vd2g7FmRthCoY8B8Cb/UlwkbxyJXlpDPTsQ3MuLNmfiaOAR0Cn40Sjlt1/0yqVJZKio9NZdurQaOoImtqSfqloun0hmUB/AKA/Dgv9MRlH88cUd75OAXxurf05a+0/BPAEwG/XG1hr/6y19hfLP/8igB+Y4HPJSGLRS3dyqwhmW8RFtgkrdk5Ry1juu0Sr9OKHstCkPMJFJUWoLoqJ5SOYZDzRlJEJSEaIw9SRneO1Jxifjpb7HZEjQn/QH0eF/piXI/hjis7XLwfwt9Tf3y2fS/F7Afxp9fcvNcZ8xxjzF40x/+0JykP6UsqyJlAA109OPInG/l0/OfEqdi6VW4iJU1adD4UZImtvOJECLqUkzMFeRKBteeh0eG/GpON0QaeO7J3kBTmGCzRHcRIF/UF/HBj6YzqO5I9FJ9wwxvwPAbwL4N9QT/9Ka+27AH4XgH/TGPNPJ977zbKT9p1f/N4/WKC0x8BV9ohAPYk+PnGSdI/HxUOiflKxc6ncQFqc5Yu91uEIp391DYHK4Z+TMWvqZDHzT6LdnEP4rg6SdYhdkAO1C/H02/2Lc2lfSF7QH/THYtAfx+EA/pii8/XzAH6F+vsHyuc8jDFnAP5VAL/NWut6T9bany///+cA/DkAvz72Idban7DWvmutffetL/2SCYpNBE+gAG6fn3uV/sHFq0qk6iFRSnldGqxcxNlIT3EKyfU3nEdnMUFYiN5r6qTEOXvjpNIl4tP3TrRuB9R3IavSdEEOqAvxhjsi+gI91wtzUkB/dIf+6An9cTiO4o8p1vl6BeDEGPOrUHS6fhTFXSyHMebXA/h3AfywtfZvq+ffAfCL1tp/YIz5fgD/AorJOMjCyIJ8FtZF4KSSSo5x2PhpUbgoUfnU2hUbaIhadhJneeZHcOtvPC7W33hw8aoYRP38HG8evZj0u0cHoSpRT7amzgykBtDGyt1l3Y5w++h3tAPXBmK6zaToYy8CvXN2446NXHhePz6pn2ZygY7qgs6LRGcgTuJDf9TfTX+Mg/44Lkfwx+g7X9ba7wH4MQA/A+CvA/j3rbV/zRjz48aY31Zu9m8A+McB/O+DKeX/GQDfMcZ8BuDPAngQzJJIFkYkWotkNj2enbsKn+sq6t3EWYVlq2lf1ZmsiE4BO2cDXDZALgLYGL3sxmK50Ho6asTK3b5uh1fuiDijUcu279EaVSVjqN0ReXbuzpUud0Tkboiul7mIk8ShP+gP+oNMwd79McWdL1hrfxrATwfP/RH132eJ9/15AL9mijKQaYlFMlPkUpk1sahl2zvCKWHl72oV+khorZwC1kUvywZi8qmDw7SU1uhlRqifXqajrpe7EKjM9BSLYopc26KyXmObYK6oaqPYbbey7YmwHbl9du6m3m67I+KNuchImqQd+oP+mAz6g/7YoT8m6XyR/SKVfxcko5bNa3FU62/E0xT8jTFf6sjHL9ztd5GQrIEh23VBGqclopaxsgOptTsk3cVGp9vtOu6gV8qISmmQcvl1pJJ6m0A5U1iaaFqaiDSF+j130wYdDPqD/pi67AD9cTT26A92vsju0SkjY/ekz3aduz/LQOnEx9cEWoqjTaKeNMv9eeKcu+wlofjHLJ44VeqLpI6MiarGyjxK7DtEX4y33RXJUZjkeNAf8nb6IwX9sQx78seiU80Tkh/dVqBPLn4IuNSROWmcAahsj7vOAASVG+015jPdmndlR/PUsX2ZRJxhOg5S64kUQo/NBNZ1GuacZlrKARFp6kFI/tAfDvrDK1P4LeiPadm6P3jni5CN0HkGoNR0uaUP1pgBSJd9aOS1+hoNaS9TlOmj+aKqhBCyBvSHFJX+IOvDO1+EbIhYBFMa5dTsPzpSWVvvAlgskpaMYHaMvHoR2McJcQ5IF/ny+1/3Z9Qqf9sx6UBTpbMQQshU0B/0B8kD3vkih6fLbESNqQELR6a8CCba19Opimmr7YsnACzbmKeihQD8tTuKjSus/9+xRROBEd8lMqZAytJnQPqSg9EJIetDf9Af9AfpCztf5BgkvdZ9NqKcSC5q2oUVpKnxBKrELxI1MNBpMECV6gJg8shrTOg6FSdMa9HvCy+YYmMiZh+MTgiZF/qjgv5Il4f+IB0xdoPzW371rXfst772jbWLQTJGS0XWabl8eJrIwy7ekRJon5mI1opQ6e/bRi7RM6/Mxj3pIrAp5oq86vLoMniD4VU579977Y+PWHFMBCFkOuiPNLm0Y/QHWYMPP/v2p9bad8fuh50vslukMZSGUBrB+FotxTuGrg9ydfGSqQEDiYo/fn3jMcfv7MoSLOQYi6aGaGkCmCadhRCyCvTHNqA/yJKw88XOF2nBwuLNxy8A2zV62W/fuUQt90YqCrvU71qLqEaiqVJ/YuM0GK0kZPvQH9uE/iBzMlXni2O+epAaEDu2ISYzYuX/qmOXngZ26EcsK86uA7O3Wi/1Qoprfr43HuLZeTS1pZaPL7ODgeIkPvTHBqE/Ngf9QbYA73y1oBuqNx9HcqIt3PSnwHYbrL0Sy8OWW/9DBLrmbETy2bV6KFU0mN1J6iXr5Hi6jomgMImG/tg29Afr5BTQH/uBaYczd76iDVXTT1XeXmaDlR86fSQmUKD7NLBugOyC4vTqYqQOSkqMW2dEYJ0kZBXoj/1Af7BOEiKw8zVj58s1tsUfjq+cPU1u7xquzBusppSDNcoalmeOMqQGwerBr+E0sDHcNLAYvzhj13IDvjSlDnZJHYnVybmPcVu5cjsfCJka+mM56I/mcgP0ByFTws7XTJ0vHeUCujdWMpvNGg1WV7yLgvqLiwu/Vp4Zf6+YQGszEDV97MLTwIYXcGE9vPzoVG9coHLK9UKZOqI5x+/bmlpVbcgUK7Jr6A/6I7EDAPRHqqwC/UFyh52vGTpf4exG8hyQaKwA1xiHC/y5AZYZCDSZ6x3feLEIV2oMxJzpF1uYBjYmTq8eBqfsB/c+h4XF9eMThMQkOtXxrdWrrk1J5tF9QoZAf4D+SEB/xMsJ0B9kW7DzNXHnKyVOJ031M8k6H7EGq9ZYlQ3FWgMp26KVAOoRu5kF2iWCOutnd5wGVrbXzD0NbEqcWprpdWb8/Vw/Pqld3E0h0NQYAi35GFuI7hMyBPrDf57+qLbX0B/0B9k27HxN2PlqFGfHBmvOxmooUUlFGjuvMVPbzZrC0ZJeMPfFRk2i6rO1TL2pYNVvN2t0NVxbpqyHXaQZ7ktf3E1RJ5uiqkBDOkuQyqLLMbQshOQA/UF/6M+mPzqUr/iD/iCbg52viTpfbeLs02DlJtBYTnzroO9AJLOvAh/fYJ0FEVtYROgTiTPcr0jU1ckBM2w1RlXL5zRrpbMQshT0R7Ut/dEM/UF/kO3DztdMna+xDVYo0LVWr+8jTv2ecDHARQYw+y8ccq2LYfUwde7Wj5eFdbNtXV287C2sydNZSta+wCRkDPSH/x76Yx3oD/qDLMNUna8vTFGYrTJHpMjAFNPO2uozyv/w/84QA+Pnrxt0juoN+awvv//14ndRjyOKM6S9HhY/1ntPL2uPuzeXSEpVPX3n7Kbz8W0T5wf3Pu98vhgYfHDvczc1swxSl3r35tGLrM8RQgT6w4f+yAP6I99zhBDh0J2vKJ3F2Tww9P6914ApGgcnpRll1EiHqOUaGBi8/f5d73FEYqlLTVuLKGMYg6hAXZ2EWp+m7wXdHBeZCAS61jlCyBTQH4tBfxTQH/QH2R7sfMVyj9veAKsaqIaGZwPRSpIXzWKySWlquggU6Car/tF92/AIyjmF0AlZE/qDZAT9UX0uITlz2M5X64xJiXdJ1MgYNN6mD6OXhCxJSqDFiz3rZCdxplNZ/POkg9DB6CXJG/qD7Bn6g5B5OWznK0rL4NRY1KhqpLrtfy0YCcocnTIyImqp6VU3o0WqLjC7RFSbytd2sQkEKVZgnSUbg/4ga0F/0B9kU7DzBdUwNGzRt+EKqQ1GXhLjr4lBDo5N/Hdi2+ZxBP3OjVhEVUcvnTCZu082Av1BDgX9Qcho2PkS9hgkseGfzV/STWms3n/UQcxLMSx9aThaVE0XdKkFVsesF+PK0BBRDXP3CdkEe6yv9Ef20B8+9AfZCux8oWhEwtXTQ7a2HJo3FW/xBG6fncOqf4L87YmTLEfmdSsd2R8b0Y9HL1eN8hPSE/qD/liVzOsW/UFIHXa+AuLRPYNPzq9GCXQNOTmBVk/g9vl58VAileeCAjNquQC1Y7Qga14wjR1PQEiO0B+uwPTHAtAfhGyTY3e+QhkaeKunhy+KQMPHJ+cP5i7pOGIztSqRxranONdlrsHCFhbXT1J1vPGNk6SM9P/YzMO65LjQH/RHptAf8rH0B8mTL61dgLWQiJG3IrpaI8LARN/VVZSukbLAg4tXqzUCshClhS0GoMa+llAWkeJcBz1Y+PrxSU1W1hYRv877G3thZ9GQvjF+EoFWykHTrI8kN+iPCPTHqtAfAfQHyZhj3/kCXC67y9tvjF5uFy+HP/F4+/27bKjWQs8oFr3OGp+65Cgv6HqVKbabua8HGUEnuUN/0B85QH9EPoD+IPly2DtfDhWtDP+ORy+77LIetbx9fr56YyBRTJIhSkRXFy9x+fA0UgcLgd69uWyNYMailrpe6s/tWif88hRlmT16SUjO0B8kB+gPQjbFoe98uWieitDIrFXXj08GpXoMzokmhyVWD4FUHUyPHek0jiS8oOteyEkj+psY60JIA/QHyQH6g5DtwTtfQBHJKRuur5w9dZGj68cn3vSl7btR4swsakk2QCR6KXWwHsHsJ55o1LJHeVLv6zuOIP1RVfn0OUNI9tAfJAfoD/qDbIZD3/kC6uuZyK1xF8F8cuIiSG3/XONEce6KLsd+7ID4MHoZjiEZs/8haUzhFMZyPvjlGDaOgFFLshfoD9IG/UF/EBLCO1/wZ666fXbuZuiR6BGA9lQQJc3iTy46uXVEFG8+fhG+UGD850Q2Q8d66H2HY0jiEcy2XRVvHjV+pJS5nBP1WbS6jyMAWgZZTzCzW+y9o44HIS3QHyQG/QH6g5AExs4+5cz0fPWtd+y3vvaNyfdroabTtcU0qQYGFtZJNIWWJgDvtjejltuiJs3gFPnK2dNCQuFMTmW9GSNRVwcRr3+SxtS0f0+aZflrefod5BmWBQAuH54mJG7dopcpiaYiljqyenXxsne0XwszdqGjI7AUKZkL+oMA9EeqLAD9QbbPh599+1Nr7btj98POV0BMoEJbYwWgV+NE8sPC1qT5lbOn7rUmnEyVRKcQqOAu4Mr9a5FqtDSBYeL0yvLxC3cuaInHv1sl0ZA2cfaNrEYjy7FDZKrXJokuE5KA/jg29EekLPQH2RHsfM3U+QL8xkufeKkFA730EEYrN4sWBVBFKIXLjxLRa1vltAP+jFNDG+umi7i2KLqgUzCGRtJT0UugSaDd9z1GnLHIslzo6O28CPPICxtC2qA/jgn90VAO0B9kH7DzNWPnS/AkKtTvlntQmttEi1NHKp0wO54mNYmWjfWQelG7iFMSbWr4p46ktwm0rTypfU4lTi3Mppx9J1IKlCwA/XEc6I9u5aA/yNZh52uBzldITKaU5fYJxSkN8OVHp06a/iDh+D6uH5+4hlkkKlGzMQ11k0RjzBFJTwo0SGFp+46Ng7jL8jaVNRZd1vutRZfVsZDxD2FkmQIlS0B/7BP6o18Z6A+yZdj5WqHzRfZHTJw6WtkmzXBfeiHJKQXqytoUSY+cylNe3DVFMNvGEQh6rZgx4myUpv4dVNpXTaJlpJQCJYQMgf4Y9vn0B9kq7Hyx80VGEqYf3Dm7GSzOcL8iUSfQGdbrCWW6RBS9dTC30CD1IWMJYqki3oWO+hw5bt7FTESiTCEhhAyF/hj3mfQH2SLsfLHzRUaSjFq2ilPOmea8eW/624milzkQSjuc0U1PbQxU02jLe4F+YwlaxdmS2lOTaEKgTAEjhHSF/hgG/UG2DDtf7HyREQwTZ3GuvPf0slxz5Eq9ZoIt541e6oHBa8m471gCwJcm0O23mCq1JxxXMWjRUELI4aE/xkN/kC0yVefrS1MUhpBd0CLO955W648YA/d3JdJKYgYG9++9xvWTE1w+PC0EamVPdtDsThodydOLQOrPnxsDg7ffv+tJ1FurRmP9/59EVD1Te/QxKd7uDoj7e+tRZULIStAfvaA/yJFh54scHh21TG2hxRliDHD35rIm0PKtxTYwuHN2g9vn53jz6EWvRSoB1NckUWX1BlGrHHT53LkRiQpTzurWGLUcigVginEGDy5eDTouhBAC0B9joT/IEWHnixwXW18IM7ZRkziFSqAPquckUvb4pOUzYp+qpGnhZBlbk6S2DgkqoS4pUSGU6SwMHNAeRi8JIWQQ9Mcs0B/kCLDzdQBSDfdRb5GHa32UT0Ya427ibKWMkukFNDuVryyXnhZXH0uJtur93jm78dYjke+5h4HahJDloT986A9CyFjY+dohyfxufyMv15sNax7EFoGMLdpZblw8H0zTKzK9c3bjRTIpUEJIG/THdqE/CNkG7HztiC753Zo3j16skuOdE+G0tmsSy0/3xhO0pErIbEzyfa4uXrrZo26fnVOghJAk9Ed/6A9CyBDY+doJYaoBUF/FXaNTC4B1c7zXxMDg6uLl6gJtmrq4a366gcEH9z5PSnRvAuXsUoRMA/0xDPpju9AfZE3Y+do4tYG18KNeAOqz+1g/tYA53mmsLQZDz/oZDeIcOig4lKgT6IZnZfKm9jXA9eOT3r+PW7yUEEJ/zAz9kQ/0B8mJL6xdADIcaXR1w3vn7MY1vpcPi4dEv9wDcK9dPjx1jdKdsxv3+ptHL6IRz90Q+Wr172uChTDnKMbQxTpjDx+ZmQlQef1qTZLNUMry9tm5izRXLw38HrZYJJOQo0J/jID+mPaLzAn9QTKEd742SmxGo76pBkfN8TYw+PL7X/cvEBoiYV2il8VCmQ8SLxYNdVtD3y7O4v2xGbSqhTqB6GKdj4tonU4f2UL00h2rcNC/il7ev/e6Ux2NRS0tLG6fnwM2vZZM03Hb27lBjgH9MRz6g/7Qz9EfZAi887VB2sT5wb3Pe+V46+iWiFQkuusIZhkNA9AQ0Suil9YWggqR52PijKYoqEY6jFrK6ylxvvf0Mjl1sTGFVO/eXFZfJiA8tps6rur4uOilEmiXCxN3LDpELa36J3cHao/y3AincCYkZ+iPiaA/ottlCf1BMoOdry0zcY53mGJw5+wGMKitNr8bVHt3dfHSNcR1DD45f+BJVEszGbEsP0OilrfPzxs2s/WxFerVruvFyGKd+stF00ewneMq0Uu52GkSaOpfTJyxqGVMmGjI0glFSshmoD/GQX902ufa0B8kR5h2uDH653g3ndAm+KtKMXCLOgYRo72g0xFun5174xXS39U0i1LhGuy29lQdx/gx7L9Qpwi0SCMxZcmrY2tgvDVcNoPK3ZeB/m6mMYP2gdAxcXovWz89pTx2Lqpc210125tcZB5ttjeyLeiPaaA/6A/6g4yBd742RD9xFuEVSTUIH1V0y2/ddZQLOGD0Et3SEJp3WYnTi1rGUkZa9tRXnEIVwYyXL/bfOeOil0qgtQhmyyMqzvKYhKlYco7pmd/Cf0A1SYEXyWQUk2QI/TED9Meg/S8N/UFyw9hYInLmfPWtd+y3vvaNtYuxOFqed85uGsXZtdGtBtpWkRYL69Inri5euujMHgdPW1h3YSC57JJaIRcRXb+zNJht4nSf23osh8sTQG0sgZb61cXL1oHCOeKOV7m4qxyzrgOmAbSKM1zfKJnOY6sLLm/dI7Xw7N7OF7Jd6I/poT/oD/rjWHz42bc/tda+O3Y/vPO1NWzb4Np+DW5bjjew7+hlmA8O+BHMMBc8hs4Lj4ozJ0bGWpry4pegFsF8fu6imG3/bp+fdxKnbH/50ak3+1vtAbgpuSWK6qKYOz1fpqDLsWLkdyboj0mhP/q+nf6gP8axF39wzNdGcCe5hTux6/VrWKSryvGu56OHuftboO3Ei0aTyrdIPrjI7/LhaRHFLaNR+qJC0INxgYg4u0QHJ45aejuO5O3320P1eyZTXcpInTBnxE5P9Vw+0f0ipfwqteMRpmKpbVOTEFhYVzfkPAnHQ4hUSVWPYuMiHKZ6fqn6dAToj+7QH8GO6Y8K+mM19uYPdr6IIt7QbmGAbacGvtiwdlIamCqK9UgNoAY8iQKJ2awCafYW50w0XRR1oVNjp9ARwLlTJsJj1pVU6k5tUHT0rkC9DPpipCbQ59tZD2dOavVI1SH9u1tYr43R6UEciL4F6A/6o4L+oD+mYK/+YOdrS9immY3GRbqaGlotptwiMdETsyXKmjopdURM8tlFotIoNpUhlCbQT5zhb9tlcc7G/dmGhTs7lKWtsQu3X2PmJpFoX7zvp57rO+W2TLMtaUMu0l/s0O03p3NmSWL1yLVhqN9lkPNNkDolFzkcBzEC+qMG/dGwP/ojCf2xDHv2BztfpBl1S1waxVwiMakTU16L4Q1sRf2kDFMStAzDE1vwUhYGSLMsGK4fn6hGu1icc5rUESlat+mLY3ns+rUU0ijm3ODVCNNFeogzti85Xx5cvDp89FJHhoH6eIhyozrlhe3VxUt3zrk6VV6UZVufiA/94fZPf9AfbfuiPyr27o/Dd76OHFXYMk0nJpCYYchWg6GbTspUSoKbiSjYp24ABjeSmYyJSImz8Xctt5Xf1pOoyavBmwuXQtK2VsxBCFNyPGmqcya8UHHjIFDNGnd18dKrUznVJ/pjm9Af80B/DIP+8DmCPw7V+YpFXfTtbc3aB4akieVa16IhCRnJgoqxyEh4UoYpCbH88FERqbKM3mKP4SYjU0dinyljC2ATOezldvr2fmOkqUQaxtrA4cwi3iGTRC2rnbl9HpWYOLU0m35jScOR/XgL9gKuTq0hUPpjH9AfI6A/atAf07JXf4QcovPVNGAPCKb0DHK5i6co0lyInZgAvNm7mk5OLzKiGvsuJ+XQ/PAYOj0lPSaiSB25e3PZW6BNa7S4sQXqPEiJc48zN6Xq0Fh09DKc5S2X7z43TeLse2GiB6TrKObS6Tj0x36gP7pBf6ShP+Zjj/5Iset1vuRWpawaLj1nWXk8fHgrjT96keVq401lmWW9bFut7A677oKKqRPz8mF1cnaZYeiDe58XU/6Wv5ecmBLFXPSYq/VhALh1YfQGn5xf9Tq2YwZKp8TZ9tu6tX3UbyrC2PM6P00c7buPE2e8gnvnK6pzVV+UzAX9MckH0h9zQn/slqN99735o43ddr5CaWpB2sQ/oGhA5aFFqrdZjaChjTWye6XtxBwSFYmdlFqgi6AOoV6c06cSaJNE5fVQnDpqGbsQ8qKWkfL1nbnp/r3XLoLp6mgGjR1ZjnZxWu9RLdQbz/lyF2clc1/o0h/7gv6gP8h22Lo/urDLtMNUTjfgpxc0UcvnznDmHX92o4KhOd590wzWpHtEJFZgE/zl35p2swyVq94vtdijrA0jufv1zzbl8ZGGpk5jtNIGi3fGfpoJbvXrfYlAOXPT/omm4jSIMzYLmzxXtEXSEaiff5KSM1edoj/674v+oD/oDzKUPfmjK7vrfLXmdLc0CJJ7XMsRzWGqyiDKVW9kh+V4j0ozWID+OdbF6+EJWp2UaYHqfS9xUjqBfuwvznn9+AT3772O1DPT61ilLoLm/F6bmLkpjKSqv4ee2+63Vn8v8Xvnhr74ir3aNv21McW5G56vTWMipiw7/UF/APQHQH8koT9mY8v+6MOu0g4nz+mGn06wZv6tNLKxHO9wyz453o3bJdIM1qTL7ej3nl5GT1BZCDR1axoojrfLtcaCaQ6J9JGh6Uryvlq6SGS7qQa4RnbuPmPcburpXWMIzyWZLQwmdj4NKnDy994jsTtF8frTbyHf6nyt7aZ4feLzlP4otqQ/6A/6Iw39MS178UdfdtP5miOnWws0m4F6kUa2Xpb2HG+d353M8YaKvqxE9xOzeKFrVCQ8KfXxttXZuciFkmvMUV0YaYH2kaiW5vXjSpxLR9Hc72mGD3KV7/Lm4xfVQ42fmfwcXPvc3gGu3Y28MnzB1+p4zHWe0h8a+iMF/UF/NHxgr/KROlv1xxB20fkaFn2xiUdFGMUE1h2o1xS9jAv0gSdR/YhJE1DizDlqmXi1/8mZjl42vDwLKYGmJJr6F0rz6uLl4uJMfb+ukf9QmsGOaiIdTJAqoqOXffcbnjdrX3TuhWT0Ul+UjYT+oD/oD/qjN/RH9izhj6HscsxX+ywp9XxuAJsZqKfPa8ndnyLHO9kAZB/I6S9OOSn1b6Nz98M1RpbAG0Bd/u4yiBqAO86NqGPnNeCZXAC14S6Eu2CGj6FJjZWAhRNo/HyKlzk5PmEjv/tobJeB0vlDf9AfXaA/8oT+2Cg78UcfNt/5ikUtm8TZ1Mi2DtR7vP7id00zHMkJL9t1RaI0KXGufvIf6MTUxxdAVKKpYyvHMZQmsP4x7FKfGsUpF3D1a8NxF7GlLG+fneMrZ0/duaQFWn2UUW+rriidOBm1TDAmZWRe6A/6Y0/QH/TH/sjXH2PYRdqhMFVagT+wtnwOkXUC1h48jfYc76bb37nkdxMfA4O3379bHOPy8N0+Py8e5RTGsX9uG4k2l8ev9RgmctXHpGRE04+G7chdPLm1kyLFGlJWdx4F319fHF8/OXHnRy09p3xImWri5PnjmGUB34mhP+iPPUB/BGWjPzbPFvzRl03f+eoetZwmrUDIYZrKVARTynf9+KSI8lh40tfETnyKMx9EohbWu0hLprKo+tj12EXTJ1TqxFJR4mjU0qpB8mVZ5Ty/fXZeRTFHRC9TqTpyPui8cC81RP3WcnFAcaYoJnDILXpJf9Afe4b+oD/2QZ7+GMumO18anasfvjLuoJUtCdbP6Q7pkuMNNEx/uvH87qMgEl3qs64uXro7AEunRTkCcWrcuTdRaoaXqlOmkEgOvxajFqmOxkrE8+jnj44er1ZvBkJ/0B97hf7woT/yZMv+GMJuOl9z0BS9zKWiDM3xzjm/O0Yuv/duCVNHVPSy68Dhalfpgfdz1q0x9aImUHUeCXI+yWcJWzh/ZkdfdCSi3tai1+K9W4f+yIdcfu/dQn/QH2M4oD+2P+bLNq3fMdNAPT1N5Up5+35xIjnez5pzvAfnd6+Bnho5sZDhFDnBrtE/GLEpqF1aVM+pc1f7DSc4D70c/nCsRMMj+/NnaaJVxaiZAHvsyiI+256daCpz+oP+AP0xBvpDdkF/TMKW/DEC3vnaETq9QOd5R1NbBuR3Z0HDiXn35rJzZCR5UrqP2co0yRNSynKWmZvmbuAm2n/qHGpiU+fPXKjzROpNLJLcJ3oZO0d1VPyQ5+iM0B/0xyjoD/pjKAf0BztfO2XJPO/Z6XRidhdoozhVo38kwvQj+X2dQOGLUYs0NpB4iilz104P2tU5NCOpNW/qqSPVOQo0S5Tn6Lrsqu7TH7NDf9TZ1Tk0I0f1x/bTDsmuiaU0AKlUhuLktDaeRiLPp8Zg1NIdDjbwNZyCWn7fBxevqjSS8neNTZUrjdrgKXP1MTN+GfzNuA5KlgQXucVTsXP0gXeexh48R8kU0B/LQX+QURzMH7u489U0mHZvg/QOSyR6GZ/K1pQnnnUREqEpTUQ+I0x1OBqpGdCAeWdu0tEv9aQXCRMozvxoil7GB9yb9vNR0TQIfyz0xwGgPxaB/iBD2LI/hmLsBlcv++pb79hvfe0bcGs7lCe4TBU85aDpsBdtYXH9+KQ6gM/ODxXdWgt9rGWtjsuHp71nUkrtW07Mq4uXXKcGKl/duCdqEosxZuam2md2f+Ohj1Uu6DEOUlfkIkvSjIacq3PNfkZ/HAf6Y1noD9KXrfjjw8++/am19t3ebwzYxZ0vR6IfOTR62TaoliyMlf9TA3TVQN6+J6bsJzwx16Dr5y6Vwx7m8MN0jBgOkGb0M7t+TYozG1IL97pFe4FeF7up83O2yDX9sW/oD/oj8nn0Rx5s3h892f6dr0hPuX6AbK+ZjNy7YlFLRrhWoykyAnSPjoQnJbDwzEpBOQD46RL1NGf3vOTULzmQuOusTcA0v5v3eamvOULSZF7C89TAuDsNgD/YHqjqcngBmZz5rHxu7LGnP44F/UF/qI0m+zwyLbn7Y6o7X5vufAGR1JHyANVzufsJNDlNpU4ZoTwXJyZQAG5KW9j6yRkSnpSy36XF6YQZnIJu3SEpV2Sq5zUkujRN0uY5lzeN56kQnK+xWc+AeTpeXjnpj8NAfxTQHzznciZnf2TV+TLG/DCAPwHgiwAeWmsfBK//EgB/CsAPAvg7AH6ntfY/LV+7BPB7AfwjAP+KtfZn2j6v1vnqFL0stm6bplJ+jqb1ARi1XBcvt9vGo5gA4lGvyEkJYLHjKZ8nF3xAJcu21BGJAGmZfvn9r+9aoGS7pM7TMJIZQ1/UAvAGR095jtIfx4P+oD9I/uTqj2w6X8aYLwL4mwB+M4DvAngF4J619mfVNv9jAL/WWvv7jDE/CuC/Y639ncaYXw3gMYBTAF8F8AzA16y1/6jpM3XnC0hHL9P5ofWZjITGKSonHvBNhhNGtXR0pOnkjJ6UxROLiFNHK2XgtyAD/muUjY9MvxpKNIcoZm5jDkge1FKAOg68F+bqdGnoj+NBf9AfJH9y9EdOna/fAOBDa+1vLf++BABr7ZXa5mfKbf6CMeZLAG4B/JMA/rDeVm/X9JnRzlfDLCljTliX3810kSxZY1alIegLPEDNuBUIM0x3klQljUgUKNeuKRulpevjVsYckPWppQB1OfxLnpv0xyGhP+gPkj85+SOnztfvAPDD1tqL8u/3AfyQtfbH1DZ/tdzmu+Xf/wmAHwLwIYC/aK39uHz+IwB/2lr7HzR9Ztj5AtoFCgybzUgPqmW6SJ5Ec7ubDrWq8ovm5wfRyvjU1s370SIVieoI5lJSGjzmoBQ9JXpcug7AX7KNpT+OC/1Bf5DtsLY/Dtf5MsZ8E8A3AeDt7/tlP/gHf/WP1Moy12xGa+R2k+G0nZyLX9SF68uoaGVXcYb7FIkuLdAxYw6AqpxaohQoyQH6gwD0B/1BSJqcOl+rpx1q2qapBDrOZlT+LHPOtEX2T1SeD09bpKnPybhY1hBobMyBPA+Ukdhq4wKVMlJLdynJSaBdLgByKSuZHvqD5AT9Uf1Nf5AcyKnz9SUUE258A8DPo5hw43dZa/+a2ub3A/g1asKN/6619r9vjPlnAfxvUU248RzASd8JN0JiEcwuM6RoYtFKgOIk3WmKWsblWVSy954Wg/mL6aqv1Osm2Doi0Jki602DvWMDvT+497lXPk1MomsL1IvINm+YTcoLB6nPA/1BcoD+oD/mhP4YRjadLwAwxvwIgH8TxVTzP2mt/ePGmB8H8B1r7U8ZY34pgEcAfj2AXwDwo9banyvf+68C+D0Avgfgf2Kt/dNtn9fW+QLqqQPhbEZN7xMYrSRjkDrYLk5fmtF9OZE2C1RkNPl03BFx9k1/cWUNZt9aU6BRaTY1icHg77XKC3QoczA+oniKIu0C/UHWhv6o74f+GAf9MZ6sOl9L06XzJfSdqjKcxQigOEl/uqeL2EZpelu2CFTLaMqGvX8EtnlfuQg0NehbD/gOt19zzEHXQeqybWqgOgXaHfqDrAH9kd4X/TEM+mMa2Pnq2PkSus6QIlCYZAxaOHfObhKy6S5O946IQPWsalPPqDalOL3yKoGuMQV3avyBvBZDpOPEtJCQUoPUu6aNAPUxEgCjmH2gP8iS0B/N+6Q/+pUVoD+mYqrO15emKMwWMDBZCFFX+KNW3sOgc9tHyEZjDHD35rK+mKtN/PcIhoszLIAJ/jK4f++1S3dx54T7Pzu7jDoP/K7e5C1Seufsxgn0zaMXiw5St+U/V87U8VbRYblbc/vs3B1TRjG7Q3+QxaE/pNTBX/THmLLSH3lwmDtfa1PLDc5o4CWZlrmilu6dqeilXsj12fnoi8X+M23Vxx74g77T4w2Wil42iTMlTa/YpYxkAoY5I5j69we6L6wq700trprrTGEkDf1xHOgP+mPSstIfkzLVna8vTFEY0oycBN4AR1OI9M2jF140k5A2JHoZQ9elSepVGLVs2PC9p5e1CwJjCpkW5fXLIxHMycrahyZx2upx/95r72+YYu0nia7eObtxz/dJS2svnn/hcufsxhPnB/c+d48YBsa9Lr+xzNR35+zGRTLZ/uQP/UGmhP6YAPoDAP0xBna+ZsaLlMSY+KQjB8aoRWFH1qtovU2mi7RHYZuED6hyz9iOx75TTJxaTDUJpQQ6YzmljJcPh42V0Bcplw9PPYmy/ckb+oMsBv3RCP1Bf0wJO1+EkEaao5Z901/S0UstolmjaalobIuYXFmVQPV7i/+bsNyRtKP0+j6xh1/2WBRzlnITQkgJ/RGUlf4gYOdrVlqjlsG2hOyZtuilOwfWiKZ1jAhq2RdvU9HLCcodpos0l62QpKTr6EeVppO+WAHgpY+sjQ3+HR36g5AK+qNLMeiPrfiDna8c4K1bMgW2GHi85AcOHfRdI4wETkzjheyAVAwA85W50ziJ+BgJV7SGsRKClz6C5S/gQ1nKuCY9lmkrIl0V+oNMAf2RhP6oQ3+Mg52vuely3GecnYeshE38t356YJtQzAD1oGWjCeqU9dcv2QWdB4AvjxZ8ODg63LLrRUsVLa4qW5jDLyx5AV+TZXhhIxNKBCI9HPTHMaE/8oT+oD8mgp2vGTEwbjpgchzC4y5TtPonv1FT6I7Dolwks/zv2+fnLe/ot+/G1/Nqzw5A/2hxm0AXGyuBKlqpp2tufRx0Zj/645jQH2Q+6I9cYOdrCfI53mRJjFoTw6C2bgbQXz6dopZTYfw1PWIbTHUBsHzKC/I8Lzvl6ven0/TSM6ev1aZML79r08NNxSwSzUygi3Cwr0tK6I/u0B8F9Mdm/MHO18y4KFY4dlH1zJkyslMiqSOx6KW13STaKM655dNQvq1FL2WQs0SUcyCaMhLZarIxEsLMYyWEWLRSr5OT+mdgfIlmJtC5oT8ODP2RJfSHgv4YzJfWLsARMDB4+/27RQUqIwMU5jzICbc2ctEkx/vq4iUuH57i+vFJEI0ypRCtiyyZoPgip5g4XcqIVSkjU12QuYCWceWv/77FBUCXRj0mf11+/bmznB9l43v77Lw2FmFQvVkj2jqa8kfQf87+ibYWrZTnAaTHTtgq5UpSW26fnTuBfvn9r2dxrs8N/bEc9Af9kS4A6A/6YzJ452tBRKIU57R4M94Es9zkEOGQ1It47r5QSFRHMuVRPN8szqkbcT3uQKcVxFJfALRGX7uku0w93kCTHD9TuuT68UmnuqLHR+jn5ir3lISpI+G0wbMTiPPyo9PaOjnew8AtDioXN2EE80jQH/NAf9AfbdAf9MfU8M7XBmk6yXOI2i2F/A7hTDfe3xarRThc9PLjF7h9du4GpV4/PvEGq4bv6pKTH4pz8qhlVZyq7Cr1pR699KOvIV3kv+SFjk4duXx46gSaPi5xcQYbTPfb1/L1Z0gZWQAvaqmeq0kT/ve1sMWFmoFLbbm6eFlFMMuLlVzuVGwJ+qOA/qA/hkJ/LMOe/cHO10bQDUvTehM6OjNHpcrlYid2UkbJ4RazcoJOHwGA+/de9yqX1INFxFl8oEOXPV7ubuKPf8yM38H/IO+CoCbQ8neNRfQ8cYa//SxF9c81a+spRZvBJqadrl0kFEhU1UXKS4G6CL2KXvJOUDv0R70c9Af9MeCD6I812KE/mHaYOS4dQq1ZgPD2qjxQVKa51jYI0zLWolGc6rdwrDjIUqcr6PQRSSGRdIW231Rev35yEhfnnGU39dSXrmkWKeZMeUnhTV5QficdwXRfp5Ro+CgLHi/zDBFjP0Vn/Mxgi850hg5Ry4Q4BQODD+597l3IeOkjpBX6I1EO+oP+6An9QX9MCTtfGaOlKSetnkIzfHizuqAU6USycyeCWjMhK9Tv400vKuQi0OfnURFdPzmpiVT/k9d14+2Jc86In5KNnuVpiED196l9j7mjlghy91MCDS5I9d8PLl45cc6aq79ANW1Ng5nug+pRyxZxxvYh0cv6S+tdyOcM/dED+oP+6AD9oT+C/hgD0w4zRCqDkyaqVdXltdoML7ZqjOV2uIXF7bNzt5+hqROdUzQWIFqW4OSU6UXl+7uvvOJt5nD2KklbkGMmjUJqQLI03MV/Wk84wHzSCcutRaNTSPT28eKrdBf1fZYUZ1Aglw+uU0h0RNLC+qkK6nkA01+4lMfSS2UJN9lw6ogXteyBSyGJiZ6phzXojzT0B/0xCfTH4uzNH+x8ZYYnB+tL8/KjUz+aEqBPNi1SiZSNyl2XxiY3YlGRknBw5dqEU0aLNLREUwN19f87aS4kHC1QPfDbG39givKkZj/y0i4wf8pLE+EFgRZouJ2+YBG8Mk90DHSZ9GfJxYps9cn5Fe7eXPYWaDJlRF3ELH4BQyaH/ugJ/bFIuekP+oP4sPOVESlxOml2uNVqUczyIiK9unjpRfGGCLTW2KxELWrZIM7gjVmJPxbFFPnEcpHDxnqNRs4TqJK+NLxdIq9A1VAvFXlNUVs7ydR/Z30sapKfq9yByOPr+vQTaNv6OOGxINuE/miG/gD9MRH0B/0xFna+ciQizq75rTLIUEs0nGJzyG1WaWy2Rm7RS0H/nq4BRzUw2UM1am3HIMxfnnKGrlTqCwBXx9rKttg4g45ELwwlnSQhTGDm8RElbQuTdhFo4yBpu/wUzWQB6I/JoD/ojyboD/pjKOx8ZYKLyo0Qp0ZPtSkCLT/IfV4OU/6ScRcmYcMXW6Mm/Kwx1FJfWqKuGi1NwBfQmvUxdSETstRg7jA9Jz41cyXQJtrWx1lqzIStGh53F6HrMW8c2J3BBVgO0B/Hhf6gP6Qc9Ef8vTn6w9imZcUz5atvvWO/9bVvrF2MyRgmzthxSyzsV97KF4FKdGzVtUsGoG/xl0+4ga5N75kjx3ptvEH1xRPNlIITmU513Guyie02KJvIVyPpTCFbqp9TIb+pyFNScvqu6ZPa91IzhXnna9i2FRt06hh48lyg3FuD/ugG/VFBf+wX+iNR5vI9Y8v94Wff/tRa+27Pr1ODna8M0PK8c3bTIs7ieIWrlRe3h2UdBxO8IyLQjV64xPL2mwS6N3l60lSnroxd0FKS30TGa5RPOolOLaZU1C+MULryt+9wctlvAf07xgQKDPs9lhSn/sxax6BckBS2/fvExCnPb7UNmxr6ozv0B/2xd+iPSJmLPybxBztfO+l8pSpXSpyhNGtbOIlGBFqeOFcXL11jujWR1ORZPBkVaE2c5bZb+86CritAVV80OirkUoUUekzAkmLqHWkFvAj11qLsY2kSKNBdorp+rLE2TtgxkCnMnUCLjdpnOSu3W3R9og1Af/SD/qA/jgD9ocpc7WwSf7DztcPOV3PUsl2cbsuIQHX00lXAZ+eba5RqqSPVC7Wc8b2KU0tTy7INLVOdaz93HYhFm9tmGVsq2pozMYECiEb+UjRO0bzA+RCmjiQF2rwTAOx4xaA/+kF/0B9Hgf5wOwEwnT/Y+dpT5+vRi5aoZXdxunc0CHQXqSMxgba/cXPfFUhEt/WaPWjOfdYXTkB97AYwn5g8caqIq7zWxP+/vXOP1SQ56/OvjG2Ik9isbeLZBQJGOSbcEgOrEQR2IfbhEnRkW4rleBScdcSRDblJQbuyjywRywHNQEZCiqIErFmw2SUzJnaInTOQxDPGyo7AzO4mXgxOYNfGITgenPi2skBGNpU/uqr7reqq7up7dffvOfpmzumvv+7+uqvr6X77rSo50OvuBeo1Sq8NoBm4mJTIXqlSzvuUY5NKq0BD2y++gz9w6VrrrSmgP7pDf9Afe4H+GN8fvPnawM1XespId3kCqHUTWksdWak8gY4CNUV8td9zpF7MQm03gKoyHVtMvjh9aTaOVq+r7ocpULcthIxi1iRkiA7u2XAuyHkb21Rotxe01B6nQgK179UuBlCXZvkdzDas8XweE/qjP/QH/bEX6I9x/cGbr43dfMVTRvqJE4jIU1Sea5YnUK9UYtGbVX+/EbuPtsv0o5hSTGPuK3/77TRHmqHqR+RyxwS61mM6BKe8j9A9s1wu0LE9hdiG1LYfsShs02dr0jTbt8fj70N/DIP+6LdM+mOd0B/lxEHHf6ybL47ztSPk2C1boG18jTVXsN3F2VTjKfFbYBDVw6oBvcY446XU8vThidNsrv9dHLkr1Ad5HXk714Q/Rg4At12Dj0a6NMW8oYb4/nbINhX2820RZWdAUuWKPXYR4Esz9l3I9NAf64H+AP3hQX/Ev8sS8OaLbIIhA01mSwdxxqLbsS6k/QupM4enuHX9CE8+cGPc/eh/BzMtFnn15R4U6BTbuSL8sh66cATac/L9lB4rzNBFjllxGU0GKuGVEjVj7SQLVCy31rmBu7Gt34eQIdAf9MdeoD/ygDdfhGSGjFqKicG2HEB9zB6JUsX7sS6kgUpOdn1Do4KhdJHm7xHYbil3I1CZwz3Gdm6FrheOfvkKXdz4kWUZUZb59eePbzoSTRVo0xMHn9ykSUjO0B/0Rxfoj2XgzVdORJ7Ual1UgsMXXzWYJpkTiFr6M3Rpy6EUcNfpiSPQuaKXtTz91G2222e6u9WV3QGFXUcv+xJKR/LLWOjixkaU5XJs2hFQSTRVoHK5PIYjQX8QC/1Bf0wA/TEeT1l6A3aPKbAKKjioIaDEY3+ydUK57qnRvjasQEOU0agpL6yGfA8TvbSpI6Q7sXYgJ5eqlKTU42NlaseJseXHHpsnH7hRXeyQ6aA/iID+iEB/DIb+GBfefA1Eez9dsPmrdjlymbX1dCyHfk9VYuG1x+8kT+IRv/49mNnPW2x00P6epZi2XQcvgt8OpFmaIo/EQ5YfR6AmskyaoT/IVNAfBvpjdOiP4fDmqyO+LJ988Eb1MnfrnWWq3AEL671JFdHLVIFGxVn/Mqt9ZLsbRopaWpqil20XcCkEI68DkJUz6U+wHUVj2dLl6+6rJ6bMaIREGhJoleHDKx8J/UFmhf6gP0aA/hgftvlKxOlWs5jg/m/wx1FIGsPASx05uXQW9caghUDvOj1pzN+PiVPm62toZ8A8khm6qbvWoVHLCKJXqMH58Canfk/4xyqnhtyxdJHw+R9uhG8b3gMINr4Ptv+4tu9exST0B5kN+mN10B/78wdvvlqISdMfbd1SG8PAyDQmUdl1plzWxcsHuPfc41GBxmgT54XjhzcdTSDLUpbnkaKXZdnNDP8ccr6vuGi25CJTP13EfzflwizU+F5iL8KsQPfcqxj9QUg69Afoj534gzdfDTiPwIU0ZUqIP9q6P4YBUHWhCTQPJHfr2hHOHJ6W0cu4QBNSQupfphSnjVpuNaJA8mXtFWntYrqYGH6Coar3k55gTImMhg8Qp6Wx97MrB+NFwVcM/UHIuNAf9MdW4M1XBPmoFYh3q+mfNGXOqhhQzn421o2mjPbcunaE2w+vtgg0/TsAYPfAZDHKCJ9JJeldnv2LvwUIXUwDgbFozLyyHY6tS+aWqKzH4uki/VKRKoF6F/M68vuOoD8IGQ79UUB/bA/efAUI5bg6Ba+lEauGO6CcjGY2jmMgGhnK/H1b4QDpJ51MFWHUcn00pfaMNW7PpBhZ+heDXQTamDIyYxl2opXexbR838d/eiGXkTqOyTqoGmnI3H3b+5m8iNgD9AdZGvqD/lgP+/QHb748GhsXtkjTYscwsBJNGUhO5u7b9BH7mZNLZ0sRyp575Mnnn8AyR9++T3GuBAWnDLipFkW7jdEbTcv2HAPLiJ+3718MSoHa+avNEO1WrDgXjFr60craxbSZHkQ8vbDH8ta1ozKVYhGBJtZhqUSjl3CP5drThVKhP8ji0B8A6I9JoD9GgzdfgiZx9ilwIYkmC9SITubwA6YbYXNSSpHKisb+LxtHU5zr5eLlg1r56xu9TO5GegxE9PLM4WldoIELwlqkUgfGFZqpHMfE6UszVDf4Ty8A9+J5VoHqlfd+thLoD5Ij9Af9MfCL0B8TwHG+IqSJU0deLl0GkisHzjSLsY9czx/fxIXjh4vCaN67ePmgfNlVXzh+uJzPRnoozpUhipBNOXIrvm7j9jSvqkrNGDMy6JRjI1AZwSxPFSNR+xIbFo68z0SjOMVTjFjdYC+c7zv3RPjcN9996wNJ7hX6gywG/UF/kOzhky9DKGoZF2dRa4Xu+KsxDIDYOAblHb2u1u03oH7Wq+4qtsmLYgJVhRr7HgCqisasg+JcB37jeXvM69HLtHF7JNGopZ6mC2kZifcjmHZ9ZQcDHlKagFueZy3LIzzFCJ37Mpd9iykVe4P+IDlAfxTQHyR3ePMlCUUoAjM1PWa1g8klDyR3PT6QnFP5oMr3TfkelObK8aKXbQOnAvE0Ehvh9MUpG9WntuloEmxIADGBWmopId56nGjl3OkiI6WPAc0CnSN9ZPUN8NcA/UFygf4AQH+MBf0xPkw7hPeIuJo4aCwD25AwYuAqYtMSLLJRzGe96q7qMXzLy85Pca6TMuVCwenp5+Llg0AlWIzbY9NIQq/i/bg4YwKT89qfJx+8EX6ZQV7tT/D72BQSk8pkU0lCP2W6U7EBmYtz/PSxUfHKUSgFaXRkudp4yhr9QXKC/qA/RoX+mAQ++fKIRy27NyxsHEjO60oz5dGxFSnZCYHoZbyb3fTBU31xxqKWtpJ1xiZpuNgrB4bU9fFI/Ci8mdich59L9H2K9LEr9fSxWVDhBvh9mbUB/gqgP0g20B8A6I9RoT9GgzdfFp2Sq9+dpK40N9qbyxTYfbb1HOdQ19FDxu2xpIjTkaYQZrzHo4pyPBIjSSlRefFn26M0sdj5MHH6mF0HgM4X0L3Qkd/l5JFSR2KpSJuH/lgF9Af9MTn0x4BV7ccfvPlKYoLuNJU7gCZpxq/Q5x7pfQnaBAogSaJSeEFxevP6vTTZ6aVMwitxxiMBCpHGBoXMMQovU0bExEEX0qGLZ/n0YuoLaD9iHG7/0b3xPdAQtdTTNMBfL/TH0tAf9MfU0B/0Rxd23+ZLVhaNlcP4KyaJyFxxAEVFI/LEt0yZ7w6322h70WW7io7lvttI0sUrVZfSNXGaqKUjD10fEPLkUtVNbu2F4mKwnA+iS1xgdcequS7oczEd+O4K0d66Rqe1/Ydy2n20ERJnGbV0J2Z3kTQm9Ef+0B/0x9zQH83QH3zytQh+r1UkjhNJ81lypPcZaRo8FYATyQxiKkMrTf9xvi9OX5pWkG0RPA13YEgZyZyrV6bpGdJ2pyG3ferrikj7j3r30xcA6LIHtBjR7xJIRyLjQn+kQ3/QH3lBfwD0B8CbL5IxjeK07KS9Q63b6IBEY1KyEapQtNJOj/XQlCJNuY33nXuilKiNys3dLe5qCOTtT0FT+lG4DUx643tLLFd/6+clyRf6o4L+2CD0x6rZfdphjRnutIOPVwlpwea5l93uolu3u7euHZVCjFVqUpz3nXuiV766legi3eKuBNlt8Fzri3U/He6COh0pzrZupzcP/UEyhf7YDvTH+uGTL8CJINg7+tosI/XmQshQrEQ13B6fopEvkR5Sf6setWyOVjZVssr7qz4wpP2422CXzIaXPgKgdw9oVrgp3U6nb166xLMpP/QHWRH0B+kN/TEau7/5ko9U5YFzT+6iMeHoPVYRMoChPT41posE5gbCY5IAaB+XxOTynzk8xa3rR6tO9RnjQjqWZjElTW0/Qj2gyc+FpGa3f6g45bKdMYHCX6J8P4ce6+gPslboj2WgPwr27o/d33yVmMep9tF2aCC5PidNUneaGea2rimCQIbjp4v477ZdOLaOSwKsL3oZPAW6X0jnNJCk0/ZD1Hm2LiolKiRlB/Us0dX/oUb4XcUZGoTVdlHtzyuj81l1G05/ONAf+4L+CEB/0B8N8ObLoiO/l/Qby6C+mu4RixSRjVVw7LpqDZXlJih3+qSFVyNUDzvv53bhsSpa00W69c5U9cxUCXRV0ctACllI8qOkkellxjOpNb63Nw1wU0kstotpi83Lr/V81uFcdOoZIUzZuD+EPw6QXMaiDfHpD2dd9MdOoD9c6A8A9EcKSqd0yp8ZdzzjNv3aF7x41GXa/Gd7cE4uncW95x4PHAydJFC7W4NjGVw+SHrMGhVZfcbBAqutyysWcrBEJzfce4w7duF18tLrhyK/ynclyJSRM4enkahl/8Fh/WidLfdAUUHbMpTb8avVAw3R3NR6IDqeiUy3uHa0yL6onV/aFVQToZ7PktfpDcRq659ybJymtBFdSR5w26osdQNGf9Afe4L+CEN/bN8fb3zsHY9qre9M3uAIfPIlUe5dvG1EWO9G87wzjoE9geR9bOgxsTxpxMRawQtKs+keWQ17hFp7dAtXlvJ/oDi5bB5vWXAnGjMl1jgYyK/iJT5V2FlGL6fuGncwsh6Iprj0rwckc+XrxwidX7euHbU+LZD/jyFO2TU1EG6wLy/AZDfUdhmLd0VNf9AfZEToD/rD/+h2/MEnXwZZeGT0EkAkgll90p5ATSdKMFoRiFo6hauYACCcw2rnlwKzn0ktQKHCbKcDCI/S7kUOgDyizyQdW97LyuvS2dGiluUSItHLpaN1TeRSDyxJ6EJV0nc728TZpVtqPxJusfXQ3HVQLuWG/iBzQH+EyaUeWJKt+2OsJ1+8+RL0P3Hal9tZnJEIYohQFDFFoIMf35r3zx/frG3DGgTaliud+/YPYUl52sru1rWjLMuJn1IDzFsPbBW5X4eIUy7PChSoJLrUPqU/6A9J7ts/BPojDv0xDbn4gzdfE9x8Ae0CBUYax6CYoT5KvJmeFEE088oR6kuBtQi0MYpgpgHtj29lDu0aBCqF2dgWQqTgANsT6WLyNOfC+eOb2YqjrANM2Zb7COgn0PK7F3/sTp79xOm7KbzP/SjmkvUP/UF/mBnpD/qD/hiJnPwx1s3XU4YuYGuUI3mjegRp5SRH87Y/PvK9i1cOyp5e+orz5P6zrtD8lyrEKnvVKXONVcJo8BFxNo1O74xAb3ZBbf0p654Re0yefPBG8XrgRnh/irzhJx+o5m2LcpLtUNYB5pDbci3rgdj57yPrAlu2KM42cRY76u6rJ+WrSMkRJ6fAtgex2JueJeof+gP0B/2xa+iPcdmqP/jkK0IoggmILjRNVMMfUE5GJwC3W81Y7y5+4bLT2qKIrRFEc3L6d/DRwmzW1fURrh85AJZrexEilo7TKRUHmYwnNBJLpo3knLMvaa0DUD//fWQHCbJb4L2IE3Drm3jPaMWcQHwgVgDRwVhjddDSvR8C9Ecb9Mf6oD/aoT/GITd/MO1w4psvQJw8gS405QkUwh9/QfZI05Sn30dmZcHxutGU6SNNsk57hNuMjM7kEpmx+z82FkRKKo4lJRVnTdiyLVOjfHkOHpNo5fIEwnWAvbBy6oBAN9aWlAvorRKsa2plrZiz+8Cj7mCsuaUl0R/p0B/rgv5Ig/4YRo7+YFfzM1AbTM4cjDOHp7XK1cc/UVpPlgFRRGcQQlVUhBeOHy4HI7TbY0/6scUpv4Ndl//3Im0vAhcl8vvKCs7n5NJZ52JEdm27aHfWY+J1je0ep6Ir3LHGaVkrbQNKBkWK+kCSQPwCei84595AqsFYvTKmI78vAP3REfpjXdAfrdAf47E1f/Dmq4Ve4xhYWk4Up4IPfLaLzEqBmrQVR2Amf37KE1au35f33CPRN0aDjTSTo8EoRGoFCmD58YQm4uLlg3pqksag6GW5HBFVklHtNeDXATKKLUUqcYRZTNhNtLKGOAfD596QFCVTwcG7iQDKC94lLt4t9Ef39dMf64T+CEN/DGSj/mCHGx468gMUBf9Zr7qrakzZ8rLzJ6y0HrXs/wXK6GXZeLnhu44WtcyRSHQ2NRpcNgpHsT9tdEo2yGzK+88esem28ne/TxG97JqZHI1a6iqit0asRGVj6lvXjnDreuR17ah7XbA7+ovTRi/rb7htq+bsuIH+2BD0RzP0RyfojylYrz/45AtuhdEUSZRdx056IvSUmR+9HH2jxJqSZluAsdNirERtJFNGMZeIyo5FmQ7x4A0nFaIevSwEmpq/HxKnjFqKiavcb0AlUQBlNDPEWr/fWMhzccyUkdygPxI3SqwpabYFoD/SoD/6Q3+ksXV/7Prmy2lQW0xoPLiy4eSqey7S7b01+R+w0YWmXGz/se3cdBdn0/dX3l9uWsz545vlx5dMaxqMF72UXT5XVAItp4i3ZWQzmqev6w3pt4AUKdkX9Af9EYf+qKA/YtAf+2W3N19+XjdQddNr37fYikSj6jrWVtJby9veCinijD2ujnVHaj5WsuXoZX0gSCXEqB2RNjWMjuXqr3F/EWKhP7YN/dEO/UFIf3bZ5ktGuGyUS/ZmZCteOfiklenth1erQSix3rztrtusdXPUcmn8qKWZ2FmcQBGVcwfmM9OhnBx+uw67/tUSyN1vHgiyEKl9xRfrdh9Nds6KTxEJ/UF/0B8C+oPMwYpPkRC7u/nyK1m/C1krTCtWwDSWFSIFhEQxjUAnrYxVNYhlWuWvWitKu4xp2gt0o7nheXoDzVCDzOBo6DM36h8TG70EqjIhBWol2gV7PuU2bg9ZAFN0FFS0e/U1DTVJf4D+oD9K6A8yKRvzh2RXN1+h6FYpzUtuN7Lyde+5x12RComOJVBdWQxQ6JX33lVeZYHuub7saI1a9u0ZJ3BcVftAqWshJtBQFDMUzfTfu3ilkO5U4vTXF9susiyyXMlj4x4nJVK0RmKiSDn94UJ/dFiwD/1RQn+QEFvzh89u2nw1iTNc0VbYHovsZy5ePig/JwdQ7DV2h5HlrWtHuP3watFo1UTdNHo2xPUrrehs9UpwrPYHc0aq5LGVx9Sfq484cxiMbw7kYJD+YLAnl85WF1emwwAZvS0v2Ox+EOVvzHJgy2tbj3JsQ5MZcjBWNd54QElpbCNesNEf/mz0Rxv0B/1BBrIBf4TYxZOvsnL1pvXpQrZMGzDSc8ZD6Zg+IO/s7TaZX8pClhqNaYxa+gVICNtfX1/8NIHtEc7dbxsLZ02U5dF8VRnFvHD8sNNDl00psRFKe9ztfFaaY4rzyQdvxMVZfIHVtqHZDcFD0308oMYuqSEu3keA/qA/hkN/0B9kMCv0R4xd3HyV6PHG7pCpJI705N8dtsvKrEzl8AQaW6Z8VG+X1SQvX9gAat3edqVrusraiA7Gt0GcgSCBcrBHWy5sOknoJSOVZXfAI4oz8QtQoLkhDkV4MFagi0AbI5ZTXrzTH/RHD+gP+oMMYCv+8Nj8zZefLjJUnBa/56Ixo5c1gV45COZNl/nRAXG2Pq4PCRvtsq4vpi7uOVNGyDSEophWio2va640Fzn+K27AvjXKciSflCD2VKYSqH1Z5LSQOINRyzEv3OgPf8fQHyQK/UHGYO3+aGI3bb66ERJHPaFUDgrpRy97rVLktlqhlY1yFRrTQoCAOCPI/Gw7v1yfTf+QedkyD1oW+qg4yeqRA0Bq6CQhjV1ZNUYt5bkWyPcesw0KGYgXvbTtQFLHA+rSJfXyUWv6g/4g9AcZjQ36Q+kV9tN4xzNu0699wYuT5pWRyzOHpwlRy3rD2mrQxPqJGDpwt64ddW64WVZOpkGqzQNXUEW0taFnJClNAJW8Wu7cZYVohe2sS5UzhhvImvfsNjjinDFqmXaM+/ZUFY6WaBQN5+UxZ5R2fKLy1G7HB8ELNkbOs8Gva4Cqt7e6QLstd8ouqekP+sPORX+sD/pjG+Tkjzc+9o5HtdZ39lqhYB9PvkTKSNuMoQq26rEoLNDaYs1j6y4nrhNNVHB6DAKa81Br0jTb1LZ+p4ciMUK9LYRS2E5javF9g9HSpSutyGHu0yNO+6qqk5XMhBCnnLa3IGVbfZZT1DZU1/gRTDtfCva7zzIWEP3Ruk76o++q6I/ZoT8A0B/ATP6IsOmbLxnRGkqsy1iZOjJ4HV46R0iiIXxpAumFJ9ZFLNDe8FDm9i8uTvO9ZfqLmzZQ5AP3jV66q6qiJWR5bHuZvaQr2XOusRG5htMWKAeRtgkUiKeqAfOnq9Ef3dZJf6Suiv7ICfojOBP9MTGbvvkKEk0Z6Z9WMCY2T9rJkVZoLxgdpemvU0o7RdjlfCOsfyhy+3Vl0VHGg4j2jJNN+5J94u/3PYizJs2Woifny2X8mphAAVQSDYwFBHjjAS2VrkZ/BNdJf4ShP/KE/gD9gWXTnfd387USghJtYGiBCa0vVdhjrH8U5GB8ZttC0UvbCLNNoo1jQWhnYh7ffy8kXkxu6Zg4bRdM2aulznjzl71DmTS2LAXqDcgKVLn8tadBQpjFn9pJFQG2dcyHQH/0gP7YB/QHAPpjaX/s8uYr1ovNFDndQ5E9Bs25vhRpZ1c5CaHJx9Fu9NL2hqODEpX9z7SNBcF8/ZnYYT6+xBenlGZT5Ny2U7p17ShrgQIIStTOB7jf00lVM1HMOesi+qN9ffQH/ZEN9Af9kZE/LNu/+Qo0Zg6lE8ioVkigjQOzbZC5pT2Upnzg8MVSXaJAepekYuKq9lNfUtJjpqiU/Y4EktjQMYmJ0x6Pk/sjvdjpakDKM4enZRQzN4E2Pi0RqWu1SPVc0qQ/ekF/1KE/mqE/xof+WNgfDWz65iuYy93yiZBAm3rjH9J4VXv9OAAAL75JREFUtku+dw6FPXfK4/2g2/tWc284KumiqKlL0i2T1Di3mHGyBrqdBLqh49EkTkeaoe+sUHaZff74ZhXFvH6UlUCB5qclZeqL9x3nkCb9sS/oj/GhP5aD/ljWH21s+uarpDWX251Z5nUD6RHLlK4qpTBbGz6KcVJsxZRLgc+aUPqIGPiz6/g5wLJdki6BI03RQLUJOc7Q2OU11JObt8EAtnM8ksRpvnOtUwDoKt9dFTnwZSqGScHp2pX5HGT7tIT+2Bf0x2Doj2WhP/JnH4Ms+4OztQ6UmUZTNCtUCEKNHoFww0enwSMwWaW0RYLHXIw509QdqVwGACcqvQdx1qSJeqpCCDvAqmyka8vr2GU1FOHa2rGQ3ZzHxNlWf5USNcdCDugK5NODVc7QH/uD/ugP/ZEH9Md0jDXI8qCbL6XUswG8DcBXA/gIgFdorT/lzfNCAP8GwDMBfAHAT2it32beewuA7wLwGTP7q7XW729bb5ebL8AtiGcOT0cZGdsuN0WesQqpS9rIHJXSlggJFBASjXRHavGlaZe5dXH60TJZRv2IGYByP8pGrgCcCz+W1W7EjkMXccpl2bJ8/vhmdZGz4XI8NvTH/qA/ukN/5AH9MS253Hz9FIBPaq0vKKVeD+A2rfXrvHleAEBrrR9XSt0B4FEAX6e1/rS5+TrVWr+9y3p73XxFIll9BdpFnLEKKVgZBZAVEyuldMrjbir4oEQbkNIEsOkKR15gAl6F7ZVPW3E76QmCUHllWU3Hj1r2FaddVjB6ueGyPDb0xz6hP9KhP/KB/piWXG6+fhfAd2utP6aUuh3Ae7XWX9vymccAvNzcjL0FM9x8AfXoJeAKFEhLxWjM4S5mKAtkYwRC7PbYyeBXTqyUuuOkGAQkGuwy2rPF1scRClXWQPf0qlh5ZVntRlSePVPd/OglwGPSFfpjn9Af7dAfeUF/TEsuN1+f1lp/qfldAfiU/Tsy/1kAbwXwDVrrPzM3X98O4HMArgN4vdb6c23r7X3zFYhinVw6G00hsI9YJXKU7CHi7BV9MPAE6E5NosVER6QWv7tSYJvSBJoramBAZW3KK8tqdyaTZ/EHo5c9oD/2Df0Rhv7ID/pjWma7+VJKXQNwJvDWGwC8Vd5sKaU+pbW+LbKc2wG8F8A9Wuv3iWm3ADwdwJsBfEhr/abI518D4DUA8Kyn/blv/adf/wON2x2iUaDlisqZce+5x6tCVy0EQLM4y3WNeALYZbJSGkaosW0TW69Yau1ZksuorTfiDc5rZXWnlXVXKM88oT8I/eFCf+QH/TEtY918tXY1r7U+jL2nlPojpdTtIu3w45H5ngngKoA32Bsvs+yPmV8/p5T6eQD3NmzHm1HcoOGOZ9zW63GdP96DHEzRRimlSC9ero+/YgveuOKMfR3l/aUKoV8+KLv/PHN4Wo69sLeToA9r6450SoLpIo0VdFVO7756YgaOPS/eV+K3elm1H9eIddNNSL7QH4T+qKA/COnP0HG+3gXgHgAXzP/v9GdQSj0dwC8D+AW/bZe4cVMAXgbgtwduTyv+eA/27t1GMa1IQ4SkCQwRZ7GAu6+ewMetmFgpkXFpSxfx5wbq5VSpalpVXsNlFSjOsVvXeKFH1gv9QQj9QchQnjLw8xcAfI9S6nEAh+ZvKKXuVEpdMvO8AsDdAF6tlHq/eb3QvPeLSqkPAPgAgOcC+PGB25OEjV4981XfWVYWt64fFa9rR6Uk/R87DzTKaGVTJdAmzruvngTFCVQVUzFYp1uj2UrJcubwtBz4jpCuDCmnFqUQLKuWk0tnoaDKi1S/LQxJY9B+C7UzIp2hPwipoD/WA/2RD4NuvrTWn9Bav1hrfaC1PtRaf9JMf0RrfWx+f1Br/TSt9QvF6/3mvRdprb9Ja/2NWusf1Fp/dvA36kBNolak144qmQqptknTjwaZidEKKWkbEyolux5COjFiOQXCZVVe6JUVPy/0uqMBKAS7Zh6yTEaQ+0N/kF1Df6wH+iM7hj752gRWovblyNQTZmphK6NBgXe6VEhAe6UEgBGhkYhFrbeE7EltzHIKyLJahxd6HfBSwWQ34V3Ko9NYmkwC/UEs9Ec1F/2xIPRH9vDmK4Av0053963RoJ7bFKuUlKiUGBHqhZTkkw/eqL8euLFZkU5H+EJPpo6QMLZdke3UoUREL1PKYWMvVWQy6I99QX9MAf3RF/pjHfDma1b6RYP8ZTT9SbrhC9NMdF8KQZGumoku8oDm6CXpQCh66Qk0VA7tdF+c/rKZMrI26I/coD9Af+QK/ZE1vPkaibRH8cPwKyU/dWTt9fmcyEilmVC+bj+8Wr7OHJ6GRWokuk3GuMiLLVkHfycufvQyKNArB45EpTSlOC2MWuYL/bEu6I8m6I+loT/yZ2hX8yQT7ON45zHzSmirRMfu/rgmTYgoXmB77Hsautq/JkWHg5N2wKQ4nT++We4/Rs9aMKK0Y0pZgcpUsWBOvinCNmLpiJNRS+JBf3RbH/2xAPRHd+iPbOHNF1kEKahSZOEZiwiOYaiofHFKMVqcqLOG01jVjmly69oRBdoVkTdO2okN6gtU+1EO6iuRaSIUJ9ka9McOoT86QX/kDW++yKzYirOWrtGArTykSPvIqkmctTQfu01KyFRXg6iWUeIVC7RJYloXaUoTrpyVeAI1gXqD+tZy8Q3y2FKcZCvQH/lAf+QP/ZEvvPmaCgZnajSla7RFs2y6hh0HZ5CsYuIUm3DfuSeK/Gc5LoZIewgJdFUVkxcJsznh9s2Hjs5PlrdPuuEItJhQk6iPk5tvyvWqyufeoT9q0B8ZQX+sBvojT3jzNSamkNbyauUsAyJCWgMPHV2IrFqXJ1SOlOIU0pS97dQEpsoP4vzxzbKSKCVqooXFrO07VK4/Jk6/xyYFVU4rRRoSqKmoXAGti4uXD2rfv29ZXXM5HUrsInBoubDdl2topzvwxgbQlOa6oD+i0B95Q3+MA/2xH3jzNRIyuuD3yDNVRKjsDjTzisgXl5Xmyf1nq203/4cihvYixJfokChmmzh9bM9gvkDLbV9b9LL1Qm+8srqWctqX1vYnI7Y7sRK1620al2k1ZZHQHw3QHxlCf4wG/bFPePM1Nt7j+LEiQtFoUOaNUEPiLKUZkZaMGNplXLx8UJNoaspGKGop3kweoyQk0AvHDzvRyzWQdqFnpnUsq2stp33o0v5krHYnEinStTF3D3Wrgf5woD/yg/4YB/qjP1vwB2++xiYQEQpFL+86PUmulEIVkowGyUfxOZ1MTeLsMiijlamUqCNQdEvZ6LsddlvuPfd4uHvWFeJf6N177vFgWQWaJapNuV9jOe1KUJoIdzdt96XsZlpG3OU8W2epHupWBf1RQn/kD/3RHfqjH1vzBwdZHpFyYDu4BcVpdGvmfOjoPLSuKp0YTfnPNhqUI8PEGc97toOC2iimrfiXGrSyXKf2/s4cWVaBqjtkO+iinPOhowtOeQ29inni4sy1nHbFluuy/Ykp32cOT6HFz8n9Z8sLZ7s/zxyeVoOuYg+DrRbYfWD325MPVPsu+EJxPsv9s/V9BNAfEvojb+iPftAf3dmqP5Ruq70z5I5n3KZf+4IXL70ZQWQera3YTy6d9SJC7idsZChESJyyUjp/fDO7aFB3cbpl8K7TEzx0dF5M8VIZUOX020q/aR+MFUF11i9GgLfpELkdhzZiZRVAQ3nttvyLlw9Wu398ynJU/FGWJSDQ4N/HpIzIMX9s2hP0wN7XMsbfZ0D3Huose4j00h/0Ry7HoQ36oxv0R3dy9McbH3vHo1rrOwctBEw7HJ0yH/rBGy2P5KtPRCOTAfxoUI539JIUcYYa5dppRVTMilSZf6vc+bLhsogcyn3snLx2eyIDC+6NUFm1qU7x8tqOLZNbaiQdE6dsfwKEy7i82Au2O8F6x/ppQl60Agk91AHORYbsBnloBwlrgf5woT/yhf5Ih/7oztb9wSdfE9AWEQL6D/LoizO3aFAwSnjpbCdxBpdbStQV48XLB43Ry/JYmJOSkUsXf/8MKa8haa5531jaxNmlDPlRdwW1+v0TIlQPAHB7qDPUuuO2eNFeGcnMRaBTQH/QH2uB/miH/uhOzv4Y68kX23xNgMyHtgdc5kTbvOiUqKPMA85dnD5lBRN5t0s3tEohml5TRiIDu9PPTR8V/1hMhI78jEG5fzTKntaAeHlt+rl4pZjX7pfzxzdXUU6TGeHiy293Uh5HEXlfO7E0rZNL1T6TL4vtGOG+c08U+8jsCtk+Z+k2OnNAfxTQH2Othv7IAvojib34g0++JiQUwQTgpC3YEymGjJAB+YvTfufmqGU3cZafSoleXjuqRTViJzN0v9z0uS5kbOXQNvbHGE8AZFkF4uU10uykxDaMdi4oMiynqTSVnT5Rb7ncWrsTc+Gy5qc6Y+8vP5qZ0kZnK9Af9McQ6I/loT+6sQZ/jPXkizdfE1NWSt5jeaClUvIOi8zPz1qcrSkj/cRZflq7jcilyGKNx+V2OWkR5ph0fuw/Q8pIuc3tM45a2cbKq01vCLV3kMK02P0B5FdOU+knglh9Wj8+QYFmem6n0F+ccp+Fy7G/r7ZwoZEC/UF/9Pqe9Mfi0B/dWIs/2OHGSpADEgLVyWEbp8YqJb9CkhX0Gk4ueeLMsLK0eUxaxO2HV4uGwSalRSN9jBe5vKm6v00WJ1AOEjqWQJvKK+D2tiS3t5y3mLCKMtqLqAiKfRC6MAw1+i9+q8b88Rv+r5ZkcVZfNNw5AhDcV0agtrH5FhuaS+iPWVaWNg/9kbA4+qMR+qOZHfmDN18zYEcSl4/m2yqlXVVInTEmRP2kCiF7ZSo+rZ3F2J6Z7LzhNRaf8QfHHDtq2UmcFiPQscpGsLzaxqqxOsqUT2BjZTQgg9BMTdF4pQpBRMdcMstUUKUUel3QtdCU4z5Gt9A2apkiztD+svsJQDBFzOIMknv9aNSynyP0x9jQHw70x3TQH8nL3ps/ePM1I50qJe3+v6kKaQC24XSX7pVLQtFLkz5iU09ibSgcafrpInPg13szBGpsea02wc3rl2ytfEoZiImD8vTLhUQicrqy6KhCaGz7YTZplPYf2u2ZKjZTStpYdZ5XAm3qInwP0B/DoT8M9Mek0B+9VrQrf/DmawFSKqWtVUZL46dD2MhQKdBiplpk0sGcqLV0kamjlroaWNDOVw6w6H1+ysfnfrndC0OilpLGCz9VReTGJCkSrjBoDJT0qGW/HupiAgUwaaQ3V+iP+aE/hkN/hN+lP/bpD3Y1nwG2UpIvEib66D0BvwtnG2Gx3drCpj5EXheOHy4jllP1UFXDE6f9HrLhvZkYjSruCR35yYt5ticoTr9cS9SUXfD26ygh2kW4gnPRu+eyT3+kQ3/QH03QH3It9MeU8MkXmY4Z6gjZW1UKMoLpt5toawAdbEdBFkdW9m3dKgPjdK1sF9xVCIPSnjoQE2cwAg5UUfC+DfBlykgtajmsh7pyBXJ7vHQeskHoDzID9Ecd+mN6+OSLjIto/Bl7BL706Aa1gSGvH5WRzKafW9ePamOPMMq8HPa4PPngjeL1wI1w1BmFEOw8eUYzxyNFnEBxHtx+eLW4eNTOG8mRwF4N/DviRy/lQKPBKD5ZL/QHmQn6Iwz9MQ988kVGQ0YFZeXk5tMqPHR0HnednkB17Z03ljIiGjBbqXXZVjMhrfHzAg3Y99SeJQWnAbAQpJWDL0bbHbeN0tljPkYjYa3RuRzPTkCcEtlLlhsc7Fbumts2ENIM/TEN9IcL/dER+mMS+OSLjI8SvXABgW58C4EOjWCWKSPm9649R9m2EmUUM+E1ebQykEcdiqrWvuvUbQcyQUYqrRRs9M3um5P7z1avS2dLmZ45PK0idYATyeyH8sYVSdj+AW1OkpbvRxJbxGmpRQDZBoQsBf3RH/qjEfqjZfn0x2zwydcChE7WTUWmxNezvUHVoyDpEUwr2daoZU9y6YXJiaa6u2q+LokzphSDiFTa4+5EzLyiIAegtalMZaQOiTnqDcUr2+hlojj9z2ypKtoi9AdAf4S3g/6IQ390hP6YFN58zYjzuNt9Y6IGnfMjB6S8de2ojIbYgShjAi2nmLdlVDMkTdlQuozkbSB65w/omcQGvncbUpxWmk6aQq2Rbv3zdnwPAOUgiwDiI91PcBEYjVqOcBE4lDJ9ZMiF2k5SRpaA/qA/2qA/wtAf00N/dINphzPgN+ysYcZJGP4YOyO8igeAOxBgicJDRxfMq0glsZWMfdUXXYmzrYep1SJy0dvm26M4bVqIlWbb4JUKCvede6JsaGtTSoCqtzJ57pWN6ltToIq529KgYuIMpj6t7Zia793USQLpD/1Bf3SG/iihPzJnp/7gzdfERKXp54NbJh0rYR788VCANoFWn4wJ0+KLc7UVTgPBtgQ+og3BlomJ07zZKk2fsqcjkx5xculsla8eylMPiCFcfpVz8ee/GvP0J7wInLoekee630mCsx0DNsPff0Pb6qwJ+oP+6Ar9UUF/DIP+mA7efE1IrfFiMbGsCGRjT6eS3IlAu3w/O//WxSlpatC9+26KG8UZuzItcAQKUdF7f8fEEL8AVE7EvSn6bpdpJSA3fbTj6kVd2xgkIrku5Ud4x+kgYW/QH/THEOiPBuiPduiPSeHN15wIaUqC4yXsQKBSor5M/ekXrxTz18S5A6xE5WsPRKOWUXEWsrz76kn5KtqD1CUqx/pw0kcivTR1i8CnfbfgheAYaP/PHtvZVeK6/ru73n4CbesevNe2rhX6g/7oAf1Bf3RceG1dfZZBfzSj9ApvJ+94xm36tS948dKb0UgtaqnTeo7R0O54CRu4sNDQZYUkuyMtexES39VWaE5ExxRR2aDURiyB9e8fEkbK88zhaas47756Ephu3tUw3fq6rZo1dBllO398s5SkbDztbwdQlV05WGPqdwIwaQQ+VPecOTxt3MaavDtuiz3Hy/0TPVY6eYymkDjlRcf545ubfXJBf1TQH6QP9Ec/6I9m3vjYOx7VWt+Z/IEIfPI1AaniDKVOhEbcXnP0EvAimNePnCjQ+eObTmDJRjTLaaaCOX98szzB5QlDcW4TP2ppJvYSJwAxyn08ggk0RC81nNSIMoJ5pR6BD30XJwI/VcTS316LN9ZPaNuGiFNSpo4Eo5fFxvhtG5ztEdObxLnZjhJAf/jQH6Qr9MdA6I/J4ZOvCXDkGRCnLVD27v788U0nqrDF6CXgRjCh4ESC2ihPbkYrd0F61LJdnM7cgQhmSjSsLLteuZVjwNj3pIwBEYUXVW1NnCOf4872um8451xQ3D23pRa9FNHdeNRUO12Ft3aWcPlg8+116I8w9AdJhf4YBv0RZ6wnX7z5moAmeZZ5x+4HwgKd6MRaGkeiQPugfKKIbmk/kDhp8uwmzvJTOtD7USB1xC9rfrm1klBQxXl9yTuvPWy0ba7Up6hA4x8YtC2h9LA0gbYvF8Au0g0B+qMN+oO0QX8Mh/4IM9bNFwdZ7kko3aM3psvSHB6FzoFtAAwERBqAwtwpumooHY5ajoNNHbl4+aBM2wr18mTLrS2ztgK3ovAvgN2vol1pmu83ZdkuB1xtu1AdSeByfXaAXDu4qB0k186Xgi9N6OUHEh0L+qM/9AdJgv4YBP0xLbz56kEoJ782ujlJQoqUkDXgS0nKMJYG5efEA/NcFKZcqI65HW0CBeppNf4TG4tMt7HS3EK6If0xHvQHWRv0R/P69uIP3nyNgWlgmXwwTeNLQsg68aOYFifiaXL4AfE/lqv057pQjQkUgCPRUBsHp32D2WdTt29YHPqDkF1BfzSvZw/+4M1XR2pRy8TP2LtzO9K5n9+7l5QRQrZETEhWqjlU8kvgCFSk19jUGtnGwRlQUwiz+NONVgJ5iLMv9AchxEJ/hNmDP3jz1YeUyKOdx3TTKRtNK6hGWeZ4l07IEsg0AnkRmjtMh4qk13htHGLUGpVvqR6kPwiZBfpjvWzdH7z56ohTIERXvsF5RIRzTSc+IVlgLjzt2CkXLx/UGk1rjaQBF5uQXQX7UTIyjFB6jdMNegyRbpObNIdAfxAyE/TH6tmyP3jz1QP/jjx6cL3oZcoo4cB8vdnkSKgnGl50rJtRjmlQZsWAi93HaYmPBUKmgT3UVdAf00F/bA/6g2zRH7z56knbY+FahFNGYSJMMlJ55vgVa609hOkJTEKZ5o88rm3HNHo8dfW+becSegJghyocFMHMrBvaLcOUGvpjLOiPbUJ/kBhb8QcHWZ6YzgPVVR/cRAGLYSspOZhoK6Z3G1vxUqL5UTuu1RsVyp0eO56xEe/D47UUI93HBGqrOT9qKVNGyl6Rrh1t+twj64H+CEN/bBP6g+TOWIMs8+ZrBpzHpIm5qls+eZ0ev8z3tQ3KYykGtlIzEyjRDAmNX2SRx7fWna6Z1x/rKDbifXy0+0KgIWKpIhoaFy8fuN3RbvzClawL+sOF/tgm9AdZA7z5WtHNl2Uruap9caJaQppSmCf3n/U/VOvVJiRRCnRZmi6I5Dy+HNuOZblc08uRjV7GBdptmxm1JGuB/qA/tgr9QdYCb75WePO1Z/zKVUrz5P6zyb0DSZGWvd5QoIsSOrbyPcvJpbO1CyEnKh04lrHoJTBMoEFxMmpJSJbQH9uF/iBrgjdfvPlaDTL6BFTilNIM52G7y5CD6dlKWKYgUKDzExOnc2EU/7AzaGJfgQLpqUN2uyjOvGhrqM7zer/QH9uF/iBjMKc/ePPFm69VIMUZila2STO0PCtRJ4rJyi/KlN0v+8fXTnOkGatijChjApXHskmgQCXRNqw0AYozB6IN7N2Z0no3I5uD/lge+qOC/siLJfzBmy/efK2CWs51h2hl0zL9KKaNYDJ6WTBKV70J62gUZ8NxLo9hTKBIa0ANuBKNfhVRzckugSnO5ag1sC8m1gn0bsZzfB/QH8tAf9RWWEJ/5MFS/uDNF2++sicUtTy5dLZBmk1lsX6y2ArYTyHZs0CDkaCmCqlnr1+xNhhSnMmpQCGBRqTmdL2tK4nazzkiFVw4frj8PLDvgWhzINTAHgg3sq/1bsYbsF1Af8wP/UF/rIEl/cGbL958ZU1QnNFUkaIMxkaaL0aVP2/+ciNZfgrJniNRc1ZIjVHLDulAvkD9VI7QNjm9vnkSbUNKE9hnOVmapgb29n1LsHcz3oBtHvpjfuiPduiP5VnaH7z54s1X1sTSRULijEmztsxSonGBWinsrVJM7THKIhsj+43O5fut6+sZtfSXZXPpnSh0IHe/tg2y6+3EMZCA/ZWPXGhrYA/AKUeyXU5bw3qyHeiPeaE/QH+sgBz8MdbN11OHLoCQKKJiHSpOAFAKuOv0xBGogsK95x4vBXrm8BS3rh1BQ096UeYLackLQCkyoPvYN3b+W9eOyuX0lktHcTqoIv/+wvHDxXG8ftQyuyq3sybSABTmsjSJM9irmaqLVEGV5zgU8OQDN3hctwr9MQv0B/2xBrbmD958kdGRlblMJfDn6iJOSyXQ+ojz5TggE5xUviz9nHjZABmYT6Z9e4tqrJTMMtb0REGKlORHJ3HK8qqq/+35XZbV6+ssq6QZ+oP+mBv6I2+26A/efJHpGRLNalpoJHoZkkX/tXgNkDXc/w1+DnmfRsh9tq1Pb1FOb1+hSunaEZ584AZTusj4JFzk2fLql1MZ2S7n59Ov7UN/TAL9QVbHhvzBmy8yDbqeviDf7BO1tDRFL/0IXF9i0ozlwvvd3FqZTiVRJxIkpqXkzSso3HfuiapyikSFeFFLxqC1rBYTauU1VE7tZ3OJXpKJoD8A0B+EbNUfT5l1bYSsAHuyl3nw5kLgzOEptPg5uf9s8bp0thTpmcPT8gUUEn3ygRuRi4hRNrZ3g2Ub8bURIPk9qv+6b/dk35Vsk5byWpbT4o96d9AKre01CJkL+gP0B5mPlfqDT74IEcQaHwfbHojfyxNajDniNEQeMQ1jzJ6inJSbQIPlTtFLI+GLlw/6pQlpr6tgsi28XtTGWiYfeJFcoD/oDzIRG/MHb74IMYSk5EizRUwyx7hsvA3Mlwffs21EKdArB2Yx3SKP9pH9+eObpcRTH+OX3QSH32TaygbpfbHnidJPHSFkSegP+oNMz1b8wbRDQhCPBp5cqsaXaTvJbY6xfcR9culsGdGUaSTZplWI9JHybzTI1MzvtI8Q0Ut78RFfnRCniVqSndDxFHBSRwjJDPoD9AeZjw34gzdfAXTgh4xLTmN7R9MwEqXpE5IoMLJAI9vaF79yslGhWD60gioagwvB2uhlKdArB45E/Z+QOMuUkZaoZWyZPF/zpywnhpTj1RjhzgyWx+mhP+gP+mOfbMUfTDsU2IPo96wCPU/Xr1tDnhRuGoHCQ0fne/dYpTWCPVWNQZqMYie78v6q8uFtGsnQnqCk6JfGCvTJB2/g1rUjnDk8rdJHRBuGxkovJM4Wyn3QsEx2c5wntXSiAW08UsvLXNAf40J/0B/0B5FsyR988oUqClL2UOSjCqFm/ci/hdkjPV46QTnegtymkVYroxpdTyg/amkmRk7mInH/7qsntdddpyfl+xIZEUxOx1gbIn3EVo4Xjh+uophyt2j3FRRnQ9SyVZxAGW3dzP7dArEUo/LXxPSiyLKXbNtBf9Af9McA6A/Sxgb9sfsnX0kno8WclGuKikSjse5M438ncy7ISFYoennX6QlUh9VGo5a66umoz7b6KRihmZoirUoBd189Mdt3HjKK6Q/iuaVxUMro5QM3ysrRpsdYiQImIiwHODTY4zWaOKsNW925ulVkhBtwU4xO7j9bRi9jOfmOODNr27H1Mkl/pG0r/dEP+oO0sVV/8MlXDD/iYllRVKQxGisR32mM71Xmc8ONSNSjl4VAUyOYIXEGoxqJkQxZGTeni6QP6mkH8IzldfjRy174kc+FI6FO/r4qRGijmPbHF6n9uXX9aJg4vUiot2GrOVd3QVP00rbxCLzkvF1TjBZjA2WS/mhZHv0xCvQHSWJj/tj1zVfwhDQn4e2HV8uBEWMnZc40fbdgZSNSY8bEnii2gWS9IqsEGpOofS+ap6+nHN8jXZyWkED9Bsk2ute1Yi9FZSqhsvGpCqfmpOJfhJT7MvFCxBGolGhApOV0Ic2+4rTn6ZrP1T0gL6gBN3oZvPDxiUUsF0w5pD/Ee/RHBPqD/iBD2aI/dn3zVUOcjJay157Awc01IhITp6xonMpG1z8/FL+St9jei/y5Hzq64EhUvor36uIM5up3PZl0Sq5+dyqB+m+4A2qOXbEPPnYDHssrKDzrVXe5EvVF6gnTHq/OFaCuD7jYdK6STBDRy8b2Hd5LlskcopZB6I/y80OhP+gP+oPU2JA/dtvmq0v+b3AwNlPx5ZZz3SROHwVV5qrfunZUpJmPnessKjKbu2/zc+vLV8m9UJXi1P1y9WVD6XiufveoZcKKR12Okzoicp+7HLvWBqkdsRK1yw5dIAw6byLl2a6bA+/mSWr7jhhd2ndMDf1Bf9Af1TLoDzI1W/IHwCdfFQ0npJxndSR8rzLiU00YJaImHxX76SMpgyiGsJ/xxdkrajkL8dSRvoSiws74KMHocGzrtPxj9P1pReq/yD5Jad9h0d5PavuORaA/5AT6YzToD/qDWLbkD958JVITzBpIuSDw5h+bNoH6gyiGN6v6sQMvrkGc0dSRsRCP4GsDVLZcnDj7U1yIEDI1qe07ZKpRavuOXKE/+kF/0B+ESLbij92mHYawOaSx93J/FN0lFcZnysft8nGxfVRsBWrTSKAAaAQje3IkeynNnMU5Nc4jeFRltxyg0g5O2bZPiw/XewHKfJ82naskf2xEu5ZWpFCvg8T131rLJP3RH/pjfOgP+mPNbMEf+775MnfNAJwc0qSTMvPKJTccgZrK2ZcoEOlxyZw8NWma9/Z6HOT4F7LslgI1RPPxxX4t/sz4AjHxXM36O5Aak7fvmBL6Yzboj/GhP+iPtbNmf+z25ssfuM1MdBrxSVZ3Qmpkl+biR9tCEg1duNjUB1+awIgn1gQpM373xrKtwbgrKv6TZdcfnDKEnAfIpyGqT5dzdXXnKSmRIs0d+mN+6A/6ow/0xz5Ykz+AHd98lciICBB+bLlGTOXSKWd/BkKPi8uesiLCr3Uvi5Eqd11tkx/tK2fRRe59rvj7U16QWEK5+DKff7ILkrHpc65mdiFANgb9MSv0x7jQH/QHWYZd33z5XVcmk/MJ6VcwmRJ7XOyMXm6ZoFKXx97vIaeKnhYDeI7aXbDu17VxG8GosFlfayQ+d2mi57ma83lKVg/9sRz0B/3RBfqD5Maub76AHidlxidk6PF6asPSJXOdF31c7KUfXLx8UBsos0/00k8ZCc80/gVBqBFq8Lhm2gi1Cf8CobFYZ3yeku1Af1Tz0R/0R87QHyQn2NU8Al1X+kElMX0VJ6TdfjESePPsuhbJWsX3HAOxa2y7AXd/FdFL3SHQGBJnma+P6S9U5NgotXItyvEax0yx3y32vVZ1npJNQH/QHwD9sQboD5ILSnepFTLhjmfcpl/7ghdPtnw/8rO2E7HWZbCXOmAjmbWcbTH/2r5zX8p9ZfaRzdu/99zjXsRXO2OuhCKZ9lSKilPnP7YMIWQY9Mf6vnNf6A9C9sUbH3vHo1rrO4cuhzdfG6SUf+ixuhBpLJ1gTxW6vFCy+yUu0OpTocEvY2kiGhoXLx9QnISQ7KE/0qE/CNkXvPnizVcjTvSVDUwb6SfQ9GXbqOX545sUJyEke+iPdOgPQvbDWDdfbPO1UYK5zSGY51y12VBVb1k2f//i5YPWNg8hbFe8Ml2EEELWAP2RDv1BCOkKn3zthLWN/j03TqqNDkcwLbFIppSsHAyT6SKEkDVDfzRDfxCyD5h2yJsvMjJtArXTpUgltjcqX5oAKE5CCNkw9Ach24c3X7z5IhPgR3hlL1+lRFsISROgOAkhZMvQH4RsG9588eaLTEgsimkJpY7ItJGyJzBGKwkhZFfQH4RsE9588eaLTEytnYMq36jJFHCFaaE4CSFkf9AfhGwP3nzx5ovMSKzBeQgKkxBCiIX+IGQbjHXz9dQhH1ZKPRvA2wB8NYCPAHiF1vpTgfm+AOAD5s8/0Fq/xEx/PoArAJ4D4FEAr9Ja/+mQbSJkCmzXy4QQQkgX6A9CiGToOF+vB3Bda30A4Lr5O8SfaK1faF4vEdN/EsBPa63/CoBPAfihgdtDCCGEEEIIIVky9ObrpQDean5/K4CXpX5QKaUAvAjA2/t8nhBCCCGEEELWxNCbr+dprT9mfr8F4HmR+b5EKfWIUup9SqmXmWnPAfBprfXnzd9/CODLB24PIYQQQgghhGRJa5svpdQ1AGcCb71B/qG11kqpWO8dX6W1/qhS6msAvEcp9QEAn+myoUqp1wB4jfnzc2987B2/3eXzZFKeC+D/Lb0RpITHIy94PPKCxyMveDzygscjL3g88uJrx1hI682X1vow9p5S6o+UUrdrrT+mlLodwMcjy/io+f/DSqn3AvhmAO8A8KVKqaeap19fAeCjDdvxZgBvNut9ZIzeRsg48HjkBY9HXvB45AWPR17weOQFj0de8HjkhVLqkTGWMzTt8F0A7jG/3wPgnf4MSqnblFJfbH5/LoDvAPBBXfRx/2sAXt70eUIIIYQQQgjZAkNvvi4A+B6l1OMADs3fUErdqZS6ZOb5OgCPKKUeQ3GzdUFr/UHz3usA/KhS6gkUbcDuH7g9hBBCCCGEEJIlg8b50lp/AkBttGOt9SMAjs3vvw7gmyKf/zCAsz1W/eYenyHTweORFzweecHjkRc8HnnB45EXPB55weORF6McD1Vk/xFCCCGEEEIImZKhaYeEEEIIIYQQQhLI9uZLKfVspdS7lVKPm/9vi8z3BaXU+83rXWL685VSv6mUekIp9Tal1NPn2/rtkXI8lFIvVEr9hlLqd5RSv6WU+jvivbcopX5fHKsXzvoFNoBS6vuVUr9ryvTrA+9/sSnrT5iy/9XivRMz/XeVUt8364ZvlITj8aNKqQ+ac+G6UuqrxHvBeov0J+F4vFop9X/Ffj8W791j6rbHlVL3+J8l3Uk4Hj8tjsXvKaU+Ld7j+TEySqmfU0p9XCkVHKZHFfxLc7x+Syn1LeI9nh8jk3A8/q45Dh9QSv26Uuqvi/c+Yqa/f6ze9/ZOwvH4bqXUZ0S99GPivca6LojWOssXgJ8C8Hrz++sB/GRkvs9Gpv8SgFea338GwI8s/Z3W/Eo5HgBeAODA/H4HgI8B+FLz91sAvHzp77HWF4AvAvAhAF8D4OkAHgPw9d48/wDAz5jfXwngbeb3rzfzfzGA55vlfNHS32nNr8Tj8TcBPMP8/iP2eJi/g/UWX5Mej1cD+FeBzz4bwIfN/7eZ329b+jut+ZVyPLz5/zGAnxN/8/wY/5jcDeBbAPx25P0fAPCrABSAbwPwm2Y6z49ljsffsPsZwN+yx8P8/REAz136O2zplXA8vhvAaWB6p7rOvrJ98gXgpQDean5/K4CXpX5QKaUAvAjA2/t8ngRpPR5a69/TWj9ufv8/KMZ9+7K5NnDjnAXwhNb6w1rrPwVwBcUxkchj9HYALzbnwksBXNFaf05r/fsAnkC/jm5IRevx0Fr/mtb6j82f70MxliGZhpTzI8b3AXi31vqTWutPAXg3gO+faDv3QtfjcQ7A5Vm2bKdorf8rgE82zPJSAL+gC96HYhzW28HzYxLajofW+tfN/gboj8lJOD9i9HJPzjdfz9Naf8z8fgvA8yLzfYlS6hGl1PuUUi8z054D4NO6GLwZAP4QwJdPt6m7IPV4AACUUmdRRAE+JCb/hHmM/tPKjP1GkvlyAP9b/B0q0+U8pux/BsW5kPJZ0o2u+/SHUESVLaF6i/Qn9Xj8bVMHvV0p9ZUdP0vSSd6nJh33+QDeIybz/Jif2DHj+bE8vj80gP+ilHpUKfWahbZpj3y7UuoxpdSvKqW+wUzrdX4M6mp+KEqpawDOBN56g/xDa62VUrFuGb9Ka/1RpdTXAHiPUuoDKC46SUdGOh4w0bIHANyjtf4zM/kExU3b01F01fk6AG8aY7sJyRml1A8CuBPAd4nJtXpLa/2h8BLISPxHAJe11p9TSr0WxVPiFy28TaRIkX671voLYhrPD0IAKKX+Joqbr+8Uk7/TnB9/CcC7lVL/0zy5IdPx31DUS59VSv0AgP8A4KDvwhZ98qW1PtRaf2Pg9U4Af2Qu4u3F/Mcjy/io+f/DAN4L4JsBfALFI3N7c/kVAD468ddZPWMcD6XUMwFcBfAGk7pgl/0xk87wOQA/D6a9deWjAL5S/B0q0+U8puw/C8W5kPJZ0o2kfaqUOkQRvHiJKfsAovUW6U/r8dBaf0Icg0sAvjX1s6QzXfbpK+GlHPL8WITYMeP5sRBKqb+Goq56qS7G1QXgnB8fB/DL4PXU5Gitn9Raf9b8/isAnqaUei56nh85px2+C4DtVeceAO/0Z1BK3WbT18xO+A4AH9RFK7hfA/Dyps+TTqQcj6ejqAh+QWv9du89e+OmULQXC/YoQ6I8DOBAFb14Ph3FBYvfC5g8Ri8H8B5zLrwLwCtV0Rvi81FEa27OtN1bpfV4KKW+GcDPorjx+riYHqy3ZtvybZJyPG4Xf74EwP8wv/9nAN9rjsttAL7XTCP9SamvoJT6qyg6cfgNMY3nxzK8C8DfM70efhuAz5imBjw/FkAp9ZcB/HsAr9Ja/56Y/ueVUn/R/o7iePB6amKUUmfM9attVvMUFMHtpLrOZ9G0wxYuAPglpdQPAfhfAF4BAEqpOwH8sNb6GMDXAfhZpdSfodgRF7TWtpJ+HYArSqkfB/DfAdw/9xfYGCnH4xUoeox5jlLq1eZzr9Zavx/ALyqlvgxFT0rvB/DDs279ytFaf14p9Y9QSO+LUPQM9jtKqTcBeERr/S4UZfwBpdQTKBqOvtJ89neUUr+E4gLm8wD+oZfiQzqSeDz+BYC/AODfmTr7D7TWL0FzvUV6kHg8/olS6iUozoFPouj9EFrrTyql/jkKiQLAm7TWfRpeE0Pi8QCKOuqKCRJZeH5MgFLqMooe256rlPpDAP8MwNMAQGv9MwB+BUWPh08A+GMAf9+8x/NjAhKOx4+haLP9r40/Pq+1vhNFe/tfNtOeCuDfaq3/0+xfYGMkHI+XA/gRpdTnAfwJit7UNYBgXde6PrfOI4QQQgghhBAyBTmnHRJCCCGEEELIZuDNFyGEEEIIIYTMAG++CCGEEEIIIWQGePNFCCGEEEIIITPAmy9CCCGEEEIImQHefBFCCCGEEELIDPDmixBCCCGEEEJmgDdfhBBCCCGEEDID/x/xeMLr0CMGfwAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 1032.26x1059.6 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"root_univ.plot(width=(2, 2), origin=(0.5, 0.5, 0.0), pixels=(800, 800), color_by='material')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"geometry = openmc.Geometry(root=root_univ)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 24, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# clone fuel materials and create material array for fuel cell\n", | |
"mats = []\n", | |
"for i in range(4):\n", | |
" new_fuel = fuel_mat.clone()\n", | |
" mats += inst_per_compact * [new_fuel]\n", | |
"fuel_cell.fill = mats" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"root_univ.plot(width=(2, 2), origin=(0.5, 0.5, 0.0), pixels=(800, 800), color_by='material', colors={graphite: 'grey'})" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 26, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"geometry.export_to_xml()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 27, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"10018 geometry.xml\n" | |
] | |
} | |
], | |
"source": [ | |
"!wc -l geometry.xml" | |
] | |
} | |
], | |
"metadata": { | |
"anaconda-cloud": {}, | |
"kernelspec": { | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.9.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment