Skip to content

Instantly share code, notes, and snippets.

@pzp1997
Last active February 7, 2019 21:52
Show Gist options
  • Save pzp1997/3ca05a27a0c10421c906a5af69c46d0a to your computer and use it in GitHub Desktop.
Save pzp1997/3ca05a27a0c10421c906a5af69c46d0a to your computer and use it in GitHub Desktop.
nets213-inclass-analysis.ipynb
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"source": [
"import csv\n",
"\n",
"with open('Batch_3517965_batch_results.csv', newline='') as csvfile:\n",
" reader = csv.reader(csvfile)\n",
" headers = next(reader)\n",
"\n",
" data = []\n",
" for row in reader:\n",
" data.append(dict(zip(headers, row)))"
],
"outputs": [],
"execution_count": 9,
"metadata": {
"collapsed": false,
"outputHidden": false,
"inputHidden": false
}
},
{
"cell_type": "code",
"source": [
"def count_occurences(column_name):\n",
" labels = {}\n",
" for entry in data:\n",
" entry_label = entry[column_name]\n",
" if entry_label in labels:\n",
" labels[entry_label] += 1\n",
" else:\n",
" labels[entry_label] = 1\n",
" return labels\n",
"\n\n",
"def print_counts(counts):\n",
" print('\\n'.join(('{}: {}'.format(k, v) for k, v in sorted(counts.items(), key=lambda x: x[1], reverse=True))))"
],
"outputs": [],
"execution_count": 37,
"metadata": {
"collapsed": false,
"outputHidden": false,
"inputHidden": false
}
},
{
"cell_type": "code",
"source": [
"label_counts = count_occurences('Answer.sentiment.label')\n",
"print_counts(label_counts)"
],
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Neutral: 393\n",
"Negative: 267\n",
"Positive: 241\n",
"N/A: 106\n",
"Extremely Negative: 78\n",
"Extremely Positive: 16\n"
]
}
],
"execution_count": 38,
"metadata": {
"collapsed": false,
"outputHidden": false,
"inputHidden": false
}
},
{
"cell_type": "code",
"source": [
"worker_counts = count_occurences('WorkerId')\n",
"print_counts(worker_counts)"
],
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"A20PV3RB3I0W8S: 207\n",
"A2ZBYVQLDUZOV7: 202\n",
"A252Z0ZJ7PF59Q: 199\n",
"A34M93NJC830DP: 132\n",
"A104V8NZIQFN2F: 127\n",
"A3O1I9MATO3ZZN: 104\n",
"A1DVKS3R9SLQ1H: 68\n",
"A35ARURSRU6UAZ: 27\n",
"A2HR7ZIX42FEPG: 26\n",
"A1APYLD4DUK33J: 3\n",
"AKSJ3C5O3V9RB: 2\n",
"A3VXSCZ7NP7ZI2: 1\n",
"A37WDOIQH6JM6V: 1\n",
"A1506T1PAYRT16: 1\n",
"A1FVXS8IM5QYO8: 1\n"
]
}
],
"execution_count": 39,
"metadata": {
"collapsed": false,
"outputHidden": false,
"inputHidden": false
}
},
{
"cell_type": "code",
"source": [],
"outputs": [],
"execution_count": null,
"metadata": {
"collapsed": false,
"outputHidden": false,
"inputHidden": false
}
}
],
"metadata": {
"kernel_info": {
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.7.1",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"kernelspec": {
"name": "python3",
"language": "python",
"display_name": "Python 3"
},
"nteract": {
"version": "0.12.3"
},
"gist_id": "3ca05a27a0c10421c906a5af69c46d0a"
},
"nbformat": 4,
"nbformat_minor": 4
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment