Skip to content

Instantly share code, notes, and snippets.

@ptosco
Created January 12, 2020 18:38
Show Gist options
  • Save ptosco/f1c1d78d32fee4f76f809487c024f2fb to your computer and use it in GitHub Desktop.
Save ptosco/f1c1d78d32fee4f76f809487c024f2fb to your computer and use it in GitHub Desktop.
FragmentOnSomeBonds
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from rdkit import Chem\n",
"from rdkit.Chem.Draw import IPythonConsole, MolsToGridImage"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"I have put explicit bonds in the SMILES definition to facilitate comprehension:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"mol = Chem.MolFromSmiles(\"O-C-C-S-C-C-C-N\")\n",
"mol1 = Chem.Mol(mol)\n",
"mol2 = Chem.Mol(mol)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAYAAABNcIgQAAAN8klEQVR4nO3dW0yVd7rH8YetCzzgGZlqtRjLFMFDVNwTxdTEFtPqJr1psVd4aOpqeoPNZNd10QO9sM1SZ9LFZNIO7UWLN5NgTHZEsd3MjvXQodUBYTyBgqKiVYsnUBSWrN++QFsP1AOuA/j/fhKS+vqu9T5Ns/rNe/gv4iTJAABw1H/EegAAAGKJEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKf1j/UAAHpiqx2vXGTNt29KKrPMlIWxGgjoswgh0OfU27m6RWapssxht7ZtteN1h63dFlpCLEeLkZaWFqutrbWJEydaUlJSrMdBH8OlUaCvad9iF694bfiw2zcutJS0lU5GsKSkxNLT023FihWWmppqn3zyibW1tcV6LPQhhBDoaxL+y0YkfmH1dYXWHutZYujo0aO2aNEiW758ua1YscJ2795tX375pX311Vc2YcIEKywstBs3bsR6TPQBhDDK3oozK6x/8LbuXhc316z+rm0Peh2eRKmWnHbExts7tr8yzior46yycq6dc6SKwWDQCgsLbdq0adavXz87ePCgffTRR5aQkGC5ubl28OBBW716tfn9fpsyZYpt2LDBJMV6bPRihLAPyTKzLYTP2trabN26dfbxxx9bU1NTrMeJkVRLTpNlZnb9TBlvdnL/W3Y51mNF2Pbt22369Om2bt06+/rrr620tNRSUlLu2Mfj8ZjX67X6+npbvny5vfnmmzZ79mzbvn17jKZGb0cI+5DF75uVrIv1FLG1efNmmzx5sn3xxRe2efNme+6558zn89nFixdjPVoUhH7zbxKS37ck22/tN88KpU67dGmTmT0ZZ0Jnz561JUuW2IIFCyw7O9tqa2vttddeu+9rBg8ebD6fzxoaGmz+/Pn20ksv2YIFC6ympiZKU6OvIIR9ye/N3jc3L4eePn3alixZYrm5ubZ06VLbt2+fVVRU2KZNm6y8vNyeffZZW7NmjV27di3Wo4ZdKHTFmpretfr6nK4N7YVWd3zrnTtd/h9rTlxsw24+LXP9+kFrbFxihw79p7W2/l90Bw4jSbZ+/XqbPHmyHTt2zKqqqqywsNASExMf+j2SkpLM7/dbXV2djRkzxjIzM23x4sXW2NgYucHRtwhR5TXJuvkJHHnw6wJHJJVJ5r1r2xMsGAwqEAhoyJAhmj9/vg4dOnTPPp2dnSopKdHEiRM1btw4FRUV6caNGzGYNvwuXdqkf/87Rfv2/V6XL//vza1HdLbW9K9/3f7j1aW7XhsMnldTk09VVQN0+HC2rl6tjPb4j2Xv3r2aPXu2RowYoUAgoM7OzrC87+7duzV//nzFx8crPz9fFy9eDMv7ou8ihFHWXbweJmi37xPI6vrnJz2Ee/bs0axZszRmzBgVFxc/cP/29nYVFRUpOTlZ6enpKikpicKUkdHR0aSGhtdUVTVQp04VKBS63uP3am8/ocZGryor+6uhIVfXr9eHcdLwu3Llinw+nzwej/Ly8nTu3LmIHGfLli2aOnWqPlm0SPrTn6Rr1yJyHPR+XBrtTerN5saZxd38mVvY/W4r3zd757Z7hcGg2Zw5ZmvWmHV0RGfUSLp48aKtXLnS5syZYzNnzrTa2lpbsmTJA18XHx9vXq/XGhoabOnSpfbGG29YVlaW7dy5MwpTh4cUtHPnCm3//kkWCl2zjIwDNnbsRxYX1/MVgvHx4y0lpcjS06vNzOzAgQw7fvwtCwbPhmnq8CktLbX09HQrKyuzbdu22fr162306NEROdaiRYusurra/vj662Z/+YvZpElm69ebhX77XiyeULEusWvue0ZYJnnLut/37tcFsn69pBoMSn/9q/S730lpadLGjVIoFPF/lbALhUIqLi5WcnKyZsyYoR9//PGx3q+pqUler1f9+/dXdna29u3bF6ZJI6O1dYcOHJismpqxam5+8Blwz4+zS7W1c1VVlaimJp9u3GiJ2LEeVkNDgxYuXKhBgwapoKBA7e3t0R2gvV0qKpKSk6WMDKkPX03AoyOEUfYol0ZvXQLtdp+ye+8tXrki+f3S0KHSH/4gbdsW7ukjp66uTtnZ2Ro2bJgCgUBY7/EdOnRIubm58ng88nq9On36dNjeOxyCwfM3L116dOJEfpTCFNKFCyXaty9V1dWjdfZsQKFQMArHvVNHR4f8fr8GDBignJwcNTY2Rn2GO7S0SAUF0sCBUlaWtHNnbOdBVBDC3upI1+ewJ7cAf/5Z8vmkhAQpO1uqrg77dGHT1tamgoICJSQkKCcnRydPnozYsSoqKjRv3jwNGjRIPp9Ply7d/XhJtIXU3Fys6uokHTyYqatX90R/glCHfv65SDU1T2n//jRduFAiKTqXE7777jtlZGTo6aef1oYNG6JyzIfW1CR5vVL//lJOjnT4cKwnQgQRwl4qHA/CNDb++lnOzZWOHg3PbOFSWlqqCRMmKDU1Vd98803UjlteXq5p06Zp1KhR8vv9un695w+i9FRbW41qa7O0d+9wnT0bkBSeJyJ76saNFp069aGqq1OUk/OCdkbwTOinn35SXl6ePB6P8vPz1draGrFjPbZDh7o+PB5P14epl11NQHgQwl4o3E+D7tkjvfCCFB/f9VmO0EN4D+3UqVPKy8vTwIEDVVBQEJMQ3VpykZKSomeeeUZFRUVhezz/flpbW7Vq1X/rH/8Yr2PHlioYjPF/jLucO/eT3n77bXk8Hr3yyis6cOBA2N67s7NTxcXFGjVqlJ5//vlef8/2DhUV0rx50uDBXZdbLl+O9UQII0LYmxyRsiK4JKK8XJoxQxoxouteYltbZI7zWx5mTWC0Xb16VX6/X8OHD9eUKVNUWloasWNt3LhR48aNU0ZGhqqqdkXsOOHQ2NiovLw89evXT7m5uTp27Nhjvd+tNYEjR44M65rAqAqFup5ES0vrejJt69Y7//7WE2zdLg4uk+zuex3dbUMsEMJe5Ejg3oX2WYHwHqOzU1q/XkpJkcaPl/7+9zNR+Z/Srl27NHXq1IdeExht58+fl8/n04ABA5Sdna3KyvAtPj958qReffXVmJ4B99TjLj6P1prAqAoGpb/97c77hoGsX7/pQtK9T7MRwt6MEDrq+nXpz3+WZsx4XVOmTNHmzZsjcpwLFy4oPz9f/fv3l9fr1eVefknpxIkTvyy5yM3NVX19zxefd3R0KBAIKDExUTk5OY99VhVL5eXlmj59ukaOHCm/369rD7H4fNOmTRo/frymTZum77//PgpTxsrN6JXdvdl7WxwJYW9GCB3X2toqv9+vIUOGaM6cOdqxY0dY3vfWmsDRo0dr5syZj70mMNr2799/x5KLM2fOPNLrd+zYocmTJ2vs2LG98gy4Jx72q+zq6+v18ssvx25NYLQdCdx1NnjL7aEjhL0ZIYSk8C4+r6ur04svvqjhw4eHfU1gtO3atUtz585VYmKifD6fWlruv8bv/Pnz8nq9vzwR+aD9+6Lbv8ouIyPjl6+y63VrAqOlzPsb9zBuP1Ms6/5Lhglhr0AIcYfHWXx+a01gfHx8xNcERlMoFFJJSYlSU1M1evRoBQIBBYPBe/YpLi5WUlKSZs2apT17or8mMNouXLigVatWaeDAgZo9e7ZSU1M1YcKEiD5w1CtxRtjnEUJ064cffnikxee3rwn89ttvozRldHV0dKioqEhPPfWU0tLSVFJSolAopJqaGmVlZYX9tyT0FSdPntTq1au1du1aXb16NdbjxAD3CPs6Qoj7etDi81trAgcMGNDnnojsqZaWFn344YdKTExUZmamPB6Pli1b9mQ8EYme4anRPi1O0pPxK6wRMaFQyDZu3GjvvvuuSbL33nvPli1bZp9//rl98MEHNmvWLPvss89s0qRJsR41qs6cOWMVFRU2atQomzdvXqzHQawVzjV755+//jlwxGxl6s0/bDWLW2125HuzW5u63YZYIIR4aG1tbRYIBGzt2rWWkpJizc3N9umnn9rixYtjPRoA9BghxCNrbm62o0eP2qRJk2zo0KGxHgcAHgshBAA4jd9QDwBwGiEEADiNEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKf9P2wRorxvo7rpAAAAAElFTkSuQmCC\n",
"text/plain": [
"<rdkit.Chem.rdchem.Mol at 0x18110aa4ca8>"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mol1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`Chem.FragmentOnSomeBonds()` will fragment according to all permutations of `numToBreak` bonds at a time (`numToBreak` defaults to 1), and return tuple of molecules with `numToBreak` cuts applied. By default, `addDummies=True`, so empty valences are filled with dummy atoms:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's set `numToBreak` to 2. The permutations of `numToBreak` bonds over `n` possibilities are `n! / (numToBreak! * (n - numToBreak)!)`. So replacing `n` with 4 and `numToBreak` yields 6 permutations."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"mol2_f_tuple = Chem.FragmentOnSomeBonds(mol2, (0, 2, 3, 6), numToBreak=2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Indeed, we get 6 results:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(<rdkit.Chem.rdchem.Mol at 0x1810b9ded40>,\n",
" <rdkit.Chem.rdchem.Mol at 0x1810b9dece8>,\n",
" <rdkit.Chem.rdchem.Mol at 0x18110aa2768>,\n",
" <rdkit.Chem.rdchem.Mol at 0x18110aa28c8>,\n",
" <rdkit.Chem.rdchem.Mol at 0x18110aa2920>,\n",
" <rdkit.Chem.rdchem.Mol at 0x18110aa2978>)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mol2_f_tuple"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Each of these results corresponds to one of 6 doublets of broken bonds:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Broken bonds: 0, 2"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAYAAABNcIgQAAAToUlEQVR4nO3de1CU190H8O9iEPFSkK5IS0CUq6LGigELo2/sNBeImdqJwGQcsEFdTFLE6WsDnZoiJK9ZJ5noShxfQejgNJO6jtNUVtGRxrfGRC6ulwLedpOgWGW4LBUUZFHO+4ca0UBgcXcf1vP9zOzo7nOec377h3455znPg0oIIUBERCQpN6ULICIiUhKDkIiIpMYgJCIiqTEIiYhIagxCIiKSGoOQiIikxiAkIiKpMQiJiEhqDEIiIpIag5CIiKTGICQiIqkxCImISGoMQiIikhqDkIiIpMYgJCIiqTEIiYhIagxCIiKSGoOQiIikxiAkIiKpMQiJiEhqDEIiIpLaU0oXQGS7MlwyJqCl70fqA4iaEq9UQUTkwhiE5GLMaLqQAIQIRHnd/6wMly5cRDfi4aFkaUTkklRCCKF0EURD1q3Dhdqz8IvaAa/BWxMRDYrXCMm1eLyMieMLYL6gQ7fStRDRE4EzQnJBZjRdCEXDjfvvYxEw80v4cl2UiIaBQUgur7spDrUNMxHC5VIiGgYujdKIdudOB65dexfd3d8O2MbDdz3UqEW3pGulFosFN27cGLwhEfWLQUgjUm/vTTQ2bkJt7VRYLJ/g9u3Guwe6dbhwqezhxtc/Q8v4JHjdWxptbNyIa9fegxA9zi3ayS5fvoz09HT4+/sjICAAmzZtwu3bt5UuSxHpKkAVB5gf+Uxn/v7f+ztOcmMQ0ogihBUtLQWorQ1Fc/N2+PtvxIwZtRg37ud3G3i8jIm3EmA0qh68zEBIeOZ3t054es5BS0sBzp2bh87OE4p9F0dpampCdnY2wsPDUVdXhwMHDuAvf/kLPv74Y0RFReHEiSfvOw9FLID9DDYaBgYhjQj3A7CmZhquXXsPfn5ZmDnzAtRqDVSqvre7hsA3XCAqqu/r4WuDXl4JiIw8Dy+veJw//3NcupSO3l7XXzpsaWlBdnY2goKC8M9//hN6vR7Hjh3DokWL8PLLL6O2thbPPfcc4uLikJmZiZs3bypdslMlrQf0HyhdBbkiBiEpSogetLbuQl3ddPz73+/A1zcDkZEX4eubCZVq+NtA3dzGwt9fi7Cw/8ONG0dx9uwzaG8vt2PlzmOxWLBhwwYEBwejrKwMJSUlOH78OF555ZWH2nl5eUGn06G8vByHDh3CM888gyNHjihUtQJCgfXgcifZjkFICulFW9se1NVF4sqV/4ZarcGsWfXw88uCm9sYu40yfnwcpk8/BR+fFJjNi1Ffn4rbty1269+ROjo6sGnTJgQHB2Pv3r3YuXMnTp8+jcTExB88b8GCBTh16hSWLl2KF198Eenp6Whvb3dS1cqKXwKsHWBWuDYUUKkevAqcWhmNZAxCciohBGpra3H06P/g8uU3oFav6BOAng4Z081tDH760w2YPr0KXV3ncPZsJNra9jpkLHu4ceMGNm3ahClTpqCkpAQ6nQ5nzpxBYmIiVCrVkPrw9PSEVqtFVVUVTpw4gYiICPztb39zcOXO09k5wIF4YEtt/7PCLSZAiAcvjUMrJFfCICSnEELg3Llz2L59O/bv34/Roxdi5sxv7wXgOKfU4Ok5GxERx+Hnl436+uUwm19BT89Vp4w9FJ2dndDpdAgJCcGOHTug1WpRU1OD1NRUuLkN75/qnDlzUFlZiczMTLz22mtISkpCc3OznSt3noYGYPVqYOpUYKA7RjLXDzwr7JcZiOszU4zT2aVUciEMQnK4b775BoWFhfjss88QFhaGzMxMzJ//Xxg1aoLTa1GpnoKvbyZmzDiD3t5O1NVFoqWlAIByz5WwWq0oKChASEgINm/ejLy8PFy8eBEajQajRo167P6feuopZGVloba2Fs3NzQgPD0dBgWstDDY3A9nZQFgYUFMDfPopMH78AI3vzQqH/A1NwMwDD2aKM9fyOqNs+NsnyGG++eYb/OMf/0BzczPmzp2LZcuWYdw458z+BuPhEYywsMNobv5fXLmyDs3NBowbl4/AwClOq6Gnpwd//vOfkZeXBzc3N2RlZWH16tXw8HDMs+JCQkLw+eefo7CwEOvWrcPf//53bN++HYGBgQ4Zzx5aWoAPPwTy84HZswG9Hnhkj1C/MtcDaxOGOEg8sKPP2xmxw6mUXBkfsUYPWCpRnH8QDffeBryUgbQYH5u7uXz5Mo4cOYKGhgbMmTMHzz33HMYP+OO78qzWBhQWapGdvQvvv/8+3nzzzWEvRQ5FT08PPv30U+Tl5aGjowO/+93vkJmZiTFj7LdJaDD19fVYvXo1jh8/jry8PGRkZDj0O9vKYgG2bgU2bwaCgoD164GlS+8uXTqUGYhbDpR8CYQ4eCgaQQTRfaZSUWr67o0o3VAkKlqHfnpDQ4MoKSkR7777rigtLRXt7e2OqNJh9Hq9mDRpkoiNjRV1dXV27//OnTtCr9eL0NBQoVarhVarFZ2dnXYfxxZ6vV6o1WoRFxcnzp07p2gtQgjR3i6EViuEt7cQkZFC6PVC9PY6b3wNhNhiGrwdPVkYhDSAVlFRNPQgbGpqEnl5eWLfvn3iP//5j2NLcyCLxSI0Go1wd3cXWVlZoru7+7H7vB+A4eHhwsfHR+Tk5Ijr16/boVr7aGxsFCkpKWLMmDEiJyfHLt/ZVjdu3A3AiROFmD5diJISIW7fdm4NDEF5MQipf60VoqioQnwvB02lomiAdOzo6HB4Wc6yf/9+ERgYKGbNmiUqKyuH1Udvb6/Yt2+f+NnPfiYmTJggsrKyRFtbm30LtaPS0lLx9NNPi9mzZ4vq6mqnjHnzphBbtgjh5ydEUJAQO3Y4PwCFSYhYhqDURs5FARpBzDDk1yFySQzuXiG0oLI4F7m5hnsPNTbBkJuL3OJK9L01fSRfB7RVQkICampqsGjRIixYsMDmR5aVl5cjOjoar732Gl544QVcunQJWq0W3t7ejiv6MS1evPh7j2nrHPCGvcdz69Yt6HQ6JCbWQqcD3n8fMJkAjQaww0ZZm5j3A1/h4RvueQuFZJROYhppfujaoEmUbtggNmwoFTL98Hzs2DEREREhpk2bJsrLy3+w7RdffCEWLlwoxo4dK9asWSMaGxudVKV9HT16VISHh4vg4GDx+eef263f7u5usW3bNuHv7y8CAgJEUdEeYbXarXuiYWEQ0gOtFaKo3xBsFRVF9wLQVCqKKiruBmJ/S6dPqK6uLpGTkyM8PDxESkqKaG19+Jt/8cUXYtGiRWL06NFCo9GIq1evKlSp/XR2doqsrCzh7u4uNBrNY13XtFqtoqSkRAQHB4tJkyYJrVYrurq67Fgt0fDx9gn6jqWyGPkHGx767Hu3UJgNKG6NHdZtFU+Cf/3rX1ixYgWuXLmCbdu24Sc/+Qk2btyIQ4cO4fXXX8ef/vQn+Pv7K12mXZ0+fRorVqxAY2Mjtm3bhiVLlgz53N7eXuzduxd//OMf0dbWhnXr1mHNmjXw9HTM4/SIhkXpJCZyNVarVWzcuFF4eXkJDw8PsXLlSlFfX690WQ7V09MjtFqt8PDwEImJiaKpqekH29/fKDR79uwRuVOWqC/OCImGqaOjA93d3VCr1UqX4jRmsxmrVq3CmTNnoNVqodF8/9HV5eXlePvtt2EymfDWW28hOzt7RG8SImIQEpFNhBDfPaZtwYIF3z2mrby8HH/4wx9w7tw5/Pa3v0VWVhYmTpyodLlEg2IQEtGw1NfXIz09HRUVFQgKCoLZbMZbb72Ft99+W6pZMrk+BiERPRa9Xo+bN28iPj4efn5+SpdDZDMGIRERSY1PliEiIqkxCImISGoMQiIikhqDkIiIpMYgJCIiqTEIiYhIagxCIiKSGoOQiIikxiAkIiKpMQiJiEhqDEIiIpIag5CIiKTGICQiIqkxCImISGoMQiIikhqDkIiIpMYgJCIiqTEIiYhIagxCIiKSGoOQ6HvMMBRXwqJ0GUTkFAxCoj4slcXIzf0ERqULsZUuDlCpHrx05j4HywBVHND3o34/I5ITg5CoD5+YNORkvISAgRqYDSiuHGFzRV0csHYmIMS91wFgbegjYUhEA3lK6QKIRj4LKovzcbAhCsuWAYAJhtyDMAa8hIy0GPjca3Xnzh2be1YJAbdhnIfRo+/O/FAGrP0KOPBln4PxwAENkPABkLnD9r6JJMMgJBqUD2LSchADMwy5n6ABUViYk4PFfVrcuXMH7733ns09PzNuHJb8/ve2l3ToEPDCC4D5IgANEP/I8fglAN67u/QZYnv3RDJhEBINqu+MMApNrZNwPjcXn/SZEbq5ueGNN96wuecxVivw4ou2lzR16t0/TWeB2BkDNPoKMOFeEH4FhKoeOR5r+7hETyAGIdGg7s8IAZgNOIpQLM6JeWhGqFKp4OvrO7zun356+KWFzgC+OjvAwVggtM/fTV/2mR2WASrbZ7BETyJuliHqw1JZjNz8g2hoOIj83FwYHt1vErIYaTE+/Z6riJAwAAVA2SOfl30GYCaXRYmGgDNCoj58YtKQE6N0FbaIB7bEAgnpgLi/MaYMSCgAtpgUrYzIVTAIiVxd5pcA7t1HeN8WE5DJ6SDRUKiEEELpIoiIiJTCa4RERCQ1BiEREUmNQUhERFJjEBIRkdQYhEREJDUGIRERSY1BSEREUmMQEhGR1BiEREQkNQYhERFJjUFIRERSYxASEZHUGIRERCQ1BiEREUmNQUhERFJjEBIRkdQYhEREJDUGIRERSY1BSPQYmpqacOTIEXz99ddKl0JEw8QgJBqG6upqpKamIjAwEGvXrsXcuXOxZ88epcsiomFgEBINkdVqxZ49e/D8889j/vz5aGtrg8FgwOnTp5Gfn4/ly5cjNTUVXV1dSpdKRDZQCSGE0kUQjWSNjY0oKSnBxx9/DKvVitdffx1vvvkmAgMDH2p36tQpJCUlYcKECdDr9QgJCVGoYiKyBYOQaABGoxE6nQ5//etfMWvWLKSnpyMlJQWenp4DntPR0YFVq1ahrKwMBQUFSE5OdmLFjmKGIfcTGO+/jVqGnMUMeXpyMAiJ+uju7sa+ffuwefNmGI1G/OpXv4JGo8Evf/lLm/rZtWsXVq9ejZSUFGzduhUeHh4OqtgJzAYYsBh3s8+CyuLPgCVpiPFRuC4iO2EQEuHu7s8tW7agsLAQ7u7uSE9PR3p6Ovz8/Ibd58mTJ5GUlAQvLy/o9XoEBwfbsWKlmGHIPY+InMXgnJCeFAxCklp9fT2qqqpQX1+Pw4cPIy0tDa+++ipGjx5tl/7b29uxatUqHDx4EIWFhUhKSrJLv85nQWVxPg42RGFZfyFoNqC4NRZpnCaSC2IQknRu376Nuro6HD9+HC0tLQgPD8f8+fMREBDgsDELCgqQkZGB3/zmN8jPz7db0DqfGYbco5iUkYYYnz7huAw42joJvgcPwhjwEjLSYsBIJFfBICRptLW1wWg04uTJkxg1ahSioqIQHR2NsWPHOmV8o9GI5ORkeHt7Q6/XY9q0aU4Z197Mhlycj8jBg/0y9zfTDDBbJBrhGIT0xLt8+TIqKytx/vx5TJ48GTExMZg1axbc3Jx/G217eztWrlyJQ4cOYefOnUhMTHR6DbayVBpgCl18b3MMZ4T05GEQkmsa5JqU1WpFTU0Nqqqq0NraisjISMTGxmLy5MlOLrR/BQUFWLNmDdLT0/HBBx+M7KVSswG5n3x38wSilvWdDT5ow2uE5KoYhORCBp+BWCwWnDx5EkajEe7u7pg7dy5iYmJ+8N4/pZw4cQLJycnw8fHB7t27XXaplMjVMQjJBfV/Taq3txcfffQRJk+ejOjoaISFhUGlUila6WCuX7+OlStX4vDhw9i5cyeWLl2qdEkAgK6uLqhUKowZM0bpUogcjkFILmTwGeGtW7dc7j9vIQS2bt2KrKwsxZdKGxsbUVVVhZqaGjz//POIjo5WpA4iZ2IQkmt6Aq9JnThxAklJSVCr1di9ezemTp3qlHGFEDCZTKisrMS3336LqVOnIiYmBqGhoSN+Rk1kDwxCohHk+vXrWLFiBcrLy1FUVIRXX33VYWPdvHkTp0+fRnV1NW7duoU5c+Zg/vz58Pb2dtiYRCMRg5BohHl0qfTDDz+Eu7u73fq/du0ajEYjzpw5A29vb8ybNw9z58616xhEroRBSDRCVVdXIzk52S5LpVarFRUVFbh48SKuXbuGiIgIREdHY8qUKXasmMg1MQiJRrDW1lYsX74cFRUV2LVrFxISEmw6/+rVq9ixYwcKCgqgVquh0+kwb948/OhHP3JQxUSuh7+hnmgE+/GPf4zS0lK88847+PWvf43MzEz09PQMep7RaERqaiqCgoJgMBiQm5uLqqoq/OIXv2AIEj2CM0IiF1FVVYXk5GT4+vpi9+7dCAoKeui4vX6XIpFsOCMkchHR0dGorq6GWq3Gs88+i7KyMgB3N79s2LABAQEByMjIwMKFC/H1119Dr9czBImGgDNCIhcjhIBWq0VOTg4WLFiAo0eP4tlnn0VGRoZdf5cikSwYhEQu6tixYzCZTJg9ezaioqKULofIZTEIiYhIarxGSEREUmMQEhGR1BiEREQkNQYhERFJjUFIRERSYxASEZHUGIRERCQ1BiEREUmNQUhERFJjEBIRkdQYhEREJDUGIRERSY1BSEREUmMQEhGR1BiEREQkNQYhERFJjUFIRERSYxASEZHUGIRERCQ1BiEREUmNQUhERFJjEBIRkdQYhEREJDUGIRERSe3/Af1cHNVRukuNAAAAAElFTkSuQmCC\n",
"text/plain": [
"<rdkit.Chem.rdchem.Mol at 0x1810b9ded40>"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mol2_f_tuple[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Broken bonds: 0, 3"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAYAAABNcIgQAAATl0lEQVR4nO3de1BU5/3H8TdqFe+KxiQKGrkYvKSp7ggNWjXTGtGik8zP2GYc/YPpqGnUxbuJiexmTH/Gy8COrRmchoz8NJOinXYUAylovYQo471G5TZ1DBbTKBgtRQHZ5/eHlyDRKMjuAc7nNbMz7Dlnz/OVcfjs93l2zwkwxhhERERsqo3VBYiIiFhJQSgiIramIBQREVtTEIqIiK0pCEVExNYUhCIiYmsKQhERsTUFoYiI2JqCUEREbE1BKCIitqYgFBERW1MQioiIrSkIRUTE1hSEIiJiawpCERGxNQWhiIjYmoJQRERsTUEoIiK2piAUERFbUxCKiIitKQhFRMTWFIQiImJrCkIREbE1BaGIiNiaglBERGxNQSgiIramIBQREVtTEIqIiK0pCMW2qqurqa6utroMy+n3IHanIBTbqaio4K233iI0NJRnnnmGjz76CK/Xa3VZfuf1evnoo4945plnCA0N5a233qKiosLqskT8TkEotmGMYdu2bQwdOpQ///nP/OEPf8DlcrFs2TJGjhzJgQMHrC7Rbw4fPszo0aNZtGgRTqeTDz/8kJ07dzJo0CA2bdpkyzcGYmNGxAYOHz5sYmJiTI8ePczq1avNjRs37u4rLy838+fPN+3atTNxcXHm3Llz1hXqYxcuXDAzZswwbdu2NTNmzDD//ve/7+6rqakxKSkppnfv3sbhcJjPP//cwkpF/EcdobRqpaWlzJ49mxdeeIGwsDAKCgpYtmwZHTp0uHtMz5498Xg8nDp1itraWoYOHcry5ctb1TTh9evXef/99xk8eDAXLlzg2LFjpKWl0adPn7vHtGvXjlmzZlFQUMCoUaN48cUXmTZtGufPn7ewchE/sDqJRXyhqqrKJCcnm65du5px48aZEydOPPJrd+zYYcLCwky/fv3M5s2bjdfr9WGlvrdjxw4zcOBAExISYjZv3vzIrztz5oyZMGGC6dSpk0lMTDSVlZU+rFLEOgpCaXV27NhhQkND7/7hb0yQVVdXm+TkZNOtWzcTFRVlDh486INKfevYsWNmzJgxpnPnziYxMdFcv369Uee58/sMDg5uFW8MROpTEEqrUb+Daewf/rpKS0vNrFmzTLt27cyMGTPM119/3QSV+tbly5fvrnm++uqr5quvvnrsc97psLt162bGjh1rjh8//viFijQTWiOUFu/SpUvMmTOHH//4x/Tp04fCwkJcLheBgYGPfe6nn36alJQUDh06xLlz5wgLC8PlclFVVdUElTetmpoaPB4PYWFhHDx4kH379pGenk5ISMhjn7t9+/Y4nU7OnDlD//79GTlyJHPmzOHSpfImqFzEYlYnsUhj1dbWmiNHjpgNGzaYsWPHmkOHDvl0PK/Xa9LT082AAQNMRESESU9P9+l4DZGdnW2GDh1q+vbta1JSUkxtba1Pxzt48KD5+c//xwwceNMkJRlTXe3T4UR8KsAYY6wOY5GG+uc//0lWVhbXr19n3LhxjBgxgoCAAL+MXVlZyYYNG1i1ahXR0dEkJyczbNgwv4xdX2FhIQsXLmTPnj3Mnz+fFStW0LVrV7+MbQxs3w6LF0NgIKxfD3FxfhlapElpalRalPLycrZt28bHH39MaGgoc+fOxeFw+C0EATp16sSyZcs4e/Ysffv2ZcSIEcyePZvLly/7rYZvv/2W5cuX89xzzxEQEMDp06dZvXq130IQICAAXn0Vzp6F11679fP48XD6tN9KEGkSCkJpEW7cuEFOTg4bN27k5s2bvPHGG8TGxt7zfUB/Cw4OJi0tjQMHDnDy5EmeffZZPB4PN2/e9NmYXq+XtLQ0nn32WT777DOys7PZuXMnAwcO9NmYD9OpE7hcUFgITz8Nw4eD0wnffmtZSSINoqlRadaMMfzjH/8gOzubjh07MmHCBMLDw60u63u8Xi9btmxh6dKl9OzZk6SkJGJjY5t0jL1795KQkMCFCxd45513mDt3Lm3btm3SMZrC3r2QkAAlJbByJcydC82wTJG7FITSbJ0/f56srCyuXr3K2LFjiYqK8usUaGNUVFSwbt06Vq9ezfjx4/F4PISGhj7WOUtKSlixYgWffPIJr7/+Ou+++y7du3dvoop9w+uFLVtgyRLo1QuSkmDCBKurErk/TY1Ks3Pt2jX+8pe/kJaWRr9+/Zg7dy7R0dHNPgQBunTpgsvl4tSpU3Ts2JHBgwfjdDq5du1ag89VWVmJy+Vi0KBBXLx4kePHj+PxeJp9CAK0aQMzZ0JBAUyZcusxeTKcO2d1ZSLfp45QmlgxGe6tHL3z1DGdxLhHm8qsqakhNzeX3Nxc+vfvz4QJE+65FmZLlJOTw4IFCygrK8PlcvGb3/yGNm1++P2nMYbt27ezePFiAgMDWb9+PXEt/OOYZ8/CggWwfz8sWgRvvnlrbVGkWbDqexvSShXtNDuL7jwpM4c+/NAcKnu0l168eNH8/ve/N4WFhb6qzhINuavDD90lozXYudOYn/3MmKtXv9s2C2OIMabI3Lstuej7P99vv8jj0tSoNK3wOL5rAMu5VNKHXkH1jinOIDXv+1ckeeqpp/jtb39LRESEr6v0q0e5q8Oj3CWjNYiLu9UVdut27/YYYFexJSWJaI1QfKGcvFQ3bnc+kYlxhN+zLYNbf++KyHC7cafmUTcSW8I6YGMFBQXh8Xg4efIk165dY8iQIbzzzjusW7eOyMhICgsLOXLkyPduj2QH096G9LVWVyF21c7qAqQ1CiI6PpFoislwp1I2L57ooLrbtlKCgzGJibTsla/GGTx4MFlZWWzfvp1Vq1YBkJqaytSpUy2uzEIR8DbgKQZn8/t2jLRy6gjFh8KJdJRw67rMdbrE6Q5CYp8g/z4doZ1MnTqVEydOcOLECXuH4G0TX4aEB3SFCRG3rmRz57HJr5VJa6cglCZVnpfBd8t/xeQfDeGJILjTJSbenSqNIC4xkcT4aOovIYpNTYTkL291hfUlF926tumdx6w7O4phVJ2AHOXxZ8HSWmhqVJpUUC/I2uAm6/Zzx/REousnXXgc8Zr+kvtwvg0Ba+sE3cMUwbBPIXfiraezA8DzS02vSsMoCKVphceRmGjHlT9pEhMheRUkAMmPeHxKnadDYnxRlLR2mhoVkWbF+XYjX1gM6cAv1Q1KA+nKMiLSKswOgCFFmhaVhlNHKCItnkJQHoeCUERartufGlUIyuNQEIpIi1W8C77g3u8Z6isU0lBaIxQREVtTRygiIramIBQREVtTEIqIiK0pCEVExNYUhCIiYmsKQhERsTUFoYiI2JqCUEREbE1BKCIitqYgFBERW1MQinxPMRmpeZRbXYaI+IWCUKSO8rxU3O6tHLW6kIbyjPruqtMBAeAprrMzEwJGQd1N990mYk8KQpE6gqLjSZwXS4jVhTSEZxQkDANjbj8+vXU7Bo9STuRRKAhFGqI4g9S85jRpmgkJX8CnKXW2TYRPZ0HCWsuqEmlJ2lldgEjzV05e6gayShxMnw5QRIY7i6MhscyLjyYIMMaQkZHR4DOHVFXxk7/9reElJSTAkCFQXAjMgon19k98GVh1a+pTN6wV+UEKQpGHCiI6PpFoislwb6UEB2MSE4mzuiyAojMQM+QBO7+AIm4H4RcQEVBvf4xPSxNpKRSEIg9VtyN08E3ZE+S73Wyt0xEGBAQwefLkxp1+6tTGlxYxBL4484CdMRBR5+ei3DrdYSYErGr8uCKtiO5QL1JHeV4qG7JK7j53TE8kru7UYnEGqWUxxEcH+b+4+8qEgEnwqbl3ejRzNkwCTAp3Q+9+QXjPNhF7UkcoUkdQdDyJ0T9wQHgc8c0qOCZCcgxMmn079AAyYdImSC6ytDKRlkJBKNLSOXOB298jvCO5CJzNKrFFmi1NjYqIiK3pe4QiImJrCkIREbE1BaGIiNiaglBERGxNQSgiIramIBQREVtTEIqIiK0pCEVExNYUhCIiYmsKQhERsTUFoYiI2JqCUEREbE1BKCIitqYgFBERW1MQioiIrSkIRUTE1nSHehHbyuT80Ulcrrup96c4Bky0qiARSygIRWypmG8KJkG4wdH9zrZMzhcUUsVEOlhZmoifBRhjjNVFiIifVXko+PIMTzlS6P7wo0VaNa0Riu14vV7S0tJwOBw8//zzZGVlWV2S/3X4JT27bKK4wEOV1bWIWEwdodjKvn37SEhI4KuvvmLZsmVUVFSwZs0axo8fj8fjITQ01OoS/aiYbwoiKKm48zyGkGG59NG8qNiMOkKxhQsXLjBz5kzGjx9PVFQUBQUFLF26lHfffZdTp07RsWNHBg8ejNPp5Nq1a1aX6yfh9HnW4HDcegwLgZIvZ3PV6rJE/ExBKK1aZWUlLpeLQYMGUVpayrFjx0hJSaF37953j4mIiCA9PZ1du3axZ88eIiMj2bRpE16v18LKm5qhrOz/uHLlTw88okOft+nNl1Tdniu9cSOf0tKVeL3/9VONItZQEEqrZIxh27ZtDBkyhI8//pjNmzeTk5PDsGHDHviaX/ziFxw/fhyXy8WKFSuIiooiNzfXj1X7xn//m0d+/guUlMyntvb2PGiVh4LzmfceePWvXO4yje63p0Zra69w5cqfOH06kvLyrYBWUaR10hqhtDpHjx7F6XRy8uRJFi1axJtvvkmHDg1b+CovL8ftdrNx40ZeeeUV1q5dy4ABA3xUsW/U1JRSWuqmrCyVoKDX6NdvLT/60ZO399ZfHwSYRXi9T5EaU8OlSxspLU0kMHAQwcHJdOkS479/hIgfKAil1bh48SIul4vU1FRee+011q5dy5NPPvnwF/6As2fPsmDBAg4cOMCSJUtYvnw5gYGBTVSxbxhTzaVLH1BaupJOnYYTHJxMp04/eaxz3rxZxsWL73Lp0kZ69HiF4OB1tG/fv2kKFrGYglBavKqqKpKSkvjd737H8OHDSU5OZvjw4U06xs6dO0lISKC6upr33nuPGTNmEBAQ0KRjNIWrV3dSUpKAMdX07fsevXrNAJquzsrK45SUOLl+/QS9enno23cmbdu2bbLzi1hBQSgtWn5+PtnZ2fz973/n17/+NdOmTfPZWNXV1XzwwQesXLmS4cOH4/F4eP755302XkPcuHGWkpIFVFQc4Mknl/DUU8tp08ZXnavhypVtZGdf4euvq3jppZeIjIz00VgivqcglBbp8uXLfPbZZ5w/f56oqCjGjBlD+/bt/TJ2aWkpbre7SadgG+vmzXIuXnRz6dIH9OjxMsHBa2nf3j9rmTdv3iQvL4/9+/fTt29fYmNjLfs9iDwOBaG0KNevX2ffvn0cPnyY8PBwJk2aRPfu1lwk7MiRIzidTs6cOcPy5ctJSEho8IdyGsuYGsrKPuJf/1pB+/YDCAnx0KXLKL+MXd9//vMfcnJyOHXqFM899xwvvfQSnTt3tqQWkcZQEEqL4PV6OX78OHv27KF79+7ExsbSv7/1H9YwxrB9+3YWL15MYGAg69evJy4uzqdjZmZmUlz8R8aOPUS/fv/b5OuAjVVaWkpmZiaXL19m9OjR/PSnP9X6obQICkJp9s6dO0dWVhaVlZWMGzeOESNGNLsPqlRWVrJmzRref/99Ro8eTXJyMkOHDm3SMQoKCli4cCF79uxh0aKFuN1v0rZtlyYd43EZYzh58iS7d+/mV7/6FcHBwVaXJPJQCkJptsrLy9m9ezf5+fmMHDmSF1980W9Tj41VUlLCihUr+OSTT3j99ddxu9306NHjsc5ZUVHBunXrWL16dYu5Jmptba26QWkxFITS7NTU1JCbm8vnn39OWFgYsbGx9OzZ0+qyGmTv3r0kJCRQUlLCypUrmTt3boODwev1smXLFpYuXUrPnj1JSkoiNjbWRxWL2JeCUKxRnEFqWQzx0UH3bD5x4gQ5OTl07tyZ2NhYBg4caFGBj+9OkC1ZsoRevXqRlJTEhAkTHum1de+SsXLlSt544w3atWv599EuznCz9ZtY5sVHE/Tww0X8QtcaFT8qJy/VjdudQTEARWS43bhT8yi/fURZWRljx45l9uzZLToEAdq0acPMmTMpKChgypQpTJkyhcmTJ3Pu3LkHvuZ+d8lwOp2tJgT34yDE6kJE6lFHKBYoJsO9laM4mJ4YR7jV5fhJYWEhCxcuJDs7mzlz5rBq1Sq6du0KfPdhmzVr1hATE0NycvIPXiC8pSnPS+WvvEx8RBGpf4WX1RFKM6KOUPzoTkeYT+R0ByGxT5BfryNszQYNGkRGRga7du1i9+7dREZGkpKSQnp6eoPuktHS3A3B6B+IvuIMUvPs8L9AmiN1hGKNB6wR2kV1dTUbNmxgzZo1ACxdupR58+b57eo4/lNOXuoGskrqbQ6JZV58BEWpG8gqcTB9Ouwve4I+WVkcDdEaoviXglDEQtXV1QCtMAAfoDzvPlOj9pwql+aj5a/Ai7RgtgnA+7rTLTqYPt3BN2W3psq3qiMUP1MQiohFgoiOTyQaoDiD/UQQlxiNby9QJ/J9mhoVERFb06dGRUTE1hSEIiJiawpCERGxNQWhiIjYmoJQRERsTUEoIiK2piAUERFbUxCKiIitKQhFRMTWFIQiImJrCkIREbE1BaGIiNiaglBERGxNQSgiIramIBQREVtTEIqIiK0pCEVExNYUhCIiYmsKQhERsTUFoYiI2JqCUEREbE1BKCIitqYgFBERW1MQioiIrSkIRUTE1hSEIiJia/8PLlRAk5cweikAAAAASUVORK5CYII=\n",
"text/plain": [
"<rdkit.Chem.rdchem.Mol at 0x1810b9dece8>"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mol2_f_tuple[1]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Broken bonds: 2, 3"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAYAAABNcIgQAAAUJ0lEQVR4nO3de1BU993H8TfeTYIaLJpMio9ELkJ0NKAhYmvESS2mNJd2QrQOPMYxazJGIBefOE07Kxmn0aRtQBtaScJEqlWptjYhikrRZmJECYjRKJetVqn3cLMhisL+nj8Qi0YjKnuB83nNMLpnz57f1+MMn/19z/nt+hhjDCIiIhbVzdMFiIiIeJKCUERELE1BKCIilqYgFBERS1MQioiIpSkIRUTE0hSEIiJiaQpCERGxNAWhiIhYmoJQREQsTUEoIiKWpiAUERFLUxCKiIilKQhFRMTSFIQiImJpCkIREbE0BaGIiFiaglBERCxNQSgiIpamIBQREUtTEIqIiKUpCEVExNIUhCIiYmkKQhERsTQFoYiIWJqCUERELE1BKCIilqYgFBERS1MQioiIpSkIRUTE0hSEIiJiaQpCERGxNAWhiIhYmoJQREQsTUEoIiKWpiAUERFLUxCKiIilKQhFRMTSFIQiImJpCkL5Vk6nk/z8fOLj43n00UdZsWKFp0sSEelQCkK5qvr6etLS0ggNDeWJJ57A39+fBx98EJvNxqxZszh79qynSxQR6RA+xhjj6SLEe1RUVPD222+TlZXF4MGDeeaZZ3jmmWfw8/MD4MCBA8THx9Pc3Myf//xn7rvvPg9XLCJyazQjlEvtzx//+MeEhYWxf/9+srKyKC8v55VXXrkUggBhYWHs2LGDiIgIHnzwQVauXOnBykVEbp1mhBZWX1/P+++/T1paGjU1NUydOpXk5GTCw8Pb9frs7Gyee+45fvrTn/KHP/yB2267zcUVi4h0PM0ILaisrIzk5GTuuece3n77bZ599lkOHz7MsmXL2h2CAImJiRQVFVFSUsLYsWP54osvXFi1F0gfDz4+//1Jd7R5ciP4jIe2m666TUS8jYLQIpxOJ/v378dmszFixAgOHz7M+vXrL7U/BwwYcFPHDQ8PZ8eOHYwePZpx48axatWqji3cW6SPh5QRYMzFnw2QEnxFGIpIZ6TWaBfX0NBASUkJRUVFNDU1ERISwujRoxk6dGiHj9V1W6UbwecR2GBgStvNs+ERwCy7uM9CqNwOQW1fd+U2EfE2PTxdgLjG8ePHKS4uZs+ePQwYMIDx48cTERFBz549XTZmYmIiY8aM4cknn+R73/sea9asITg42GXjuY2jArBdHoIAUx4HFra0PhV0Ip2WgrALaW5upry8nOLiYg4dOkRwcDDTpk0jMDAQHx8ft9QQHh5OYWEhs2fPJjIykszMTKZOneqWsV2mcj9EX+va6adQycUg/BSCrzzP0S4tTURunYKwC2hoaKC0tJRdu3bR3NzM6NGjefTRR+nfv79H6vH19eVPf/oT2dnZzJw5kw0bNrBs2TL69u3rkXpuyrZtcN994O8PweHw6f5r7BgNwW3+frXWqIh4NQWhxzjITV1JcevDyOnY426sv3b8+HEKCwvZt28fgwcPZsKECYwaNYoePbzjvzUxMZGRI0cSHx/P+PHjycnJISjIi3uIX38NK1bA734HlZWwejU89hgEhQApsHHZFdcI1wMj1BYV6eS84zemFTnKYLodexBADTuz1rOzJogov+u9EPbu3cuOHTs4deoU4eHhPP3003z3u991dcU35f7776ekpASbzUZERATvvPMOTz31lKfLutzBg5CZCe++C716gc0Gc+a0zAYBmAJp0fDI7Is3xgBshEcyIa3SU1WLSAdREHpKUBxxlx7UcLpqEMOvDEFHLlnV0cy8Ih2PHTtGaGgoP/vZz7jjjjvcUOyt8fX1ZdWqVWRnZ/P0009TUFDAkiVL6N27t2cL++QTWLIE/vpXGDUKfvtbmDYNrnZDUfJ24OI6wlZplZCs6aBIZ6flEx5Vw86speRVRTLdHnexw9Zm23T4uNqfQXl5FAfEMndmFO2YMHq1kpISnnrqKfr160dOTg7Dhg1zbwH/+Q+sWgVLl7a0P+Pj4aWXWoJQRCxJQegVHOSmfoz/3JltWqOt1xDbhmTXcObMGWw2Gxs3buSdd94hPj7e9YM6HC2tz8xMuO02mDUL5s6FgQNdP7aIeDV9soxXCGJ4ZBWna6BlRphKamoZw6dHEhDrT1lqKqlZO6nxdJkdpF+/fqxevZo333yTxMREZs+ezfnz5zt8HKfTyZebNsGUKRAaCsXF8P77cOQILFigEBQRQDNCj6nZmUtlcNzFGeDVZoRc8xphV1JSUkJ8fDwDBgxgzZo1HdIqra+vJysri4yMDEYMHsxfR42C55+HsLAOqFhEuhoFoac4ckldeWnxBJHT7dzg6oku48yZM8yaNYtNmzbx7rvv8uSTT97Uca73XYoiIlejIBSvkZmZydy5c5kxYwZLly6lV69e132N0+mkoKCA9PR0NmzYwKRJk7DZbPzkJz+he/fubqhaRDo7BaF4leLiYuLj4/Hz82PNmjXce++9V93vVr9LUUSklW6WEa8SGRnJ7t27GTp0KBEREaxdu/ay5zvquxRFRFppRiheyRjDkiVLeOWVV7DZbMTExJCRkUFBQQGTJk0iKSmJuLg4t32YuIh0XQpC8WqFhYXMmTOHqqoqpk2bRkpKCoGBgZ4uS0S6EAWhdArNzc26+UVEXEJBKCIilqabZURExNIUhCIiYmkKQhERsTQFoYiIWJqCUERELE1BKCIilqYgFBERS1MQioiIpSkIRUTE0hSEIiJiaQpCERGxNAWhiIhYmoJQREQsTUEoIiKWpiAUERFLUxCKiIilKQhFRMTSFIQiImJpCkIREbG0Hp4uQLq6jRwufoQv2276zgYi/2eKpwoSEbmMglBcyMGp8kcgyBDZv3XbRg6XV9DIFHp7sjQRkYt8jDHG00VIF9WYTvm+/dwVuYz+199bRMQjdI1QXKf3j7jzjkwc5ek0eroWEZFr0IxQXMzBqfJgqr5qfRxNwIjtDFJf1GWampqor69n4MCBni7F4+rq6ujTpw99+vTxdCnixTQjFBcLYlCoITKy5WdEAFTtm029p8vqov7+978TERHBxIkTmThxIqWlpZ4uySMcDgePP/44UVFRhIeH85e//MXTJYkXUxBKh2purv3W53sP+gXfYR+Nje3bX9qnqqqKxMREpkyZQkxMDGvXriU0NJSxY8eSmJjIyZMnPV2iWzQ0NLBgwQJGjhxJQ0MDOTk5JCcnM2PGDGJiYtizZ4+nSxQvpCCUDuF0fs2xY3Y+/zyAc+f2t2xsTKf88MbLd6xfz5d3xNP/Ymu0ouJhHI4fce5cuXsL7iJaf/GHhIRw/Phxdu/eTXp6OqGhoSxbtowdO3Zw8OBBhg8fzuLFi2ls7JpXa40xZGdnExQUxOrVq1m3bh1btmxh1KhRJCcnU1ZWRkhICGPGjCExMZFTp055umTxJkbkFtXVfWA+/3yo2bs3yNTU5LR5ptKcLMN89lnbH5upa7NHY+MRc+hQgiku7mn+9S+buXDhtLvL75ScTqfJyckxAQEBJiQkxOTm5l533yFDhpjg4GCTk5NzzX07o127dplx48aZO++80yxatMg0NjZec9+ioiITHR1tBgwYcN19xToUhHLTGhqKTVnZ901Jye3m6FG7cTrP3fSxzpzZar74YpQpLfUzJ0+mGaezqQMr7Vp27dp1U7/MGxoajN1uN3369DEPP/yw2bt3r4srda1///vfJiEhwXTv3t0kJCSYU6dOtet1bd8YXO9NhFiDglBu2IULp82RI0mmuLiHOXQowZw/f7yDjtxsvvxyuSktHWT27Qsz9fV5HXTcruHo0aPGZrOZHj16mISEBHPy5MmbOk5VVZVJSEgwPXv2NDabzZw+3blm4V9//bVZtGiR8fX1NTExMWbPnj03dZyvvvrqsjcG+/bt6+BKpbNQEEq7OZ3nzcmTaWb37n7mwIEHzFdf7XDJOE1NNebIkWTz2Wf9TG7uWlNbW+uScTqLxsZGk5aWZnx9fc3EiRNNaWlphxx369atZtSoUcbPz8+kpaWZpibvn4V/8MEHZujQoSYgIMAsX768Q4555MiRS28MkpKSTF1d3fVfJF2KglDapb5+i9m3L8zs2XOP+fLL5cYYp8vHrKv7t/njH/9oFi5caAoKCsz58+ddPqa3WbdunRk6dKgJDAw069at6/DjNzc3m+XLl5tBgwaZsLAwk5fnnbPwkpISM2HCBHP77bcbu91uzp492+Fj5Ofnm5EjR5pBgwaZd99dbpqbO3wI8VJaUC/f6vTp0+zevQl//9kMHjyPu+76P7p1u82tNRw8eJC8vDzOnTvHQw89REREBD4+Pm6twd1OnDhBXl4eR44coWfPnrzwwgsuXRReV1fHokWLSEtL4wc/+AHp6ence++9Lhuvvaqrq3nttdfIyMhg2rRpvPHGG9x1110uG6+pqYnMzEw++iiM48djSE+H73/fZcOJl1AQylWdPXuWbdu28dlnnxEWFkZc3Hj69LnbY/U4nU6KiorYunUrAwcOJDY2loCAAI/V4ypnz57lH//4B0VFRQwfPpzJkyfTv7/7Pqm1oqKCl156ic2bN/Pss8+ycOFCfH193TZ+qwsXLpCRkYHdbickJIT09HTGjRvntvFra2HxYnjrLZg8GZYsgcBAtw0vbqYglMsYY/j888/ZvHkz/fv3JzY2liFDhni6rEsaGhooKCigtLSU+++/n7i4OE+X1CFag37btm34+fl5POjz8/NJSUmhtrYWu93OrFmz6NbNPcuO8/PzSU5Opq6ujtdff52EhASPdQDKy+HFF2HrVkhKgldfBQ+8LxAXUxDKJYcOHWLTpk2cOXOGhx56iAceeMBrW5AnTpzgxIkTjB492tOl3DJvbf22zsoWLFhAUFAQ6enpREdHu2y8iooKXnzxRQoKCkhKSuLVV1/1yGz0avLzITkZ6uvhV7+ChATwgv8i6SAKQqG2tpb8/HzKysoYO3YsMTEx9O6tT8V2terqajZv3sw///lPxowZw6RJk+jVq5eny/qGmpoaUlNTycjI4IknnuDXv/51h3YJamtrWbx4MW+99RaTJ09myZIlBHphH/LCBcjIALsdQkIgPR3c2K0VF1IQdmY1O8lamkfVxYcBsXOZGeXX7pdfuHCB7du3s337doYMGUJsbCz+/v6uqdVNHLmprDwVy9yZUbT/TLjXuXPn+OSTTygsLGTYsGHExsZy5513erqs6yotLSUlJYWioiLmzZvH/Pnzb+kGHqfTyYoVK5g3bx733HMPaWlpTJgwoQMrdo3qanjttZZQnDYN3ngDXHj/jriBgrAzc+SSSxxxQQAOclM/xn/uTNqThQ6Hg7/97W/07duXH/7whwwbNszV1bqcIzeVj4mEU/487pIgdJCbupLi1oeR07G3nPx2ab3+umXLFvr27UtsbGynPO8ffvghycnJNDU1sXDhQhITE2/4GFu3biUlJYWjR4/yy1/+kueff57u3bu7oFrXKSmBlJSWP19+GebPB33bUyfl/hUb4hrVpvC990xhdfv2PnbsmCksLDTNXWSxVHXhe+a9wmpjqgvNe+8VmnaehhtT+aH5sPLSiDd0vg8dOmR+//vfm8WLF5vCwkLjdLp+HaYr3ewi/662eN3pNGbVKmMCAowJCjKm7ae12TCGaGMqzeXb0iq/+ferPS/uo2+f6CpqKvmC+wi+chrkyCVrZ803dr/77ruJiopy252ArlSzM4v1PP7tbeFrnIcbEtQ6+wao4XTVIAa2c9p54MABAgMDSUpKIioqyituhrkVvXr1uqFvdbjWt2S4c2mIK/j4wNSpUFYG06e3/NlWNPCRwyOlyQ1Qa7RLuLItWsPOrKXkVUUyfTp8XO3PoLw8igO8+9rZzWn9t16xOSCWuTODqezw89Dm3Nrj+EZj1JFLVnX0DV2r7QqKiopISUlh//79zJ8/nxdeeIFevXphjGHt2rW8/PLL9OnTh9/85jddZsnL9cz2gfANkLMeti9rs60SkoMu//tlr7lim7iegrDT+7Zrg63XtK7xS7srqtlJ1nquuEboivPQ9rxb6Y3HtTmdTrKzs/n5z3/OgAEDeO6551ixYgUVFRXY7XbmzJlDz549PV2m27SGWsibUDHvm+GnIPQenb8vZmU1O8m6agjWsDMrldTUMoZPjyQg1p+y1FRSs3Zyi83BTsaV5yGI4ZFVnK4B8CNqph27fThlK4upyjvNcLsdu4VCEKBbt27MmDGD8vJyHnvsMbZs2UJERASVlZWkpKRYKgTbmvI4pLx59edSglvaq60/mW6tTFr18HQBcvNqKr+giiqqlqaSd3Fb6xKKqJl2ogAcuXxMMHH2KKzRkGqrY89Dzc5cKoPjLr7pcFBWHIB/NFzeio7kVHVL4K602Iywla+vL6+//rqny/AeUyBtIaRf5Vph2lVmhOJ+ao2KtJcjl9SVlxZPEDndzjdWT1j0GqF802Vtzo3gsx5sme1sjQLjg+HTi9uj02B7stv/CZahGaFIewXFYbdfZz4ZFMdMXd+RK12cFaYAae3ZvxJGbIDtU1oezvaB9B/p2qGr6BqhiIgbJP/iBnaeAsum/PdhuOs+4lVQa1RExLs5YPz/wvLtWOPObw9Qa1RExIvNDob4SoWgK6k1KiLipbSu0D0UhCIi3sYB4xWCbqMgFBHxMo6PWpZOtF1wPz7d01V1XbpZRkRELE0zQhERsTQFoYiIWJqCUERELE1BKCIilqYgFBERS1MQioiIpSkIRUTE0hSEIiJiaQpCERGxNAWhiIhYmoJQREQsTUEoIiKWpiAUERFLUxCKiIilKQhFRMTSFIQiImJpCkIREbE0BaGIiFiaglBERCxNQSgiIpamIBQREUtTEIqIiKUpCEVExNIUhCIiYmkKQhERsTQFoYiIWJqCUERELE1BKCIilqYgFBERS1MQioiIpf0/jDMUATnvNTgAAAAASUVORK5CYII=\n",
"text/plain": [
"<rdkit.Chem.rdchem.Mol at 0x18110aa2768>"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mol2_f_tuple[2]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Broken bonds: 0, 6"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAYAAABNcIgQAAAQ7UlEQVR4nO3db0yV993H8Q+K9d+tOKzaxWJthc5Z57RYcdjaLiGLWJZ7yWLTxdEumGHWTDH3g5LF3kO03ZjrWpjV5ayRxAc8YXNZhCqJjesa4ZYOSqig4jnGCbWtIFQFpPw553s/EBnWvyici+Pv/UpI5Py5rq8P9H2u65zfdaLMzAQAgKPGeD0AAABeIoQAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnBbt9QDAqBIoVW5RtSQpbtUGZSTFejwQgJEWZWbm9RDAqBAoVW6RtDYnTfFezzIE66OkPydL/nINzL0+Slrgl7Lir/2zbnA/4DpOjQL9AieatWpDZEXwqmRJ7wW8ngKITJwaBSRJAZ2oblJ1da7K+m9JXJujtK9XMVCqwtbkUXfK9IXXpOLfS1k+rycBIg8hBAYk/ue0aFulCneUKpCTpni1qbJwh8qaErV2rST5VZpbpuq4VdqQkaRYSaFQSL/5zW+GvMcJEyZp8+b/GfLz4uOl+vpBNyRIr0kqCHC6ExgqQgjcSGyCnoirV2ubFB8bq6SMHCUpoNLcIjUpUStzcpQ26OFRUVF6+eWXh7wbszH63veGPt7EidfflvojafVNjgo3JUibvnZb/tB3C9yXCCEgSYrX/MQifViZrPikWKnNr/qmmVoZK+maI8JENbfO0IncXBUNOiKMiopSXFzcXe15zpxh+iukSvmvXzkq/Lr8G3xYBsAVhBDoF5+2Qa2FO5RbJklxWrUho/+DM1ePCCUFSvWhEpSWk3TNEeFokfWaFPV7KfNOnxCQViRIFf2/JudL5VkjMxswWhFCYMCg4N1MfJoyRvN7cP1HhZt0h6c+/dLC/VJ56pVf10dJBc/zPiPcwvIJ4D6T9doQHpwq+VL/8+uC5GEfBxj1WFAP4IqAtOJlac+ghfmACzg1CkCStD5BesFPBOEeTo0C4JJrcBohBFwWkFYQQTiOEAIOC7x3ZenEpgQpKurKz4oCr6cCwosPywAAnMYRIQDAaYQQAOA0QggAcBohBAA4jRACAJxGCAEATiOEAACnEUIAgNMIIQDAaYQQuE5ApYWVavN6DABhQQiBQdoqC5WbW6RqrwcZqoIV/7lYaFSUVBAYdOcBKWqFNPimG94GuIkQAoPEJmUoZ8MqxXk9yFAUrJA2LZTM+n/2X7mKdgGVA+4EIQSGIlCqwsrRdNL0gLSpQtrvG3RbqrQ/U9r0e8+mAiIJ31AP3FabKgt3qKwpUWvXSpJfpbllqo5bpQ0ZSYqVZGYqLy8f8pZndXUpoapq6CO9+KL06KNS4KSkTCn1a/en/kjS61dOffI9g8AtEULgtmKVlJGjJAVUmlukJiVqZU6O0gY9wsx0+vTpIW95TDCohEOHhj7SD35wJYT+Y1Lygps8qELyqz+EFVJC1NfuTx76foH7ECEEbmvwEWGimltn6ERurooGHRGOGTNG6enpd7f5n/3s7kdLWCBVHLvJnclSwqA/+8sHHR0ekKJev/v9AvcRvpgXGKStslA7ypoGfk9cm6O0wacWA6UqbE1WRlJs+Ie7oQNS1Gppv117evTAemm1JPNpIHo3CuE1twFu4ogQGCQ2KUM5Sbd4QHyaMkZVOFKl/GRp9fr+6EnSAWn1n6V8v6eTAZGCEAKRLqtcUv86wqvy/VLWqCo2MGpxahQA4DTWEQIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnEYIAQBOI4QAAKcRQgCA0wghAMBphBAA4DRCCABwGiEEADiNEAIAnBbt9QBAZDqgM9WrdX7wTQ/uV+IjqV4NBOAuEUJgyAJqblgtxZsSY67edkBnGk6qW6ka7+VoAIYsyszM6yEQOS5evKjt27fr008/1aJFi5SVlaXoaMdeT3UXqKHumB5K9Cnm9o8GMMoRQtyRnp4e7dq1S2+88YZmzZqlH//4x3r33Xc1Y8YM/elPf1JycrLXI4ZRQM0NCWpSvhZ+K4sjQEe0VRZqR1nTtTcmrlVOWrw3A2HYEELckpnpr3/9q371q1/pq6++0q9//WtlZGQoOjpanZ2d2rZtm9566y29+OKL+sMf/qAZM2Z4PXKY9Mew4+rvyYpbWK6ZVNEZgdJcfThjgzKSYr0eBfeIT43ipt5//30tXbpU69at009/+lP5/X5lZmYOnAqdPHmy8vLy9NFHH8nv92v+/PkqKChQKBTyePJwiNfMb5kSE6/8LIyTmurW66LXY3mko6NDly9f9nqM8Gmr1IfViVpJBO8LhBDXqaur0w9/+EM9//zzWrp0qQKBgLZs2aKJEyfe8PGLFy9WeXm53n77bW3btk3PPfec6urqwjy1t8bPfE0Pqk7d3V5PEl7Nzc3asGGD4uLiNGfOHO3atcuJF0KBijJpVbKuOykaKFVhZZsXI+EeEEIMaGxs1Pr167VkyRJNnDhRx48fl8/n08yZM2/73DFjxuill15SXV2d5s6dqyeffFJZWVnq6Oi47XNHu0uX3tfx40+pu/vUlRu6C9Rw5sC1D7r4d53/rxcUM/7qc8rU2/tZeAcNo87OTv3ud7/T448/rsrKSu3du1dvvfWWcnNztXTpUn300UdejzhyrjsabFNlYa5yc0sVkCT5VZqbq9zCSpHECGFw3vnz5y07O9vGjx9vKSkpVlNTc8/b/OCDD+zb3/62zZ492/7yl7/c+5Ae6OiosBMnnrGPP55kZ89utr6+i/33+O3cCVlV1eCfTLsw6LmBwH9bTc1UO3euwEKhPi/GHxE9PT3m8/nsm9/8pj3++ONWXFxsoVBo4P62tjbbuHGjRUdHW2Zmpl28ePEWW4tM/pIttvtI643usZItW2zLlhLzh30q3AtC6LCenh575513bOrUqbZs2TL7xz/+Mezbz8vLswkTJlhaWpr9+9//Htbtj5SurhN26tQaq64ea6dPp1tPz9m72k5bW7HV1s6yY8cWW0fH/w3zlOG3b98+S0hIsAcffNDy8vKsu7v7po+tqqqypUuX2kMPPWR79uwJ45QjrPWI7b4udK12ZHd/AP0ltvvIkStB3H3EbpRLjD6E0EHBYND+9a9/2Ztvvmk7d+687lX9cAsEArZq1SqbNGmS5eTk3PI/UC/19jZbY+NGq66OtpMnU+zy5U/ueZt9fV8ObPP06XTr7T0/DJOGV3l5uT399NM2efJky87OvuOjvN7eXsvPz7cpU6bY97//fTt+/PgITzrSrgTvxkeD/fwlt74foxIhdMypU6ds165dtn37djt8+LD19YXvtN2+ffssLi7OFi1aZOXl5WHb7+0Eg+32+ed5VlMzxY4fX27t7f8c9n10dlbb8ePLrLZ2lp0/v8fMRu6Fx3Cpr6+3NWvW2Lhx4ywzM9O++OKLu9rO2bNnLT093R544AHLzs62rq6uYZ4UuDeE0BFNTU1WWFhob7zxhh08eNC++uorT+bo6Oiw7OxsGzdunKWnp1tzc7Mnc5iZhUI91tLis9raWVZXN9/a2opHeI9Ba2nxWU3NVGtoeNa6uupHeH93p6mpyTIzMy06OtrWrFljfv/wvONVUlJic+fOtfj4eCsrKxuWbQLDgRDe51paWqy4uNi2bt1qJSUl1t7e7vVIZmZWU1Njy5cvt9jYWMvPz7dgMBjGvYesra3Yjh6dZ7W1s62lxWehUG/Y9t7T85mdPp1u1dXjrLFxowWDHWHb9620trZadna2TZgwwVJSUqyqqmrY93H58mXLycmx8ePHW1pamjU1NQ37PoChIoT3qYsXL1pJSYlt3brViouLrbV19L1vEQqFbM+ePTZ9+nR7+umn7ejRoyO+z4qK9+3YsSVWUzPNPv88z4LByyO+z5u5dOmQ1dXNt6NHH7MLF/Z7Nkd3d7fl5+fbtGnT7IknnrDi4pE+MjZraGiwlJQUi4mJsfz8/LCeor9Tra2tVlJSYj09PV6PghFGCO8zXV1ddvDgQXv99ddt9+7d1tjY6PVIt/XFF19Yenq6jRs3zjZu3DgiR61VVVWWkpJiEyZMsNrabdbbOzpeGASDl+3s2f+16urxFgi8YJ9//mkY9x204uJimzt3rs2ZM8d8Pl9Yg3T1hdDMmTNtyZIlVllZGbZ930pHR4ft37/ftm7dakVFRXbp0iWvR8III4SR5iafSuvr67Oqqirbvn277dy50+rrR+f7T7fywQcf2IIFC4Z17eGZM2eueb/r1KlTw7Ld4dbVdcKKitbZ1KlTw3KEdPDgQVu0aJFNnz7d8vLyPP0Ay5dffnnN2sMLFy7c/kkjoKenxw4fPmy//e1v7d1337XTp097MgfCjxBGhNuvU/rb3/5mb7/9ttXW1o7oUoiR1tPTY/n5+TZ58uR7Wns4EhcJCId9+/bZww8/bN/97netoqJi2Ld/5MgRe/bZZ23SpEmWnZ3tWXRuxKu1h8Fg0KqqquzNN9+0HTt2WH19fUT/G8LQEcKIcvMrV7S3t4/K91nu1qlTpyw1NXXIaw87OzstLy/PYmJi7KmnnrJDhw6N8KTD78KFCwNHSOnp6dbS0nLP2zxx4oStWbPGxo4da+np6Xb27N1dJGCkDV57+Nxzz4342sOGhgb74x//6MlyIowehDAiuHvliqtrD7/zne/Y4cOHb/q43t7egUt/PfLII7Znz56If1X/8ccf27Jlyyw2NtZ8Pt9d/X2am5sHopqSkmKffHLvFwkIh5Fee9jY2DgqlhNhdCCEkcbBK1fcbu3hwYMHbeHChQOX/rqf/lMLBoPm8/ls6tSptnLlyjt+77e9vd3y8vJsypQptnz5cvvnP4f/IgHhUFpaao8++qjNmzdvWNYeXr1IQEFBgZWUlFhHx+hYugJvEUJEjKtrD7/xjW9Yfn6+HT582J555pkhX/orEn322WfXfLL2Zv+BX70o9qxZs2z+/PlhWQox0oZj7eGZM2fspZdesrFjx9pPfvKTUfuhKXiDECKiBINB27lzp02fPt2mTZtmv/zlL+3cuXNejxU2hw4dsvnz59tjjz1m77333sDtoVDIiouLbd68eTZ79mzz+XzW2xu+iwSEw8mTJ4e89jAcFwlA5COEiEidnZ2j5io54dbd3X3Nt3oUFRXZk08+aVOmTLGcnBy7fNm7iwSEQ3Fx8cDawyNHjtzwMV5cJACRK8rMzOvvRAQwdCdPntQrr7yi9vZ2LV68WNu2bbujL1G+H1y4cEE5OTnatWuXMjIytH37dsXExCgUCmnv3r169dVXFQqFtHnzZq1bt05jx471emSMYoQQiHBmpqioKK/H8ERFRYV+8YtfqKWlRT//+c+1d+9enTt3Tps3b9Yrr7yiBx54wOsREQEIIYCI1tfXp4KCAn3yySd6+OGH9eqrryomJsbrsRBBCCEAwGljvB4AAAAvEUIAgNMIIQDAaYQQAOA0QggAcBohBAA4jRACAJxGCAEATiOEAACnEUIAgNMIIQDAaYQQAOA0QggAcBohBAA4jRACAJxGCAEATiOEAACnEUIAgNMIIQDAaYQQAOA0QggAcBohBAA4jRACAJxGCAEATiOEAACnEUIAgNMIIQDAaYQQAOA0QggAcBohBAA4jRACAJxGCAEATiOEAACnEUIAgNMIIQDAaYQQAOC0/we1cRVICjT68QAAAABJRU5ErkJggg==\n",
"text/plain": [
"<rdkit.Chem.rdchem.Mol at 0x18110aa28c8>"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mol2_f_tuple[3]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Broken bonds: 2, 6"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAYAAABNcIgQAAAUVklEQVR4nO3df1BVdf7H8Scs/uiHBij+SMHv7oKpi7MomCvir3JHQezXpNWyqYuErga4ZUHmAnfXRp2+lYhUEJG2Yzm5zfYDlZklcxVd+Sqmlj+Qq0WYJgitiav8PN8/ECWDArqXe+G8HjPMeM8953zeVx1fvj/nc851MQzDQERExKRcHV2AiIiIIykIRUTE1BSEIiJiagpCERExNQWhiIiYmoJQRERMTUEoIiKmpiAUERFTUxCKiIipKQhFRMTUFIQiImJqCkIRETE1BaGIiJiaglBERExNQSgiIqamIBQREVNTEIqIiKkpCEVExNQUhCIiYmoKQhERMTU3Rxcg4lSs2Vg2FgDgPT2GyLGeDi5IROzNxTAMw9FFiDgFazaWjRCRFI6vo2tpgwUukBEMRbu5VvcCFxhRBHG+3/01zbwvYnaaGhW5ynq8lOkxnSsEGwUDW6yOrkKkc9LUqAgAVo4XlFBQYCHn6pbAiCTCb0xFazZZ5cFON2U6ezm88zzEpTu6EpHOR0Eock3g9WnRinyyUrOxJoXjSwX5WanklAQSEQFQRLYlhwLv6cREjsUTqK+v5913323ziK6uPdi06Z42HzdwIKxd22SDHywHUqya7hRpKwWhSHM8/fiV9xHKK8DX05OxkUmMxUq2ZSMlBDIxKYnwJru7uLjg4eHRjoG684tftP2ovn2/vy30PghroStc4gdLbti2pu3DinRJCkIRAHwZFriRnfnB+I71hIoijpT0Y6In8J2OMJDSci+OWyxsbNIRuri4MHXq1HaN3M7Dvi8U1qxo6ApvtKaZxTIi0kBBKHKVb3gM5VmpWHIAvJkeE3l14UxjRwhYs9mJH+FJY7/TETqLuOXg8jxEt/YAK4z3gz1XXwavgd1x9qlNxFkpCEWuaRJ4LfENJ9KZr8Fd7QqX0MqpzyLw3wq7QxteLnCBlBm6zijmotsnRLqYuOVt2DkU0kOvvxwRbPNyRJyebqgXkQZWGD8XNjS5MV/EDDQ1KiIALPCD2UUKQTEfTY2KiB65JqamIBQxMyuMVwiKySkIRUzMuqXh1oklfuDi0vAzPsXRVYl0LC2WERERU1NHKCIipqYgFBERU1MQioiIqSkIRUTE1BSEIiJiagpCERExNQWhiIiYmoJQRERMTUEoIiKmpiAUERFTUxCKiIipKQhFRMTUFIQiImJqCkKRn6impgZ9iYtI56UgFGmnvLw8Zs+eTVBQEGFhYZSVlTm6JBFpBwWhSBtcvHiRjIwM/P39+e1vf0vPnj1Zs2YNtbW1jBo1il27djm6RBFpIwWhSCtYrVYSEhIYMmQIq1ev5tFHH+X06dO8+eabTJkyhZycHKKiopg6dSrJycnU19c7umQRaSV9Q71IC+rr69m+fTspKSls2bKF4OBg4uLiuP/++3Fzc2v2mI8++oiIiAj8/f3ZuHEj/fv37+CqRaSt1BGK3ODbb7+9Nv35wAMPcPvtt3P48GHy8vKYNWtWiyEIcPfdd7N//36qqqoICgoiLy+vAyt3kJTx4OJy/SfF2uTNbeAyHppuanabiOMoCEWuOnHiBHFxcQwaNIjnn3+euXPnUlxcTHp6Ov7+/q0+z+DBg/n444+ZP38+d999d9eeKk0ZD0v8wTCu/myFJX43hKGIc1MQiqkZhsHx48d5+eWXGT58OCdPnmTz5s2cOHGC+Ph4PDw82nVeNzc3kpOT2bJlC6+++irTpk3j3LlzNq7e0bbBkj2wNb3JtlDYGg1LnndYVSJt1fIcj0gXdvnyZQ4cOMC+ffuoqqoiICCAwsJCfH19bTrO1KlT2b9/Pw8//DBBQUFs2rSJ8ePH23QMh7GeAKIh9IbtofcBKxqmPm372yliFwpCMZWvv/6a/fv3c/jwYXr37s24ceMYNWoU3bt3t9uYgwcPZseOHaxYsYK77rqLZ555hsTERFxdO/mETNFRCB7Rwpt7oIirQbgH/FxueD/YrqWJtIWCULo8wzAoKioiPz+fzz//nJ///Oc8+OCD+Pn54eJy4z/Q9tE4VRoUFMTcuXMpKChgw4YNeHp6dsj4duE3AvYcbeHNYPBr8uui3U26w23gssLu5Ym0loJQnIyVbMtGChpfBkaQFN6++bVLly5x8OBB9u3bx5UrVwgICGDmzJm4u7vbqtg2Cw8P5+DBgzzyyCMEBASwadMmgoM7UXe0ezdcuABhYeA7FFgC29K/Oz267T3AX9Oi0mkoCMW5WI9DRBJJvgAV5Ge9R36FL2Pb0DidPXuWgoICDh06hLu7O+PGjWP06NF069bNXlW3ibe397Wp0ilTpjj/VOmVK/DWW7BuHRw5Ak880RCEhMKaYAhbAEbjgpltEJYBa4ocWbFImygIxbn4hhN+7UUFZSX9GNbKEPziiy/Izc3l7NmzDB8+nEcffRQfHx87FfrTNE6VBgYGMm/ePA4cOMD69euda6r0zBnIyIC0NHBzg7lz4YMPYPDg6/vE7Qau3kfYaE0RxKkdlM5DT5YRJ1RBflYqOSWBRCSFf3+GzZpNVnkwkTe0icXFxZw8eZIxY8bQq1evDqv2pyopKeHhhx/m9OnTbNq0iXHjxjm2oLw8WLsW/vEP+PWvITYWHnkEnKSjFrE1BaE4MSvZlp14xUQy1rNJOEbAznIv+uXkUOA9nZjIsThRH9UutbW1LF++nBdffJG//vWvPP300x22kAdomP585x144QUoLIR77oE//QkcHcoiHUBBKE7Nmm3h+LAkrq+XaVxM00K32Ml98MEHzJs3jwkTJrB+/fp239DfaqdONUx/ZmZC9+4QHQ2LF4OXl33HFXEiTnp1XsyqIj+b/IrGV1aOF3jj5QkN06UWLJbjDIsIxHu6F8ctFixZ+VS0fLpO55577uHgwYOUlZUREBDA3r17bT6GYRgc2r4dZs4EPz/Iz4f0dCgpgeRkhaCYjjpCcS7WbCwbr908QWBE027w+j7NXSPsSuwxVXrx4kU2bNjAunXr+PrrrymZM4dejz0GI0faqGqRzklBKOLE3n//ff7whz8wceJE3njjjXZNlVqtVjIzM8nIyMDDw4Po6GiioqLo06ePHSoW6Xw0NSrixO69914OHjzIuXPnGDVqVKunSuvr68nNzWXmzJkMHTqUvLw80tPTKSwsJD4+XiEo0oSCUMTJ+fj4sGPHDu69914mT55MSkpKi/v+lO9SFDErTY2KdCLvvfcekZGRTJo0iTfeeOPa4+JOnDhBWloaWVlZDBgwgKioKKKjo+2/6lSkC1AQinQyJ0+eZPbs2Xz77bcsXryYDz/8kB07djB9+nRiYmKYNm1ax96DKNLJKQhFOqGqqiqefPJJTp06xbBhw1i0aJHNv0tRxCwUhCIiYmpaLCMiIqamIBQREVNTEIqIiKkpCEVExNQUhCIiYmoKQhERMTUFoYiImJqCUERETE1BKCIipqYgFBERU1MQioiIqSkIRUTE1BSEIiJiagpCERExNQWhiIiYmoJQRERMTUEoIiKmpiAUERFTUxCKiIipKQhFRMTU3BxdgEjbbaO4IIzzTTf13UrgkFBHFSQinZiCUDoZK6WFYeBrEHhb47ZtFBeeoIpQejiyNBHplFwMwzAcXYRIq1WlUPjZUQYEpnPbj+8tIvKjdI1QOpceM/C4NQNrYQpVjq5FRLoEdYTSCVkpLfSjpLLxdTDe/rvpp3lREWkHBaF0elWl4/msxB9fTZeKSDtosYw4tbq6byktfQlPz0fp0eMXze7To99y+pasoKoKzLha5vz58/To0YNevXo5uhS7qcjPIjWn5LsbAyNICvd1TEHSpSgIxSnV11dSWprKuXP/i5tbP3r3ntYQhFUpFH49lDua3ipx4T3O3zob/6shePbsc0AdAwYk4OLS3SH1d4Ti4mJWrFjB3/72N3r27El8fDxLly6lW7duji7N5jzHRpI09vpra7aFnV6ejitIuhQtlhGnYhhVnD+fwWef+VFWlsGgQSsZMeJTbrnlNw079JiBx5UwCgpcrv9YwfeOuGvN4M03j+b8+dc5diyIS5f+z2GfxV5KS0tJSEhg2LBhHDt2jJycHN566y1eeeUVgoKC2Ldvn6NLtK+KfHYWBDJxrIJQbMQQcQL19VVGWVm6cejQ7cbhwz5GWVm6UV9f0+7z1dVdMk6fjjcKCtyML76INurqLtqwWscoKysz4uPjjZtuuskYN26ckZub+533L1y4YMTGxhrdu3c3YmNjjcrKSgdVal9FHyYbr+8tb+6N5reL/AgtlhGHMowaKire5uxZC4ZRTf/+S+nbdwGurj1tcv7Kyj0UF0dhGFfw8cmgd++pNjlvRyovLyc1NZWXXnqJ4cOH8+yzzzJz5swW98/Ly+Oxxx6jurqa1157jbvuuqsDq7WzinyyUsuYmBROw9XBCvKzUskpCSQiAnaWe9EvJ4cC7+nERI5FPaO0hoJQHKSeb755l6++WkZd3QX693+Sfv1icXW9yeYjGUYN5869yJkzibi734uPzyu4ufWx+Ti2dvHiRV5++WVWrlyJj48Pf/7zn3nwwQdxcXH50WMvX77M6tWrWblyJQ899BBr1qzB07Pzx0LDtcEYIr83LWol27KRAgKJuBaSIq2jIJQOZRgGn376Kd988z7u7msZMOBpvLwW4+p6s93Hvnz5MMXFUVRXl+DtnYqHx4N2H7M9KisrSUtLY/Xq1QwcOJDk5ORWB+CNDh06xPz58zlz5gzr1q3jgQcesEPFHeR73SCoIxRbUBBKhzAMg6NHj/Kvf/2LixcvMmnSb7jzzkBcXW/t4DpqKStL46uvnqVXrykMGfIq3boN6tAaWnLp0iUyMzNZuXIlN998MwkJCcyfP5+f/exnP+m8tbW1vPDCCyQnJzNz5kzS0tLw8vKyUdUdpSHwjvyquW7wKms2WeXBLb8v0gIFodjdqVOnyM3Npby8nDFjxhASEkLPnra5BtheVVWnKC6O5r//LWDw4NX07fsY0PaOyxaqq6tZv349ycnJdO/enWXLlhEZGYmbm23vbrJarURHR3Pw4EFWrVpFdHS0Tc8v0lkpCMVuTp06xUcffURZWRmjR49mwoQJ3HLLLY4uqwmDsrJ0vvoqnu7dJ3LLLakMGfI/HTZ6YwD+5S9/wdXVlSeffJKFCxfSo4f9ngpgGAavvfYaS5cuJSQkhFdffRUfHx+7jSfSGSgI5bqKfLJSc2h8fof39B+YhvoBX375Jdu3b+f06dMEBAQwefJkbr21Y6dA26K6+jSZmauIj9/Ac889x+OPP46rq/1usa2pqeHtt9/GYrFQWVnJE088QVxcXId2yWfOnGHRokX885//JDExkaeeesqun7mtLl++zL59+wgODrZ5ZyxyIwWhXGfNJptwGp5aZSXbshOvmEham4UlJSV8/PHHfPnllwQEBDBp0qRO9divzZs3s3jxYnx9fcnMzGTEiBE2PX99fT3vvvsuy5Yt4z//+Q9Lly4lNjaWm26y/UrZ1tq8eTOLFi1i6NChZGZmMnz4cIfVAnDlyhX27t3L3r17cXd356GHHsLDw8OhNUnX5zz/BRTH820MQQBPvLxbf2hZWRkbNmygT58+xMbGEh4e3qlCEGDWrFkUFhYycuRIAgICSEhIoLq6+ieft76+ns2bNzNixAj++Mc/EhERwcmTJ4mPj3doCELDZz5y5Ai//OUvGT16NMnJyTb5zG1VXV3N7t27SUlJ4ciRI4SGhrJgwQKFoHQIdYTSvIp8st6D+25cgv4DK/MuXbrkZNcA22/btm0sXLiQ3r178/rrr3PnnXe2+RyGYZCdnU1iYiInT55k0aJFPPPMM9x2m3N+R8bWrVtZuHAhHh4eZGZmMmbMGLuPWVNTw4EDB9i1axfdunUjJCSE0aNHt+tWEZH2UkcozbCSnXqEX93XGIIV5GdZsFiysQJQRLbFgiUrn4omR3WVEAQIDQ3l2LFjzJgxg/Hjx7NgwQIqKyt//MCrcnNzGTNmDL/73e+YNm0axcXFrFq1ymlDECAsLIxPP/2UyZMnExISQlxcHJcuXbLLWHV1dRQUFLB27Vr+/e9/M2XKFGJiYggMDFQISodTRyg3+KFrg+Z8eseePXuIioriypUrZGRkMHVqy49py83NZdmyZRw9epT58+ezbNky+vfv34HV2kZeXh5RUVHU1taSkZFhs8e01dbW8sknn7Br1y5cXV2ZMGECo0aNcqqFOmI++tsn11Xkk9VsCDZ2hMcZFhGI93QvjjfTEXZVwcHBHDhwgDlz5hAeHs6cOXMoLy//zj55eXlMmTKFGTNmMGrUKIqKikhJSemUIQgQEhLCJ598wu9//3tCQ0OZM2cOFRXt/9OuqanhzTffZOTIkezfv5+QkJBrHaBCUBxNHaFc09yXn37vFgqTP73j8OHDREVFUVJSwrp16xg4cCCJiYns2rWLefPmkZiYyKBBzvGkGltp+pi2tLQ07r///lYf27hS9tlnn+Wbb75xipWyIt/TUV9zIdJV1NTUGKtWrTLc3d2Nnj17GtHR0UZxcbGjy7Krxs/cs2dPY9asWUZpaekP7l9XV2e88847xh133GH06dPHSEpKMi5cuNBB1Yq0jTpCkXaqrKykurq6S3yrQ2v92GPajE62UlYENDUqIm1ktPCYttzcXBISEigsLGTx4sXEx8frPkDpFBSEItIuxcXFLFy4kN27dzNkyBA+//xzHn/8cZ566in69HH+73sUaaQgFJGf5O9//zuVlZWEhYXRr18/R5cj0mYKQhERMTXdwCMiIqamIBQREVNTEIqIiKkpCEVExNQUhCIiYmoKQhERMTUFoYiImJqCUERETE1BKCIipqYgFBERU1MQioiIqSkIRUTE1BSEIiJiagpCERExNQWhiIiYmoJQRERMTUEoIiKmpiAUERFTUxCKiIipKQhFRMTUFIQiImJqCkIRETE1BaGIiJiaglBEREzt/wGxb4uvy0GTCQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<rdkit.Chem.rdchem.Mol at 0x18110aa2920>"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mol2_f_tuple[4]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Broken bonds: 3, 6"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAYAAABNcIgQAAAUkElEQVR4nO3df1AU9/3H8echolYTlChGK3EawYL4Y8zFYMBmrB0VFYzTqdrWSqakI8lEcmeMhqkJcKlt1KSR05k62OnVWG0z6HwnGVCuUZOoMSMRaxN/8eNKjIe/BZNoNTmE/f6BGjAmBcLdAft6zNwMt7ef/bxhlnvd57O7txbDMAxERERMKiTYBYiIiASTglBERExNQSgiIqamIBQREVNTEIqIiKkpCEVExNQUhCIiYmoKQhERMTUFoYiImJqCUERETE1BKCIipqYgFBERU1MQioiIqSkIRUTE1BSEIiJiagpCERExNQWhiIiYmoJQRERMTUEoIiKmpiAUERFTUxCKiIipKQhFRMTUFIQiImJqCkIRETG10GAXINKheIpwbD4IQFRyJukJEUEuSET8zWIYhhHsIkQ6BE8Rjs0wLyeF6GDX0goZFlifCJX7uFV3hgVGVIItuvnP3OF1EbPT1KjIDZ6y8yRndq4QvCkR2OYJdhUinZOmRkUA8FB20MvBgw7cN5ZY5+WQcnsqeopw1SR2uCnTOc9Dwctgyw92JSKdj4JQ5BbrV9OitSW41hbhyUkhmlpKXGtxe63MmwdQSZHDzcGoZDLTE4gADMOgurq6DX12w+sd3OpWvXrB2LFNFsTA84DTo+lOkdZSEIrcSUQM8VFHqamF6IgIEtJzSMBDkWMzXqw8kpNDSpPVDcNgw4YNre6mV6/e/Pa3z7S6XXQ0HDvWfNm0WTD9G0aF9hiw37Ysr9W9inRNCkIRAKKJtW5mT0ki0QkRUFvJUW8kj0QAzUaEVs7XDKDM4WBzkxFhSEgIL7zwQpt6fvbZdvoVpkHe8sZR4e3y7nCyjIg0UhCK3BCdkkmNay0ON0AUyZnpN06cuTkiBDxF7CGGlJyEZiPCjsL2PFhehgUtbeCBpBh4/8bTxDzYZ/NPbSIdlYJQ5JYmgfdNolNI78jH4G6MCu20cOqzEkZuh33TGp9mWMA5Q8cZxVx0+YRIF2N7vhUrT4P8aV89HZHY7uWIdHi6oF5EGnkg6TF4rcmF+SJmoKlREQEgIwbmVCoExXw0NSoi+so1MTUFoYiZeSBJISgmpyAUMTHPtsZLJ+wxYLE0PpKcwa5KJLB0soyIiJiaRoQiImJqCkIRETE1BaGIiJiaglBERExNQSgiIqamIBQREVNTEIqIiKkpCEVExNQUhCIiYmoKQhERMTUFoYiImJruRygmVMwnB6dzsemi/tuxDp32TQ1EpAtTEIrJeDhfPh2iDazhN5cV80l5BV8yjR7BLE1EgkJ3nxBz+dJJ+ZFj3GvNJ/x/ry0iJqAgFJPxcL48Bi95jPyhzfQjQJ/Px/r16wkJCeFnP/sZkZGRwS5JJOAUhGJCN8Lwys3niUSN3EekyVKxsLCQxYsXc/XqVfr378+JEyfIzs4mMzOT7t27B7s8kYDRWaNiQtFE/tDAam18jIwC75EMPgt2WQFSXl7OjBkzmDt3Lj/96U85fvw4hw4d4s9//jNr1qwhPj6eLVu2BLtMkYBREEqX98UXZTQ0XP3G13tEPk9/jvDll43Pfb4T1NdfClB1gXPp0iWysrIYPXo0ISEhHD16lBUrVnDXXXdhsViYPXs2x44d45e//CWPPfYYkydP5siRI8EuW8TvFITSZdXXf4rXu4hjx0bz2WeFjQu/dFL+SXHzFT97g4t95hB+Y2r07NkVHDkSw4UL6zCM+sAW7QcNDQ1s3LiR2NhY3nrrLXbs2EFhYSE/+MEPvrbu9773PXJzc6moqGDQoEE88MADZGRkcPHixTtsWaRr0DFC6YIaqKnZRHX1EkJD7yEqajV33z31xmu3Hx8EWEB0s7NIG9ufOrWUbt36MWTIq4SHd85rDN955x3sdjunTp3ihRdeYOHChXTr1q3F7Xfv3o3dbufkyZNkZ2e3ur1IZ6AglC7l8uV38Xrt1NV5GTQomwEDFmKxtO2Nu6HhCmfPvsLZsyu4++7JREXl0aPHsPYt2E+8Xi/Lli3j9ddf58knn+TFF18kPLxtF4w0NDSwadMmli5dSkREBKtXr2bq1Kn/u6FIJ6GpUekSfL5qTpxIo7JyCr17JxAfX05kpK3NIQgQEtKHwYNziY8/TEhIL44ejcPrtVFf/3k7Vt6+/vvf/5Kbm8vw4cM5c+YMhw4dwul0tjkEAUJCQkhLS6OsrIyZM2fy6KOPkpqaSlVVVTtWLhI8GhFKp9bQcJWzZ1dx7txK+vSZwJAhefTqFe+Xvi5f3oXXa+f69RoGD87lnnse/05B254Mw2Dr1q0sXryYXr168eqrrzJjxgy/9FVWVsYzzzzDicpKjv7851iysqB3b7/0JRIICkLppAwuXdpKdfWzWCw9+P73f0+/frP936txnZoaF6dOLSMsbChRUXn06TPB7/1+mwMHDmC32zl27BhZWVksWrSIsLAwv/d74a23GPD003DlCrz0EvzqV2Cx+L1fkfamqVHpdE6dOsXf/vYaVVUOIiNtxMcfDUgIAlgsofTvv4D4+HL69EmiomISVVVz8Pk+CUj/TZ0+fZqMjAwSExMZNmwY5eXlPPfccwEJQYABU6bA4cOwZAk8/TQ89BDs2xeQvkXak4JQOo3Lly/zxhtv4HK56NevP3Fx+xk48BkslsB/C0poaARRUU7i4kq5fv0iR4/G88EHa7l27Zrf+/b5fDidTmJjY6moqKC0tJSNGzcG5+vRuncHmw3+8x9ITISJE2HOHDh5MvC1iLSRpkalw6uvr6e0tJR33nmHe++9l+TkZO69995gl9XMpUv/x8yZL1Jd/RmrVq1i9mz/jFALCwux2Wxcv36d5cuXk5aW5pd+2uz4cVi0CPbubRwpZmVBz57BrkrkWykIpUOrqKjA7XZTX1/PpEmTGD16NJYOehzK5/Oxbt06srOziYuLw+l0kpCQ0C7b/ve//43NZqO0tJQlS5aQlZVFz44cMIWFYLdDXR0sXw7z5+v4oXRYmhqVDunixYts2rSJrVu3Mnr0aDIzMxkzZkyHDUGAsLAwbDYbZWVljBkzhgkTJpCWlsa5c+favM3a2lpsNhvjxo1j4MCBHD9+nNzc3I4dggCpqY2jw8WLYeFCmDQJPvww2FWJ3JGCUPzGU+TA4SqhthVtrl27htvtZt26dfTo0YOnnnqKiRMnEhraee4hPWjQIPLz89m/fz9VVVVER0eTm5vLlze/zLQF6urqcDqdDBs2jPfff5/du3dTUFDAfffd58fK21lYWOPxw7IyGD4cHnwQ0tLg/PlgVybSjIJQ/MJT5GAPVqJa0eb06dOsWbOG6upqfv3rXzN79uzvdCF4sFmtVvbu3YvL5WLDhg2MGjWqRXd12LlzJ2PHjmXVqlWsXLmSkpISEhMTA1CxnwweDPn5jccNy8thw4bmrzuTGqdNbz6cniYvFoMlCZouuuMykbZTEEq7qy1xsWdAJumJA1rVbuDAgcyYMYPHH3+cIUOG+Km6wGrNXR0qKipITU1lxowZ/OQnP6GsrIwFCxYQEtJF/k3Hj4f9++GZZ75a5kwC+0gwjBuP7WCPuS0MRfyri/yHSUdRW+LiDWaRnhDxzSt5inCVfH3CtFu3bowcObJDHwdsq2+7q8Onn3566/ZIAMePH8fpdHLXXXcFuWo/sFjg1jR3Mdjfh+35TVaYBtsXgP3lYFQnJtV5DrxIJ1BL5VEvXu9aHO6vlq51QWZ6DJWutbi9VubNA6ikyOHmYFQymekJfEtsdilDhgxh48aNpKenY7fbiY2NvbXc7XYzceLE4BYYSJ4KYAHcfmOPabOA5Y1Tn9EBr0pMSJdPiP/UluB6A2Y1CzoPRY7NHMTKvJwUU7/P1dfXs337dgCmT59uvtsbFWfA8hGwz3b7C2CZDtsNmHbj569JhMp9CkppFxoRSoDUUnJrRGjlfM0AyhwONptsRNhUt27dSE1NDXYZwRMzAt4/9g0vJkJMk5+bhV4xWJb7vTwxDwWhBEgECek5JAB4ithDDCk5CaQEuywJnujhgB2K85tPjxa/AYzUaE8CRkEo/hORQHr6HZZHp5CuNzlhGuQlwvQMMG6eMFMM09dDXmVQKxNzURCKSPDY9gFJzb9+La8SbPqkJIGjk2VERMTUdB2hiIiYmoJQRERMTUEoIiKmpiAUERFTUxCKiIipKQhFRMTUFIQiImJqCkIRETE1BaGIiJiaglBERExNQSgiIqamIBQREVNTEIqIiKkpCEVExNQUhCIiYmoKQhERMTUFoYiImJqCUERETE1BKCIipqYgFNNpaGhg48aNWK1WxowZg9vtDnZJQfPuu+/y4IMPMnbsWJxOJ/X19cEuSSTgFIRiKrt378ZqtbJo0SLmzp3Lo48+yqxZs0hNTaWqqirY5QWM1+slLS2NKVOmkJiYSEZGBn/4wx8YNWoU//znP4NdnkhAKQjFFKqrq0lLS2Py5Mk89NBDlJeXs3TpUl588UUOHz5Mr169iIuLw2az8fnnnwe7XL+5evUqubm5DB8+nDNnznDo0CHWrFnDE088QXl5OTNnzmTmzJmkpqby8ccfB7tckYBQEEqX1vSN//Tp0/zrX/8iPz+f/v3731onJiaGgoICtm3bxttvv01sbCzr16+noaEhiJW3L8Mw2LJlC3FxcfzjH/9gy5Yt7Nixg/j4+Fvr9O3blxUrVnD48GEMwyA2Nhabzcbly5eDWLlIABgiXVBDQ4NRUFBgDB061IiJiTEKCgpa1K6urs7Iz883+vfvb1itVuO9997zc6X+d+DAASMxMdHo27evsWLFCuOLL75oUbsdO3YY8fHxxuDBg438/Hyjvr7ez5WKBIeCULqc0tJSIykpyejTp4+Rk5PT4jf+pmpqaoynn37aCA0NNWbPnm2cOHHCD5X616lTp4wFCxYYoaGhxvz5841z5861ehs+n8/Iy8szwsPDjXHjxhn79u3zQ6UiwaWpUekyzpw5Q0ZGBuPHj+f+++/H4/GQm5tLjx49Wr2tiIgInE4nH330EZ9//jkjRowgNzeXL774wg+Vty+fz4fT6SQ2NpaKigpKS0vZuHEjkZGRrd5W9+7dsdlsVFRUMGbMGFwuF2+++SZXrlzxQ+UiwWExDMMIdhEi30VdXR1/+tOfyM7OJi4uDqfTSUJCQrv2UVhYiN1ux+fz8fvf/5758+djsVjatY/24O86z5w5g9vt5uzZs/zoRz/i4Ycfplu3bu22fZFgUBBKp1ZWVsaePXtYuXIlL730EnPmzPFbXz6fj3Xr1pGdnX3rursxY8b4rb/WOH78OIsWLWLv3r0sWbKErKwsevbs6bf+KioqKC4upqGhgUmTJnWYv4NIWygIpVM6f/48breb6upqkpKSePjhhwkLCwtI36dPn8bhcOByufjFL37Byy+/zMCBAwPS9+1qa2txOBysW7eOWbNm8corr3DfffcFpO/r169TUlLCnj17GDx4MMnJyUH7O4h8FwpC6VSuXbvG7t27OXDgANHR0UyfPp3w8PCg1FJaWorNZuPYsWNkZWVht9vbdDyyLerq6vjrX//KsmXLGDp0KE6nk6SkpID0fbvLly+zc+dODh8+zKhRo5gyZQq9e/cOSi0ibaEglE6hoaGBQ4cO8fbbbxMeHk5ycnLARj7fxjAMtm7dyrPPPkvPnj354x//SEpKil/73LlzJ4sWLaKmpobc3Fx+85vfEBIS/PPeTp8+TXFxMRcvXmTChAmMHz9exw+lU1AQSof38ccf43a7uXr1KhMnTuSBBx7ocCeqXL16lVWrVrFy5UomTJhAXl5es4vV20NlZSXLli3jzTff5IknnuB3v/sdd999d7v28V0ZhsGHH37Irl27mDt3LkOGDAl2SSL/k4JQOqza2lp27dpFWVkZ48aN48c//nHAph7byuv1smzZMl5//XWefPJJHA4Hffv2/U7bvHLlCq+88gorVqxg8uTJOJ1O7r///vYp2E/q6+s1GpROQ0EoHU5dXR379u3jvffeY9iwYSQnJ9OvX79gl9Uq7777Lna7Ha/XS3Z2NgsXLmx1MDQ0NLBp0yaWLl1Kv379WL16NcnJyX6qWMS8FITSzjwUOTZz8OZT6zxyUqJb1NIwDD766CN27txJz549mTp1KtHRLWvbEd0MsiVLlnDPPfewevVqpk6d2qK2u3fvxm63c/LkSbKzs3nqqacIDQ31c8X+UVviYq3b23xhK/YLEb8L6PfYSNdXWWgUVt58UmPs/8tfjP01LWt68uRJY+XKlcYHH3zQpb7X8tKlS8Zzzz1nhIWFGSkpKUZVVdU3ruv1eo358+cb3bt3NxYsWGBcuHAhgJUGRmVhrvGXlu4UIgEQ/FPNpGuJTuGrD/q1XPBGck9Ey5pGRUVht9sZN25chzgLsr205K4OLblLRpdQW8Keg1YeSWjhTiESAF3n3UY6kFpKXA4cjjJic1L42gSYpwhXSe0dWwbqovhgGD58OEVFRWzbto1du3YRGxtLfn4+BQUFjBgxgr///e+89tpr7Ny5k5EjRwa7XL/wvO+G5MRW7RMi/qZjhOJHHoocexiQmU5CRC0lrrW4vVbmzYM9NQOIdLs5GJVMZnoCZhsf+Hw+1q5dy6pVqwBYunQpmZmZXfqDALUluNZe4JFbH460T0jHoCAUv/IUOSiLzWkyXXrzZBor8+40WjQZn88HdO2R8E2eIgd7BmSS/rVpUe0TElyaGpV2VVtSxFczXB7KDkYxIAKaTZfOsxKVPIAyhwOHqwQzT4iFhYWZIgTvfGxQ+4R0DBoRSvvyFOHYfOviCazzmo4Gv1rHVZN4h5GBdE2NU6BH4+80GrxB+4QEkYJQRERMTVOjIiJiagpCERExNQWhiIiYmoJQRERMTUEoIiKmpiAUERFTUxCKiIipKQhFRMTUFIQiImJqCkIRETE1BaGIiJiaglBERExNQSgiIqamIBQREVNTEIqIiKkpCEVExNQUhCIiYmoKQhERMTUFoYiImJqCUERETE1BKCIipqYgFBERU1MQioiIqSkIRUTE1BSEIiJiagpCERExtf8HZP5JathyW58AAAAASUVORK5CYII=\n",
"text/plain": [
"<rdkit.Chem.rdchem.Mol at 0x18110aa2978>"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mol2_f_tuple[5]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Calling `Chem.FragmentOnSomeBonds` with `n == numToBreak` makes it effectively equivalent to `Chem.FragmentOnBonds`:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"mol2_f_tuple = Chem.FragmentOnSomeBonds(mol2, (0, 2, 3, 6), numToBreak=4)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(<rdkit.Chem.rdchem.Mol at 0x18110aa27c0>,)"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mol2_f_tuple"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAACWCAYAAABNcIgQAAATzElEQVR4nO3df1BU573H8TcKSGL8hYExKIlEEEzAH6zRgtZpbCRLSzKpFlPH6TqxmWgn4ce0zdXctBe3JQ5pnVEkYyOd4Q702klMp3XqKlsxMeYadFExGr0V2MQmirWoSyQSNeqe+4e/0CgusLAs5/Oacdw9e87zfHfOzH54nvOc3RDDMAxERERMql+gCxAREQkkBaGIiJiaglBERExNQSgiIqamIBQREVNTEIqIiKkpCEVExNQUhCIiYmoKQhERMTUFoYiImJqCUERETE1BKCIipqYgFBERU1MQioiIqSkIRUTE1BSEIiJiaqGBLkCks1paWnjttdc4fvw4qampvPTSS4SFhQW6LL+4dOkSv//976mpqSE6Oppf/epXDB06NNBlifRJGhFK0PF6vZSVlZGYmMimTZt4+OGHWbFiBSkpKWzevDnQ5XVZVVUVEyZMYPny5cTFxbF161bGjh1LaWkply9fDnR5In2PIRJEXC6XkZaWZgwbNswoKioyLly4YBiGYbS2thoFBQVGRESE8cQTTxgHDx4McKUd19DQYGRnZxthYWFGbm6ucebMGcMwDOPy5ctGeXm5ER0dbYwbN85wOp0BrlSkb9GIUIJCY2MjNpuN9PR04uPjqaurY8mSJYSHhwNw7733smzZMhoaGnjggQeYNGkSixYt4tSpUwGu/O5aW1tZtmwZycnJNDc3s3//foqLixk8eDAA/fr1w2azUVdXx9NPP83TTz/NU089xZEjRwJcuUjfoCCUXu3cuXO8/vrrJCUl0djYSG1tLRUVFURFRd12/1GjRlFRUcGWLVtwuVwkJiZSXFzcK6cUDcOgoqKC+Ph43nrrLf7yl79QVVXFuHHjbrv/0KFDKSoq4uOPP8YwDJKSksjLy+PLL7/s4cpF+phAD0lF7uRvf/ubMXr0aGPMmDHG+vXrO3x8b55SdLlcxre+9a1vTPF2xMaNG42xY8cac+bMMQ4cOGB4vd5uqFSk7wsxDMMIdBiLtPXRRx+Rk5PD/v37efXVV8nPz2fAgAGdbu+LL76gqKiIVatWMWvWLIqLi3n44Yf9WLHvGhsbeeWVV3jrrbd47rnnKCwsvOPo1hdff/01O3fuZOfOnURFRZGZmUlMTIwfKxbp+xSE0mu0trby3nvv8emnn7J//36WL1/OiBEj/NZ+fX09P//5z9myZQuLFy+msLCQQYMG+a399pw7d47Vq1dTWFjIlClTWLlyJePHj/dr+9u3b2f37t0kJSWRkZHBkCFD/Na+SF+mIJSA83q97N69m23btjF8+HAyMzMZNWpUt/W3detW8vPzaW5upqCggOeff55+/brvcvnGjRvJzc0lNDSU5cuXk52d3W19nThxAqfTyfHjx0lPT2f69OmEhup2YZH2KAgloD799FOcTifnz5/nu9/9LuPHjyckJKTb+7148SJr1qxh2bJlxMfHU1xcTHp6ul/7qK2tJT8/n9raWn7xi1+wdOlSIiIi/NrHndTX11NZWYnX62XmzJlMmDChR/oVCUYKQgmI06dP8/e//50jR44wdepUZsyYcf1WiJ7k8Xiw2+2sWbOGH/zgB6xYsYIHH3ywS22ePn2aX//616xZs4Z58+bx29/+1q9TvL66dOkS1dXV7Nixg8TERObMmdPjNYgEAwWh9Kjz58+zY8cOdu3axZgxY8jMzOwVXx320UcfkZeXx549e3j55Zc7NXq7NsosKChg7NixFBcXk5aW1k0V+66lpQWPx8Po0aMDXYpIr6QglM5xO7Cv23vlcayVnIVTiWxnd8MwOHDgAFVVVQwaNAir1cpDDz3UI6V2xMaNG8nLy+PSpUsUFhZis9l8Om7r1q3k5eVx5swZli9fzo9//OMemeLtKI+rjBLn0RsbLPMpyIoPXEEivYCCULrM7bBzOKmAO32enjp1infeeYfW1lZmzpzJpEmTemVIXHNthedrr73G5MmTWbly5R2vsdXV1fGzn/2Mbdu2kZuby6uvvtpjK1G7yuMqYwPPsHBqe3/CiPR9+mYZ6SIPp5tiiWrns3TQoEEkJSWRk5NDampqrw5BgHvuuYclS5Zw+PBhEhISmDx5Mjabjaampuv7NDc3s3TpUsaPH0+/fv04dOgQRUVFQROC4KbaGc0MhaCIglC6wOOizF6CM3oGN32euh043DeeDhgwgMcff7xLN8UHQkxMDGvXrqW6uppPPvmExMREioqKKCsrIykpiS1btlBVVcXGjRuJi4sLdLkd4nF9QJM1nZsG8becNxGz0NSodNn1Kbbh1djXNWG1RnOSKJqcTrDm9ImpN6/XS0VFBb/5zW8AWLp0KT/5yU+69f7D7uPGYT9MUkHWlSB0O/rseRPxhYJQusztsPNB1LUPTg+ushKc3H0BTTDyer0AQRqAV9z+2mDfPm8i7VEQSqfctPrw2qpRjSyCwC2jQdCIUExPQSj+53bgIOuOq0ill9J5E5NSEIqIiKkF74UOERERP1AQioiIqSkIRUTE1BSEIiJiagpCERExNQWhiIiYmoJQRERMTUEoIiKmpiAUERFTUxCKiIipKQhFRMTUFIQiImJqCkIRETG10EAXIBIULhRTdzCfs1ef3hfbQGK0fq9IpC9QEIrcVSWfHVzPsGSDxAFXn3/WACgIRfoCBaGIT5IZMODa40weeiiQtYiIP+mHeUV8cOazENyngPs3Y3koM9DliIgfabGMiA+GPGRgsRhYhm5g794Q9n5WGeiSRMRPFIQi7bh8+YubNwxZi8WymftPbeDMnfYRkaCiIBS5jfPn63C7s6ivn3VlxWjbEeCFes7f9wgRV5+63U/R0PAk58//X0BqFZGu0TVCkTa83rOcOLGCEyeKGDx4FrGxxQwY4KWpLoGj1+6dIJ3Y5A+Jvrp45uLFRhobX8HjeYvhw59j5MhCQkOjAvUWRKSDFIQiAHg5ffp/aGz8D/r3H0Zs7EoGD7Z2qIXW1hqOHs3j/Pk6YmIKiIp6kZAQLcwW6e0UhGJ6X365nWPH8vn668954IH/6mKAeTl1qozjx39JaGgUI0b8N5GRk/1ar4j4l4JQTOvrr49x/Ph/tpnSfI3Q0Pv90vbly2c4fryIP//5fmJiRpGRkcGwYcP80raI+JeCUEzn4sWL7Nr1vwwc+CyDBlmIjV1JRMS4bunL4/Hw7rvvcvjwYR577DEef/xxBty4M19EegEFoZiGYRgcPHiQqqoqwsPDmT07jZgYS4/0feTIEZxOJ1999RXf+c53SE1NJSQkpEf6FpH2KQjFFP71r39RWVnJv//9b9LS0vj2t79N//79e7QGr9fL7t27ef/994mMjGTu3LkMGTKkR2sQkW9SEEqfdvbsWd5//3327dtHcnIyGRkZDBw4MKA1nTt3jp07dzJjxgxCQ7WqVCTQFITS+7kd2NftvfI41krOwqlE3uWQa6Ovbdu2cf/995OZmcnIkSO7vdRO87goKznJjIIs/aaFSA9TEEoQ8eAqK+HkjAKy2kmL+vp6nE4nXq+XWbNm8eijj/ZciZ3ixmH/gKbYaGYsVBCK9DTNy0gQiWR4dCx3Gw42NzczceJE0tPTg2Dq0YOr7AOicp4hakN1oIsRMSV916gED4+LD5oeJaFtELodONw37zZ16tSguf7mdpRwcsZCpt4u3G/z3kTE/zQ1KsHB46JsAzxz7fqg24F9XRNWazQniaLJ6QRrDgtvmyi91ZWpXufRNptireTMOElJ0L83keChIJTe79YQvPHClSDBtwU0vZsHV1k1w69fI+xL702kd1MQSq/ncZVR0mbYFGvNYeHw6j4wImyrTRD2idGuSPBQEEpwcztwkNXuKtKg1Zffm0gvoiAUERFT06pRERExNQWhiIiYmoJQRERMTUEoIiKmpiAUERFTUxCKiIipKQhFRMTUFIQiImJqCkIRETE1BaGIiJiaglBERExNQSgiIqamIJQ+y+0ow+UJdBUi0tspCKUPcuOw21m3N9B1tFE8DUJCbvwrdl/Z7i6GacU373u7bSLSbRSE0gfFk1WQgzU20HVcVTwN1s8Fw7j6bzPkJ9wIQxEJKAWhmIvbgaNH86cS8oHyvDbbMqFhFazf1JOFiMgdhAa6AJEe4XZgX9eE1RoNuChb5wRrDgunRlJVVUVra6tPzSR++SXj3n3Xtz6HDYMXR0P6XLj1V+bjx0L1BuARqM6HkPybX09f5VsfItJlCkIxh/gsCgo8uMpK2IuVnIICIq++FBYWRnh4uE/N9A8Lg/vu863PgQN92y99FXzYZsToLoYFvh0qIl0XYhiGEegiRPzLjcO+jmtrZSzzC8jixojwJFE0OW+MCLtXJYQUQsOHN48Kr4VdOVf+v10Qtt0mIt1GQSjm4nbgIIusW6cqu9O1xTLXg60SQr4Hqxrg+5sUhCIBpqlRMZf4LLJ6us+8D4FpN18H3GxAJqCFoyIBpxGhiIiYmm6fEBERU1MQioiIqSkIRUTE1BSEIiJiagpCERExNQWhiIiYmoJQRERMTUEoIiKmpiAUERFTUxCKiIipKQhFRMTUFIQiImJqCkIRETE1BaGIiJiaglBERExNQSimdezYMRobGwNdhogEmIJQTGf79u1kZ2cTFxdHeno6zz//POfOnQt0WSISIApCMYULFy5QUVHBxIkTycjIICQkhO3bt+N0OnG5XFgsFg4ePBjoMkUkAEIDXYBId2psbOQPf/gDb7zxBuHh4dhsNjZt2sTIkSOv71NTU0NOTg5paWm8+eabzJ8/P4AVd4DbgX3d3iuPY63kLJxKZGArEglKIYZhGIEuQsTfduzYwerVq/nrX//KhAkTyM3NZd68eYSFhd3xmIqKCn76058yZ84c3nzzTe69994erLhr3A47h5MKyIoPdCUiwUdTo9JnnD17ltLSUlJSUnjiiSeIiIhgz5497NmzB5vN1m4IAthsNvbs2UNtbS2PPfYYhw4d6qHKu8rD6aZYojQcFOkUBaEEPY/Hw9atWykvL8dutzNnzhyOHTtGRUUFEyZM6FBb48aNY9euXUycOJG0tDT+9Kc/dVPVfuJxUWYvwRk9g6ltg9DtwOHuZJtuB3a7Hbu9DJfHH0WK9G6aGpWgZBgGbrebmpoaPvnkE+Li4pgyZQoJCQn06+efv++CaarU4ypjA8+wcHg19nVNWK3RnCSKJqcTrDksnOrjcNHjoqzkEI/mLMTXQ7qVG6YlAKvgw7w22xZAeTksWADlH0I8t7zWdpvIXWixjASVCxcucPDgQVwuF2fOnCElJYXFixcTHR3t975sNhuTJ08mOzubadOmsX79ehISEvzejz94Th6FKCA+i4ICD66yEvZiJaegoEMLaDwNh8D6TO8IwWvSIXk9FH8f8pRu0g0UhNI7uB04yLrjYo/Tp0+ze/du9u3bx8CBA7FYLKSmpnLPPfd0a1mPPPIIu3btYtGiRVgsFtauXcu8efO6tU9feVxllDiPXnkSayUnK/LqStImrFYLFmCD3d6hEaHn5FGO7i3B7gSIxdp2ZHiXc9SdXv4lJPwO8tb2fN/S92lqVALr+gf3N6fyDMPgyJEjuFwuGhoaiIuLw2KxMG7cOEJCQnq81LZTpWvXru32EO6STobWTatP3Q7sh5MoSDp8x3O0bds26uvrfW7/j398nq++6u/TvtOnw+rcG1OdDYtgwzOwNqHN1GgCVN96YDo0aGpUOkAjQgmsdqbyysvLOXHiBBMnTuSll14iMjKw83U2m42UlBTmzp17fao0Pr5nP27/+c9/EhoayqhRo9rfMT6LrE60H59kYd1hN1lt31c75yguLo7Bgwf73H5YWD8uXfJt3wcfvPl55stQuADc5W023hp6V68RinSEglACq52pPKvVSmRkJOHh4YGu8rpJkyZRW1vLCy+8QGpqKqWlpfzoRz/q1j4vXrzIgQMHqKmpwePxMHPmzLsHYWfFp2P9oAS7HcDC/IL4ds/R6NGjGT16tM/NWywdrKftytd4KJ8Lv9vUwTZE7kJTo9I7BPD6U2dVVFSwePFifvjDH3bLVGlzczN79+6ltraW/v37Y7FYmDJlSuBWrwbiHN1mFeiiEChNh4a7rRqthJDvXd2u6VJph0aE0jt0ciovkGw2G8nJyTz77LNMnz6dt99+2y9TpZ9//jkul4t//OMfjBgxgieffJKUlBS/3RbSab3kHK3dDKWFPuyYCdf+zC+eBr+rhLWZ3VqaBCmNCEW6qKWlhRdeeIHKykpKS0t59tlnO9XGvn37+Pjjj2lpaWH8+PFMmTKlW24LMaPKRVD/sm6/kNtTEIr4SWlpKbm5uSxYsICSkhKfrm3W1dXxxhtvUF5ezuzZs1m0aBGTJk0iIiKiByo2Cd1kL3ehIBTxo9raWubOncvQoUN5++23GTNmzDf28Xq9vPfeexQXF7Np0ybS09PJy8tj9uzZ9O/v260F4iOFoPhA3zUq4kepqanU1tYyZswYUlNTeeedd66/1tLSQmlpKcnJycyePZuYmBgOHDjAjh07yM7OVgj6m0JQfKQRoUg3MAyD1atXs2TJEubPn09oaCjr1q1j1KhRvPjiiyxYsKBD999Jx7mLISH/xvP0VW2+r1SkDQWhSDeqqamhpKSE5uZmcnJyyMjICMi34ojInSkIRUTE1HSNUERETE1BKCIipqYgFBERU1MQioiIqSkIRUTE1BSEIiJiagpCERExNQWhiIiYmoJQRERMTUEoIiKmpiAUERFTUxCKiIipKQhFRMTUFIQiImJqCkIRETE1BaGIiJja/wM+oq859BV8JQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<rdkit.Chem.rdchem.Mol at 0x18110aa27c0>"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mol2_f_tuple[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment