Last active
July 31, 2020 11:06
-
-
Save py7hon/7340555642caf55d70370f6fa07749bd to your computer and use it in GitHub Desktop.
Mencari Doujin dan Manga Dengan Potongan Gambar
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "cari.ipynb", | |
"provenance": [], | |
"collapsed_sections": [] | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "lqq7McHGVEG_", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"# Mencari Doujin atau Manga dengan Gambar" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "3alvY3HpVi9v", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"##### Ingat ini hanya untuk pembelajaran\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "_wfBb8c9WDcT", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"## 1. Mempersiapkan Dependencies " | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "tc0LOUheWSbj", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"\n", | |
"\n", | |
"* numpy\n", | |
"* opencv-python\n", | |
"\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "cqhOQ7OVWk9I", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"## 2. Install Dependencies" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "fB-ExiCXW_BD", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"pip install numpy opencv-python" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "UYAE21PKXBPM", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"## 3. Silahkan copy Folder FAKKU" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "afoH806lXUwk", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"https://drive.google.com/drive/folders/1-_JkK-AE6JBlcp9vR-eGlyBPdITo1-yh?usp=sharing\n", | |
"\n", | |
"*jika memerlukan ijin silahkan PM [Iqbal Rifai](https://m.me/composer.json)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "W1q5pJY8Y3wk", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"## 4. Pindah ke Folder" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "H7jcLr64XUFn", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"cd FAKKU" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "iyVGfQ7NZKL4", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"## 5. Upload Gambar yang ingin di cari ke Folder FAKKU" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "biOnNtjTZk1Y", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"## 6. Eksekusi dengan menjalankan Script di bawah ini" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "mJTbqAoUZwYV", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"import sys, os\n", | |
"import argparse\n", | |
"import numpy as np\n", | |
"import zipfile\n", | |
"import cv2\n", | |
"import datetime\n", | |
"\n", | |
"#Import Image to be searched for\n", | |
"#parser = argparse.ArgumentParser()\n", | |
"#parser.add_argument('-i', type=argparse.FileType('r', encoding='UTF-8'), required=True)\n", | |
"#args = parser.parse_args()\n", | |
"#small_image = cv2.imread(args)\n", | |
"\n", | |
"\n", | |
"startimage = \"image.png\" #Ganti dengan nama gambar yang tadi di Upload\n", | |
"small_image = cv2.imread(startimage)\n", | |
"\n", | |
"#create vars\n", | |
"filelist = []\n", | |
"similarity = []\n", | |
"bestMatch = sys.float_info.max\n", | |
"counter = -1\n", | |
"\n", | |
"##get all zips in subdirectories\n", | |
"for subdir, dirs, files in os.walk(\".\"):\n", | |
" for dir in dirs:\n", | |
" path = os.path.join(subdir, dir)\n", | |
" for file in os.listdir(path):\n", | |
" if file.endswith(\".zip\"): \n", | |
" filelist.append(os.path.join(path, file))\n", | |
"\n", | |
"#go through all found zips\n", | |
"for file in filelist:\n", | |
" counter += 1\n", | |
" print(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') + \": progress: \" \n", | |
" + str(counter) + \"/\" + str(len(filelist)))\n", | |
" zippedImgs = zipfile.ZipFile(file)\n", | |
"\n", | |
" if(bestMatch == 0.0):\n", | |
" break\n", | |
"\n", | |
" #go through all images in all zips\n", | |
" for img in zippedImgs.namelist():\n", | |
" if(\".jpg\" in img or \".png\" in img or \".gif\" in img):\n", | |
" #transform zipped files to images\n", | |
" data = zippedImgs.read(img)\n", | |
" nparr = np.fromstring(data, np.uint8)\n", | |
" large_image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)\n", | |
"\n", | |
" #check if image is a closer match than all previous images\n", | |
" if(large_image.shape[0] < small_image.shape[0] or large_image.shape[1] < small_image.shape[1]):\n", | |
" continue\n", | |
"\n", | |
" resultData = cv2.matchTemplate(large_image, small_image, cv2.TM_SQDIFF_NORMED)\n", | |
" result = cv2.minMaxLoc(resultData);\n", | |
" similarity.append([result, file, img])\n", | |
"\n", | |
" #Draw result rectangle\n", | |
" if(result[0] < bestMatch):\n", | |
" bestMatch = result[0]\n", | |
" # We want the minimum squared difference\n", | |
" mn,_,mnLoc,_ = cv2.minMaxLoc(resultData)\n", | |
" # Draw the rectangle:\n", | |
" # Step 1: Extract the coordinates of our best match\n", | |
" MPx,MPy = mnLoc\n", | |
" # Step 2: Get the size of the template. This is the same size as the match.\n", | |
" trows,tcols = small_image.shape[:2]\n", | |
" # Step 3: Draw the rectangle on large_image\n", | |
" cv2.rectangle(large_image, (MPx,MPy),(MPx+tcols,MPy+trows),(0,0,255),2)\n", | |
" cv2.imwrite(\"hasil.png\", large_image)\n", | |
" print(\"Hasil Yang Sesuai:\")\n", | |
" print([result, file, img])\n", | |
"\n", | |
"similarity.sort(key=lambda x: x[0][0])\n", | |
"\n", | |
"print(\"\\nTotal Hasil yang sesuai:\")\n", | |
"print(similarity[0])" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "Cfz8_Sc2Z7EU", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Tungu hingga Selesai" | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment