This is a guide for aligning images.
See the full Advanced Markdown doc for more tips and tricks
| import Vue from 'vue' | |
| /** | |
| * Usage: | |
| * <span v-slot:one="{ slots, value: 'component B2' }"></span> | |
| * v-slot:<SLOT_NAME>="{ slots, <VALUE> }" | |
| * | |
| * Pass the slots like this: | |
| * <my-component :slots="$scopedSlots" /> | |
| * inside MyComponent define props: ['slots'] |
This is a guide for aligning images.
See the full Advanced Markdown doc for more tips and tricks
| #include <string> | |
| #include <iostream> | |
| #include <sstream> | |
| #include <iomanip> | |
| #include <stdlib.h> | |
| class SafeFormatter{ | |
| public: | |
| SafeFormatter( const char * s ):fForm(s),fIterator(fForm.begin()){} | |
| void compile(){return ;} | |
| template< typename T, typename ... A > |
| #include <iostream> | |
| #include <vector> | |
| #include <algorithm> | |
| class Ranger { | |
| public: | |
| typedef int value_type; | |
| struct iterator { | |
| iterator(size_t counter) : counter(counter) {} | |
| iterator operator++(){ return iterator(++counter); } | |
| bool operator!=(iterator o) { return counter != o.counter; } |
| #include <iostream> | |
| #include <vector> | |
| //===================================================== | |
| // V1 : Wraper class of vector ( has vector ) | |
| //===================================================== | |
| template < class T , int dim > | |
| class MultiVector { | |
| public: |
글쓴이: 김정주([email protected])
최근 딥러닝 관련 패키지들은 대부분 CPU와 GPU를 함께 지원하고 있습니다. GPU를 사용하면 보다 빠르게 학습 결과를 낼 수 있지만, GPU를 활용하기 위해서는 NVIDIA계열의 그래픽 카드, 드라이버 S/W 그리고 CUDA의 설치를 필요로 합니다.
이 글에서는 AWS의 GPU 인스턴스와 도커를 활용해 딥러닝 패키지(Caffe)를 편리하게 사용하는 방법을 소개합니다.
| template < class T, int n > struct mvector_tool{ | |
| typedef vector< typename mvector_tool<T,n-1>::type > type; | |
| static type gen_vector( std::array<unsigned int, n> index, T initvalue ){ | |
| std::array<unsigned int,n-1> index_next; | |
| std::copy_n( index.begin()+1, n-1, index_next.begin() ); | |
| return type( index.front(), mvector_tool<T,n-1>::gen_vector( index_next, initvalue )); | |
| } | |
| }; | |
| template < class T > struct mvector_tool<T,0>{ |
| """ | |
| Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy) | |
| BSD License | |
| """ | |
| import numpy as np | |
| # data I/O | |
| data = open('input.txt', 'r').read() # should be simple plain text file | |
| chars = list(set(data)) | |
| data_size, vocab_size = len(data), len(chars) |