This is a guide for aligning images.
See the full Advanced Markdown doc for more tips and tricks
import Vue from 'vue' | |
/** | |
* Usage: | |
* <span v-slot:one="{ slots, value: 'component B2' }"></span> | |
* v-slot:<SLOT_NAME>="{ slots, <VALUE> }" | |
* | |
* Pass the slots like this: | |
* <my-component :slots="$scopedSlots" /> | |
* inside MyComponent define props: ['slots'] |
This is a guide for aligning images.
See the full Advanced Markdown doc for more tips and tricks
#include <string> | |
#include <iostream> | |
#include <sstream> | |
#include <iomanip> | |
#include <stdlib.h> | |
class SafeFormatter{ | |
public: | |
SafeFormatter( const char * s ):fForm(s),fIterator(fForm.begin()){} | |
void compile(){return ;} | |
template< typename T, typename ... A > |
#include <iostream> | |
#include <vector> | |
#include <algorithm> | |
class Ranger { | |
public: | |
typedef int value_type; | |
struct iterator { | |
iterator(size_t counter) : counter(counter) {} | |
iterator operator++(){ return iterator(++counter); } | |
bool operator!=(iterator o) { return counter != o.counter; } |
#include <iostream> | |
#include <vector> | |
//===================================================== | |
// V1 : Wraper class of vector ( has vector ) | |
//===================================================== | |
template < class T , int dim > | |
class MultiVector { | |
public: |
글쓴이: 김정주([email protected])
최근 딥러닝 관련 패키지들은 대부분 CPU와 GPU를 함께 지원하고 있습니다. GPU를 사용하면 보다 빠르게 학습 결과를 낼 수 있지만, GPU를 활용하기 위해서는 NVIDIA계열의 그래픽 카드, 드라이버 S/W 그리고 CUDA의 설치를 필요로 합니다.
이 글에서는 AWS의 GPU 인스턴스와 도커를 활용해 딥러닝 패키지(Caffe)를 편리하게 사용하는 방법을 소개합니다.
template < class T, int n > struct mvector_tool{ | |
typedef vector< typename mvector_tool<T,n-1>::type > type; | |
static type gen_vector( std::array<unsigned int, n> index, T initvalue ){ | |
std::array<unsigned int,n-1> index_next; | |
std::copy_n( index.begin()+1, n-1, index_next.begin() ); | |
return type( index.front(), mvector_tool<T,n-1>::gen_vector( index_next, initvalue )); | |
} | |
}; | |
template < class T > struct mvector_tool<T,0>{ |
""" | |
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy) | |
BSD License | |
""" | |
import numpy as np | |
# data I/O | |
data = open('input.txt', 'r').read() # should be simple plain text file | |
chars = list(set(data)) | |
data_size, vocab_size = len(data), len(chars) |