Created
October 27, 2016 14:12
-
-
Save ptosco/983c6143ec6effdb99a1b5f45da1517a to your computer and use it in GitHub Desktop.
Morphine
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from rdkit import Chem\n", | |
"from rdkit.Chem import AllChem\n", | |
"from rdkit.Chem.Draw import IPythonConsole\n", | |
"import py3Dmol" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"m = Chem.AddHs(Chem.MolFromSmiles('CN1CC[C@]23C4=C5C=CC(O)=C4O[C@H]2[C@@H](O)C=C[C@H]3[C@H]1C5'))\n", | |
"AllChem.EmbedMolecule(m,useExpTorsionAnglePrefs=True,useBasicKnowledge=True)\n", | |
"AllChem.MMFFOptimizeMolecule(m, mmffVariant='MMFF94s')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div id=\"3dmolviewer_14775773971218274\" style=\"position: relative; width: 400px; height: 400px\">\n", | |
"<script>\n", | |
"if(typeof $3Dmolpromise === 'undefined') $3Dmolpromise = $.when($.getScript('http://3dmol.csb.pitt.edu/build/3Dmol.js'))\n", | |
"$3Dmolpromise.done(function() {\n", | |
"var viewer = $3Dmol.createViewer($(\"#3dmolviewer_14775773971218274\"),{backgroundColor:\"white\"});\n", | |
"\tviewer.removeAllModels();\n", | |
"\tviewer.addModel(\"\\n RDKit 3D\\n\\n 40 44 0 0 0 0 0 0 0 0999 V2000\\n -2.6038 2.9780 -0.7905 C 0 0 0 0 0 0 0 0 0 0 0 0\\n -1.5014 2.0206 -0.7618 N 0 0 0 0 0 0 0 0 0 0 0 0\\n -1.3345 1.3585 -2.0542 C 0 0 0 0 0 0 0 0 0 0 0 0\\n -0.1779 0.3450 -2.0574 C 0 0 0 0 0 0 0 0 0 0 0 0\\n -0.1339 -0.5220 -0.7741 C 0 0 2 0 0 0 0 0 0 0 0 0\\n 0.9669 -0.0272 0.1172 C 0 0 0 0 0 0 0 0 0 0 0 0\\n 0.8714 0.9594 1.0848 C 0 0 0 0 0 0 0 0 0 0 0 0\\n 2.0330 1.2762 1.7942 C 0 0 0 0 0 0 0 0 0 0 0 0\\n 3.2345 0.5811 1.5444 C 0 0 0 0 0 0 0 0 0 0 0 0\\n 3.2683 -0.4638 0.6157 C 0 0 0 0 0 0 0 0 0 0 0 0\\n 4.3931 -1.2024 0.4128 O 0 0 0 0 0 0 0 0 0 0 0 0\\n 2.1148 -0.7664 -0.0738 C 0 0 0 0 0 0 0 0 0 0 0 0\\n 1.9171 -1.8255 -0.9244 O 0 0 0 0 0 0 0 0 0 0 0 0\\n 0.4521 -1.9287 -1.0221 C 0 0 1 0 0 0 0 0 0 0 0 0\\n -0.0733 -3.0388 -0.0608 C 0 0 1 0 0 0 0 0 0 0 0 0\\n 0.9820 -3.8344 0.4777 O 0 0 0 0 0 0 0 0 0 0 0 0\\n -0.9293 -2.5829 1.0859 C 0 0 0 0 0 0 0 0 0 0 0 0\\n -1.5698 -1.4041 1.1167 C 0 0 0 0 0 0 0 0 0 0 0 0\\n -1.4625 -0.4130 -0.0162 C 0 0 1 0 0 0 0 0 0 0 0 0\\n -1.5971 1.0946 0.4003 C 0 0 1 0 0 0 0 0 0 0 0 0\\n -0.4863 1.5252 1.4119 C 0 0 0 0 0 0 0 0 0 0 0 0\\n -2.6521 3.5399 0.1489 H 0 0 0 0 0 0 0 0 0 0 0 0\\n -2.4563 3.7145 -1.5881 H 0 0 0 0 0 0 0 0 0 0 0 0\\n -3.5691 2.4848 -0.9501 H 0 0 0 0 0 0 0 0 0 0 0 0\\n -1.1313 2.1048 -2.8325 H 0 0 0 0 0 0 0 0 0 0 0 0\\n -2.2627 0.8520 -2.3506 H 0 0 0 0 0 0 0 0 0 0 0 0\\n -0.3169 -0.2930 -2.9392 H 0 0 0 0 0 0 0 0 0 0 0 0\\n 0.7687 0.8799 -2.2122 H 0 0 0 0 0 0 0 0 0 0 0 0\\n 2.0102 2.0443 2.5638 H 0 0 0 0 0 0 0 0 0 0 0 0\\n 4.1188 0.8453 2.1168 H 0 0 0 0 0 0 0 0 0 0 0 0\\n 5.1037 -0.8448 0.9681 H 0 0 0 0 0 0 0 0 0 0 0 0\\n 0.2416 -2.2617 -2.0461 H 0 0 0 0 0 0 0 0 0 0 0 0\\n -0.6956 -3.7233 -0.6506 H 0 0 0 0 0 0 0 0 0 0 0 0\\n 1.8134 -3.3578 0.2815 H 0 0 0 0 0 0 0 0 0 0 0 0\\n -1.0573 -3.2852 1.9063 H 0 0 0 0 0 0 0 0 0 0 0 0\\n -2.2154 -1.1656 1.9581 H 0 0 0 0 0 0 0 0 0 0 0 0\\n -2.2978 -0.6620 -0.6865 H 0 0 0 0 0 0 0 0 0 0 0 0\\n -2.5691 1.2205 0.8972 H 0 0 0 0 0 0 0 0 0 0 0 0\\n -0.7679 1.1588 2.4077 H 0 0 0 0 0 0 0 0 0 0 0 0\\n -0.4284 2.6187 1.4811 H 0 0 0 0 0 0 0 0 0 0 0 0\\n 1 2 1 0\\n 2 3 1 0\\n 3 4 1 0\\n 5 4 1 6\\n 5 6 1 0\\n 6 7 2 0\\n 7 8 1 0\\n 8 9 2 0\\n 9 10 1 0\\n 10 11 1 0\\n 10 12 2 0\\n 12 13 1 0\\n 13 14 1 0\\n 14 15 1 0\\n 15 16 1 0\\n 15 17 1 0\\n 17 18 2 0\\n 18 19 1 0\\n 19 20 1 0\\n 20 21 1 0\\n 20 2 1 0\\n 14 5 1 0\\n 19 5 1 0\\n 12 6 1 0\\n 21 7 1 0\\n 1 22 1 0\\n 1 23 1 0\\n 1 24 1 0\\n 3 25 1 0\\n 3 26 1 0\\n 4 27 1 0\\n 4 28 1 0\\n 8 29 1 0\\n 9 30 1 0\\n 11 31 1 0\\n 14 32 1 6\\n 15 33 1 6\\n 16 34 1 0\\n 17 35 1 0\\n 18 36 1 0\\n 19 37 1 6\\n 20 38 1 1\\n 21 39 1 0\\n 21 40 1 0\\nM END\\n\",\"sdf\");\n", | |
"\tviewer.setStyle({\"stick\": {}});\n", | |
"\tviewer.zoomTo();\n", | |
"viewer.render();\n", | |
"});\n", | |
"</script>" | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"mb = Chem.MolToMolBlock(m)\n", | |
"p = py3Dmol.view(width=400,height=400)\n", | |
"p.removeAllModels()\n", | |
"p.addModel(mb,'sdf')\n", | |
"p.setStyle({'stick':{}})\n", | |
"p.zoomTo()\n", | |
"p.show()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAYAAABNcIgQAAAhOElEQVR4nO3deVhV1frA8S9iDCpO\nyOyAlohCOZIiTiA2iKi3C3iN4KqZZplDTmjlkGkO1xyyFLVSLH8JNonmAE6pgCaKCCKkouYEAoIo\nINP+/YGSCAoHDiCc9/M857nsffZe+93eJ17etdfaS0tRFAUhhBBCQ9Wp7gCEEEKI6iSJUAghhEaT\nRCiEEEKjSSIUQgih0SQRCiGE0GiSCIUQQmg0SYRCCCE0miRCIYQQGk0SoRBCCI0miVAIIYRGk0Qo\nhBBCo0kiFEIIodEkEQohhNBokghFzRMXyMbQ5MLN5NBAHtkUQgiVSCIUQgih0SQRCiGE0Gh1qzsA\nIcokLpCNyT0ZYW8IQHLIRpaFPPzSkJ5W1RaZEKKGk0QoaqTGLSzp0P/f2BsWPCOMq+6AhBA1lnSN\nCiGE0GhSEYoa4/Hu0MKf7F2xr5aIhBC1gSRCUWMY9hzxzzNC6Q4VQqiJdI0KIYTQaFqKoijVHYQQ\nqjp+/DjPP/88hoaGpR8shBBPIRWhqHHy8/MJDQ0lKyurukMRQtQCkghFjZOUlEReXh7GxsbVHYoQ\nohaQwTKiRsnLy2PmzJlkZGTw3HPPVXc4QohaQCpCUaNoa2sTHR3NvXv3qjsUIUQtIYlQ1CjHjx8n\nJiYGLS2t6g5FCFFLSCIUNcKpU6dwdXXFwcGB7t27s3v3bpYsWVLdYQkhagFJhOKZdvbsWTw8PLCz\ns0NfX5+oqCj27t3Lzp07WbhwIaNHjyYnJ6e6wxRC1GCSCMUzKSUlhZ07d7J69WoUReH06dP4+/vT\nrl07AJydnTly5AhBQUG4uLhw586dqglMFgUWotaRUaPimZKamkpoaCgxMTG0adOGOXPmYGJiUuKx\ntra2hIWFMWjQIHr16sXOnTtp0aJFFUcshKjppCIUVesJFVVWVhZ79uzhu+++IzMzkzfffJOhQ4c+\nMQk+ZGZmxsGDB7GwsMDBwYHIyDOVfQdCiFpGKkLxTKhbty65ubkMGzYMc3Nzlc41MDAgMDCQSZM+\n4r//fYElS2DAgEoKFFkUWIjaRhKheCbUrVsXFxeXCp2/evViVq4EFxdYtQrefVeNAT5CVsEQonaR\nRCiqXGVWVBMnQvPm4OUFMTGwfDnUkQcAQoinkNUnRNWKC2Rjcs+iFZWVK/ZqXkQiLAwGD4Z+/cDP\nD/T01Nu+EKL2kL+VRa3UoweEhsLp09C/PyQlVXdEQohnlVSEola7daugMtTTgwMHnnBQFVWpQohn\nk1SEolYzMoL9++Hrrx/sCAAtLQh4sBk9D+b9rVqb9+7dY8OGDWRmZqoz1PKTSf5CVIgkQlHr6etD\n+/b/bNu4wzyP8rd3//590tLSqFtXxpoJURvIf8lC89jAnGiYFw1uD3apMpI1OzsbLS0tWQ9RiFpC\nEqHQSO5zwHYeuNkUbKsyNzA7OxsdHZ3KD1IFMslfiPKTRCg0kw3MoaAqtOml2qn3799HV1e3UsIq\nL5nkL0T5yTNCobHc58DZAMDUtTCJABjaP33EaEJCArm5uZUfoBCiSsj0CSFUtHr1arZs2UJISEjp\nBwshnnlSEQqNpyiKSlMh7ty5Q8OGDSsxIiFEVZJEKDTejRs3WLduXZm7O9PT0zEwMKjkqFSXlZVF\nRkZGdYchRI0jg2WExhk3Dvr2hexsCAmB//73Mubm5mWeF5ienv5MVoQnTpwgOTmZIUOGVHcoQtQo\nUhEKjXP4MGRmQqNGsG0bxMbG0rx58zKdGxkZSVhYGBcuXODvv1V8JU0lq1u3Lnl5edUdhhA1jiRC\noXGuXwcLC+jTJ58XXnDjnXfeeeq8wLS0NHx9fXn55Zfp3LkzrVq14u7du7Ru3Zo33niD4OBgnoUx\nZ4qikJ+fX91hCFHjSCIUNcdT3ql569atMlVDmZlw+zaYm0OTJnVITDyJrq4unTt3LnZseHg4Y8eO\npXnz5syfPx8nJyfOnz/PTz/9xIkTJzh+/DhGRkYMHTqUdu3asXjxYlJSUtR2u6r6888/Wb58ebVd\nX4iaShKhqBV8fX154YUXWLx4MWlpaU887saNa9jbr8DY+C7r1q0jNTWVRo0aERsbC8DNmzdZuXIl\nL730Eg497Tl1PoEtW7Zw+fJlpg1x4GbD1oVtdenSBV9fX65du8bUqVPZtGkTFhYWeHt7ExERUdm3\nXIyenh5ZWVlVfl0hajpJhKJWiI+P59KlS/j4+NCyZUsmTpzI1atXix139eoFTp70wdm5J7NmzWLa\ntGm89tprvPzyyzg6OtKyZUt8fX3x9PTk70Pf8t5n3+Dq6oq2tvYTr92oUSPGjBlDVFQUgYGBZGVl\nYWdnR7du3Vi3bl3JUzNu3Cj9U4ZRrIqiEBERwdKlS/H19SUnJ4e9e/eq9G8nhKaTRChqlOSQjSxb\ntoxly5axMeSfbtL4+PjCn+/cucOqVat4/vnn8fb2JioqCoC4uDjGjh1LdnY2Q4YMISgoiPv37xMc\nHExOTg6HDx9m6tSpnD17lhkzZmDUtJFKsdWpUwdnZ2f8/f25dOkSgwYN4uOPP6Z169b4+Phw+fLl\nggNzcgr6Zkv7REeXeJ0bN27g5+eHl5cXZmZmdOvWjZ9++gkXFxd69+7N4MGDGTx4MH/99ZeK/7pC\naCZ5s4yoOZ6ygK6lpeU/iaYE7du3p1evXsTHxxMfH0/z5s05fPgwDg4OjB49Gjc3N/z9/Rk7diwz\nZ85k7ty5EBfIssBH39ppSM8RI1RasPf+/fts376ddevWsX//fpycnJj0/vu4/OtfsHcvdOhQ/KTc\nXLC0hIgI6NiRzMxMjh49SnBwMMHBwZw8eRJTU1OcnZ1xdXWlf//+NG3atPD0v//+m48++ogff/yR\ncePG8emnn9KokWpJXQiNoghRU8RuV74LSSrcTArZroQkKUp2drZSt25dBXjix8jISHFyclK8vb2V\nZs2aKTNmzFBiY2OLXSIoKEhp1KiR8vbbbys5Z38p8XrlFR4erowZM0ZpVK+eooAy1WOskpycXLzt\n7GxFAWXbJ58ogwYNUvT09JT69esrzs7OyqJFi5QTJ06U6Xr79u1TXnrpJcXQ0FBZsWKFkpubW/7g\nhajFpCIUNVtcIEvPWDDdrSsAjQ0a0LJDR15q25qMjAzatWvHsGHD6NixIwDLli1j+/btHDp06IlN\nRkVFMXDgQDq0MmLo3J95t38roGgFWhEpCQk0NTXFydicPzPu4OnpycAXW3FCy4L40CAOBgXxd0IC\nXi++SOuhQxkwYAD29vblWgg4NzeXb7/9lo8//pgWLVqwYsUKevfuXbEbeNxTKnUhaoTqzsRCVEjs\nduXLXXHKoUOHlOTk5MLKKjc3V/nrr7+KHb5582alXbt2pTZ77do1pVOnToqdnZ1y8+ZN9cb8oOL7\ndeMBJSgoSHF3d1dampsoTYyMFS8vL2Xb//2fooCiRESo1OyFCxcUd3d35fz588W+S0lJUSZMmKDU\nrVtXGTRokBIfH6+mm1GeWKkLUVPIYBlR4zVo1JQ+ffoUeU6mra3NCy+8UOxYExMTEhMTS23T3Nyc\nP/74A0NDQ+zt7Tl37pxaYwZIiwzk9OnTdO/enaTUe3yyehN+fn78+9//BuD3339Xqb06deqQlZWF\njY0NM2fOJD09vfC7Jk2asHLlSs6cOUNeXh42Njb4+Phw9+5dtd6TEDWRdI2Kmk3FAS2RkZF06tSJ\nzMzMMi2um52dzejRo9mxYwe//vorffr0qXjMOTmgo8N2v4MM9uoLQIfnLXlj0hw++2Bk4fcDzc35\n/do1lZvft28fkyZNIjk5mblz5zJ69Gjq1Cn6N29gYCCTJ0/m/v37LFiwAC8vL7S0tFS6TnZ2dsEb\nedQwqEiIalXdJakQFaJit9zNmzcVQPn777/LfIn8/Hxlzpw5iq6urrJly5Zyh5qXl6dERkYquZmZ\nigLK7lU/K8r164py/bryRqcOyoxJMwu2r1xRFFDsdHSU/Pz8cl0rJydH8fX1VZo1a6Z07dpVOXz4\ncLFjsrOzlRUrVigNGzZUunfvroSFhZXabmpqqhIeHq4EBAQoy5cvV+7duyddo6LGk65RoVGaNWuG\ntrY2CQkJZT5HS0uLuXPnsmbNGkaMGFEwtUJFFy9eZNOmTRw5cqTwNWyvTnijcM7gTxFnWbTi84Lt\nli2BgoorNTVV5WtBwQu4x4wZQ2xsLA4ODjg5OeHh4VFkislzzz3HxIkTOXfuHB07dqRXr154e3sX\n+bfJzs4mODiYSZMmsXnzZr755htiYmJo3rw5w4cPp169euWKT4hniXSNCo1jYmLCd999x8CBA1U+\nNygoCDc3Nzw8PFizZk2pIzlTUlI4dOgQly9fpmPHjjg4OBR0Jz7W5blw4UIuX76Mr68vABkZGTSy\nsiLy7Fnat2+vcpyPi4mJYfLkyRw+fJhp06bh4+ODnp5ekWOOHTvGxIkTiY2NZfTo0Vy6dIm9e/eS\nl5fHgAED+PDDD+nSpQv169evcDxCPEukIhQax9jYWKWK8FEDBgzgyJEj7N69Gzc3tycuhJuYmMja\ntWvZtGkTOjo6jBo1CkdHx39WubCwKPKp17Yt0ampRbb1DQy4ceNGOe+yqPbt27N7925+/PFHNm/e\njJWVFX5+fkWO6d69O6GhoXz++ef4+/tjYGDA1q1bSUpK4pdffqF3796SBEWtJIlQaBwTE5NyJ0KA\nF198kbCwMC5dukS/fv2KtJWVlcXixYtp27Ytfn5+uLm54eLiUupCvqampty8ebPIPjMzM7Ulwodc\nXV2JiYlhypQpjB8/HkdHR06fPl34vZaWFsOHD+fKlSvMnDmT1157rVjlKERtI4lQaJyyTqF4GgsL\nCw4ePEj9+vULp1cEBgZiY2PD6tWrWbp0KUeOHKFFixZlaq+kpFcZiRBAR0eHiRMnEhMTg4WFBd26\ndWPVqlWF3z9MfLKShdAUqr+qQogarqIV4UPbt2+nS5cuXL16lS5dupCTk0PLli0xNzdnzJgxKrVl\nZmZGRkYGd+7cKaweS6oS1cnCwoLvv/+e999/nwYNGhTu19XVLZyTKIQmkEQoNI6JiQmRkZEVbue5\n557DxMSEN998k08//ZRp06ZhamqKhYWFym2ZmZkBBStLPEyElVURPs7e3r7YPl1d3ZKXjxKiFpJE\nKDSOuipCS0tLvL29MTQ0xMzMjJ9++gkDAwMGDhzIsGHDVGrLwMCABg0acOPGDdq1awcUJMJHn99V\nJX19fakIhcaQRCg0TkVGjT7Kzs6OjIwMjh49Snp6Oq6urhVqz9TUtEgFWNldo08jq90LTSKDZYTG\nMTExITk5mdwyrAD/NHXr1kVRFLKystDV1SUsLIzg4OByt2tmZlYk8XXp0qXwvaNVTU9PT7pGhcaQ\nilBoHBMTE/Lz80lKSsLU1LRCbW3fvp1p06bRoEED6tevj4GBAXZ2duVaCPfxitDW1hZbW9sKxVde\n0jUqNIkkQqFxjI2N0dLSIiEhocKJ0M3NDTc3twq1cefOHb777juOHDlCZGQkzs7OvPLKKxVqs6Kk\na1RoEukaFRpHR0eHxo0bV+w5YVwgG0OTAbh+/To/r/qMxZt/VWm5posXLzJx4kQsLCxYu3Ytn3zy\nCV5eXri6uuLh4UFSUlL546sg6RoVmkQSodBI6phU/1BwcDCrvt/Gzv/bSFRUVKnHh4eH4+3tTbt2\n7QgPD+fbb78lKiqKcePG8dFHHxEeHs6VK1ewtbUt9hq0yqIoCpGRkeTn5wPSNSo0i3SNCo2krikU\nAN7e3ri0bUKclesT1+DLz89n586drFq1igMHDvD6669z+PBhevToUexYW1tbQkJC2LBhA++//z7+\n/v6sWbOmzG+pKauLFy+yb98+9u3bx/79+0lOTiY6Ohpra2vpGhUaRSpCoZHUkQiTQzaybNkyli1b\nxvytJ9j705Zix2RlZeHn54eNjQ2enp506NCBixcvEhgYWGISfKhOnTqMGTOGyMhIcnJysLW1ZeXK\nlYUVW3ncunWLgIAAxo4dS5s2bXj++edZtGgRjRo14quvviIxMRFra2tAnhEKzSIVoahV8vLyCA0N\npVmzZoW/1DMzM9HX1y9ynLGxMXFxcVy5cgUjI6Ni35eFYc8RjHhQAq7+eBJhZyKANwFISEhgzZo1\nrF69Gh0dHcaMGcOkSZNo3LixStdo3bo1e/bsISAggPfee4+AgAA2bNhQeG9Pc+/ePUJDQwkODiY4\nOJiTJ09ibGxMnz598PHx4dVXX6VVq1Ylnitdo0KTSCIUtUp+fj6urq6YmJhw7tw5wsLCmDhxIseO\nHSM8PJxly5axZcuWwjUJHyaC+vXr06xZM0xMTGjWrBlGRkY0a9YMY2Pjwp+NjIwwMjLC2NgYg8eu\nO9ylP12tXImLi+Orr75i/fr1WFtb88UXX/Dmm2+Wum5hadzd3enTpw/Tpk2jc+fOzJgxg1mzZv2z\nrNMjFEXBycmJI0eOYGBgQL9+/Rg5ciSbN28u09qGCQkJ3Lx5k+zs7ArFLERNIQvziporLpCNyT0L\nq7Lk0EDirFxZ+f5/2Lp1K3FxcVhaWmJqakp0dDQGBgaYm5tz9epVJkyYgL6+PnPnziUpKYmkpCRu\n3bpFQkJC4XZSUhI3b94ssp2TkwMUvIvzYYJ8mDyTkpIIDg7GxcWFKVOm0KdPn0q57Z07dzJu3Dia\nNGnChg0bsLOzK3bM5s2bsba2pkuXLmhraz+1vfT0dA4dOlT4vDAqKgojIyPS0tLw9vZm6dKl5ZoX\nKURNIRWhqHUGDRrE1q1b2bFjB5MnT8bZ2Znff/+dUaNGcfz4cerXr8/Vq1dxdHTE2NgYY2PjMrd9\n+/ZtEhMTiyXPK1eu4O/vz86dO3n11Vcr8e7AxcWFM2fOMHv2bHr16sW7777LwoULiyya6+Xl9cTz\nc3NzOX36dGGX6R9//IGOjg49evTA09MTZ2dnunTpQlRUFKNGjaJ9+/Z8/fXXDB06tFLvS4hqowhR\nU8VuV74LSSrcTArZroQkKUpSUpKira2tODk5KYqiKH5+fsrbb79d5FRra2tl06ZNag3H2dlZmThx\nolrbLM3hw4cVa2trpU2bNkpQUFCJx+Tl5SlRUVGKr6+v4u7urjRs2FDR19dXHBwclBkzZihBQUFK\ndnZ2iefm5OQoixYtUnR1dRV3d3fl1q1b6r2BJ/x/KERVkq5RUXPFBbIsMO6RHYb0HDECe0Po3bs3\nx44d49atW9SvX7/YM7qGDRvy66+/4uTkpLZwfvnlF0aOHMm1a9eKVGeVLSsri0WLFrFo0SI8PDxY\nvnw5aWlphRXf/v37SU1NpVOnTjg7O+Ps7EyvXr1UWnn+7NmzjBo1ikuXLrF69eoKv02n0BO6t580\nDUWIyiBdo6JGe3TkZnJoIA/T4qBBg4iJieHSpUt07NixyDlpaWmkp6eXa93Apxk8eDCNGzfmhx9+\nUHlh3orQ09Nj7ty5DB06lBEjRtCzZ0/i4uKwsbGhf//+fPvtt/Tt27dCz/k6dOjA0aNHWb58Ocqa\nNbBpE/j6grm5Gu9EiOohFaGouZ5STSQmJpKRkYGlpWWx086ePYuNjQ3p6elFVmZXh88++4yAgIBq\nW0dw165duLu789dffxUu9qt2Fy/C6NEQEQGLFkFFkv5TqnohqookQqFx9u7dy7Bhw7h9+7ba2751\n6xYtWrRg3759ODg4qL390ixdupTAwED++OOPyr2QosD69TB1KvTuXVAdNm+uejvSNSqeAfJmGVHz\nPfICbCj4ZfrIZjFXr16leXl+aZeBkZERb7zxBl9//XWltF+a06dP06lTp8q/kJZWQSUYGQk5OWBr\nC+vWFSTIUmRlZXHy5MnKj1GIMpJEKDROZSZCgPfee49t27ap7V2mqoiIiCj2TLRSWVrCnj2wdClM\nnw6//Vawf55tQbLU0oKAB8fevQuzZ3Ns/XqioqK4d+8eWLkWVoMAhvZSDYqqJ4lQaJxr165VaiLs\n1asXtra2bNiwodKuUZL8rCwsMjPpVJWJEAqS3TvvwLlzMGQIRM+D6DkF1aESBfM8Co7T1oawMBza\ntMHb27tKR9YK8TQyalTUCskhG1kW8nDLkJ5WTz722rVrdOvWrVLjGTNmDAsWLGDGjBkVfr1aWdU5\nc4Y9V64UdFNWh4eLHG8LAPeHy1HZgPvZgqrQXR/27pVfOuKZIxWhqBUMe45gypQpTJkyhRE9C/rW\nMjMzS3xx9NWrV9U+deJxXl5e3L17lx07dlTqdYo4fRqsrUGF+YFCCEmEohaLjIxk7dq1bN++ndjY\n2ML3hFb2M0KAevXq4eXlxVdffVWp1yni9GmoioEypXFzh4CHDwYDYG4HcK/WiIR4KumlEDWflSsj\nHtk0tHfFHsCwO82bN+fs2bNs3bqV1atX4+HhQUpKSrFEePfuXbXPKRw/fjzW1tbExsbSrl07tbZd\nooiIgmd01c1mDtjYgtaDZ4P+MkNLPNukIhS1moWFBQMGDGD69Ol8+eWXXLhwgTZt2hSZQ3j//n06\ndOjA7t271Xrttm3b4ujoyJo1a9Ta7hOdPw9VPVDmSeZEPRgso0g1KJ55MqFeaJyRI0cSHx/PwYMH\nC/fNmDGDXbt2ERERQZ066vv78Oeff2bUqFFV8/7RvLyC/y1l2SUhRFFSEQqN89lnn/Hnn38WqQBn\nzpzJ9evX+f7779V6rSFDhtC4cWO2bNmi1nZLpK0tSVCIcpBEKDSOhYUF48ePZ/r06eTn5wPQuHFj\nZs6cyaxZs8jMzFTbtbS1tRk9enTlDZopaeK6EEIlkgiFRiqpAvzggw/Q1dVVe9IaO3Ys586d4+jR\no2pt94kT14UQKpFEKDRSSRWgjo4Oc+fOZcGCBSQnP+VlpSqqV68eXbt2Vf/7R7cFgPvDkSiPTFwX\nQqhEEqHQWCVVgJ6enrRp04ZFixap7ToJCQnExsby448/cuzYMdVOTkuD+Hg4cQL27oWtW2HNGti/\nX23xCaHpZNSo0GibN29mwoQJXLhwgaZNmwKwZ88ehg4dyrlz52jVqpVarpOWlkbbtm1JTU3Fw8OD\nAQMGcOfOHVJSUop9ZpiZMfTIEUhJ+WckKEDTpv98hg+HAWkwrwP4uwMBoBUAir9a4hVCk0giFBot\nPz8fOzs7+vfvz5IlSwr3DxgwAHNzczZt2qS2az1cleL27dtoa2tjZWVFq1ataNKkCU2bNi389Dc3\np329ekUT34MkXcw8W5gbXfCzv8zZE6I8JBEKjfewAoyNjaVly5ZAwbp+3bp14/jx43Tu3LnC17h3\n7x6WlpasXLkSNzc3vvjiCxo0aMD48eMr3LYQomIkEQpBQQVoYWHBxo0bC/d5enqSkpLCrl27VG/w\nsZXX5094m7XbD3D5fFyVrUYhhCgbGSwjBPC///2PH374gVOnThXuW7BgAQcOHCA4OLhCbd+/f581\nP/6G5wfTJQkK8QySRCgE0LFjR9zd3fnoo48K91laWjJu3DimTZtWOPG+PPz8/MjNy2Pgf/6rjlCF\nEGomiVCIBxYuXMj+/fuLVICzZ8/m8uXL+PurPhozOWQjS5cuZdasWXTv+Qq6evrqDFcIoSaSCIV4\nwNLSknfffbdIBdikSRO+/PJLLC0tVW7PsOcIWrZsSU5ODqsmvKHmaIUQ6iKJUIhHfPzxx8THxxep\nAD09PenRo0e52luyZAkffPABDRvUU1eIQgg1k1GjQjxm4cKFbNiwgZiYGHR1dcvdzu+//467uzuX\nLl3CyMhIjREKIdRJKkIhHjN58mRyc3P58ssvK9TO559/zujRoyUJCvGMk0QoxGP09fXx9vbm888/\n56233uLixYsqtxEWFsaxY8f48MMPKyFCIYQ6SSIUogQ3b97E0dGR7OxsrK2tGTt2LDdu3Cjz+fPn\nz+ett95S27tKhRCVRxKhECWIjIykb9+++Pv7c/DgQWJiYmjbti0+Pj6kpqaWeu7u3buZOnVq1QQr\nhKgQGSwjxGMURWHt2rW8+uqrtGnTpnB/cHAwU6ZM4erVq0yfPp0JEyagr198buDw4cPJyclh27Zt\nVRm2EKKcpCIU4jG3b98mIyMDc3PzIvudnZ05deoUa9euZd26dVhZWbFu3Tpyc3MLj7l48SLbtm3D\nx8enqsMWQpSTJEIhHpORkYGpqSl6enrFvqtTpw7u7u7ExMTwySefMHv2bF588UUCAgJQFIXFixfj\n6OhIt27dqiFyIUR5SNeoEBVw584dli5dyooVK7CysiI6Oppdu3bh6OhY3aEJIcpIKkIhKqBhw4bM\nnz+f8+fPY2dnR8OGDTl48CB5j64sL4R4pkkiFAIK1g8MTS7cTA4N5JHNp/rmm2+Ii4tj7dq1BAQE\nsGHDBvr378/169crKVghhDpJIhSiHNLT0zl58iRQ8LJuNzc3jhw5Qt++fYmIiEBPT49OnTqxd+/e\nygmgAolbCFGUJEIhVJCeng7AmTNneP3119m1axf9+/cnODiYzp07A2BkZMSuXbuYMmUKLi4u+Pj4\nSFepEM8wWS5biAeSQzayLOThliE9rYp+n52dTdeuXfn000/5z3/+w2+//ca//vUvlixZgpeXV5Fj\ntbS0mDFjBl27duWtt96i3+3bvDZ/PhgbV8m9CCHKThKhEA8Y9hzBCHtDoKCrMe6x73V0dPj5558Z\nOHAgiYmJTJgwgf379/P666/TunVrevXqVaxNZ2dnIk6dwtjLCzp3hi1boG9ftcRbWuIWQpSNJEIh\nVGBra8vhw4d57bXXSExMZP78+YSHh9O0adMnnmNqZgZ79sD8+fDKKzBzJsyeDXVUfzKRl5eHtrY2\nUHriFkKUjTwjFALAyrUwqQAY2rtib0iJg1KuN2jF0aNHOXDgACNHjqRRo0ZoaWk9vX1tbZg7F3bt\nAl9fGDAAEhLKHF5eXh5//vkn69ev5+7duyrenBDiaSQRClEOTZs2Zc+ePSQlJXHixImyn+jkBCdO\nQHY2dOsGR4+Wfs4vv3Bs/XoiIiLo168fDRo0eHLiFkKoTBKhEOXUoEEDduzYQY8ePVQ70cICDhwA\nT09ITCzYN88WtLQKPgEPjsvJKagcvbzolpXFyJEjsba2Vus9CCHkGaEQpaqUQSl168KiRQU/R8+D\n6DmguAPRYOsB7v7w3HPg4QEbN6JjYaGGiwohSiKJUIhSVPqglG0B4B71YMMG3M8WVIXuwDvvqPtq\nQojHSNeoEEIIjSarTwhR3aLnwbwO4O8OBIBWACj+1R2VEBpDukaFqG42c8DGFrQ8Crb95W9TIaqS\nVIRCCCE0mjwjFEIIodEkEQohhNBokgiFEEJoNEmEQgghNJokQiGEEBpNEqEQQgiNJolQCCGERpNE\nKIQQQqNJIhRCCKHRJBEKIYTQaJIIhRBCaDRJhEIIITSaJEIhhBAaTRKhEEIIjfb/++ydOnMEzGwA\nAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<rdkit.Chem.rdchem.Mol at 0x19c96ff14e0>" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"m" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment