Skip to content

Instantly share code, notes, and snippets.

@quizzicol
Created November 4, 2016 06:31
Show Gist options
  • Save quizzicol/92c583730c960273e2c4e151f900473d to your computer and use it in GitHub Desktop.
Save quizzicol/92c583730c960273e2c4e151f900473d to your computer and use it in GitHub Desktop.
Authorship attribution of ghost written novels.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Can a ghost writer mimic another author?\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In fiction literature, it is not uncommon for authors to write under more than one name or to write as another author. Some examples of this are:\n",
"* 'Tom Clancy' books written by Tom Clancy as well as other authors including Mark Greaner, Grant Blackwood etc\n",
"\n",
"| | |\n",
"|-|-|\n",
"|<img src=http://www.tomclancy.com/books/true-faith-and-allegiance-hc300.jpg width='100px'>|<img src=http://www.tomclancy.com/books/tom-clancy-duty-and-honor-hc300.jpg width='100px'>|\n",
"\n",
"* 'Clive Cussler' books written by Clive Cussler as well as other authors including Boyd Morrison, Justin Scott etc\n",
"\n",
"| | |\n",
"|-|-|\n",
"|<img src=http://clive-cussler-books.com/wp-content/uploads/2016/05/053116_Emperors-Revenge-Oregon-Files-Clive-Cussler-Novels_199x300.jpg width='100px'>|<img src=http://clive-cussler-books.com/wp-content/uploads/2016/05/030116_The-Gangster-Isaac-Bell-Clive-Cussler-Adventure-Novels_199x300.jpg width='100px'>|\n",
"\n",
"* J.K Rowling writting under the pseudonym Robert Galbraith\n",
"\n",
"| | |\n",
"|-|-|\n",
"|<img src=http://vignette3.wikia.nocookie.net/harrypotter/images/7/7b/Harry01english.jpg/revision/latest?cb=20150208225304 width='100px'>|<img src=https://static.independent.co.uk/s3fs-public/styles/story_medium/public/thumbnails/image/2013/07/14/22/9-calling.jpg width='112px'>|\n",
"\n",
"* Stephen King writing under the pseudonym Richard Bachman\n",
"\n",
"| | |\n",
"|-|-|\n",
"|<img src=https://images-na.ssl-images-amazon.com/images/I/513H0tH7t-L._SX301_BO1,204,203,200_.jpg width='100px'>|<img src=https://room435.files.wordpress.com/2011/03/2running-man.jpg width='100px'>|\n",
"\n",
"\n",
"This notebook contains the code use to test whether an author writing under another autors name (e.g. Mark Greaney writing as Tom Clancy) can write in the style of another author, or if they retain their own language style."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Autorship attribution is the task of identifying the autor of a document. Authors typically have their own unique writing style and their works can often be characterised by identifying elements or features of these styles. There are numerous features which can be used to help classify a text including [1](http://www.icsd.aegean.gr/lecturers/stamatatos/papers/survey.pdf):\n",
"\n",
"* lexical features (e.g. average word length, sentence length, vocabulary richness, word frequencies, common errors\n",
"* character features (e.g. character types, character n-grams etc)\n",
"* Syntactic features (e.g. parts-of-speech, sentence structure etc)\n",
"* Semantic features (e.g. function words, synonym use etc)\n",
"\n",
"A well known example of authorship attribution is that of determining the authorship of the federalist papers [a collection of 85 articles and essays written (under the pseudonym Publius) by Alexander Hamilton, James Madison, and John Jay promoting the ratification of the United States Constitution](https://en.wikipedia.org/wiki/The_Federalist_Papers).\n",
"\n",
"More recently authorship attribution is often used to identify who wrote blog posts or social media comments, and whether one person is writing under multiple pseudonyms in order for it to appear more people are commenting on a subject than may otherwise be the case. This is known as [astroturfing](https://en.wikipedia.org/wiki/Astroturfing).\n",
"\n",
"Authorship attribution methods have proven successful in identifying authors from text, typically achieving accuracy levels in excess of 80 per cent.\n",
"\n",
"But what about professional authors? Is a professional author able to mimic the style of another author well enough that they can pass as the other author?\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Overview"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In order to test whether an author can mimic the style of another author, we need three samples of text:\n",
"1. text written by the base 'headline' author e.g. Tom Clancy\n",
"2. text written by the 'ghost' author, under their name e.g. an original Mark Greaney text\n",
"3. text written by the 'ghost' author under the name of the 'headline' author.\n",
"\n",
"This groups of samples then enables us to:\n",
"* train a model to classify texts written by the 'headline' author and the 'ghost' author\n",
"* use the model to predict the author of text written by the 'ghost' author under the name of the 'headline' author.\n",
"\n",
"\n",
"<img src='./classifier.png'>\n",
"\n",
"If the ghost author is able to mimic the style of the headline author, their ghost writing work should be classified as that of the headline writer and not as their own writing.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"\n",
"Obtaining sufficient text resource for this type of analysis is challenging, not only finding appropriate canditates for the three text types, but also obtaining the text once candidates are identified.\n",
"\n",
"For this analysis, text versions of several Tom Clancy, Tom Clancy (written by Mark Greaney) and Mark Greaney novels were obtained using bit torrent sources. \n",
"\n",
"Given the source of the texts, their accuracy couldn't be completeley validated, although a scan of the books used appeared to be accurate representations of the various works and, all of the books contained non-author written information in the form of publishers notes, comments about the books, and other scanning artifacts (it is assumed these books were originally scanned from hard copies).\n",
"\n",
"While initial cleaning of the books was tested using automated processes including regex filters, there was too much variation for this to be completed successfully. Consequently a manual cleanup step for each book was completed including:\n",
"* removal of publishers comments, tables of comments, comments about the books, character references etc\n",
"* marking of chapter breaks to facilitate computational text splitting by chapters \n",
"* removal of scanning artifacts\n",
"\n",
"Once prelimary cleaning was completed, the data was further processed in python below."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Code"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import packages and initial configuration"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"from sklearn.feature_extraction.text import CountVectorizer\n",
"from sklearn.feature_extraction import DictVectorizer\n",
"from sklearn.svm import SVC\n",
"from sklearn.svm import LinearSVC\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.svm import NuSVC\n",
"import sys\n",
"from sklearn.metrics import f1_score\n",
"from sklearn.metrics import accuracy_score\n",
"from sklearn.pipeline import FeatureUnion\n",
" \n",
"from sklearn import cross_validation\n",
"from sklearn import metrics\n",
"from sklearn.cross_validation import KFold\n",
"from sklearn.metrics import confusion_matrix\n",
"import pandas as pd\n",
"import pylab as pl\n",
"from sklearn.cross_validation import train_test_split\n",
"import math\n",
"\n",
"import numpy as np\n",
"\n",
"from collections import Counter\n",
"\n",
"import matplotlib.pyplot as plt\n",
"plt.style.use('fivethirtyeight')\n",
"params = {'legend.fontsize': '8',\n",
" 'axes.labelsize': '8',\n",
" 'axes.titlesize':'8',\n",
" 'xtick.labelsize':'8',\n",
" 'ytick.labelsize':'8'}\n",
"plt.rcParams.update(params)\n",
"\n",
"%matplotlib inline\n",
"\n",
"STD_COLORS = {\n",
" 'khg': '#00A8EC',\n",
" '1': '#e41a1c',\n",
" '2': '#377eb8',\n",
" '3': '#4daf4a',\n",
" '4': '#984ea3',\n",
" '5': '#ff7f00',\n",
" '6': '#ffff33',\n",
" '7': '#1b9e77',\n",
" '8': '#d95f02',\n",
" '9': '#7570b3'}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Scrape Tom clancy biblography from the Tom Clancy website\n",
"The bibliographic order of Tom Clancy books is:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>title</th>\n",
" <th>published</th>\n",
" <th>series</th>\n",
" <th>coauthor</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Tom Clancy True Faith and Allegiance</td>\n",
" <td>2016</td>\n",
" <td>Jack Ryan Jr</td>\n",
" <td>Grant Blackwood</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Tom Clancy Duty and Honor</td>\n",
" <td>2016</td>\n",
" <td>Jack Ryan</td>\n",
" <td>Mark Greaney</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Tom Clancy Commander in Chief</td>\n",
" <td>2015</td>\n",
" <td>Jack Ryan Jr</td>\n",
" <td>Grant Blackwood</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>Tom Clancy Under Fire</td>\n",
" <td>2015</td>\n",
" <td>Jack Ryan Jr</td>\n",
" <td>Mark Greaney</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>Tom Clancy Full Force and Effect</td>\n",
" <td>2014</td>\n",
" <td>Jack Ryan Jr</td>\n",
" <td>Mark Greaney</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>Tom Clancy Support and Defend</td>\n",
" <td>2014</td>\n",
" <td>Jack Ryan</td>\n",
" <td>Mark Greaney</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>Command Authority</td>\n",
" <td>2013</td>\n",
" <td>Jack Ryan</td>\n",
" <td>Mark Greaney</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>Threat Vector</td>\n",
" <td>2012</td>\n",
" <td>Other</td>\n",
" <td>Peter Telep</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>Locked On</td>\n",
" <td>2011</td>\n",
" <td>Jack Ryan Jr</td>\n",
" <td>Mark Greaney</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>Against All Enemies</td>\n",
" <td>2011</td>\n",
" <td>Jack Ryan Jr</td>\n",
" <td>Grant Blackwood</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>Dead or Alive</td>\n",
" <td>2010</td>\n",
" <td>Jack Ryan Jr</td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>The Teeth Of The Tiger</td>\n",
" <td>2003</td>\n",
" <td>Jack Ryan</td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>Red Rabbit</td>\n",
" <td>2002</td>\n",
" <td>Jack Ryan</td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>The Bear and the Dragon</td>\n",
" <td>2000</td>\n",
" <td>Jack Ryan</td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>Rainbow Six</td>\n",
" <td>1998</td>\n",
" <td>Jack Ryan</td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>Executive Orders</td>\n",
" <td>1996</td>\n",
" <td>Jack Ryan</td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>32</th>\n",
" <td>Debt of Honor</td>\n",
" <td>1994</td>\n",
" <td>Jack Ryan</td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>34</th>\n",
" <td>Without Remorse</td>\n",
" <td>1993</td>\n",
" <td>Jack Ryan</td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>36</th>\n",
" <td>The Sum of All Fears</td>\n",
" <td>1991</td>\n",
" <td>Jack Ryan</td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>38</th>\n",
" <td>Clear and Present Danger</td>\n",
" <td>1989</td>\n",
" <td>Jack Ryan</td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>40</th>\n",
" <td>The Cardinal of the Kremlin</td>\n",
" <td>1988</td>\n",
" <td>Jack Ryan</td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>42</th>\n",
" <td>Patriot Games</td>\n",
" <td>1987</td>\n",
" <td>Jack Ryan</td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>44</th>\n",
" <td>Red Storm Rising</td>\n",
" <td>1986</td>\n",
" <td>Jack Ryan</td>\n",
" <td></td>\n",
" </tr>\n",
" <tr>\n",
" <th>46</th>\n",
" <td>The Hunt for Red October</td>\n",
" <td>1984</td>\n",
" <td>Jack Ryan</td>\n",
" <td></td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" title published series \\\n",
"0 Tom Clancy True Faith and Allegiance 2016 Jack Ryan Jr \n",
"2 Tom Clancy Duty and Honor 2016 Jack Ryan \n",
"4 Tom Clancy Commander in Chief 2015 Jack Ryan Jr \n",
"6 Tom Clancy Under Fire 2015 Jack Ryan Jr \n",
"8 Tom Clancy Full Force and Effect 2014 Jack Ryan Jr \n",
"10 Tom Clancy Support and Defend 2014 Jack Ryan \n",
"12 Command Authority 2013 Jack Ryan \n",
"14 Threat Vector 2012 Other \n",
"16 Locked On 2011 Jack Ryan Jr \n",
"18 Against All Enemies 2011 Jack Ryan Jr \n",
"20 Dead or Alive 2010 Jack Ryan Jr \n",
"22 The Teeth Of The Tiger 2003 Jack Ryan \n",
"24 Red Rabbit 2002 Jack Ryan \n",
"26 The Bear and the Dragon 2000 Jack Ryan \n",
"28 Rainbow Six 1998 Jack Ryan \n",
"30 Executive Orders 1996 Jack Ryan \n",
"32 Debt of Honor 1994 Jack Ryan \n",
"34 Without Remorse 1993 Jack Ryan \n",
"36 The Sum of All Fears 1991 Jack Ryan \n",
"38 Clear and Present Danger 1989 Jack Ryan \n",
"40 The Cardinal of the Kremlin 1988 Jack Ryan \n",
"42 Patriot Games 1987 Jack Ryan \n",
"44 Red Storm Rising 1986 Jack Ryan \n",
"46 The Hunt for Red October 1984 Jack Ryan \n",
"\n",
" coauthor \n",
"0 Grant Blackwood \n",
"2 Mark Greaney \n",
"4 Grant Blackwood \n",
"6 Mark Greaney \n",
"8 Mark Greaney \n",
"10 Mark Greaney \n",
"12 Mark Greaney \n",
"14 Peter Telep \n",
"16 Mark Greaney \n",
"18 Grant Blackwood \n",
"20 \n",
"22 \n",
"24 \n",
"26 \n",
"28 \n",
"30 \n",
"32 \n",
"34 \n",
"36 \n",
"38 \n",
"40 \n",
"42 \n",
"44 \n",
"46 "
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df=pd.read_html(\"\"\"http://www.tomclancy.com/tom_clancy_books_fiction.php\"\"\")\n",
"df_ = df[2][pd.notnull(df[2][0])].iloc[:,0]\n",
"dfBooks = pd.DataFrame()\n",
"dfBooks['title'] = df_.apply(lambda x: x.split(\"Original\")[0])\n",
"dfBooks['published'] = df_.apply(lambda x: x.split(\"Original\")[1][18:24])\n",
"dfBooks['series'] = \"Jack Ryan\"\n",
"dfBooks.loc[[0, 4, 6, 8, 14, 16, 18, 20], 'series'] = 'Jack Ryan Jr'\n",
"dfBooks.loc[14,'series'] = \"Other\"\n",
"dfBooks['coauthor'] = \"\"\n",
"dfBooks.loc[[2, 6, 8, 10, 12, 16 ], 'coauthor'] = \"Mark Greaney\"\n",
"dfBooks.loc[[0, 4, 18 ], 'coauthor'] = \"Grant Blackwood\"\n",
"dfBooks.loc[[14 ], 'coauthor'] = \"Peter Telep\"\n",
"dfBooks"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The oldest nine books written by Tom Clancy were found in text format and used in this analysis. These included:\n",
"* The Hunt for Red October\n",
"* Red storm rising\n",
"* Patriot Games\n",
"* The Cardinal of the Kremlin\n",
"* Clear and Present Danger\n",
"* The Sum of All Fears\n",
"* Without Remorse\n",
"* Debt of Honor\n",
"* Executive Orders\n",
"\n",
"Two books written by Mark Greaney, under the Tom Clancy brand were found in text format. These are:\n",
"* Commander-in -chief\n",
"* Support and defend\n",
"\n",
"Several books witten by Mark Greaney under his own name were found in text format:\n",
"* Back blast - A Gray man novel\n",
"* Ballistic\n",
"* Dead Eye"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Clean book text\n",
"\n",
"As outlined previously, the books were relatively inconsistent and contained various amounts of additional material (e.g. introductions, publisher comments etc). These inconsistencies were removed manually.\n",
"\n",
"For each book, chapters have been marked with \"[SPLIT_POINT]\" for use in determining where book breaks are.\n",
"\n",
"The following three lists contain the file paths for the three groups of books."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"clancy_books = [r\"./Tom Clancy_clean/The Hunt for Red October - Tom Clancy.txt\",\n",
" r\"./Tom Clancy_clean/Red storm rising - Tom Clancy.txt\",\n",
" r'./Tom Clancy_clean/Patriot Games - Tom Clancy.txt',\n",
" r'./Tom Clancy_clean/5 The Cardinal of the Kremlin - Tom Clancy.txt',\n",
" r'./Tom Clancy_clean/6 Clear and Present Danger - Tom Clancy.txt',\n",
" r'./Tom Clancy_clean/7 The Sum of All Fears - Tom Clancy.txt',\n",
" r'./Tom Clancy_clean/1 Without Remorse - Tom Clancy.txt',\n",
" r'./Tom Clancy_clean/8 Debt of Honor - Tom Clancy.txt',\n",
" r'./Tom Clancy_clean/Executive Orders - Tom Clancy.txt']\n",
"\n",
"clancy_greaney_books = [r'./Tom Clancy - Mark Greaney_clean/Tom Clancy Support and Defend - Mark Greaney.txt',\n",
" r'./Tom Clancy - Mark Greaney_clean/Commander-In-Chief - Mark Greaney.txt']\n",
"\n",
"greaney_books = [r'./Mark Greaney_clean/Back Blast_ A Gray Man Novel - Mark Greaney.txt',\n",
" r'./Mark Greaney_clean/Ballistic - Mark Greaney.txt',\n",
" r'./Mark Greaney_clean/Dead Eye - Mark Greaney.txt']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To save duplication, the following function was written to read in the books and complete some intition pre-processing:\n",
"* open a book from the filesystem and read it in\n",
"* split the book into chapters using the manual chapter markings\n",
"* remove new-line characters\n",
"* remove empty chapters if any were erroneously created\n",
"* remove unnecessary white spare"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def read_book(path):\n",
" \"\"\"\n",
" Read in a book, split it into chapters and clean up the text\n",
" \"\"\"\n",
" chapters = []\n",
" \n",
" with open(path, 'r') as f:\n",
"\n",
" # split the book into lines\n",
" book = f.read()\n",
" \n",
" #Split the book into chapters\n",
" split_chapters =book.split(\"[SPLIT_POINT]\")\n",
"\n",
" # add the chapters to the chapter object\n",
" chapter_count = 0\n",
" for chapter in split_chapters:\n",
" chapters.append(chapter.replace('\\n', ' ')) \n",
"\n",
" chapters = list(filter(None, chapters)) # remove empty chapters\n",
" chapters = list(filter(lambda chapter: chapter.strip(), chapters)) # remove items that are only white space\n",
" \n",
" return chapters"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Read books\n",
"\n",
"For ease of handling, and to facilitate analysis, the chapters of the books were stored in a pandas dataframe. The data frame is initially created and then each of the three groups of books read in and the chapters stored in the dataframe along with metadata such as author, book title, the chapter number.\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"dfBooks = pd.DataFrame(columns=['author', 'title', 'chapter_num', 'chapter_text'])\n",
"chapters =[]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Tom Clancy"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading The Hunt for Red October. [18 chapters]\n",
"Loading Red storm rising. [44 chapters]\n",
"Loading Patriot Games. [27 chapters]\n",
"Loading 5 The Cardinal of the Kremlin. [29 chapters]\n",
"Loading 6 Clear and Present Danger. [31 chapters]\n",
"Loading 7 The Sum of All Fears. [44 chapters]\n",
"Loading 1 Without Remorse. [38 chapters]\n",
"Loading 8 Debt of Honor. [48 chapters]\n",
"Loading Executive Orders. [49 chapters]\n"
]
}
],
"source": [
"author = 'Clancy'\n",
"for title in clancy_books:\n",
" book = read_book(title)\n",
" clean_title = title.replace('./Tom Clancy_clean/', '').replace(' - Tom Clancy.txt', '')\n",
" print('Loading {0}. [{1} chapters]'.format(clean_title, len(book)))\n",
" for i, chapter in enumerate(book):\n",
" chapters.append(chapter)\n",
" df_ = pd.DataFrame({'author':author, 'title':clean_title, 'chapter_num':i, 'chapter_text':chapter}, index=[0])\n",
" dfBooks = pd.concat([dfBooks, df_])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Mark Greaney"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading Back Blast_ A Gray Man Novel. [79 chapters]\n",
"Loading Ballistic. [57 chapters]\n",
"Loading Dead Eye. [58 chapters]\n"
]
}
],
"source": [
"author = 'Greaney'\n",
"for title in greaney_books:\n",
" book = read_book(title)\n",
" clean_title = title.replace('./Mark Greaney_clean/', '').replace(' - Mark Greaney.txt', '')\n",
" print('Loading {0}. [{1} chapters]'.format(clean_title, len(book)))\n",
" chapters.append([author, clean_title, len(book)])\n",
" for chapter in book:\n",
" chapters.append(chapter)\n",
" df_ = pd.DataFrame({'author':author, 'title':clean_title, 'chapter_num':i, 'chapter_text':chapter}, index=[0])\n",
" dfBooks = pd.concat([dfBooks, df_])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Ghost written book (Mark Greaney writing as Tom Clancy)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading Tom Clancy Support and Defend. [51 chapters]\n",
"Loading Commander-In-Chief. [82 chapters]\n"
]
}
],
"source": [
"author = 'Ghost'\n",
"for title in clancy_greaney_books:\n",
" book = read_book(title)\n",
" clean_title = title.replace('./Tom Clancy - Mark Greaney_clean/', '').replace(' - Mark Greaney.txt', '')\n",
" print('Loading {0}. [{1} chapters]'.format(clean_title, len(book)))\n",
" chapters.append([author, clean_title, len(book)])\n",
" for chapter in book:\n",
" chapters.append(chapter)\n",
" df_ = pd.DataFrame({'author':author, 'title':clean_title, 'chapter_num':i, 'chapter_text':chapter}, index=[0])\n",
" dfBooks = pd.concat([dfBooks, df_])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once the chapters are stored in a dataframe, we can easily add columns to represent parameters such as the number of words in each chapter"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>author</th>\n",
" <th>chapter_num</th>\n",
" <th>chapter_text</th>\n",
" <th>title</th>\n",
" <th>chapter_words</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Clancy</td>\n",
" <td>0.0</td>\n",
" <td>THE FIRST DAY FRIDAY, 3 DECEMBER The Red ...</td>\n",
" <td>The Hunt for Red October</td>\n",
" <td>5603</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Clancy</td>\n",
" <td>1.0</td>\n",
" <td>THE SECOND DAY SATURDAY, 4 DECEMBER The R...</td>\n",
" <td>The Hunt for Red October</td>\n",
" <td>3643</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Clancy</td>\n",
" <td>2.0</td>\n",
" <td>THE THIRD DAY SUNDAY, 5 DECEMBER The Red ...</td>\n",
" <td>The Hunt for Red October</td>\n",
" <td>6575</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Clancy</td>\n",
" <td>3.0</td>\n",
" <td>THE FOURTH DAY MONDAY, 6 DECEMBER CIA Hea...</td>\n",
" <td>The Hunt for Red October</td>\n",
" <td>8394</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Clancy</td>\n",
" <td>4.0</td>\n",
" <td>THE FIFTH DAY TUESDAY, 7 DECEMBER Moscow ...</td>\n",
" <td>The Hunt for Red October</td>\n",
" <td>8936</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" author chapter_num chapter_text \\\n",
"0 Clancy 0.0 THE FIRST DAY FRIDAY, 3 DECEMBER The Red ... \n",
"1 Clancy 1.0 THE SECOND DAY SATURDAY, 4 DECEMBER The R... \n",
"2 Clancy 2.0 THE THIRD DAY SUNDAY, 5 DECEMBER The Red ... \n",
"3 Clancy 3.0 THE FOURTH DAY MONDAY, 6 DECEMBER CIA Hea... \n",
"4 Clancy 4.0 THE FIFTH DAY TUESDAY, 7 DECEMBER Moscow ... \n",
"\n",
" title chapter_words \n",
"0 The Hunt for Red October 5603 \n",
"1 The Hunt for Red October 3643 \n",
"2 The Hunt for Red October 6575 \n",
"3 The Hunt for Red October 8394 \n",
"4 The Hunt for Red October 8936 "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dfBooks.reset_index(inplace=True)\n",
"dfBooks.drop('index', axis=1, inplace=True)\n",
"dfBooks['chapter_words'] = dfBooks.chapter_text.apply(lambda x: len(x.split(' ')))\n",
"dfBooks.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And, with infomration like th enumber of words per chapter, we can look at bar charts of the number of words per chapter for each book, to see how the books compare with each other"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABXAAAAZhCAYAAAAc7bwNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3X2cXGV9///XOzfLohKIiitpE5IIlK9FRCXgt1hosa2l\nPLzFEqhQlUqFUqxavPnWKFpTlUL7+3KjUvkZqrFIShBbFUxFhJoICbflpiBJJdlo7KAlPxLEZTe7\nn98f55pwMpmZnZk9c7O77+fjMY+dOZ9zzuc6c2aunbnmOteliMDMzMzMzMzMzMzMes+MbhfAzMzM\nzMzMzMzMzKpzA66ZmZmZmZmZmZlZj3IDrpmZmZmZmZmZmVmPcgOumZmZmZmZmZmZWY9yA66ZmZmZ\nmZmZmZlZj3IDrpmZmZmZmZmZmVmPcgOumZmZmZmZmZmZWY9yA66ZmZmZmZmZmZlZj3IDrpmZmZmZ\nmZmZmVmPcgOu9QRJ90q6R9JDknal+/dI+qqkEyTdW0COqyW9p2LZhZL+foL73V/Sh8ZZ5xOSHpZ0\n+wRznSDp6fTc/Iek2yUd2+K+rpP0xxMpj5mZmZmZmVkjJG1O34vL3///sMo6r8/Ffyrp8Vz7wOnV\nvte3WJbnSvp/JG1M+e6W9LeSZhaw7zslHZ/uXyXphAnur6VjLqodwnrDrG4XwAwgIl4BIOlg4N6I\neGU5liq76FbZGjAX+DBwUZ11PgAsiohSozuVJICIqDz2R8rPj6TzgBXArzdVYjMzMzMzM7POGgNO\njYgHaq0QEd8AvgFZhytg/4h4fzku6fcKKsu3gB8CR0TEM6nh9k+AfYCnG9lBne/su0XE2QWUtVVN\nt0NY73IPXJssZkv6rKT7JD0gKd/A+3uSvp9+5bpD0m+1kkDS2yXdkHt8sqTvpfsnpLzVyvB54Hnp\nF8ENVfa7juyfwL9J+r9p2QckPZh60a6UtF9afqGk1ZK+DTwAvHicYn8XWJDL9TxJX0jPw32SrpQ0\nK8V+TdK6VPYbgDmtPE9mZmZmZmZmLVC6TdRLJd0s6Yfp+3P5O+8sSZ9O34fvkXStpP33KoR0IrAY\nOC8ingGIiNGI+EJEPC3piNTGcFf63v5XuW33+s4u6TdSL977Ja0AZubW/56kN6T7V6fv6NXKfqKk\nH6SewA9IOquRJ0LS69I296Vch6fle7VD2OTmBlybLH4NuDoijgKuAD4FIGkR8HHgpIhYArwNuEbS\n7Br7+WDu8ot7gXdXxCt/Ocs/rloG4BxgZ0S8MiKOqUwYEceR/ZN6TUS8V9JJwDuA/x0RLyf7de8z\nuU1eDZwREUdExE9rHEfZHwLX5h7/HfDvEfHqVM6ZwF+k2Ergqoh4GfBRYEKXcZiZmZmZmZk1aWXq\nyHSVpBe2uI+XAycDh5N1ejolLf8A8FT6PvxK4EHgb6ps/yrg7ojYVWP/jwEnRsTRwNHAWyXlv+vv\n/s4O/JzsO/n7I+JI4KvAUS2U/W7guIh4FXA88DFJ8+rsB0kHAv8EnJm+/18FXA97t0PU249NDh5C\nwSaLTRFxV7p/O/CX6f7vAy8B/r18+QKwi6xX6n9V2c/fRsRl5QflSzImWIZGlcv3WmBVROxMjz8P\n/HNuvRsj4ud19nO4pHuAg8gaaPNj4L4JeLWkctn6gZHUw/co4EsAEfGgpLVNlt/MzMzMzMysVb8Z\nET9OwxX8Ddn305Nb2M8N5Z6z6SrYl6TlbwLmSHprejwb2NzC/p8DfF7SUWTDPvwq2ffp8hW3+e/s\nhwMjEfE9gIj4jqQftVD2FwIrJB1G1qbxfOAIYFudfR0L3B8R/5lyX5OuGp4XEeXtiujxbD3ADbg2\nWQzl7o/y7GtXwHci4owCcuwid6kDWeNnI2WYqMpev0+Ns/4jEfHK9E/vc8A1wP/OxU+JiE35DVID\nbr3exWZmZmZmZmZtExE/Tn9H02X9P2xxV/XaB86PiJvH2f5u4M8lzarRC/dTwM+Al0dESLqePdsH\nxvvOXu+7dq2yXwl8KyJOAZB0N3u3Sdg05iEUrBc18wvRGuB3JL1s98bSkhbzbgKOlLRPGofmj8ZZ\nv1zOHcC+5bFrGnAzcKqk56XH7yY7jqZExCjwXuBXJL0xLf468KHUuIukAyS9JPX2vRd4e1r+68Br\nms1pZmZmZmZm1ixJz6kYj/aPyL6jFunrwPsk7Zty7ivppZUrRcQtZMMkXCZpn7TuLElnS3ou2UTl\nP06Nt78G/G6dnI8As5RNvo6k3+HZXrXNOADYkvZxPNlQC+O5A3hZ+RglnZbKXa/Xrk1S7oFrvajh\nnqER8V+S/gj4h1RJ95H9E6jWI7fufiNivaQbgYfILlNYx57DE1TdX0Rsl/Rl4AFJO6uNg5vPHRHf\nTg2od0gaBe4H/qxe2eqU+ZeSlpGNA/wvwPvJxtO9T9IYMAJ8kGw4ibcDV0t6P7ARuK2VnGZmZmZm\nZmZNGgCulzSDrDPUj4A/bmE/9b7XX0Q238t6SZHWvQj4zyrrnkzW0/YhSU+TdXD8FvBLYDnZWL1v\nJ/su/d2ahYkYkbSUbMiFGcCdwH01yluv7P8H+Jykj6bt7xhvu4j4uaS3pbLOBLaTzZPTSD6bZBTh\n82lmZmZmZmZmZmbWizyEgpmZmZmZmZmZmVmPcgOumZmZmZmZmZmZWY9yA66ZmZmZmZmZmZlZj3ID\nrk07kmZLukjSRkkPSfoPSXUHT5e0v6QPNZFjTNKciZfWzKx1kjZLeljSvelvw/VYxX5OlvS9Jre5\nUFJfK/mKJOlVkr46zjqvl/R3nSqTmU0tFXXtg5LGnZxW0svTpDf11mmobpJ0gqTXjbPO70q6TdIm\nSRsk3SHpXePt28ysl1R+vpR0taT3FLDf3d/fJc2V9ANJfz/R/Y6T88JyDn8WtUa4Ademoy8Bi4GX\nRcSvA68HPizpnXW2mQt8uIkcE54dMM0iaWY2EQGcGhGvAF4L/B9JR09gX824EOhvNkmRdZ+kmRFx\nd0ScXm+9iPhGRPxlUXnNbNrJ17V/AHxK0hHjbPMK4LRawVR/NVo3/Rbw+3X29XvAPwIfjIhDIuIY\n4C3ArzSwbzOzXtLS58sGBICkg4BbgW9GxPsrV2rXd3R/FrVGuAHXphVJhwBvAM6OiCGAiBgE/hL4\neFrnnakHxX2ph8IC4PPA8yTdI2lDeV+SvpN68N4j6Y35VMAH0vJHJP1RrgxHS/pu2vfdkt6alh8s\nabukz0i6Gziv/c+ImU0DAoiIbcAjwMG7A9IZqRfWXZJulXRkWj5L0uckPSrpDuC3a+5cWpauZrgn\n3eZL+jzZB+Hvp2UvlHSgpOsl3Z9uf5rbx2Op7lsP/GPqTfZAKsN/pNvLUi+L+yXdnj5gVytPtX3d\nm2IvlLQm7e8+SV9My98u6YZ0v5z7s2mdByS9Mrf/d0v6YXrOlkkaa/G8mNnUUq5rB4EfAodJGpB0\ni6Q7U11yGYCkA4FPAL+V6sjPpeVjkj6ePmt+Kl83pfgHlPXw/Q9JKyXtJ+nlwDnAH6V9LatSto8C\nH4+I9eUFEbEtIj6R2/dX0mfT+yR9Q9KL0vLy59O/Tp9bfyjpNyT9ffq8fL+kl+b2U+v/yrFp2T1p\nm3cX9Lyb2TRR7fNlCr1U0s2pflotaVZaf5akT6c66R5J10rav06KxcBtwOci4lO5vHt8tkzLKuu6\nl6Xlb1fWRnBN+ny8VtL/kvQ1Sf8p6duSnlPl2Br+LGrTWET45tu0uQF/CNxbZfkBwBjwVuC/gBel\n5f3pdjDwRMU2dwDvSvcPAX4OzE+Px8g+KAMsAv4HWADsD9wDDKTYC4AtwEEpxxjwtm4/T7755tvU\nuAGPAUem+4cDjwIvSI9/A/gWMDs9fg3wYLp/HvAdYCYwC7gFuKXK/g8AtgP7pMf9QF+6Pwbsl1v3\nWuBv0v0DgUHgmFw5v5Bb9wRgGDgqPf5r4GfAoenxFcBFdY65cl/3pPvvBT6fL3/6+3bgaxW5j06P\n3w18O90/AtgGHJgefxwY7fZ59s0337p7q6hrXwb8f8BLgD7gOWn5DOAbZD1196h3cvsZAz6Se5yv\nm04CHirXq8A/AJ9N9y8E/r5O+X4BvHycY3hB7v6HynVl7vPp69Pjs4CdwPHp8QXAqnS/3v+VrwNL\nczn27/Z588033ybfrcrny6uB24F9yH5IW1uua4D/U1GnLgOuqLPfx8k6elXGKj9b1qvr3k722fhX\n0uMvAxuBF6bH3wDOTfd3192Nfhb1bXrfZmFmeScBKyPicYBIvXQl7bGSpOeRXfq2Iq23SdJa4DeB\na9Jq/2+KPSbpNuB4sobcxcBNenanAfwa2T+G4Yj4p7YdnZlNR6skBXAY8L6I+J+0/I3AkcD6XH10\ngKR9gBOBL0fEKICkFWRf2ivtIGsU/oqk7wDfioif5OL5yvN3gA8CRMTPJH0tLduQ4v9Yse9NEXFf\nun8XsDEiNqbHG4A31Tnmyn2V3QG8V9LFwPeBb9dYb1NE3JXu3052lQZkPZFvioifpcdXkfVsMzNb\nJemXwNPAOyPivyTtC/ytpNeQ1YcHAg8A/1xnP1fXWP5asobSnenx58fZT02SvgL8OvBish/GngLO\nkHQG2Q9x+5B1TCj7ZUR8I92/C9gZEf+eHm8Aylea1fu/8j3go5IOI/tBcF0rZTczY8/PlwA3RMQz\nAOkKhpek5W8C5ihd8QrMBjbX2e+3gLMkrYqIHRWxf8zdr1fXAdye+zx8FzArIsp16p3AofUOLqn1\nWdSmMTfg2nRzL3CopLkRsT23/DfIeoP9nL3/ITSqcnxIVdyP9PfBiHhN5caSDib70G9mVqRTI+IB\nSa8FviHploh4iKw++lJE7HW5beWPVtQY/zYixiS9mqwO/W3gDkmn1fhiXrmPysdPVTweyt0frfK4\n3meYyn2Vy3uHpKPIGo7fAnwyPa7UTC4zM0h1bcWy95M12i6JiBFlE9TUG7sxqFF/1Vi3UfcAxwD/\nARARZ0A2ZAMwQ9JxwPnAsRHxP5JeTzbEQ9kzufv16uOa/1eASyV9naz+/ZSkByPCw4WZWRHq1Unn\nR8TNDewjgL8gu+rrZkm/GxFP5uL5unm8z9AT+Qxb5s+ithePgWvTSkRsIrts4QupVwSSFgKXkFXW\n3wTeJunFKbavpH6yXmb7Spqd9vMU2Yfhd6b1DgGOIxszp+yduf2/Bvh34AfAotSQQoq/vDxOD603\nHpuZ1VIel/G7wOeAv0nL/5Wsx9V8AGVelWI3p9gsZTP9Vp3kMV2N8OKIWBcRy8kuW3tFCu8gGzam\n7Gbg7LTdgWQNqP9WzCE2JtXHv4iI1cB7yHpAPK+JXXwPeF0qP8CfFFpAM5vMqn2Gmwv8d2q8fTHZ\nUF5llXVkrX2U3QycmupdyC6pXVNnX3nLgY9JOmZ3Ium5PNsIPDftY3uq8yvHp60sV61y1vy/Iumw\niNgSEV8EPgUcW6e8Zma1jFff5X0deF/ue/++yo3ZXaH8efm9ZJ9nv1tnvNx6n6HN2sat+DYd/TFZ\nA8YDkp4h+0Xrooj4EoCkTwBr0iXHzwBvjYitkr4M3C9pZ2Sz954BXCnpfLIxc/4kd6lEADMl3QM8\nh+yXv61p/ycDfyfpErKx0bbw7KXAzc7ybmZWT2WdshzYKOkVEbFW0geBG5TNqNtHdunY3WRDAxwB\n/CfwBNlwA9U+mO4PrM5NxvAo8KV0/+/IejD8Avg9sl4Nn5d0f4p/MndpWJF1X719/RbwfkmjZOP7\nXhARO6v0OK6+44gHJS0H1kraSdZ48uQ4m5nZ1Fer3rmUrI58gGz87O/kYt8F/lLSfcAPIuLP6uyH\niPi2pF8nu9JhFLgf+LMUvgE4M33u/Fr6QS2/7RpJfwJcomwCyJ+Rja/452Tj2X6b7HPtD8muRrsZ\nmFfn+GpdlVHv/8qfSzox5d1F1jvZzKxZlZ8v633uu4hsqKv16bt9pGX/WWXd3fuJiPen7+rflbRX\njnHqOrO2UYTbi8zMzMwaIel56SoMJL0HeF1EnNzlYpmZmZmZ2RTmHrhmZmZmjftMGi9yNvAT9r7U\n2MzMzMzMrFAdHwNX0qWSHpM0JunI3PIlkm6XdI+khyR9IBfbV9I1kjZKekTSKbmYJF0uaZOkRyWd\nV5FvWYptTJc9mplNGbXq1BT7uKQfSrpf0ndzy12nmrUoIv48Il4REUdExOsiYnO3y2TFcH1qZlaM\nevVpip8oaVe6kqW8zPWpmVkd3eiBex3ZuCNrK5Z/AVgWEd+SNBd4RNI3IuIR4AJgKCIOVTYByXpl\ns2hvB84EDo+IQ9J296bYw5KOB5aSjeM3BqyTtC4ibsonfvLJJ2eSTWSS9wQej9TMiifg+RXLNu6/\n//6jLe6vap0q6S/I6r6XRsSopBflwq5TzWwqcH1qZlacIuvUWt/5kTQH+DTZmKF5rk/NbKoo+jMq\n0IUG3IhYC9mvaBWhMbIZUCGbEfoZsgoVsgr5rLT9Zkm3Am8GVgCnkk22QkRsl7QKOB34WIqtjIih\nlHNFiu1RmZNV5A8Xc4RmZk37X8AjrWxYp069APjtiBhN6z2ei7lONbOpyvWpmVlxWqpT69SnAFcA\nnwROqVju+tTMprKWP6OWdXwIhTrOApZL2kJ2UH+V+4C8ANiSW3dzWjaRmJnZlCRpP2AAeJOkO5QN\nT3NqbhXXqWZmDXB9amZWnDQswmhEfLNK2PWpmVkdvTSJ2YeBD0XEKkmLgNsk3ZWGUDAzs8bNSrd9\nIuLVkg4GfiDp4Yh4oMtlMzObTFyfmpkVQNIAsAw4odtlMTObjHqiB66kFwBvjohVABHxGHAHcFxa\nZQtwcG6ThcBguj/YYszMbEpKY4XtBP4pPd4CrAOWpFVcp5qZNcD1qZlZYV4FvBi4T9JjwFuBj0n6\nZIq3Wme6PjWzaaEnGnCB7cBTkn4bQNILgWOBcs+G1cA5KbaI7Fe7r6fYdcDZkmZIej7Z2DmrcrEz\n04yW+5AN03BtlfxPVFm229DQED/60Y8YGhpq9fgmpJv5p/Oxdzu/j31aHXvdOqhFXwVOAkh14zHA\n/SnW8Tp18+bN0+l89kTubuf3sfvYu2TK16fQ+ee5G+d1qh+jn9PJn69bOTussDo1Im6MiIMiYnFE\nLCKrP/86Ij6aVrmOaVCfdiPnVM/XjZxTPV83ck6DY5xwfdrxIRQkXQmcTDae2BpJOyPiMElLgYsl\nzQRmA38fERvSZhcDKyRtAnYB50VE+eBXAkcDG8kmQrskIh4CiIjb0gDnD5LNLnltRNxYpVjjzjw5\nOjqhyeImrJv5p/Oxdzu/j717Opy/5dlva9WpwF8BV0v6s7T/T0fEXWmzjtepY2NjrR5iIfxann65\nu53fx941U74+Lev089yN8zrVj9HP6eTP162cHdRSnVqnPq2372lTn3Yj51TP142cUz1fN3JO8WNs\n+TNqWccbcCPinBrLv0tWKVeLPQ2cViM2BpyfbtXiy4HlLRXWzKzH1alTnwDeWCPmOtXMrILrUzOz\nYtSqTyvWOavisetTM7M6emUIBTMzMzMzMzMzMzOr4AZcMzMzMzMzMzMzsx7lBlwzMzMzMzMzMzOz\nHuUGXDMzMzMzMzMzM7Me1fFJzMzMzMzMzMymu1JJ7NihqrE5c4KBgQlPWm5mZlOEG3DNzMzMzMzM\nOmzHDrFkyX5VY3feudMNuGZmtpuHUDAzMzMzMzMzMzPrUW7ANTMzMzMzMzMzM+tRbsA1MzMzMzMz\nMzMz61EeA9fMzMzMzMzMzMwmpXqTQsLUmBjSDbhmZmZmZmZmZmY2KdWbFBKmxsSQHkLBzMzMzMzM\nzMzMrEe5AdfMzMzMzMzMzMysR7kB18zMzMzMzMzMzKxHuQHXzMzMzMzMzMzMrEe5AdfMzMzMzMzM\nzMysR7kB18zMzMzMzMzMzKxHuQHXzMzMzMzMzMzMrEe5AdfMzMzMzMzMzMysR7kB18zMzMzMzMzM\nzKxHdbwBV9Klkh6TNCbpyIrYxyX9UNL9kr6bW76vpGskbZT0iKRTcjFJulzSJkmPSjqvYp/LUmyj\npOXtP0IzMzMzMzMzMzOzYszqQs7rgIuAtfmFkv4COAJ4aUSMSnpRLnwBMBQRh0paCKyXdEtEbAfO\nBA6PiEMkzQXuTbGHJR0PLE37HQPWSVoXETe1+yDNrPeVSmLHDu21PKKfkZFFDA7OQtrzd645c4KB\ngehUEc3MzMzMzMxsmut4A25ErIWs52xF6ALgtyNiNK33eC62FDgrLd8s6VbgzcAK4FTgqhTbLmkV\ncDrwsRRbGRFDKeeKFHMDrpmxY4dYsmS/pra5886dbsA1MzMzMzMzs47piTFwJe0HDABvknSHpNsl\nnZpbZQGwJfd4c1o2kZiZmZmZmZmZmZlZT+vGEArVzEq3fSLi1ZIOBn4g6eGIeKAbBRoaGtp9f3h4\neI+/ndbN/NP52Lud38fe/twR/S1sM7ZH/dCK/v7m89Yi6VLgDcDBwFERcX9F/ETg34D3R8Rladm+\nwBeBJcAo8JGIuD7FBFwGnEQ29MylEfHZ3P6WAe8AAlgVEcsKOxgz63nVhp6ZKkPLuD41MzMzs17V\nEw24aeiDncA/pcdbJK0j+zD8AFkv2oOBUtpkIbAm3R9MsfW52GBFjCqxurZt28bo6Ogey0qlUo21\nO6Ob+afzsXc7v4+9fUZGFrWwzS62bt3acs6ZM2eyePHilrevouq44gCS5gCfBr5VEfK44mbWkmpD\nz0yhoWVcn5qZmZlZT+qJBtzkq2Q9FD4v6fnAMcDfpthq4Bxgg6RFwAnAuSl2HXC2pNXAAWQfhk/O\nxa6QdDnZh+OzgAsbKcy8efN23x8eHqZUKjEwMEBfX1/rR9iibuafzsfe7fw+9vbnHhxsvgqcPXsW\n8+fPb0NpWlNnXHGAK4BPAqdULPe44mZmFVyfmpmZmVmv6ngDrqQryRpYB4A1knZGxGHAXwFXS/oz\nskvJPh0Rd6XNLgZWSNoE7ALOi4gnUmwlcDSwkayR9pKIeAggIm5LH5YfTPu8NiJubKSc1S5x7uvr\nK/TS52Z1M/90PvZu5/exty+31Pww4NKMrp6PRkk6BRiNiG+m+3nNjh1+bC72/YrY0mJKbGbWm1yf\nmpmZmVm3dbwBNyLOqbH8CeCNNWJPA6fViI0B56dbtfhyYHlLhTUzm4QkDQDLyK5W6Bkez7nzfOw+\n9qJVGzs8PzZ4p4+93T+o9WJ9OjQ01PHnuRuv6al+jH5OJ3++InLWm4+hiHkXmjUZOimYmU1XvTSE\ngpmZFeNVwIuB+9KlwC8EXi/pwIj4KM+OD96xccXB4zl3k499+uVuV/5qY4dXGxu8E8fehjHFq+m5\n+jQ/T0OnX2PdeE1P9WP0czr5800kZ735GCY670KziqxTa00KmYaLOQ54GngKeF/5qltPCmlmVp8b\ncM3Mppg0VMxB5ceSrgbuLc+aTjY+eEfHFQc8nrOPfdrkn8rHXm3s8PzY4N0+9qL1Yn06b968jj/P\n3TivU/0Y/ZxO/nxF5Kw3H0OvzbvQpFqTQn4NeFdEjEk6Oa1XbsX2pJBmZnW4AdfMbBKrM654XuX0\n8B0fVxw8nrOPvTt87MXmrzZ2eLWxwbt97K2YLPVp/nnt9PPcjfM61Y/Rz+nkzzeRnPXmY5gs8y5U\nU2tSyIj4Zu7hHcA8STPSsIieFNLMrA434JqZTWK1xhWvWOesisceV9zMrILrUzOzjnovcGOqK6EL\nk0J2Y0zxfK6pOj60n9PJn68bOds5pngW33tc8XYeYzt+gHMDrpmZmZmZmZl1hKQzgLcCx3ezHN0c\nU7wbOad6vm7knOr5upGzHWOKZ/Ha44oXfYztmqfBDbhmZmZmZmZm1naSlgIfBU6MiJ/lQlvo8KSQ\n3RhTHKb++NB+Tid/vm7kbOeY4lB9XPHJNneDG3DNzMzMzMzMrK0knQp8EnhtRPykIryaDk8K2c0x\nxbuRc6rn60bOqZ6vGznbMaZ4OV5rv5Nl7gY34JqZmZmZmZlZIepMCvkV4KfAv6QJzoKsMXc7XZpk\n18xssnADrpmZmZmZmZkVotakkBFR8xplTwppZlZf/T7GZmZmZmZmZmZmZtY1bsA1MzMzMzMzMzMz\n61FuwDUzMzMzMzMzMzPrUR4D13pGqSR27NAeyyL6GRlZxODgrL1mFZwzJxgYiE4W0czMzMzMzMzM\nrKPcgGs9Y8cOsWTJfg2vf+edO92Aa2ZmZmZmZmZmU5qHUDAzMzMzMzMzMzPrUW7ANTMzMzMzMzMz\nM+tRbsA1MzMzMzMzMzMz61FuwDUzMzMzMzMzMzPrUW7ANTMzMzMzMzMzM+tRs7pdADMzMzMz65xS\nSezYoaqxOXOCgYHocInMzMzMrB434JqZmZmZTSM7doglS/arGrvzzp1uwDUzMzPrMR0fQkHSpZIe\nkzQm6cgq8RMl7ZL0ntyyfSVdI2mjpEcknZKLSdLlkjZJelTSeRX7W5ZiGyUtb+/RmZmZmZmZmZmZ\nWRFKJbFx44yqt1Kp+hVFU1E3euBeB1wErK0MSJoDfBr4VkXoAmAoIg6VtBBYL+mWiNgOnAkcHhGH\nSJoL3JtiD0s6HlgKHAGMAeskrYuIm9p1cNYd9S4FrMWXCJqZmZmZmZmZ9S5fOZTpeANuRKyFrOds\nlfAVwCeBUyqWLwXOSttvlnQr8GZgBXAqcFWKbZe0Cjgd+FiKrYyIoZRzRYq5AXeKqfeGrmU6vdHN\nzMzMzMzMzGxy6vgQCrWkYRFGI+KbVcILgC25x5vTsonEzMzMzMzMzMzMzHpaT0xiJmkAWAac0O2y\nlA0NDe2+Pzw8vMffTutm/k7mjuhvcv2x3eep2W0rt69lujz3vZa/U7nb9boZT39/83nNzHpdqSSe\nfLKfkZFFDA7OQprh4YrMzMzMzArQEw24wKuAFwP3paEVXgi8XtKBEfFRYBA4GCil9RcCa9L9cmx9\nLjZYEaNKrK5t27YxOjq6x7JSqVRj7c7oZv5O5B4ZWdTk+rvYunVrS9tWbj+eqf7c92r+dudu9+um\nmpkzZ7J48eKWtzcz61U7dohjjpmzxzIPV2RmZmZmNnE90YAbETcCB5UfS7oauDciLkuLrgPOATZI\nWkTWU/fivaLGAAAgAElEQVTcXOxsSauBA8jGyz05F7tC0uVkk5idBVzYSJnmzZu3+/7w8DClUomB\ngQH6+vpaO8gJ6Gb+TuYeHGzu5Th79izmz5/f0raV29cyXZ77Xsvfqdztet2YmZmZmZmZmRWl4w24\nkq4ka2AdANZI2hkRh1WsVtlV42JghaRNwC7gvIh4IsVWAkcDG8kaaS+JiIcAIuK2NKnZg2mf16bG\n4nFVu8S5r6+vq5c+dzN/J3JLzQ3JLM3YXaZmt63cfjxT/bnv1fztzt3u100nSLoUeAPZ1QZHRcT9\nafkK4DjgaeAp4H0RcVeK7Qt8EVgCjAIfiYjrU0zAZcBJZHXqpRHx2Vy+ZcA7yOrUVRGxrAOHaWbW\ndq5PbTIplcSOHdXmhM54+BIzM7OppeMNuBFxTgPrnFXx+GngtBrrjgHnp1u1+HJgefMlNTObFK4D\nLgLWViz/GvCuiBiTdHJarzxmxAXAUEQcKmkhsF7SLRGxHTgTODwiDpE0F7g3xR6WdDzZVQ5HkDVG\nrJO0LiJuavdBmpl1gOtTmzR27BBLluxXM+7hS8zMzKaW5rufmZlZz4iItRGxDVDF8m+mH7gA7gDm\n6dkux0uBK9N6m4FbgTen2KnAVSm2HVgFnJ6LrYyIoYgYBlbkYmZmk5rrUzMzMzPrVW7ANTOb+t4L\n3JhrgFgAbMnFN6dlE4mZmU0Hrk/NzMzMrON6YhIzMzNrD0lnAG8Fju92WYaHh7uatxv5u5m72/l9\n7FPz2CP2HgM8YoyhoaG6sXbp5JjkvVKfDg0NTfgcVztXz8b2PmfdeE13Oudky1fvHGbx7p/HqZ6v\niJzNvhfbrZfmeTAzsz25AdfMbIqStBT4KHBiRPwsF9pCNklPKT1eCKxJ9wdTbH0uNlgRo0psXKVS\nafyV2qib+X3s3eNjL9bIyKIqy3axdevWurF2mDlzJosXL27Lviv1Un26bds2RkdHgdbPcbVz9Wys\n9jnrxmu60zknS7565zCL9855nOr5JpKz1fdiO3SyTjUzs+a5AdfMbAqSdCrwSeC1EfGTivBq4Bxg\ng6RFwAnAuSl2HXC2pNXAAWTjO56ci10h6XKySXfOAi5stEwDAwP09fW1eEStGx4eplQqdSV/N3N3\nO7+PfWoe++Dg3h8dZ8+exfz58+vGJrNeq0/nzZs34XNc7VyVVTtn3XhNdzrnZMtX7xxCb5zHqZ6v\niJzNvhfNzGz6cgOumdkkJulKsgaBAWCNpJ0RcRjwFeCnwL9IEhBkjQ/bgYuBFZI2AbuA8yLiibTL\nlcDRwEayRoVLIuIhgIi4TdIq4MG0v2sj4sZGy9rX19fVS/O6md/H7mOfKvmfnbtrz2X9/f11Y5PB\nZKlP889nq+e42rnKx2rtsxuv6U7nnCz56p3DcrxXzuNUzzeRnK2+F83MbPpxA66Z2SQWEefUWF6z\nG0hEPA2cViM2BpyfbtXiy4HlzZfUzKy3uT41MzMzs15V/6dbMzMzMzMzMzMzM+saN+CamZmZWceV\nSmLjxhl73EoldbtYZmY2QZIulfSYpDFJR+aWHyjpJkmPSrpf0m/mYvtKukbSRkmPSDolF5OkyyVt\nStueV5FvWYptlOQrG8xsSvIQCmZmZmbWcTt2iCVL9ttj2Z137mRgILpUIjMzK8h1wEXA2orlnwFu\nj4iTJB0N3CBpYUSMAhcAQxFxqKSFwHpJt6Txxs8EDo+IQyTNBe5NsYclHU82SeQRZOONr5O0LiJu\n6siRmpl1iBtwzczMzMys60olsWNH1gs7op+RkUUMDs5CmsGcOeHGfesJ9V6ngF+rQESshaznbEXo\nVOAlaZ27JP0EOAG4hawR9qwU2yzpVuDNwIq03VUptj1NAnk68LEUWxkRQynnihRzA66ZTSluwDUz\nMzMzs66r1iu7zL2zrVfUe52CX6u1SHo+MCsiHs8t3gIsSPcXpMdlm8eJHZuLfb8itrSIMpuZ9RI3\n4JqZmZmZmZnZtDI0NMTw8DDA7r+d0OmcvZRv+/Y+du6sPRXTfvuNMXdu8+XspWOczPny5yein127\nFrFlyyzKfelbPT+NqHeMEf01t4sYY2hoqO46+fUazTlR/f31y9MKN+CamZmZmZmZWdtExBOSdkl6\nUa4X7kJgMN3fAhwMlHKxNen+YIqtr7JdOUaVWF3btm1jdHQUgFKpNM7axet0zl7INzy8iOOOm1tz\nm3Xr/oenntpaaM52mmr52n1+GlHtGEdGFtVcf2RkF1u3bq27Tn69RnNOxMyZM1m8eHGh+wQ34JqZ\nmZmZmZlZ+10HnAt8QtISYB5wW4qtBs4BNkhaRDY27rm57c6WtBo4gGyIhJNzsSskXU42idlZwIWN\nFGbevHkMDw9TKpUYGBigr69vwgfYiE7n7KV8g4P1m6Bmz57F/PnzC83ZDlM1X7vOTyNafd2Uy9RK\n2bvx/p8IN+CamZmZmZmZWSEkXUnWwDoArJG0MyIOAz4MrJT0KPAM8LaIGE2bXQyskLQJ2AWcFxFP\npNhK4GhgI1kj7SUR8RBARNyWJjV7EAjg2oi4sZFy5i9x7uvra8slz/V0Omcv5CtP9leLNGNCZeyF\nY5zM+dp9fhrR7OumXKaJlL0b7/9WuAHXzMzMzMzMzAoREefUWP448LoasaeB02rExoDz061afDmw\nvKXCmplNEvWbqM3MzMzMzMzMzMysa9yAa2ZmZmZmZmZmZtajGm7AlTRT0sp2FsbMzMzMzMzMzMzM\nntVwA24aXPywNpbFzMzMzMzMzMzMzHKancTse5K+APwj8FR5YUTc3+gOJF0KvAE4GDiqvK2kFcBx\nwNNp3++LiLtSbF/gi8ASYBT4SERcn2ICLgNOIpuR8tKI+Gwu3zLgHWQzUq6KiGVNHrOZmZmZmZmZ\n2R5KJbFjh2rG58wJBgaigyUys6mq2Qbcpenv7+aWBbC4iX1cB1wErK1Y/jXgXRExJunktN6iFLsA\nGIqIQyUtBNZLuiUitgNnAodHxCGS5gL3ptjDko5PZT6CrHF3naR1EXFTE+U1MzMzMzMzM9vDjh1i\nyZL9asbvvHOnG3DNrBBNTWIWEYuq3JppvCUi1kbENkAVy78ZEWPp4R3APEnl8i0FrkzrbQZuBd6c\nYqcCV6XYdmAVcHoutjIihiJiGFiRi5mZmVkblEpicLCf4eFFDA72s3HjDEql2r1TzMzMzMzMrLZm\ne+Ai6RTg1yLiU5LmAS+IiAcKLtd7gRtzDboLgC25+Oa0rFbs2Fzs+xWxpTRgaGho9/3h4eE9/nZa\nN/N3MndEf5Prj+0+T81uW7l9LdPlue+1/J3K3a7XzXj6+5vPazaZ7Nghjjlmzh7L3APFzMzMpqv8\nUAsR/YyMLGJwcBbSDA+zYGYNaaoBV9Jfk41D+xLgU2TDJ/wD8BtFFUjSGcBbgeOL2mcrtm3bxujo\n6B7LSqVSl0rT/fydyD0ysmj8lfZYfxdbt25tadvK7ccz1Z/7Xs3f7tztft1UM3PmTBYvburCBTMz\nMzMzm8TqDbXgH7nNrBHN9sB9I/BK4C6AiPippOcVVRhJS4GPAidGxM9yoS1kk56VW3MWAmvS/cEU\nW5+LDVbEqBKra968ebvvDw8PUyqVGBgYoK+vr7GDKVA383cy9+Bgcy/H2bNnMX/+/Ja2rdy+luny\n3Pda/k7lbtfrxszMzMzMzMysKM22XvwyIkalPcaxK2RQO0mnAp8EXhsRP6kIrwbOATZIWgScAJyb\nYtcBZ0taDRxANkTCybnYFZIuJ5vE7CzgwkbKU+0S576+vq5e+tzN/J3I/eyQx42vXy5Ts9tWbj+e\nqf7c92r+dudu9+vGzMzMzMzMzGyimm3A3SLpN4GQNBv4K+C+ZnYg6UqyBtYBYI2knRFxGPAV4KfA\nvyhrIQ6yxtztwMXACkmbgF3AeRHxRNrlSuBoYCNZI+0lEfEQQETcJmkV8GDa37URcWOTx2xmdeTH\nc2qUx3kyMzMzMzMzM2tMsw247wG+BLwM+AXwPeCMZnYQEefUWF7zOumIeBo4rUZsDDg/3arFlwPL\nmymj2XRSqwG2cnD9vHwDbL3xnGrxOE9mZmZmZmZmZo1pqgE3IkrA70t6DqCI+EV7imVmneIGWDMz\nMzMzMzOz3tXUAJCSNkDWI7bceFteZmZmZmZmZmZmZmbFanYGnz167KZxcJvrumdmZoWRdKmkxySN\nSToyt/xASTdJelTS/Wn88nJsX0nXSNoo6RFJp+RiknS5pE1p2/Mq8i1LsY2SPDyNmU0Zrk/NzMzM\n6iuVxMaNM2reSqXm5sexxjU0hIKkDwEfBp4n6YlcaF/gy+0omJmZNeQ64CJgbcXyzwC3R8RJko4G\nbpC0MCJGgQuAoYg4VNJCYL2kW9KkkWcCh0fEIZLmAvem2MOSjgeWAkeQTRq5TtK6iLipI0dqZtZe\nrk/NzMzM6hhvCEYPt9g+jfbAvRJ4BXBz+lu+zYuId7epbGZmNo6IWBsR24DKnzpPJau7iYi7gJ8A\nJ6TY0lxsM3Ar8Obcdlel2HZgFXB6LrYyIoYiYhhYkYuZmU1qrk/NzMzMrFc11AM3Ip4EngROkvRc\nssbbAO5rY9nMzKwFkp4PzIqIx3OLtwAL0v0F6XHZ5nFix+Zi36+ILW20XMPDw42uWqhy3m7k72bu\nbuaP6K+ybIyhoaGOlcHnvT35653bZs97Ea+T/v6991GkXqxPh4aGJnyOqz33z8b2Pgedek03W64i\ndfp9285zmMW7dx6ner5WnvtW9tXp/5vQ/jrVzMxa11ADbpmkE4GvkvU8EHCQpNMj4nvtKJyZmU0d\npVJp2uafbsc+MrKoyrJdbN26taPlAJ/3otU7t82e94m+TmbOnMnixYsbWncq2bZtG6Ojo0Dr57ja\nc/9srPY5aPdrutVyFanT79t2nMMs3r3zONXzNfLc//d/B7/4xeya6zz3uSOMjPy4J17zZdO1TjUz\nmyyaasAFLgXeEBHrASQdA3wReFnRBTMzs9ZExBOSdkl6Ua7X2EJgMN3fAhwMlHKxNen+YIqtr7Jd\nOUaV2LgGBgbo6+trdPXCDA8PUyqVupK/m7m7mX9wcO+PF7Nnz2L+/PkdK4PPe3vy1zu3zZ73Xnid\njKcX69N58+ZN+BxXe+7Lqp2DTr2mmy1XkTr9vm3nOYTunsepnq+R5354eBbHHbd/zXU2bHiSBQuq\n15v5/fRSfWhmZt3VbAPuWLnxFiAiNkgaLbhMZmY2cdcB5wKfkLQEmAfclmKrgXOADZIWkY3leG5u\nu7MlrQYOILuk9+Rc7ApJl5NNunMWcGGjBerr6+vqpXndzD/djl3ae4h9aQZPPrkvO3bsObzonDnR\n1okOfN6LzV/r3Pb399eNNbuvHtNT9Wn++Wn1HFd77vOxWvts92u61XIVqdPv23acw3K8W+dxqudr\n5LlvZB+16s3KdczMzKD5Btx/k/QO4Evp8ZnAvxVaIjMza5ikK8kaBAaANZJ2RsRhwIeBlZIeBZ4B\n3pZmTAe4GFghaROwCzgvIp5IsZXA0cBGskaFSyLiIYCIuE3SKuBBsnHQr42IGztyoDYlVJu11jPV\nWq9wfWpmZmbWOaWSdnfuiOhnZGQRg4Ozdv+41e6OHpNNsw247wL2B/4hPZ4NPCnpbCAi4vlFFs7M\nzOqLiHNqLH8ceF2N2NPAaTViY8D56VYtvhxY3lJhzcx6mOtTMzMzs86p1rkjzx099tRsA+5RbSmF\nTQn5X08a1Su/qNQqe7Vfgcp6pexmZmZmZmZmZr2iXvuQ21Ja01QDbkRsaVdBbPIb79eTanrlF5XJ\nXHYzs+mo2odCfxg0MzMzM+u+em0sbktpTVMNuJJeBHwCeDmwe0T1iHhlweUyMzMzq8nj6ZqZmZmZ\n2XQx/hSZe/oisBl4IdlMuduAbxVcJjMzMzMzMzMzMzOj+Qbc+RFxEfBMRHwDeAvwO8UXy8zMzMzM\nzMzMzMyabcAdTn+HJL0A2EXWG9fMzMzMzMzMrC5JfyDpbkn3Srpf0h+n5QdKuknSo2n5b+a22VfS\nNZI2SnpE0im5mCRdLmlT2va8bhyXmVk7NTUGLvBoarj9CrAe2AHcXXipzMzMzApUayZcT3xmZmbW\ncSuB4yPiIUkHA49Iuh64CLg9Ik6SdDRwg6SFETEKXAAMRcShkhYC6yXdEhHbgTOBwyPiEElzgXtT\n7OGuHJ2ZWRs01YAbEWeku5dKuhs4APh24aUyMzMzK1CtmXA98ZmZmVnHjQFz0/39gZ+TXe37h8BL\nACLiLkk/AU4AbgGWAmel2GZJtwJvBlYApwJXpdh2SauA04GPdeh4zHperc4M4A4Nk0WzPXB3i4i1\nRRbEzMzMzMzMzKa808h61/6CrFPYW4D9gFkR8XhuvS3AgnR/QXpctnmc2LGFl9psEqvVmQHcoWGy\naKoBV9LvA/8XWAzMBARERMxsYh+XAm8ADgaOioj70/IDgS+T/eI2BJwXEd9PsX2BLwJLgFHgIxFx\nfYoJuAw4ieyXvEsj4rO5fMuAdwABrIqIZc0cs5mZmZmZTT353kgR/YyMLGJwcBZSNk2IeySZFU/S\nTGAZ8KaIWJeGSvhX4Ciy9oWOGRoaYng4m+an/LdZEf3jxMcYGhqqu155nXaZ6DEWma/R56sR27f3\nsXPnjN373bVrEVu2zEKC/fYbY+7c9h1vLz2njWrkNdjI+Rk/T+Ov+SLfP628ttp5Hvv765enFc32\nwL0MOB+4nawhtRXXkY1tU9mD9zMUPN6NpOPJLrU4gqxxd52kdRFxU4tlNzMzMzOzKaBebyRwjySz\nNjkKOCgi1sHuoRJ+DBwJjEh6Ua4X7kJgMN3fQtYJrJSLrUn3B1NsfZXtatq2bRujo1mzRqlUGmft\n6kZGFo0T38XWrVvrrldep91aPcYi8zX6fDVieHgRxx03t2ps3br/4amnpsdz2qhGXoONnJ/x8zT+\nmi/y/TOR11bR53HmzJksXry40H1C8w24OyJizfir1VYeeiH1nM07leLHuzkVWBkRQynnihRzA66Z\nmZlZB1Qbc23OHDeKmZlNU1uBgyQdHhGPSDqE7ArfR8g6e50LfELSEmAecFvabjVwDrBB0iKytoJz\nU+w64GxJq8mGZFgKnDxeQebNm8fw8DClUomBgQH6+vqaPpjBwfpNKrNnz2L+/Pl11yuv0y4TPcYi\n8zX6fDViMj+n+d7D1VT2IC7iHDbyfDVyfsbTzGu+yPdPK6+tTr83JqrZBtxvSnpTRHy9yEJIej7t\nGe9mAfD9itjSIspsZmZmZuOr1svxzjt3dqk0ZmbWTRHxuKQ/Bf5Z0igwg2z4xB9L+jCwUtKjwDPA\n29IVuQAXAyskbQJ2pW2eSLGVwNHARrIrby+JiIfGK0v+Eue+vr6WLnkuD7lSL97f3193vfI67dbq\nMRaZr9HnqxGT+Tl96qkZHHNM/StADjpo7+ObyDls5Plq5Pw0kqfR13yR75+JvLY6/d5oVUMNuJK2\nk40hK2B/Sb8kq1DLY+A+v31F7I782BidHt+kUjfzN5N7vDFHqm/z7DgkzW4/kW2L3r4dOnXee/G5\nmyzH3qrJ8M/BzMzMzKwdImIVsKrK8seB19XY5mmyyc+qxcbIhno8v8BimrWk2pVHZR5b3Sai0R64\nR7WzEBHxhKRdbRjvphyjSqyu/Hg4ZZ0e36RSN/M3knu8MUeqb/PsOCTNbj+RbYvevp3afd57+bnr\n9WNvRbvGwzEzK39hyE/GtP/+8hcFMzMzsw6pN766x1a3iWioATcitgBIWgA8nhtTth84sKCytGO8\nm+uAKyRdTnYpxVnAhY0UZt68ebvvd3tcjG7mbyb3eGOOVJMfh6TZ7SeybdHbt0OnznsvPneT5djN\npoNa45f6w2fvqTVUgc+VmZmZmdnk1mzrxWrg+NxjpWXHVl99b5KuJGtgHQDWSNoZEYcBhY93ExG3\npUnNHiQbAuLaiLixkXJWu8S52+NidDN/I7kbGQ+l2jbl/Ta7/US2LXr7dmr3ee/2c1etcSjrPfYc\n/vu/Z+21/yIbjnr5vJv1iuncKOjGazMzMzMz6wXNNuD2lXvfAkTELyXt08wOIuKcGsvbMt5NRCwH\nljdTRjPrnHqXmFQzXRqOzKz7pnPjtZmZmZmZ9Y5mG3AjP06tpBeT9cI1MzMzMzOblupNWgPuvW9m\n1ss88ZhNBs024F4G3C5pZXp8BvCJYotkZmZmZh7CwWzyGO+KIvfeNzPrXZ54zCaDphpwI+JqSY8B\nf5AWvTMivl98sczMzMymNw/hYGZmZmZm0HwPXCLiVuDWwktiZmZmZmY9Id8DPJtcdBGDg89OLure\n4GZm04OHiDHrDU034JqZmZmZ2dTmIQHMzAz8/8CsV7gB18zMzMzMrM3cq9nMprJyHef6zaw9Gm7A\nVfbOWxIR69tYHjMzK4ikPwA+CcwAZgKXRMSXJR0IfBl4CTAEnFcez1zSvsAXgSXAKPCRiLg+xUQ2\nmeVJwBhwaUR8trNHZWbWHa5TbaLci83MpjJPBGbWXg034EbEmKQvAC9vY3nMzKw4K4HjI+IhSQcD\nj0i6HrgIuD0iTpJ0NHCDpIURMQpcAAxFxKGSFgLrJd0SEduBM4HDI+IQSXOBe1Ps4a4cnZlZZ7lO\nnUTqjdnonmBmZmY22TQ7hMJGSYdExKa2lMZsmqr2JaPapSdl/uJhDRoD5qb7+wM/B4aBPyTrKUZE\n3CXpJ8AJwC3AUuCsFNss6VbgzcAK4FTgqhTbLmkVcDrwsQ4dj5lZN7lOnUTcE8zMzMymkmYbcJ8P\n3CfpB8BT5YUR8ZZCS2U2zYx3SV0lf/GwBp1G1hPsF8ABwFuA/YBZEfF4br0twIJ0f0F6XLZ5nNix\nRRa42o8Z/sHCbOL83irEpKtTzczMzGxqaLYB90vpZmZmPUzSTGAZ8KaIWJcu6/1X4Cig+jWlbTY8\nPDzuOk8+2c8xx8zZY9mGDU+y//5DE87bSP6idTN3Ufkj+qssG2NoqPY5qbVN9XXr76vVclUee7X1\nx8vfyrFXy92qZvPXW7+o91a9HM2e91rLm3k99PdXP69F66U6dWhoaMKvsVrvhyxW+3xWW69IjZSr\nyH0VeYyN7Gv8fRSbr3Jfnf6fNFXzFXmui3zNF6FTdaqZmTWvqQbciPgSgKR9IuKZ9hTJzKxx9ca4\nq2Ya9Tg7CjgoItbB7st6fwwcCYxIelGux9hCYDDd3wIcDJRysTXp/mCKra+y3bhKpdK464yMLKqy\nbBdbt25tNM2E8rdLN3NPNH8r56TWNtXXbe38Nlqu8rFXW3+8/BN9PU70vDebv976Rb23WslRfT8T\nfz3MnDmTxYsXN7RuAXqmTt22bRujo6NA66+xWu+HLFb7fFZbr0iNlKvIfRV5jI3sa/x9FJuv1r46\n/T+pWr7Zs3+VX/xidtX1n/vcEUZGflxoviIVea6LfM1PVIfrVOsRHi/cbPJoqgFX0suAr5JdNvar\nkl4FLI2ID7ajcNZZzY7DCq7Urfs8/ERNW4GDJB0eEY9IOgRYDDwCXAecC3xC0hJgHnBb2m41cA6w\nQdIisnEcz02x64CzJa0m+z+wFDi50QINDAzQ19dXd53Bwb3/Lc2ePYv58+c3mmYvw8PDlEqlhvIX\nrZu5i8rfyjmptU01rZ7f8cpVeezV1h8vf6uvx6LOe7P5661f1HurlRzVFP166ICeqVPnzZs34ddY\nrfcD1D+f1dYrUiPlKnJfRR5jI/saT9H5KvfV6f9J9fINDvZz3HH7V91uw4YnWbCg+ddWp46vyHNd\n5GverBUeL7y3ldtoqrXLuC1m+ml2CIXLyT6EXp4e3wN8GXAD7hTQbEMYuFI361UR8bikPwX+WdIo\nMAM4LyJ+LOnDwEpJjwLPAG9Ls6UDXAyskLQJ2JW2eSLFVgJHAxvJJvO5JCIearRMfX19416aV+2H\nImlGIZf0NZK/XbqZe6L5WzkntbaptW4rZWu0XOVjbyX/RF+PjTzv9cambTZ/vfWLem+1kqPR/bRa\npk7opTo1//y0+t6u9fyXY/XeM5XrFamRchW5ryKPsZF9NbKPIvPV2len/ydVy1fkuW4kXyPGu6qr\nXt2c18y5bufzYGaTnxvYLa/ZBtznRcRaKfvHFhEhqTsD+5mZWV0RsQpYVWX548DramzzNNlEPdVi\nY8D56WbTnCfFKka1D+b+QN6bXKea9aaieqiN15nFdbOZmXVTsw24uyTNBgJA0nxgtP4mZmZmNtW4\n4dHMwOMnWve5h5qZmU0HzTbgXgF8HThQ0nLgDDx8gpmZmZnZtNRI41mjl6abmZn1qvz/Mo9Ja93Q\nVANuRHxF0o+ANwJ9wBkRsbYtJTMzMzMz+//Zu/cwycr6wOPf31w644WBwcjI6MDMoAY1KjEgbpQY\n8cqS+GiIoKuYaKKREOOuMbsmJkRiLhovu2qMeCOJZI0EWF2Nq5hwExW5hJsgyqgMPTKkUSAOBpue\nmf7tH+c01PTUtbvqnFPd38/z1NOnznveyzlV9Vb1r956X409f5ouSRp3vpepboOOwCUzvxoRk8Vm\n3jaCNkmSJEmSJEmSGDCAGxFPBj4JrC/v/xvwssy8bgRtkyRJkqT7OR2DJElajgYdgftR4LTMPAcg\nIn6l3HfUsBumwfX6QNuOH3KHw2svSZI0ev6EVZIkLUeDBnDXzAVvATLz3Ig4bZgNioj/DLwNWAGs\nBN6VmR+PiIcDHwcOA6aBUzPz0jLPg4CPUQSS9wBvyczzyrQA3gccB8wC783MDwyzzU3R6wNtO37I\nHQ6vvSRJkiRJkkZh0ADu1RHxC5l5MUBEPBP41yG36Szg5zPzxog4FPhmRJwHvAO4LDOPi4gjgU9F\nxKbM3AO8CZjOzMdExCbg8oi4MDPvBk4GDs/MR0fEOuCaMu2mIbdbkiRJkiRJkoZqxYDHPwW4ICK+\nExHfAS4EjoyIqyPi6iG1aRZYV27vD/wAmAFeApwBkJlXAbcBzyyPO6klbRtwMfDiMu1E4CNl2t3A\n2UbSM6AAACAASURBVMDLhtRWSZIkSZIkSRqZQUfg/vZIWrG3l1KMrv0P4ADgl4H9gFWZeUfLcbcC\nh5Tbh5T352zrkXb00FstSZIkSZIkSUM2UAA3My8ZVUMAImIl8IfAizLzK+VUCZ8BjgAGWyFqkaan\np+/fnpmZ2etv1fqtP3PNwGVnzt5/ruOWf5zbvtj8rXkXa9zPvc7nzUKtWTN4vZIkSdJSEBETwLuB\n5wM/Bq7LzFe67o0kdTboCNxROwI4ODO/AsVUCRHxPeBJwK6IOKhlFO4mYLLcvhU4FJhqSTu/3J4s\n0y5vk6+jHTt2sGfPnr32TU1NdTi6Gr3q37Vr88Bl7tq1m+3bt49l/nFu+2Lzt+ZdrHE/9zqfNwux\ncuVKtmzZsuD8kiRJGszUVLBzZ+fxQGvXurBwxd4BzGbmYwEi4qBy/9tx3RtJaqtpAdztwMERcXhm\nfjMiHg1sAb4JnAOcApweEUcBG4C5EcHnAq8DroiIzRRz455Spp0DvCYizqWYkuEk4PheDdmwYcP9\n2zMzM0xNTbF+/XomJiaGcJqD6bf+ycnBH87Vq1excePGscw/zm1fbP7WvIs17ude5/NGkiRJzbdz\nZ3DUUft1TL/yynsqbM3yFhEPBl4NPHJuX8sgrRMpRt/ODeaaW/fmQor/419dpm2LiIsp1r05k3nr\n3kTE3Lo3p1VwSpJUiUYFcDPzjoh4LfCPEbGHYpG1UzPzexHxZuCsiLgZuA94eflNHMA7gTMj4tvA\n7jLPXWXaWcCRwFaKn1O8KzNv7NWWdj9xnpiYqPWnz73qjxh0Tboiz1yZ45Z/nNu+2PyteRdr3M+9\nzueNJEmSpIEcBtwFvCUingPcC5wOXIvr3khSRwMFcCPil4BLMnNnRLwJeBrw1sy8YVgNysyzgbPb\n7L+DYo6cdnnupVj8rF3aLPD68iZJkiRJkuqximKKwxsy8/cj4gjgi8BPU8O6N4td76bXmhpz62d0\nO26Y65u00+0c+2nXMM+x37L6Mcxr2tTr0MRz7F1PPddhIc+tUa53NYpBX4OOwP2zzHxSRDwZeAXw\nwfJ2zNBbJkmSFmRurr/MNezatZnJyVXsv3+wfr1z/EmSpFpNUixC9gmAzLw2IrYBT6TGdW8Wut5N\nrzU15tbP6HbcMNc36abdOfbTrmGeY79l9WOY17Sp16GJ59i7nnquw2KeW8Ne72pU694MGsCde7Se\nB3w4Mz8UEb855DZJkqRFaDfX35VX3mMAV5KWmdbFu1q/1ItYwdq16fuCKpeZd0bEBcALgM+Xa9hs\nAr5BDevedFtv5u67J7jnnvZTru233yzr1s30XFNjbv2MbseNeo2NbufYT7uGeY79ltWPYV7Tpl6H\nJp5jL3Vdh4U8t+pe72pQgwZwV0bE0cAJwKvKfauH2yRJkiRJ0mJ1W7zLL/ZUo1OAj0XEOyhG4742\nM2+vc92bduvN/OhHK3jqUzu/fg4+eEXPNTXm1s/odlxVa2y0O8d+2jXMc+y3rH4M85o29To08Rz7\nqaeO67CY51bd6131a9AA7h8CHwIuyMybIuKngJuH3yxJkiRJUlO0juadz9G8GkRm3gIc22a/695I\nUgcDBXAz87PAZ1vuf4tiNK4kSdLQtQsYrF1rkGDUvO6S5utnNG+3KRvAQK8kSQvVVwA3Ik7rlp6Z\nfzKc5kiSJD2g03y+Gi2vu6SF6BbkBadtkFStbr8cAL9U0njpdwTu3Lvwo4BnA58BEnghcMEI2iVJ\nkiRJkiQtiF8qaSnpK4Cbmb8HEBFfBI7IzB3l/dOAvx1Z6yRJkiRJI+MINUmSmm/QRcw2zAVvAcqV\nIh855DZJkiRJGpCBOC2EI9QkSWq+QQO434uI04GPlvd/HfjecJskSZLUXJ0W+DLAoboZiJMkSVqa\nVgx4/K8BjwOuBa4BDi/3SZIaJiImIuL9EXFzRFwXER8v9z88Ij5f7r8+Io5pyfOgiPhERGyNiG9G\nxAktaVGW9+0y76l1nJdUt7kgWeut26hHLQ32qZIkSapL3yNwI2Il8PTMPHGE7ZEkDc87gNnMfCxA\nRBxU7n87cFlmHhcRRwKfiohNmbkHeBMwnZmPiYhNwOURcWFm3g2cDByemY+OiHXANWXaTVWfmCTV\nwD5VkiRJteg7gJuZeyLiLcB5I2yPJGkIIuLBwKuB++cpz8w7ys0TgcPKfVdFxG3AM4ELgZPKfGTm\ntoi4GHgxcGaZ7yNl2t0RcTbwMuC0Ck5JkmpjnypJaopu8507pZO0dA06B+7VEfGMzPzySFojSRqW\nw4C7gLdExHOAe4HTKabAWdUSeAC4FTik3D6kvD9nW4+0o/tt0MzMTM9jMte02TfL9PR0v9V0rLef\n+odtWHXfffcE99yz96xH++03y7p17csd5nXsVFb7Y4s6FpJnmPXDvte+XTlzeW6/fbbt9c02//8s\npO5uuj1Wgz6OVZTV/tiFPe7dyurXmjXtH9cRaEyfOj093fE51ul5/kB658dqkGOWW1n96Kes3mUM\nt74mX9N+yurXsNrVu55qy1rs55+FqLBP1SJ0m+/cuc6lpWvQAO7TgF+LiO8CP5rbmZlPGWqrJEmL\ntQo4FLghM38/Io4Avgj8NFDLZJ1TU1M9j9m1a3ObfbvZvn17JfWPymLrnpnZzNOfvm6vfV/5yp38\n6Eftr8swr2OnstofW9SxkDzDrL/V3LVvV85cnrvuou31hX3/CV9I3d10e6wGfRyrKKv9sQt73LuV\n1Y+VK1eyZcuWvo4dgsb0qTt27GDPnj3Avs+xTs/zB9I7P1aDHLPcyupHP2X1LmO49TX5mvZTVr+G\n1a7e9VRb1rA+//Sr4j5VbXQbWQuOrpWWu0EDuC6uIEnjYRLYA3wCIDOvjYhtwBOBXRFxUMuIsU3l\n8VCMBjsUmGpJO7+lzEOBy9vk62n9+vVMTEx0b/Tkvm9Lq1evYuPGjf1Ws4+ZmRmmpqb6qn/YhlX3\noNdlmNexU1ntzNWxkDzDrB/2vfbtyulV1qD7O9XdTbfHapiP+7DKamehj3u3shqoMX3qhg0bOj7H\nOj3P53R7rAY5ZrmV1Y9+yupl2PU1+Zr2U1a/htWuXqouq8H9oUak28hacHSttNwNFMDNzEsAImJD\neX/HKBolSVqczLwzIi4AXgB8PiI2UwQHvgGcA5wCnB4RRwEbgEvKrOcCrwOuKPM8szyWMt9rIuJc\n4ACKuR2P77dNExMTPX+aF7Gi7b5h/KSvn/pHZbF1D3pdhnkdO5XV6dg1a9YsKM8w6281d+275RnW\n/k51d9PtsRrm4z6ssjodu5DHvVtZTdOkPrX1+sx/jnW6rq3p3V4P/R6z3MrqRz9l9VPGmjVr+prf\nctyvaT9l9WtY7eqnnirLamp/KEmqx0AB3Ih4HMUH0Q3l/e8BL8nMb46gbctSuw9smWvYtWszk5Or\n9nmT92cUkro4BfhYRLyDYuTYazPz9oh4M3BWRNwM3Ae8vFwtHeCdwJkR8W1gN3BqZt5Vpp0FHAls\npfht+bsy88YKz0eS6mSfqko4v6UkSZpv0CkU/hr4s8z8BEBEvBT4IPCsYTdsuer1s4n5/BAnqZPM\nvAU4ts3+O4Dnd8hzL/DSDmmzwOvLm6QloN0Xx2vX+rmiHftUqVrOBypJ0gMGDeCumwveAmTmJ8tR\nB5IkSRoz7b44vvLKe2pqjSQ9wPlAJUl6wKAB3D0R8fjM/AZARDye4idkkiRJC9JpFKj/mEuSJEnS\n4AHcPwC+FBHXl/efCLx8mA2KiAng3RQ/RfsxcF1mvjIiHg58HDgMmKaYQ+zSMs+DgI8BR1EElN+S\nmeeVaQG8DziOYn6x92bmB4bZZqlOvX5e1o6BEUlN0mkUqP2UpCboZ1ExSZKkURoogJuZ55cLmR1d\n7vpaZv5gyG16BzCbmY8FiIiDyv1vBy7LzOMi4kjgUxGxqVwk4k3AdGY+JiI2AZdHxIWZeTdwMnB4\nZj46ItYB15RpNw253VItBp03GQyMSJIk9ctFxSRJUt36CuBGxOnAhRQB1O8D/zSKxkTEg4FXA4+c\n21cuDAFwIsXoWzLzqoi4DXhm2a6Tynxk5raIuBh4MXBmme8jZdrdEXE28DLgtFGcgyRJ0nwuFiZJ\nkiRpofodgXsQ8CFgY0RcBlxEETi9ohwBOyyHAXcBb4mI5wD3AqcD1wKrWoK5ALcCh5Tbh5T352zr\nkXY0PUxPT9+/PTMzs9ffUcpcM+Dxs/e3ddC8455/nNu+2Pzj3PbF5m/Nu9j8i237Qq1ZM3i9ksab\ni4VJkiRJWqi+AriZeQpARBwM/EJ5+zvgERFxaWYeP8T2HArckJm/HxFHAF8EfhoYbJLPRdqxYwd7\n9uwdm56amhp5vbt2bR7w+N1s3759QXnHPf84t32x+ce57YvN35p3sfkX2/aFWLlyJVu2bFlwfkmS\nJEmStLwMOgfu7RFxHnA78G8UUxEcMcT2TFIsQvaJsr5rI2IbxWJpuyLioJZRuJvK46EYYXsoMNWS\ndn5LmYcCl7fJ19GGDRvu356ZmWFqaor169czMTGxgNPq3+TkYOvKrV69io0bNy4o77jnH+e2Lzb/\nOLd9sflb8y42/2LbLkmSJElN0zp1U+Yadu3azOTkKiJWAC7AKI2jfufA/XmKUbfPopif9mvAl4Dj\nM3PrsBqTmXdGxAXAC4DPR8RmioDrN4BzgFOA0yPiKGADcEmZ9VzgdcAVZZ5nlsdS5ntNRJwLHEAx\nX27PEcPtfuI8MTEx8p8+z3Wogxw/16ZB8457/nFu+2Lzj3PbF5u/Ne9i8y+27ZIkSZLUNL0WunYB\nRmn89Dv87GKKoO2fZOYXRtccoAi8fiwi3kExGve15cjfNwNnRcTNwH3Ay1vm330ncGZEfBvYDZya\nmXeVaWcBRwJbgVngXZl544jPQZIk1WBuxEnraJP99690FiZJkiRJGqp+A7hzI3DfFBF/BVxBEdS9\nODNvHmaDMvMW4Ng2++8Ant8hz73ASzukzQKvL2+SJGkJc7EwSZIkSUtNv4uYfRn4MvCnETEBHE0x\nncJnIuKhmfmoEbZRkiRJkiRJkpalgVbwiYgNFIHbX6AYJXsQRWB3yfnud4M9ezpP+t3KCcAlSZIk\nSZIWp3UBtnaMv2i56ncRs49QLAy2AbgMuAh4BXBlZu4eXfPq89znPpQ77+xvgSMnAJckSZIkSVoc\nF2CT2ut3CfbtwK8D6zLzuZn555l52VIN3kqSJC3E1FQwObmGmZnNTE6uYevWFUxNuYiaJEnzRcSr\nImI2Il5Y3n94RHw+Im6OiOsj4piWYx8UEZ+IiK0R8c2IOKElLSLi/RHx7TLvqXWcjySNUr9z4P7J\nqBsiSZI07nbuDJ761LV77XMRNUmS9hYRhwK/QfEL3zlvBy7LzOMi4kjgUxGxKTP3AG8CpjPzMRGx\nCbg8Ii7MzLuBk4HDM/PREbEOuKZMu6nSk5KkEep3BK4kSWqYqalg69YVe90c7SlJkposIgL4KPDb\nwExL0onAGQCZeRVwG8VUjgAntaRtAy4GXtyS7yNl2t3A2cDLRngKklS5gRYxkyRJzdFujjBHe0qS\npIZ7I3BpZl5TxHIhIg4EVmXmHS3H3QocUm4fUt6fs61H2tFDb7Uk1cgAriRJpXar3rrSrSRJ0nBE\nxBOAE4Bjeh07atPT08zMFAOA5/62ylzTMW/mLNPT012P6fc4y9r7uF6a3PY6yuqXj8++16vb63+x\n1qzp3p6FMIArSVKp04hWA7iSJElDcQxwKLC1nErhEcCHgbcCuyPioJZRuJuAyXL71jLfVEva+eX2\nZJl2eZt8He3YsYM9e/YAMDU1tU/6rl2bO+bdtWs327dv73pMv8dZ1t7H9dLkttdRVr98fDpfr3av\n/8VYuXIlW7ZsGWqZYABXkjQG2o2MBUfHSpIkjZPMPINyLluAiLgIeE9mfjYingqcApweEUcBG4BL\nykPPBV4HXBERmynmxj2lTDsHeE1EnAscQDFf7vG927KF2VnYvXs3q1atopzNgf32m2XduhkmJzuH\nS1avXsXGjRu7HtPvcZa193G9NLntdZTVLx+ffa/XzMwMU1NTrF+/nomJia75m8AAriSp8dqNjIXu\no2Pngr6Za9i1azOTk6vYf/8w4CtJktQcCcx9S/9m4KyIuBm4D3h5Zu4p094JnBkR3wZ2A6dm5l1l\n2lnAkcBWYBZ4V2be2Kvi5z1vP+68c9913a+88h4OPngFEZ3XfI9YwZo1a7oe0+9xlrX3cb00ue11\nlNUvH5/O12tiYmIkUx4MmwFcSdKS5HQIkiRJzZaZx7Zs3wE8v8Nx9wIv7ZA2C7y+vEnSktQ7fC5J\nkiRJkiRJqoUBXEla4iLiVRExGxEvLO8/PCI+HxE3R8T1EXFMy7EPiohPRMTWiPhmRJzQkhYR8f6I\n+HaZ99Q6zkeS6mSfKkmSpKo5hYIkLWERcSjwG8BlLbvfDlyWmcdFxJHApyJiUznH2JuA6cx8TERs\nAi6PiAsz827gZODwzHx0RKwDrinTbqr0pCSpJvapkiRJqoMjcCVpiYqIAD4K/DYw05J0IuXqv5l5\nFXAbxUq+UKzaO5e2DbgYeHFLvo+UaXcDZwMvG+EpSFJj2KdKkiSpLgZwJWnpeiNwaWZeM7cjIg4E\nVpWLRMy5FTik3D6kvD9nW59pkrTU2adKkiSpFk6hIElLUEQ8ATgBOKbXsVWZmZnpeUzmmjb7Zrsc\nP8v09PRAZXU6fqF5Orn77gl27lzD7t2bufXWVUTAfvvNsm5d7+vQb7vaH9t5/0LOY9C6p6enh9re\nYZXVybDKqvLcF/KcH+V1HMW592vNmn3rHIUm9anT09P396fz+9V2j8He6Z0fq0GOsayFldVLk9u+\nHMrqpa7HukpV9amSpMEZwJWkpekY4FBga/mz30cAHwbeCuyOiINaRoxtAibL7VvLfFMtaeeX25Nl\n2uVt8vU0NTXV85hduza32be7y/G72b59+0BldTp+oXk6mZnZzNOfvm6vfV/5yp386EeDlzXIdem2\nv9t5rF79KP7jP1bvte8hD9nVtrxedQyzvcMqq5NhlVXluS/kOT/K6ziKc+/HypUr2bJlS1/HDkFj\n+tQdO3awZ88eYN9+td1jsHd658dqkGMsa2Fl9dLkti+Hsnqp67GuSsV9qiRpQAZwJWkJyswzKOdd\nBIiIi4D3ZOZnI+KpwCnA6RFxFLABuKQ89FzgdcAVEbGZYh7HU8q0c4DXRMS5wAEUczse32+b1q9f\nz8TERNdjJif3fVtavbrzW9Xq1avYuHHjQGV1On6heeosq51u+7uf+xqe/vT999p3xRU/ZPXqfY/t\nVccw2zussjoZVllVnvtCnvOjvI6jOPemaVKfumHDBmZmZpiamtqnX233GLTq9lgNcoxlLaysXprc\n9uVQVi91PdaSJEGDA7gR8SrgY8CLMvMzEfFw4OPAYcA0cGpmXloe+6Dy2KOAPcBbMvO8Mi2A9wHH\nAbPAezPzA1WfjyTVLIEot98MnBURNwP3AS8vV0sHeCdwZkR8G9hN0dfeVaadBRwJbKXoT9+VmTf2\n24CJiYmeP82L2Hdq9nb7WtM6ldmprG5tWEieOsvq99h+6h5mHU0sq5NhlVXluS/kOT/K6ziKcx8D\ntfWprddnfr/a7bk+l97psRrkGMtaWFm9NLnty6GsXup6rCVJgoYGcCPiUOA3gMtadr8duCwzj4uI\nI4FPRcSm8gPym4DpzHxMRGwCLo+IC8sVfU8GDs/MR0fEOuCaMu2mSk9KkmqUmce2bN8BPL/DcfcC\nL+2QNgu8vrxJ0rJlnypJkqQqNS6AW46Y/Sjw28B7WpJOpBh9S2ZeFRG3UfwM7UKKn5y9ukzbFhEX\nAy8GzizzfaRMuzsizgZeBpxWxflIkiRJkiRJwzY1FezcGR3T165N1q/PClukUWlcABd4I3BpZl5T\nxHIhIg4EVrUsDgHFohCHlNuHlPfnbOuRdvTQWy1JkiRJkiRVZOfO4Kij9uuYfuWV9xjAXSIaFcCN\niCcAJ1Cs9Ds2MmeZnp4eUlmDzXPUWvegecc9/zi3fbH5x7nti80///VW57VbKOczkyRJkiRJ/WpU\nAJcicHsosLWcSuERwIeBtwK7I+KgllG4m4DJcvvWMt9US9r55fZkmXZ5m3xDsWvXbrZv3z6ksjYv\nuO5B8457/nFu+2Lzj3PbF5t//uutzmu3ECtXrmTLli0Lzi9JkiRJkpaXRgVwM/MM4Iy5+xFxEfCe\nzPxsRDwVOAU4PSKOAjYAl5SHngu8DrgiIjZTzI17Spl2DvCaiDgXOIBivtzjh9nu1atXsXHjxqGU\nNTk52EPSWvegecc9/zi3fbH5x7nti80///VW57WTJEmSJEkatUYFcNtIYG425jcDZ0XEzcB9wMsz\nc0+Z9k7gzIj4NrAbODUz7yrTzgKOBLYCs8C7MvPGYTYyYsXQfhIdsWLBdQ+ad9zzj3PbF5t/nNu+\n2PzzX291XjtJkiRJkqRRa3QANzOPbdm+A3h+h+PuBV7aIW0WeH15kyRJUsO1W1HZVZQlSZK0XDU6\ngCtJkqTlp92Kyq6iLEmSpOXKAO6QtRsx0o2jSSRJkiRJkiR1YgB3yNqNGOnG0SSSJEmSJEmSOhl8\nBR9JkiRJkiRJUiUM4EqSJEmSJElSQxnAlSRJkiRJkqSGcg5cSdJYa7d45Nq1zi0uSZIkSVoaDOBK\nksZau8Ujr7zynppaI42eX1pIkiRJy4sBXElS5eoMQHWqe/365VG/xp9fWkiSJEmDa/1fLHMNu3Zt\nZnJyFRErGv8/mQFcSVLl6gxAdaq7qjfruuuXJEmSpOWo3f9ic5r+P5mLmEmSJEmSJElSQxnAlSRJ\nkiRJkqSGcgoFSVqgdnOZ9rL//rMcdNCIGqTKOZ+tJEmSJGnUDOBK0gJ1mz+nk6uv3slBBxncWyrG\nbT5bA86SJKlOEfETwCeBxwE/Bu4AfiszvxMRDwc+DhwGTAOnZualZb4HAR8DjgL2AG/JzPPKtADe\nBxwHzALvzcwPVHpikjRiBnAlSVomxi3gLEmSlqQPZeYXACLiVOCjwLOAdwCXZeZxEXEk8KmI2JSZ\ne4A3AdOZ+ZiI2ARcHhEXZubdwMnA4Zn56IhYB1xTpt1Uw7lJ0kg4B64kSZIkSRq5zLxvLnhb+hpw\naLn9EuCM8rirgNuAZ5ZpJ7WkbQMuBl5cpp0IfKRMuxs4G3jZqM5BkurgCFxJkiRJklSHNwCfjogD\ngVWZeUdL2q3AIeX2IeX9Odt6pB290AZlzjI9PU3mmkUdY1kLK6uXJrd9OZTVS5Pb3m9Zw7BmTff2\nLIQBXElagpxfTJKGxz5VkoYvIv6Aou98LfDgmptzv127drN9+3Z27dq8qGMsa2Fl9dLkti+Hsnpp\nctv7LWuxVq5cyZYtWxZdznwGcCVp6XJ+MUkaHvtUSRqSiHgT8CLg2Zk5DUxHxO6IOKhlFO4mYLLc\nvpViqoWplrTzy+3JMu3yNvkGtnr1KjZu3MjkZOdwST/HWNbCyuqlyW1fDmX10uS291tWUzkHriQt\nQc4vNn6mpoKtW1fsdZuairqbJQn7VEkapoh4I/BS4LmZeU9L0jnAKeUxRwEbgEvKtHOB15Vpmyn6\n2U+35HtNRKwop2I4iaJPXWD7VrBmzRoiOodL+jnGshZW1ji3fTmUNc5t77esYdxGwRG4krQ8NG5+\nMe1t587gqKP222vflVfew/r1WVOLJHVhnypJCxARjwTeBXwHuKicTmY6M/8T8GbgrIi4GbgPeHn5\nawaAdwJnRsS3gd0U09XcVaadBRwJbKWYkuZdmXljZSclSRVoVADX+cUkafiaMr/YzMzM/dvtJo/v\nNCl+t8nyB83TbX+nSe27TWbf7fhhnOOwy6qijqaW1YnXcbCy6m7v/NfiqEY4dFN3nzo9PX1/f9ra\nr0L7Pmnv9PFfWGScy+qlyW1fDmX1UtdjXaUq+tTMvI0OvwQuvwx7foe0eylG7bZLmwVeX94kaUlq\nVAC35PxikjQkTZpfbGpq6v7tdpPHd5oUv9tk+YPm6ba/06T23Saz73b8MM5x2GVVUUdTy+rE6zhY\nWXW3t/W1OKoFIrppQp+6Y8cO9uwpBqS19qvQvk/aO338FxYZ57J6aXLbl0NZvdT1WFeljj5VktS/\nRgVwM/M+YP78Yr9bbr+EYrQDmXlVRMzNL3YhxRw3ry7TtkXExRTzi53JvPnFImJufrHTRn0+klSn\nlvnFnt1hfrHTu8wvdkXL/GKntOR7TUScCxxA0fce32971q9fz8TEBEDbyeM7TYrfbbL8QfN0299p\nUvtuk9l3O34Y5zjssqqoo6lldeJ1HKysuttb58ISTelTN2zYwMzMDFNTU3v1q9C+T2q1FBYWGeey\nemly25dDWb3U9VhLkgQNC+C24fxikrQATZxfbGJi4v6f5rWbPL7ThPK9Jpof1v5Ok9rPpfVbXq+y\nhtmuQcuqoo6mltWJ13Gwsupubx1TJhR1N6dPbb0Grf1q0c5mLgZiWb0fm1HUZ1nVPz7DLKvOPk+S\n1DyNDeDWPb/YIFrnJ+o1J1K3vIvNP2jecc8/zm1fbP5xbvti84//a6aaBamcX0yShsc+VZIkSXVq\nZAC3CfOLDaJ1fqJecyJ1y7vY/IPmHff849z2xeYf57YvNv9SeM00tOuVJEmSJEkN1LgoQlPmFxtE\n6/xEveZE6pZ3sfkHzTvu+ce57YvNP85tX2z+pfCakSRJkiRJzTM1FezcGR3T165N1q+v5pe1rRoV\nSWjS/GKDtfuB+Yn6mfOoU97F5h8077jnH+e2Lzb/OLd9sfnH/zUTQPWdvSRJkiRJ6m7nzuCoo/br\nmH7llfcYwHV+MUmSJEmSJEl6wODDxyRJkiRJkiRJlWjUCFxJkpqo3TxIa9c6FYYkSZIkafQM4EqS\n1EO7eZCuvPKeDkdLkiRJkjQ8TqEgSZIkSZIkSQ1lAFeSJEmSJEmSGsoAriRJkiRJkiQ1lAFc87yz\nvQAAIABJREFUSZIkSZIkSWooA7iSJEmSJEmS1FAGcCVJkiRJkiSpoQzgSpIkSZIkSVJDGcCVJEmS\nJEmSpIYygCtJkiRJkiRJDWUAV5IkSZIkSZIaygCuJEmSJEmSJDWUAVxJkiRJkiRJaigDuJIkSZIk\nSZLUUAZwJUmSJEmSJKmhDOBKkiRJkiRJUkMZwJUkSZIkSZKkhjKAK0mSJEmSJEkNZQBXkiRJkiRJ\nkhpqWQRwI+LREfGViPhWRFweEY+ru02SNK7sUyVpOOxPJWk47E8lLXWr6m5ART4EnJGZZ0XECcDf\nAU9tSY/5GQ48cLbvwleuzL22H/awheVdbP5B8457/nFu+2Lzj3PbF5t/3F8zK1Zku9379EENN3Cf\numLF3t8Xtrt2c9e23/0LydNr/zDa1fSyxq29ozz3YZbV9HNfSs+hHpZ8f7ptG+zZs4Y9ezZz222r\niCgOeehDs+f7UrfrO8gxlrXwssa57cuhrMXWN8yy+uzzRm2c+tSh/c/f9OfpcihrnNu+HMoa57YP\ns6wBLbo/jcxGvDGMTEQ8HNgKHJiZs+W+24GnZ+Z3AX74wx8eDtxUXyslLXOP23///b9ZdyP6YZ8q\nqeHsTyVpeMaiT7U/lTQGFt2fLocpFDYCt8915KVJ4JCa2iNJ48w+VZKGw/5UkobD/lTSkrccAriS\nJEmSJEmSNJaWQwB3O3BwRLSe6yEU38hJkgZjnypJw2F/KknDYX8qaclb8ouYZeb3I+Jq4GTg7yLi\nV4Dtc3PhlLYC81epvAtY2hMES6pDAAfO27e1joYshH2qpAaxP5Wk4RnbPtX+VFLDjKQ/XfKLmAFE\nxGOBvwUeBvwQeFVm3lhroyRpTNmnStJw2J9K0nDYn0pa6pZFAFeSJEmSJEmSxtFymANXkiRJkiRJ\nksaSAVxJkiRJkiRJaqglv4jZYkTEForVKwEm502CvmxExG9m5odqqvvhwBOBmzLz9grqewhwX2bu\njogDgZ8BvpWZ3xt13dJSYx8qScNVZ78aEesy8+6K6qrs819EHAFsAnYD3/C9Sloelkt/WtZXSZ9q\nfyqNliNw24iIx0XEFcBXgHeUt69ExBUR8YQK6j8sIi6KiO9GxHsiYk1L2mUjrvuF82/A6S3bIxUR\nH4+Ig8rtY4FvAG8HrouIF4247lcCPwBuKeu+AfgL4NqIOGmUdUtLSZ19aES8pGX7JyPicxHxw4i4\nOCIO6ZZXkpqq6n41Io6IiGsj4uqIeEJEfA64LSImI+JJI6iv8s9/EfGkiPg6cAlwHsVnvqsi4pyI\nWDuKOiXVb6n3p2Wdlfap9qdSNVzErI2IuBz4y8w8b97+XwH+e2Y+dcT1nw98Bvga8AbgMOAFmXlP\nRFyTmT8zwrpngcuAmZbdTyvbkpl57KjqLuu/LjOfXG5fArwhM6+NiM3A/xnxuV8P/BKwP/Al4DmZ\neVVEPBo4b65dkrqrsw+NiKsz8ynl9keAO4H/BfwX4JjMfPGo6hZExErgmbSMaAEuycw9NbWnyhGD\nnntDzn0pqrpfLT+D/U/gAOB04A8z86zyH//fysznDbm+yj//RcRXKa7dl8tBCs8B3gScBmzMzF8d\ndp2qTkQ8LDPvrKiut2XmH1VRlxZvqfenZZ2V9qn2p0tfVX3qKPvTiPjpzLxhFGVXxQBuGxHxrcz8\nqUHThlj/XkHaiPgD4EXAc4GL5oITI6r7VcBvAL+dmdeU+27JzM2jqnNe/Tdn5mPL7Ssz86iWtOsz\ncyTfUpbl33/dI2JbZm5qlzZKTfgnOCJWZObsvH2V/synrLO2D8MR8UTgKOD6zLyqjjaMszr70Hmv\n4+uAp8y9flo/zI5SE17H89pTyes3Io4BPgHcBtxa7t4EbABenplfGnH9b8jM95bbm4F/ArYA/wa8\nMDO/PsK6Pfeazn25qLpfndeXTmbmIS1p12bmEUOur/LPf/PPo7Xe1vaMoN5aP2eNuq6IOBy4KzPv\nKLefDtyQmZePqs4O7djreTvEcn+nze7TgD8ByMz3DbtODddS70/LcivtU+vqT8vya+tTq6hnKfep\nVfen5WDFrwMfA/4+M+8aZvlVcAqF9n4QESdHxP3XJyJWRMSvUozmGrUHtd7JzD8H/hG4ANhvlBVn\n5t9QjFT7y4g4rQxEVBnlPz8i3hsRDwX+JSJeHoXjKKY3GKXZKH7W8gzgIRHxdLi/01w54rrn/gne\nBvw5cFx5+wtgW0T8fAX1HxkRtwA/johPRTFX0pwLRlz378y/Aae0bI9URFwQD/zM6ETgC8ALgHMj\n4jdHXf8SVGcfuiYinhjlT9LmBU1H3pc14HX8hpbtzRFxI7AjIm4pv5gYpQ8AL87Mp2XmSeXtaOCX\ny7RRax3d8efAX2fmgyhGgLxnxHV77vWd+3JRdb8aLdsXdUkbljo+/+0qP+MREU8D/qMlbehfuNXx\nOavq94SI+D2Kn1BfFRGvAL4IPB/4x9a2DLG+faZ+iwemfVvTs4CFeQ/wbIp1MuZuP1H+HXogTiOx\n1PtTqL5PrbQ/LeuptE+t4zP2MuhTq+5Pb6QIDr8AmIyIT0bEc0ZQz+hkprd5N+DRFC/6fwduKm//\nDlwIPLaC+j9FMWXC/P1vBGYrugYB/C7wVeC2Cq/9BMVPTH4I3ALMArsoAmqbR1z3f6Z40/4+RUdy\nEfDNsi0nVXDu1wNHttl/FPD1Cuq/FDgeeBjwtvJ5/8gy7ZoR170b+L/A37Tc7in/nlnFtW/Zvgw4\ntNw+sDXNW9/Xs7Y+lCJ4+t2y/7gFeFS5f3/g6iqeSzW/jq9u2f4H4NRy+wTgn0dc980LSRvRuV83\nL+1az31pnvtyuVXdrwLnA2vb7D8YuHwE9VX++Y/iH7gflJ/1vg88s9z/CODDI6iv8s9ZVb8nUPxz\nvA7YSBHA2Vzu/0mKEWPDrm9P+Rq4qM3txyO6pscClwO/2LLvllHU5W00t6Xen5ZlV9qnVt2flmVX\n2qdW3Z+WZS/pPrXq/nTeY7gR+EPgOxT/P542qnqHeXMKhS7Kb3E2lne3Z+b3K6r3JwAy8742aY/M\nzNuqaEdZ3xMo5o08o6o6y3ofTDH37yqKVUErmcNqXhtWUnzzsz0z76igvo4/L+mWNsT650/d8Qrg\njyjmMPq/OdqpO46lGKX4tsz8p3LfLVnd1B3fAh6fmXsi4muZ+bSWtK9n5qhHLi5JdfWhHdryYGB9\nZt4y4nrqfh23zgG815QRMaKf6bWU/3mKL0DOmOszy5HtpwA/l5nPH1XdZV3fpZg3fgXwjsw8vCVt\npNNneO71nftyU3e/GhH7A/tn5uSIyq/0819EHFDWtzUzd464rso/Z1X9njCvvlsz89CWtKFPRxYR\n36QY9LKtTdr2zNy4b66h1LsW+CuKYMcbKL4o2zKKujQ6S70/LeuorE+tsj8t66u0T63jM/Zy6FOr\n7E9br+e8/c8GXp2ZLx9FvcO0qu4GNFnZiVcecGgXuG1Jqyx4W9Z3I8U3P5XKzHsp5iepTRY/vf7X\nCqv8TkScRvt/gkcadCo9OFrmEMrMv4+IXRTfUP/EKCvOzAsj4rnAX0XECRSdd5XfLv0DcHZEvJli\n2oS3AP+b4ufv362wHUtKXX1oO2WfUsXrqO7X8QER8UsUgbz5r9tR/UxvzispVnL+TkTMfb7YDZwD\nnDziuqGYa/iN5fbtc194ltd/pku+YZh/7kEx0mW5nPvbqe9xX1bq7lcz84cUI7pGVX6ln/8y89+p\n7rNeHZ+zqn5PuC8ijqcYMZYRcVJmnh0Rz2I0P6P+O4qRaNvapI1s8EkZnHplFIteXcK86e80HpZ6\nf1rWUVmfWnF/CtX3qXV8xl7yfWrF/Wnbz8SZeQEjnjJyWByBKzVE+S3w24ETeeDLlbl/gt886lHA\nEXEmxaqk/zRv/4kUk3xPjLL+lvpOoPg5wyMy8+Aq6izrfQPFfJHrKa7/PRSB3T/IMZzgXPVowOv4\nYvb+8uMVLYG8z2XLIhYjbseBAE147ZS/pviJ8p+YKuo7cG67zvOPiHXATuo59xOr/uWO1HR1fM6q\n+j0hIo4CPkzxc+1XA28GXgz8iGI6srH4B3kQEbEe+NnM/H91t0VaTqruU+v4jL3c+lT7094M4EoN\n1KTgRx3q7LwjYj9gVVa0GrSWria9jssg5kRm/niEdRwGfBQ4FPg0xZcf02XaZZn5n0ZVd1nHlrL+\nTVXXHxFHAH9LMRrilcBfAr9AMa/6L2bm9aOqu6z/yRSjJlrrfxbFfHTHZ+bIRt9EsbDFfB8GXkPx\nOfMzo6pb0sJU8Z7QUtfDgLtz3irxQyp7C8Vq4pW979T9XiepWarsT8v6lkyfWnV/Wsd7xrCt6H2I\npKpl5l2tQZ+IuLnO9lRdf2ZOzQVva6j7ntbgbd3XXuOrSa/jckqY60ZczV8D5wIvofj51QXlFyIw\nutXAW30QOK+m+t8LvBV4P/D/gE9m5kOA3wHeNeK6Ad7Xpv4Hl/W/e8R1fxr4H8B/a7ntTzGlw38d\ncd3SklDDZ50q3hPm6rozM2dHdI4fpPr3nbrf6yT1UGWfWmV/Wta3lPrUqvvTOt4zhso5cKWGiIgn\ndUner0va2Ne/nM9dS0vdz6Wa6z8oMz9Qbr8yIv6A4oPRc6lmTus661+bmZ8GiIg/ycyzADLz0xHx\n1hHXXXf9vw78BvDGzLymbMMtmfmsEdcrjZU6+ueq66zhHOvo9+t+r5PEsujflkOfutTrGzoDuFJz\nXEsxYXi7SdAftsTrX87nrqWl7udSnfXvtehAZv55RMxQLApQxRchddbfer0v6pK25OrPzL+JiAuB\nj0bEpcCfMSYfgqWK1dE/V11n1fXV0e/X/V4nqbDU+7c66qy6f1vq9Q2dAVypOW4FnpGZO+YnRMT2\nJV7/cj53LS11P5fqrP+miHhBZn5hbkdmvisiZqlmGoE665+KiLWZuTMzf3VuZ0QcDEyPuO7a68/M\nWyPieRTTJlzKaFZ/lsZdHf1z1XVWXV8d/X7d73WSCku9f6ujzqr7t6Ve39A5B67UHJ8BtnRI+9wS\nr385n7uWlrqfS3XW/1L2Hf1JZr4H2DjiumutPzOfn5k72yTdSzHP1kjVXX/ZhszMd1MsXva2KuqU\nxkwd/XPVdVZdXx39ft3vdZIKS71/q6POqvu3pV7f0EWmv3KTJEmSJEmSpCZyBK4kSZIkSZIkNZQB\nXEmSJEmSJElqKAO4kiRJkiRJktRQBnAlSZIkSZIkqaEM4EqSJEmSJElSQxnAlSRJkiRJkqSGMoAr\nSZIkSZIkSQ1lAFeSJEmSJEmSGsoAriRJkiRJkiQ1lAFcSZIkSZIkSWooA7iSJEmSJEmS1FAGcCVJ\nkiRJkiSpoQzgSpIkSZIkSVJDGcCVJEmSJEmSpIYygCtJkiRJkiRJDWUAV5IkSZIkSZIaygCuJEmS\nJEmSJDWUAVxJkiRJkiRJaigDuJIkSZIkSZLUUAZwJUmSJEmSJKmhDOBKkiRJkiRJUkMZwJUkSZIk\nSZKkhjKAK0mSJEmSJEkNZQBXkiRJkiRJkhrKAK4kSZIkSZIkNZQBXEmSJEmSJElqKAO4kiRJkiRJ\nktRQBnAlSZIkSZIkqaEM4EqSJEmSJElSQxnAlSRJkiRJkqSGMoArSZIkSZIkSQ1lAFeSJEmSJEmS\nGsoAriRJkiRJkiQ1lAFcSZIkSZIkSWooA7iSJEmSJEmS1FAGcCVJkiRJkiSpoQzgSpIkSZIkSVJD\nGcCVJEmSJEmSpIYygCtJkiRJkiRJDWUAV5IkSZIkSZIaygCuJEmSJEmSJDWUAVxJkiRJkiRJaigD\nuJIkSZIkSZLUUAZwJUmSJEmSJKmhDOBKkiRJkiRJUkMZwJUkSZIkSZKkhjKAK0mSJEmSJEkNZQBX\nkiRJkiRJkhrKAK4kSZIkSZIkNZQBXEmSJEmSJElqKAO4kiRJkiRJktRQBnAlSZIkSZIkqaEM4EqS\nJEmSJElSQxnAlSRJkiRJkqSGMoArSZIkSZIkSQ1lAFeSJEmSJEmSGsoAriRJkiRJkiQ1lAFcSZIk\nSZIkSWooA7iSJEmSJEmS1FAGcCVJkiRJkiSpoQzgSpIkSZIkSVJDGcCVJEmSJEmSpIYygCtJkiRJ\nkiRJDWUAV5IkSZIkSZIaygCuJEmSJEmSJDWUAVxJkiRJkiRJaigDuJIkSZIkSZLUUAZwJUmSJEmS\nJKmhDOBKkiRJkiRJUkMZwJUkSZIkSZKkhjKAK0mSJEmSJEkNZQBXkiRJkiRJkhrKAK4kSZIkSZIk\nNZQBXEmSJEmSJElqKAO4kiRJkiRJktRQBnAlSZIkSZIkqaEM4EqSJEmSJElSQxnAlSRJkiRJkqSG\nMoArSZIkSZIkSQ1lAFeSJEmSJEmSGsoAriRJkiRJkiQ1lAFcSZIkSZIkSWooA7iSJEmSJEmS1FAG\ncCVJkiRJkiSpoQzgSpIkSZIkSVJDGcCVJEmSJEmSpIYygCtJkiRJkiRJDWUAV5IkSZIkSZIaygCu\nJEmSJEmSJDWUAVxJkiRJkiRJaigDuJIkSZIkSZLUUAZwJUmSJEmSJKmhDOBKkiRJkiRJUkMZwJUk\nSZIkSZKkhjKAK0mSJEmSJEkNZQBXkiRJkiRJkhrKAK4kSZIkSZIkNZQBXEmSJEmSJElqKAO4kiRJ\nkiRJktRQBnAlSZIkSZIkqaEM4EqSJEmSJElSQxnAlSRJkiRJkqSGMoArSZIkSZIkSQ1lAFeSJEmS\nJEmSGsoAriRJkiRJkiQ1lAFcSZIkSZIkSWooA7iSJEmSJEmS1FAGcCVJkiRJkiSpoQzgSpIkSZIk\nSVJDGcCVJEmSJEmSpIYygCtJkiRJkiRJDWUAV5IkSZIkSZIaygCuKhURExHx/oi4OSKui4iPdzl2\nS0ScExHfiYgrI+JrEfHqMu1vIuJ3qmv5wkXEOyPitA5p2yLipoi4JiJuiIjfqrp97UTEH0fERN3t\nkDRaEXFg2f9cXd6+FREzEXHAvON+qeW42yPijpY8LxtWnxwRryvfG66OiG9ExFmLLXMRbdkSEf9a\n3n61rnZIkiRJ0qq6G6Bl5x3AbGY+FiAiDmp3UESsB74M/GFmvqTctz9w0igaFRErM3PPKMruIYET\nM/PrEXEIcH1EfCkzb6i5fX8M/E9gpsI6JVUsM+8CfmbufkT8LvDzmfnv8477LPDZ8pg/BvbPzDe2\n5HveYtsSET8L/B7wlMz8YbnviMWWuwgvAa7IzFNqbIMkSZIkOQJX1YmIBwOvBt4yty8z7+hw+KnA\nlzLzzJZjf5iZH25T7qqI+ItyhO7VEfHJMthLOTLsa+UIqmsi4hdb8l0UEe+NiK8C57cpt1fed0bE\nlyJia0R8sCXtERHxhXJE7ReBR/W6NOX5TQLfAh4bEc8s8380Iq4GXhQRD42ID5dtujYizoiIVWWd\nfxgRN7aMiNtY7j8yIi6IiCvK8/iVcv+hEXF3RLw1Iq4qR0S/oEz7IEVg+dKyrJ/s0X5JS8evAx9d\nYN7HR8S/lKN4z23pnzr20fM8CtgJ/Mfcjsy8dm47ImYjYm3L/e+XX3wREbdExNsi4isRcWtE/GZE\n/FpEfDUivhsRbb/8i4iHRMTHIuLrEXF9RPxRuf9k4L8Cv1y2+fAFXhNJkiRJWjQDuKrSYcBdwFui\nmBLhkog4tsOxPwtc1me5vwf8KDOflplPAW4A/qxM+0K5/2eBFwEfiYjVLXkfAzwjM5/TptxeebcA\nzwSeCDw/Io4u978PuDwzfxr4NeDZ/ZxERDwR+CngunLX4cDfZuZTMvM84N0UQe2nZeYRwErgDVH8\n1Pl3KUatPQX4OWCqDJB8GPgvmflU4HnAuyPi4LL8/YFrM/NI4PXA/wIoR5tFeV2ekpk/6Kf9ksZb\nRPwccADwuQUW8WTgeIq+6xHACeX+bn10qy8CPwJuLYO8p8beUznkvOPn339wZj4dOJbiFwQbMvPn\ngBOB93do8x8BE5n5ROBpwIsj4iWZeRZwBvC/y37wmz3PXpIkSZJGxCkUVKVVwKHADZn5++VPY/85\nIh6fmd9fRLkvAtbOjS4FVgO3lNuHRcTbKEZ27QbWAZuBm8v0v8/M2Q7lbomIP+2S9+zMTGA6Iq6l\nCFBfThGw/V2AzNwREZ/p0f6zI+LHwL3AqzLzOxHxKOC7mfnleef5tPInzgBrgF0UI9ZuBv4+Iv4Z\n+Fxm3hYRz6YIMn8+IqLMkxRB4luAH2fmp8v9l5XHtgokLSevBj7epU/s5VOZeR9ARFxB0SdC+z56\n2/zMmflj4JiIeDJwDPDLwP+IiCeVUzrM75Pm3z+7LOc7ETENnFvevyoi1kXE2szcOS/Pc4A3lsfd\nG8W87M8Fzhns1CVJkiRpdAzgqkqTwB7gE1D8NDYibqEYwXrhvGP/lWIk6Xv7KDeA12fmv7RJ+wfg\nv2fmpwAi4k6KwOecH3Up95M98k63bO+h8+tp/iix+U7MzK+32d+ubSdk5rfn74yIp1Fcr2cBX4uI\nl1Jclxsy8xltjj8UuG9e+1f2aKekJSoiHkIxUvXIRRTTqU/s1kfvIzOvo/glwl9FxDeAXwA+zb79\n1Jp5WefX33o/6e8zT6/+WpIkSZIq5xQKqkxm3glcAMzNtboZ2ATc1ObwvwZ+PlpW/o6I/SPitW2O\n/TTw3yLiQeVxD4qIx5dpB1CO9IqIV1CMou3XQvP+M8U8kpTTFbywx/H9jnT9NMVotJVl2QdExGER\n8VDgEZn5lcz8U4rF334G+CqwuRyJS5nnyXPzUrapt/X+ToopFiQtDy+lmFLl5p5HDq5bH32/iPip\nciqZufuHAD8JfKfctRU4ukz7ZeDBA7ShUz/7LzzQXz8EOJk2c6JLkiRJUp0M4KpqpwC/FxHXA/8H\neG1m3j7/oMz8N+AZ/5+9+4+zq6rv/f96J5kxKCSEGqdwG0jCD1FRUQm0pQWLvV9Erj8Qm8AVWktL\nG8qDVi1trUaoJbfKhX57A1hpkViJVWKCqLXQtIqkJGICCuVHoYRCMhHNJJLcJECHmWQ+94+9Dpyc\nOb/n/J738/GYR87Zn733Z60z56zZWWfttYB3S/rPNEXBt4GR3C55u18N3AdskPRvZNMBvDnFPgzc\nJukHaduW/DQVyvoHNRyb//zDZFMdPAL8HVmndSm1jPb6CNmIsgdTPb9NNiXFTOBrkv4tbZ8GfDHd\ncnw28HFli7A9Cnyalz/35erwl8C3vYiZ2aTxm9S/eBmUb8vKtdH5XglcL+kxSQ8A3wD+JO8OhY8C\n10m6Px3/bJn8lZ7nXAXsk/RwKtfX05zjZmZmZmZmHUPZFJ5mZmZmZmZmZmZm1mk8AtfMzMzMzMzM\nzMysQ7kD18zMzMzMzMzMzKxDuQPXJi1Jm9Nciw9KekLS7ZJ+od3lMjPrBpIOlrRX0k0F239D0u3p\n8elpPttix18paXuaa/uB9O/PtqLsZmbFSFom6WlJY5LeVGa/pyT9Yt7zz0t6Ou/5VEl7JM2T9G5J\nf5m2HyXpdwvO9XS5XHXW4w8kvaZMPHcN/ED6908amd/MrFqS3iXpB6k9ekjSr5fY73RJL6R9H5H0\nsKS/lHRolXnGJM0oEbtSUn+d5b85lWfcGgqSvivpPQXbviDp9+vJZeYOXJvMAlgYESdGxHHALcAd\nkha0s1BK2lkGM7MqLALuB94v6ZUFsSjxuNCXIuKtEfGW9O+2RhTM7aiZ1WkVcCqwucJ+dwFvz3t+\nKvBTSUem5wuAZyPi6Yj4h4j4w7R9HrC4ccUt6cNAuS/EctfAbwHeAfyppJNaUK5xJE1tR14z6xgr\ngF9P7dG7gb+R9KoS+z4eEW+LiBOAnwcOAb5T5TVfuevRK4HptRQaQNIA2fXwGyPi3FqPbza3r73H\nHbg22b3U2EfE7cCNwB9JOkPS99I3fA9LuuilA7JvzW6U9G1J/yFptaRpKXawpFsl/buktWm/L+Qd\n+4eSvi/pfkl3SJqTtl+ZzvNPwMOUv+g2M+sEvwVcDfwr2cVrw0i6IK+tvDs3Ok3SCZLuSdsfkfTx\nvGPGtaOSbpD0aBrVcV+9oyvMbHKIiHUR8WPyrg9LuJvUgSvp54BdwD/ycqfu24HvpvhLdyUAnwOO\nS3ccfD3vfOem687/lPSJ3EZJR0v6F0n/lo55b17sgNFkknZIOlLSJ4EjgJXpmFKje5Xq/GPgceCo\nvHMVtsFvzKvLv0j6cmpb10l6naSvpWvff8p9oSfpVWlk2sNpVN0Veef/rrLRzt8D1kh6taQ1qZ4P\nSro5b9+i185m1jPGgFnp8Uzgp8CLlQ6KiOeB3wNeDbwTQNIxkr4laUNqS34v7xCR/T//h5Iel/Q/\n0zGfI+vcvSfFXl2YS9KFee3TP0g6XNJMsi/zXgH8QNIf11rxKtrJayT9q6RNqZy52GxJt6VjHpL0\nO3mxpyV9RtIG4O9qLZN1tmntLoBZh9lA9s3fD4BTIyIkzQIekPRP6SIX4M1kF+cjwD3AucBK4Arg\nhYh4vaSDge+RjVBD0vnAa4FfSOe9gOxC/n+kc/48cGJE/LQF9TQzq5uk1wM/B6wB+oCPAV8oe1Bx\nF0h6e3r8QET8lrLbks8HfjkiRiX9EvBl4ATgaeCMtH068D1J346IjekcL7Wjkk5M+74+lfmQiBip\nr8ZmZgf4LnCjsi/wf4WsQ3ct8Otkd3T9CtmospzcyK/FwF9FxFsLzjczIn5R0s8A/ylpeUT8BPh7\n4PMR8XlJxwDfl/TDiNjK+NFkARARVykbeLAwIh6uVBFJxwOHpTpQog3+ClkbDHAScEJEPCPpFuCb\nZNe2P5X0D8BvkF3fXgH0R8QbU6fuOkmPRcSqdJ5jgV+KiDFJHwaeiogzUxkOTf9WunY2s+53HnC7\npOeBQ4H3R8S+ag6MiH3Kpup6g6Q1ZG3VByPiCUkHkbWZGyLiB+mQ/RHxVknzgPslrYuIS5RNbfNL\nEbG3MIekNwD/G3hLRGxTNnjg5oh4l6R3kV2/Frbp+f5K0p/lTgfMAXLTi1VqJ+cDp5OIav1iAAAg\nAElEQVR1Ev+7pFMiYgNwPdlo5HMlzSbrQH4w73r4sIg4pZrX0LqLO3DNDpQbcfFqYLmk44B9ZBe2\nJwC5DtzbI+JFAEkbgaPT9neQ3bZGRDwnaWVe7H1kF70/VHaXxxQOvPi+w523ZtYlLgJuSf+hvpPs\ndrfXRsR/1HieL0XERwu2vRd4E7BBeumWuEMlvQJ4JfC51Dk7RtaJfCKQu2DNb0efAqZKWk7WMfGP\nNZbNzKyo1Hn5DNmXRm8n+xL/+7zcqfuLZO1ktb6czvuspKeAeZL2Am8FlqfYk5LWAb+c9i8cJVzp\neaGVkgI4DvhIRDybtpdrgwHujYhn0uP7gWl57e59ZB2zkF0TfzSV/YXU2fvfyaapgKz9H0uPvw98\nWNI1ZAMj/iltr3TtbGZdTNkt/kuA90XEemVTuXxT0gkRsbPa06R/Xwu8Abg1r+06GHg92eAsgM8D\nRMTTkv4VOA34UsF5Cv0KcGfeNF9/DVyRl6OSj0TEN18qbN7duVRuJ1dGRADDkh4k61fYAPwq8Mfp\nuB2Svpa25a6H/67KslmXcQeu2YEWAI+QTaXwj7m5bCT9gAPnxRnOe7yf0p+l/ItMAZ+OiM+X2Pe5\nukpsZtZCqXPiQmAk3X4m4CCyKRVqvn2sWArgixGxpEjuvwB2AG9Once3cWDb/FI7GhF7JJ1ANnLh\nDODTkn45Ip5qQBnNzL5L9h/7U4HLIuK/JG0nG03247xOzmqUuq4sOso2b7/8+Q1rnb9xYUQ8LOkd\nwD9IuisiHqV8G1ysrPVcE8OB7fX30xdzvwq8H7gqPa907Wxm3e1E4PCIWA8QEfdL+hHwFuA7lQ6W\n1JfO8Tmy9uLZCqNhCztd6/1CqFlfJBWed8Ltq/UWz4FrliibV2wx8Jdkt29sSdtPI5syoRp3kd06\nRppCYWFe7OvA4jQlA5KmpYtTM7Nu8l7gPyNiTkTMj4h5wC8Av67GLJbwTbKpFXJzhEvS21JsFvCj\n1Hn7WrJRCkUpm8Ps4Ij4dkR8nGxRotc3oHxmZpCN7L+ArMPghbTtX4FPkua/LWIP2RyPFUXEc8AP\ngd+EbG5Hss7itWmXTcApKfZ+sjsUcnZXkSc3B+53yEaU/a+0vVwbXItvk32xh7IFiS4km3ZnfEGk\nucDzEbEa+H2yUbwH42tns163FTg8TeWSa+fmA6Xu6HqpAza1K9eTfbG/Jh2zR9KH8vY5OjclS5Jr\nT+cCv0TWZkP5tvm7wDsl5daoWQx8J42MPaBMdai6nSzwL8DF6bjZZF98/fMEymFdwiNwbTILstvH\nhoFXAf8OnBUR90n6U+CvlS0E8SDZrV35x5Xy58DnJf072QTsDwL/FyAivizpMOC76Za1aWS3xT3Y\n4HqZmTXTRbx8uxkAEfF4GjHx7omePCLWKVsI4vbUIdxPNv3BD4ClwApJvwH8J+VHZ8wBbkojhqcC\n64E7J1o+M+tdkm4EzgYGyBbX2hsRx5XY/W7gGGB13ra1ZHOCjxu9mjwEPCrpYbIvwt5H+VG2F5BN\ny3AZ2bQxv5U3svejwHWS9pC1kc/mHXc92fXo88CHIuKhMjkga1s3SXpLhTa4Flel8j2c8n01Im4r\nkf/twEcl5UYVX57movS1s1kPi4jtyhbg+mr6/E8BLo2IH5U45DhJPyRrlyDr7HxH6kzdL+l/AMuU\nzas9jaxz93+S/X88yKbW+iHZF16XpfnEIRvA9e3UZv5/+dMaRsSjkv6I7G9CkHU6X5xfjXJVrLCt\nlnYy//kfkE0plmvbr4qI+6soj3U5vfzFgZlNVK6jICJeVDYR+RrguryJyM3MzMzMzMzMzKrmEbhm\njTULuDONWHgF8HV33pqZmZmZmZmZWb1aPgeupGWSnpY0JulNReJnSNon6ffzth0k6cuSNkl6XNK5\neTFJul7Sk5KekHRpwfmWpNgmSUubWzub7CJiR0ScFBFviYjXp3kXzZqmVJsqaYGkeyX9UFLu1p9c\nzG2qmVmBMu3pckn/IekBSfcoWyU7F3N7amZWoNz/+SX9WWpTH5L0nbztbk/NzMpoxyJmq8gm4N9c\nGJA0A/g02TxL+S4HhiPiWOCdZHOTzkqxC4HjI+IYson8/0jS69L5TgMWAScAbwDOlHRWw2tkZtY+\npdrUvwWWppVYfwm4XGmBANymmpkVU6o9/Rrwuoh4C/CZtF+O21Mzs/GKtqeS/oCs3Xt9RLwJOD8v\n7PbUzKyMlk+hEBHrIPsWrUj4BrKJnM8t2L6IbNEUImKzpLuBc8gmsV8I3JRiuyStJPtDcEWKrYiI\n4ZRzeYodsIjJ7t27p5KtdppvJ54A2swaT8BhBds2zZw5c389JyvTpo6RTekB2UrOL5K1a+A21cx6\nQ0va04j4Vt7T7wNHSJoSEWO4PTWz3tGwNrXM9enlwK9ExP603/a8mNtTM+sVDb1GzemYOXDTLRL7\nI+Jb+bdLJEcCW/Keb07bSsVOyYvdUxBbVCT9scBj9ZTbzKwBXgc83uBzXgR8Q9L/Al4N/G7eRbLb\nVDPrVc1oT/N9GLgjdd6C21Mz620Na1MlHQIMAO+T9AGyjtO/ioivpl3cnppZL5twe9oRHbiSBoAl\nwOntLouZWY/4GPAnEbFS0jxgraT7I6KZHRtmZj1L0gXAB4DT2l0WM7MuNC39vCIifl7SUcD3JD0W\nEQ+3uWxmZh2vHXPgFvM24GeBByU9TXZxfIWkq1J8EDgqb/+5adtEYmZmPUnSzwDnRMRKgIh4muy2\n31PTLltwm2pmVjVJi4BPAr8aETvyQm5PzcyqEBG7gL3A36fnW4D1wIK0i9tTM7MyOqIDNyLuiIjD\nI2J+RMwDVgN/HhGfTLusAhYDpJFkpwNfz4tdLGmKpMPIbpdYmRe7MK1o+QqyW4pvbU2tzMzaZhfw\nnKRfAZD0arLbzHKjG1bjNtXMrCqSFpKt0fCrEfFMQdjtqZlZ9b4CnAWQ2sWTgYdSzO2pmVkZLe/A\nlXSjpK3AfwPWSHqiyG6FE4lfA7xS0pNkk5FfGhG5xXhWkM0jsQnYAFwbEY8CRMRasob9EeBRYE1E\n3FEk387CDcPDwzz11FMMDw/XXMdGaXcZ2p2/VBmeekocffQhRX+eeqrY2niNzd9K7c7fCWVod/4W\nGdcGVatYm5q3sM41kh4A7gb+/4jYmA5reZu6efPmSfkeavf713V33SdT7qSh7WkKfQl4Bdm84g9I\n+mHeyug9f43ajt9pr9fRr2n352tHzja1r3W1qWXa048D75T0MNn16acj4v4Uc3va5fnakdN17P58\n7cjZTe1pvpbPgRsRi6vY56KC5y8A55XYdwy4LP0Uiy8FllZKWWzj/v0TWiCuIdpdhnbnL1aG/fvF\ns88W/+5h/37R6IVE2/0atDt/J5Sh3flboO43bak2NSK+A5xUItbyNnVsbKzYfi1T7XtoaEjs2XPg\nF0EzZgQDA/W3K+1+/7Yzv+vePpO47s1oT/vLHDMprlHb8Tvt9Tr6Ne3+fO3I2YY61tWmlmlPdwLv\nLRFze9oD+dqR03Xs/nztyNkt7Wm+jljEzMzMrBPs2SMWLDjkgG333bd3Qh24ZmZmZmZmZhPREXPg\nmpmZmZmZmZmZmdl47sA1MzMzMzMzMzMz61DuwDUzMzMzMzMzMzPrUO7ANTMzMzMzMzMzM+tQ7sA1\nMzMzMzMzMzMz61DuwDUzMzMzMzMzMzPrUO7ANTMzMzMzMzMzM+tQ7sA1MzMzMzMzMzMz61DuwDUz\nMzMzMzMzMzPrUO7ANTMzMzMzMzMzM+tQ7sA1MzMzMzMzMzMz61DuwDUzMzMzMzMzMzPrUO7ANTMz\nMzMzMzMzM+tQ7sA1MzMzMzMzMzMz61DuwDUzMzMzMzMzMzPrUO7ANTMzMzMzMzMzM+tQ7sA1MzMz\nMzMzMzMz61DuwDUzMzMzMzMzMzPrUO7ANTMzMzMzMzMzM+tQ7sA1MzMzMzMzMzMz61DuwDUz62KS\nlkl6WtKYpDcVxP5M0n9IekjSd/K2HyTpy5I2SXpc0rl5MUm6XtKTkp6QdGnBOZek2CZJS5tfQzMz\nMzMzM7PJbVq7C2BmZhOyCrgaWJe/UdIfACcAr4+I/ZJekxe+HBiOiGMlzQU2SLorInYBFwLHR8Qx\nkmYBD6TYY5JOAxal844B6yWtj4g7m11JMzMzMzMzs8nKI3DNzLpYRKyLiB8DKghdDnwsIvan/bbn\nxRYBN6btm4G7gXNSbCFwU4rtAlYC5+fFVkTEcESMAMvzYmZmZmZmZmbWBO7ANTPrMZIOAQaA90n6\nvqR7JS3M2+VIYEve881p20RiZmZmZmZmZtYEnkLBzKz3TEs/r4iIn5d0FPA9SY9FxMPtKtTIyEhb\n81aTP2J6kW1jDA8PNz13M7Qzv+vuurfC9OnjP7NmZtZekpYB7wGOAk6MiIcK4mcA/wx8NCKuS9sO\nAm4GFgD7gU9ExG0pJuA64CyyabyWRcRn8863BPgQEMDKiFjS1AqambWBO3DNzHpMROyStBf4+/R8\ni6T1ZBfED5ONoj0KGEqHzAXWpMeDKbYhLzZYEKNIrKKhoaHKOzVRNflHR+cV2baPrVu3Nj13M7Uz\nv+vePr1e96lTpzJ//vym5zEzs5oVXaMBQNIM4NPAPxaEvEaDmVkZ7sA1M+tNXyEbpfA5SYcBJwP/\nO8VWA4uBjZLmAacDl6TYKuBiSauBQ8kuiM/Oi90g6XqyC+SLgCurLdDAwAD9/f0TqlQ9RkZGGBoa\nqir/4OD4P4t9fdOYM2dO03M3Qzvzu+6uezvqbmZm7RcR6+ClkbOFbgCuAs4t2L6I7NqSiNgs6W6y\nNRqWU7BGg6TcGg1XkLdGQ8qZW6PBHbhmNiFDQ2LPngObsRkzgoGBaEt53IFrZtbFJN1I1sE6AKyR\ntDcijgM+DnxB0u+R3U726Yi4Px12DbBc0pPAPuDSiNiZYiuAk4BNZJ2010bEowARsTZdMD+Sznlr\nRNxRbVn7+/vbertzNfml8VPDS1MmXO5uqHsv5m53ftfd0xuYmdnLJJ0L7I+Ib6XH+Wpdh+GUvNg9\nBbFF1ZRndHQUaN20P62eZqgdUyq5js7XDTmrzbd793ROPnnGAds2btzNzJmVp9drxnVwyztwS82H\nk74pOxV4AXgO+Eius8Hz4ZiZFRcRi0ts3wm8t0TsBeC8ErEx4LL0Uyy+FFhaV2HNzMzMbFKSNAAs\nIbvzqyPs2LEDaP2UQ72erx05Xcfuz9eOnJXy1Tu9XrOm+WrHCNxS8+F8DfjtiBiTdHbaL/dqeT4c\nMzMzMzMzs+70NuBngQfTIKxXA++WNDsiPsnLay20bI2G2bNns23btpZN+9PqaYbaMa2R6+h83ZCz\n2nyNnl5volregVtqPpyI+Fbe0+8DR0iakkaDeT4cMzMzMzMzsy6Upt06PPdc0heAByLiurRpFS1e\no6Gvrw9o/bQ/vZ6vHTldx+7P146clfI1a3q9enXqHLgfBu5InbfQhvlwzMzMzMzMulluAZaI6YyO\nzmNwcBrSlLYuwmK9r8waDfkK34BtWaPBzKxbdFwHrqQLgA8Ap7WzHK2e0LyYdkwe3Un5S5UhovS3\nHRFjDA9XnlB6Ivlbqd35O6EM7c7fDF7Yx8zMzFphzx6xYMEh47bfd99ed+Ba05Rao6Fgn4sKnnuN\nBjOzMjqqA1fSIuCTwBkRsSMvtIUWz4fTrgnNi2l3Gdqdv7AMxSaSfjlWeULpieZvh3bn74QytDt/\nozRrQnMzMzMzMzMz600d04EraSFwFfCOiHimILyaFs+H0+oJzYtpx+TRnZS/VBmKTSSd0+gJpdv9\nGrQ7fyeUod35zczMzMzMzMzaqeUduGXmw/kS8BPgG2mBsyDrzN1FG+bDadeE5sW0uwztzl9YhmIT\nSec0a0Lpdr8G7c7fCWVod34zM+ttkpYB7yG7e+vEiHgobZ8N3AIcDQyTXYfek2IHATcDC4D9wCci\n4rYUE3AdcBbZNeqyiPhsXr4lwIfIrlFXRsSSFlTTzMzMzLpQyztwS82HExElh9Z5PhwzMzMza7JV\nwNXAuoLtnwHujYizJJ0E3C5pbkTsBy4HhiPiWElzgQ2S7koDEC4Ejo+IYyTNAh5IsccknUZ219gJ\nZJ276yWtj4g7W1JTMzMzM+sqpYcympmZmZlNEhGxLiJ+DKggtBC4Me1zP/AM2XRekHXC5mKbgbuB\nc/KOuynFdgErgfPzYisiYjgiRoDleTEzMzMzswN0zBy4ZmZmZmadRNJhwLSI2J63eQtwZHp8ZHqe\ns7lC7JS82D0FsUXVlGl0dBTI5ohvhVyeVuVrR85ezhdRfPqpiDGGh4eblreXX9N25WxFPk9XZmbW\nudyBa2ZdaWhI7NlTOEgqM2NGMDAQLS6RmZlZ8+3YsQOAoaGhluZtdb525OzFfKOj80ps38fWrVub\nnr8XX9N252xWvqlTpzJ//vymnNvMzCbOHbhmVlSugzRiOqOj8xgcnIY0pWM6R/fsEQsWHFI0dt99\nezuijGZm1t0iYqekfZJekzcKdy4wmB5vIVv0bCgvtiY9HkyxDUWOy8UoEitr9uzZbNu2jYGBAfr7\nSy4h0TAjIyMMDQ21LF87cvZyvsHB4v/d6+ubxpw5c5qWt5df03blbEcdzcysc7gD18yKKtVB6s5R\nMzObZFYBlwCfkrQAOAJYm2KrgcXARknzyObGvSTvuIslrQYOJZsi4ey82A2SridbxOwi4MpqCtPX\n1wdAf39/S293bnW+duTsxXxS8SVPpCktqWsvvqbtztmOOpqZWfu5A9fMzMzMJj1JN5J1sA4AayTt\njYjjgI8BKyQ9AbwIfDAi9qfDrgGWS3oS2AdcGhE7U2wFcBKwiayT9tqIeBQgItZKWgk8AgRwa0Tc\n0ZKKmpmZmVnXcQeumZmZmU16EbG4xPbtwJklYi8A55WIjQGXpZ9i8aXA0roKa2ZmZmaTSvF7aszM\nzMzMzMzMzMys7dyBa2ZmZmZmZmZmZtahPIWCmZmZmZmZWQcaGhJ79oiI6YyOzmNwcBrSFGbMCC8s\nbGY2ibgD18zMzMzMzKwD7dkjFiw4ZNz2++7b6w5cM7NJxFMomJmZmZmZmZmZmXUod+CamZmZmZmZ\nmZmZdSh34JqZdTFJyyQ9LWlM0puKxM+QtE/S7+dtO0jSlyVtkvS4pHPzYpJ0vaQnJT0h6dKC8y1J\nsU2Slja3dmZmZmZmZmbmDlwzs+62CjgV2FwYkDQD+DTwjwWhy4HhiDgWeCfw15JmpdiFwPERcQxw\nCvBHkl6XzncasAg4AXgDcKaksxpeIzMzMzMzMzN7iTtwzcy6WESsi4gfAyoSvgG4CthZsH0RcGM6\nfjNwN3BOii0EbkqxXcBK4Py82IqIGI6IEWB5XszMzMzMzMzMmmBauwtgZmaNl6ZF2B8R38qfIiE5\nEtiS93xz2lYqdkpe7J6C2KJqyzQyMlLtrg2Vy1tN/ojpRbaNMTw83PTczdDO/K67694K06eP/8ya\nmZmZmfUad+CaTVJDQ2LPnvGDNmfMCAYGog0lskaRNAAsAU5vd1nyDQ0NdXz+0dF5RbbtY+vWrU3P\n3UztzO+6t0+v133q1KnMnz+/6XnMzMzMzNrNHbjWk9w5WdmePWLBgkPGbb/vvr1+jbrf24CfBR6U\nJODVwLslzY6ITwKDwFFArodlLrAmPc7FNuTFBgtiFIlVNDAwQH9/f41VmbiRkRGGhoaqyj84OP7P\nYl/fNObMmdP03M3Qzvyuu+vejrqbmZmZmfUid+BaT+r0zslSHczgTmabuIi4Azg891zSF4AHIuK6\ntGkVsBjYKGke2UjdS/JiF0taDRxKNkXC2XmxGyRdD4wBFwFXVluu/v7+tt7uXE1+afzU8NKUCZe7\nG+rei7nbnd919/QGZmZmZmaN4A5cszYo1cEMndPJbN1B0o1kHawDwBpJeyPiuILdCt9Q1wDLJT0J\n7AMujYjcQmcrgJOATWSdtNdGxKMAEbFW0krgkXTOW1NnsZmZWU/x3Vxm9ZO0DHgP2Z1bJ0bEQ2n7\ncuBU4AXgOeAjEXF/ih0E3AwsAPYDn4iI21JMwHXAWWTXp8si4rN5+ZYAHyK7Pl0ZEUtaUE0zs5Zy\nB66ZWReLiMVV7HNRwfMXgPNK7DsGXJZ+isWXAktrL6mZmVn36PS7ucw63CrgamBdwfavAb8dEWOS\nzk775RYguBwYjohjJc0FNki6KyJ2ARcCx0fEMZJmAQ+k2GOSTiO7Y+wEss7d9ZLWR8Sdza6kmVkr\njb9X1MzMzMzMzMysDhGxLiJ+DKhg+7fSYAGA7wNH6OX5qxYBN6b9NgN3A+ek2ELgphTbBawEzs+L\nrYiI4YgYAZbnxczMeoY7cM3MzMzMzMyslT4M3JHXoXsksCUvvjltm0jMzKxneAoFsy7kRdDMzMzM\nzMords3cS9fK3TpXs6QLgA8Ap7WzHKOjowCMjIy0JF8uT6/ma0dO17H787UjZ7X5IsYvyBsxxvDw\ncMUczVjM1x24Nk7uQiBiOqOj8xgcnIY0peMvBCYTL4JmZmZmZlZesWvmXrpW7sa5miUtAj4JnBER\nO/JCW8gWPRtKz+cCa9LjwRTbkBcbLIhRJFbWjh1Z+qGhoQp7Nlav52tHTtex+/O1I2elfKOj84ps\n28fWrVvLHjd16lTmz58/obIV4w5cG6cbLwTMzMzMzMysc0laCFwFvCMinikIrwYWAxslzQNOBy5J\nsVXAxZJWA4eSzZd7dl7sBknXky1idhFwZTXlmT17Ntu2bWNgYID+/v4J1Kw6IyMjDA0N9Wy+duR0\nHbs/XztyVptvcHB8l2lf3zTmzJnTzOKV5A5ca7iJ3t6ff3yxUcBmZmZmZmbWmSTdSNbBOgCskbQ3\nIo4DvgT8BPiGJAFB1pm7C7gGWC7pSWAfcGlE7EynXAGcBGwi66S9NiIeBYiItZJWAo+k890aEXdU\nU86+vj4A+vv7m3K7cym9nq8dOV3H7s/XjpyV8r28xuKB21r9uuS4A9cabqK391c63iaHUlN5AO7I\nNzMzMzPrUBGxuMT2kkPdIuIF4LwSsTHgsvRTLL4UWFp7Sc3MukfLO3AlLQPeQzZPzYkR8VDaPhu4\nBTgaGCb7xu2eFDsIuBlYAOwHPhERt6WYgOuAs8i+jVsWEZ/Ny7cE+BDZt3ErI2JJC6ppZhPkjnwz\nMzMzMzMzMxg/Hrj5VgGnApsLtn8GuDfdWnER8GVJU1PscmA4Io4F3gn8taRZKXYhcHxEHAOcAvyR\npNcBSDqNbH6cE4A3AGdKOqtpNTMzMzMzMzMzMzNroJZ34EbEuoj4MVA4SepC4Ma0z/3AM2QTl0PW\nCZuLbQbuBs7JO+6mFNsFrATOz4utiIjhiBgBlufFzMzMzMzMzMzMzDpaR8yBK+kwYFpEbM/bvAU4\nMj0+Mj3P2Vwhdkpe7J6C2KJGlNl6W6n5V6tZhM3MzMzMzMzMzKxROqIDtxONjo4CMDIy0rYy5HK3\nugwRxVfUixhjeHi47uOrPUel48sfm51/onXYvXs6J588Y9z2jRt3M3Nm5eMrqfY1KvUemOhrXO4c\njXoNJ6oR74NO1a5VK83MzMzMzMys+3REB25E7JS0T9Jr8kbhzgUG0+MtZIueDeXF1qTHgym2ochx\nuRhFYmXt2LEDgKGhoQp7Nl+ryzA6Oq/E9n1s3bq17uOrPUel48sfm52/WXWo9vh6z18qR+F7YKKv\ncblzNOo1nKhGvA860dSpU5k/f367i9GxcqPf83nku01W/jyYmZmZmRl0SAdusgq4BPiUpAXAEcDa\nFFsNLAY2SppHNjfuJXnHXSxpNXAo2RQJZ+fFbpB0PTBGtjjaldUUZvbs2Wzbto2BgQH6+/snXLl6\njIyMMDQ01PIyDA4Wf1v09U1jzpw5dR9f7TkqHV9O7vzNqkO1x9d7/sIcpd4DE32Ny52jUa/hRDXi\nfWDdZ88esWDBIQdsu+++ve6wsknJnwczMzMzM4M2dOBKupGsg3UAWCNpb0QcB3wMWCHpCeBF4IMR\nsT8ddg2wXNKTwD7g0ojYmWIrgJOATWSdtNdGxKMAEbFW0krgESCAWyPijmrK2dfXB0B/f3/bb3du\ndRmk4mvbSVOqKkep46s9R6XjKx07ffr0ptWh2uPrPX+pHIXvgYm+xuXO0ajXcKIa8T4wMzMzMzMz\nM+t2Le/AjYjFJbZvB84sEXsBOK9EbAy4LP0Uiy8FltZVWDMzMzMzMzMzM7M2Kj+MzczMzMzMzMzM\nzMzappPmwDXrGsUWlgEvLmNmZmZmZmZmZo3lDlyzOhRbWAa8uIyZmZmZmZmZmTVW1R24kqYCfxcR\nFzaxPDYJlBq9CtkI1l4wGepoZmZmZmZmZmbNV3UHbkTsl3RcMwtjk0Op0auQjWDtBZOhjtYZJC0D\n3gMcBZwYEQ+l7cuBU4EXgOeAj0TE/Sl2EHAzsADYD3wiIm5LMQHXAWcBY8CyiPhsXr4lwIeAAFZG\nxJIWVLMuuS9SIqYzOjqPwcFpzJwpj5I3s7pIehdwFdkaElOBayPiFkmzgVuAo4Fh4NKIuCcdU3d7\na2ZmZmaWU+sUCt+V9LfA35F1CACQ6zAwM7OWWwVcDawr2P414LcjYkzS2Wm/eSl2OTAcEcdKmgts\nkHRXROwCLgSOj4hjJM0CHkixxySdBiwCTiDrbFgvaX1E3NnsStaj2BcpnubEzCZgBXBaRDwq6Sjg\ncUm3kbXB90bEWZJOAm6XNDci9lNne9uW2pmZmZlZx5pS4/6LgP8O/D3wjfTz9UYXyszMqhMR6yLi\nx4AKtn8rIsbS0+8DR0jKtfmLgBvTfpuBu4FzUmwhcFOK7QJWAufnxVZExHBEjADL82JmZr1uDJiV\nHs8EfgqMAL/Gy23q/cAzwOlpv3rbWzMzMzOzl9Q0Ajci5lXey8ys9DzAM2aER0C23oeBO/I6dI8E\ntuTFN6dtpWKn5MXuKYgtamxRzcw61nlko2ufBw4F3g8cAkyLiO15+22hfJtaTeIhk9gAACAASURB\nVHtrVrVi11y+3jIzM+sttU6hgKRzgddGxF9IOgL4mYh4uPFFM7NuVmoeYN/C3lqSLgA+AJzW7rKM\njIxU3CdiepFtYwwPD9ecr55zNTI/vFznaureDO3M77pPPHe978deqHu1pk8f/xo1Q1rMdwnwvohY\nn6ZK+CZwIgV3QDTb6Ogo0LrXuJ7f6a5d/ezde+CNfoccMsasWdWdo9Xvo2L5in3+su31/00ol28i\ndu+ezsknzzhg28aNu5k5c7ip9SinE36H0Pi/69XkbLRyv8PSx9RXx1a1qWZmnaTUF6GdpqYOXEl/\nTrYIw9HAX5AtYvM3wC82vmidqdSoQvA33WbWWSQtAj4JnBERO/JCW8gWPRtKz+cCa9LjwRTbkBcb\nLIhRJFbR0NBQxX1GR8ff6DE6uo+tW7dWm2ZC52pk/nzV1L2Z2pnfda/fRN+P3Vz3akydOpX58+c3\nPU9yInB4RKyHbKoEST8C3gSMSnpN3ijcubzcNtbb3pa0Y0fWnLf691tLvpGReZx66qwDtq1f/yzP\nPVdbW9rOOhb7/GXbJ/43oVi+iSjXVrSiHuW0+33arL/r5XI2WrnfYeljaq9ji9tUM7OOUWrtlE5T\n6wjc9wJvBe4HiIifSDq44aXqYKVGFYJHFppZ55C0kGy19HdExDMF4dXAYmCjpHlkczVekmKrgIsl\nrSa7RXgRcHZe7AZJ15PNBXkRcGW1ZRoYGKC/v7/sPoOD4/8s9fVNY86cOdWmmdC5GpkfslE5Q0ND\nVdW9GdqZ33WfeO5634+9UPcOtBU4XNLxEfG4pGOA+cDjZG3jJcCnJC0AjgDWpuPqbW9Lmj17Ntu2\nbWvZa1zP73SibWmr30fF8hWrA0zsb0K5fBNR7vVuZj3K6YTfITT+73o1ORut3O+wlGb/fs3MrPVq\n7cD9r4jYLx0wArWlt42ZmdnLJN1I9h/+AWCNpL0RcRzwJeAnwDeUNdpB1pm7C7gGWC7pSWAfcGlE\n7EynXAGcBGwi66S9NiIeBYiItZJWAo+k890aEXdUW9b+/v6Kt+a9vM7agdvquaWvnnM1Mn++aure\nTO3M77rXn3ui78durnuniYjtkn4H+Kqk/WQLAV8aET+S9DFghaQngBeBD0bE/nRoXe1tOX19fUDr\nX+Na8jWqLW1nHYvVIbe9UWVqVP3Kvd6tqEc57X6fNuvvermcjVbud1jumF5qg83MrPYO3C2SfhkI\nSX3Ax4EHG18sMzOrRkQsLrG95FCQiHiBbDGeYrEx4LL0Uyy+FFhae0nNzLpbRKwEVhbZvh04s8Qx\ndbe3ZjZ5lFv818zMDGrvwP194IvAG4Hnge8CFzS6UGbW+cpdaHoqETMzMzOz6pRb/NfMzAxq7MCN\niCHgnZJeCSginm9Oscys05W70HQHrpmZmZmZmZlZY5SeOKcISRshux0s13mb22ZmZmZmZmZmk5uk\nZZKeljQm6U1522dLulPSE5IeStMz5mIHSfqypE2SHpd0bl5Mkq6X9GQ69tKCfEtSbJMkT/VlZj2p\n1ikUDtg/zYM7fgiemU1IbnqCiOmMjs5jcHDaSwsVeC4ss4kpNv2Hp/4wMzMza5hVwNXAuoLtnwHu\njYizJJ0E3C5pblr48XJgOCKOlTQX2CDprrQA74XA8RFxjKRZwAMp9pik04BFwAlkC0Kul7Q+Iu5s\nSU3NzFqkqg5cSX8CfAw4WNLOvNBBwC3NKJjZZFZqegLwXFhmE1Xs8+WpP8xsMvJ89mbWDBGxDrKR\nswWhhcDRaZ/7JT0DnA7cRdYJe1GKbZZ0N3AOsDwdd1OK7ZK0EjgfuCLFVkTEcMq5PMXcgWtmPaXa\nEbg3kq26+zkgf8XzPekbMZtESl3sg0eHmpmZmXULz2ffWXyHiPUySYcB0yJie97mLcCR6fGR6XnO\n5gqxU/Ji9xTEFjWizGZmnaSqDtyI2A3sBs6S9CrgLUAADzaxbNahPDrUzMzMzKyxfIeIWWuNjo4C\nMDIy0pJ8uTy9mq8dOV3H7s/XjpyF+SKmj9snYqzosRFjDA8PV8wxffr4c05UTXPgSjoD+ArwDCDg\ncEnnR8R3G14yMzMzMzMzPDrVrNtFxE5J+yS9Jm8U7lxgMD3eAhwFDOXF1qTHgym2ochxuRhFYmXt\n2LEDgKGhoQp7Nlav52tHTtex+/O1I2cu3+jovHGx0dF9RY8ZHd3H1q1by5536tSpzJ8/f+IFLFDr\nImbLgPdExAYASScDNwNvbHTBzKy3ed49MzMzq5ZHp5r1hFXAJcCnJC0AjgDWpthqsukaN0qaRzY3\n7iV5x10saTVwKNkUCWfnxW6QdD3ZImYXAVdWU5jZs2ezbds2BgYG6O/vn3DlKhkZGWFoaKhn87Uj\np+vY/fnakbMw3+Dg+K7Rvr7i3aV9fdOYM2dOs4tYVK0duGO5zluAiNgoaX+Dy2Rmk4Dn3TMzMzMz\n6z2SbiTrYB0A1kjaGxHHkS2MvkLSE8CLwAcjItefcA2wXNKTwD7g0ojILaC+AjgJ2ETWSXttRDwK\nEBFr06Jmj5BN83hrRNxRTTn7+voA6O/vb8rtzqX0er525HQduz9fO3Lm8klTxsWKbcttb/XrklNr\nB+4/S/oQ8MX0/ELgnxtaIjMzMzMzMzPrShGxuMT27cCZJWIvAOeViI0Bl6WfYvGlwNK6Cmtm1iVq\n7cD9bWAm8DfpeR+wW9LFQETEYY0snJmZmZmZmZmZTU6eA90sU2sH7olNKYW1lOceNTMzM7PJwNe9\nZmbdzXOgm2Vq6sCNiC3NKoi1juceNbNeUupbeTNrraEhsXv3dEZH5zE4OA1pijvJrO183WtmZma9\noKYOXEmvAT4FvBl4adbeiHhrg8tlZmZWlVLfyptZa+3ZI04+ecYB29xJZmbN5i+PzMxsMqh1CoWb\ngXXAO4A/BH4XeKDRhTIzMzMzMzOrxF8emZnZZFBrB+6ciLha0gUR8Q+S1gBrgU82oWxmZmYdwYsn\nmJmZNY/nKjazWhWOvp85U24vrKfV2oE7kv4dlvQzwC7g1Y0skKR3AVcBU4CpwLURcYuk2cAtwNHA\nMHBpRNyTjjmIbHTwAmA/8ImIuC3FBFwHnAWMAcsi4rONLLOZmfU2L55gZmbWPJ6r2MxqVTj63u2F\n9bpaO3CfSB23XwI2AHuAHzS4TCuA0yLiUUlHAY9Lug24Grg3Is6SdBJwu6S5EbEfuBwYjohjJc0F\nNki6KyJ2ARcCx0fEMZJmAQ+k2GMNLreZmZmZmVlRuVGmEZ6v1czMzGpTUwduRFyQHi6T9APgUOCf\nGlymMWBWejwT+CnZyN9fIxt9S0TcL+kZ4HTgLmARcFGKbZZ0N3AOsBxYCNyUYrskrQTOB65ocLnN\nzMzMzMyK8ihTMzMzq1etI3BfEhHrGlmQPOeRja59nqyD+P3AIcC0iNiet98W4Mj0+Mj0PGdzhdgp\nlQoxOjoKwMjIyAHbI6aXPCZijOHh4Uqnrloud2EZJqpUHXLlrzee26d87ubHq6lDJd3+Gv3kJ2Ps\n3TulaPyQQ8aYNWukaXVsdjy3TzmN/iw22vTppetmZmZmZi/z/LhmZmY1duBKeifwf4D5ZPPTCoiI\nmNqIwkiaCiwB3hcR69NUCd8ETky5WmbHjh0ADA0NHbB9dHReyWNGR/exdevWhpelsAwTVaoOufLX\nG8/tUz538+PV1KGSbn+Ndu6EU0+dVTS+fv2zPPdc/XVodzy3TznN+iw2wtSpU5k/f37DzidpGfAe\n4CjgxIh4KG1vyrzhkpYAHwICWBkRSxpWGTMzM7MCvTJyuVxHtJmZWSW1jsC9DrgMuJfsP/2NdiJw\neESsh5emSvgR8CZgVNJr8kbhzgUG0+MtZJ0XQ3mxNenxYIptKHJcSbNnz2bbtm0MDAzQ39//0vbB\nwdIvWV/fNObMmVPp1FUbGRlhaGhoXBkmqlQdcuWvN57bp5xWxKupQyV+jTo3ntunnEZ/FjvcKrI5\nwgvvivgMDZ43XNJpZFPWnEDWubte0vqIuLMlNTUzMzPrUuU6os3MzCqptQN3T0Ssqbxb3bYCh0s6\nPiIel3QM2Wjfx8k6KS4BPiVpAXAEsDYdtxpYDGyUNI9sbtxLUmwVcLGk1WRTMiwCzq5UkL6+PgD6\n+/sPuN1ZKn5bei7WjFujC8swUaXqkCt/vfFy525lvJo6VOLXqHPjuX3KadZnsRPlprNJI2fzLaTx\n84YvBFZExHDKuTzF3IFrZmZmZtYAxUZre8oQM6u1A/dbkt4XEV9vRmEiYruk3wG+Kmk/MIXstt8f\nSfoYsELSE8CLwAfTSDKAa4Dlkp4E9qVjdqbYCuAkYBPZiLFrI+LRZpTfzKwTSDqM5swbfiRwT0Fs\nUSPKbGZmZmZmxUdrd9uUIWbWeFV14EraRTbfoYCZkv6LrBM1NwfuYY0qUESsBFYW2b4dOLPEMS+Q\nLX5WLDZGNu3DZY0qo5mZ1a6aBRmLLV5XaVG6UscU37f09lKL51U6ppxmLUZZrXbmd90nnruez0Mj\n8xeza1f/uEUyyy2O2exFJSfL3RbWWbyolpmZTSaFf/e64e9dL45kr3YE7olNLYWZmTVMROyUtK8J\n84bnYhSJVVTNgozFFq+rtChdqWOK71t6e6nF8yodU41GL0ZZq3bmd93rV8/noZH5ixkZmTdukcxy\ni2M2c1HJRi8KaVatXllUy8zaq1QHk1mnKfy71w1/73pxJHtVHbgRsQVA0pHA9rz5D6cDs5tXPDMz\nq1Mz5g1fBdwg6XqyKWkuAq6stkDVLMhYbPG6vr5pHHzw0eNG/UE28q/Y9lIL3ZXbXmrxvErHlNOs\nxSir1c78rvvEc5d6P7bzfVeuTPWW15qr3GhRM6td7jMVMZ3R0XkMDk5DmtL1I7us9Up1MJmZFVPr\nHLirgdPynittO6X47mZm1kySbiTrYB0A1kjaGxHHAQ2fNzwi1qZFzR4hm1bn1oi4o9qyVrMgY7EF\n6qQpPPfcFE4+ufhop3HLt5U4T6XtpRbPm+iiiND4xShr1c78rnv9uUu9H9v5vitXpomW15qj3GhR\ns1I8TURpHoFtZmbtUGsHbn9u9C1ARPyXpFc0uExmZlaliFhcYntT5g2PiKXA0roKa2Zm1uN6ZcTz\nZOik7MX5Ec3MrHfV2oEb+XMqSvpZslG4ZmZmZtZl3IFh1lge8dw9enF+RDOzXtaNi6k1Uq0duNcB\n90pakZ5fAHyqsUUyMzMzs1ZwB4aZmZmZdYNuXEytkWrqwI2IL0h6GnhX2vSbEXFP44tlZmZmZmZm\nZmZmZrWOwCUi7gbubnhJzMzMzMzMzNqsV+Yyttp4WiEz62Q1d+CamZmZmZlZ67hjqbU8l/Hk5GmF\nzKyTuQPXzMzMzMysg3VLx1KuozliOqOj8xgcnIY0ZdJ0NnvkrpmZNUvVHbiSpgALImJDE8tjZmZm\nZtZxJPUDfwmcCfwX8G8R8euSZgO3AEcDw8CluTUiJB0E3AwsAPYDn4iI21JMZAsEnwWMAcsi4rOt\nrZVZ7cp1UpYbuToZOnA9crc6kt4FXAVMAaYC10bELW5PzcxKq7oDNyLGJP0t8OYmlsfMzMzM2qzU\n7dqT3NXAWEQcByDpNWn7Z4B7I+IsSScBt0uaGxH7gcuB4Yg4VtJcYIOkuyJiF3AhcHxEHCNpFvBA\nij3W6oqZ1cKdlNYAK4DTIuJRSUcBj0u6jayddXtqZlZErVMobJJ0TEQ82ZTSmJnZpODOIbPOVup2\n7clK0iuBi4D/ltsWEdvTw4Vko8WIiPslPQOcDtwFLErHERGbJd0NnAMsT8fdlGK7JK0EzgeuaEGV\nzMzaaQyYlR7PBH4KjAC/httTM7Oiau3APQx4UNL3gOdyGyPi/Q0tlZmZ9TR3DplZlzka2Al8QtKv\nAi8AnwIeBKbldeYCbAGOTI+PTM9zNleInVKpIKOjowCMjIxUVfCI6SW2j5U5Zozh4eED8lSbr1TO\n/HNWUixnvecsV/9ydaz3das3Njw8XLaOjYzlx0uXqfH1b0a+drxu5crTSbFqP2/5pk8vXu8mOI9s\ndO3zwKHA+4FDaHN7OtG2q5LCtqZUvmLqKUc97fdENSNnta9TI39X5bT6de2EfIW/g0a/1tXWsZZy\nlPs8t+Kz2Iz2tNYO3C+mHzMzMzOzyWIacBTwSET8qaQTgX8GTgDGTwbaRDt27ABgaGioqv1HR+eV\n2L6vzDH72Lp16wHbqs1XKmexc1aSn7Pec5arf7k61vu61RvbunVr2To2MpYfL12mxte/Gfna8bqV\nK08nxWr9vE2dOpX58+fXdEw9JE0FlgDvi4j1aaqEbwIn0ub2tFFtVyWV8hUzkXLU0n5Xo6/v53j+\n+b6Xnr/qVaOMjv6oaTmrfZ2a8bsqp9GvayfnK/wdNOu1rlTHWspRzee5WZ/FZrWnNXXgRsQXASS9\nIiJebHhpzMzMzKzhPG3JhA2SLZrzZYCIeFDSZuCNwKik1+SNGpub9odsRNhRwFBebE3eOY8CNhQ5\nrqTZs2ezbds2BgYG6O/vr1zwweKX+319pf8b0Nc3jTlz5gDZ6JShoaGq85XKmX/OSorlrPec5epf\nro71vm71xubMmVO2jo2M5cdLaUb9m5GvHa9bufJ0Uqzaz1sbnAgcHhHr4aWpEn4EvIk2t6cTbbsq\nKWxrSuUrpp5y1NN+V2NwcDqnnjrzpecbN+7myCPr/5tROV91r1Or3vfNqOOuXf3s3TvlgG2HHDLG\nrFkjTfs9lirHnj1T2LdvH9OmTUPKylFYtka/1tXWsfC9UK4c5T7Prf4sNkpNHbiS3gh8hew2h5+T\n9DZgUUT8cTMKZ/UptzLsZFj91czMzA7kaUsmJiKelfQd4J3AnZLmkXUQ/DuwCrgE+JSkBcARwNp0\n6GpgMbAxHXN62pd03MWSVpNdWy8Czq5Ulr6+bNRTf39/VbfnSVNq2p6LFZ672nylzl3snJXk56z3\nnOXqX66O9b5u9camT59eto6NjOXiu3cfVPL/DFLxgZATqWMz8rXjdStXnk6KtXA6hFptBQ6XdHxE\nPC7pGGA+8Dhtbk8b1XZVUilfMRMpRy3tdzUKyzjRvxm15iu3rZXv+0bW8bnnpnDyyeOv0w4//OV6\nNvr3WKocp5wyvhyFTXSzXutKdazmvVdq32L7t/qzOFG1TqFwPVmjeX16/kPgFsAduFUq1bkKjetg\nLbcyrDtwzcwap9SoRre1Zj3pEuBmSVeTjcb9nYj4iaSPASskPQG8CHwwrZgOcA2wXNKTwD7g0ojY\nmWIrgJOATWQL+lwbEY+2sD42yZX7P0Mv5LPOFBHbJf0O8FVJ+4EpZG3jj9yempmVVmsH7sERsS73\nDWlEhKTWzYjdA0pduIA7WM3Muk2pUY1uy816T0Q8DZxRZPt24MwSx7xAtlhPsdgYcFn6mTT8xZeZ\nRcRKYGWR7W5PzcxKqLUDd5+kPiAAJM0hG4FgZmZmZjaOO+wsn7/4MjOzTld47eLrFusEtXbg3gB8\nHZgtaSlwAZ4+wczMzMxKcIedmZmZdZPCaxdft1gnqKkDNyK+JOkp4L1AP3BBRKxrSsnMzMzMzMzM\nzMzMJrlaR+ASEd+TNJg9jGeaUCYzMzNrAt/KbmbVyrUXEdMZHZ3H4OA0pCkd2WaUWiR4xozOKqeZ\nmZlZvWrqwJX0ZuBWYCA93wacHxH/1oSymZmZWQP5VnYzq1aphXc7sc0oV1YzMzOzXlDrCNzPA1dE\nxCoASR9I2xY0umBmZmZmZlZZr4xALTbqd+ZMdVyHsZlZpxsaErt3d/4dFFZe4e/RfxMnt1o7cKfn\nOm8BImK1pCsaXCYzM2sASe8CrgKmAFOBayPiFkmzgVuAo4Fh4NKIuCcdcxBwM9kXc/uBT0TEbSkm\n4DrgLGAMWBYRn21trczMrFCvjED1XQJm1okKvyTrho7QPXvEySfPOGCb29PuU/h79O9wcqu1A/eH\nkt4eEXcDSDod+EHDS2VmZo2wAjgtIh6VdBTwuKTbgKuBeyPiLEknAbdLmhsR+4H/x969x0lW1gf+\n/3yZi40EBjADimnmgijGGxAuSZSoJEFdjBuXlcsqKkaRWTRmDckaTYxkY1a8JeqqeMMLLpEAwdVE\nJb/IRUKAgQCiCAESh26JDAi8BhWb6WG+vz/q1FDTXVXd1V11zqnqz/v16tdUPc85z+VU19PPfOvU\n85wBTGXmgRGxFrg2Ii7NzAeBk4GDMvMpEbEXcGORd2slvZMkSZIGbOaHSwbRBqddsFxSQ68B3EOB\nV0XEpuL5WuB7EXEDQGYe2r+mSZIWaTuwV/F4FfAjYCvwChp335KZ10fE3cDzgUuBE4DXFXmbIuJy\n4OXAOcDxwKeKvAcj4nzgJMBvYvSBG4xJkiRpKWsXLJfU0GsA900DaYUkaRBOpHF37U+BPYH/AuwO\nLM/Me1uOuwvYv3i8f/G8adMceUfOtzFbt27d8ThzbFZ+5va253VKX8g53dKnpqb60q5mWfBYn1v7\n3smWLWOzvuq2ceMWVq2amvPcTmbW36l/zfb2Uy99H4Qq6+9X3Qt9vdrV36/f7U7pC3n/9OP3bmxs\ndp2SJEnSqOkpgJuZVwyqIU0RsRL4APAi4GfAtzPz1a7ZKEnzFxHLgD8GfjszryqWSvgKcDAwe6eb\nEmzevHnH4+npdbPyp6e3tT2vU/pCzumWPjk52Zd2Nctq1dr3TjrVPbOshWjWP8g65qq7KlXWv9i6\nF/t69fs91+/3z2J/75YtW8b69esXVYYkSZI0DHq9A7cMZwHbM/OpABGxT5H+HlyzUZLm62DgSZl5\nFexYKuEHwLOB6YjYp+Uu3LXARPH4LmANsLkl75Li8USRd22b8+a07777snLlykZBE7P//KxY0f5P\nUqf0hZzTLX18fLwv7WqWBY07IDdv3rxT3zvpVHezrIWYWf8g6phv3WWrsv5+1b3Q16td/f363e6U\nvpD3zyB+7yRJkgahudxZ5hjT0+uYmFjOqlXhcmdDZvPmYMuWnV/DYVGrAG5EPJ7G2otPbqa1BBiO\nxzUbgfbrJIJrJUraySTwpIg4KDNvi4inAOuB24ALgA3AmRFxOLAf0PyGxYXAacDGiFhHY5zdUORd\nALwhIi6ksSTDCcCx823QypUrd3zdOWKXWfnt0rqlL+ScbuljY2N9aVezrFatfe+kU939+Ip4s/5B\n1jFX3VWpsv7F1r3Y16vf77l+v39c/kCSJA2LmevzghvaDaOHHoqdlq0bpnWWaxXApRGgfQB4R0T8\nBvAwcCZwExWt2VhH7QYOcPCQ9JjMvDciTgX+JiIeBXahsfTMDyLibcC5EXE78AjwyuLbDADvA86J\niDuBbcU5DxR55wKHAXfQWJLm/Zl5S4ndknZw0zdJklQ3zk/qyddFo6CnAG5E/BZwRWY+FBFnAL8M\nvCszv9vH9qwBvpuZfxQRBwP/ADyTktdsnJ6eBmZvQNJug47H8ubekKOX8zttgtKpjG6biJSR3zym\nmzLy59OHuXiN6pvfPKabQW3K1C9l3XWWmecD57dJv5fGOuPtznmYxuZn7fK2A28ufqRKeReEJEmq\nm1Gan3QKeg6jUXpdtHT1egfuuzPz2RHxHOBVwMeLn6P61J4JGpuQnQeQmTdFxCbgWZS8ZuN9990H\nzN6ApN0GHY/lzb0hx0LOn28bum0iUkZ+85huysifTx/m4jWqb37zmG4GvSnTYrjpjhbCuwbqxddD\nkiTVwSCDrJ2Cnlq4UQqKq3y9BnCbUZNjgE9m5ici4o39akxm3h8R3wReDHy9WH9xLfA9Sl6zcfXq\n1dxzzz2zNiBpt0FH03w25Ojl/E6boHQqo9smImXkN4/ppoz8+fRhLl6j+uY3j+nGzXE0anq9a6DT\nJgvqD+/ikEZDu7EyYhf/My2p7wa1cZJB1uHi66XF6DWAuywijgSOA04p0lb0t0lsAD4TEWfRuBv3\n1Mz8YdlrNq5Y0ejWzA1I5tpMZyGb1Mx1/nzb0G0TkTLyu7WtzPz59GEuXqP65jeP6cbNcbTUOTmU\npLl121dCkvppmDdOklQPvQZw/xj4BPDNzLw1Ip4G3N7PBmXm94Gj26S7ZqMkSZIkSZK0QC7lMJx6\nCuBm5leBr7Y8/1cad+NKkiRJkiRJqrFR+rbeUgpGzyuAGxHv7JafmX/Wn+ZIkqQquDGXJEmSpKr1\nEpQdpWD0XOZ7B27zavwC8OvAV4AEXgZ8cwDtkiRJJXJjLkmSJKk/ZgYh+3VX6FK46WIpBWV7Ma8A\nbmb+AUBE/ANwcGb+R/H8ncDnBtY6SZIkSZIk1drmzcGWLWNMT69jYmI5q1Y1goyjHmzsZGYQsl8B\nSG+6WLp63cRsv2bwFiAzfxgRT+5zmyRJkiRJkjQkHnooOOKIPXY8bwYs6xxsbHeXbF3aJs3UawD3\nBxFxJvDp4vnvAD/ob5MkSZLUq+Z/QjJ3vvvF/4hIkuokIlYCHwBeBPwM+HZmvjoiVgNfAA4ApoDT\nM/PK4pxdgc8AhwOPAu/IzIuKvAA+DLwE2A58KDM/Wm6vhoMBy521u0t2KV8P1VuvAdzX0hgYb6Kx\nBu4/FmmSJEmqkF+pU1narb8HBgIkzdtZwPbMfCpAROxTpL8HuDozXxIRhwEXR8TazHwUOAOYyswD\nI2ItcG1EXJqZDwInAwdl5lMiYi/gxiLv1kF1oJdNlgZV50LqM2CpQVsKa/RWZd4B3IhYBjw3M48f\nYHskSZJqoYr/nEnDoN2HBWAgQNLcIuLxwOuAHUsxZua9xcPjadx9S2ZeHxF3A88HLgVOKM4jMzdF\nxOXAy4FzivM+VeQ9GBHnAycB7xxUP6rYZGlQa6rC4Dbc0tLjDQWDM+8AbmY+GhHvAC4aYHskSZJq\nYSH/OZu5gUfELt51IEnSYw4AHgDeERG/ATwMnEnjW77LW4K5AHcB+xeP9y+eN22aI+/Ifjd8lA0y\nOFw2g9EaVb0uoXBDRDwvM/9pIK2RJEkaYjM38ADvOpAkqcVyYA3w3cz8YtgVJgAAIABJREFUo4g4\nGPgH4JnA7LVZBmh6ehqArVu3ApA5NuuYzO3zSus1vU5lTE1Nzer7oMuYmprqkLf4dmzZMrbTXGzj\nxi00VgCdfxlV96Vb+3ptx3zatpB2zLff82lf8z04LO/F+VzrsbHZfVisXgO4vwy8NiL+HfhJMzEz\nD+1rqyRJGnLeialWrgcmSRIAEzQ2ITsPIDNviohNwLOA6YjYp+Uu3LXF8dC4w3YNsLkl75KWMtcA\n17Y5r6P77rsPgM2bG0VOT6+bdcz09LZ5pfWaXqcyJicnZ/V90GVMTk52yCu3Hf0oYxB96da+Xtsx\nn7YtpB333JP89Kcrdkrfbbfprtd1phUrfqEoYzmwjsnJ7mUsps39LGOua71s2TLWr1/f9ZiF6DWA\ne3rfWyBVwM03JA1aGXdiukbr8HA9MEmSIDPvj4hvAi8Gvh4R62gEXL8HXABsAM6MiMOB/YArilMv\nBE4DNhbnPL84luK8N0TEhcCeNNbLPXautqxevZp77rmHfffdl5UrVzIxMTs8smLF/NJ6Ta9TGePj\n47P6PugyxsfH2+aV3Y5+lDGIvnRrX6/tmE/bFtKOrVuX89znrtopfePGLaxYMevwju2bmBjrqYzF\ntLmfZfRyrfuppwBuZl4BEBH7Fc//YxCNkgbNzTckjYIqNtCQJElapA3AZyLiLBp3456amT+MiLcB\n50bE7cAjwCsz89HinPcB50TEncA24PTMfKDIOxc4DLgD2A68PzNvmasRK4oo0cqVKxkbGyNil1nH\nzDet1/Q6ldGu74Muo9PXy8tuRz/KGERfurWv13b0o+zFHNtM37Jl11lrE0fMvqluGN5Hg1geYT56\nCuBGxNNpfPK1X/H8B8ArMvO2AbRtKHW6sxO8K0qSJEmStLRl5veBo9uk3wu8qMM5DwMndsjbDry5\n+NEQaLfRmDdSjbZR2iivKr0uofAx4N2ZeR5ARJwIfBx4Yb8bNqw63dkJ/oJKkiRJkqSlrV0wzwCu\n1F2vAdy9msFbgMz8UvE1B0mSJEmSJEklc8Pc0dd+UYfOHo2IX2w+KR4/2uV4SVJFImJlRHwkIm6P\niG9HxBeK9NUR8fUi/eaIOKrlnF0j4ryIuCMibouI41ryoijvzuJcN7aUtORExCkRsT0iXlY8d0yV\nJEmVat7V3PrTaXlPDade78B9O/CtiLi5eP4s4JX9bZIkqU/OArZn5lMBImKfIv09wNWZ+ZKIOAy4\nOCLWFptEnAFMZeaBEbEWuDYiLs3MB4GTgYMy8ykRsRdwY5F3a9kdU/X8lF9LUUSsAV4PXN2S7Jgq\nSdIS5Xq+KktPAdzMvKTYyOzIIumazPxR/5slSVqMiHg88Drgyc20YmMIgOOBA4q06yPibuD5wKXA\nCcV5ZOamiLgceDlwTnHep4q8ByPifOAk4J0ldGlkdAp8Dpt2a767fplGWTS2Sv408Cbggy1ZjqmS\nJC1RruersswrgBsRZ9KYhF6dmfcBfzfQVkmSFusA4AHgHRHxG8DDwJnATcDylmAuwF3A/sXj/Yvn\nTZvmyDsS9aRT4FNS7b0VuDIzb2zEciEi9sYxVZKG0t13j7F16zomJpazapVfNZdUb/O9A3cf4BPA\neERcDVxGI6C7sfh6mCSpXpYDa4DvZuYfRcTBwD8AzwQqmaFu3bp1x+PMsVn5mdvbntcpfSHndEuf\nmprqS7vqXNZC6piamupwXvfjm6936+veT2XU3+t1X8hr9cMfbufHP955S4Ldd9/OXntt7etrUuXv\nULdzFmtsbHadgxARzwCOA46a69hBm56eBuYeUxvpvY+fi82bazwpK2+x/Sg7z2uzsDyvW+e8hYyx\nZY2pdXHMMbtz//2Nv8F+mC6p7uYVwM3MDQAR8STgBcXP54EnRsSVmXnsoBooSVqQCRqbTJ4HkJk3\nRcQmGmuXT0fEPi13jK0tjofG3WBrgM0teZe0lLkGuLbNeXPavHnzjsfT0+tm5U9Pb2t7Xqf0hZzT\nLX1ycrIv7apzWQupY3JyssN58zu+9XXvpzLq7/W6L+S1euABeO5z99op/aqr7ucnP+nva1Ll71C3\ncxZj2bJlrF+/flFl9OAoGuPfHcVSCk8EPgm8C9hW5ph63333AXOPqY303sfPxebNNZ6UlbfYfpSd\n57VZWJ7XrXNer2NsyWOqJKlHva6B+8OIuAj4IXAPjXW6Dh5Ew5ay5vqImWNMTze+0hGxi4thS5q3\nzLw/Ir4JvBj4ekSsoxEc+B5wAbABODMiDgf2A64oTr0QOA3YWJzz/OJYivPeEBEXAnvSWNtx3h/g\n7bvvvqxcuRKAiYnZf35WrGj/J6lT+kLO6ZY+Pj7el3bVuayF1DE+Pt72vLmO37p1K5s3b97pde+n\nMurv9bqX9bov5DWp8neo2znDIjPPBs5uPo+Iy4APZuZXI+IIShxTV69ezT333DPnmAoLGz8XmzfX\n725ZeYvtR9l5XpuF5XndOucN0xgraXDabbKm4TTfNXB/jcZdty+ksSHONcC3gGMz846BtW6Jarc+\nIrgYttSLdhtFNS2hD0M2AJ+JiLNo3I17avFB3NuAcyPiduAR4JUty+G8DzgnIu4EtgGnZ+YDRd65\nwGHAHcB24P2Zect8G7Ny5codX82L2GVWfru0bukLOadb+tjYWF/aVeeyFlJHp69Tzvf41te9n8qo\nv9frXtbrvpDXpMrfoW7nDLHkseVoSh1TV6xYAcw9pnZLH2TeXL+7ZeUtth9l53ltFpbndeucN+Rj\nrKQ+abfJmobTfO/AvZxG0PbPMvMbg2uOJPVHpw9CYOl8GJKZ3weObpN+L/CiDuc8DJzYIW878Obi\nR5KWrMw8uuWxY6okSZIGqvPHdjv7NeBrwBkRcWdEnBcRp0bEUwfYNkmSJEmSJEla0ua7idk/Af8E\n/HlErASOpLGcwlci4ucy8xcG2EZJkqSBabfkiuuDSZIkSaqLnjYxi4j9aARuX0Dja7n70AjsSpIk\nAY2A6JYtw7MRZ7slV1wfTJIkSVJdzHcTs0/R2DV3P+Bq4DLgVcB1mbltcM2TJEnD5qGHgiOO2GOn\ntIWuPd3r3bHN4zMfCyCvWhW1DR5LkiRJ0lzmewfuJPA7wDWZOT3A9uwQEacAnwF+OzO/EhGrgS8A\nBwBTNHbxvbI4dtfi2MNp7LT+jsy8qMgL4MPAS2js8PuhzPxoGX2QJEmL0+vdsZ2ON4ArSZIkaVjN\ndw3cPxt0Q1pFxBrg9TTu9m16D3B1Zr4kIg4DLo6ItZn5KHAGMJWZB0bEWuDaiLg0Mx8ETgYOysyn\nRMRewI1F3q1l9kmSJEmSJEmSerVL1Q2Yqbhj9tPAm4CtLVnHA2cDZOb1wN00lnUAOKElbxNwOfDy\nlvM+VeQ9CJwPnDTALkiSJEmSJElSX/S0iVlJ3gpcmZk3NmK5EBF7A8sz896W4+4C9i8e7188b9o0\nR96RfW+1JEmqrXZr6UL39XQlSZIkqQ5qFcCNiGcAxwFHVd2W6enGUr9bt27dKT1zrOM5mdu7ljmf\n/KmpqY511D2/eUw3ZeR7jYb7GpV1DaemproeM0hjY537Jmkw2q2NC93X05UkSZKkOqhVAJdG4HYN\ncEexlMITgU8C7wK2RcQ+LXfhrgUmisd3Fedtbsm7pHg8UeRd2+a8ju677z4ANm/evFP69PS6judM\nT2/rWuZ88icnJzvWUff85jHdlJHvNRrua1TWNZycnOx6zKAsW7aM9evXV1K3JEmSJEkaPrUK4Gbm\n2RRr2QJExGXABzPzqxFxBLABODMiDgf2A64oDr0QOA3YGBHraKyNu6HIuwB4Q0RcCOxJY73cY+dq\ny+rVq7nnnnvYd999Wbly5Y70iYnOl2zFiu6Xcz754+PjHeuoe37zmG7KyPcaDfc1Kusajo+Pdz1G\nkiRJkiSpDmoVwG0jgeaCdW8Dzo2I24FHgFdm5qNF3vuAcyLiTmAbcHpmPlDknQscBtwBbAfen5m3\nzFXxihUrAFi5cuVOX3eO6LzvW7e8+eaPjY11PK7u+c1juikj32s03NeorGvoMgaSJEmSJGkY1DqA\nm5lHtzy+F3hRh+MeBk7skLcdeHPxI0mSaqbdBmN77JHsu68bjEmSJElSrQO4kiRp9LXbYOy6635s\nAFeSJEmSgO7fM5YkSZIkSeqziDglIrZHxMuK56sj4usRcXtE3BwRR7Ucu2tEnBcRd0TEbRFxXEte\nRMRHIuLO4tzTq+iPJA2Sd+BKkiRJkqTSRMQa4PXA1S3J7wGuzsyXRMRhwMURsbbY++YMYCozD4yI\ntcC1EXFpZj4InAwclJlPiYi9gBuLvFtL7ZQkDZB34EqSJKl0mzcHd9yxy04/mzfH3CdKkoZaRATw\naeBNwNaWrOOBswEy83rgbuD5Rd4JLXmbgMuBl7ec96ki70HgfOCkAXZBkkrnHbgd3H33GFu3rmNi\nYvmOHe332MO1+CRJkvqh29rHbmwnSSPtrcCVmXljI5YLEbE3sLzYvLzpLmD/4vH+xfOmTXPkHdlL\ngxp7n88vvZdjh6GMqakpMscso0ZldCvbMqovY2pqqm1eq7GxsTmP6ZUB3A6OOWZ37r9/5xuUr7vu\nxxW1RpKG29at++/4QMwPwyTNxY3tJGk0RcQzgOOAo+Y6tkzT09vmnd7LscNQxuTkJNPT6yyjRmV0\nK9syqi9jcnKybV7TsmXLWL9+fddjFsIAriRp4I49dq8dH4r5YZgkLdzMb4n5oZikIXMUsAa4o1hK\n4YnAJ4F3AdsiYp+Wu3DXAhPF47uK8za35F1SPJ4o8q5tc968rFjRPjTSLr2XY4ehjPHxcSYmls95\nrGWUV0a3si2j+jLGx8fb5g2aAVxJkiRpSMz8lpgfikkaJpl5NsVatgARcRnwwcz8akQcAWwAzoyI\nw4H9gCuKQy8ETgM2RsQ6GmvjbijyLgDeEBEXAnvSWC/32F7a1Vw2cT7pvRw7DGWMjY3NyrOMasvo\nVrZlVF/GIJZHmA83MZOkERcRp0TE9oh4WfF8dUR8PSJuj4ibI+KolmN3jYjzIuKOiLgtIo5ryYuI\n+EhE3Fmce3oV/ZEkSdLISKC56PnbgF+NiNuBc4BXZuajRd77gMdHxJ3A14HTM/OBIu9c4DbgDhp3\n4b4/M28pqwOSVAbvwJWkERYRa4DXA1e3JL8HuDozXxIRhwEXR8TaYoJ8BjCVmQdGxFrg2oi4tNjR\n92TgoMx8SkTsBdxY5N1aaqckSZI0EjLz6JbH9wIv6nDcw8CJHfK2A28ufiRpJHkHriSNqGJdsU8D\nbwK2tmQdT/HVtcy8HribxtfQoPGVs2beJuBy4OUt532qyHsQOB84aYBdkCRJkiRpyTOAK0mj663A\nlZl5YzMhIvYGlrdsDgGNTSH2Lx7vXzxv2jTPPEmSJEmSNAAuoSBJIygingEcR2On31ppfMtt8en9\nLCtzO1NTU2TOXpB+lMpaSB1TU1Mdzut8fBlltS9nafwO1e06Vtn3qjaRkCRJkspkAFeSRtNRwBrg\njmIphScCnwTeBWyLiH1a7sJdC0wUj+8qztvckndJ8XiiyLu2zXnzNj29rS/p/Sxrenobk5OTTE+v\nG+myFlLH5ORkh/M6H98p7557kp/+dMVO6bvtNt22bWX0vZ9llfm69/M16bVdC2lvP8tq7fuyZctY\nv35923IkSZKkUWIAV5JGUGaeTbGWLUBEXAZ8MDO/GhFHABuAMyPicGA/4Iri0AuB04CNEbGOxtq4\nG4q8C4A3RMSFwJ401ss9tte2rVjR/k9Pr+n9LGvFiuWMj48zMTE7f5TKWkgd4+Pjbc/rdnynvK1b\nl/Pc567aKX3jxi2sWDHr8FL63s+yynzd+/ma9NquhbS3n2V16rskSZI0ygzgStLSkEAUj98GnBsR\ntwOPAK/MzEeLvPcB50TEncA24PTMfKDIOxc4DLgD2A68PzNv6bUhEe2XX+81vZ9lRezC2NhY2/xR\nKmshdXT6inq344el7/0sq8y+V/maLKS9/SzLJRMkSZK0FBnAlaQlIDOPbnl8L/CiDsc9DJzYIW87\n8ObiR0vE5s3BQw/FTml77JEVtUaSJEmSlh4DuJIkqaOHHgoOP3z3ndKuu+7HFbVGkiRJkpaezt8p\nlCRJkiRJkiRVygCuJEmSJEmSJNWUAVxJkiRJkiRJqikDuJIkSZIkSZJUUwZwJUmSJEmSJKmmDOBK\nkiRJXUTE4yLi4oi4LSJujIhLIuKAIm91RHw9Im6PiJsj4qiW83aNiPMi4o7i3ONa8iIiPhIRdxbn\nnl5F3yRJklR/BnAlSZKkuX0iMw/KzEOArwCfLtLPAq7OzKcCrwPOi4hlRd4ZwFRmHgi8GPhYROxV\n5J0MHJSZTwGOBP4gIp5eVmckSZI0PAzgSpIkSV1k5iOZ+Y2WpGuANcXjVwBnF8ddD9wNPL/IO6El\nbxNwOfDyIu944FNF3oPA+cBJg+qDJEmShpcBXEmSJKk3bwG+HBF7A8sz896WvLuA/YvH+xfPmzbN\nM0+SJEnaYXnVDZAkSZKGRUS8HTgAOBV4fMXNIXN7rfKmpqbIHKs8b7H9KDvPa7OwPK9b57ypqamO\n+Z2MjbXvtySpegZwJUmSpHmIiDOA3wZ+PTOngKmI2BYR+7TchbsWmCge30VjqYXNLXmXFI8nirxr\n25w3b9PT22qVNzk5yfT0usrzFtuPsvO8NgvL87p1zpucnOyY386yZctYv359T+dIkspTqwBuRDwO\n+BLwdOBnwL3Af8/Mf4uI1cAXaNzxMAWcnplXFuftCnwGOBx4FHhHZl5U5AXwYeAlwHbgQ5n50VI7\nJkmSpKEWEW8FTqQRvP1xS9YFwAbgzIg4HNgPuKLIuxA4DdgYEetorI27oeW8N0TEhcCeNNbLPbbX\ndq1Y0Xk6X0Xe+Pg4ExOzjyk7b7H9KDvPa7OwPK9b57zx8fGO+ZKk4VOrAG7hE81NIiLidBo7/L6Q\nx3b4fUlEHAZcHBFrM/NRWnb4jYi1wLURcWmxIcSOHX6LXX9vLPJuraBvkiRJGjIR8WTg/cC/AZcV\nNwhMZeavAG8Dzo2I24FHgFcW81OA9wHnRMSdwDYaNyA8UOSdCxwG3EHjJoP3Z+Ytvbet85YWVeSN\njY21PabsvMX2o+w8r83C8rxunfNcDkGSRkutAriZ+Qgwc4ff3y8ev4LG3bdk5vUR0dzh91Iadyy8\nrsjbFBGX09jh9xxm7PAbEc0dft856P5IkiRp+GXm3XTY/LdYOuFFHfIepnHXbru87cCbix9JkiSp\no84f29WDO/xKkiRJkiRJWrJqdQduq7rt8Avdd/rsV/5cu57WOb95TDdL/RrOtw+Dzq/zNSrrGi5k\nZ95+8SttkiRJkiRpvmoZwK3jDr/QfafPfuXPtetpnfObx3Sz1K/hfPsw6Pw6X6OyrmGvO/P2izv8\nSpIkaaly43JJWpjaBXDrusMvdN/ps1/5c+16Wuf85jHdLPVrON8+DDq/zteorGvozrySJElSJdy4\nXJJ6VKsAbp13+G20r/uSwf3In2vX0zrnN4/pZqlfw/n2YdD5db5GZV1DlzGQJEmSyuXG5ZK0MLUK\n4LrDryRJkiRJS8agNi4/chCNlaSq1CqAK0nqD9cXkyRJUp3VaePyTpsgt0vv5dhhKKPdBtKWUW0Z\n3cq2jOrLmM+G6IP4xq8BXEkaXa4vJkmSpNqp28blnTZBbpfey7HDUEa7DaQto9oyupVtGdWXMdeG\n6IPauNwAriSNINcXk0bX5s3BQw/FTml77JEVtUaSpN7UcePyTpsgt0vv5dhhKKPdBtKWUW0Z3cq2\njOrLqGpDdAO4krQ01GZ9sX581aXfZXX6qtOolTVs7R103/tZVpl937IFjjhij53SN27cAswO4o7a\n79DMr6y5IaUkDZe6blzebYPlxRw7DGW020DaMqoto1vZllF9GVXNPw3gStKIq9P6YtCfr7r0u6xO\nX3UatbKGrb2D7ns/y6pz30fpd6j1K2uD+nqaJGlw3LhckhbGAK4kjbC6rS8G/fmqS7/L6vRVp1Er\na9jaO+i+97OsOvd9lH6HqvrKmiRJklSl9vcES5KGXsv6Yr/ZYX0xuqwvRsv6Yl9uOe8NEbFLsRTD\nCcD5vbdrl45fX+klvZ9ldfqq06iVNWztHXTf+1lWnfs+Sr9DY2NjO/1IkiRJS4F34ErSCKrr+mKS\nJEmSJKk3BnAlaQS5vpgkSZIkSaPBJRQkSZIkSZIkqaYM4EqSJEmSJElSTRnAlSRJkiRJkqSaMoAr\nSZIkSZIkSTVlAFeSJEmSJEmSasoAriRJkiRJkiTVlAFcSZIkSZIkSaopA7iSJEmSJEmSVFMGcCVJ\nkiRJkiSppgzgSpIkSZIkSVJNGcCVJEmSJEmSpJoygCtJkiRJkiRJNWUAV5IkSZIkSZJqygCuJEmS\nJEmSJNWUAVxJkiRJkiRJqikDuJIkSZIkSZJUUwZwJUmSJEmSJKmmDOBKkiRJkiRJUk0ZwJUkSZIk\nSZKkmjKAK0mSJEmSJEk1tSQCuBHxlIi4KiL+NSKujYinV90mSRpWjqmS1B+Op5LUH46nkkbdkgjg\nAp8Azs7MpwHvBT5fcXskaZg5pkpSfzieSlJ/OJ5KGmnLq27AoEXEauCXgN8EyMyLIuL/RMT6zPz3\n5mEzz9t77+2zylq2LAF4whNm5/Uzf9mybHtM3fNbj6k632s0vNeozGtYI7PGoLrqx5ja6fXpNb2f\nZXX7vRu1soatvYPsez/LqnvfR+l3aA5LajyFhf1+Dzqv2+tXVt6g+zjM123Q/fC61SevD4ZiTC17\nftqPv591K2Pm77xlVFvGXGVbRvVlLMCix9PI7NvgXksRcSjwfzPz6S1p1wL/MzMvB9iyZctBwK3V\ntFCSePqqVatuq7oR8+GYKqnmHE8lqX+GYkx1PJU0BBY9ni6VJRQkSZIkSZIkaegshQDuJPCkiGjt\n6/7AREXtkaRh5pgqSf3heCpJ/eF4KmnkjXwANzPvA24ATgaIiP8KTLashSNJmifHVEnqD8dTSeoP\nx1NJS8HIr4ELEBFPBT4HPAHYApySmbc087ds2bIMOHDGaQ8Ao39xJJUtgL1npN2xatWqR6tozEI4\npkqqCcdTSeqfoR5THU8l1chAxtMlEcCVJEmSJEmSpGE08ksoSJIkSZIkSdKwMoArSZIkSZIkSTVl\nAFeSJEmSJEmSamp51Q2om4hYD+xfPJ2ocufKiHhjZn6i5Dp3Ax7JzG0RsTdwCPCvmfmDMtshafjV\naTyVpGFX5Zg66Dmp809JZXF+KmlYGcAtRMTTgc8D48BEkbx/REwyYwfLAdX/sjbJZ0bEDwEy8yuD\nrL9ow6uBTwA/iojXAF8EfgCsj4jTM/P8QbdBEBHLgOfTMrEArsjMynaAjYj/lZl/UmJ9BwEPZOa9\nxePnAt/NzGvLaoMWrsrxNCJekZkXFI9/vmjH84AbgVdn5kS387U4dRu/ImKvzHywpLrse036PmrK\nHlPLnpM6/xycqt+bg54/VjVfjIhdMnP7jLSBj7kR8SzgcODmzLx+kHWNoirmp85LB6MGY1sZ7/eR\n7mPV/SvaUNpcuV8iM6tuQy1ExLXAezPzohnp/xX4w8w8YsD1bweuBra2JP8ycA2QmXn0IOsv2nAz\n8FvAKuBbwG9k5vUR8RTgosx8zqDb0NKWSiZGbdpR6kQpIo4CzgPuBu4qktcC+wGvzMxvldCG322T\n/E7gzwAy88MDrv8PgDOAR4C3A39B431wJPDBzPzQIOvX4lU5nkbEDZl5aPH4U8D9wF8B/w04KjNf\nPqi6W9pQ+YRkRntKGTurHr8i4i3N8SEi1gF/B6wH7gFelpnfGWDd9r3Cv1ujruwxtew5aZXzz1EO\nxJX93ix7/ljFfDEiDgMuoHENvwacmpn3FXk75h99rO+bwElFgPp44C+Bq4AjgP9d9jc1h10V89Oq\n5qVVz0UHOY5WMLaVPsca9T5WMXescq7cV5npTyOI/a8Lyetj/afQ+IN8SEva90u+Bje2PN7UKW/A\nbTgM+D6NydjFwOqWvBtKqP+bwD7F4+NpDCp/A2wC3lhC/TcDh7VJPxz4TkmvwTbg/wGfbfn5cfHv\nOSXUfwuwF41Px38KrCvSf57GXRUDvwb+LPo1rGw8nTGOfRtY1vq8hL4fBUzS+E/k+cXPtUXar5VQ\n/1taHq8r3k8/K8bVZw247krHr9a/EcBfA6cXj48D/j/7Ppp9Xwo/ZY+pZc9Jq5h/lj3frGJ+WfZ7\ns+z5YxXzReBK4FjgCcD/Am4Fnlzk9f13lUaAv/n4amBN8Xjv1jx/5n09S5+fUsG8lJLnopQ896xg\nbCt9jjXqfSy7f1W9joP4cROzx/woIk6OiB3XJCJ2Kb7Kdf+gK8/Mz9L4JO69EfHO4lOzsm+P3h4R\nz4iI5wG7RcRzYcfXk5aV1Ia/BN5E49OX7wLfiognF3lRQv2rM/Pe4vH/AH41M48HDgVOL6H+sWxz\nJ0ZmXgc8roT6AY4BnkjjrpdTMvMU4EfF49eVUP8jmflgZk4W9X4fIDN/BEyXUL8Wr8rxdCwinhUR\nzwbIne80KGNM/Sjw8sz85cw8ofg5EvgvRd6gvabl8V8AH8vMXWncpfTBAdddh/Gr6Rcz86NF/RcB\nqwdcn32foaK+j6pSx9QK5qRVzD/Lnm9WMb8s+71Z9vyxivniz2Xm32fm/dlYGuLdwKURMc5g3iOP\nK95/0Pjm7F0AmfkA5fy/aNRUMT+tYl5a9ly07LlnlfOOsuZYo97HqueOZc+V+8YA7mNeA7wWeCAi\nbo2IW4EHWtIHrvijfAyNT5GvpPz/+PwJja+uXQycCPx5RNxG4xO7d5fUhrInRjNVPVH6t+I/S/s0\nEyJin4j4UxqfYg5cZl4K/CZwfER8NiL2oNwPEx6JiGMj4lVARsQJABHxQsD1FIdDlePprjTuAPp/\nwB4R8QsAEbEK2N7txD6pekLSquzJSdXj154R8VsR8Z+Zfa0HPX7Yf6ZdAAAgAElEQVTb9wr/bi0B\npY+pJc9Jq5h/LoVAXKnvzQrmj1XMFx/fGvzLzC/SWCbimzTuyu23vwbOL5YTuTAi3hERayNiA+DG\nW72rYn5axbx01IN/Zc87qphjjXofq5g7VjlX7hs3MStk5p3Ar0fEahpfxQGYzGJdoxLbkcAHIuIb\nNL7+UGbdX6Nl8hERlwMH07gO93Y6r88eHy3rkWXmFyNimsbEqIzgR3Oi9DaKiRLwf4GXUM5E6dXA\nWTQGteb7cxuN9bZOLqF+ADLzIeDV0VgT6goak4+yvIXGZibbgf8MvC0iPg/8BDihxHZogaocTzNz\nbYesaRpfkRm0f4uIdwJnN8fNYnKygRIDeTQ+oC17clL1+DUBvLV4/MOIeHJm3l1c/61dzuuHmX0P\nGr9zS6Xv76Hiv1ujrKoxtaw5aUXzz7Lnm1XML0sfk0ueP1YxX7wK+E801k4EIDPPj4iksfleX2Xm\nuyLiLcBlwL40/u/+hzR+n07pd32jroqxtKJ5adlz0bLnnmWPbVXMscqeV5bdxyrmjlXOlfvGTcxU\nKxFxDvC3mfl3M9KPB76YmStLaMNbaHzlozlR+jGNidLbizslShERe8OOuzMqExH7Ar9U/AerqjY8\nAXgwZ2w0ItVN8Z+C99BY43DmhORtg/4wrAh8tP5hf1XL5OTvM/PwQdbf0o5ajF9FW5YBj8vMh0uq\nb+/m4yr7HxF7AQ9RTd+Pz8yzy6hTWogq5ptVzi+rGJOrmD9WMV+M8jYK3Z1iXlFGfRpeZc9Fq5x7\nVjnfLGt+WdW8sqx5ZJVzx4h4I/ApGnetlzJXXiwDuFIHzYlSmZOkiDgA+DSwBvgyjUn9VJF3dWb+\nyqi3ISLWF/WvraJ+qV9qGMRcmZk/G2AdS3bsiIiDgc/R+Nruq4H3Ai+gsabeSzPz5kHVXdT/HODz\nM+p/IfAj4Ngc4M66EfGyNsmfBN5AY575lUHVLQ2jsuaXZY/JFdRX+pjfMtZup3GX2EDH2qr/tmj4\n1SDA2fe55xIZa0p975c9j6xi7tilzlMBhmW+6hq4GhoRcXuZ9WXmj1sn1yXV/zHgQuAVNHbR/WYx\n0QcYK6H+OrTh48BFFdYv9UVmPtA6YS57DJvRlkdp7H48SEt57PgQ8C7gI8DXgC9l5m7A7wLvH3Dd\nAB9uU//ji/o/MOC6vwz8TxobMzV/VtH4mtrvDbhuqe8GPVaXOL8se0wuu74qxvzmWPthyhlrq/7b\noiFX5Vx0gHPPpTDWlP3eL3seWcXcsVOd/2OAdfadd+CqVqLYobODSzLzSSNe/42ZeUjL87cDv01j\nU4jLMvPQQdZfhzZUXb+0GDUYQyqrv+r3bpX1t9YdEROZuX9L3k2ZefCg6q66/og4BXg98KbMvLFI\n+35mrhtUndJilT1WVjE2lz0mjnp9M+ssY6yt+m+LhtOoj2+ONcM/1lQxdxyV+aqbmKlubgI2QdsF\nzwexu2vd6t9ps4fM/IuI2EpjU43d258ycm2oun5pMaoeQ6qsv+r3bpX1t17vy7rkjVz9mfnZiLgU\n+HREXAm8m8HuPC/1Q9ljZRVjc9lj4qjXB+WPtVX/bdFwGvXxzbFmyOurYu44KvNVA7iqm7uA52Xm\nf8zMiIjJJVD/rRHx4sz8RjMhM98fEdsp76tSVbeh6vqlxah6DKmy/qrfu1XWvzki9sjMhzLzNc3E\niHgSMDXguiuvPzPviohjaHz17Upm70It1U3ZY2UVY3PZY+Ko1wflj7VV/23RcBr18c2xZvjrq2Tu\nOArzVZdQUK1ExIeACzLzn9rknZ2Zp414/Y8DyMxH2uQ9OTPvHmT9dWhD1fVLi1GDMaSy+qt+71Zd\nf4c2rQJWZeZE2XVXVX9EPAM4KkveSVjqRdljZRVjc9lj4qjXN0dbSh1rq/7bonob9fHNsWb0xpoq\n5o7DOl81gCtJkiRJkiRJNbVL1Q2QJEmSJEmSJLVnAFeSJEmSJEmSasoAriRJkiRJkiTVlAFcSZIk\nSZIkSaopA7iSJEmSJEmSVFMGcCVJkiRJkiSppgzgSpIkSZIkSVJNGcCVJEmSJEmSpJoygCtJkiRJ\nkiRJNWUAV5IkSZIkSZJqygCuJEmSJEmSJNWUAVxJkiRJkiRJqikDuJIkSZIkSZJUUwZwJUmSJEmS\nJKmmDOBKkiRJkiRJUk0ZwJUkSZIkSZKkmjKAK0mSJEmSJEk1ZQBXkiRJkiRJkmrKAK4kSZIkSZIk\n1ZQBXEmSJEmSJEmqKQO4kiRJkiRJklRTBnAlSZIkSZIkqaYM4EqSJEmSJElSTRnAlSRJkiRJkqSa\nMoArSZIkSZIkSTVlAFeSJEmSJEmSasoAriRJkiRJkiTVlAFcSZIkSZIkSaopA7iSJEmSJEmSVFMG\ncCVJkiRJkiSppgzgSpIkSZIkSVJNGcCVJEmSJEmSpJoygCtJkiRJkiRJNWUAV5IkSZIkSZJqygCu\nJEmSJEmSJNWUAVxJkiRJkiRJqikDuJIkSZIkSZJUUwZwJUmSJEmSJKmmDOBKkiRJkiRJUk0ZwJUk\nSZIkSZKkmjKAK0mSJEmSJEk1ZQBXkiRJkiRJkmrKAK4kSZIkSZIk1ZQBXEmSJEmSJEmqKQO4kiRJ\nkiRJklRTBnAlSZIkSZIkqaYM4EqSJEmSJElSTRnAlSRJkiRJkqSaMoArSZIkSZIkSTVlAFeSJEmS\nJEmSasoAriRJkiRJkiTVlAFcSZIkSZIkSaopA7iSJEmSJEmSVFMGcCVJkiRJkiSppgzgSpIkSZIk\nSVJNGcCVJEmSJEmSpJoygCtJkiRJkiRJNWUAV5IkSZIkSZJqygCuJEmSJEmSJNWUAVxJkiRJkiRJ\nqikDuJIkSZIkSZJUUwZwJUmSJEmSJKmmDOBKkiRJkiRJUk0ZwJUkSZIkSZKkmjKAK0mSJEmSJEk1\nZQBXkiRJkiRJkmrKAK4kSZIkSZIk1ZQBXEmSJEmSJEmqKQO4kiRJkiRJklRTBnAlSZIkSZIkqaYM\n4EqSJEmSJElSTRnAlSRJkiRJkqSaMoArSZIkSZIkSTVlAFeSJEmSJEmSasoAriRJkiRJkiTVlAFc\nSZIkSZIkSaopA7iSJEmSJEmSVFMGcCVJkiRJkiSppgzgSpIkSZIkSVJNGcCVJEmSJEmSpJoygCtJ\nkiRJkiRJNWUAV5IkSZIkSZJqygCuJEmSJEmSJNWUAVxJkiRJkiRJqikDuJIkSZIkSZJUUwZwJUmS\nJEmSJKmmDOBKkiRJkiRJUk0ZwJUkSZIkSZKkmjKAK0mSJEmSJEk1ZQBXkiRJkiRJkmrKAK4kSZIk\nSZIk1ZQBXEmSJEmSJEmqKQO4kiRJkiRJklRTBnAlSZIkSZIkqaYM4EqSJEmSJElSTRnAlSRJkiRJ\nkqSaMoArSZIkSZIkSTVlAFeSJEmSJEmSasoAriRJkiRJkiTVlAFcSZIkSZIkSaopA7iSJEmSJEmS\nVFMGcCVJkiRJkiSppgzgSpIkSZIkSVJNGcCVJEmSJEmSpJoygCtJkiRJkiRJNWUAV5IkSZIkSZJq\nygCuJEmSJEmSJNWUAVxJkiRJkiRJqikDuJIkSZIkSZJUUwZwJUmSJEmSJKmmDOBKkiRJkiRJUk0Z\nwJUkSZIkSZKkmjKAK0mSJEmSJEk1ZQBXkqQhFxGbIuLWiLgxIr4XEV+MiF0XUd5rIuLieRz3/Ih4\nOCJuKOr+TkS8viX/soh42SLa8acRsXKB554ZEdsiYnyO4w6IiL+JiH+LiH8p+nFWRKxYWKslSZIk\nqb8M4EqSNPwSOD4zD8nMXwT2BF7bhzLn47bMPDQzDwFeDPyfiNhtkXU3/Skw1utJERHAa4DLgNd1\nOe6JwD8BX8vMAzLzl4BfBR4Cdm9z/LJe2yJJkiRJi2UAV5Kk0RAAETEGPB54sHj+zIi4MiKuj4jv\nRsTbd5wQsSIi3lvcOXtTRHxtVqER+0XExoh47TzasAr4CTDdppyTIuKalrtcX9qS98cRcUtxJ+8N\nETEeER+nEUS+skj7+R6uxW8C9wBnAKd0Oe504LLM/FwzITN/lpnvzswHirZdFhEfioh/Bi6JiGUR\n8Y3imnyn9W7niPhqRJzY0q9jIuKaHtotSZIkSbMsr7oBkiSpL86PiClgLXA98DdF+veBozNzugju\n/nNE/GNmbgTeDhwIHJKZ2yLiCa0FRsQzgS8Bb8nMb3ao96CIuAF4HLAeeHNmbm1z3Dcy86+LctcA\n10TE/sBuwO8DT8zMR4o2bs/MDRHxRuB5mfnjHq/F7wCfycxvR8SPIuI3MvMf2xx3KPAP8yjvwKId\n24v2n5SZzQD5x4A3A+8FPgScSeOaAfx34MM9tl2SJEmSduIduJIkjYbji2UMngDcRSOgCI27cT8T\nETcD1wD7AwcXeccCH8rMbQCZeX9Lec8EvgKc1CV4C48tofAM4ADgjyPi4DbHrY+Ir0fEd4AvA3sB\n62gsV3A78MWIOBV4wowAcMyz/42DI/YGjuGxIOpngdd3PmOnc3+vuDv4rog4piXriy3B2wB+v7gr\n+GbgP1FczyJIvEdEPKcITh8OXNBL+yVJkiRpJgO4kiSNhgAoAo0XAS8q0v8CuA94TmYeDFzB/NaV\n/Q8ayxD8+nwbkJn/AVzb4ZwvAZ/MzGcVgeafAmNFe38Z+CtgHxp35j53vnW28WpgGfDtiPh34A+B\nl0bEXm2OvRE4sqX9f1W07d/Z+Rr9pOXxfwNeAByVmc8GPjDj2A8DvwucBpyTmbOWk5AkSZKkXhjA\nlSRp9BwN3FY83gv4QWZmRDyNxvqwTV8B3hIRKwFmrDP7QHHsb0fEn3Spa8cdshGxCvillrpb7Qls\nKo57VfGciPg5GssnXJWZf05jU7FDinMeorGubi9eBxyXmeuLnzXAV4GT2xz7UeDoiHh1Sx92oXuA\ney/gR5n504jYndmbxX2RRvD8tcDZPbZdkiRJkmYxgCtJ0vBLGmvg3lAsUXAQ8HtF3p8Dr4uIm2jc\njdu6HMJZwB3ADcU6tp/bqdDMnwIvBn41Is7qUPdTi3pvBP4Z+EJm/n1Lu5p+D7goIv4FeA4wUaSv\nAv42Ir4dEd+msT7/54u8DwD/ON9NzCLicGD1jD4CnEcjsLuTzPwhcBTwsoj494i4DvgWcDlwZZs+\nAHwB2C0ibgX+vji+tcyfAX8LXJWZd8/VZkmSJEmaS2TO/H+JJEmSFiIiltHYRO5NmXlV1e2RJEmS\nNPy8A1eSJKkPIuK3gDtp3H1r8FaSJElSX3gHriRJqr2I+DiNzc6aE5coHv9KZj5SWcMkSZIkacC8\nA1e1ERGbIuLW5lqKxb/PKLkNayLijTPS/i4iDuxzPa+NiJsj4paIuD0i3h0RK3o4/9iIuKyfbZKk\nOsvMDZl5SGYeWvw0Hxu8lTQSWubCN0bE9yLiixGx6xzn/GlEfLB4/JqIuLh4/EsR8ddznPuciDhh\nRtoNEbHbYvsiSWVqGT9vKv5/fXFE/MoA6rmgdfPbGXnbiz0dWuMZe/W7DVq6DOCqThI4fsZ/zG8p\nuQ3rgNN2alTmSzPzjn5VEBGnAn8AvDQznwE8G3ga8JkOxy/rUFTPt88Xu6tL0rwVE+J7WseiiHhh\nMUn9YJ/rujwifhQRu7ekdZwo96G+5xebr0lSHTTnwodk5i8CewKvXUAZZOa/ZOZJcxx7CHDiTic3\n5t8/7bFOSapac/w8ODOfSmPT2a8VG9yW2YbnzYhnPFhi/RpxBnNUNzErIeKpETEZEWuL52dExNda\n8n8/Iq6JiOsj4msRMV6kr4iI90bEd4pP4r5WpO+4O6F43no368d5bEf1Lxf534+IZ0fEr0bEzTPa\ndlmx5iERcUxEXBkR1xXteUGHPv4J8NbMnADIzCngVOC4iFhXlLU9It4VERuBv4iI5RHxseLTxGuA\nF85ox6tarsHlEfGslr5eGhEXFru7Hx4Rf1zc1XFD8TM+14siaUlLYAJ4WUva64DrBlTXFuCPBlB2\ntzolqS4CICLGgMcDD0bEM4s55vUR8d2IePuchbR8QBURPx8RlxR3ht0UEZ+JiNXAmcALivngx4pj\nt0fEHsXjgyLiGy3nnTqoTktSH+yIJWTmxcDZwBkAxf+n/3fxf+YbIuJLEbGqyDupSP+X4s7Zl+4o\nMOJpEXFVEVO4GNhjjvrbxTM+EhF/1PL8aRExERG7dGuXNNPyqhsgzXB+RPyMndc2vD0izgD+JiL+\nANgAHA6NwZbG3au/kpkZEa+iEYR9KfB24EDgkMzcFhFPaKln5n/Ym89PA/4yMw+d2bDM/OeIWBkR\nh2bmDRGxHngq8PdF4PVdwDGZ+ZOIOAC4MiLWZOZ0s4xisrwf/P/s3X+cZXV92P/Xe3dnXPgGlsXi\npCQLuys0tJpKLYtpCLHRtobYKoTIjwhJtSGFbiz9Wtr6NVarJWkINN9GTItiqLgtiuAXvzERsQlC\nZYO7oGuMBMoQ3Z0V9UJku7tKhpndffePc+7u2bt3Zu6dub/n9Xw85jH3nM855/05d+585sz7fM7n\nwxcbjv1cREwCrwS+Ua6ezcxzy/3+WXkuf718bz5XOeaPA5cD52fmbET8BPAx4OXlJucCZ2fmUxFx\nEvBZ4Acz84Xyn4NDx/wUJOlo/xX4J8A95T/2PwbcAZwAEBEvp2h7jwNWA3dk5q+XZe+haLuOB14K\nfBv4ucz833PEugF4X0S8PzO/Uy2I4rHe91O0awncnZnvK9vBWzLzb1a2/TzwW5n56Yj4BxQ3z1YD\nB4F3ZOYDS3xPJKkb7oyIaWA98CjwCYq29TXldd5q4I8j4g8zc/sCx6pf314BfD0zXwcQESdl5v+O\niHcDb8zMn23cJ4qnLv5/4N9m5ifKdSd35hQlqSe2Af+ofP2vgO9l5o8BRMS7gF8DfgX4bGZ+rFx/\nOvDFiDit/D9+C/CfM/Mj5fXuo8B/nyfmFyLiIMX/7M9l5muBm4H7IuI3spiE6hqK69ZDEfFv5qmX\ndBQTuBo0l2TmnzauzMw7I+I1wH3AT2Xmc2XRhcA5wJcjAope5fWL1dcD/zozD5TH+G4H6vcR4C3A\nl4FfAP572fD+NEVi4n9GWRHgAHAa8OeLjPVfK69fC3w0Mw8CRMRtFD3gAN5IMQzDtkrskyLiReXr\nP87Mp8rX+4Angf8WEf8D+IPMfHqR9ZO0PCSwFfhnEfGDFG3OJzj65s83mD+5cC7wyjJh8DHgn1Ik\napv5DvBB4H0UTydUvRsYz8wfjYjjgYci4vHMvGsxN9iW9K5IUndckpl/GsWwVx8CfpOivfwvEXE2\nRdv7w8DZwEIJ3LovAv8iIm4EvkBxM38u9WvJHwFeVE/eQtHhoK0zkaT+qvaGvRA4MSJ+rlwe40jH\nqZdGxL+naFsPAGuBDRHxbYq29naAzPxaRDy0QMyfyMz91RVlh7THgDdGxOcoOl/V5/ppVq+d7Z2m\nlgsTuBo0xzxyAId7Abwc+C6wDni4sv1/yMwPtxHjAFAdV3Z1G/veDnyl7An8CxRJ4no9/kdmXjHf\nzpn5bEQ8DfwdKhfPZe/gM4EvVTb/3nyHqrwO4PbMfFfjRmU+9/BxymTzjwE/TjEMwxcj4rLM3Dpf\nvSUta/V2eQvFDaw3Am+m6NFVdzzzJxc+W+lx+zBHnhCYy03AExHxIw3rXwu8HSAzn4+IjwJ/H7iL\nxd1gk6RBE3D4mu2TwI3AGuBZ4BXlE2efpI3r18z8Ytk+/z3gZ4F/Xy433XxJtZekwXEu8LXydQBv\ny8w/bLLdxyg6ftUngfwuR9rYuZ7cbSaZI59B8QTZvwFeAnwuM/+ihXpJR3EMXA2LG4AngPOBm8re\nVQCfAq6OcnbHcgyZ+gXp7wHXRsR4WfZXyvVPAX8zIl4UEauAn6/E2UdxkdxUZn6bYtzH/xeoZebj\nZdF9wN+LcuzZMt5cA6b/OvAf48iYvsdT9Db7ZGbunGOfPwSuKM9vnCJJUfd7ZVl97N+IiL/d7CAR\n8QMUwydszczrgYcoJrCQpIVsAf458JeZ2fhkwa9zJLlwNvAgRycXpiuvD7LADeSy58INwH9g4Qvl\nutuBS8oewL/AkacY6jfY6hNK/K3MPK3JOUjSoHkNxfXvScA3y+Ttj1DcuGpZec35/cy8m6IdPxP4\nAZpf99aTD/8LeD4iLq0c58VI0hCIiDdSPPF1U7nqU8D/HRHHleXHRcTfKMtOouz1Wg7JuBYOX4/u\nAH6xLHsZ8BPzhZ2rIDM/B/wg8KvABypF89VLOooJXA2SpBj368tRDB7+5SgmYHg98A+AzZn5dYre\nV5+IiPHMvIOi19Xno5ioYQdHJvi6AZikGF7hy+V2ZOY24DPAY8D9FEMK1H0VeCyKQco/ValX1Uco\nHuu97XDFi0TAzwMfLOv+GHBt05PMvAX4j8Cny+3+pKznP2l4L6pupUg8/xnwP8vzrB/vIeBfU4xN\nuYPiLuOlNLcG+P+imIziTyiSKLfPsa0kHVbewHpH+dVoLUtILszhFopevOdU1v0hZVtZjod7JeWY\n4B26wSZJ/VS9Fv5T4CyK68lfA94aEV+huGH2R20e9+8CXyqvEx8CrisTE38EvCiKCcr+c6UOlMN2\nvbGM+9Vy35899tCSNBDq7eeOiHiSosPTBZn5aFl+A8V14rby/+CHgVeUZf8C+GREfKlct6ty3F8E\nfjmKyczfR9FJYb46fKEhn3Fmpfx3gWfKfETdfPWSjhLFGMqSJEnHioivAxdm5lcb1r8HWJOZby+f\nfNhC0bv2zyluEH8+M99f3a7cbzPwtzPzrTSIiPuB/5SZv1cuX0Fxk+ktmfnROHYSs0+UTxPU9/85\n4E7g6sy8tbL+NcD1FBMBjQM7MvOKiHg1c0xcKUmSJHVKRHwa+FjZCU1qmwlcSZIkSZIkqcPK4Q0/\nTvGk7M+mSTgtUl+HUIiIt0TEoYh4Q7l8SkTcGxFPlo/qnF/Z9riIuCMiJiPiiYi4uFIWEXFzRDxV\n7ru5Ic67yrLJiLgeSVoGImJnRDxeeYTnTeX6rrS1kjTKImK8bAOfLIci+mi53jZVktpge6rlJDO/\nlJlnZuZFJm+1FPNOItJNEXE68EsUY3zU/QbwcGZeEBHnUIzpub4cg+k6YDozz4xiIP5tEXF/Zu6h\nGAPvrMw8I4rJrHaUZY9HxE9SjAf6coqZsbdGxNbMvLcedO/evSspBvOveg5nYZXUeQGc3LBucs2a\nNQe7EOsQcElm/mnD+o63tdWD26ZK6pFetqdQjFN3KDP/GkBEvKRc37U21fZUUg/1sk21PZU0yrrS\nnvYlgRsRAXwY+BXgtypFlwAvBcjMRyPiaeDVFBNNXQq8tSzbGREPABdRTCR1CcUkT2Tmnoi4E7gc\neHdZtiUzp8vYt5Vl9x4Jy5nAUQkISeqhv04xy3SnBc1nQ+1GW1tlmyqpX7rSnkbE8RRt4w/V12Xm\nM+XLbraptqeS+qnjbartqaRlasntab+GUHg78IXM3FFfEREnA6sqjTcUs/+dVr4+jaNnA9zZgTJJ\nGnVbykfTbo2IF3exrZWkUfZSip5avxoRj0TEgxHxGttUSWqb7akkLULPE7gR8TLgYuDXeh1bkpaZ\n8zPzFcArge8Ct5frm/XKlSTNbRVwOvC1zNwEXEsxIckqbFMlqR22p5K0CP3ogXs+RYM9GRHfAH4M\n+BDFYw8HKuPfAKwHpsrXu8r9mpVNLbJMkkZWZn6z/H4Q+E8UCd3n6E5bK0mjbAo4CNwBkJlfoejh\n9aPArG2qJLXM9lSSFqHnCdzMvCUzfygzN2bmBuCLwFWZeQtwF3ANQERsAk4FHix3vRu4uizbQDEW\nzqfKsruAqyJiRfnoxaXAnZWyK8tZK19EMW7Oxxuq9VxjPXfu3Mn09HRHzrkV09PTfP3rX+9ZzF7H\n60fMUY/Xj5ijHq9fMWnSBi1VRBwfEWsqq34eqA9b8wk639ZWHXM+fmaMN8gxPcfhj1fR8fYUIDO/\nC/wR8NNwuH1cD/wZ3bl+nfN8enmN6u/G8MfrR8xRj9ePmKPUpi7X9hRG/3Pj7+JoxBz1eP2KSQfa\n075MYtYgOfKoxDsoxmt8EngBeHPZcwzgRuC2iHgKOABsLnuSAWwBzgEmKWZdvykzHwPIzAfLQcy/\nVsb6eGZ+pkkdjnLo0KFOnV/LDh7s1qTJgxGvHzFHPV4/Yo56vD7F7MbstxPAJyNiBUUb+3XgF8qy\njre1PTifli2Hz8yox+tHTM9x+OOVutn+XAP8bkTcQNF77Jcz89sR0c02te/XqP5uDH+8fsQc9Xj9\niDlibeqybE9h9D83/i6ORsxRj9enmEtuT/uewM3M11RePwO8bo7tngcum6PsEPC28qtZ+fXA9Uuu\nrCQNicz8BsXYt83KutLWStIoK9vV1zRZb5sqSW2wPZWk9vVjDFxJkiRJkiRJUgtM4EqSJEmSJEnS\ngDKBK0mSJEmSJEkDygSuJEmSJEmSJA0oE7iSJEmSJEmSNKBM4EqSJEmSJEnSgDKBK0mSJEmSJEkD\nygSuJEmSJEmSJA0oE7iSJEmSJEmSNKBM4EqSJEmSJEnSgDKBK0mSJEmSJEkDygSuJEmSJEmSJA0o\nE7iSJEmSJEmSNKBM4EqSJEmSJEnSgDKBK0mSJEmSJEkDygSuJEmSJEmSJA0oE7iSJEmSJEmSNKBM\n4EqSJEmSJEnSgDKBK0mSJEmSJEkDalW/KyBJkpa3Wi3Yty8AOPHEZM2aPldIkiRJkgaIPXAlSVJf\n7dsXbNp0Aps2nXA4kStJkiRJKtgDV4tS7S0FRY+piYnsY40kSZIkSZKk0WMCV4tS7y1V98gj+03g\nSpIkSRpptVqwd+9qZmc3MDW1ijVrwv+DJEldZwJXkiRJkqQW7NsXnHvuiYeX7cgiSeqFvoyBGxH3\nRcRXImJHRDwYEa8o1z8QEV+PiC+XX9dW9jkuIu6IiMmIeCIiLq6URUTcHBFPRcSTEbG5Id67yrLJ\niLi+d2cqSZIkSZIkSYvXrx64b8rMfQARcSFwO3A2kMC1mU2B4F8AACAASURBVPnpJvtcB0xn5pkR\nsR7YFhH3Z+Ye4ErgrMw8IyLWAjvKsscj4ieBS4GXA4eArRGxNTPv7fZJSpIkSZIkSdJS9KUHbj15\nWzoJOFhZnqtOlwK3lPvvBB4ALirLLgFuLcv2AHcCl1fKtmTmdGbOALdVyiRJkiRJkiRpYPUlgQsQ\nEbdHxBTwXuAXKkU3RMSfRMTHImJDZf1pwK7K8s5y3VLKJEmSJEmSJGlg9W0Ss8z8RYCIuBL4TeD1\nwBWZ+XS5fjPw+8DL+lXHmZmZnsfqVcylxstc3bB8iOnp6a7GbNeox+tHzFGP16uYq1evXngjSZIk\nSZIk+pjArcvMLRHxwYhYW0/elut/JyJuKtfvoehFezpQKzdZD9xXvp4qy7ZVyqYaymhSNq9arbbw\nRh3W65iLjTc7u6Fh+QC7d+/uaszFGvV4/Yg56vG6GXPlypVs3LixK8eWJEmSJEmjp+cJ3IhYAxyf\nmd8uly8E/gLYFxEvycxnyvUXA98pk7cAdwNXA9vLoRVeDVxTlt0FXBURd1OMqXspRY/eetkHIuJm\niknM3gq8p5W6TkxMMD4+vqTzbdXMzAy1Wq1nMZcab2rq6I/O2Ngq1q1b19WY7Rr1eP2IOerx+hVT\nkiRJkiRpLv3ogbsGuCsiVgMJPEORbH0R8AcRMV6ufxZ4Q2W/G4HbIuIp4ACwOTOfK8u2AOcAkxRJ\n2psy8zGAzHwwIu4EvlYe9+OZ+ZlWKjo+Pt7zR517HXOx8SJWHLPc6nGG5RyHJV4/Yo56vH7FlCRJ\nkiRJatTzBG5mTgGvmqN40zz7PQ9cNkfZIeBt5Vez8uuB69urqSRJkiRJkiT114qFN5EkSZIkSZIk\n9UPfJzGTJEmSJEmSpEFUqwX79sXh5RNPTCYmsqd1sAeuJEmStICI2BkRj0fEjoj4ckS8qVx/SkTc\nGxFPRsRXI+L8yj7HRcQdETEZEU+Uk/TWyyIibo6Ip8p9N/fjvCSp12xPJQ2bffuCTZtOOPxVTeb2\nij1wJUmSpIUdAi7JzD9tWP8bwMOZeUFEnAPcExHrM/MgcB0wnZlnRsR6YFtE3J+Ze4ArgbMy84yI\nWAvsKMse790pSVJf2J5KUpvsgStJkiQtLMqvRpcAtwBk5qPA08Cry7JLK2U7gQeAiyr73VqW7QHu\nBC7vSs0labDYnkpSm0zgSpIkSa3ZEhF/EhG3RsSLI+JkYFVmPlPZZhdwWvn6tHK5bmeLZZI06mxP\nJakNDqEgSZIkLez8zPxmRKwEfg24HfgFmvci66qZmZmexulVvH7EHPV4/Yg56vEyVzcsH2J6erqr\nMXt1jqtXr154o85Ydu1pNdao/m7Yvo1GzFGPt9iY7bb93WhPTeBKkiRJC8jMb5bfD0bEfwL+V2Y+\nFxEHIuIllV5j64Gp8vUu4HSgVim7r3w9VZZta7LfvGq12sIbdVCv4/Uj5qjH60fMUY03O7uhYfkA\nu3fv7knsbp7jypUr2bhxY9eOX7Wc29N+xBz1eP2I6TkOf7x2Y7bT9nerPTWBK0mSJM0jIo4HxjJz\nb7nq54Ed5etPANcA742ITcCpwINl2d3A1cD2iNhAMZbjNWXZXcBVEXE3cBLF+I6vb6U+ExMTjI+P\nL+2kWjAzM0OtVutZvH7EHPV4/Yg56vGmpo7+F3psbBXr1q3rasx+fG66Zbm2pzD6vxu2b6MRc9Tj\nLTZmP9r+RiZwJUmSpPlNAJ+MiBUUj/h+neJxX4B3UIzl+CTwAvDmcsZ0gBuB2yLiKeAAsDkznyvL\ntgDnAJMUM7LflJmPtVKZ8fHxXj7q3PN4/Yg56vH6EXNU4xXNwNHLvTrPfnxuumBZt6f9iDnq8foR\n03Mc/njtxuxn219nAleSNHBqtWDfvmIYtBNPTCYmss81krScZeY3gFfOUfYM8Lo5yp4HLpuj7BDw\ntvJLkpYF21NJWpwVC28iSRpmEfGWiDgUEW8ol0+JiHsj4smI+GpEnF/Z9riIuCMiJiPiiYi4uFIW\nEXFzRDxV7ru5W3Xety/YtOkENm064XAiV5IkSZKk5cgeuJI0wiLidOCXgIcrq38DeDgzL4iIc4B7\nImJ9+YjadcB0Zp4ZEeuBbRFxf2buAa4EzsrMMyJiLbCjLHu8pyclSZIkSdIyYg9cSRpRERHAh4Ff\nAWYqRZcAtwBk5qPA0xQTQUAx6UO9bCfwAHBRZb9by7I9wJ3A5V08BUmSJEmSlj174ErS6Ho78IXM\n3FHkciEiTgZWlWOM1e0CTitfn1Yu1+1coOxVHa+1JElqW3X8eHAMeUmSRokJXEkaQRHxMuBi4PyF\ntu2F2dnZtrbPXF15fYjp6enDy3v2jLN/f/EAyQknHGLt2iOdi2dmZo763gu9jjmK8Rp/3qN4jv2O\nOarxRmA2dqlj6uPH1z3yyH4TuJIkjQgTuJI0ms4HTgcmy6EUfhD4EPDvgAMR8ZJKL9z1wFT5ele5\nX61Sdl/5eqos29Zkv3k9++yzHDx4sOXKz85uqLw+wO7duw8vz8xs4Lzz1gKwdet3+d73dh+zf61W\nO2Zdt/U65ijFa/x512ON0jkOSsxRirdy5Uo2btzYteNLkiRJg8IEriSNoMy8hXIsW4CI+DzwW5n5\n6Yg4F7gGeG9EbAJOBR4sN70buBrYHhEbKMbGvaYsuwu4KiLuBk6iGC/39a3U55RTTmFsbKzl+k9N\nHfnzNDa2inXr1rVUNjMzQ61WY2JigvHx8ZbjLUWvY45ivMaf6cTExMidY79jjno8SZIkaZSZwJWk\n5SGB+sB47wC2RMSTwAvAmzOz3j32RuC2iHgKOABszsznyrItwDnAJHAIuCkzH2sl+NjYWFuPOkes\nOOp1dd/5yurGx8d7/mh1r2OOUrzGn2k94TdK5zgoMXsVb8+ecWZmjuc731nFmjXhY9ySJEnSEpjA\nlaRlIDNfU3n9DPC6ObZ7HrhsjrJDwNvKL2kkVScBcgKgxdu/f8XhoU4ch1OSJElaGhO4kiRpWWlM\n0q5Zc6SsOgmQiUdJkiRJg8AEriRJWlYak7TVBK4kDYPqjSgobkZJkgTN/0bYKWH4mcCVJEmSpCFS\nvREFxc0oSZKg+d8IE7jDb8XCm0iSJEmSJEmS+sEEriRJkiRJkiQNqL4kcCPivoj4SkTsiIgHI+Ls\ncv0pEXFvRDwZEV+NiPMr+xwXEXdExGREPBERF1fKIiJujoinyn03N8R7V1k2GRHX9+5MJUmSJEmS\nJGnx+jUG7psycx9ARFwIfAQ4G7gBeDgzL4iIc4B7ImJ9Zh4ErgOmM/PMiFgPbIuI+zNzD3AlcFZm\nnhERa4EdZdnjEfGTwKXAy4FDwNaI2JqZ9/b2lCVJkiRJkiSpPX3pgVtP3pZOAg6Wr98E3FJu8yjw\nNPDqsuzSStlO4AHgorLsEuDWsmwPcCdweaVsS2ZOZ+YMcFulTJIkSZIkSZIGVr964BIRtwM/BSTw\nMxFxMrAqM5+pbLYLOK18fVq5XLdzgbJXVcq+0FB2aSt1nJmZaWWzjqjH6lXMpcbLXN2wfIjp6emu\nxmzXqMfrR8xRj9ermKtXr154I0mSJEmSJPqYwM3MXwSIiCuB36QYBiH6VZ9marXayMdcbLzZ2Q0N\nywfYvXt3V2Mu1qjH60fMUY/XzZgrV65k48aNXTm2JEmSJEkaPX1L4NZl5paIuKVcnI2Il1R64a4H\npsrXu4DTgVql7L7y9VRZtq3JfvUympTNa2JigvHx8RbPZGlmZmao1Wo9i7nUeFNTR390xsZWsW7d\nuq7GbNeox+tHzFGP16+YkiRJkiRJc+l5Ajci1gDHZ+a3y+ULge9m5nMRcRdwDfDeiNgEnAo8WO56\nN3A1sD0iNlCMjXtNWXYXcFVE3E0xpu6lwOsrZR+IiJspJjF7K/CeVuo6Pj7e80edex1zsfEiVhyz\n3OpxhuUchyVeP2KOerx+xZQkSZIkSWrUjx64a4C7ImI1xfi3zwD/sCx7B7AlIp4EXgDenJn1Cc5u\nBG6LiKeAA8DmzHyuLNsCnANMUiRpb8rMxwAy88GIuBP4Whnv45n5mW6fpCRJOqJWC/btK0ZKOvHE\nZGIi+1wjSZIkSRoOPU/gZuYURyYYayx7BnjdHGXPA5fNUXYIeFv51az8euD6xdRXkjScTBgOln37\ngk2bTgDgkUf2+/OQJEmSpBatWHgTSZKGTz1huGnTCYcTuZIkSZIkDRsTuJIkSZIkSZI0oEzgSpIk\nSZIkSdKAMoErSZIkSZIkSQPKBK4kSZIkSZIkDSgTuJIkSZIkSZI0oEzgSpIkSZIkSdKAMoErSZIk\nSZIkSQPKBK4kSZIkSZIkDahV/a6AJEmS2lerBfv2BQAnnphMTGSfayRJkiSpG0zgSpIkDaF9+4JN\nm04A4JFH9pvAldQSb/5IkjR8Wh5CISJWRsSWblZGkiRJg6NWCyYnVzA5uYJaLfpdHUkdUL/5s2nT\nCYcTuZIkabC1nMDNzIPAX+tiXSRJkjRATPRIkiRJ/dfuJGafj4gPRcSPR8TfrH91pWaSJEnSgImI\nt0TEoYh4Q7l8SkTcGxFPRsRXI+L8yrbHRcQdETEZEU9ExMWVsoiImyPiqXLfzf04H0nqF9tTSWpd\nu2PgXlp+//uVdQls7Ex1JEmSpGMNwridEXE68EvAw5XVvwE8nJkXRMQ5wD0Rsb58eu06YDozz4yI\n9cC2iLg/M/cAVwJnZeYZEbEW2FGWPd7Tk5IGVPV3Hhyvd9TYnkpSe9rqgZuZG5p8mbyVJA2EPXvG\nmZnZwNTUag4c6HdtJHVSv4dziIgAPgz8CjBTKboEuAUgMx8FngZeXZZdWinbCTwAXFTZ79aybA9w\nJ3B5F09BGirV33mHcRkttqeS1L52h1AgIi6OiHeWr0+NiB/tfLUkSWrf/v0rOO+8F3PuuWs4dKjf\ntZE0Yt4OfCEzd9RXRMTJwKrMfKay3S7gtPL1aeVy3c4WyyRplNmeSlKb2hpCISLeB2wCXgr8OsXw\nCR8EfrzzVZMkSTpa/ZFaH6VVL0XEy4CLgfMX2rYXZmZmFt6og3F6Fa8fMYc1XubqhuVj71pmHmJ6\nevqYmNV969t0UjfPsVlde/0zbLVendSrc1y9evXCGy3Rcm1Pq7GGrb0Z1Hj9iDks57iUdsr3tLl2\n39NutKftjoH7RuCVwKMAmfntiPiBjtdKkqQBMQjjbuqI+iO1jzyy35+Feul84HRgsnz09weBDwH/\nDjgQES+p9BpbD0yVr3eV+9UqZfeVr6fKsm1N9ptXrVZbeKMO6nW8fsQctnizsxsalo8dN2h29gC7\nd+8+JmZ138ZtOqkb5zhfXXv1M2y3Xp3UzXNcuXIlGzf2ZHTEZd2e9iPmqMfrR8xBP8dOtFO+p0dr\n5z3tVnvabgL3LzPzYNHOHuZgRJKkkVVPGAImDaVlKjNvoRx7ESAiPg/8VmZ+OiLOBa4B3hsRm4BT\ngQfLTe8Grga2R8QGirEcrynL7gKuioi7gZMoxnd8fSv1mZiYYHx8fOkntoCZmRlqtVrP4vUj5rDG\nm5o6+t+4sbFj/60bG1vFunXrjolZ3be+TSd18xyb1bXXP8NW69VJ/fhd7Jbl2p7C8LY3gxqvHzGH\n5RyX0k75njbXj7a/UbsJ3F0RcT6QETEGvBP4SuerJUmSJA2s5EgnhncAWyLiSeAF4M3ljOkANwK3\nRcRTwAFgc2Y+V5ZtAc4BJoFDwE2Z+VgrwcfHx3vyqHO/4vUj5rDFi1gx73J9XTVGPWZ128ZtOqkb\n5zjf8Xr1M2y3Xp3Uj9/FHlhW7Wk/Yo56vH7EHPRz7EQ75Xt6tH62/XXtJnD/OXA78KPA94HPA1d0\nulKSJEnSoMrM11RePwO8bo7tngcum6PsEPC28kuSliXbU0lqTVsJ3MysAT8dEccDkZnf7061JEmS\nhpdjJ0uSJEnqlLYSuBGxPTPPLe9+HbWu81WTJEnqjGpC9cCxc/10nGMnS5IkSUtXvY6H5ds54tjB\nkuZ3VMK3HAf3hHYOEBEvioh7IuKJiNgREfdFxMay7IGI+HpEfLn8uray33ERcUdETJb7Xlwpi4i4\nOSKeiognI2JzQ8x3lWWTEXF9m+csSZKGXD2humnTCRw61O/aSJIkDZ5aLZicXHH4q1Zzznr1X/U6\nftOmE45K5i4nLfXAjYh/QzGg+A9ExHOVouOAjy4i7gcz87PlsTcDHwZeQzGA+bWZ+ekm+1wHTGfm\nmRGxHtgWEfdn5h7gSuCszDwjItYCO8qyxyPiJylmoXw5xYDmWyNia2beu4h6S5IkAQ6TIEmSRkv1\nCSLwKSJpkLTaA/cW4G8Bf1h+r3+dmpn/tJ2AmflCPXlb+iKwvoU6XVrWg8zcCTwAXFSWXQLcWpbt\nAe4ELq+UbcnM6cycAW6rlEmSJC1KtTfAcu0JIEmSJKn7WkrgZubezNyZmRcAfwGsA34YmOlAHa4F\nPlVZviEi/iQiPhYRGyrrTwN2VZZ3luuWUiZJkiRJkiRJA6vdScxeA3wMeBoI4K9GxOWZ+fnFBI+I\ndwIvBX65XHVFZj5dlm0Gfh942WKO3QkzM53IT7cXq1cxlxovc3XD8iGmp6e7GrNdox6vHzFHPV6v\nYq5evXrhjSRJkiRJkmgzgQv8NvCGzNwGEBHnAr8L/Gi7gSPiOuBC4LWZOQ1QT96Wr38nIm6KiLXl\nsAi7gNOBWrnJeuC+8vVUWbatUjbVUEaTsnnVarWFN+qwXsdcbLzZ2Q0NywfYvXt3V2Mu1qjH60fM\nUY/XzZgrV65k48aNXTm2JEmSJEkaPe0mcA/Vk7cAmbk9Ig62GzQi3g5cRpG83V+uWwm8ODOfKZcv\nBr5TJm8B7gauBraXQyu8GrimLLsLuCoi7gZOohgv9/WVsg9ExM0Uk5i9FXhPK/WcmJhgfHy83dNb\nlJmZGWq1Ws9iLjXe1NTRH52xsVWsW7euqzHbNerx+hFz1OP1K6YkSZIkSdJc2k3gfi4i/jFwe7l8\nJfC5dg4QET8E3AT8OfD5iAhgGngt8AcRMQ4k8CzwhsquNwK3RcRTwAFgc2Y+V5ZtAc4BJimStDdl\n5mMAmflgRNwJfK087scz8zOt1HV8fLznjzr3OuZi40WsOGa51eMMyzkOS7x+xBz1eP2K2WkRcR8w\nQdH27QOuzcyvRMQpwEcphrCZpmhPv1DucxzFkxWbgIPAr2bmJ8uyAN4PXEDR1v52Zv5Ob89KkiRJ\nkqTlpd0E7i8Ba4APlstjwN6IuArIzDx5oQOUwyTMNXnapnn2e56i126zskPA28qvZuXXA9cvVDdJ\nGjFvysx9ABFxIfAR4GzgBuDhzLwgIs4B7omI9Zl5ELgOmM7MMyNiPbAtIu4vn4a4EjgrM8+IiLXA\njrLs8d6fmiRJkiRJy0O7Cdyzu1ILSVLH1ZO3pZMoetQCvImi9y2Z+WhEPE0xLM39FEPQvLUs2xkR\nDwAXAbcBlwC3lmV7yqcbLgfe3fWTkSRJkiRpmWorgZuZu7pVEUlS50XE7cBPUQyj8DMRcTKwqj7e\neGkXcFr5+rRyuW7nAmWvaqUes7OzbdU7c3Xl9SGmp6fbLjv6eEdv16m6QDFucvV7tw1rvHZ+ptWY\ne/aMs39/8eDOCSccIrP5MdqJf/T6o+Mt9PNe7Dl143PTTl0XG6+dGJ3Yr91jDvtQN5Kk5atWC/bt\nCwBOPDGZmMg+10jSIGsrgRsRLwHeC7wCOHzFnJmv7HC9JEkdkJm/CBARVwK/STEMQvS6Hs8++ywH\nD7Y+5+Xs7IbK6wPs3r27pbIDB46UZeac27VjvnhVtVptUcdfrGGL187PtB6rVqsxM3M85523FoCt\nW79LMfxy+z/TaozGz0Y13uzs8XPWcynn1I3PTasxlhJvMTHg6N/Fpfz+zVeXb33rW2zcuHHJx1X3\nVZMUMHyJCpMskrph375g06YTAHjkkf22LZLm1e4QCr8LPEQx4di/BP4psKPTlZIkdVZmbomIW8rF\n2Yh4SaUX7npgqny9CzgdqFXK7itfT5Vl25rsN69TTjmFsbGxlus7NXXkz9PY2CrWrVvXUtmuXUfK\nijnXmm/XjvniQdGjsVarMTExwfj4+KJitGNY47XzM52YmDgc8zvfObpsrmO0E7/xszFfvPliLPZz\nCp15XxeK0Yl47cSoqv4uLuX3b766nHrqqUs+pnqjmqSAuRMVtVqwd+9qZmc3MDW1ijVrYiASGiZZ\nJElSv7WbwF2XmTdExBWZ+elyhvMHgX/bhbpJkhYpItYAx2fmt8vlC4HvZuZzEXEXcA3w3ojYBJxK\n0ZYD3A1cDWyPiA0UY+NeU5bdBVwVEXdTjKl7KfD6VuozNjbW1qPOESuOel3dd/6yuY+32Eet54tX\nNT4+3tPHuYctXjs/03qCcXx8/JiyuY7RTvzG9fPFmy/GYj+nVUt5XxfzfrQbb7HvefV3cSm/f52o\ni4bHvn3BueeeeHjZZKkkSVKh3QRufeC06Yh4MbAH+CudrZIkqQPWAHdFxGqK8W+fAf5hWfYOYEtE\nPAm8ALw5M+vjG9wI3BYRTwEHgM2Z+VxZtgU4B5ikeI79psx8rCdnIw25+iPYPn4taZQNai9qSZKG\nXbsJ3CfLxO1/o3iEdh/wpY7XSpK0JJk5xRwTjJVDJ7xujrLngcvmKDsEvK38UhOOk6i51B/Btkeh\ntDTDPp7uqLMXtSRJ3dFWAjczryhf/nZEfIniEdrPdrxWkiQNIcdJlNpn72S1o9XxdCVJkkZJuz1w\nD8vMhzpZEUmSNDoaeyNLc7F3siRJkjS/5jN6zCEifjoinoiImYg4GBGHIuLgwntKkqTlpJ6U27Tp\nhKMed5YkSdLo2bNnnJmZDUxNraZW89pP6rS2ErjA+4FrKSYuOxE4ofwuSZIkSZKkZWj//hWcd96L\nOffcNd68l7qg3SEU9mXmfV2piSRJkobSsUNmOBSCJEmS+mfUJj5tN4H7+xFxYWZ+qiu1kSRJ0tBp\nnMDPBK4kSeqmWi3Yu3c1s7MbmJpaxZo1MdTJuV4bteRmM6M28WlLCdyI2ENxJR7Amoj4S+CFcjkz\n8+TuVVGSJEmDpnrhf+BAnysjaag1SyRI0nz27QvOPffIiJ7DnpzrtVFLbi4HrfbAPburtZAkSeqg\nYx/pV6dVL/y3bt3f59pIGmbNEgmSJOmIlhK4mbkLICJOA57JzOlyeTVwSveqJ0mS1L5jH+mXpOGw\nHB5rlSRJ7VnR5vZ3NyxHk3WSJEmSpEWo34CqfzmbuyRJancSs/F671uAzPzLiHhRh+skSZIkSZIk\njZzl+qRF4xBny+GcO6ndBG5GxEsy8xmAiPhBil640sBrbCTBRkPS4Gu80Fmzps8VkiRJkrRoy3UC\nscYhzpbDOXdSuwnc9wMPR8SWcvkK4L2drZLUHY2NJNhoSBp8jRc6JnAlSRoNy7UXniSpfW0lcDPz\nv0bEN4CfKVe9JTO/0PlqSZIkSZI0upZrLzxJUvva7YFLZj4APNDxmkiSJEmSJEmSjrKi3xWQJEmS\nJEmSJDXXdg9cSZIkScuP43VKkiT1R8s9cCNiRUS8aqkBI+JFEXFPRDwRETsi4r6IeGlZdkpE3BsR\nT0bEVyPi/Mp+x0XEHRExWe57caUsIuLmiHiq3HdzQ8x3lWWTEXH9Us9BkiRJy0t5zfqV8vr1wYg4\nu1zflevXQVQfr7P+VU3m6li1WjA5ueLwV63m+yWB7Wm/2CZpIbVaMDW1mpmZDUxNraZWCz83A6Tl\nHriZeSgiPgS8ogNxP5iZnwUoG9cPAz8F3AA8nJkXRMQ5wD0RsT4zDwLXAdOZeWZErAe2RcT9mbkH\nuBI4KzPPiIi1wI6y7PGI+EngUuDlwCFga0Rszcx7O3AekiRJA6faU/LEE5M1a/pcodHwpszcBxAR\nFwIfAc6mC9evvT81dUOzCar8XZQA29O+6OSkec2eyIDBeyLDJ0fas29fcO65Jx5efuSR/QBOtjgg\n2h0DdzIizlhKwMx8oZ68LX0ROL18/SbglnK7R4GngVeXZZdWynZSTKR2UVl2CXBrWbYHuBO4vFK2\nJTOnM3MGuK1SJvVc4x0s72JJkjqt2lPSXpKdUU82lE4CDpavu3H9Kkkjy/Z0+A3LExnDUk+pFe2O\ngXsy8JWI+GPge/WVmfmzS6jDtcCnIuJkYFVmPlMp2wWcVr4+rVyu27lA2asqZV9oKLt0CfWVlqTx\nzid4F0uSNLrGxpLJyaLPwLD3fImI2ymeGkvgZ7p4/aoRNDaWTE2tZnZ2A1NTq1izJrr++1CrBXv3\nHh1TGgTD0J7ae1Nqjb8rvdFuAvf28qsjIuKdwEuBXwaO79RxO2VmZqbnsXoVc6nxMlc3LB9ienq6\nqzHb1Rivsc7FuoXrvdh4c+lkPfr9no5avF7FXL362M+ApOFXv3gtHiMcPY2J2FZ9//vBeecVNy6H\n/YZlZv4iQERcCfwmxWO7Pc+IDcq1VKvXL63u18p2i63DXFr5u1+N2U68xroWvwtHHk3dvn0va9Z0\n7n049jiH2LsXzj33yLgN27fvpfqYcyevheeq12I/I8du0/xYvb5e7ORnsNVj9eoce3mNOgzt6d69\nq496nHyu39l2YzVrU9v5HO3ZM87+/cXf4xNOOMTatc3PYTFt+FLa68yjlzvZtjQzqH8zWtFOvRYT\ns5N/R5qtazxWq78rzT7z7f4dnqsO7ezXrfe0qhvtaVsJ3My8HYqJyDLzhaUEjojrgAuB12bmNDAd\nEQci4iWVu27rgany9S6KoRZqlbL7ytdTZdm2JvvVy2hSNq9arbbwRh3W65iLjTc7u6Fh+QC7d+/u\naszFqsdrrHOxrvV6txtvLt2ox7B8boYlXjdjrly5ko0bN3bl2NJiNY6XOswJtn6qP2FRHy9s1DQm\nYher8fM2jDJzS0TcUi7OduH6dV6Dci3V6vVLq/u1st1SrkHnM997Wo3ZTrzGumZmQ3ln34djj7Pw\nuk5fC3fyM3LsNvMfq1e/F538DLZ7rG6eY7+uUQe5l+mZswAAIABJREFUPe12e7PYtmVmZgPnnbcW\ngK1bv8v3vjf/fu204Utpr1vZr5MG9W9GKxZTr3ZidvvvSCc+N43bdON3caH9Ov2e1nWrPW0rgRsR\nPwp8jGKcmh+OiL8NXJqZ/7rN47wduIwieVv9D+Au4BrgvRGxCTgVeLAsuxu4GtgeERsoxsK5prLf\nVRFxd1m3S4HXV8o+EBE3U0xi9lbgPa3Uc2JigvHx8XZObdFmZmao1Wo9i7nUeFNTR390xsZWsW7d\nuq7GbFdjvMY6Q2v1Xmy8uXSyHv1+T0ctXr9iSv1WHdpl2HtIavA1ft6GQUSsAY7PzG+XyxcC383M\n5yKiG9ev8xqUa6lWr19a3a+V7RZbh7m08ne/GrOdeI11jTi6c2Gn34dGrazr5LXwXPVa7Gek0VzH\n6vW1Wyc/g60ea5SuT4epPe12e9OJtmW+/RbThi+lva7eo+p029LMoP7NaEU79VpMzG7/HenE56a+\nTbt/h+c7fqv7des97bZ2h1C4maLRvLlc/jLwUaDlBG5E/BBwE/DnwOejuJKZzsy/A7wD2BIRTwIv\nAG8uZ5wEuBG4LSKeAg4AmzPzubJsC3AOMEmRpL0pMx8DyMwHI+JO4GsUzwt9PDM/00pdx8fHe/6o\nc69jLjZexIpjlls9Tr/OsbHO0F692403l27UY1g+N8MSr18xNdrs5SoNtTXAXRGxmuJ68hngH5Zl\nHb9+XcigXEu1ev3S6n6tbLeUa9D5zPeeVmO2E6/ZNV9jeSffh1bid+v9m+/4e/cet+DYiK2ez3x1\n7dXvRSffw3aPNSLXp0PTni70eV7s9VyzNnWxbUsr+7XThi+lvS7e+tbrtVSD+jejFYupVzsxu/13\npBOfm8Zt2v1d7MT1R6ff025rN4H7A5n5UP3ucWZmRLQ1+EdmPg00vZopH5V43Rxlz1P02m1Wdgh4\nW/nVrPx64Pp26qnlwwG3JfWCvVyl4ZWZU8wxIU63rl+lUdE4ga9/A5e3YW9PvZ6T1C/tJnAPRMQY\n5cj3EbEOODj/LtJg86JSkrSc2BtckiRJGi7zP9dzrA8AnwJOiYjrgS9QzBgpSZKkIVC/cblp0wlH\nPYEiSZIkaTC11QM3M/9bRHwdeCMwDlyRmQ91pWaSJEmSJEmStMy1O4QCmfnHETFVvMynu1AnSZIk\nSZIkSRJtJnAj4hXAx4GJcvk7wOWZ+SddqJskSVJfOV6stLw0m9xWkqR+qNWCvXtXMzu7gT17VvBX\n/2q/a6R+arcH7oeBd2fmXQAR8XPluk2drpgkSVK/Odu0tLw0m9xWkrT8DMJN/H37gnPPPRGA7dv3\nmsBd5tpN4K6uJ28BMvPuiHh3h+skSVLHtXMRVt/WnleSJEnS8uNNfA2adhO4X46Iv5uZDwBExKuB\nL3W8VpIkdVg7F2H1bZv1vGpMBK9Z0536DoNB6JkgSZIkaTR0eyij6rAUU1OrWLMmhuZ/mHYTuK8E\nroiIneXyeuDPIuLLAJn5ys5VTZKkwdOYCF7OCVx7JkiS5A1NSeqUbg9lVB2Won78YWmz203g/kpX\naiFJ0hzGxpLJyRWAk8lIkqTBMwg3NJv1WhuWpIQkaWFtJXAz88FuVUSSpGa+//3gvPOO/FMkSZL6\nr9uPuao9zXqtmcDVMPJmhNRcuz1wJUkaCdWJyrwolCSpPd1+zFXS8rRcb0Z4U0wLMYErSVqWqhOV\nLYeLQkmS1D8mZyTNx5tiWogJXEmSJEmSumixyZlhnjFdktQ5bSVwI+IfAQ9m5r6IuA74MeDfZebX\nulI7SZKkEefs5ZKkuQzzjOmSpM5Z0eb2v1Ymb18BXAH8D+C/dL5akiRJy0O9V9amTScc9XitiuT2\n5OQKajXfF0mSJC1f7SZwD5Tf/wHwocz8IPB/dbZKkiRJ0pHktoltSZK0kPqNX2/+ahS1Owbuyoh4\nFXAx8JZy3VhnqyRJkqR2jI0lk5PFfXknxpEkSctRdaxpJwHTqGm3B+67gA8CWzPz8Yj4EeDJzldL\nkrQUEfGiiLgnIp6IiB0RcV9EvLQsOyUi7o2IJyPiqxFxfmW/4yLijoiYLPe9uFIWEXFzRDxV7ru5\nH+em4VdPNto7onO+/32HYZA0POwlJ0lSe9rqgZuZnwY+XVn+XxS9cSVJg+eDmflZgDLZ+mHgp4Ab\ngIcz84KIOAe4JyLWZ+ZB4DpgOjPPjIj1wLaIuD8z9wBXAmdl5hkRsRbYUZY93odz0xD7/veD886z\nd4QkLVf2kpMkDYLqU2ww2BMKt5TAjYh3z1eeme/rTHUkaThUZ42HwWvoM/MF4LOVVV8E/mX5+k3A\nS8vtHo2Ip4FXA/cDlwJvLct2RsQDwEXAbcAlwK1l2Z6IuBO4HJj3b8QoGxtLpqZWMzu7gT172n2o\nRVKjatvqUBBaDppdT0iSpN6odiyB4qbiIP1fX9VqD9z62fww8Frg94AE3gD8URfqpWVg0BNg0nyq\nPUdgsBv60rXApyLiZGBVZj5TKdsFnFa+Pq1crtu5QNmrulHZYVH8wT8RgO3b9xI+BTqU9uwZZ2Zm\nA1NTqzh4cO7tHGe2++yV13lebw22ZtcTkpYn22uNklZuUNZqwd69RWeYqalVrFnjP1PzaSmBm5n/\nCiAiPgecnZnfKpffDXyka7XTSBvCBJg0lCLinRQ9bn8ZOL4fdZidnW1r+8zVc6w/dMzy9PT0ovab\n6xjV48y337ExAOY+brVuzWLOfdyj95uZmQE4/L0T5qvbfPEa9/v2tw+xf3+R4Dx4MI8qmzv2se9x\nNWZjjLnquVDd5ou/b98KzjtvLQBbt+4/qqyqeod++/a9FPeym9etMUZjvec7x8V8NuaKV19ebLxW\nYzSW5Rx/zhd6b9opm56eZvXq5vXTEV5vSdJwsL3WKGnlBuW+fcG555447zY6oq0xcIFT68lbgMz8\ndkT8UIfrJEnqkIi4DrgQeG1mTgPTEXEgIl5S6YW7HpgqX+8CTgdqlbL7ytdTZdm2JvvN69lnn+Xg\nfF0bG8zObjj8OiuZoNnZAw3bHWD37t2Hlw8caH2/uY5RjT/ffo0xDhyYv27Vc2oWcy6N+9VqxY+m\n/r0TWqlbs3iN+z33HIcToQ89tO+osqqFfjbVc5ydPb7ptgu9h411azX+Yssa6zZfWbXezc5xMZ+N\npbynrb6P/X7fGsu+9a1vsXHjxjnrvhz5OL4kSdJoajeB+82IeC/FRDgA/wT4ZmerNDwaL5LBxxwk\nDY6IeDtwGUXytno78y7gGuC9EbEJOBV4sCy7G7ga2B4RGyjGxr2mst9VEXE3cBLFeLmvb6Uup5xy\nCmNjYy3XfWrqyJ+nqIxLMDZ29J+tsbFVrFu37vDyrl2t7zfXMarx59uvMcaqVauOGkKh8bjVc2oW\ncy6N+01MTFCr1ZiYmGB8fLylY7Qbo1q3mZmZOeM17lc13/s/X9nxx48xM3MmBw4cYO3aIHNl020X\neg/bqVu1t+hi691Yt/nK1q1bd9T7+p3vLP2zsVDdqp+bduK1GmOx72k771tj2amnnjpnvZcrH8eX\nJEnL0XK4id1uAvcfA+8HvkLx3OAflutaFhG/TTF27ukUwzF8tVz/AMX4iv+73PT2zPztsuw44HeB\nTcBB4Fcz85NlWZR1uoDi2dXfzszfqcR7V1nHBO7MzHe1d8pza7xIBh9zkDQYyqcjbgL+HPh82VZO\nZ+bfAd4BbImIJ4EXgDdnZr177I3AbRHxFHAA2JyZz5VlW4BzgEmK9vamzHyslfqMjY219ahzRPMJ\nwRrXj48Hu3cXvQlPPDGJaN7+Nu5XXY5YcUzd6uXz7XdsjPmPu1DMuY979H71JOr4+HjHHh9vpW7N\n4jXu18rxFyp7/vnGcYWbx1joPWyvbs2HA2in3vPFm6/e4+PjHflsLFS36udmse9jK+uPlLX2nrbz\nvjWWOXyCJEnqlWbjtQ5C7mc5JC5bsRxuYrecwI2IlcB5mXnJEmPeBdwAPNSwPoFrM/PTTfa5jiLx\ncGZErAe2RcT9mbkHuBI4KzPPiIi1wI6y7PGI+EmKHmIvp/hPYmtEbM3Me5d4DpI00DLzaaBphqUc\nOuF1c5Q9T9Frt1nZIeBt5ddAqI5JWvyRXp4XLBpd1Ytyn/KRlq/GtkCS1FvNxmsdhOuy5ZC4VKHl\nBG5mHoyIXwU+uZSAmfkQHO4522iu7hyXAm8t999Z9ta9CLgNuAS4tSzbExF3ApcD7y7LtpTjPhIR\nt5VlbSdwvashSZJ6rXpRPij/KEjqvca2QKPLZL00WkYtlzQ2lkxOHkndDfv5DJN2h1D4ckT8RD0J\n2wU3RMT7gD8D3pmZ3yjXn0YxsU7dznLdXGWvqpR9oaHs0lYrU51xe+/e1UfdbWmcfbqundmjm8Xq\n5Kzi3YzXOCt1K+fdGHMxx2jHQvHqMZut6+bPcK56LIfPTTN79owfnrW+7oQTDrF27cyS48137Lks\n9ufYzs/Qx34lSZLUjMl6dUKzx/3VH6PWQ7b6BCQM//kMk3YTuD8G/OOI+DrwvfrKzHxlB+pyRfnI\nLxGxGfh94GUdOO6iVWfcrs7CXCwfaNz88PpWZ49eKGYvLDZes/ej1fOux1zKMdoxV7x6zGbruvkz\nnKsey+Fz08zMzIbDs9bXbd36Xb73vaNnae/WsefS7s+x1Z/hypUrnTVd6pJ6Dwd7AkiSpOWs2eP+\nkoZbuwnczV2pBYfHa6y//p2IuCki1pbj3O6imPSsnlFZD9xXvp4qy7ZVyqYaymhStqDqjNvVWZjh\n2NmQq+tbnT26ar5ZvrthqfGavR8LnXdjzMUcox0LxavHbLaumz/DueqxHD43zcz3fnT6c1o99lwW\n+3Ps9OdXUvvqPRwG/Z+Uaq+YPXvmngysl/WpJ74dokESNH/k1/ZBkqT+aSuBm5kPAkTEqeXytzpR\niXKCtBeXE+sQERcD3ymTtwB3A1cD2yNiA/Bq4Jqy7C7gqoi4GziJYoiE11fKPhARN1NMYvZW4D2t\n1qs643arM5EvdVbkTs4q3s14S5kNuh6zVzNKzxWvHrPZum7+DPsRs9M6Ga+V96NTn9Nmx55Luz9H\nZ0SX1Kpqr5jt2/fSdFaAHtennvg2QSMJmj/yO8ztgwlpqTnHXJaGR1sJ3Ij46xTJ1FPL5W8Cb8rM\nJ9o4xi0UCdYJ4L6I2A+8AviDiBinGFj2WeANld1uBG6LiKeAA8DmzHyuLNsCnANMUiRpb8rMx6BI\nOJeTmn2tPO7HM/Mz7ZyzJEmSJGl4jVpCWuoUx1yWhke7Qyj8Z+DXMvMOgIi4DPgvwE+1eoDMvHqO\nok3z7PM8cNkcZYeAt5VfzcqvB65vtX7qP++QS5IkaVB5rSpJUn8tx97j7SZw19aTtwCZ+fGIeEeH\n66RlzjvkkiRJGlReq0qS1F/Lsfd4uwncgxHxNzLzzwAi4m8ABztfLUnSqHPiJEmShkdjz+MDB/pY\nGUmSlpl2pz5+J/A/I+L+iLgfeBD4fzpfLUnSqKvfNa3+M6hCrRZMTq6gVvO9UWfs2TPOzMwG9uwZ\n73dVhlJEvCgi7omIJyJiR0TcFxEvLctOiYh7I+LJiPhqRJxf2e+4iLgjIibLfS+ulEVE3BwRT5X7\nbu7HuXVDvQ2zHRst9b/b9a9Dh/pdIw0j21NJWpy2euBm5n3lRGavKld9MTP/ovPVkiRpuI2NJZOT\nxX3Sdsdlqv+TvFweB1L37d+/gvPOW8v27XsJ82mL9cHM/CxAmRz4MMU8EDcAD2fmBRFxDnBPRKzP\nzIPAdcB0Zp4ZEeuBbRFxf2buAa4EzsrMMyJiLbCjLHu8D+fWUcvxsUb1RrPxh9es6WOFtFi2p5LU\nppYSuBHxXuB+isb0WeD3u1orSdKyMoqD0H//+8F555nAkEZBZr4AfLay6ovAvyxfvwl4abndoxHx\nNPBqimvnS4G3lmU7I+IB4CLgNuAS4NaybE9E3AlcDvwf9u49TpKyPPT479mdXRcCu4CBVQwrC4Ia\nb4DsYoLEiLd4MInGCBq8e1QIh3CSyJFjEg3GJN5yEjWJJCheSIgIxujHaPDCRUHkIiCKCIuylyAZ\nEnazu4DDXuY5f1TNWtvbPdPT05fqnt/38+nPdNdb9b5vVVc/3f3M22+9vdf7Iw2rZvMPd5rA9WJ0\ng2E8HT7NXiuS+q/dEbgHAX8HHBIR1wJXUATR68v/hkmS1DFHa0kaMmcB/xIRBwBjmXlfpWwdsKK8\nv6J8PGXtDGXHIakvvBhdbRhPa67Za6VT8+EfJ84Xrl5pK4GbmacDRMSjgV8ub58AHhUR38jMk3rV\nQUmSJKkuIuJtFCPE3gTsPYg+bNu2renyzCUNj/ecpDRzkomJiRnb2LRpMVu2LGHHjpWsWzfG0qWT\nZMN37FZ1Vfsxmz4063/jeu2sMxtTx3Lq70zHsNX+3HvvJFu3/vTyIvvuu+fxarZdJ8s63a5VXe0+\nFzMZ1P40PofN+9a910Y750inx7TdY9Pp62cmS5YsmXmlLqpzPIXOn+uZ2moWbzp9rvtxvrW7rBrz\nWvVr8+YlrF69dNfj66/fzLJlncX5TuN1u89Zp89P4z5ec83uCe/OYyVzeq7beT9tp1/trDOI97JO\n62q2TjdibC/i6WznwL03Ij4D3Av8B8XPEo7qeq+kGqjzfwen+pa5hO3bV7J+/RjLlkVt+idJ0iiK\niLcALwaek5kTwERE7IiIgyqjxg4F1pf31wGPBcYrZZeV99eXZdc12W5a4+PjTZdv376y4fGew362\nb9/Bhg0bZmxj27aVHH/8/rseX3PN/cDuX3xa1VXtx2z60Kz/jeu1s04npo7pTMew1f5s3MiMxysb\nMrqt6pppWafbtaqr3eeiUV32Z+q5a/W6KNbr3mujnXOk02Pa7rHp9PUznYULF3LYYYe1vf5c1T2e\nQufPdbttdiNW9uN862RZP+J8p/G63eesW+9l3YqVO3bM7blu5zi306+6xP5u1dVsf+YaY3sVT9ud\nA/eXKEbdPht4DMU8NV8HTsrMNV3vlVQDdf5ZVWPfoF79kyRp1ETE7wEvp0g2VIfTXAKcDpwbEauA\ng4GryrJLgdOA6yNiJcVcjqdXtntjRFwK7Ecxv2Nbv2pbvnw5ixcv3mP5+vW7f7RftGjPj/qLFo1x\nyCGHzNjGXOqqbtvpdq3Wa2ed2di2bRvj4+O7julM+91qf9pZFg1XEOy0rrn0oVld7T4XjeqyP8uX\nL9/tOWymn6+NuRzTdo9Np6+fuhiGeAqdP9etTBdv5hJje32+tbusmgfrR5zvNF63+5x1672sW7Fy\nbGxuz3U7x7mdftUl9nerrmb7s88+h+/xq5rq46n1+h1j2x2BeyVF0vadU1eLlDS/jI8Hmzc74leS\nNP9ExGOA9wM/BK6I4tP+RGb+AnAOcGFE3Ak8DJxauUbE+4ALIuIuYAdwRmZuLMsuBI4F1lAM1Xx/\nZt7WTn8WL17c9Kd5EQumfTy1rJ2f9c2lruq6nW7Xar121unE1DGdab9b7U87yzrdrpt9aPf4tdNm\nN/swl7qmkm+tXhezabMbr425HNN219m8ea89finYmITo1muj24YlnhZ97ey5brfNbsTKfpxv7S+b\n3O1xp+dpt15Tc3mdN24/l/eydsrbe36a/yy/0/3u9PlvZ51BvJd1WlezdR54YAGrV+8+mK/h1B1I\njG03gTs1AvctEfHXwPUUSd0rM/PO3nRNUp1s2RK7zeXjiF9J0nyRmfcATT/1lz/1fUGLsocoRpk1\nK5sEzixvktS2bl5Uqt+Mp/PHMJ+nUh21exGzq4GrgXdFxGKKKzo+G/h8ROyTmT/Xwz5KkqQ2VOfu\nrtO83ZIkSVJdNbv+jVQ3s7qIWUQcTJG4/WXgROAgisSuJEkasOpIB0fJS5Lmg02bFrNtm1N8Seqc\no4U1DNq9iNn5FJOEHwxcC1wBvBK4ITP3vIybJEmqrcaRuhoOixYla9YUvzr1eZOkwtatCzj++P0B\n/3kpSRpd7Y7A3QC8AfhWZm7vYX8kSRp5jYm4fn/ZbBypq+Hw4IPB8cf7vEmSJEnzTbtz4L6z1x2R\nJGm+aEzEOVpIkiRpNDSbT9XPeqPJuXPVT7OaA1eSpFHklAKS1Bm/vEp78nUxvzWbT9UE7mhy7lz1\nkwlcSdK8N+gpBUwgSxpWfnkdfiYbW+v02Pi6kCR1mwlcSZIGrB8J5OqX0B1zuPzoVD1+wR9N/jNB\nmn9MNrbmsZHqwX80FTwO85sJXEmS5oHql9Brrun8C+hUPX6J7Y3GC9z126BHo0uSJDXynykFj8P8\nZgJXkiSpJhovcCdJkuqrDiMi69AHSb1nAleSptH4gQj8UKThMOiRnJIkSaOuDiMi69CHuWj8vjWX\nqb6kUWYCV5Km0fiBCIbvQ5HmJ0dySqozR4xJmk/Gx4PNm5ewfftK1q8fY9mymHmjeaLx+9ZcpvpS\na17nYPiZwJUkSbs0jtxdtmzAHZI0kro5YqxZMnj5cr+cSqqPLVuC1auX7nrsP9fVb17nYPgt6HeD\nEfGBiLg7IiYj4qmV5QdGxJci4s6IuDUiTqiU7RURF0XEmoj4QUS8tFIWEfGhiLir3PaMhvb+sCxb\nExHv6s9eSpI0nB58sPhwt2rVvntMHyJJdTT1pdTYJUmSRlXfE7jAJcDxwNqG5e8Grs3MI4HXAxdF\nxMKy7C3ARGYeAfwK8LcRsX9Z9irgCZn5OOA44OyIeCJARPwScArwZOBJwAsi4oU92zNJkkbMpk2L\n2bZtJevXL2F83KSIJEmSJPVb3xO4mXl1Zv4YaPwWeDJwXrnOjcA9wLPKslMqZWuBK4GXVLY7vyzb\nBFwMvKJSdmFmTmTmNuCCSpkkSZrB1q0LOP74R7J69TJHtUmSJGmojY8Ha9Ys2HVzgIKGRS3mwI2I\nA4CxzLyvsngdsKK8v6J8PGXtDGXHVcq+0VB2Sjf6LEmSJKmeGi/W4py4kiTo7hzsUj/VIoFbV9u2\nbdt1P3PJbmWZk023yZxkYmKi47aqbfbSXNtrdjxm2u/GNlvV0UndnbQ3VXezZZ30o91j2qofs9nH\nbtQxW916Xmaqt1p3t8/Tat2tzPW8aceSJXvWKUmSuqfxYi0mcCVNp9nFECWpTmqRwM3MjRGxIyIO\nqozCPRRYX95fBzwWGK+UXVbeX1+WXddku6kympTNaHx8fNf97dtX7la2ffuOptts376DDRs2tNvE\ntG32Q6ftNTse7e73VJut6phL3bNpb6ruZsvm0o+ZjmmrfsxmH7tRx2x1+3lpVW+zurt1njaru5VO\nz5uZLFy4kMMOO2zG9aR2NI4wkyRJnVm0KFmz5qczDPq+Or84KlNS3dUigVu6BDgdODciVgEHA1eV\nZZcCpwHXR8RKirlxT69s98aIuBTYj2KKhJMqZX8dER8CJikujvaOdju0fPlyFi9eDMD69bsfqkWL\nmh+6RYvGOOSQQ9ptYpdt27YxPj6+W5u9NNf2mh2Pmfa7sc1WdXRSdyftTdXdbFkn/Wh2TDdtWszW\nrT/9ILjvvpO7PW637kat9qWT49Rpm91qb7p96fZ5Wq27lbmeN1I/NY4wk6RR0s2EWrPRdY7KVdWD\nDwbHH28CT5JUT31P4EbEeRQJ1uXAZRGxNTOPBM4BLoyIO4GHgVMzc2e52fuACyLiLmAHcEZmbizL\nLgSOBdZQJGnfn5m3AWTmVRFxMfA9IIFPZeYX2+3r4sWLd/3UOWL3pFvj4+ryufw8utpmP3TaXrPj\n0W49U222qmMudU8ZHw82b17C9u178x//McayZUHEnpOTN3se59qP6jF94IEFrF69+wfBJt2Y9T5O\n1+9e6cbz0k69zeru1nnarO5WWp2nc61XUvc4Alkabd1MqDUbXWcCdzT5U3hJ0ijqewI3M09rsfw+\n4AUtyh4CXt6ibBI4s7w1K38X8K6OOquhtWVLsHr10l2P/Q+6JI0eRyBLkhr5U3hJ0ihqPoxUkiRJ\nkiRJkjRwJnAlSZIkSZIkqabqdBGzWtm2bQXr148RsWBo501qnP8JvGCDZtbqvJFUD5s2LWbbtpWs\nXz/Gzp0zry9JkiRJGm4mcFs46aT9uf/+YoDysM6b1Dj/E3jBBs2s1XkjzcXmzYvxGm/dsXXrAo4/\nfn8ArrnG16YkSZIkjTqnUJAk9dwDD/h2I0mSJElSJ/xGLUkjKiI+EBF3R8RkRDy1svzAiPhSRNwZ\nEbdGxAmVsr0i4qKIWBMRP4iIl1bKIiI+FBF3ldue0e99kiTN3fh4sGbNgl238fGYeSNJkiQNjFMo\n1JTz10rqgkuA9wBXNyx/N3BtZr4wIo4FPhsRh2bmTuAtwERmHhERhwLXRcTlmbkJeBXwhMx8XETs\nD9xclt3etz2SJM1Z43RJTrElSZJUbyZwB2wqUZu5hO3bi4vSLFsWzl8rac4y82ooRs42FJ0MHF6u\nc2NE3AM8C7gcOAV4fVm2NiKuBF4CXFBud35ZtikiLgZeAby9nf5U/zHlhfEkSZIkSWqPCdwB84JR\nkvopIg4AxjLzvsridcCK8v6K8vGUtTOUHddOu5mweXOyevVSAK6/fjOQZdlkw7qTjZu3XZYt8sLT\ntdFp2Z5tADQvn80+zdR+u/vYrbJqe50fm07LoHpMe/O8deeYdt436MZ5M1Pfpvax02M62/b78Vqc\nmJhgiVdHlCRJ0jxgAleS1HM7duxg586fPt6+fUfT+80eZyUT1K2ydtufTd927Ohv3+bSxrD0rfGY\n9uJ5G/Q51a3zpt2+dXpM+9G32Zb9+Mc/5rDDDkOSJEkadSZwJWkeycyNEbEjIg6qjMI9FFhf3l8H\nPBYYr5RdVt5fX5Zd12S7aY2NjbGgctnMRYvGmt5v9rg6A8RMZdVRf9Nt1277s+nb2NgY1ckqZtPv\n2bTf7j52q6zaXq+et1Zljce0F89bt45pp33r1nkzU9+m9rHTYzrb9vvxWjz44INR9zjNjSRJUn2Z\nwJVGiBe/U5suAU4Hzo2IVcDBwFVl2aXAacD3m+S7AAAgAElEQVT1EbGSYm7c0yvbvTEiLgX2o5gv\n96R2GoyAiAWVx83vN3s8u7LmP+uero1Oy/Zso3X5bPZp5vbb28fulU02Xbe7z1urss7Om9n3be7H\ntPO+dee8mblvk03bG+bXotMndFd1Wi+n85IkSaoXE7jz0Ph4sHnz7hdNM8E3Grz4XedaXVBwmEXE\neRQJ1uXAZRGxNTOPBM4BLoyIO4GHgVMzc2qCg/cBF0TEXcAO4IzM3FiWXQgcC6yhyM68PzNv698e\nSZIkSZI0/5jAnYe2bIldFxKC4U7wNY44dbRpcx6nmY3iBQUz87QWy+8DXtCi7CHg5S3KJoEzy5sk\nzRsR8QHg1yimkTkqM28tlx8IfBI4HJig+KfXN8qyvYCPAquAncAfZOZnyrIAPgi8kOIfYh/IzL/p\n605J0oAYUyVp9kzgaqg1Jt16nYxuNUUBsNuo5ogFtZo/rt/HqRsaR4pPHdO691uSNJIuAd4DXN2w\n/N3AtZn5wog4FvhsRBxa/qrhLcBEZh4REYcC10XE5Zm5CXgV8ITMfFxE7A/cXJbdPptONX4uabhG\nnSTVVS1jqiTVmQncHnAe0tE13SjN6qjm6vJ2jdJ50419aRwpDj89po4mliT1U2ZeDbtGeVWdTDFS\njMy8MSLuoZg7/HKKecJfX5atjYgrgZcAF5TbnV+WbYqIi4FXAG+fTb8aP5dcc81w/3JE0vxQ15gq\nSXVmArcH5vM8pM1+qg+M3NyivTBK5810ie5m58dc6h7WYyRJGm4RcQAwVk5LM2UdsKK8v6J8PGXt\nDGXH9aSjkjQEjKmSND0TuOqqZsk1YOTmFlVhuiklmml1fkiSpPZt27YNgMwl065XTF0++2Wdbtft\nunrdh3vvnWTLliXs2LGSdevGWLp0ksw91+tGH5rx+Zl7HzJ3f85GYX+6WdfExMQey6ezZMn0MWUU\ntYqndXmumz2H1b7W6Xzztdjr/YFiiudu1FWH/Rn+52e6GNuLeGoCd0S0Gvk61zoc2ajpjOKFvyRJ\nakdmboyIHRFxUGXE2KHA+vL+OooL9IxXyi4r768vy65rst2MxseLKrdvX9nYp90eb9++56S47Szr\ndLtu19Xr/dm4EY4/fv9dy6655n4avxwP0/70uy73p/t96HZdGzZs2GN5KwsXLuSwww5re/1uG1RM\nbRVP6/JcN3sOq32t0/nWrbpG7bXYrf3Z0WSi+2Hen1F4flrF2F7FUxO4I6IbIxv9aXo9dSM5L0mS\neuIS4HTg3IhYBRwMXFWWXQqcBlwfESsp5nE8vbLdGyPiUmA/irkdT2q30eXLl7N48WLWr9/9o3zj\ndJKLFu35Ub+dZZ1u1+263J/u92EU96f63XsU9qebdR1yyCF7LK+5vsfUVvG0Ls/1PvscztatC3Yt\n23ffyd0e1+l887XY2/0ZGxujcdboYd6fUXh++h1jTeD20TCOkp3tT+TVfU47IEnSYEXEeRTJgOXA\nZRGxNTOPBM4BLoyIO4GHgVPLq6UDvA+4ICLuAnYAZ2TmxrLsQuBYYA3FkM/3Z+Zt7fZn8eLFLFmy\nhIgF067XrLydZZ1u1+266tAH96f1sjr0oVg22cY6My+bWx/mvl0v6qrrlAh1iqmt4mldnusHHljA\n6tW7fxes5pvqdL75Wuz1/nSvX/XYn+F/fvodY03g9tEwjpKty0/kTSRrOp4fkqReyszTWiy/D3hB\ni7KHgJe3KJsEzixvkjSvGFMlafZM4Goo1CWRPEpGKek52/PDaSkkSZIkSdKwMIErzVPzOSnutBSS\nJEmSJGlYzDwBhCRJkiRJkiRpIGqXwI2ItRFxe0TcHBE3RcTLyuUHRsSXIuLOiLg1Ik6obLNXRFwU\nEWsi4gcR8dJKWUTEhyLirnLbMwaxX5IkSZIkSZI0W3WcQmESODkzv9uw/N3AtZn5wog4FvhsRBxa\nXpXyLcBEZh4REYcC10XE5Zm5CXgV8ITMfFxE7A/cXJbd3r9dkiRJkiRJkqTZq90IXCDKW6OTgfMA\nMvNG4B7gWWXZKZWytcCVwEsq251flm0CLgZe0ZOeS5IkSZIkSVIX1XEELsCFEQFwPXAOkMBYZt5X\nWWcdsKK8v6J8PGXtDGXHzaYzmZNtLZvt8m7VMTExQeYS66hRHdPVbR2jW8fExETT9RstWbJk5pUk\nSZIkSZKoZwL3hMz894hYCPwp8Ang1TQfldsX27fvaGvZbJd3q44NGzawfftK66hRHdPVbR2jW8eG\nDRuarl+1cOFCDjvssBnXkyRJkiRJghomcDPz38u/OyPir4A7MnNjROyIiIMqo3APBdaX99cBjwXG\nK2WXlffXl2XXNdmuLYsW7XmYmi2b7fJu1XHIIYewfv3YjOtaR//qmK5u6xjdOg455JCm60uSJEmS\nJHWqVgnciNgbWJSZm8tFvwXcXN7/NHA6cG5ErAIOBq4qyy4FTgOuj4iVFHPjnl6WXQK8MSIuBfaj\nmC/3pNn1a8+pgpstm+3ybtWxZMmSPcqsY7B1TFe3dYxuHU6NIEmSJA2HbdtWsH79GMuWDezHvpLU\ntlolcIHlwGeiyI4E8COK6ROgmAv3woi4E3gYODUzd5Zl7wMuiIi7gB3AGZm5sSy7EDgWWANMAu/P\nzNv6sjeSJEmSJKl2Tjppf+6/fwE33LB10F2RpBnVKoGbmXcDx7Qouw94QYuyh4CXtyibBM4sb5Ik\nSZIkSZI0NJr/PliSJEmSJEmSNHAmcCVJkiRJkiSppkzgSpIkSZIkSVJNmcCVJEmSJEmSpJoygStJ\nkiRJkiRJNWUCV5IkSZIkSZJqygSuJEmSJEmSJNWUCVxJkiRJkiRJqikTuJIkSZIkSZJUUyZwJUmS\nJEmSJKmmTOBKkiRJkiRJUk2ZwJUkSZIkSZKkmjKBK0mSJEmSJEk1ZQJXkiRJkiRJkmrKBK4kSZIk\nSZIk1ZQJXEmSJEmSJEmqKRO4kiRJkiRJklRTJnAlSZIkSZIkqaZM4EqSJEmSJElSTY0NugOSJEmS\n2rNt2wrWrx9j2bIYdFckSZLUJ47AlSRJkobESSftz+rVy9iyxQSuJEnSfGECV5IkSZIkSZJqygSu\nJEmSJEmSJNWUc+BKUpeMj8ceP2ldujRZvjwH1CNJkiRJkjTs5sUI3Ih4XERcExF3RMR1EfHEQfdJ\n0ujZsiVYtWrf3W6jOEehMVWSusN4KkndYTyVNOrmRQIX+DvgvMx8PPBe4BMD7o8kDTNjqiR1h/FU\nkrrDeCpppI38FAoRcSDwdOB5AJn5mYj464g4LDN/NLVa43YHHDC56/7ChcXPnx/5yOmXzXZ5N+tY\nuDA7rts6ul/HTHVbx/yrYwZDM0y305i6YAFE/PQ1VT1ejceu2eN2yzLb366d9mfXtz33sdN9mq79\n2exjL45pZ8em07LOzpvZ9q1bx7SzvnXvvJmubGofOz2ms22/X6/FJkY+nk59Rm31XjTTe1M7yzrd\nrhd11aEP7k+996fV+9Sw7k+365qjoYipvYqnMy2rw3Ndhz5MLfO12Ov92f0z3PDvz2g8P7Mw53ga\nmV0J7LUVEccA/5iZT6wsuw54a2ZeCbB58+YnALcPpoeSxBOXLVv2g0F3oh3GVEk1ZzyVpO4Ziphq\nPJU0BOYcT+fLFAqSJEmSJEmSNHTmQwJ3A/DoiKju6wpg/YD6I0nDzJgqSd1hPJWk7jCeShp5I5/A\nzcz/BG4CXgUQEb8JbKjMhSNJapMxVZK6w3gqSd1hPJU0H4z8HLgAEXEk8HHgkcBm4HWZedtU+ebN\nmxcCRzRsthEY/YMjqd8COKBh2Zply5btHERnOmFMlVQTxlNJ6p6hjqnGU0k10pN4Oi8SuJIkSZIk\nSZI0jEZ+CgVJkiRJkiRJGlYmcCVJkiRJkiSppkzgSpIkSZIkSVJNjQ26A3USEYcBK8qH671qpSR1\npp/xNCJ+Bng4M3dExAHA0cAdmfnvvWpTkvppUJ9RI+JA4CnA7Zl5bz/alKReMp5KGlaOwAUi4okR\ncT1wDfCe8nZNRFwfEU/qUZsvq9z/2Yj414jYHBFXRsSK6bZVaxGxMCJOjIjXlrcTI2JhH9vfv8f1\nD3T/yj6M9D72ev9GXb/jaUS8Gvgv4O6IOBH4HvDnwC0RcUq326uLiPiTPrSxx2eEXr0+BvG6j4gn\nRMRBlftviIjjetlmpe2nRMTrI+LYfrRXaXekzpv5YAAx9ZOV18WJwPeBdwPfiYgXd7u9+apPr8WB\nfZ7qV4zr8/vUwN4zKn3o+Xkzyoyno6vXrw3jaU/aG2hMHdZ4Gpk56D4MXERcB7w3Mz/TsPw3gf+T\nmat70OZNmXlMef984H7gr4DfAk7IzJf0oM2FwLOo/McRuCozd3a7rWn6sH9mbupR3ScAFwH3AOvK\nxYcCBwOnZubXu9zeWZn5gfL+SuALwGHAfwC/lpnf7XJ7fd2/ss2R3sd+79980O94GhG3Ar8KLAO+\nDjw3M2+MiMcBn8nMp3WzvRZ9eAqwCrg1M2/sQf2/02Tx24F3AmTmB7vc3rHAJRSvuy8Cb8rM/yzL\ndr13dbG9QcS2s4G3AA8DbwP+DPgWcBzw/6biQhfb+xrwisy8LyJOBv6S4gvkauDPM/Pvutle2eZI\nnzfzxQBi6nem4mZEXAWclZm3lO+R/5yZR3ezvYa2F2TmZMOynnxujIgnABvL1+QTgOOB72XmdT1o\nq6+vxbLNfn+e6muMG8D7VF/fM8o2+37ejDrjaU+/h49sTDWedv/z2wA+h49OPM3MeX+j+KntrMvm\n2ObNlfvfARZWH/egvROADRQvjIvL23Xlsl/q0T6eVbm/ErgN+AlwN/CUHrR3K3Bsk+WrgO/2oL2b\nKvf/CTijvP9S4CvDvn/zYR/7vX/z4dbveNoQS9e2Kutym18DDirvn0zxge7TwFrgzT1obwfwOeBj\nldvW8u8FPWjvG8BJwCOBPwFuBx7Tq2M6oNh2G7A/cAjwILCyXP6zFF84ur6PlfvXAo8t7x9QLfO8\n8dbkuPY7pt5ZuX9DQ1mvztVjKT4bPgx8FjiwUnZTD9o7GxinGMjwyvLvpym+mJ/Vg/b6+lqceq76\nGVf7HeMG8D7V1/eMQZ03o34znnY/npb1jnRMNZ725Jzp9+fwkYmnA+9AHW4U/9F4FbCgsmwB8Brg\nmz1q83aKOXCeSkPCFrilB+3Nh+TfnZ2UdWn/+vEc9nX/5sM+9nv/5sOt3/EU+DbwJOCZwH8Cx5fL\nn9CLDzll3f3+YHUixT/cXlRZdncPn8ObGx6/Erij/JDVi2TKoGPbuun2v0vt3UH5j1rgWw1lvXoP\nHunzZr7cBhBTPwR8ANiHYjqaU4EAXghc3qN9HOlkXL9fi2X9/f481dcYN4D3qb6+ZwzqvBn1m/F0\nZJJx/f58Yzztfpv9/hw+MvHUOXALrwFeC2yMiNsj4nZgY2V5L+xF8V+AzwFLI+LnACJiGTA53YYd\nWpJNftqbmTcAj+hBe41+PjP/pmzzM8CBPWjjhxHx9qm5VAAi4qCIeAfFfyK7bb+I+NWI+HX2PIbR\ng/b6vX8w+vvY7/2bD/odT/+IYuqEzwIvB94VET+geJP+0x60B/CIyrxXkZnrADJzIz04bzLzcuB5\nwMkR8bGIWApkt9up2Ls6D1Zm/gPFz4y+RvGFoNsGEdsejoiTIuKVQEY5X3JEPBvoxbRC/wRcXE7t\ncWlE/EFEHBoRpwM9uXjKPDhv5ot+x9Tfp/gceg9FTL0Q2AacBbyhB+0B7JOZ/5qZ92fmH1HE7ssj\n4hB6c84+nJmbMnMD8F+ZeTdAZv4XsL3bjQ3gtQj9j6v9jnH9jjf9fs8Y1Hkz6oynvTHqMdV42n19\njakjFU8HnUGu040iqXhMeTtwQH3Ym/K/Vl2u90sUL8SDKssOAt4BXNajffkRxdyUvw78oKGsF9NE\nHAhcQDEc/iflbWu57KAetHclcEXlNvXfzYNo+JlMj/Zvopf7N8B9/OioPofz6TaoeAosBJ7eq9dE\n2cYfA5cCj6OYv+kPKObCOh34XI/37zeBm4F7e9jGBVT+Q11ZfjKwrUfnSt9e92Wbq8vj+G3gaRQf\nln9CcUG8E3vU5lkU0xZto/hCtwU4Dzigl+fMqJ438+3W75hK8Xn0KcDRwCN73NYdVEbElctOAe6k\nYWROl9q7lmKE2isppr45pVz+bODGHu9rz1+LlfOl358ZG2Pc5l7FuAG8T/X9PaOh/Zf247yZLzfj\nadfbHOmYajztyf4NLKYOezz1ImbzREQcSHHVy5OBsXLxDooJq8/JzPt60OaV7P6fjVdm5j3lf6/+\nNTNXdbvNStsHwK4RcX1Vjsx7RGY+1MM2Dpi63+99jOJqlFvo3z6enJnn9aqdJu2+GTifYtR6z/ZP\nwy0izqJI3i6niKlbKT58vK3Xr8mIWA48PTO/2Mt2Gtrs2YUvGtoZyOu+bPsPgT/Lhot+9KCdfYGx\nfhzPhnZXUHxIvjEz7+1B/ftl5n93u16Nvoi4gOKCPl9oWH4y8A+ZubjL7a0C/p7iS/HrgXOAlwAP\nUCQevtbN9pq039cY3u/PjFMxrmyvb3EuIt6cPbgg5DTt9eU9o9LecuCYzPxSP9rTcOp3PC3rnjcx\n1Xja0zb7FlOHOZ6awJ2HBpncLNtfCCzOzJ90ud7DgY8AjwX+hSKRMlGWXZuZv9Dl9g4r2zu0T+0d\nBXyc4mcFrwbeC/wycD/Ff81u7WZ7ZZtPAz7R0OazKf47dlJmfrfL7f1ak8V/D7yRIl59vk/tvQmg\n2+1p9PQjGTeA2Db1up+kmCtupF73g2gzIl6WmZeU9x9JcXxPoBgB8OrMXN/N9sp2Pgm8JYurGJ9I\ncfHSuynes96Umf/S5fa2Ufza5yMU/6TtS1JD6obydbmpF+dtv2N4WW9fPzMOoL2+fn4b0PtU9X3j\nZ/np+8ZN9Oh9Q+qWUYqpxtOR+xw+1PHUBK6IiDsz88hhbzMiLgM+D3yL4mcHhwO/kplbI+LmzDx6\nyNu7CvhLYD/gXOAPM/PCiHgx8NuZ+fxutjeINiNikuJnONsqi59BcYwzM08c5vY0+kYkto30634Q\nbUbETZl5THn/fIoP4X8F/BZwQma+pJvtle18JzOfVt6/iuJK0LdExEqK0TndPm/uoPjw/QaKc+eT\nFFf2vbOb7Wh+6fdn1FGI4WWb/Y7jI/2+MaD3qb6/b2i0+Z2/4/aMp102Hz6H94oJ3HkiIp46TfFl\nmfnoYW+zMWBHxNuAF1NMWH3F1It2FNqLiPWZuaJSdktmHtXN9gbRZkS8DvifwP/KzJvLZXdn5spu\ntjOo9jQa5lNsG8XX/SDabDim36H42dbOqcdTidYut7nrS1NE3JCVaYsi4tbMnO487qS96ofjX6T4\nGeXJwC3ARzLzk91sT6NjADF1pGN4Y5t9iuMj/b4xoPepvr9vaPj5nX8kPhePdDwdRJujFE/HZl5F\nI+IWiknFm10hvVdXF+x3m3tVH2Tmn0Xxk86vAfuOQHvV43jFNGVD22ZmfiwiLgc+EhHfoLhyas/+\ny9Tv9jQyRj22jfTrfkBtLomIp1Aev6kPjVPd6VGbl0XEBygusvfViDgVuAj4FYrpMHomM78JfDOK\nuaJfTvEzPBO4aqXfMXXUYzj0/zPjSL9vDOjz4iDeNzT8/M7ffcbT4W9zZOLpgkF3QH2zDnhmZq5s\nvAHjI9Lm7RHxK9UFmfl+ii+sh49Ae+MRsbRs5zVTCyPi0RRXw+yFvreZmeuA5wMPAt8AHtGLdgbV\nnkbCqMe2kX/dD6DNvYDPlbelEfFzABGxjGKu4V74/bLueyiSqBdS/FTtLIppDrptjy8VmflgZn40\nM5/Zg/Y0OvodU0c9hkP/4/jIv28M4H1qEO8bGn5+5+8+4+nwtzky8dQpFOaJchTOJZl5dZOy8zLz\ntGFvMyIeAZCZDzcpe0xm3jPM7U3Tj2XAsuzj5Nv9ajMinkQxL01frkbf7/Y0nEY9tk3Tj5F83Q+q\nzbLdvYHlmXl3j9s4nOJXV+sz8/4etXNADujiqBpuA4ip8zKGl+319TPjqL5vDPLzYj/eNzS8/M4/\nep+L+92en8PrzQSuJEmSJEmSJNWUUyhIkiRJkiRJUk2ZwJUkSZIkSZKkmjKBK0mSJEmSJEk1ZQJX\nkiRJkiRJkmrKBK4kSZIkSZIk1ZQJXEmSJEmSJEmqKRO4kiRJkiRJklRTJnAlSZIkSZIkqaZM4EqS\nJEmSJElSTZnAlSRJkiRJkqSaMoErSZIkSZIkSTVlAleSJEmSJEmSasoEriRJkiRJkiTVlAlcSZIk\nSZIkSaopE7iSJEmSJEmSVFMmcCVJkiRJkiSppkzgSpIkSZIkSVJNmcCVJEmSJEmSpJoygStJkiRJ\nkiRJNWUCV5IkSZIkSZJqygSuJEmSJEmSJNWUCVxJkiRJkiRJqikTuJIkSZIkSZJUUyZwJUmSJEmS\nJKmmTOBKkiRJkiRJUk2ZwJUkSZIkSZKkmjKBK0mSJEmSJEk1ZQJXkiRJkiRJkmrKBK4kSZIkSZIk\n1ZQJXEmSJEmSJEmqKRO4kiRJkiRJklRTJnAlSZIkSZIkqaZM4EqSJEmSJElSTZnAlSRJkiRJkqSa\nMoErSZIkSZIkSTVlAleSJEmSJEmSasoEriRJkiRJkiTVlAlcSZIkSZIkSaopE7iSJEmSJEmSVFMm\ncCVJkiRJkiSppkzgSpIkSZIkSVJNmcCVJEmSJEmSpJoygStJkiRJkiRJNWUCV5IkSZIkSZJqygSu\nJEmSJEmSJNWUCVxJkiRJkiRJqikTuJIkSZIkSZJUUyZwJUmSJEmSJKmmTOBKkiRJkiRJUk2ZwJUk\nSZIkSZKkmjKBK0mSJEmSJEk1ZQJXkiRJkiRJkmrKBK4kSZIkSZIk1ZQJXEmSJEmSJEmqKRO4kiRJ\nkiRJklRTJnAlSZIkSZIkqaZM4EqSJEmSJElSTZnAlSRJkiRJkqSaMoErSZIkSZIkSTVlAleSJEmS\nJEmSasoEriRJkiRJkiTVlAlcSZIkSZIkSaopE7iSJEmSJEmSVFMmcCVJkiRJkiSppkzgSpIkSZIk\nSVJNmcCVJEmSJEmSpJoygStJkiRJkiRJNWUCV5IkSZIkSZJqygSuJEmSJEmSJNWUCVxJkiRJkiRJ\nqikTuJIkSZIkSZJUUyZwJUmSJEmSJKmmTOBKkiRJkiRJUk2ZwJUkSZIkSZKkmjKBK0mSJEmSJEk1\nZQJXkiRJkiRJkmrKBK4kSZIkSZIk1ZQJXEmSJEmSJEmqKRO4kiRJkiRJklRTJnAlSZIkSZIkqaZM\n4EqSJEmSJElSTZnAlSRJkiRJkqSaMoErSZIkSZIkSTVlAleSJEmSJEmSasoEriRJkiRJkiTVlAlc\nSZIkSZIkSaopE7iSJEmSJEmSVFMmcCVJkiRJkiSppkzgSpIkSZIkSVJNmcCVJEmSJEmSpJoygStJ\nkiRJkiRJNWUCV5IkSZIkSZJqygSuJEmSJEmSJNWUCVxJkiRJkiRJqikTuJIkSZIkSZJUUyZwJUmS\nJEmSJKmmTOBKkiRJkiRJUk2ZwJUkSZIkSZKkmjKBK0mSJEmSJEk1ZQJXkiRJkiRJkmrKBK4kSZIk\nSZIk1ZQJXEmSJEmSJEmqKRO4kiRJkiRJklRTJnAlSZIkSZIkqaZM4EqSJEmSJElSTZnAlSRJkiRJ\nkqSaMoErSZIkSZIkSTVlAleSJEmSJEmSasoEriRJkiRJkiTVlAlcSZIkSZIkSaopE7iSJEmSJEmS\nVFMmcCVJkiRJkiSppkzgatYi4uaIuCkibouIHeX9myPin3rY5j4R8YGIWFO29e2IeE8U3hARl/Sq\n7Vn08WVlv26KiNsj4iuD7tOUiDg6Il7Wh3bOiojze92OJEmSJEnSfDE26A5o+GTm0QAR8Vjg5sw8\npg/NfhH4HvCkzNwWEQuBNwGLp7rVhz60FBGPAf4GOCozf1wuO3qQfZpSHqunAy8A+pHoHuhzIUmS\nJEmSNEocgauui4hzIuK7EXFrRHwiIvYpl/9JRPxTRHwhIu6MiM9GxJMj4rKIuCMiPtmivucDhwBn\nZuY2gMzcmZkfzsyHG9Y9OCIuj4gbyj78ZaXsDRHxb2Ufbo2Ib0XEiobyW8rb9RHxmIj4cEScXVnn\n5yNibUREQzcfBWwDNk8tyMybK9ttiIifrzy+OSJ+sbz/jXJ08fXlcXlPZb3pyo6IiK9GxHfKUb8v\nKpcvjIjJiHhHRFxPkVj+I+A55XofanKMnxcR34yIG8tj85pK2YUR8bcR8bXyebq4TAoTEUsj4tMR\n8f2I+DrwpGbPoSRJkiRJkjpjAlddVSYRfwt4RmY+FdgB/GlllWOAV2TmkcCBwIeBX6dI/B0dEc9r\nUu3TgRszc2cbXbgfeFFmrgKOAh4fEb9RKV8NnF327RvA2WW/nwu8FXheZh4FPAv4L+CDwGmV7X8b\n+NvMbBxlejNwA7AuIv45In4/Ih5VKZ9pVOrjgePKPj8vIn6zjbJ/Av4hM58GvAL4eEQcXNluIjNX\nZ+ZpwDuBr2bmMZl5ZpP2rweOz8xjgWcD74yI5ZXypwIvBJ4IrABeXC7/Y2BLZv488KvAL82wn5Ik\nSZIkSZoFE7jqtucCn8rMB8vHHwaqSdnLMnNref8m4IrMnMjMHRRJ0CPm2P5C4P0RcUtZ/1HlbcrV\nmfnv5f1rgcPL+/8D+GRm/idAZv4kMx/OzNuBNRHxonIk8cnARxobzczJzHwJcDzwJeAE4LZymgmA\nxhG7jT6RhYeAf6Q4ji3LImI/4MmZ+fGy/TuAbwHPrGz3sRnarDoI+ExEfBf4KrA/u4+m/efM3JaZ\nkxSJ6qnj9hzgo2UfNgOfmkWbkiRJkiRJmoEJXPVa48jTicr9nU0eN5uX+dvA06d+tj+Ds4H9gFXl\nyNRLgCXTtN/OPNAfBM4EXg38a2ZubLViZt6Rmedn5ospEsi/WhbtoEguT1myx8YNVbVR1rhO4+MH\nZmij6u8pkulPKec4vpvOjpvz30qSJNzNMeAAACAASURBVEmSJHWRCVzNVePI0q8Cp0TEz5SP3wxc\nNsc2vgLcA/xVRCwGiIhFEXFaRDyiYd39gXszc3tEPBr4TdrzeeDVU9MGRMTeEbEEIDO/CDwWOAf4\n62Ybl/Pl/kLl8SOBQ4G7ykVrKKZBoFzvcQ1VvKqcu3ZviukQvjJdWWb+N/C9qblqI+LIsv5vtNi/\nLcCyafZ/P2BtWdezgSdPs27VV4HXldstA17e5naSJEmSJElqgwlczdVuIy4z8wsUP/P/VkTcSjGK\n8486qatSZ1LMvwrw/bLemyiSqtsaVv8r4IRynY8BX26r4cwrgT8DvlxOv3AFcEBllQuAezLz2y2q\nWAT8cUT8ICJuKrf/u8z8t7L8D4HfLct+C/h+w/Z3UEzpcAtFgvaf2yh7BUXS+TsUUxe8NjPvndql\nhvq/AuxTXjxtj4uYUSSn/6Ls36kUc+JOmW5U7bnAfhHxfYok+NenWVeSJEmSJEmzFHtei0lSo4j4\nIvDxzPx0D+r+BvDn5UjftsskSZIkSZI0+hyBK00jIlZHxF3AQxTz6fZCO/PdSpIkSZIkaR5yBK4k\nSZIkSZIk1ZQjcDVvRcTaiLg9Im6JiDsj4rPVC5FNs93+EXF1RNwUEf+3i/15X0S8vVv1SRpN5UUN\n31HGr1vLWHReRCwddN86FRGXRMSru1TXZKfHIiJOiYgbymN7Q0R8LiKeNFO9EfGFiDiijfqPK5+z\nb0fE8zrpoyRJkqT5Z2zQHZAGKIGTM/O7ABHxEuCLEfH8zLxhmu2eD2zNzGf2o5OS1OACYD/guMzc\nAhARL6W48OKWQXasnyJiYWbubFLU0U+LIuJ1wFuBX8/MO8plRwMHA7dNV29mvqjNZl4D/GNmvqeT\nPkqSJEmanxyBq/kupu5k5meB84C3RMRYRPx5RHyrHN32qYjYLyKeA7wXeEa5/MSI2Cci/r5c95Zy\nJNwYQERcUY6s/XpErImID+9qOOJREfFvEfG9iPgy8HN93ndJQyYiDgdeCrx2KnkLkJmfycy1EXF2\nGVO+ExEXRsS+5XbviIiLI+LzEXFH+fdJZQz6QURcVGnjYxHxdxHxlYj4YUR8NCJWlfHsroj4i8q6\nvxsR15Xx8LqIeEal7O6IODcivlnW8weVssdHxDUR8d2I+CywtFI2U0z9QER8E7is1WFqpw9N/DFw\n1lTytjyuN2fmVyr1nlHu5w8j4rUN7Ty1vL+8PNbfKp+Hd5bL3wqcApxZHq+hHTEtSZIkqb9M4Eq7\nuw54MnA28GBmPiMzjwG+B7wrM78GvB24IjOPyczLgb8Avl6uexSwEDirUudhwLOApwAviIjjyuUf\nBK7LzCcDrwWe0/vdkzTkjgHWZOamxoKIeCFFLPmFzHwaxcUX311Z5enAKzPz8RQJ0/OB3wCeBDyx\n3H7Kk4H/ATwe+CXgHIoY9VTg1Ih4YrneJzPzuDJO/g7wsYZuLcvMXwRWA2dHxKPL5RcC52fmU4A/\nooiRU2aKqUcAz8zM505znNrpwy4RcSDFP9G+NUNdP8nM4yiOzQcjotnnqE8Af52Zz6B4vlZFxEvL\nUbefB95bvn/Mm9HSkiRJkubGKRSk3U2N3HoxsLT8WTLAIuDuFtu8mGJE7u+Xj5cA2yvlF2dxtcCJ\niLgFOJwiUfwc4PcBMvPHEfH57u2GpHnoORTxZmv5+MPApyvlX64kDW8CJjLzIYCIuJkiMfqlsvxz\nmbm9LPsucFlmTgIPRcT3y3VvB54eEW8DHgnsAI6MiEdk5sNlPRcBZOb9EfEjYGVEPAAcRZHoJDO/\nFxFXV/o5U0z9h7Iv7dqjD8C9s9i+WV13RMR24FHAj6cKI2JviufhoIiYej/5GYpEuCRJkiR1xASu\ntLtVwHcpvuCfmZlfbXO7l2bmXS3KJir3d9L6ddfRvI2S5pWbgCMiYv9mo3AbNMaUxlg0XWyacd2I\nWAR8BnhWZt5UTtfw38AjgIdb1DPVRmPfGh9PF1MfmLpTTkvw8nL7t1amO6hq1vcnUiRjE7gmM8+M\niH8HfgH4txbtZkNdk+wZz6Nc77ipBLgkSZIkzZVTKEiliPh14DSKn+9+DvjdiNirLNsrIn6+xab/\nArw1IhaW6+5XzlM5k68Abyi3eTTwa3PcBUkjLjN/SJE0/WhELJtaHhG/AfwIOHlq3lvgzbSeJ7Yb\nllD8OmFD+fh32tmoHCF8M8UFvYiIJwHVi0K2HVMz8z2ZeXQ5JUGz5G2rPtxe2e7McvG5wP+LiF2j\nZSPiqIiYmqoh9qhoz3ofBK4A3lap49ER8Zh2+yZJkiRJjRyBq/ksgYsjYoLiJ67fB16YmTdExE0U\n8zJeFxFZrvuecp1Gv1uW3RIRkxQ/9f0/wA+ZfpTZ/wY+HhHfA+4Bvta1PZM0yl7PT+PTdop/xn4d\neCuwF3BtROwEbgV+u806s8X9lo8zc2tE/CFwQ0T8J/CpdrYrvQb4WET8HrAGuKpS9nsUc/e2E1Pn\nui8/Lci8ICIeAv4xIn6GYkqIHwL/t426qvdPBf6ynHoiKUYMv5kizvtLC0mSJEmzFsXUnJIkSZIk\nSZKkunEKBUmSJEmSJEmqqVolcCPigIi4OSJuKm93RMS2cv67AyPiSxFxZ0TcGhEnVLbbKyIuiog1\nEfGDiHhppSwi4kMRcVe57RmD2TtJ6q+IWFzGvzsj4jsR8clyufFUknokIj4QEXdHxGREPHWa9V4U\nEbeXn3cvjYh9+tlPSao746kk/VStEriZubFyUZFjgL8HvpSZ/00xx+i1mXkkxfx/F01d4AR4CzCR\nmUcAvwL8bUTsX5a9CnhCZj4OOA44u7z6tCSNuvcAk5l5ZGY+jSJWQjG/qPFUknrjEuB4YG2rFcp5\nlj8C/FpmPh64F3h7X3onScPDeCpJpbpfxOwNFBdlAXgZcDhAZt4YEfcAzwIuB06hSEKQmWsj4krg\nJcAFwMnA+WXZpoi4GHgFlaC+efPmhcARDW1vxIuNSOq+AA5oWLZm2bJlO7vaSMTeFHHxMVPLMvO+\n8u7J9CiegjFVUt/0JZ7OVmZeDcWvFqZZ7YXATZm5pnz8t8CXKS7Yt4vxVFIf1S6mGk8lDamexNPa\nJnAj4heB/YB/jYgDgLFK8gFgHbCivL+ifDxl7QxlxzU0dwRwe1c6Lkmz90TgB12u83CKD6V/EBHP\nBR4CzgVuobfxFIypkganF/G0F5rF00dFxILMnKwsN55KGqRhiKnGU0nDYM7xtFZTKDR4PfDJhqAr\nSWrPGPBY4HuZuQo4C/hUuXy6UQySJEmSJKlGapnALeexOZniJ7tk5kZgR0QcVFntUGB9eX8dRaKi\nWdn6acokaVStB3YCFwFk5i0UIxKeAmw3nkrSQK2niKFTVgL3OnBBkmbNeCppXqhlAhd4OXBLZt5Z\nWXYJcDpARKwCDgauKssuBU4ry1ZSzOX4L5Xt3hgRC8qpGE4BLu75HkjSAGXm/cDXKC5ENhUbDwW+\nj/FUkgbt34CjI+LI8vHpFL+SkCTNjvFU0rxQ1wTu6yiuJFl1DvCLEXEnxcjcUzNzagLg9wF7R8Rd\nwJeAM8pRuwAXUswzsQa4Dnh/Zt7WUPfGhsesXbuWiYmJruzMTCYmJvjRj37Ut/YG0eaotzeINt3H\nkbJHDOqS04GzI+JW4J+BN2XmvfQ2njbdn1E+Z0b9deExHf72BtHmAON3r+Jp2yLivIjYQHERycvK\nWEtEnBsRbwLIzAeA/wl8rix/DPAnTaob+P70y6i/54/6/oH7OKIGGoOMp52ZD+ep+zj8Rn3/mphz\nDKrlRcwy85lNlt0HvKDF+g9RjNptVjYJnFneWjbZuGBysr+/uNi5s/8X9+x3m6Pe3iDadB9HRk+u\nfpuZdwMnNlney3gKA76ar6+L4W9vEG2OenuDaHNA8XvgVxPPzNNaLH9Hw+MvAF+Yqbpu9WsYjPp7\n/qjvH7iPI2igMch42rn5cJ66j8Nv1PevwZxjUF1H4EqSJEmSJEnSvGcCV5IkSZIkSZJqygSuJEmS\nJEmSJNWUCVxJkiRJkiRJqikTuJIkSZIkSZJUUyZwJUmSJEmSJKmmxgbdAUmai/HxYMuWAGDp0mT5\n8hxwjyRJkiRJkrrHEbiShtqWLcGqVfuyatW+uxK5kiRJkiRJo8IEriRJkiRJkiTVlAlcSZIkSZIk\nSaopE7iSJEmSJEmSVFMmcCVJkiRJkiSppkzgSpIkSZIkSVJNmcCVJEmSJEmSpJoygStJkiRJkiRJ\nNTU26A5IkiQJxseDLVsCgKVLk+XLc8A9kiRJklQHjsCVJEmqgS1bglWr9mXVqn13JXIlSZIkyQSu\nJEmSJEmSJNWUCVxJkiRJkiRJqikTuJIkSZIkSZJUUyZwJUmSJEmSJKmmTOBKkiRJkiRJUk2ZwJUk\nSZIkSZKkmjKBK0mSJEmSJEk1ZQJXkiRJkiRJkmrKBK4kSZIkSZIk1ZQJXEmSJEmSJEmqKRO4kiRJ\nkiRJklRTJnAlSZL+P3t3H2XZWRf4/vurl2MFSYcEO2Vau9PdBAVnHBDTzYx9I6JrLmbiKEwkASEO\nvqDJzXBnXSczw8C9aFyjV4Q1S0DGAJoh9Ihiwo1X516M6wrJQIzdnSEajYFUhO5qk3CSITVdncTK\nqer63T/OPt27q+vlVNU+r/X9rFWr997Pft722WdX1+8853kkSZIkqU/1XQA3ImoR8aGIeCQi/iIi\nPlEc3x4RnymOPxgRV5TynBcRn4yIqYj4UkRcXUqLorxHi7w39qJfkiRJkiRJkrReY71uwDLeCyxm\n5rcBRMTFxfFfAe7LzCsj4nLgzojYnZmngJuAucx8aUTsBg5FxGczcwa4DnhZZl4WERcCDxRpD3e7\nY5IkSZIkSZK0Hn01AjciXgD8JPDu1rHMfLLYvAa4pTh2P/AY8Joi7dpS2lHgbuANpXwfK9JmgE8B\nb+5cLyRJkiRJkiSpGn0VwAVeAjwNvDsijkTEPRHx/RFxETBWCuYCHAN2Fdu7iv2Wo22mSZIkSZIk\nSVLf6rcpFMaAS4G/ysx/FxGvBP4Y+PtAdLsxjUajq/V0q75e1Dns9fWiTvvYlDlR2l5kbm6u4+3a\nrImJibVPkiRJkiRJov8CuNPAKeCTAJn55xFxFPhOYD4iLi6Nwt1dnA/NEbaXAvVS2l2lMi8FDi2T\nb1X1en3tkyrU7fp6Ueew19eLOrd6H+fn95S2Fzh+/Hg3mrRho6Oj7N27t9fNkCRJkiRJA6KvAriZ\n+fWI+BPgB4HPRMQemgHXvwZuB24Abo6IfcAO4J4i6x3A9cDhIs9rinMp8r09Iu4AXkRzvtyr2mnP\n5OQktVqtiq6tqtFoUK/Xu1ZfL+oc9vp6Uad9bJqePvMYGx8fY+fOnR1vlyRJkiRJUrf0VQC3cAPw\nWxHxXpqjcX8mM5+IiHcCByPiEeB54C2ZearI8z7g1oh4FFgAbszMp4u0g8DlwBSwCLw/Mx9qpyG1\nWq2rX3Xudn29qHPY6+tFnVu9jxEjZ207PcEZxTcY/g6YAxL4PzPz9ojYDnyC5rzjczSfmZ8v8pwH\n/Bawj+Yz+N2Z+ekiLYAPAlfSfJ5+IDM/3NVOSZIkSZK0xfRdADczvwp8/zLHnwRet0Ke54A3rZC2\nCLyj+JGkrWQRuCYz/3LJ8V8B7svMKyPicuDOiNhdfCh2EzCXmS+NiN3AoYj4bGbOANcBL8vMyyLi\nQuCBIu3h7nVJkiRJkqStZWTtUyRJAypYfgHIa4BbADLzfuAxmlPPQHOamVbaUeBu4A2lfB8r0maA\nTwFv7kjLJUmSJEkSYABXkobdwYj4i4j4WES8OCIuAsZKC0JCcyHIXcX2rmK/5WibaZIkSZIkqQP6\nbgoFSVJlrsjMv42IUeCXgNuAH2f5UbkdNT8/35V6Go3GWf8OY53DXl8v6uyX+jInStuLzM3NdbzO\nTulWfc57LkmSpK3AAK4kDanM/Nvi31MR8WvAlzPz6YhYiIiLS6NwdwPTxfYx4FKgXkq7q9ieLtIO\nLZNvVU899RSnTp1a+8SK1Ov1tU8a8DqHvb5e1Nnr+ubn95S2Fzh+/HjH6+y0TtY3OjrK3r17O1a+\nJEmS1C8M4ErSEIqIFwDjmXmiOPRjwAPF9u8BNwA3R8Q+YAdwT5F2B3A9cDgi9tCcG/eGIu124O0R\ncQfwIprz5V7VTnu2b9/O+Pj45jrVhkajQb1eZ3Jyklqt1vH6elHnsNfXizr7pb7p6TP/LRsfH2Pn\nzp0dr7NTenHfSJIkScPKAK4kDadJ4NMRMUJzyoSv0Jw+AeCdNOfGfQR4HnhLZraGx74PuDUiHgUW\ngBsz8+ki7SBwOTAFLALvz8yH2mnM+Ph4V7/qXKvVuv7V6m7XOez19aLOXtfXfLue2e5EW3rdR0mS\nJEnrZwBXkoZQZn4VeNUKaU8Cr1sh7TngTSukLQLvKH4kSZIkSVIXjKx9iiRJkqR2RMRlEXFvRHw5\nIg5FxMtXOO/fRsRDEfFARPxpMaWNJKnEZ6okNRnAlSRJkqrzEeCWzPx24FeB25aeEBGvoDm/+OWZ\n+V3Ah4Ff72orJWkw+EyVJAzgSpIkSZWIiO3AdwO/DZCZnwZ2RsTeJacmzanMzi/2XwQc71Y7JWkQ\n+EyVpDOcA1eSNPTq9WB2NgDYti2ZnMwet0jSkNoJPFHMGd4yDeyiuZgkAJn5YET8GvDViPg6zQUl\nv7edCubm5ipsbv9oNBpn/Ttshr1/YB+HQR8uOtnRZ6rP08FlHwffsPevE89TA7iSpKE3Oxvs29cc\nlHHkyEkDuJJ6KiJ2A/8M2JuZ9Yi4Efg94Iq18j7++OOcOnWqsw3soXq93usmdNSw9w/s46AaHR1l\n796lA1sHw0afqT5PB599HHzD2L9OPU8N4EqSJEnVOA5cEhEjpRFju2iOGCu7GngwM1t/tfwn4EMR\nMZaZC6tVsGPHjkob3C8ajQb1ep3JyUlqtVqvm1O5Ye8f2Ed1REefqT5PB5d9HHzD3r9OMIArSZIk\nVSAzn4qILwLXAbdFxI8CxzPzK0tO/Qrwtoj4xsx8FvinwJfXCt5CX37FuVK1Wm2o+zjs/QP7qOp0\n+pk67K/hVrhP7ePgG/b+VckAriRJklSd64GPR8S7gBPA2wAi4mbgscz8aGbeGRGXA/dHxBzwLPBj\nvWqwJPUxn6mShAFcSZIkqTKZ+QjwPcsc//kl++8G3t2tdknSIPKZKklNI71ugCRJkiRJkiRpeQZw\nJUmSJEmSJKlPGcCVJEmSJEmSpD5lAFeSJEmSJEmS+pQBXEmSJEmSJEnqUwZwJUmSJEmSJKlPGcCV\nJEmSJEmSpD5lAFeSJEmSJEmS+pQBXEmSJEmSJEnqUwZwJUmSJEmSJKlPGcCVJEmSJEmSpD5lAFeS\nJEmSJEmS+pQBXEmSJEmSJEnqUwZwJUmSJEmSJKlP9V0ANyKORsTDEfFARHwxIt5YHN8eEZ+JiEci\n4sGIuKKU57yI+GRETEXElyLi6lJaRMSHIuLRIu+NveiXJEmSJEmSJK3XWK8bsIxF4JrM/Mslx38F\nuC8zr4yIy4E7I2J3Zp4CbgLmMvOlEbEbOBQRn83MGeA64GWZeVlEXAg8UKQ93L0uSZIkSZIkSdL6\n9d0IXCCKn6WuAW4ByMz7gceA1xRp15bSjgJ3A28o5ftYkTYDfAp4c0daLkmSJEmSJEkV6scRuAAH\nIwLgMPBOIIGxzHyydM4xYFexvavYbzm6Rtqr22lEo9FYZ7M3plVPt+rrRZ3DXl8v6rSPTZkTpe1F\n5ubmOt6uzZqYmFj7JEmSJEmSJPozgHtFZv5tRIwCvwTcBvw4y4/K7ah6vT7U9fWizmGvrxd1bvU+\nzs/vKW0vcPz48W40acNGR0fZu3dvr5shSZIkSZIGRN8FcDPzb4t/T0XErwFfzsynI2IhIi4ujcLd\nDUwX28eAS4F6Ke2uYnu6SDu0TL5VTU5OUqvVNt6ZNjUaDer1etfq60Wdw15fL+q0j03T02ceY+Pj\nY+zcubPj7ZIkSZIkSeqWvgrgRsQLgPHMPFEc+jHggWL794AbgJsjYh+wA7inSLsDuB44HBF7aM6N\ne0ORdjvw9oi4A3gRzflyr2qnPbVaratfde52fb2oc9jr60WdW72PESNnbTs9gSRJkiRJGiZ9FcAF\nJoFPRzMiE8BXaE6fAM25cA9GxCPA88BbMvNUkfY+4NaIeBRYAG7MzKeLtIPA5cAUsAi8PzMf6kpv\nJEmSJEmSJGkT+iqAm5lfBV61QtqTwOtWSHsOeNMKaYvAO4ofSZIkSZIkSRoYI2ufIkmSJEmSJEnq\nBQO4kiRJkiRJktSnKgngRsRoRBysoixJktajXg+mpkao16PXTZEkSZIkqXKVBHCLxcS+rYqyJEnV\nioifiIjFiPjhYn97RHwmIh6JiAcj4orSuedFxCcjYioivhQRV5fSIiI+FBGPFnlv7EV/lpqdDfbt\nO5/ZWQO4kiRJkqThU+UiZp+LiI8CHweeaR3MzAcrrEOStA4RcSnw08B9pcO/AtyXmVdGxOXAnRGx\nu/gw7iZgLjNfGhG7gUMR8dnMnAGuA16WmZdFxIXAA0Xaw13tVJvq9Tgd1F1Y6HFjtrDW67BtWzI5\nmb1ujiRJkiQNnCrnwL0W+MfAbwP/d/Hz+xWWL0lah4gI4DeBfwE0SknXALcAZOb9wGPAa4q0a0tp\nR4G7gTeU8n2sSJsBPgW8uYNd2JTWyNx9+85ncbHXrdm6HCEtSZIkSZtT2QjczNxTVVmSpEr8HPD5\nzHygGcuFiLgIGMvMJ0vnHQN2Fdu7iv2Wo2ukvbryVkuSJEmSpNOqnEKBYq7Eb8/MX46IHcCLM/Mv\nq6xDkrS2iPh7wNXAFWud2w3z8/MdKztzovh3kUajOdC40WicPn7u+YvMzc1VVn+5zm4YtPrKr0+7\n133Q+lhVfeV71vu0PRMTy7/PJUmSpGFSWQA3In4R2Ae8BPhlIIGPAN9TVR2SpLZdAVwKTBVTKXwz\n8FHgF4CFiLi4NAp3NzBdbB8r8tVLaXcV29NF2qFl8q3qqaee4tSpUxvryRrm5/cU/y5QrzebXa/X\nmZ9/welzMrN0/gLHjx+vvB2turtlUOorvz7rve6D0seq6mtdq+a29+laRkdH2bt3b8fKlyRJkvpF\nlSNwfwR4FXA/QGY+EREvrLB8SVKbMvMWirlsASLic8B/yMw/jIj9wA3AzRGxD9gB3FOcegdwPXA4\nIvbQnBv3hiLtduDtEXEH8CKa8+Ve1U57tm/fzvj4+OY7tozp6eavsvHxMSYnJ6nX60xOTvK1r535\nFdeaQqJ13s6dOyurv9FonK6zVqtVVu6w1Fd+fdq97oPWx6rqa10r8D6VJEmSdEaVAdy/y8xT5T+S\nAVcskaT+kJx5Jr8TOBgRjwDPA2/JzNbw2PcBt0bEo8ACcGNmPl2kHQQuB6aAReD9mflQO5WPj493\n7KvOESOn/20Fimq12unjy53fibbUarWufp17UOorvz7rzT8ofayqvvI9630qSZIkqaXKAO6xiLgC\nyIgYB94F/HmF5UuSNigzv7+0/STwuhXOew540wppi8A7ih9JQ6ZeD2Zng23bksnJXDuDJEmSpK5Y\nfnjSxvyvwLuB7wSepTn37c9VWL4kSZI6ZHY22LfvfGZn/QKVJEmS1E8qG4GbmXXgByPiBUBk5rNV\nlS1JkiRJkiRJW1FlI3Aj4jA0v37bCt62jkmSJEmSJEmS1q/KKRTOGs1bzIN7foXlS5IkSZIkSdKW\nsukpFCLi39Jc0fyFEfF0Kek84BObLV+SJEnd1VrQDHBRM0mSJKnHqpgD9xbgU8BvANeXjs9m5kwF\n5UuSJKmLWguaARw5ctIAriRJktRDm55CITNPZObRzLwS+O/ATuBbgcZmy5YkSZIkSZKkrayKEbgA\nRMT3A78DPAYEcElEvDkzP1dVHZIkaXC1vpbvV/IlSZIkqX1VLmL2AeCHM/NVmfldwA8DH6ywfEmS\nNMBaX8tvza0qSZIkSVpblQHcxcw81NrJzMPAqQrLlyRJkvpaRFwWEfdGxJcj4lBEvHyF83ZGxB9E\nxJci4q8i4sZut1WS+p3PVElqqmwKBeCPI+JtwG3F/nXAH1dYvtZQXjEaXDVakiSpBz4C3JKZByPi\napr/N96/zHl3Ar+cmf8XQERs72IbJWlQ+EyVJKodgfvTwK3AXPHzceDtETETEU9XWI9W0PpqauvH\nr6hKkiR1TxEw+G7gtwEy89PAzojYu+S8HwDmWoGG4tynutlWSep3PlMl6YwqR+C+ssKyJEmSpEGz\nE3giMxdLx6aBXcBXSse+A/jvEfE7wLcDXwVuysyvdq2lktT/fKZKUqGyAG5mHquqLEmSJGmIjQGv\nBV6dmV+KiJ8Ffg/Yt1bGubm5TretJxqNxln/Dpth7x/Yx2EwMTHR6yZs1IaeqT5PB5d9HHzD3r9O\nPE8rC+BGxMXAzcArgNMtzcxXVVWHJEmS1MeOA5dExEhpxNgumiPGyqaBBzLzS8X+QeDDETGamasu\nAvz4449z6tTwrhNcr9d73YSOGvb+gX0cVKOjo+zdu3ftE7uro89Un6eDzz4OvmHsX6eep1VOofBb\nwBeAHwD+FfCzwAMVli9JkiT1rcx8KiK+SHMx39si4keB45n5lSWnfgZ4b0TsyMzHgauAh9cK3gLs\n2LGj8nb3g0ajQb1eZ3Jyklqt1uvmVG7Y+wf2UdXr9DPV5+ngso+Db9j71wlVBnB3ZuZ7I+KtmfmH\nEXEXcA/wf1RYhyRJktTPrgc+HhHvAk4AbwOIiJuBxzLzo5n5XERcD/w/EUFx3pvaKXyAv+Lcllqt\nNtR9HPb+gX1U5Tr2TB3213Ar3Kf2cfANe/+qVGUAtzVxxVxEvBiYAb5po4VFxE/QHNX7+sz8g2IF\nyk8ALwHmgBsz8/PFuecV5+4DTgHvLlaoJJpP8A8CVwKLwAcy88MbbZckSZK0ksx8BPieZY7//JL9\n/w/4rm61S5IGkc9USWqqMoD7bG6hRAAAIABJREFUSBG4/c/AIWAW+G8bKSgiLgV+GrivdPhXgPsy\n88qIuBy4MyJ2F1+LuAmYy8yXRsRu4FBEfDYzZ2h+3eJlmXlZRFwIPFCkPbzBfkqSJEmSJElSV4xU\nVVBmvjUzv56ZH6D5tYb3AG9dbznFiNnfBP4FZ0b1AlwD3FLUdT/wGPCaIu3aUtpR4G7gDaV8HyvS\nZoBPAW9eb7skSZIkSZIkqduqHIF7WmZ+YRPZfw74fGY+UMxfQ0RcBIxl5pOl847RXIGS4t9jpbSj\na6S9ehPtkyRJkiRJkqSuqCyAGxE/CPwasBcYBQLIzBxdRxl/D7gauKKqdm1Go9FY+6QK69lsfZkT\nS/YXmZub21CdMzM1Tp48M0D7/PMXufDCjbevqj72a329qNM+NpXv+9Xu+X7iJO3tqdeD2dnmB3nb\ntiWTk9njFmlYzczUaDT2MDMzwiWX9Lo1kiRJknS2KkfgfhB4B815a09tsIwrgEuBqWIqhW8GPgr8\nArAQEReXRuHuBqaL7WNFvnop7a5ie7pIO7RMvlXV6/W1T6rQZuubn9+zZH+B48ePb6jORmMPBw5c\neHr/3nu/zjPPrF5WOwbtmg5CnVu9j+X7vp17vtdGR0fZu3dvr5sxEGZng337zgfgyJGTBnDVMSdP\njnDgwIUcPnzCAK4kSZKkvlNlAHc2M+9a+7SVZeYtFHPZAkTE54D/kJl/GBH7gRuAmyNiH7ADuKc4\n9Q7geuBwROyhOTfuDUXa7cDbI+IO4EU058u9qp32TE5OUqvVNtOltjQaDer1+qbrm54+++UcHx9j\n586dG6pzPWW1o6o+9mt9vajTPjaV79XN3qeSeq9eD06cmGB+3hGxkiRJkgTVBnD/S0S8PjN/v8Iy\nk+ZUDADvBA5GxCPA88BbMrM10vd9wK0R8SiwANyYmU8XaQeBy4EpYBF4f2Y+1E7ltVqtq1913mx9\nESPn7K9V3kp1bqSsdgzaNR2EOrd6H8v3alX3qaTemZ0N9u/fBuCIWEmSJEmiggBuRMxwJtB6QUT8\nHc0Aa2sO3Is2WnZmfn9p+0ngdSuc9xzwphXSFmlO7fCOjbZDkiRJkiRJknqhihG4r6ygDEmSJPWh\n8fFkaqr5bQcXFJQkSZK6b9MB3Mw8BhARu4AnM3Ou2J8Atm+2fEmSJPXOs88GBw64oKAkSZLUKyNr\nn9K2O5bsxzLHJEmSJEmSJEltqjKAW2uNvgXIzL8DvqHC8iVJkiRJkiRpS6kygJsRcXFrJyK+meYo\nXEmSJEmSJEnSBlSxiFnLB4H7IuJgsf9W4OYKy5ckSV1Qrwezs8G2bckFF/S6NZIkSZK0tVU2Ajcz\n/xPwU8ALip+fyMyDq+eSJEn9ZnY22LfvfGZn/SKNJEmSJPValSNwycy7gburLFMaZq1Rbi3btqWr\ne2tolUd1ep+rU8rPVe81SZIkScOg0gDusOqHIFs/tEHVa41yazly5KSvq4ZW6373PlcnlZ+r3muS\nJEmShoEB3Db0Q5CtH9ogSZIkSZIkqbsqmQM3IkYi4tVVlCVJqkZE3BURfx4RD0TEPRHxyuL49oj4\nTEQ8EhEPRsQVpTznRcQnI2IqIr4UEVeX0iIiPhQRjxZ5b+xFvyRJkiRJ2koqGYGbmYsR8VHgFVWU\nt9UtN12CJG3AGzNzFiAiXg98HHgl8F7gvsy8MiIuB+6MiN2ZeQq4CZjLzJdGxG7gUER8NjNngOuA\nl2XmZRFxIfBAkfZw97um1TgPrCRJkiQNj0pG4BamIuKyCsvbslrTJbR+XAVc0ka0greFFwGniu03\nArcU59wPPAa8pki7tpR2lObClG8o0q4BPlakzQCfAt7cqfZr48q/R/wdIkmSJEmDrco5cC8C/jwi\n/hR4pnUwM/9ZhXVIktYhIm4DXgsk8E8i4iJgLDOfLJ12DNhVbO8q9luOrpHm9DmSJEmSJHVQlQHc\n24ofSVKfyMx/DhAR1wG/SnMahK4PyZyfnydzsWjTInNzc2vmyZwoba+cp3Ve5iKNRgOARqNxVv6z\nz2+v/naV6+yGdupr99qtlX/pNd2IclnttOnstrPhtq9Vz/JtXH99G7HSNd3s67aROperv/xanXtO\ne+3q1vtiYmL597kkSZI0TCoL4GbmbQAR8Q2Z+XxV5UqSNi8zD0bELcXufERcXBqFuxuYLraPAZcC\n9VLaXcX2dJF2aJl8q3rqqaeYnz+vWfn8AsePH18zz/z8ntL2ynla583PL1CvN5tdr9eZn3/B6XMy\ns3R+e/WvV6vublmtvnav3Vr5l17TjSiX1U6bym1fWNh429eqp2xhYc+G69uMpdd0s6/bRupcrv7y\nawWbe/908n0xOjrK3r17O1a+JEmS1C8qC+BGxHcCv0NznsVvjYjvBq7NzH9TVR3qP8stuOZiOVLv\nRcQFwAsy84li//XA1zPz6Yi4HbgBuDki9gE7gHuKrHcA1wOHI2IPzblxbyjSbgfeHhF30HzWXwtc\n1U57tm/fzhNPNH/ljI+PsXPnzjXzTE+f+RW1Wp7WeePjY0xOTlKv15mcnORrXzuTP+LMc6rd+tvV\naDRO11mr1SordzP1tXvtVrLSNd1I/8pltdOmctvHxjbe9rXqKTt2bGzD9W3ESq/hZl+3jdRZttxr\nBRt7/3T7fSFJkiQNsyqnUPgQzT/6P1TsfxH4BGAAd4i1FsppOXLkpAFcqT9cANweERM05799Evih\nIu2dwMGIeAR4HnhLZrYWOHsfcGtEPAosADdm5tNF2kHgcmAKWATen5kPtdOY8fFxIprrZkaMtPW1\n59b5a+Upl9sKFNVqtbPyLz2/E1+7rtVqlZVb/nBspQ/GVquv3Wu3kpWu6Ub6Vy6rnTadfd76vyK/\nkb634pMbqW8zll7Tzb5uG6mzbLnXarlz1tOuKt8XkiRJ0lZVZQD3hZn5hdYojczMiOjOhIA90M4f\n15LUK5k5zQoLjBVTJ7xuhbTngDetkLYIvKP4UQeVPxzzgzFJkiRJ2tqqDOAuRMQ4zZFeRMRO4NTq\nWQaXf1xLkqR+4ofLkiRJ0nCqMoD768DvA9sj4t8Db8XpE7QC586VtB7j48nUVPNr3T4vpOX54bIk\nSZI0nCoL4Gbmf46IrwA/AtSAt2bmF6oqX4OjnRFAzp0raT2efTY4cGCwAlOtZ6EBZ0mSJEnSZlQ5\nApfM/NOImG5u5mNVlq3B4QggSTrzLPQ5qK1oZqZGo7GHmZkRLrmk162RJEmSBtvKywyvU0S8IiIe\nBh4E/jIi/joiXlFV+ZIkSYOkXg+mpkao12PNc6amRlhY6GLjOuzkyREOHHgxJ09W9l9NSZIkacuq\n8n/Vvwm8JzMvysyLgPcUxyRJkrac1ijs8pzvK52zb9/5LC6uv45+CgC3E7CWJEmStH5VBnAnMvP2\n1k5m3gF8Q4XlS5IkqWSzAeBOtGW1gLUkSZKk9asygPvFiPi+1k5EvAb4bxWWP5Tq9WB6eoJGYw/T\n0xOOWpEkSZIkSZJ0WpWLmL0KeGtEHC32dwN/HRFfBMjMV1VY19CYnQ327992ev/IkZM9bI0kSSur\n1+P06Mpt29LF2SRJkiSpC6oM4P6LCsuSJEl9pvUVeWh+4DjsAVwD1pIkSZL6QWUB3My8p4pyIuIu\nYBJIYBb4l5n55xGxHfgE8BJgDrgxMz9f5DkP+C1gH3AKeHdmfrpIC+CDwJXAIvCBzPxwFW2VJEnD\na6sFrCVJkiT1pypH4FbljZk5CxARrwc+DrwSeC9wX2ZeGRGXA3dGxO7MPAXcBMxl5ksjYjdwKCI+\nm5kzwHXAyzLzsoi4EHigSHu4+12TJEmSJEmSpPZVuYhZJVrB28KLaI6oBXgjcEtxzv3AY8BrirRr\nS2lHgbuBNxRp1wAfK9JmgE8Bb+5U+yVJkiRJkiSpKv04ApeIuA14Lc1pFP5JRFwEjGXmk6XTjgG7\niu1dxX7L0TXSXl19qyVJw6Q1/6lzn2oYzMzUaDT2MDMzwiWX9Lo1kiRJktajsgBuRPxT4J7MnI2I\nm4B/CPxCZv7VesvKzH9elHkd8Ks0p0GIqtrarkajUbRn4qzjmYvn7M/NzW2ojrXKXu3Y0jqXK2ul\ndrX61vq3nXYtV1a712Zpfetp60as1b9O2Eidm7kOg9LHTtdXvoZV30edMjExsfZJ6rnW/KfOfdpb\nBtKrcfLkCAcOXMjhwycM4EqSJEkDpsoRuL+Umf8gIl4BvBX4jeLnio0WmJkHI+KWYnc+Ii4ujcLd\nDUwX28eAS4F6Ke2uYnu6SDu0TL5V1evN4ubn95x1fH5+4Zz948ePt1PkOdYqe7VjS+tcrqy12tXq\nYzvtWq6s9V6b1a7pRq/halbqXyetp84qrkO/97HT9ZWvYafuoyqNjo6yd+/eXjdDGhgG0qtnUFyS\nJEkaLFUGcFuRu/8Z+GhmfiQifnY9BUTEBcALMvOJYv/1wNcz8+mIuB24Abg5IvYBO4B7iqx3ANcD\nhyNiD825cW8o0m4H3h4Rd9CcU/da4Kp22jM5OUmtVmN6+uzLND5+7v7OnTvX09XT1ip7tWNL61yu\nrJXa1Wg0qNfrp/vYTruWK6vda7O0vvW0dSPW6l8nbKTOzVyHpfXNzNQ4efLMtNbnn7/IhRdWO1K2\n29e1nfrK17Dq+0iDp/w1cQ03g5AbZ1BckiRJGixVBnBHI+LVwNXATxTHxtdZxgXA7RExQXP+2yeB\nHyrS3gkcjIhHgOeBt2Rma4Gz9wG3RsSjNAPJN2bm00XaQeByYApYBN6fmQ+105harcbExAQRZwcC\nltvf6Fei1yp7tWNL69xIu1p9bKdd7Z63Wr7Vrmknvla+Uv86aT11VnEdWvU988wI+/eff/r4kSMn\nueSSzgSxun1dV6uvfA07dR9pcJS/Jh5dnnhnZqbGM88078dt2wyKdZpByNWNjydTU+X70WskSZIk\nDaoqA7j/O/AR4E8y8+GI+HbgkfUUkJnTrLDAWDF1wutWSHsOeNMKaYvAO4ofSZI64uTJMx+iHDly\nct35WyNKARbOnTlHFSuP4B3G4OazzwYHDpTvx+HrY7+KiMuA24BvAv4H8LbMfHiV8z8O/Djwosyc\n7UojJWlA+EyVpKbKhudl5h9m5isz818V+1/OzKurKl+SpGHWGlG6b9/5LJ67duVQq9eDqakRpqZG\nuha8bl3vVtBcqtBHgFsy89tpLsZ720onRsQbgAZG2CVpJT5TJYkKRuBGxHtWS8/MX9xsHZIGQ3kE\nIeDclNIaHHXb1AqmAtx77/pHL0v9IiK2A98N/GOAzPx0RPx6ROzNzK8sOXcS+HfAa4Gf7npjJanP\n+UyVpDOqmEKhNenmtwI/APwBzU+8fhj4kwrK1yYYUFM3lYMwgHNTSmvodeDShcCkyu0Eniim8GqZ\nBnYBX1ly7keBf52Zz8Y6Ju2em5vbdCP7UaPROOvfYTPs/QP7OAz6cC2Jjj5TfZ4OLvs4+Ia9f514\nnm46gJuZ/xogIv4YeGVmPl7svwf4+GbL1+YMW0DNgHT1vKbS1uVCYFJvRMRPAccy85715n388cc5\nderU2icOqHq93usmdNSw9w/s46AaHR1l7969vW7Ghmz0merzdPDZx8E3jP3r1PO0ykXMdrSCtwCZ\n+UREfEuF5UsbDkgbpFzZsAX5JUnqoePAJRExUhoxtovmiLGy1wJXRMQPAa3/oDwYET+SmX+xWgU7\nduyotMH9otFoUK/XmZycpFar9bo5lRv2/oF9VEd09Jnq83Rw2cfBN+z964QqA7h/GxE3A79Z7P8U\n8LcVlj8UlgYSt/Kch93UiyBl+bU2YCxp2IyPJ1NTzbVQfcZtXeVpOASZ+VREfBG4DrgtIn4UOL50\nrsbMfGt5PyIWge/MzDXnUunDrzhXqlarDXUfh71/YB9VnU4/U4f9NdwK96l9HHzD3r8qjVRY1tuA\nlwN/DjwAvKw4ppLyKuNbcaXxraT8WrvKuaReaQVap6ZGqNerexY9+6zPOJ35Xec9cJbrgZ+NiC8D\n/4bi/8MRcXNE/MwKeZIzo8YkSWf4TJUkKhqBGxGjwIHMvKaK8iRJUjWefTY4cKD5DYRhnSKl/I0H\nv9miXsvMR4DvWeb4z6+SZ7SjjZKkAeUzVZKaKhmBm5mngHdXUZYkSdJ6lL/x4DdbJEmSJA2bKufA\n/WJE/E+Z+YUKy5TUp5ZbGE6S+onz9EqSJEkaBlUGcP8h8LaI+ArwTOtgZr6qwjok9YnlFoaTtpp6\nPThxYoL5+T2MjDjVWr/pp+kjyh96vfCFrrQrSZIkqX1VBnBvrLAsqW8tN/LUUV3S1jQ7G+zfvw2A\ne+/1Q4z12Grz1pY/9Dp8+ARhvF+SJElSmyoL4GbmPQARsaPYf7yqstV55T+kh+Gr8DMzNRqNPUxP\nj3HBBdX+lbzcyFMDuJK0PuVn6aAHv1u/Q/1AT5IkSVInVLKIGUBEvDwiHgIeAh6KiL+MiJdVVb46\nq7wATHl06aA6eXKEAwdezP79FwxFfyRJ/av1O9TfN5IkSZI6ocopFP4j8EuZ+UmAiHgT8BvAayus\nQz00bItWdXsqhF5cP6d7kM7lwlaSJEmSpEFSZQD3wlbwFiAzfzci3llh+eqxYVu0qttTIfTi+q1U\n5zBNlyGtVz8tbCVtRHnKBkmSJEnDr7IpFIBTEfEdrZ1i+1SF5UuqwLBNl6HlRcQ3RMSdEfGliHgg\nIu6KiJcUadsj4jMR8UhEPBgRV5TynRcRn4yIqSLv1aW0iIgPRcSjRd7KF6+s14OpqRGmpka2xMJW\nw6I1qnlqaoR63edKpzllgyRJkrS1VDkC913Af42IB4v97wTeUmH5koaUUz10zEcy848AimDrb9Kc\n1ua9wH2ZeWVEXA7cGRG7M/MUcBMwl5kvjYjdwKGI+GxmzgDXAS/LzMsi4kLggSLt4aoaPEwLW3VK\na5HGmZkRLrmke/VNT49xaoWPZbfaqOZhW/hTkiRJUn+rLICbmXdFxMuBVxeH/iwz/3tV5Wv4Lf2D\nuF8CAP6h3nndns5iK8jM54E/Kh36M+BfFdtvBF5SnHd/RDwGvAb4LHAt8JNF2tGIuBt4A3ArcA3w\nsSJtJiI+BbwZeE+n+6Mzmos0Xsjhwye6EsBt1QcG1VvKz6xBn05IkiRJUv/bdAA3Im6m+Uf/fZn5\nFPBfNt0qbUlL/yDulwCef6hrSPxL4Pcj4iJgLDOfLKUdA3YV27uK/Zaja6S9mg0oz+HZL+91SZIk\nSZL6URUjcC8GPgLsjIj7gM/RDOgeLr6OK0nqoYh4F80Rtz8DvKAXbZifnydzEYDMRU6cgP37t3H4\n8AkuuGDu9HmZE2uWlbnI3Ny5eTIXyWwdA1hcd1lnp020fc5y5a6njvW08Uy7OOv4zEyNkydHOP/8\nM9eh/bLWvqbtWq2s8jntlQWt17GdcjfarvJ9s9w5S/MvPd5OHUv7FQGNRmPVe6ide7MdK703NnJN\n2319V7qmVZuYWPs9JEmSJA26TQdwM/MGgIi4BPi+4uc24Jsj4vOZedVm65AkbUxE3AS8HviBzJwD\n5iJiISIuLo3C3Q1MF9vHgEuBeintrmJ7ukg7tEy+VT311FPMz58HwPz8mdXJ5ucXOH78eGl/z+nt\nLEUOy9sr5SmXu7BkBbR2yyorl7vWOcuVu5461tPGhYU9xb9nH2809nDgwIXce+/XKQev2712a13T\n1dq43ten3XLLr+Nm29juffO1ryXPPjvON37j/IqvY/l1a+d+XtrGhYUFajWo1+vMz5/5TGUj92a7\nfS/Xvd72bub1XXqfVml0dJS9e/d2pGxJkiSpn1Q5B+4TEfFp4AngazTnRXxlVeWrOvV6cOLEBPPz\nzUVpLrjAVaylYRQRPwe8iWbwtjz/x+3ADcDNEbEP2AHcU6TdAVwPHI6IPTTnxr2hlO/tEXEH8CKa\n8+W29SHd9u3beeKJ5q+c8fEzv3rGx8d44QtfwsmTIwCMjJx5HkUsvz0+PsbOnTtP709Pnym3FWca\nGxujlKXtssrK5a51znLlrqeO9bTx2LFmnrGxla9DWbvXbq1rulob262jfM5KbSxvl1/HdsrdaLvK\n902jMcaBAxdw+PAJxsdZNn/5dVvttV6pjWNjzf3JyUm+9rWV76F27s12+77ce2Mj17Td17dc30r9\nkCRJktSeKubA/V6ao25fC3wLzYVy/itwVWZObbZ8VW92Nti/f9vpfed17X/9usBbt5WvA7io3Goi\n4luA9wN/A3wumhGYucz8R8A7gYMR8QjwPPCW0pQ37wNujYhHgQXgxsx8ukg7CFwOTNEc4vn+zHyo\nnfaMj48TMVK0baTUzhGeeWaE/fub80y3s0hWxMhZX5s+u9zFYvvsetota2lau+esdnwj+VdrYyuW\nFsEq16Hdspbv43LXtF2rl8U526uX1W4bN9uuc++bpeWW86/Ul3bb2HoNa7XaqvdQO/dmO1brY5X3\n0Er1Oc2BJEmStDlVjMC9m2bQ9hcz84/WOFfSBvTrAm/dVr4O4IcPq8nMx4BlozDF1AmvWyHtOZqj\ndpdLWwTeUfxIGgLlBQUlSZIk9af2hm6s7nuB/xe4KSIejYhPRsTPRMS3VVC2JEnSllevB1NTI9Tr\n1U571PpgrPztBkmSJEn9pYpFzL4AfAH49xFRA15NczqFP4iIF2bmt262Dg0259xdH6cJkCQt1Qq0\n+s0DSZIkaeupbBGziNhBM3D7fcD3AxfTDOxqi9vonLtbNZDZzjQBBsU1aE6cqPW6CZIkSZIkDaQq\nFjH7GM1VyncA9wGfA94KHMnMhc2Wr62r3flOlw/0Dnew14XoNGieeaaKGXskSZIkSdp6qhiBexz4\nKeDPMnN+MwVFxDcAvwu8HPg74Engf8nMv4mI7cAngJcAczRXRv98ke884LeAfcAp4N2Z+ekiLYAP\nAlfSXBL5A5n54c20U/1l+UDvcAdwJamfuTCWJEmSJFWnijlwf7GKhpR8JDP/CCAibgR+k+bUDO8F\n7svMKyPicuDOiNidmaeAm4C5zHxpROwGDkXEZzNzBrgOeFlmXhYRFwIPFGkPV9xuSVKXdCpA2I3A\n41YIbjpfqyRJkiRVp6++05qZz7eCt4U/Ay4ttt8I3FKcdz/wGM2pGwCuLaUdBe4G3lCkXQN8rEib\nAT4FvLlTfZAkdV4rQFiePqWfy+12HZIkSZKk4VHZImYd8i+B34+Ii4CxzHyylHYM2FVs7yr2W46u\nkfbqTjRWUnvK8xYP8yhESZIkSZKkzerbAG5EvIvmfLc/A7ygF21oNBoAZE6cdTxz8Zz9ubm5tspc\nWta56YttH1ta51rtbPfYRvNVWdZm25C59jnLHVvudSxf19Xyte6X5e6bfrim6ylrpfu53Md277fl\nyjpxYuL0ImyHD59g6ZzF7VzTlfrT7nuxlyYmVn8OSJIkSZIktfRlADcibgJeD/xAZs4BcxGxEBEX\nl0bh7gami+1jNKdaqJfS7iq2p4u0Q8vkW1W93ixufn7PWcfn5xfO2T9+/Hg7RZ5TVmYuST+77NWO\nLa1zrXa2e2yj+aosq1dtWO51LF/XdvItd9/0wzVdT1lr3c/1ep35+bM/V+n2NV0u73rei70yOjrK\n3r17e90MSZIkSZI0IPougBsRPwe8iWbwtrz6ye3ADcDNEbEP2AHcU6TdAVwPHI6IPTTnxr2hlO/t\nEXEH8CKa8+Ve1U5bJicnqdVqTE+ffZnGx8/d37lzZ1v9W1pWxNlzIC4te7VjS+tcq53tHttovirL\n2mwbynHxzVxTOPu6rpav0WhQr9eXvW/64Zqup6yV7udyH7/2tY2XVcU1Xak/7b4XJUmSJEmSBkFf\nBXAj4luA9wN/A3wumtHNucz8R8A7gYMR8QjwPPCWzDxVZH0fcGtEPAosADdm5tNF2kHgcmAKWATe\nn5kPtdOeWq3GxMQEEWev9bbcfrtfiV6at530lY6dOHHeWfOILg0Gr6esKvJVWdbm27DYxjnnHlvu\ndSyf206+5e6bfrim6ylrrfu5VqttqqwqrulyedfzXpQkSZIkSRoEfRXAzczHgGUjnMXUCa9bIe05\nmqN2l0tbBN5R/AyV1krmAEeOnFzjbEmSJEmSJEmDpq8CuMOmXo/TI2ShOUpWGlT1enDixATz83uY\nmVl9JPnSfL4PpM5ovb98X0mSJEnS8DKA20HlEbLgKFkNttnZYP/+bQAcPnyCJTN2rJrP94HUGa33\nl++rtY2PJ1NTzQ+fDHhLkiRJGiQGcCVJ0tB79tngwIH+mHZofDx47rk9TE+PcerU2udLkiRJ2toM\n4Eo6h9MeSP3l7KkSNv5+XG0UqtMxdM9zzwUHDrwYgHvvdfS0JEmSpNUZwJV0Dqc9kFZW/oBjYaE7\ndZ49VcLGA6yrjUIdhOkYDDJLkiRJ2oraX4lIkiSdDnTu23c+i4u9bs3W0rr25W8I9Jt6PZiaGqFe\n7982SpIkSRosjsCVSpw6QJK0GYMwknkzXAxOkiRJ6j4DuFKJUwdIkrSyfloMTpIkSdoqnEJBkiRJ\nkiRJkvqUAVxJkiRJkiRJ6lMGcCVJkiRJkiSpTzkHriRJUh9qLazpYmGSJEnS1uYI3BU0GruYnp6g\nXo9eN0WSJG1BrYU1Z2f9v4gkSZK0lTkCdwVXXXUhX//6iCssS5JOj4QEWFjocWMkSZIkSVuKAdyK\nlP+4B/y6o7RJ9Xpw4sQE8/N7mJ4e44ILHIGm3mmNhAS4914/2JO0soi4DLgN+CbgfwBvy8yHl5zz\n94EPA9uBBeAwcGNmPt/l5kpSX/OZKklNTqFQkdYf960fv+4obc7sbLB//wUcOPBi9u+/wPeUpJ4a\nH0+mpkaYmhpxFLbW8hHglsz8duBXaQYelpqjGVz4DuAVwAuBf9u9JkrSwPCZKkkYwJUkSVrTs8+e\n+aB2cbHXrVG/iojtwHcDvw2QmZ8GdkbE3vJ5mfloZv5VsZ3AEWB3d1srSf3NZ6oknWEAV5K0pdXr\nwdTUiItWSqrCTuCJzCw5J2MvAAAbbUlEQVSH+aeBXStliIhvBH4a+P0Ot02SBo3PVEkqOAeuJGlL\na02B46KVkrotIsaB3wX+KDP/oJ08c3NznW1UjzQajbP+HTbD3j+wj8NgYmKi103YlPU+U32eDi77\nOPiGvX+deJ4awJUkSZKqcRy4JCJGSiPGdtEcMXaWiBgDPgU8lpn/W7sVPP7445w6daqSxvajer3e\n6yZ01LD3D+zjoBodHWXv3r1rn9hdHX2m+jwdfPZx8A1j/zr1PDWAK0mSJFUgM5+KiC8C1wG3RcSP\nAscz8yvl8yJilGag4euZef166tixY0dl7e0njUaDer3O5OQktVqt182p3LD3D+yjqtfpZ6rP08Fl\nHwffsPevEwzgSpIkSdW5Hvh4RLwLOAG8DSAibqY5MuyjwLXA64EHI+IBIIF7M/MdaxU+6F9xXkut\nVhvqPg57/8A+qnIde6YO+2u4Fe5T+zj4hr1/VTKAK0mSJFUkMx8BvmeZ4z9f2v4k8MlutkuSBpHP\nVElqGul1AyRJnRERH4iIr0bEYkT8g9Lx7RHxmYh4JCIejIgrSmnnRcQnI2IqIr4UEVeX0iIiPhQR\njxZ5b+x2nyRJkiRJ2moM4ErS8LodOAAcXXL8V4D7MvPbgJ8EPlnMHQZwEzCXmS8FfhD4jxFxYZF2\nHfCyzLwMeDXwryPi5R3ugyRJkiRJW5oBXEkaUpn5hcx8HIglSdcAtxTn3A88BrymSLu2lHYUuBt4\nQynfx4q0GZqLRby5Yx2QJEmSJEkGcCVpK4mIi4CxzHyydPgYsKvY3lXstxxtM02SJEmSJHWAi5hJ\nFajXgxMnJpif38P09BgXXLB0wKO0tWVC5mKxvVg6vrhSllXKWj5/5iKZZ+qDtcterawq2zg3N1fa\nn1hXue30cSPtbbfvrfraVeU1baePVbw+a13T9ZTVqTZuptz13jdV9L1cX/n+r5qrFkuSJGkrMIAr\nVWB2Nti/f9vp/SNHTvawNdLKMvPpiFiIiItLo3B3A9PF9jHgUqBeSrur2J4u0g4tk29VCwsLnDrV\n3J6fXzh9vLxdtG/N7ZXyl7cXFtort52yqmjj8ePHS/t71lVuO33cSHu71ffNlNtOH6ts40r1baSs\nfrqO671vquz7wsLZ93+VRkdH2bt3b0fKliRJkvpJXwVwI+IDwA/TDBC8MjMfLI5vBz4BvASYA27M\nzM8XaecBvwXsA04B787MTxdpAXwQuJLmcJMPZOaHu9opSeo/twM3ADdHxD5gB3BPkXYHcD1wOCL2\n0Jwb94ZSvrdHxB3Ai2jOl3tVOxWOjY0xUkzaMz5+5ldPeRug+dhefXul/OPjY6dH/Y2NjVHKsqGy\nqmzjzp07T+9PT4+tq9x2+riR9rbb9/II3M2+PuttYzt9rOL1WeuarqesTrVxM+Wu976pou/l+sr3\nvyRJkqT166sALs3gwHuBLyw53lox/cqIuBy4MyJ2Z+YpSiumR8Ru4FBEfLZYYOf0iunFKuoPFGkP\nd61HktQjEXELzQDrJHBXRJzMzG8D3gkcjIhHgOeBtxTPU4D3AbdGxKPAAs0PzJ4u0g4ClwNTND8U\ne39mPtReWyBipNgeKR1f/1TsK+Vvbi+eU9/Gy6qujeWveS93HdbXxnP7uJH2tt/39X39v8pr2k4f\nq7mHVr+m6yurU23ceLnrvW+q6fuZ+pzmQJIkSdqcvgrgZuYX4PTI2bJraI6+JTPvj4jWiumfpTkC\n7CeLtKMRcTfNFdNvZcmK6RHRWjH9PR3vjCT1WGZev8LxJ4HXrZD2HPCmFdIWgXcUP5IkSZIkqQvW\nPySky1wxXZIkSZIkSdJW1VcjcPvRcisxLz3WzjkrHdtovirb0I9lbbYN5Tkbh6E//VZWeRXzXrVh\npbI6udp5Vfw68dZTrwezs8G2bbn2yZIkSZIklfR9ALdXK6a3LF2Jeblj7Zyz0rHyas6bKWszbejH\nsvqhDVWW1Q9tqLKs8irmvWrDSmV1arXzqrhq+tY0Oxvs23c+R46c7HVTJEmSJEkDpu8DuIWur5je\nsnQl5uWOtXPOSseWTve70bI204Z+LGuzbSjHxYehP/1WVnkV8161YaWyXO1ckiRJkiQNk74K4PbT\niuln2nTuNMFLj7VzzkrHNpqvyjb0Y1mbb8NiG+d0r1390IYqyyqvYt6rNqxUltMTSJIkSZKkYdJX\nAVxXTJckSZIkSZKkM9YeEipJkiRJkiRJ6gkDuJIkSZIkSZLUpwzgSpIkSZIkSVKfMoArSZIkSZIk\nSX3KAK4kSZIkSZIk9SkDuJIkSZIkSZLUpwzgSpIkSZIkSVKfMoArSZIkSZIkSX3KAK4kSZIkSZIk\n9SkDuJIkSZIkSZLUpwzgSpIkSZIkSVKfMoArSZIkSZIkSX3KAK4kSZIkSZIk9SkDuJIkSZIkSZLU\npwzgSpIkSZIkSVKfMoArSZIkSZIkSX3KAK4kSZIkSZIk9SkDuJIkSZIkSZLUpwzgSpIkSZIkSVKf\nMoArSZIkSZIkSX3KAK4kSZIkSZIk9SkDuJIkSZIkSZLUpwzgSpIkSZIkSVKfMoArSZIkSZIkSX3K\nAK4kSZIkSZIk9SkDuJIkSZIkSZLUpwzgSpIkSZIkSVKfMoArSZIkSZIkSX3KAK4kSZIkSZIk9SkD\nuJIkSZIkSZLUp7ZEADciLouIeyPiyxFxKCJe3us2SdKg8pkqSStr9xkZET8UEQ8X590RES/sdlsl\nqd/5TJWkprFeN6BLPgLckpkHI+Jq4DZgfyk9lma46KJFAEZHE4AXv3jxdNrSY+2cs9qxjearsg39\nVtZm25A5XP3pt7JGRyGif+/dAXTOM6jPrfuZOjJy5p4pv27LvYbtbC+Xv/zeX3qPbqSsTrVxI+Wu\n1ccqyl3rmvam72v3sYrXZ61r2s3XulPlrue+qaLv5fq6rB+ep2s9I4mIbwT+//buPF6usr7j+OdL\nUGRNhIJEJQKxrLIFFJVSBMUiIoJQ0LqwqYhLKaLFutsqVuur6sulgJFNKiDGrVrBioICKmACEQgB\nJSERqRpAQCuC5Ns/znNhcrm5mXvvnDPb9/16ndedObP8nufO3O/cec45z5kL7G37VkmfAt4L/OOo\n5+qF/jRmWhfeME0a9P5B+jiAeiGDOpWpvdCXxgzD+zR97H+D3r9RppxBsvt2wKMtkjYFbgU2tr2y\nrLsT2Mv2bQD33nvvdsCi7rUyIobc9tOnT7+5241oRzI1InpcV/O0nYws6w4HjrV9YLm+PfAd21u0\nPl/yNCK6bGAyNXkaEV025TwdhikUtgDuHAn8Yhkwq0vtiYjoZ8nUiIjVazcjZwG3t1xfCmwuaRj+\nN4+IaFcyNSKiSKBFRERERERERERE9KhhGMBdDswctfVtFtWWu4iImJhkakTE6rWbkcuALVuub8Vj\n9zKLiBh2ydSIiGLgT2Jm+7eS5gOvBs4p8+Msb50zh2pendFns7wbGOwJgiOiGwRsPGrdrd1oyGQk\nUyOih/RcnraZkQAXA5+WtI3tW4ATgAvGeMrkaUQ0ZdAzNXkaEU2pJU8H/iRmAJK2Ac4GNgHuBY6x\nfWNXGxUR0aeSqRERqzdGRh5t+yZJHwDusH1Gud9BwL8B04AbgKNs39+dVkdE9KZkakREZSgGcCMi\nIiIiIiIiIiL60TDMgRsRERERERERERHRlzKAGxERERHRAyQ9XdKVkhZL+omk0fM1jtzvIEmLyv2+\nLGmDpts6We30UdIzJF0u6SZJCyXNlbRON9o7Ue2+hi33P1vSSkkbNdXGqZrA+3QLSd+QdLOkGyS9\nqem2TtYE+niKpBslLZB0laRnNt3WyZD0SUlLyntv53HuN9BZU+430H3s5zyFwc/U5Okq90uerkEG\ncFtI2lrS88qydYN1N5W0n6SZTdWMiKhT03kqaVdJh5QPxsbyOyKiw04HTrO9LfBR4JzRd5C0PjAX\nOLjc707gvY22cmrW2EfgAeBNtncAdgE2AE5prolT0k7/AJB0KPAg/XcSpXb7+FXgbNvb2X4G8KWm\nGtgB7fwt7kJ1sqw9bO8GfAb4dKOtnLyLgL2Apau7wzBkzTD0kf7OUxj8TE2ekjxtVwZwAUnbS7oa\nuBL4SFmulHS1pB1rqHeupM3K5f2Am4B/Ba6XdEin6w0rSf/SQI1pZfD96LLsJ2la3XVL7Z0kHStp\nj5rrPCYnJD2xxnrbtfx9bCfpOEl71lUvOqsLebqzpJ8BlwPzgA8D10q6qF+2vK+JpGd0uX4jWTOq\nZm0ZM07N2j8zWmqtLWk3SdMbqNVohq+mDZs0Wa9fSdoU2B34TwDb84Atxtgo9SJgvu2Rsxl/FnhF\nYw2dgnb7aPvntm8olw1cA2zZbGsnbgKvIZKeBPwTcBLV2ar7Qrt9lPR84AHbXxlZZ/u3TbZ1sibw\nOhpYG9iwXJ8BLG+qnVNh+wrbv2L8997AZw1D0Md+zVMY/ExNnq4iedqGDOBWzgY+Ynum7T3LMpNq\n68BZNdTbxfZvyuX3AfvbfhawZ7lemya/yDU5ECfp70cvwAktl+uouTfVVpZTqf4gX0Q1eLRU0l/X\nUO/Slt/nEcDFwAHAlyUdX0O9PSQtAf4o6aslfEdc2ul6pebbqQbirpX0KuA7wN8AX5J0Yh01o+PO\nptk8PQ04wfZ04FDg+8DmwGLgUzXUAxrf0LBQ0vUlzzauqcYjupA1J7Zc3krSjcCvVB2KtFOn65U6\njX5mlI17d0laIWkf4Crgi8AvyvWO60aGj2NBw/X61RbAnbZXtqxbBswadb9ZwO0t15cCm4/1P14P\narePj1C118prga/V3LZOmEj/zgDebvsPjbSsc9rt4w7ACknnS5ovaZ6krRpr5dS01UfbC4FPAEsk\nLQP+AXhLY62s3zBkzTD08RF9lqcw+JmaPC2Sp+3ph2BqwoyyJWAVtr8M1LF3zLotl9ezfV2ptwSo\nZe/Npr/IdWEg7t+B5wO7tSzrlJ+71lAPqt36D7X9bNtHlmVP4GXltk7btGXg/yTgubaPAOYAdcyB\n83HgzcCTgRuAH0h6Srmtrq2aRwPbUR2CcDqwT+nj7sDraqoZndV0nq5n+4pS4xvAc2w/aPvdwHNq\nqNeNfLsR+GeqQdRlki6Q9IIa6oxoOmuOarl8KvBZ2+sCb6PK9jo0/Znx4VLvcKo9xd9he3vgQOCD\nNdSDhjNc0sGrW4AndLpeDAdJjwMuAC4uGT8QJB0H3G778m63pUZrA/sCH7A9h+qzsp8O+V0jSVtS\n/d+/te1ZVIMPA9XHGByDmqcwFJmaPA0gA7gjVkh6devot6S1JB0F3FVDvUtUTXS8AfBdSa9U5UXA\nihrqQfODcUfT7EDcC6n2uptn+xjbxwAryuVja6gH8ATb145eafsaqoGATltHj07PINu3l3p3U89r\nuIHtb9m+y/Z7gA8B35O0BfXNK/Qn2/fYXk71+i0BsL0CeKimmtFZTefpQ5K2K3WeDbRudX+4hnrQ\nfL49ZHue7QOB7aky/HRJSyXVMU9b01nTagfbnyn15gGbruH+k9X0Z8bjbV9n+zLgd7a/B2D7aqq5\n6OrQdIZ/lWpviZPGWDYc53HxqOXAzFF7Y8yi2lOl1TJWPfx1Kx67d0uvarePSFobuBC4w/ZJDbVv\nqtrt377ASyXdVnawgOpoi12aaOQUTeR9usD2zeX6F4Dd1NBUY1PUbh8PAxba/nW5fhawV3nvDoJh\nyJph6GO/5ikMfqYmTx+VPG1DBnArR1F9Ib9b1VnhFgF3t6zvtJOBlcAdwMup/gAfBE4EjquhHjT/\nRa7RgbjyZXh/4AhJZ6ma+7Luyct/Iem9I4caA0jaTNL7gCXjPG6yzgculPR0qkOZ3yVpS0knALfV\nUG+91qC1fR7VRNuXAnXNZ/gnSS8uezVa0pEAkvalvsG46Kym8/Q9wBWSbgb+izINjaTNgR/WUA+6\nuKHB9nLbH7Q9m+rzYtsayjSdNTMkvUTSS3nsxq9aBoy78JnR+v/WRaNuq+uf76Yz/FbgWNv7jl6o\nb+P0QHE1n9184NUAkg4Hltse/Xd3MdUXt23K9ROo9qrqee32sXwpvRC4y/YbGm/oJLXbP9uvsv00\n21vbHjkMdifb1zfb4ombwPv028BTJT25XH8xsMh2z/8/N4E+3kY1wLB+uf4SYLHtPzfW2HoNfNYw\nBH3s1zyFwc/U5OkqkqftsJ2lLFR7+swpy6YN1FsP2InqkM1Naq61GFhr1LojgVuoDjfodL0fUQXL\nq6jm9ziyrN8XuLbmvh5ONd/enQ28X84E7gf+SHWGz/vLus1qqnki1VasB6k2AtxLNQfoxjXUOhM4\naIz1RwAP1tS/Z5XX7qdUZ0k9v/xuVwD71fl6Zun4a9lYnlJNcr87sFFDfWs034Afd+H1azJrLqOa\nu3hkeUpZvxlwTQN9Pazuz4ySp495fwKzgStqrNlYhlOdOGSP1dz2rrpfx0FZgG2o5kheDFxNtVc6\nwAeA17fc7yBgUfk/7ivAht1ueyf7CPwd1YbbBWWZD3yq223v5Gs46jEPN/UZ1mQfgRe0vIaXATt2\nu+019PFD5W9xAXAFsFu3295m/05r+Zy/E7hlNf0b6KwZhj72c55O5HUc9Zi+ydTkafJ0IovKE8WA\nk3Qm8BXb3xy1/gjgPNuP73C9Z1JNJL4SOBZ4B9UJhn5PNdhR6wlUVJ2Fcnfb/11nnZZ6j5xYyNVh\nxnXX25BqLhxs31N3vZa6x9s+val6pea7gVPdH4cyxRDodr41qZtZA3yOaqqa/2ug3pOAOba/XXet\nUm9Tqg24t1Ltxf3HGmrMsP27Tj/vGmquT7WH+p/L5+JuVHtP/LLJdkREREREDJoM4EZjJG0C3FPH\nQJyk2cBc4GlUZ9V8p+0Hym0/st3xkxlJ2hU4m2oL32uAjwLPo5rn8yBXZ1Ls53oHj7H6DOD18MgJ\nozpqnJqvo8qrgZpwPwZHzfm2NfB5Gsq3Icmav7V9Ubn8F8A5wN5Ue6W8xvZj5o+bYr1zgbfZ/o2k\n/agOZVxCNRfW6213/GzQkh6kOuRuLvCtujeCSXoN1ZzQK6imTDkP+CWwNfAm2xfWWT8iIiIiYpBl\nADeQdIvtbdZ8z96tJ+kS4BvAj6kO/Z0NHGD7fkkLbO/WyXql5uVUJ4ebQbV7/Lttf0HSIcAbbb+w\nz+utpDpU/MGW1c+m+h3b9n6drNetmhGdNAj5NiRZM9/VWXyR9DmqwelPUB1muLftQztc73rbu5TL\nlwMn2r5O0lZUR8fU8Rm1mGog/Diq1/Jc4Ezbt3S6Vqm3kGq+sunAD4AX2L62zKU8b6T/EREREREx\ncRnAHRKSdh7n5ktsz+zzeqsMYkh6J3AI1Ulqvj/yRb2umpKW2Z7Vctt1tnft83rHAK8F3mx7QVm3\nxI9ODN9x3agZMVGDnm9DkjWtfbyeavqEh0eud3qwsXVgX9I1tp/ZcttC2+O9pyZbs3WQ+rlU030c\nAVwHzLV9bofrtf5Ol9recqzbIiIiIiJi4tbudgOiMddRnWxnrDN613E26qbrrdt6xfap5fDRS4EN\na6gHq/bt++Pc1pf1bJ8l6XvAXEk/pJpUvNYtPt2oGTEJg55vA581wBMk7UTpj1c9i28dtS+R9Eng\nXcB3Jb0S+CJwANWUA7WyfRVwlaQTgZdTTU/R0QFcYKWkHYEnAutL2sv2lZK2A6Z1uFZERERExFDJ\nAO7wuB34K9u/Gn2DpOUDUG+RpANsXzyywvbHyqG5H6uhHsCvJW1k+z7bR42slDQTeGAA6mH7dkkv\nBN4K/BBYp4463a4ZMUGDnm/DkDXrAl+nDOBKeqrtX0qaTnVyuk47GfgIcAdwN9V8xmdTDcIfV0M9\nGGOw3fYfqOZT/nwN9d5DNXXCSqpB4g+W98xMynzGERERERExOZlCYUiUPX8usn3FGLedZvsNfV5v\nHQDbfxrjtqfYvqOT9dbQlunA9E6fBKfb9cqeVXvbPq3OOt2uGbEmw5pvg5w1LbXXA55ke0mNzz+b\nagP6Mtt31VGn1NrY9t11PX8b9acBuwLLbf+mW+2IiIiIiBgEGcCNiIiIiIiIiIiI6FFrdbsBERER\nERERERERETG2DOBGRERERER0maRpkt4naZGkhZLmSzpN0kslLehwradJOr6TzxkR0UuSqTFoMoAb\nERERERHRfWcCc4A9be9sew7wP8DGQKfnvdsKmNSc7WWO64iIXpdMjYGSAdyIiIiIiIgukjQbOAw4\n2vZ9I+ttzwNuAx4n6TOSrpP0M0lzyuOmSbpY0tVl/XmS1i237VPWnVN+XiNp5/LU/wFsU/ZI+1q5\n/9MlfVPST0qdN7a0b6Wk90u6Gji1kV9KRMQkJVNjEGUANyIiIiIiorvmALfavmc1t28LnGV7V+DT\nlC/8th8GXmH7WbZ3Au4D3tLyuB3K43YCPgpcWNa/AVhse47tQyStBZwPvNX2nsBzgOMl7d7yXA+V\nOqd0pMcREfVJpsbAyQBuDJ3MhRMR0TnJ1IiIRvzc9rXl8o+ArQEkCTi5ZO9C4EBg15bHLbV9GYDt\ni4DNJT11jOffFtgRuKBk91XABlSDFSPO6mB/IiK6KZkafWftbjcgogvOBGZQzYVzH4Ckw6h3LpzT\nJ/pASdPKFsCIiF6WTI2ImLr5wF9KeuJq9hh7oOXywzz6Pe6VwPOAvW3/QdJbgH3HqWPGzmYBd5U5\nIlf3uN+P87wREb0kmRoDJ3vgxlDJXDgREZ2TTI2I6AzbvwDmAZ+XNH1kvaSXUfYMW40ZwIoy0LAh\ncPSo27eUtE95rsOB/7V9B9VhwdNb7rcYuE/SI4+XNFvSjJGrk+pYREQXJFNjEGUAN4ZN5sKJiOic\nZGpEROccCywEflI2YN0I7A/cPc5jzgXWl7QI+Bbwg1G33wQcXQ4FPgV4RVm/ELix1PlayeWXAC8r\nG8NuAOYC65b7d/qIioiIuiVTY6BkCoWIVY2eC+dkWGUunAOp/m42oprHZsQqc+FIOqONuXBGtrqN\nzIXz03I9c+FExKBIpkZEtKl84X9/WUb7esv9bqTsQVaOfth/nKd9yPYxq6l18Kh1t41e13LbtPFb\nHxHRW5KpMWgygBvDJnPhRER0TjI1IiIiIiKiZplCIYZK5sKJiOicZGpERO+yffk4G7giImICkqnR\nbRnAjWGUuXAiIjonmRoREREREVEj2fluEzEVZS+xj2drXETE1CVTIyIiIiIiVpU9cCMiIiIiIiIi\nIiJ6VPbAjYiIiIiIiIiIiOhR2QM3IiIiIiIiIiIiokdlADciIiIiIiIiIiKiR2UANyIiIiIiIiIi\nIqJHZQA3IiIiIiIiIiIiokdlADciIiIiIiIiIiKiR2UANyIiIiIiIiIiIqJHZQA3IiIiIiIiIiIi\nokdlADciIiIiIiIiIiKiR2UANyIiIiIiIiIiIqJH/T/Potvskjh0jwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fc751ca6da0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"columns_to_plot = dfBooks.title.unique()\n",
"plot_columns = 4\n",
"plot_rows =math.ceil(len(columns_to_plot)/plot_columns)\n",
"fig, ax = plt.subplots(plot_rows, plot_columns, figsize=(15,20))\n",
"fig.subplots_adjust(hspace=0.6) # adjust vertical spacing between plots\n",
"# iterate through columns and create each chart\n",
"for i, column in enumerate(columns_to_plot):\n",
" \n",
" # split the title into four-word long lines\n",
" title = column.split(' ')\n",
" title = [' '.join(title[i:i+4]) for i in range(0, len(title), 4)]\n",
" title = '\\n'.join(title)\n",
"\n",
" df_ = dfBooks.loc[dfBooks.title==column, 'chapter_words']\n",
" x_ticks = [j for j in range(0, len(df_.index))]\n",
" x_label_count = 1 if len(x_ticks) < 10 else math.ceil(len(x_ticks)/10)\n",
" ax[int(i/plot_columns), i%plot_columns].bar(x_ticks, df_.values)\n",
" ax[int(i/plot_rows), i%plot_columns].set_title(title)\n",
"\n",
" x_ticks = [x + (x_ticks[1] - x_ticks[0])*0.4 for x in x_ticks]\n",
" ax[int(i/plot_rows), i%plot_columns].set_xticks(x_ticks[::x_label_count]);\n",
" ax[int(i/plot_rows), i%plot_columns].set_xticklabels([j for j in range(0, len(df_.index))][::x_label_count], rotation=90);\n",
" ax[int(i/plot_rows), 0].set_ylabel('Words per chapter')\n",
" ax[plot_rows-1, i%plot_columns].set_xlabel('Chapter')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Inital analysis\n",
"### Distribution of chapters per book\n",
"\n",
"First, we compared the number of chapters per book for the three groups"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th></th>\n",
" <th>num_chapters</th>\n",
" </tr>\n",
" <tr>\n",
" <th>author</th>\n",
" <th>title</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th rowspan=\"9\" valign=\"top\">Clancy</th>\n",
" <th>1 Without Remorse</th>\n",
" <td>38</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5 The Cardinal of the Kremlin</th>\n",
" <td>29</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6 Clear and Present Danger</th>\n",
" <td>31</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7 The Sum of All Fears</th>\n",
" <td>44</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8 Debt of Honor</th>\n",
" <td>48</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Executive Orders</th>\n",
" <td>49</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Patriot Games</th>\n",
" <td>27</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Red storm rising</th>\n",
" <td>44</td>\n",
" </tr>\n",
" <tr>\n",
" <th>The Hunt for Red October</th>\n",
" <td>18</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"2\" valign=\"top\">Ghost</th>\n",
" <th>Commander-In-Chief</th>\n",
" <td>82</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Tom Clancy Support and Defend</th>\n",
" <td>51</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">Greaney</th>\n",
" <th>Back Blast_ A Gray Man Novel</th>\n",
" <td>79</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Ballistic</th>\n",
" <td>57</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Dead Eye</th>\n",
" <td>58</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" num_chapters\n",
"author title \n",
"Clancy 1 Without Remorse 38\n",
" 5 The Cardinal of the Kremlin 29\n",
" 6 Clear and Present Danger 31\n",
" 7 The Sum of All Fears 44\n",
" 8 Debt of Honor 48\n",
" Executive Orders 49\n",
" Patriot Games 27\n",
" Red storm rising 44\n",
" The Hunt for Red October 18\n",
"Ghost Commander-In-Chief 82\n",
" Tom Clancy Support and Defend 51\n",
"Greaney Back Blast_ A Gray Man Novel 79\n",
" Ballistic 57\n",
" Dead Eye 58"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dfAveChapt = dfBooks.groupby(['author','title'])['author', 'chapter_words']\n",
"ave_chapters = pd.DataFrame(dfAveChapt.count()['author'])\n",
"ave_chapters.rename(columns={'author':'num_chapters'}, inplace=True)\n",
"ave_chapters"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can see from the table above tha there is quite a range in chapters per book.\n",
"\n",
"### Distribution of words per book\n",
"Next, we can look at the number of words in each book"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th></th>\n",
" <th>book_words</th>\n",
" </tr>\n",
" <tr>\n",
" <th>author</th>\n",
" <th>title</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th rowspan=\"9\" valign=\"top\">Clancy</th>\n",
" <th>1 Without Remorse</th>\n",
" <td>260058</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5 The Cardinal of the Kremlin</th>\n",
" <td>206940</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6 Clear and Present Danger</th>\n",
" <td>274880</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7 The Sum of All Fears</th>\n",
" <td>344539</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8 Debt of Honor</th>\n",
" <td>348569</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Executive Orders</th>\n",
" <td>501404</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Patriot Games</th>\n",
" <td>221008</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Red storm rising</th>\n",
" <td>272783</td>\n",
" </tr>\n",
" <tr>\n",
" <th>The Hunt for Red October</th>\n",
" <td>169744</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"2\" valign=\"top\">Ghost</th>\n",
" <th>Commander-In-Chief</th>\n",
" <td>202462</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Tom Clancy Support and Defend</th>\n",
" <td>136067</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">Greaney</th>\n",
" <th>Back Blast_ A Gray Man Novel</th>\n",
" <td>187546</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Ballistic</th>\n",
" <td>142331</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Dead Eye</th>\n",
" <td>148378</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" book_words\n",
"author title \n",
"Clancy 1 Without Remorse 260058\n",
" 5 The Cardinal of the Kremlin 206940\n",
" 6 Clear and Present Danger 274880\n",
" 7 The Sum of All Fears 344539\n",
" 8 Debt of Honor 348569\n",
" Executive Orders 501404\n",
" Patriot Games 221008\n",
" Red storm rising 272783\n",
" The Hunt for Red October 169744\n",
"Ghost Commander-In-Chief 202462\n",
" Tom Clancy Support and Defend 136067\n",
"Greaney Back Blast_ A Gray Man Novel 187546\n",
" Ballistic 142331\n",
" Dead Eye 148378"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"book_words = pd.DataFrame(dfAveChapt.sum()['chapter_words'] )\n",
"book_words.rename(columns={'chapter_words':'book_words'}, inplace=True)\n",
"book_words"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Again, there is quite a distribution of words in each book with actual Tom Clancy books typically longer than the ghost author written books. This will be shown graphically below\n",
"\n",
"### Distribution of average words per chapter.\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th></th>\n",
" <th>Ave words per chapter</th>\n",
" </tr>\n",
" <tr>\n",
" <th>author</th>\n",
" <th>title</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th rowspan=\"9\" valign=\"top\">Clancy</th>\n",
" <th>1 Without Remorse</th>\n",
" <td>6844.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5 The Cardinal of the Kremlin</th>\n",
" <td>7136.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6 Clear and Present Danger</th>\n",
" <td>8867.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7 The Sum of All Fears</th>\n",
" <td>7830.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8 Debt of Honor</th>\n",
" <td>7262.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Executive Orders</th>\n",
" <td>10233.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Patriot Games</th>\n",
" <td>8185.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Red storm rising</th>\n",
" <td>6200.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>The Hunt for Red October</th>\n",
" <td>9430.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"2\" valign=\"top\">Ghost</th>\n",
" <th>Commander-In-Chief</th>\n",
" <td>2469.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Tom Clancy Support and Defend</th>\n",
" <td>2668.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">Greaney</th>\n",
" <th>Back Blast_ A Gray Man Novel</th>\n",
" <td>2374.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Ballistic</th>\n",
" <td>2497.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Dead Eye</th>\n",
" <td>2558.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Ave words per chapter\n",
"author title \n",
"Clancy 1 Without Remorse 6844.0\n",
" 5 The Cardinal of the Kremlin 7136.0\n",
" 6 Clear and Present Danger 8867.0\n",
" 7 The Sum of All Fears 7830.0\n",
" 8 Debt of Honor 7262.0\n",
" Executive Orders 10233.0\n",
" Patriot Games 8185.0\n",
" Red storm rising 6200.0\n",
" The Hunt for Red October 9430.0\n",
"Ghost Commander-In-Chief 2469.0\n",
" Tom Clancy Support and Defend 2668.0\n",
"Greaney Back Blast_ A Gray Man Novel 2374.0\n",
" Ballistic 2497.0\n",
" Dead Eye 2558.0"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ave_chapter_words = pd.DataFrame(round(dfAveChapt.sum()['chapter_words'] / dfAveChapt.count()['author'],0))\n",
"ave_chapter_words.columns=['Ave words per chapter']\n",
"ave_chapter_words"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Again, the number of words per chapter is considerably longer for Tom Clancy books compared to books written by the ghost author."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can see these changes better by plotting the data."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.text.Text at 0x7fc74fd3ec18>"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABSAAAAY2CAYAAAC0cgIKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3X2QXXV9BvDn7i7JghAqaGKNEIISESSSmEhTsRHEYKx1\nYASdpiAOoESLL6N2ktoqSkVxVLRU5HWAqlR8Z7CKGQHBWF9YhAg6IJqYLJqwyYCwKITsy+0fDNtG\nkJDs/e1v9+bzmWGSey73nCc5e883++y55zSazWYzAAAAAAAFdNQOAAAAAAC0LwUkAAAAAFCMAhIA\nAAAAKEYBCQAAAAAUo4AEAAAAAIpRQAIAAAAAxSggAQAAAIBiFJAAAAAAQDEKSAAAAACgmLYoIN/5\nzndm5syZ6ejoyG233TayfNOmTVm8eHFmzZqV2bNnZ+XKlSPPPfzww1myZEkOOOCAHHjggfna175W\nIzoAOyFzC4CJxNwCYLS6agdoheOPPz7Lli3L4YcfvtXy5cuXZ8GCBbnmmmty880359hjj83atWvT\n2dmZT3ziE+nu7s6vfvWrrF27NocddliOPPLIPP3pT99qHcPDwxkeHt5qWaPRSKPRKP7nAuDxms1m\nms3mVss6OjrS0TFxfqZmbgHsPMwtcwtgIik1t9qigHxsEP7pX9CXv/zlrF69Okkyb968TJ8+PTfe\neGOOPPLIfOlLX8qll16aJNlvv/1yxBFH5Bvf+EZOPvnkrdYxPDycP/7xj2PwpwBgRz3taU+bUN/I\nmVsAOzdz6/+YWwDjXyvm1sSZetvpvvvuy+DgYKZOnTqybMaMGent7U2S9Pb2ZsaMGU/4HACMNXML\ngInE3AJge7RtAQkAAAAA1Ne2BeRee+2Vrq6ubNy4cWTZ2rVrs++++yZ59Cdw69ate8LnAGCsmVsA\nTCTmFgDbo20LyOTRiyWff/75SZKenp6sX78+CxcuTJIcd9xxueCCC5Ikv/nNb3LjjTfmmGOOedw6\nWnXx482bN2fNmjXZvHlzS9bXavKNznjON56zJfKNlnyPapcL1Y+nubWzG+/vLajFe6M12uVYbW79\nH++N9mXftjf796lpxbG6LQrIpUuXZp999snvfve7HH300Zk1a1aS5Oyzz84Pf/jDzJo1KyeffHKu\nuOKKdHZ2Jkn+6Z/+KQ899FCe97znZfHixTnvvPOy1157PW7drRyIQ0NDLVtXCfKNznjON56zJfKN\nlnwT75uXiTK3dnbj/b0FtXhvjN5EO1abW0+N90b7sm/bm/27ba04VrfFXbAf+8nan5o6dWpWrFjx\nhM/ttttuufLKK0vGAoAnZG4BMJGYWwCMVlucAQkAAAAAjE8KSAAAAACgGAUkAAAAAFCMAhIAAAAA\nKEYBCQAAAAAUo4AEAAAAAIpRQAIAAAAAxSggAQAAAIBiFJAAAAAAQDEKSAAAAACgGAUkAAAAAFCM\nAhIAAAAAKEYBCQAAAAAUo4AEAAAAAIpRQAIAAAAAxSggAQAAAIBiFJAAAAAAQDEKSAAAAACgGAUk\nAAAAAFCMAhIAAAAAKEYBCQAAAAAUo4AEAAAAAIpRQAIAAAAAxSggAQAAAIBiFJAAAAAAQDEKSAAA\nAACgGAUkAAAAAFCMAhIAAAAAKEYBCQAAAAAUo4AEAAAAAIpRQAIAAAAAxSggAQAAAIBiFJAAAAAA\nQDEKSAAAAACgGAUkAAAAAFCMAhIAAAAAKEYBCQAAAAAUo4AEAAAAAIpRQAIAAAAAxSggAQAAAIBi\nFJAAAAAAQDEKSAAAAACgGAUkAAAAAFCMAhIAAAAAKEYBCQAAAAAUo4AEAAAAAIpRQAIAAAAAxSgg\nAQAAAIBiFJAAAAAAQDEKSAAAAACgGAUkAAAAAFCMAhIAAAAAKEYBCQAAAAAUo4AEAAAAAIpRQAIA\nAAAAxSggAQAAAIBiFJAAAAAAQDEKSAAAAACgGAUkAAAAAFCMAhIAAAAAKEYBCQAAAAAUo4AEAAAA\nAIpRQAIAAAAAxSggAQAAAIBiFJAAAAAAQDEKSAAAAACgGAUkAAAAAFCMAhIAAAAAKEYBCQAAAAAU\no4AEAAAAAIpRQAIAAAAAxSggAQAAAIBiFJAAAAAAQDEKSAAAAACgGAUkAAAAAFCMAhIAAAAAKEYB\nCQAAAAAUo4AEAAAAAIpRQAIAAAAAxSggAQAAAIBiFJAAAAAAQDEKSAAAAACgGAUkAAAAAFCMAhIA\nAAAAKEYBCQAAAAAUo4AEAAAAAIpRQAIAAAAAxSggAQAAAIBiumoHAADKWrOmkaGhRu0YE0qz2Z2B\ngZnp7e1Ko+HntdtrypRmpk1r1o4BAMA4oYAEgDb3ylfunnvvVaIxdnp6HlRAAgAwwncjAAAAAEAx\nCkgAAAAAoBgFJAAAAABQjAISAAAAAChmpyggv/3tb+fFL35x5syZk9mzZ+dzn/tckmTTpk1ZvHhx\nZs2aldmzZ2flypWVkwKAuQXAxGJuAbAtO8VdsE888cR8//vfz8EHH5x169blwAMPzOte97osW7Ys\nCxYsyDXXXJObb745xx57bNauXZvOzs7akQHYiZlbAEwk5hYA27JTFJAdHR35/e9/nyR54IEH8oxn\nPCOTJk3KV77ylaxevTpJMm/evEyfPj033nhjjjzyyJpxAdjJmVsATCTmFgDbslMUkFdeeWWOPfbY\nPO1pT8v999+fr3/963nwwQczODiYqVOnjvx/M2bMSG9vb8WkAGBuATCxmFsAbEvbF5BDQ0P58Ic/\nnKuuuiovfelLc/PNN+e1r31tVq1alWazuUPr3Lx583a/ZsuWLVv9Ot7INzrjOd94zpbIN1o7a77u\n7u6Wrm88KTG3YKw1m8M79O8lxr/xPnfGK3Nr+0zE44f3Rvuyb9ub/fvESsytti8gV61alQ0bNuSl\nL31pkkdP/X/Oc56T2267Lbvssks2btw48lO5tWvXZt99993mOtevX5+hoaEdytPX17dDrxsr8o3O\neM43nrMl8o3WzpSvs7Mz+++/f8vWN96UmFsw1gYGBnP33XfXjkFB433ujCfm1th+v1Wb90b7sm/b\nm/37f0rNrbYvIPfZZ59s2LAhd955Zw488MD8+te/zpo1a3LggQfm+OOPz/nnn58zzjgjPT09Wb9+\nfRYuXLjNdT772c/e7hxbtmxJX19fpk2blkmTJu3IH6Uo+UZnPOcbz9kS+UZLvvZTYm7BWNtll67s\ns88+tWNQgOM6f2q8fL9Vm/dG+7Jv25v9O3bavoCcOnVqLrroorz+9a9PZ2dnhoeHc9555+U5z3lO\nzj777Jx44omZNWtWJk+enCuuuOIp3ZFtNKeiTpo0aVx/BEO+0RnP+cZztkS+0ZKvfZSYWzDWGo0O\n7/k257jOY8bb91u1eW+0L/u2vdm/5bV9AZkkb3jDG/KGN7zhccunTp2aFStWVEgEAH+euQXARGJu\nAbAtHbUDAAAAAADta6c4AxIAAICJYc2aRoaGGrVjbJdmszsDAzPT29uVRmNinuczZUoz06bt2J3L\nAbZFAQkAAMC48cpX7p57752YJd5E1tPzoAISKMZRHQAAAAAoRgEJAAAAABSjgAQAAAAAilFAAgAA\nAADFKCABAAAAgGIUkAAAAABAMQpIAAAAAKAYBSQAAAAAUIwCEgAAAAAoRgEJAAAAABSjgAQAAAAA\nilFAAgAAAADFKCABAAAAgGIUkAAAAABAMQpIAAAAAKAYBSQAAAAAUIwCEgAAAAAoRgEJAAAAABSj\ngAQAAAAAilFAAgAAAADFKCABAAAAgGIUkAAAAABAMQpIAAAAAKAYBSQAAAAAUIwCEgAAAAAoRgEJ\nAAAAABSjgAQAAAAAilFAAgAAAADFKCABAAAAgGIUkAAAAABAMQpIAAAAAKAYBSQAAAAAUIwCEgAA\nAAAoRgEJAAAAABSjgAQAAAAAilFAAgAAAADFKCABAAAAgGIUkAAAAABAMQpIAAAAAKAYBSQAAAAA\nUIwCEgAAAAAoRgEJAAAAABSjgAQAAAAAilFAAgAAAADFKCABAAAAgGIUkAAAAABAMQpIAAAAAKAY\nBSQAAAAAUIwCEgAAAAAoRgEJAAAAABSjgAQAAAAAilFAAgAAAADFKCABAAAAgGIUkAAAAABAMQpI\nAAAAAKAYBSQAAAAAUIwCEgAAAAAoRgEJAAAAABSjgAQAAAAAilFAAgAAAADFKCABAAAAgGIUkAAA\nAABAMQpIAAAAAKAYBSQAAAAAUIwCEgAAAAAoRgEJAAAAABSjgAQAAAAAiqleQN5yyy2PW/aNb3yj\nQhIAAAAAoNWqF5Annnhient7Rx6vWLEi73vf+yomAgAAAABapXoBecEFF+SYY45Jf39/Vq5cmdNP\nPz3f+ta3ascCAAAAAFqgq3aAl73sZVm+fHkWLVqU++67L//93/+d/fffv3YsAAAAAKAFqhWQ5557\n7laPBwcH87KXvSwrVqzIihUr8o53vKNSMgAAAACgVaoVkLfeeutWjw855JAMDw/n1ltvTaPRqJQK\nAAAAAGilagXkZZddVmvTAAAAAMAYqX4NyMHBwXzqU5/Kd7/73STJ0UcfnXe+853p6qoeDQAAAAAY\npeot37vf/e6sXr06b3vb29JoNHLJJZdk3bp1j7tGJAAAAAAw8VQvIG+44YasWrUqHR0dSZK//du/\nzdy5cyunAgAAAABaoaN2gGazmeHh4a0eN5vNiokAAAAAgFapfgbkq171qixatChvetObkiSf+9zn\nsnjx4rqhAAAAAICWqF5AfuxjH8uFF16Yq6++Okly3HHH5S1veUvlVAAAAABAK1QvIDs6OvLWt741\nS5cuTZI0Go3KiQAAAACAVql+Dcj169fn1a9+dXbbbbfstttuec1rXpMNGzbUjgUAAAAAtED1AvK0\n007L4Ycfng0bNmTDhg05/PDDfQQbAAAAANpE9Y9g33333fnmN7858nj58uU59NBDKyYCAAAAAFql\n+hmQzWYz99xzz8jje+65J81ms2IiAAAAAKBVqp8B+d73vjdz5szJ4sWLkyTf+c538vGPf7xyKgAA\nAACgFaoXkCeeeGLmzJmTG264IUnynve8JwcffHDdUAAAAABAS1QvIJNk5syZuf/++9NoNLLffvvV\njgMAAAAAtEj1AvK6667LkiVLMn369DSbzWzYsCFf/OIXc8QRR9SOBgAAAACMUvUC8l3veleuvvrq\nHHbYYUmSm266Kaecckpuv/32yskAAAAAgNGqfhfsjo6OkfIxSV7ykpeks7OzYiIAAAAAoFWqF5CL\nFi3K5ZdfnmazmWazmc997nNZtGhR7VgAAAAAQAtUKyCf/vSnZ6+99soll1ySk08+Od3d3enu7s6b\n3vSmXHLJJS3d1pYtW/L2t789s2bNyote9KK88Y1vTJJs2rQpixcvzqxZszJ79uysXLmypdsFgB1h\nbgEwkZhbAGxLtWtArlq1asy2tWzZsnR0dOSuu+5KkmzcuDFJsnz58ixYsCDXXHNNbr755hx77LFZ\nu3atj4ADUJW5BcBEYm4BsC3VCsgZM2aMyXYeeuihXHrppfnd7343smzq1KlJki9/+ctZvXp1kmTe\nvHmZPn16brzxxhx55JFjkg0A/pS5BcBEYm4B8FRUvwt2aatXr85ee+2Vs846K9dee2122223nHHG\nGTn00EMzODg4MhyTR0vR3t7eba5z8+bN251jy5YtW/063sg3OuM533jOlsg3Wjtrvu7u7paubzwp\nMbdgrDWbwzv07yXGv/E+d8Yrc+tR5tb45tj9xBz32pv9+8RKzK22LyAHBwezbt26vPCFL8xHP/rR\nrFq1KosWLcrPf/7zNJvNHVrn+vXrMzQ0tEOv7evr26HXjRX5Rmc85xvP2RL5RmtnytfZ2Zn999+/\nZesbb0rMLRhrAwODufvuu2vHoKDxPnfGE3OLicKx+8k57rU3+/f/lJpbVQvIoaGhXHXVVXnd615X\nbBv77rtvOjs7s2TJkiTJoYcemv322y+33357dtlll2zcuHHkp3Jr167Nvvvuu811PvvZz97uHFu2\nbElfX1+mTZuWSZMmbffrS5NvdMZzvvGcLZFvtORrPyXmFoy1XXbpyj777FM7BgU4rvOnzK324dj9\nxBz32pv9O3aqFpCdnZ0566yzihaQe++9d17xilfkO9/5ThYvXpzf/OY3Wbt2bQ466KAcf/zxOf/8\n83PGGWekp6cn69evz8KFC7e5ztGcijpp0qRx/REM+UZnPOcbz9kS+UZLvvZRYm7BWGs0Orzn25zj\nOo8xt9qHY/eTc9xrb/ZvedU/gj137tz84Ac/yOGHH15sG+eff35OOeWULFu2LJ2dnbnooovyl3/5\nlzn77LNz4oknZtasWZk8eXKuuOIKd2QDoDpzC4CJxNwCYFuqF5A//vGPc/nll2f//ffP7rvvPrL8\nlltuadk2Zs6cmeuvv/5xy6dOnZoVK1a0bDsA0ArmFgATibkFwLZULyDPO++82hEAAAAAgEKqF5AL\nFy7MwMBAent789znPrd2HAAAAACghTpqB7jhhhsyY8aMHHHEEUmSnp6enHDCCZVTAQAAAACtUL2A\nXL58eVauXJm99947STJ//vzceuutlVMBAAAAAK1QvYAcGhp63EevJ02aVCkNAAAAANBK1a8B2d3d\nnT/84Q9pNBpJkttvvz277rpr5VQAAAAAbEtfXyP9/Y3aMXZIs9mdgYGZ6e3tSqNR/Ry97TZlSjPT\npjVrx3hKqheQ73//+7No0aL89re/zQknnJBrr702//Vf/1U7FgAAAADb0N/fyPz5e9SOsVPq6XlQ\nAflULVq0KAcccEC+853vpNls5kMf+pC7YQMAAABAm6heQCbJ1KlTc8ghh6TRaORZz3pW7TgAAAAA\nQItULyCvu+66LFmyJNOnT0+z2cyGDRvyxS9+MUcccUTtaAAAAADAKFUvIN/1rnfl6quvzmGHHZYk\nuemmm3LKKafk9ttvr5wMAAAAABit6gVkR0fHSPmYJC95yUvS2dlZMREAAADQKu6SXNdEulMy7at6\nAblo0aJcfvnlOemkk5Ikn//857No0aLKqQAAAIBWcJfkuibSnZJpX9ULyEsuuSQPPPBATjvttCTJ\nwMBA9txzz1x88cVpNBq57777KicEAAAAAHZU9QJy1apVtSMAAAAAAIVULyBnzJhROwIAAAAAUMjE\nvIIqAAAAADAhKCABAAAAgGIUkAAAAABAMdULyAsvvDAPPPBAkuQf//EfM2/evHz/+9+vnAoAAAAA\naIXqBeR5552XPffcM//zP/+Tn//85znrrLPy3ve+t3YsAAAAAKAFqheQXV2P3oj7+uuvzxvf+MYc\nffTRGRwcrJwKAAAAAGiF6gVkR0dHvvSlL+VLX/pSjjrqqCTJli1bKqcCAAAAAFqhegF53nnn5Ytf\n/GLe/OY3Z8aMGbnrrrty5JFH1o4FAAAAALRAV82NDw0N5etf/3quuuqqkWWzZs3KueeeWzEVAAAA\nANAqVc+A7OzszPe+972aEQAAAACAgqp/BPvVr351zjrrrKxfvz79/f0j/wEAAAAAE1/Vj2AnyZln\nnpkkef/7359Go5Fms5lGo5GhoaHKyQAAAACA0apeQA4PD9eOAAAAAAAUUv0j2Eny05/+NJ///OeT\nJPfff382bNhQOREAAAAA0ArVC8jPfvazOfnkk/PBD34wSXLvvfdmyZIldUMBAAAAAC1RvYC86KKL\n8uMf/zhTpkxJkjz3uc/Npk2bKqcCAAAAAFqhegE5efLk7Lrrrlst6+qqfmlKAAAAAKAFqheQz3zm\nM3PXXXel0WgkSS6//PLsu+++lVMBAAAAAK1Q/VTDT3/60/n7v//73Hnnndlnn30yZcqUfPOb36wd\nCwAAAABogeoF5POe97z85Cc/yS9/+cs0m808//nPT2dnZ+1YAAAAAEALVP8I9jHHHJOOjo684AUv\nyEEHHZTOzs4cc8wxtWMBAAAAAC1QvYDs7e193LLVq1dXSAIAAAAAtFq1j2BfeOGFueCCC3LXXXdl\n7ty5I8sfeOCBHHzwwbViAQAAAAAtVK2AfNWrXpXnP//5eetb35pPfepTI8unTJmS2bNn14oFAAAA\nALRQtQJyxowZmTFjRu64444kyW9/+9s0Go1Mnz69ViQAAAAAoMWqXwPytttuywte8IIccsghOeSQ\nQ3LQQQflZz/7We1YAAAAAEALVDsD8jGnnHJKzjzzzBx//PFJkq9+9as59dRT09PTUzkZAADtqK+v\nkf7+Ru0YE1Kz2Z2BgZnp7e1Ko1H9XIYJobOzmf33b9aOAQBVVS8gN2/ePFI+Jslxxx2XM888s2Ii\nAADaWX9/I/Pn71E7BjuJvfcezurVD9aOAQBVVf+x5dy5c3PDDTeMPL7xxhvz4he/uF4gAAAAAKBl\nqp8Becstt+QLX/hC9ttvvyTJ2rVrc9BBB2Xu3LkjzwMAAAAAE1P1AvIzn/lM7QgAAAAAQCHVC8iF\nCxfWjgAAAAAAFFK9gHz44YfzH//xH1m1alU2b948svzrX/96xVQAAAAAQCtUvwnNm9/85qxduzY/\n/OEPc8QRR2TdunWZMWNG7VgAAAAAQAtULyB/9rOf5bOf/WymTJmSt7/97bnhhhvy05/+tHYsAAAA\nAKAFqheQu+66a5Kkq6srf/zjH7PHHntk06ZNlVMBAAAAAK1Q/RqQe+21V37/+9/n1a9+dY4++ug8\n4xnPyHOe85zasYDt0NfXSH9/Y4de22x2Z2BgZnp7u9Jo7NjPRKZMaWbatOYOvRYAAAAoq3oB+a1v\nfSudnZ35t3/7t1xxxRW5//7788Y3vrF2LGA79Pc3Mn/+HtW239PzoAISAAAAxqnqBWRnZ2eSpNFo\n5IQTTqicBgAAAABopeoF5C233JL3ve99WbNmTQYHB0eWr1mzpmIqAAAAAKAVqheQJ510Uk4//fQs\nWLBg5GxIAAAAAKA9VC8gOzs7c9ppp9WOAeOam7wAAAAAE1X1AvKlL31pbr755sybN692FBi33OQF\nAAAAmKiqFZBz5sxJo9HIwMBALr744jzvec9Ld3f3yPO33HJLrWgAAAAAQItUKyA//elP19o0AAAA\nADBGqhWQCxcuTJJs3rw5kydPTqPx6PXthoeHs2XLllqxAAAAAIAW2rE7UrTQkUcemf7+/pHHDz74\nYI466qiKiQAAAACAVqleQD700EPZc889Rx7vueee+cMf/lAxEQAAAADQKtULyOHh4a0Kx/7+/gwO\nDlZMBAAAAAC0SrVrQD7mH/7hH3LUUUdl6dKlSZILLrggJ510UuVUAAAAAEArVC8gly1blmc961n5\n1re+lSQ5/fTTc8IJJ1ROBQAAAAC0QvUCMklOOukkZz0CAAAAQBuqfg1IAAAAAKB9KSABAAAAgGKq\nFZDf/e53kzx612sAAAAAoD1VKyCXL1+eJHn5y19eKwIAAAAAUFi1m9AMDAzkYx/7WDZu3Jhzzz33\ncc+/4x3vqJAKAAAAAGilagXkxRdfnP/8z//Mww8/nFtvvXWr5xqNRqVUAAAAAEArVSsgDzvssBx2\n2GGZMWNGli1bVisGAAAAAFBQtQLyMcuWLctNN92Ua6+9NkmyaNGizJs3r3IqAAAAAKAVqt2E5jEX\nXXRRjjvuuGzcuDGbNm3K6173ulxyySW1YwEAAAAALVD9DMjPfOYz+elPf5pnPvOZSZL3ve99ecUr\nXpFTTz21cjIAAAAAYLSqF5BJRsrHP/09jKW+vkb6+3fsBkjNZncGBmamt7crjcaOnVg8ZUoz06Y1\nd+i1TGy+9gAAAGhn1QvIAw44IP/yL/+S0047Lcmjd8c+4IADKqdiZ9Tf38j8+XtU235Pz4NKoJ2U\nrz0AAADaWfVrQF5wwQVZvXp15s6dmxe/+MX59a9/nfPPP792LAAAAACgBaqfAfnMZz4zV155Ze0Y\nAAAAAEAB1c+ABAAAAADalwISAAAAAChGAQkAAAAAFFO1gBwaGspRRx1VMwIAAAAAUFDVArKzszMP\nPfRQhoeHa8YAAAAAAAqpfhfs+fPn5zWveU1OOOGE7L777iPLX/va11ZMBQAAAAC0QvUC8rbbbkuS\nXHzxxSPLGo2GAhIAAAAA2kD1AvJ73/te7QgAAAAAQCHV74I9ODiYT37yk3nb296WJFm9enWuv/76\nyqkAAAAAgFaofgbk6aefnqGhofzgBz9Ikuy99955wxvekJtvvrlyMgAAAABgtKoXkD/+8Y+zatWq\nzJkzJ0nyF3/xFxkYGKicCgAAAABoheofwe7u7t7q8dDQUIaHhyulAQAAAABaqXoBOXv27HzhC1/I\n8PBwfv3rX2fp0qV5+ctfXmRbl112WTo6OnL11VcnSTZt2pTFixdn1qxZmT17dlauXFlkuwCwI8wt\nACYScwuAP6d6AXnOOedk5cqVueeee/LXf/3X6ejoyMc+9rGWb2fdunW55JJLsmDBgpFly5cvz4IF\nC3LXXXfl0ksvzZIlSzI0NNTybQPA9jK3AJhIzC0Ankz1AnL33XfPhRdemL6+vmzcuDEXXnhhdttt\nt5Zuo9ls5tRTT81nPvOZTJo0aWT5l7/85SxdujRJMm/evEyfPj033nhjS7cNANvL3AJgIjG3ANiW\n6jeheeSRR/KpT30q1157bRqNRl75ylfmne98ZyZPntyybZxzzjl52cteNnKjmyS57777Mjg4mKlT\np44smzFjRnp7e7e5vs2bN293hi1btmz163gjX9Jsdm/7fyqo2Rz+s19b4znbo8+P73yjsbN/7Y1W\nqb+/P71+cLtp9dyCsVbyuNIKtY+70G7MrfZQ8tjtuFtX6bls/9ZTat+W+H6regG5dOnS3HvvvXn7\n29+e5NHrhtx555259NJLW7L+X/ziF/na177W0uuNrF+/foc/OtDX19eyHCXszPkGBmYWW/dT2/5g\n7r777j/z3PjN9ujz4ztfK+ysX3ut0sq/v87Ozuy///4tW994U2JuwVgbi+PKaNQ+7kI7MbfaR8lj\nt+NuXaXnsv1bT4l9W+r7reoF5I9+9KPccccdaTQaSZLXvOY1Ofjgg1u2/pUrV2bdunU54IAD0mw2\nc8899+S+QVnXAAAgAElEQVQtb3lLPvjBD6arqysbN24c+anc2rVrs++++25znc9+9rO3O8eWLVvS\n19eXadOmbfWxhPFCvqS3t+7bYZddurLPPvs84XPjOVsy/vONxs7+tTda4/3YMh6VmFsw1koeV1qh\n9nEX2om51T5KHrsdd+sqPZft33rG+7+5/r/qXyV77713Hn744ZHrPj7yyCN5xjOe0bL1L126dOS6\nI0lyxBFH5N3vfnf+7u/+LjfddFPOP//8nHHGGenp6cn69euzcOHCba5zNKeiTpo0aVx/dHBnztdo\n1L0kaqPR8Wf/bOM522PP17StfK2ws37ttcp4P7aMJyXmFoy1sTiujEbt4y60E3OrfZQ8djvu1lV6\nLtu/9Yz3f3P9f9UKyHPPPTdJcuCBB+awww7L61//+iTJV7/61cyfP7/YdhuNRprNZpLk7LPPzokn\nnphZs2Zl8uTJueKKK9LZ2Vls2wCwvcwtACYScwuAJ1KtgLz11ltHfj9v3rysWbMmSTJ37twdvr7i\nU3H99deP/H7q1KlZsWJFsW0BwGiZWwBMJOYWAE+kWgF52WWX1do0AAAAADBGql8DMkmuueaa/OpX\nv8rg4ODIsne/+90VEwEAAAAArVC9gFyyZEnuuOOOzJkzZ+R6II/dERsAAAAAmNiqF5C33HJLfvGL\nX7gYMQAAAAC0oer3St9vv/3yyCOP1I4BAAAAABRQ/QzIT37ykznqqKPy8pe/PN3d3SPLP/CBD1RM\nBQAAAAC0QvUC8p//+Z8zadKkbN68OQMDA7XjPCVr1jQyNLR916lsNrszMDAzvb1daTR27MTTKVOa\nmTatuUOvBQAAAIAaqheQv/zlL/PLX/6ydozt8spX7p577x37T6/39DyogAQAAABgQql+DcjnP//5\n6e/vrx0DAAAAACig+hmQu+66a+bOnZtFixZtdQ3Ic845p2IqAAAAAKAVqheQBx10UA466KDaMQAA\nAACAAqoXkGeccUbtCAAAAABAIdULyDPPPPMJl3/gAx8Y4yQAAAAAQKtVLyAffPDBkd9v3rw53/72\nt7NgwYKKiQAAAACAVqleQH784x/f6vEHP/jBvOlNb6oTBgAAAABoqY7aAf7U3nvvnTVr1tSOAQAA\nAAC0QPUzIM8999yR3w8NDeWmm27Ks571rIqJAAAAAIBWqV5A3nrrrSO/7+rqyqGHHpq3vOUtFRMB\nAAAAAK1SvYC87LLLakcAAAAAAAqpVkB+//vff9Ln/+Zv/maMkgAAAAAApVQrIN/znvc8blmj0cj6\n9euzYcOGDA0NVUgFAAAAALRStQKyp6dnq8f33XdfPvzhD+cLX/hCPvShD1VKBQAAAAC0UkftAJs3\nb85HP/rRHHTQQUmSO+64I//6r/9aORUAAAAA0ArVCsjh4eFcdNFFOeCAA3LnnXfmJz/5Sc4555zs\nvffetSIBAAAAAC1W7SPYL3zhC/PII4/kIx/5SF70ohflgQceyG233Tby/OzZs2tFAwAAAABapFoB\n+dBDD6XRaOQDH/jA455rNBpZs2ZNhVQAAAAAQCtVKyDXrl1ba9MAAAAAwBipfhMaAAAAAKB9KSAB\nAAAAgGIUkAAAAABAMQpIAAAAAKAYBSQAAAAAUIwCEgAAAAAoRgEJAAAAABSjgAQAAAAAilFAAgAA\nAADFKCABAAAAgGIUkAAAAABAMQpIAAAAAKAYBSQAAAAAUIwCEgAAAAAoRgEJAAAAABTTVTsAO4++\nvkb6+xs79NpmszsDAzPT29uVRmPHevMpU5qZNq25Q68FAAAAYMcoIBkz/f2NzJ+/R7Xt9/Q8qIAE\nAAAAGGM+gg0AAAAAFKOABAAAAACKUUACAAAAAMUoIAEAAACAYhSQAAAAAEAxCkgAAAAAoBgFJAAA\nAABQjAISAAAAACimq3YAWqevr5H+/sYOvbbZ7M7AwMz09nal0dixXnrKlGamTWvu0GsBAAAAaE8K\nyDbS39/I/Pl7VNt+T8+DCkgAAAAAtuIj2AAAAABAMQpIAAAAAKAYBSQAAAAAUIwCEgAAAAAoRgEJ\nAAAAABSjgAQAAAAAilFAAgAAAADFKCABAAAAgGIUkAAAAABAMV21AwCU1tfXSH9/Y4de22x2Z2Bg\nZnp7u9Jo7NjPbKZMaWbatOYOvRYAAAAmOgUk0Pb6+xuZP3+Patvv6XlQAQkAAMBOy0ewAQAAAIBi\nFJAAAAAAQDEKSAAAAACgGAUkAAAAAFCMAhIAAAAAKEYBCQAAAAAUo4AEAAAAAIpRQAIAAAAAxSgg\nAQAAAIBiFJAAAAAAQDEKSAAAAACgGAUkAAAAAFCMAhIAAAAAKEYBCQAAAAAUo4AEAAAAAIpRQAIA\nAAAAxSggAQAAAIBiFJAAAAAAQDEKSAAAAACgGAUkAAAAAFCMAhIAAAAAKEYBCQAAAAAUo4AEAAAA\nAIpRQAIAAAAAxSggAQAAAIBiFJAAAAAAQDEKSAAAAACgGAUkAAAAAFCMAhIAAAAAKKbtC8hHHnkk\nxx57bA488MDMmTMnRx99dFavXp0k2bRpUxYvXpxZs2Zl9uzZWblyZeW0AOzszC0AJhJzC4Cnou0L\nyCQ57bTTcuedd+bWW2/Na1/72px66qlJkmXLlmXBggW56667cumll2bJkiUZGhqqnBaAnZ25BcBE\nYm4BsC1tX0BOnjw5r3rVq0Ye/9Vf/VXWrVuXJPnKV76SpUuXJknmzZuX6dOn58Ybb6ySEwAScwuA\nicXcAuCpaPsC8k/9+7//e4455pjcd999GRwczNSpU0eemzFjRnp7eyumA4CtmVsATCTmFgBPpKt2\ngLH0kY98JKtXr85FF12Uhx56qHac7dZsDmfz5s1P8nz3GKZ5ou3LNxpPlm88Z3v0efmezETPNxpb\ntmzZ6tdW6e6u+3c2Vib63GLnVfK40gq1j7vQrsytia3ksdtxt67Sc9n+rafUvi3x/dZOU0B+4hOf\nyFVXXZXrrrsu3d3d6e7uTldXVzZu3DjyU7m1a9dm3333rZz0zxsYGMzdd9/9JM/PHMM0T7R9+Ubj\nyfKN52yPPi/fk5no+Vqhr6+vZevq7OzM/vvv37L1jVftMLfYeY3FcWU0ah93oR2ZWxNfyWO3425d\npeey/VtPiX1b6vutnaKAPOecc3LllVfmuuuuyx577DGy/Pjjj8/555+fM844Iz09PVm/fn0WLlxY\nMemT22WXruyzzz5/9vne3rq7U77RebJ84zlbIt+2TPR8o7Fly5b09fVl2rRpmTRpUpFttKN2mVvs\nvEoeV1qh9nEX2o251R5KHrsdd+sqPZft33rG+7+5/r+2/yr53e9+l/e+97157nOfmyOOOCLNZjPd\n3d350Y9+lLPPPjsnnnhiZs2alcmTJ+eKK65IZ2dn7ch/VqPR8aSnwTYadS/pKd/oPFm+8Zztsedr\nkm90tpWvFSZNmrTTfGx6tNppbrHzGovjymjUPu5COzG32kfJY7fjbl2l57L9W894/zfX/9f2BeT0\n6dMzPDz8hM9NnTo1K1asGONEAPDnmVsATCTmFgBPhZoaAAAAAChGAQkAAAAAFKOABAAAAACKUUAC\nAAAAAMUoIAEAAACAYhSQAAAAAEAxXbUDADC+9fU10t/f2KHXNpvdGRiYmd7erjQaO/YzrylTmpk2\nrblDrwUAAKA+BSQAT6q/v5H58/eotv2engcVkAAAABOYj2ADAAAAAMUoIAEAAACAYhSQAAAAAEAx\nCkgAAAAAoBgFJAAAAABQjAISAAAAAChGAQkAAAAAFKOABAAAAACKUUACAAAAAMUoIAEAAACAYhSQ\nAAAAAEAxCkgAAAAAoBgFJAAAAABQjAISAAAAAChGAQkAAAAAFKOABAAAAACKUUACAAAAAMUoIAEA\nAACAYhSQAAAAAEAxCkgAAAAAoBgFJAAAAABQjAISAAAAAChGAQkAAAAAFKOABAAAAACKUUACAAAA\nAMUoIAEAAACAYhSQAAAAAEAxCkgAAAAAoBgFJAAAAABQjAISAAAAAChGAQkAAAAAFKOABAAAAACK\nUUACAAAAAMUoIAEAAACAYhSQAAAAAEAxCkgAAAAAoBgFJAAAAABQjAISAAAAAChGAQkAAAAAFKOA\nBAAAAACKUUACAAAAAMUoIAEAAACAYhSQAAAAAEAxCkgAAAAAoBgFJAAAAABQjAISAAAAAChGAQkA\nAAAAFKOABAAAAACKUUACAAAAAMUoIAEAAACAYhSQAAAAAEAxCkgAAAAAoBgFJAAAAABQjAISAAAA\nAChGAQkAAAAAFKOABAAAAACKUUACAAAAAMUoIAEAAACAYhSQAAAAAEAxCkgAAAAAoBgFJAAAAABQ\njAISAAAAAChGAQkAAAAAFKOABAAAAACKUUACAAAAAMUoIAEAAACAYhSQAAAAAEAxCkgAAAAAoBgF\nJAAAAABQjAISAAAAAChGAQkAAAAAFKOABAAAAACKUUACAAAAAMUoIIH/Ze/Oo6ys7/uBv+8M4GgU\ntyKJC4vOjLigYo2KlKJGQzBak7hAOKUajgZqxLQu0bRGxZio0dgTG6pxwZMYa0A5iW3V2JhaIRyX\noWqsRir70BiVuBJlnZnfH/6YlEh0LszD3Dvzep3jgbnfGZ7393q5H33f5z4XAAAAoDAKSAAAAACg\nMApIAAAAAKAwCkgAAAAAoDAKSAAAAACgMApIAAAAAKAwCkgAAAAAoDAKSAAAAACgMApIAAAAAKAw\nCkgAAAAAoDAKSAAAAACgMApIAAAAAKAwCkgAAAAAoDAKSAAAAACgMF1SQA4aNCj77bdfhg0blkMP\nPTT33HNPkmTFihUZM2ZMGhsbc9BBB2XOnDntP7Nq1aqMHz8+DQ0NGTJkSGbNmtW+1tbWlilTpqS+\nvj6NjY2ZNm3aRse76qqrUl9fn4aGhlx66aUbrV199dXZdttt06dPn+y222557rnnCtw5ANXI3AKg\nmphbAFSaXl1x0JqamsycOTNDhw7d6PZLLrkkw4cPz4MPPph58+bls5/9bJYuXZra2tpcf/31qaur\ny4IFC7J06dIcccQROfbYY7PzzjvnzjvvzPz587Nw4cK88cYbGTZsWI499tjst99+mT17dmbMmJHn\nnnsuNTU1GTFiREaMGJExY8ZkyZIlueKKK3LDDTfkS1/6Uj7+8Y/nxBNPzNKlS9sztbS0vC//Pvus\nzy67bP3utnfv1g9db2hYv5XSbPr4H7Yu3wcf/4PWKjXbhnX5Pvj4H7Yu3wcf/8O0tLSkpqa452Vz\nC8rTkb+3Xamrn9foWXbe+f1/H8ytpRvdF3/I3OoaRT53e97tWkXPZf9+u87W+m+uzphbpba2trZO\nytNhgwcPzn333ZeDDjpoo9t32GGHLFq0KLvttluS5Mgjj8w3v/nNHHvssTnwwAMzffr0HH744UmS\nsWPHZvTo0Zk4cWJOPPHE/NVf/VVOP/30JMnFF1+cbbbZJldeeWXOPffcDBgwIF/5yleSJDfddFMe\ne+yx/OAHP8gVV1yRq6++OqtWrUpNTU0efPDBnHzyyZk/f3723nvvJMnatWuzatWqrXXXALAZNpxZ\nURRzC4DOZG6ZWwDVpDPmVpe9rDRhwoQcfPDBOfvss/Paa6/l9ddfz/r169uHYZIMHDgwzc3NSZLm\n5uYMHDiwfW3QoEFbvDZ//vzsuOOO7S3uoEGDUiqV2tcBYANzC4BqYm4BUEm6pICcM2dOfvnLX+ap\np57KrrvumjPOOCPJe9cWAYBKY24BUE3MLQAqTZcUkHvuuWeSpLa2Nn/zN3+TOXPmZJdddkmvXr3y\n6quvtn/f0qVLM2DAgCTvvTq3bNmyTa4NGDBgs9aGDBmSt956K62tre1rbW1t7esAkJhbAFQXcwuA\nSrPVC8h33303b731VvvX//zP/5xhw4YlSU4//fTcdNNNSZKmpqa89NJLGTVqVJLk1FNPzc0335wk\nWbJkSR599NF85jOfSZKcdtppufXWW9Pa2prXX389M2bMyNixY9vX7rzzzqxatSpr1qzJ9OnTM27c\nuCTJGWeckVKplGnTpqWtrS2XXXZZdt999/brkSRJqVQq+B7pHKtXr87ixYuzevXqro6ySfJtvkrO\nlryXb/789dlnnx267J/Fi//439NquP/k23JFPlebW8Wo9MeWfJuvkrMl8m0p+TqHuVV9c6uzVctj\ntTP0pL0m9tvd9bT9btAZz9Vb/VOwX3nllZxyyilpbW1NW1tb9t577/zgBz9IklxzzTWZMGFCGhsb\ns8022+Suu+5KbW1tkuSiiy7KxIkTU19fn169emXatGnZZZddkrx3fZN58+aloaEhNTU1ufDCC3PA\nAQckSUaNGpWxY8fmwAMPTKlUyrhx43LCCSckee/izF/72tdy0UUX5YILLshOO+2Uhx9+eKO8G45f\nDTb1CXKVRL7NV8nZkqSlJXntta77pMKWllKSP/6Wosq//+TbUkU+V5tbxan0x5Z8m6+SsyXybSn5\ntpy5tXXui0pXDY/VztKT9prYb3fX0/abdM5zdZd8CnY1aW1tzcqVK7s6xodavXp1li9fnr322it1\ndXVdHed95Nt8lZwteS/fokW9MmLErl2WoalpZRoaWje5Vg33n3xbbocddmi/wH1PZ251Dvk2XyVn\nS+TbUvJ1DnPr96plbnW2anmsdoaetNfEfru7nrbfDTpjbpl6AAAAAEBhFJAAAAAAQGEUkAAAAABA\nYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBh\nFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEU\nkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQ\nAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAA\nAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAA\nAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAA\nAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAA\nQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABA\nYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBh\nFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEU\nkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQ\nAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAA\nAAAAQGEUkAAAAABAYRSQAAAAAEBhFJAAAAAAQGEUkAAAAABAYRSQAAAAAEBhurSAvOOOO1JTU5N/\n+Zd/SZKsWLEiY8aMSWNjYw466KDMmTOn/XtXrVqV8ePHp6GhIUOGDMmsWbPa19ra2jJlypTU19en\nsbEx06ZN2+g4V111Verr69PQ0JBLL710o7Xbb789jY2NaWhoyKRJk9LS0lLgjgGoVmYWANXE3AKg\nknRZAbls2bLcdtttGT58ePttl1xySYYPH54XX3wx06dPz/jx49uH1PXXX5+6urosWLAgP/3pT3PO\nOefkjTfeSJLceeedmT9/fhYuXJgnnngi1113XV544YUkyezZszNjxow899xzef755/PQQw/lwQcf\nTJIsWbIkl112WebOnZsFCxbk5Zdfzi233LKV7wkAKp2ZBUA1MbcAqDRdUkC2tbXlrLPOyne/+930\n6dOn/faZM2dm8uTJSZLDDjsse+yxRx599NEkyYwZM9rXBg0alKOPPjo//vGP23/u7LPPTpLsvPPO\nGTt2bO6+++72tQkTJqSuri59+vTJxIkT29dmzZqVk08+Of369UuSTJ48uX0NABIzC4DqYm4BUIl6\ndcVBb7jhhowcOTLDhg1rv+3111/P+vXrs9tuu7XfNnDgwDQ3NydJmpubM3DgwPa1QYMGfeDaE088\n0b42cuTIjdZmzJjxoX/mB1m9enVZ+90a1q5du9GvlUa+zVfJ2ZINubrkqaRdW1vrH/17WR33n3zl\nqqur22rHqvaZlZhbm0O+zVfJ2RL5tpR8m8fcqv651dkq9bFahJ6018R+u7uest8i5tZWbw2ef/75\nzJo1a6NrjlSbl156qWKvX/LKK690dYQPJN/mq+RsyeAuPfq6deuzfPnyD/yeyr7/5CtHbW1t9t57\n761yrO4wsxJza0vIt/kqOVsi35aSr+PMrfJV8tzqbJX0WC1aT9prYr/dXXfeb1Fza6sXkHPmzMmy\nZcvS0NCQtra2vPzyy/niF7+YK664Ir169cqrr77a/src0qVLM2DAgCTvvUK3bNmy9O/fv31t9OjR\nSZIBAwZk2bJlOeKII973cxvWNvjDtcWLF29y7YPsvvvuW3o3dLq1a9fmlVdeSf/+/Td6q0WlkG/z\nVXK25L18H9L9Fa53717Za6+9NrlWDfeffJWrO8ysxNzaHPJtvkrOlsi3peSrbOZW9ehJj9WetNfE\nfru7nrbfzrTVC8jJkye3X18kSY455picf/75Oemkk/Lkk0/mpptuyuWXX56mpqa89NJLGTVqVJLk\n1FNPzc0335zDDz88S5YsyaOPPpqbbropSXLaaafl1ltvzamnnpo333wzM2bMyP3339++du6552bK\nlCmpqanJ9OnTM3Xq1CTJKaeckpEjR+aKK65Iv379cvPNN2fcuHEfuoet+RaKcvXp00e+LVDJ+So5\nW1crlWo+9L6p9PtPvsrUHWZWYm5tCfk2XyVnS+TbUvJVJnOr+vSkx2pP2mtiv91dT9tvZ+jaC7cl\nKZVKaWtrS5Jcc801mTBhQhobG7PNNtvkrrvuSm1tbZLkoosuysSJE1NfX59evXpl2rRp2WWXXZIk\nEyZMyLx589LQ0JCamppceOGFOeCAA5Iko0aNytixY3PggQemVCpl3LhxOeGEE5IkgwcPztSpU3PU\nUUelVCrlmGOOyaRJk7rgXgCgGphZAFQTcwuASlFq2zCR2KTW1tasXLmyq2N8qNWrV2f58uXZa6+9\nKrKFl2/zVXK25L18ixb1yogRu3ZZhqamlWloaN3kWjXcf/JtuR122CE1NTVdHaMimFudQ77NV8nZ\nEvm2lHydw9z6vWqZW52tWh6rnaEn7TWx3+6up+13g86YW6YeAAAAAFAYBSQAAAAAUBgFJAAAAABQ\nGAUkAAAAAFAYBSQAAAAAUBgFJAAAAABQGAUkAAAAAFAYBSQAAAAAUBgFJAAAAABQGAUkAAAAAFAY\nBSQAAAAAUBgFJAAAAABQGAUkAAAAAFAYBSQAAAAAUBgFJAAAAABQGAUkAAAAAFAYBSQAAAAAUBgF\nJAAAAABQGAUkAAAAAFAYBSQAAAAAUBgFJAAAAABQGAUkAAAAAFAYBSQAAAAAUBgFJAAAAABQGAUk\nAAAAAFAYBSQAAAAAUBgFJAAAAABQGAUkAAAAAFAYBSQAAAAAUBgFJAAAAABQGAUkAAAAAFAYBSQA\nAAAAUBgFJAAAAABQGAUkAAAAAFAYBSQAAAAAUBgFJAAAAABQGAUkAAAAAFAYBSQAAAAAUBgFJAAA\nAABQGAUkAAAAAFAYBSQAAAAAUBgFJAAAAABQGAUkAAAAAFAYBSQAAAAAUBgFJAAAAABQGAUkAAAA\nAFAYBSQAAAAAUBgFJAAAAABQGAUkAAAAAFCYXl0dAPhwvXvvmebmupRKXfOaQd++benfv61Ljg0A\nAABUNwUkVIF33umdESN27LLjNzWtVEACAAAAm8VbsAEAAACAwiggAQAAAIDCeAs2/H+uswgAAADQ\n+RSQ8P+5ziIAAABA5/MWbAAAAACgMApIAAAAAKAwCkgAAAAAoDAKSAAAAACgMApIAAAAAKAwCkgA\nAAAAoDAKSAAAAACgMApIAAAAAKAwCkgAAAAAoDAKSAAAAACgMApIAAAAAKAwCkgAAAAAoDAKSAAA\nAACgMApIAAAAAKAwCkgAAAAAoDAKSAAAAACgMApIAAAAAKAwCkgAAAAAoDAKSAAAAACgMApIAAAA\nAKAwCkgAAAAAoDAKSAAAAACgMGUVkKtXr37fba+++mqnhQEAAAAAupeyCshx48alra2t/evXX389\no0eP7vRQAAAAAED3UFYBue++++a8885LkqxcuTInnHBCvvSlLxUSDAAAAACofmUVkNdee21++9vf\n5hvf+EZOOumkfP7zn89ZZ51VVDYAAAAAoMr16sg3vf322+2//853vpMTTzwxxx57bL7whS/k7bff\nTt++fQsLCAAAAABUrw4VkDvttFNKpVLa2traf503b16+9a1vpVQqpaWlpeicAAAAAEAV6lAB2dra\nWnQOAAAAAKAb6lAB+X8tX748c+bMSZKMGjUqe+yxR6eHAgAAAAC6h7I+hOa+++7LsGHDMnPmzNxz\nzz0ZNmxY/vVf/7WobAAAAABAlSvrDMipU6fm8ccfT319fZJk4cKFOf3003PSSScVEg4AAAAAqG5l\nnQHZ0tLSXj4mSX19vetDAgAAAAB/VFkF5G677Zbbbrstra2taW1tze23355+/foVlQ0AAAAAqHJl\nFZA333xzbrvtttTV1WXbbbfNbbfdlu9973tFZQMAAAAAqlxZ14DcZ5998vjjj+d3v/tdkmT77bcv\nJIXKl1sAACAASURBVBQAAAAA0D2UVUAmyT333JOf/exnSZLRo0fnlFNO6fRQAAAAAED3UNZbsK+8\n8spcffXV2X///XPAAQfk6quvzlVXXVVUNgAAAACgypV1BuS9996bxx9/PNttt12S5Kyzzsrw4cNz\n6aWXFhIOAAAAAKhuZZ0B2dbW1l4+JslHPvKRtLW1lX3Q0aNH55BDDsmwYcMyatSoPPPMM0mSFStW\nZMyYMWlsbMxBBx2UOXPmtP/MqlWrMn78+DQ0NGTIkCGZNWvWRrmmTJmS+vr6NDY2Ztq0aRsd76qr\nrkp9fX0aGhreV5befvvtaWxsTENDQyZNmpSWlpay9wNA92ZuAVBNzC0AKk1ZBeThhx+eCRMmZPbs\n2Zk9e3bOOOOMHH744WUf9J577skzzzyTp59+On/7t3+bM888M0ly8cUXZ/jw4XnxxRczffr0jB8/\nvn1AXX/99amrq8uCBQvy05/+NOecc07eeOONJMmdd96Z+fPnZ+HChXniiSdy3XXX5YUXXkiSzJ49\nOzNmzMhzzz2X559/Pg899FAefPDBJMmSJUty2WWXZe7cuVmwYEFefvnl3HLLLWXvB4DuzdwCoJqY\nWwBUmrIKyBtvvDG77757zj///Jx//vn52Mc+lhtvvLHsg/bt27f992+++WZqa2uTvDcoJ0+enCQ5\n7LDDsscee+TRRx9NksyYMaN9bdCgQTn66KPz4x//OEkyc+bMnH322UmSnXfeOWPHjs3dd9/dvjZh\nwoTU1dWlT58+mThxYvvarFmzcvLJJ6dfv35JksmTJ7evAcAG5hYA1cTcAqDSlHUNyI985CO59tpr\nO+XAZ5xxRh555JGUSqU88MADef3117N+/frstttu7d8zcODANDc3J0mam5szcODA9rVBgwZ94NoT\nTzzRvjZy5MiN1mbMmPGhfyYA/F/mFgDVxNwCoJKUVUC+8cYb+epXv5qHH344pVIpxx9/fL7xjW9k\n5513LvvA3//+95O8dzr/V77yldx5552bdT3JrrB69equjvA+a9eu3ejXSlMd+cr669Dp2tpaN/nY\nquRsSbXkq/THnnzlqqur2+rHNLc6V6U+tjaQb/NVcrZEvi0l3+Yxt8pTiXOrs1XqY7UIPWmvif12\ndz1lv0XMrbJagzPPPDN77rln+wWJb7vttpx55pm57777NjvAhAkT2k/17927d1599dX2V+WWLl2a\nAQMGJHnv1blly5alf//+7WujR49OkgwYMCDLli3LEUcc8b6f27C2wR+uLV68eJNrH+Sll16q2Isn\nv/LKK10d4QNVdr7BXXr0devWZ/ny5X9ktZKzJZWfr9Ife/KVo7a2NnvvvXeXHd/c6lyV9NjaFPk2\nXyVnS+TbUvJ1nLnVveZWZ6ukx2rRetJeE/vt7rrzfouaW6W2Ml4G22+//dovNvxBt32Qt956K+++\n+24+9rGPJUl+8pOf5Lzzzktzc3MmTpyYgQMH5vLLL09TU1M+97nPZenSpamtrc3UqVOzbNmyTJ8+\nPUuWLMnw4cPzq1/9Krvssku+//3v54c//GEeeuihvPnmmzn00ENz//3354ADDsijjz6ac889N08+\n+WRqamryZ3/2Z5k6dWpOOOGELFmyJCNHjsxTTz2Vfv365TOf+UxGjx6dc845pz1va2trVq5cudEe\nKvEVubVr1+aVV15J//7906dPn66O8z7VkG/58u0yYsSuXZbhySffyoABmz4DslKzJdWRr9Ife/KV\n7w9fkdthhx1SU1PWZY07zNwqRqU+tjaQb/NVcrZEvi0l3+Yxt6p/bnW2Sn2sFqEn7TWx3+6up+y3\niLlV1hmQu+++e1asWNF+EeEVK1Zkjz32KOuAb731Vk477bSsXr06pVIpu+22W/7t3/4tSXLNNddk\nwoQJaWxszDbbbJO77rqr/YLJF110USZOnJj6+vr06tUr06ZNyy677JLkvVf15s2bl4aGhtTU1OTC\nCy/MAQcckCQZNWpUxo4dmwMPPDClUinjxo3LCSeckCQZPHhwpk6dmqOOOiqlUinHHHNMJk2a9KF7\n6Iq3UHRUnz595KtSpVJNxd43lZwt6Vi+Sn/syVe5zK1iVfpjS77NV8nZEvm2lHyVy9yqLj3psdqT\n9prYb3fX0/bbGTp0BuT555+f5L2LCP/iF7/Ipz/96STJAw88kJEjR2bmzJnFpuxCm3pFrhKtXr06\ny5cvz1577VWRfwmqId+iRb269Cy+pqaVaWhofd/tlZwtqY58lf7Yk2/LFXkmSbUxtzqHfJuvkrMl\n8m0p+TqHufV71TK3Olu1PFY7Q0/aa2K/3V1P2+8GW+0MyB133DFJMnTo0AwdOrT99g3XEgEAAAAA\n2JQOFZCXX3550TkAAAAAgG7Ief8AAAAAQGEUkAAAAABAYRSQAAAAAEBhOlxAtrS0ZP/99y8yCwAA\nAADQzXS4gKytrU2/fv3y7rvvFpkHAAAAAOhGOvQp2BvU19dnxIgROe2007L99tu3337eeed1ejAA\nAAAAoPqVVUC2trbmkEMOyYIFC9pvK5VKnR4KAAAAAOgeyiog77jjjqJyAAAAAADdUFmfgv3WW2/l\n3HPPzUknnZQk+dWvfpW77767kGAAAAAAQPUrq4CcNGlSPvrRj2bJkiVJksGDB+faa68tJBgAAAAA\nUP3KKiBffPHFXHrppendu3eSZNttt01bW1shwQAAAACA6ldWAdmnT5+Nvl61apUCEgAAAAD4o8oq\nII855ph84xvfyOrVq/Pwww/n1FNPzec+97misgEAAAAAVa6sAvLrX/96ampq0rdv3/zd3/1dRowY\nka997WtFZQMAAAAAqlyvsr65V6989atfzVe/+tWi8gAAAAAA3UhZZ0C+8cYbmTx5curr69PQ0JBz\nzjknb7zxRlHZAAAAAIAqV1YBeeaZZ6a2tjazZs3Kvffem9ra2px55pkFRQMAAAAAql1Zb8F+8cUX\nc99997V//Y//+I/Zb7/9Oj0UAAAAANA9lHUG5O67754VK1a0f71ixYrssccenR4KAAAAAOgeyjoD\ncuedd87QoUPz6U9/OknywAMPZOTIkTn//POTJDfccEPnJwQAAAAAqlZZBeTQoUMzdOjQ9q8nT57c\n6YHovnr33jPNzXUplco68bbT9O3blv7927rk2AAAAAA9VVkF5OWXX15UDnqAd97pnREjduyy4zc1\nrVRAAgAAAGxlZRWQAHQ+ZwcDAADQnSkgAbqYs4MBAADozrrmdBsAAAAAoEcoq4Bcvnx51q5dmySZ\nO3duvvvd72blypWFBAMAAAAAql9ZBeTJJ5+c1tbW/PrXv864ceMyd+7cTJw4sahsAAAAAECVK/st\n2HV1dbn//vszadKk3H333XnxxReLyAUAAAAAdANlFZBr1qzJmjVr8rOf/SzHHHNMUZkAAAAAgG6i\nrALy85//fD760Y+mubk5Rx11VH7zm99ku+22KyobAAAAAFDlyiogL7300ixZsiSPPfZYSqVSdthh\nh9x7771FZQMAAAAAqlyvjnzT7NmzP3B9jz326JQwAAAAAED30qEC8oILLkiStLS05Jlnnsnee++d\nUqmURYsW5ZBDDslTTz1VaEgAAAAAoDp16C3YTU1NaWpqyiGHHJKHHnooCxcuzIIFC/Lv//7vOfTQ\nQ4vOCAAAAABUqbKuATlv3rwcf/zx7V8fd9xxaWpq6vRQAAAAAED30KG3YG9QW1ubRx55JMccc0yS\n5NFHH01NTVkdZreweHEpLS2lrX7cvn3b0r9/21Y/LgAAAABsrrIKyGnTpmXcuHHp3bt3kmT9+vWZ\nMWNGIcEq2fHHb5/XXtv6xWtT00oFJAAAAABVpcMFZFtbWwYPHpxFixZl/vz5SZIhQ4a0l5EAAAAA\nAH+orDMgjz/++Dz33HMZOnRoUXkAAAAAgG6kw+8jLpVK2XPPPfPb3/62yDwAAAAAQDdS1hmQ22+/\nfQ455JCccMIJ2X777dtvv+GGGzo9GAAAAABQ/coqIIcOHert1wAAAABAh5VVQF5++eVF5QAAAAAA\nuqEOXwMySVauXJkvfelLaWxsTGNjY6ZMmZKVK1cWlQ0AAAAAqHJlFZDnnHNO1q9fn5kzZ+aee+5J\nS0tLzjnnnKKyAQAAAABVrqy3YD/77LP55S9/2f71P/3TP+Xggw/u9FAAAAAAQPdQ1hmQLS0tG73l\n+ne/+11aWlo6PRQAAAAA0D2UdQbkGWeckSOPPDJjx45NksycOTNf+MIXCgkGAAAAAFS/sgrIiy66\nKAceeGB+/vOfJ0muv/76fOpTnyokGAAAAABQ/coqIP/3f/83Y8aMyZgxY4rKAwAAAAB0I2UVkKNG\njUrv3r3ziU98Ip/4xCdy7LHHZqeddioqGwAAAABQ5cr6EJpFixblgQceyMEHH5wf/ehH2XfffXP4\n4YcXlQ0AAAAAqHJlFZBJsnbt2qxZsyZr1qxJ375909DQUEQuAAAAAKAbKOst2HvuuWf22muvnH76\n6bnqqqsydOjQonIBAAAAAN1AWWdAjh8/PuvXr8/MmTMzY8aM/Od//mfWrVtXVDYAAAAAoMqVdQbk\nt771rSTJa6+9lvvuuy9f+MIXsmLFivzud78rJBwAAAAAUN3KKiAff/zxPPzww3n44Yfz3//93zny\nyCNz3HHHFZUNAAAAAKhyZRWQF1xwQY477rh8/etfz/Dhw9OrV1k/DgAAAAD0MGU1iHPnzi0qBwAA\nAADQDZX1ITQAAAAAAOVQQAIAAAAAhelQAfmzn/0sSfL2228XGgYAAAAA6F46VEBecsklSZKjjz66\nyCwAAAAAQDfToQ+hWbduXa699tq8+uqrufHGG9+3ft5553V6MAAAAACg+nWogLz11lvz/e9/P6tW\nrcrTTz+90VqpVCokGAAAAABQ/TpUQB5xxBE54ogjMnDgwFx88cVFZwIAAAAAuokOFZAbXHzxxXny\nySfz8MMPJ0k++clP5rDDDiskGAAAAABQ/Tr0ITQb3HLLLTn11FPz6quvZsWKFTnllFNy2223FZUN\nAAAAAKhyZZ0B+d3vfjf/9V//lX79+iVJ/u7v/i6f+MQnctZZZxUSDgAAAACobmWdAZmkvXz8w98D\nAAAAAPyhsgrIhoaG/P3f/32am5vT3Nycr33ta2loaCgqGwAAAABQ5coqIG+++eYsWrQohx56aP70\nT/80CxcuzE033VRUNgAAAACgypV1Dch+/frlRz/6UVFZAAAAAIBupuxrQAIAAAAAdJQCEgAAAAAo\nTFlvwQaoRr1775nm5rqUSl3zmkvfvm3p37+tS44NAAAAXa3DBWRLS0tGjx6dhx9+uMg8AJ3unXd6\nZ8SIHbvs+E1NKxWQAAAA9FgdPh2otrY27777blpbW4vMAwAAAAB0I2W9BfvjH/94TjzxxPzlX/5l\ntt9++/bb/+Iv/qLTgwEAAAAA1a+sAvLZZ59Nktx6663tt5VKJQUkAAAAALBJZRWQjzzySFE5AAAA\nAIBuqKyPhF2/fn2+/e1v55xzzkmSLFq0KP/xH/9RSDAAAAAAoPqVdQbkueeem5aWlvziF79Ikuy6\n664ZO3Zs5s2bV0g4AAAAAKC6lVVAPv7443nmmWcybNiwJMlOO+2UdevWFRIMAAAAAKh+Zb0Fu66u\nbqOvW1pa0tra2qmBAAAAAIDuo6wC8qCDDsoPf/jDtLa2ZuHChZk8eXKOPvrogqIBAAAAANWurALy\nhhtuyJw5c/Lyyy/nqKOOSk1NTa699tqisgEAAAAAVa6sa0Buv/32+d73vpfvfe97ReUBAAAAALqR\nsgrINWvW5B/+4R/y8MMPp1Qq5fjjj8+Xv/zlbLPNNkXlAwAAAACqWFkF5OTJk/Paa69lypQpSZI7\n7rgj8+fPz/Tp0wsJBwAAAABUt7IKyMceeywvvPBCSqVSkuTEE0/MAQccUEgwyte7955pbq5LqVTW\npT07Td++benfv61Ljg0AAABAZSqrgNx1112zatWqbLfddknee0v2n/zJnxQSjPK9807vjBixY5cd\nv6lppQISAAAAgI10qIC88cYbkyRDhgzJEUcckdNPPz1Jcu+99+bjH/94cekAAAAAgKrWoffqPv30\n03n66afT2tqaww47LIsXL87ixYtz6KGHpqWlpawDrlmzJp/97GczZMiQDBs2LKNHj86iRYuSJCtW\nrMiYMWPS2NiYgw46KHPmzGn/uVWrVmX8+PFpaGjIkCFDMmvWrPa1tra2TJkyJfX19WlsbMy0adM2\nOuZVV12V+vr6NDQ05NJLL91o7fbbb09jY2MaGhoyadKksvcDQPdmbgFQTcwtACpRh86AvOOOOzr1\noJMmTcqnPvWpJMm0adNy1lln5ZFHHsnFF1+c4cOH58EHH8y8efPy2c9+NkuXLk1tbW2uv/761NXV\nZcGCBVm6dGmOOOKIHHvssdl5551z5513Zv78+Vm4cGHeeOONDBs2LMcee2z222+/zJ49OzNmzMhz\nzz2XmpqajBgxIiNGjMiYMWOyZMmSXHbZZXnmmWfSr1+/nHzyybnlllvy13/91526XwCqm7kFQDUx\ntwCoNGVdAzJJHnzwwSxYsCDr169vv+3888/v8M9vs8027cMwSY488sh8+9vfTpLcc8897a/OHXbY\nYdljjz3y6KOP5thjj82MGTPaP2170KBBOfroo/PjH/84EydOzMyZM3P22WcnSXbeeeeMHTs2d999\nd6688srMnDkzEyZMSF1dXZJk4sSJufvuuzNmzJjMmjUrJ598cvr165fkvU/5vvrqqw1EANp1h7m1\neHEpLS2lzr1jtlBbW13WrRuc5uZeXfbhaR9Evs3X1laXPn327OoY0GN1h7kFQPdTVgE5fvz4vPDC\nCxk2bFhqa2uTpP0TsTfXd77znXzmM5/J66+/nvXr12e33XZrXxs4cGCam5uTJM3NzRk4cGD72qBB\ngz5w7YknnmhfGzly5EZrM2bM+NA/sxK1tbVm9erVm1xbu3ZtNqNP7lTybZk/lq+SsyXydUT15/v9\nr5Viw//kdIVqnFvHH799Xnutskoqure5c9dn7dp3uzrGJlXq89oG8m2ZSs1nbr3/z/wgf+y/S7qT\nSn2sFqEn7TWx3+6up+y3iLlV1v/1PvXUU3n++efby8ct9c1vfjOLFi3KLbfcknffrcz/SK0k69at\nz/Llyz/gOwZvtSybIt+W+eB8lZwtke+DVX++5JVXXtlKaT5cbW1t9t577y45trkFHVdJzxubIt+W\nka/jzK3yvfTSSz3mWpGV9FgtWk/aa2K/3V133m9Rc6usAnLQoEFZs2ZNtttuuy0+8PXXX5+f/OQn\n+fnPf566urrU1dWlV69eefXVV9tflVu6dGkGDBiQ5L1X55YtW5b+/fu3r40ePTpJMmDAgCxbtixH\nHHHE+35uw9oGf7i2ePHiTa5Vot69e2Wvvfba5NratWvzIf1B4eTbMn8sXyVnS+TriGrP98orr6R/\n//7p06fPVk5WWcwtKE+lPm9U+vOafFum0vNtTdU8t3bfffct3X7F60mP1Z6018R+u7uett/OVFYB\n+e1vfzvHHXdcjj766I1Ox7zsssvKOugNN9yQH/3oR/n5z3+eHXbYof320047LTfddFMuv/zyNDU1\n5aWXXsqoUaOSJKeeempuvvnmHH744VmyZEkeffTR3HTTTe0/d+utt+bUU0/Nm2++mRkzZuT+++9v\nXzv33HMzZcqU1NTUZPr06Zk6dWqS5JRTTsnIkSNzxRVXpF+/frn55pszbty4svayNZVKNV369o0P\nI9+WqeR8lZwtkW9LdSRfnz59KnoPRTO3oHyV/rwh35aRr7JV+9zqSf/uetJjtSftNbHf7q6n7bcz\nlFVAfvWrX02fPn2yevXqrFu3brMO+Otf/zoXXnhh9tlnnxxzzDFpa2tLXV1dHnvssVxzzTWZMGFC\nGhsbs8022+Suu+5qf7v3RRddlIkTJ6a+vj69evXKtGnTsssuuyRJJkyYkHnz5qWhoSE1NTW58MIL\nc8ABByRJRo0albFjx+bAAw9MqVTKuHHjcsIJJyRJBg8enKlTp+aoo45KqVTKMccck0mTJm3WvgDo\nnswtAKqJuQVAJSq1tbW1dfSb99133/zP//xPkXkqTmtra1auXLnRbfvss0OXXMy/qWllGhpaN7m2\nevXqLFrUKyNG7LqVU/2efFvmj+Wr5GyJfB1R7fmWL1+evfbaq6Jf4dthhx1SU+NDVpLKmlv0XHPn\nvpZ99llfkc8blf68Jt+WqfR8G5hbv7epudUTVMtjtTP0pL0m9tvd9bT9btAZc6usn953333z9ttv\nb9EBAQAAAICeo6y3YG+77bY59NBD88lPfnKjpveGG27o9GAAAAAAQPUrq4Dcf//9s//++xeVBQAA\nAADoZsoqIC+//PKicgAAAAAA3VBZBeSVV165ydsvu+yyTgkDAAAAAHQvZRWQ//fTyVavXp0HHngg\nw4cP7/RQAAAAAED3UFYBed1112309RVXXJEzzzyzM/MAAAAAAN1IzZb88K677prFixd3VhYAAAAA\noJsp6wzIG2+8sf33LS0tefLJJ/PRj36000MBAADQMy1eXEpLS6mrYxSqra0u69YNTnNzr5RKW3Re\nUKfp27ct/fu3dXUMoJsqq4B8+umnf/+DvXrlkEMOyRe/+MVODwUAAEDPdPzx2+e11yqjlOtJmppW\nKiCBwpRVQN5xxx1F5QAAAAAAuqEOFZCzZ8/+wPU///M/75QwAAAAAED30qEC8oILLnjfbaVSKS+9\n9FJ+85vfpKWlpdODAQAAAADVr0MFZFNT00Zfv/7667nqqqvywx/+MFOnTi0kGAAAAABQ/cq6su/q\n1atz9dVXZ//990+SvPDCC7n00ksLCQYAAAAAVL8OFZCtra255ZZb0tDQkPnz5+eJJ57IDTfckF13\n3bXofAAAAABAFevQW7APPPDArFmzJt/85jdz8MEH56233sqzzz7bvn7QQQcVFhAAAAAAqF4dKiDf\nfffdlEqlXHbZZe9bK5VKWbx4cacHAwAAAACqX4cKyKVLlxYcAwAAAADojsr6EBoAAAAAgHIoIAEA\nAACAwiggAQAAAIDCKCABAAAAgMIoIAEAAACAwiggAQAAAIDCKCABAAAAgML06uoAAFS23r33THNz\nXUqlrnnNqm/ftvTv39YlxwYAAGDLKSAB+EDvvNM7I0bs2GXHb2paqYAEAACoYt6CDQAAAAAURgEJ\nAAAAABRGAQkAAAAAFEYBCQAAAAAURgEJAAAAABRGAQkAAAAAFEYBCQAAAAAURgEJAAAAABRGAQkA\nAAAAFEYBCQAAAAAURgEJAAAAABRGAQkAAAAAFEYBCQAAAAAURgEJAAAAABRGAQkAAAAAFEYBCQAA\nAAAURgEJAAAAABRGAQkAAAAAFEYBCQAAAAAURgEJAAAAABSmV1cHAAAAAKA69e69Z5qb61Iqdf9z\n3Nra6rJu3eA0N/eqiP327duW/v3bujpGhyggAQAAANgs77zTOyNG7NjVMXqkpqaVVVNAdn1dCwAA\nAAB0WwpIAAAAAKAwCkgAAAAAoDAKSAAAAACgMApIAAAAAKAwPgUbAAAAKEzv3numubkupVL3Pweq\nra0u69YNTnNzr4rZb9++bVXzScl0XwpIAAAAoDDvvNM7I0bs2NUxeqymppUKSLpcZdTxAAAAAEC3\npIAEAAAAAAqjgAQAAAAACqOABAAAAAAK40NoAADoUSr501gr8dNT/y/5yldb25a99/bhDwD0bApI\nAAB6FJ/Gyta0666tWbRoZVfHAIAuVRkvCwIAAAAA3ZICEgAAAAAojAISAAAAACiMAhIAAAAAKIwC\nEgAAAAAojAISAAAAACiMAhIAAAAAKIwCEgAAAAAojAISAAAAACiMAhIAAAAAKIwCEgAAAAAojAIS\nAAAAACiMAhIAAAAAKIwCEgAAAAAojAISAAAAACiMAhIAAAAAKIwCEgAAAAAojAISAAAAACiMAhIA\nAAAAKIwCEgAAAAAojAISAAAAACiMAhIAAAAAKIwCEgAAAAAojAISAAAAACiMAhIAAAAAKIwCEgAA\nAAAojAISAAAAACiMAhIAAAAAKIwCEgAAAAAojAISAAAAACiMAhIAAAAAKMxWLyC//OUvZ/Dgwamp\nqcmzzz7bfvuKFSsyZsyYNDY25qCDDsqcOXPa11atWpXx48enoaEhQ4YMyaxZs9rX2traMmXKlNTX\n16exsTHTpk3b6HhXXXVV6uvr09DQkEsvvXSjtdtvvz2NjY1paGjIpEmT0tLSUtCuAahW5hYA1cTc\nAqASbfUC8rTTTsvcuXMzaNCgjW6/5JJLMnz48Lz44ouZPn16xo8f3z6grr/++tTV1WXBggX56U9/\nmnPOOSdvvPFGkuTOO+/M/Pnzs3DhwjzxxBO57rrr8sILLyRJZs+enRkzZuS5557L888/n4ceeigP\nPvhgkmTJkiW57LLLMnfu3CxYsCAvv/xybrnllq13RwBQFcwt/h97dx8lVX3fD/w9uwusTygQ3ao8\nLIZF4wNq4pFEkqP1IVRikxhBlIpafICktaZWk5y0/kystqYxMacGoWppGmt1SYyt1UZTkhRzrCVg\nY+xDFJWHpWJADRqiUoTd3x8eJyEiIHsvM7P7ep3jkZ3Lfu/77ozzWd9zZy5AIzG3AKhHu7yAfP/7\n358DDjggPT09W9w+f/78zJo1K0lyzDHH5MADD8zChQuTJJ2dndVt7e3tOeGEE3L33XdXv++iiy5K\nkgwZMiRTp07NHXfcUd02ffr0tLa2ZuDAgZkxY0Z121133ZWPfOQj2XfffZMks2bNqm4DgDeYWwA0\nEnMLgHrUUusASfKzn/0smzZtyn777Ve9bdSoUenq6kqSdHV1ZdSoUdVt7e3t29y2aNGi6rYPfOAD\nW2zr7Ozc7pr1qqenOxs2bNjqto0bN6bWd6d8vfNW+eo5WyLfjpCvd7aWr7W1tUZpXmduwfa9bf2R\nzQAAIABJREFU/vxRf+rheQ12NXOLHbGt3wl7w/Nu7ZV13ybu31or674t4/+3PEoayGuvbcqqVau2\n8TdG77IsWyNf72w7Xz1nS+TbNvl659fzNTc356CDDqphImBHrFmzptYRtqG2z2sA9Wj7vxP2hufd\nWir3vk3cv7VTxn1b1v9v1UUBOXTo0LS0tGTt2rXVV+VWrFiRkSNHJnn91bmVK1emra2tum3ixIlJ\nkpEjR2blypUZP378m77vjW1v+PVty5Yt2+q2ejVgQEtGjBix1W0bN25Mqc8nO0C+3nmrfPWcLZFv\nR8jXO9vKVyvmFmxfW1tbBg4cWOsYb1IPz2uwq5lb7IiyfufyvFt7Zf4+7f6trXr8f6W3sss/A/Kt\nTJkyJXPmzEmSLF68OKtXr87xxx+fJJk8eXLmzp2b5PUPM164cGE++tGPVr/vlltuSXd3d372s5+l\ns7MzU6dOrW677bbb8uqrr+b//u//Mm/evJx11llJkjPOOCP33HNP1q5dm56ensydO7e6rV5VKk1p\nbW3d6j/18Au+fOXkq+ds8slXq3z1wNyCbRs4cOBbPrfU8p96eF6DWjC32J5t/U7oebexlXXfun9r\nr6z7tgy7/AzIWbNm5b777suaNWsyceLE7LXXXlm6dGmuu+66TJ8+PWPHjs2gQYNy++23p7m5OUly\nxRVXZMaMGRkzZkxaWloye/bsDB06NEkyffr0LFmyJB0dHWlqasrll1+eww47LEly/PHHZ+rUqTn8\n8MNTqVRy1llnZdKkSUmS0aNH5/Of/3yOO+64VCqV/OZv/mZmzpy5q38cANQ5cwuARmJuAVCPKj2/\nfnk0ttDd3Z3169dvcds737lXXnhh1588unjx+nR0dG9124YNG/L00y2ZMGHYLk71S/L1zlvlq+ds\niXw7Qr7e2Va+N+y1115paqqbk/prqp7mFv3XQw+9kHe+c1PdnLH8q+rheY3+Zdiw7jz99JbPy+bW\nL5lb9WNHfufaGZ53a6+s+zZx/9ZamfftrypibnlWBwAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAA\nAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAA\nAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAA\nSqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABK\no4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqj\ngAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOA\nBAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AE\nAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQA\nAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAA\nAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAA\nAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAA\nSqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABK\no4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqj\ngAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKU1cF5KWXXprRo0enqakpjz32\nWPX2GTNm5OCDD87RRx+dD3zgA1myZEl126uvvppp06alo6MjhxxySO66667qtp6enlxyySUZM2ZM\nxo4dm9mzZ2+xv2uuuSajRo3KbrvtlmHDhmX8+PH5yU9+Uv6BAtAnmFsANBJzC4BaqasCcsqUKXno\noYfS3t6+xe0f+9jH8pOf/CQ/+tGP8pnPfCZTpkypbrv++uvT2tqaJ598Mvfff38+8YlPZN26dUmS\n2267LY8//nieeuqpLFq0KF/84herA+/BBx9MZ2dnRo8enZtuuikHHXRQTj755Jx33nm77HgBaGzm\nFgCNxNwCoFZaah3gV73//e9P8vorab/qtNNOq/75ve99b1avXp3u7u40NTWls7Mz8+bNS5K0t7fn\nhBNOyN13350ZM2Zk/vz5ueiii5IkQ4YMydSpU3PHHXfk6quvzvz583P66afnL//yL/O9730vGzZs\nyMMPP5xVq1Zl2bJlOeigg5IkmzdvflPOd75zU4YO3fXd7YAB3dvcPnBg0tGxaReleTP5emdb+eo5\nWyLf9sjXO9vLl7z+XN3UtOufl80t2LqBA2udYNtq/bxG/zJkyJvnmLllbtWjHfmda2d53q2tMu/b\nxP1bS2Xft28oYm7VVQG5I77yla9k0qRJ1QPv6urKqFGjqtvb29vT1dX1ltsWLVpU3TZ8+PDsv//+\naWpqSnt7ezo7OzNy5Mh0dXVVB+KvD+ck+c53Xi3t+HZWa2trOjqSxYtfrnWUrZJv59VztkS+3pKv\nGFt7rq4X5hb9U0vq9dfMRnleo28zt8yt/sTzbt/m/u0fiphb9fmb4Vv4u7/7u3zzm9/Mgw8+WOso\nALBd5hYAjcTcAqAsDXNee2dnZ/70T/80CxYsyL777lu9fdSoUVm5cmX16xUrVmTkyJFJkpEjR25z\n2yuvvJJnn3023d3d1W1dXV3VvwMAO8vcAqCRmFsAlKkhCsj58+fnyiuvzIIFC3LggQdusW3y5MmZ\nO3dukmT58uVZuHBhPvrRjyZ5/UOWb7nllnR3d+dnP/tZOjs7M3Xq1Oq2u+++O0ceeWTmzZuXefPm\nZfjw4RkxYkT17QAAsDPMLQAaibkFQNkqPXX0ASSzZs3KfffdlzVr1mTYsGHZa6+9snTp0gwcODD7\n779/hg0blp6enlQqlXz3u9/NkCFD8sorr2TGjBlZsmRJWlpacu211+aMM85IknR3d+fSSy/NP//z\nP6epqSmXXnppfv/3f7+6v2uuuSY333xz1q5dmz322CPvfOc78zd/8zc57LDDqn/ntddeyyuvvLLL\nfxZv14YNG7J69eoccMABaW1trXWcN5Fv59VztkS+3pKvGLvvvnsGDBiwy/drbu28en9sybfz6jlb\nIl9vyVcMc6vx5lbRGuWxWoT+dKyJ4+3r+tvxvqGIuVVXBWQ96u7uzvr162sdY7s2bNiQVatWZcSI\nEXX5H4F8O6+esyXy9ZZ8xdhrr71qcjXRemRuFUO+nVfP2RL5eku+Yphbv9Qoc6tojfJYLUJ/OtbE\n8fZ1/e1431DE3DL1AAAAAIDSKCABAAAAgNIoIAFoeB/60Ify2GOP1TpGTTz11FOZMGFCDj744Iwf\nPz5PPvlkrSMBsAO+8IUv5LDDDsvRRx+d4447LosXL651pF3C3AJoTPfee2/e9a535eCDD87kyZPz\ni1/84m19vwISgIb3//7f/8vv/M7v1DpGTcycOTOzZs3KE088kU996lNbfPg/APXpv//7vzNnzpws\nWbIkP/rRj/J7v/d7/eb529wCaDyvvPJKLrzwwtxzzz154oknsv/+++fqq69+W2soILfjhRdeqHUE\nALZj/Pjx6erqyqOPPlrrKLvUc889l0ceeaRavp5xxhl55plnapwKgO2pVCrZtGlT9eIrL774YkaM\nGFHjVOUztwAa03e/+928+93vTkdHR5LkE5/4RO644463tUZLGcH6kmeeeSajR4+udQwAtuGBBx7I\nL37xi6xYsSJHHXVUrePsMqtWrcr++++/xRXphg8fXsNEAOyIQw89NJ/85CczevToDBs2LIMGDcqD\nDz5Y61ilM7cAGtMzzzyTUaNGVb9ub2/PT3/603R3d+/w1bGdAQlAw1u4cGEOPfTQtLR4XQ2A+rdq\n1ap861vfyrJly9LV1ZVPfvKTOfPMM2sdCwBKo4DcjgMPPLDWEQDYjs9//vN55plncuihh9Y6yi41\nYsSIPPvss+nu7q7e9r//+781TATAjrj33nszbty4tLW1JUl+93d/Nw899FA2bdpU42TlMrcAGtOB\nBx6YFStWVL9evnz5m85o3x4F5HYMGzas1hEA2I7rr78+J510Ug466KBaR9ml9t1337z73e/Obbfd\nliT55je/6YUzgAYwatSoPPTQQ3n55ZeTJP/0T/+Ugw8+uM+fyW9uATSmE088MT/60Y+ydOnSJMmc\nOXNy1llnva01+vaEA6BfWL16df76r/+61jFqYu7cuTn//PPzZ3/2Z9l7773z9a9/vdaRANiOSZMm\n5eGHH84xxxyT1tbW7LHHHvn7v//7WsfaJcwtgMazxx575NZbb81HPvKRbN68OYcffnj+9m//9m2t\noYAEoOHdeOONb+v0/75k7Nix+bd/+7fq193d3dWrqgJQv6699tpce+21tY6xy5lbAI3ptNNOy2mn\nnbbT398//28NAAAAANglFJAAAAAAQGkUkAAAAABAaRSQAAAAAEBpFJAAAAAAQGkUkAAAAABAaRSQ\nAAAAAEBpFJAAAAAAQGkUkAAAAABAaRSQAAAAAEBpFJAAAAAAQGkUkAAAAABAaRSQAAAAAEBpFJAA\nAAAAQGkUkAAAAABAaRSQAAAAAEBpFJAAAAAAQGkUkAAAAABAaRSQAAAAAEBpFJAAAAAAQGkUkAAA\nAABAaRSQAAAAAEBpFJAAAAAAQGkUkAAAAABAaRSQAAAAAEBpFJAAAAAAQGkUkAAAAABAaRSQAAAA\nAEBpFJAAAAAAQGkUkAAAAABAaRSQAAAAAEBpFJAAAAAAQGkUkAAAAABAaRSQAAAAAEBpFJAAAAAA\nQGkUkAAAAABAaRSQAAAAAEBpFJAAAAAAQGkUkAAAAABAaRSQAAAAAEBpFJAAAAAAQGkUkAAAAABA\naRSQAAAAAEBpFJAAAAAAQGkUkAAAAABAaRSQAAAAAEBpFJAAAAAAQGkUkAAAAABAaRSQAAAAAEBp\nFJAAAAAAQGkUkAAAAABAaRSQAAAAAEBpFJAAAAAAQGkUkAAAAABAaRSQAAAAAEBpFJAAAAAAQGkU\nkAAAAABAaRSQAAAAAEBpFJAAAAAAQGkUkAAAAABAaRSQAAAAAEBpWmodAGh8AwYMT1dXayqV2rym\nMXhwT9raemqybwAAAGDbFJBAr7388oBMmLB3zfa/ePF6BSQAAADUKW/BBgAAAABKo4AEAAAAAEqj\ngAQAAAAASlNXBeSll16a0aNHp6mpKY899lj19ueeey6nnnpqxo4dm3HjxuUHP/hBddurr76aadOm\npaOjI4ccckjuuuuu6raenp5ccsklGTNmTMaOHZvZs2dvsb9rrrkmY8aMSUdHR/7kT/6k/AMEoE8x\ntwBoJOYWALVSVwXklClT8tBDD6W9vX2L2z/zmc/kfe97X5YuXZp58+Zl2rRp2bx5c5Lk+uuvT2tr\na5588sncf//9+cQnPpF169YlSW677bY8/vjjeeqpp7Jo0aJ88YtfzE9+8pMkyYMPPpjOzs7813/9\nV/77v/87DzzwQL797W/v0uMFoLGZWwA0EnMLgFqpqwLy/e9/fw444ID09Gx5Ndv58+dn1qxZSZJj\njjkmBx54YBYuXJgk6ezsrG5rb2/PCSeckLvvvrv6fRdddFGSZMiQIZk6dWruuOOO6rbp06entbU1\nAwcOzIwZM6rbAGBHmFsANBJzC4BaqasCcmt+9rOfZdOmTdlvv/2qt40aNSpdXV1Jkq6urowaNaq6\nrb29vdfbAGBnmVsANBJzC4BdoaXWARrRhg0bah3hTTZu3LjFv+uNfDuvnrMlb+Sq7VNJT0/3W/53\n2Rg/P/nertbW1lpHaCjm1tsn386r52yJfL0l384xt96eepxbRavXx2oZ+tOxJo63r+svx1vG3Kr7\nAnLo0KFpaWnJ2rVrq6/KrVixIiNHjkzy+qtzK1euTFtbW3XbxIkTkyQjR47MypUrM378+Dd93xvb\n3vCr27Zn9erV1c9EqTdr1qypdYRtkm/n1XO2ZHRN9/7aa5uyatWqbf6d+v75yfd2NDc356CDDqp1\njLdkbr099fTY2hr5dl49Z0vk6y35dpy5lTdt2556nltFq6fHatn607Emjrev68vHW9bcqvsCMnn9\nw5LnzJmTq666KosXL87q1atz/PHHJ0kmT56cuXPn5thjj83y5cuzcOHCzJkzp/p9t9xySyZPnpwX\nX3wxnZ2due+++6rbfv/3fz+XXHJJmpqaMm/evHz+85/foTwHHHBAOQfaCxs3bsyaNWvS1taWgQMH\n1jrOm8i38+o5W/J6vu10f6UbMKAlI0aM2Oq2Rvj5ydf3mFvbV++PLfl2Xj1nS+TrLfn6JnNr1+tP\nj9X+dKyJ4+3r+tvxFqmuCshZs2blvvvuy5o1azJx4sTstddeWbp0aa677rpMnz49Y8eOzaBBg3L7\n7benubk5SXLFFVdkxowZGTNmTFpaWjJ79uwMHTo0STJ9+vQsWbIkHR0daWpqyuWXX57DDjssSXL8\n8cdn6tSpOfzww1OpVHLWWWdl0qRJO5Sznt9CMXDgQPl6oZ7z1XO2WqtUmrb7s6n3n598jcnc6r16\nf2zJt/PqOVsiX2/J15jMrfrTnx6r/elYE8fb1/W34y1CpefXL4HGFrq7u7N+/fpax9iuDRs2ZNWq\nVRkxYkRd/kcg386r52zJ6/mefrolEyYMq1mGxYvXp6Oje6vbGuHnJ1/v7bXXXmlqqvvrqu0S5lYx\n5Nt59Zwtka+35CuGufVLjTK3itYoj9Ui9KdjTRxvX9ffjvcNRcwtUw8AAAAAKI0CEgAAAAAojQIS\nAAAAACiNAhIAAAAAKI0CEgAAAAAojQISAAAAACiNAhIAAAAAKI0CEgAAAAAojQISAAAAACiNAhIA\nAAAAKI0CEgAAAAAojQISAAAAACiNAhIAAAAAKI0CEgAAAAAojQISAAAAACiNAhIAAAAAKI0CEgAA\nAAAojQISAAAAACiNAhIAAAAAKI0CEgAAAAAoTUutAwBQ3wYMGJ6urtZUKrV5zWrw4J60tfXUZN8A\nAAD0ngISgG16+eUBmTBh75rtf/Hi9QpIAACABuYt2AAAAABAaRSQAAAAAEBpFJAAAAAAQGkUkAAA\nAABAaRSQAAAAAEBpFJAAAAAAQGkUkAAAAABAaRSQAAAAAEBpFJAAAAAAQGkUkAAAAABAaRSQAAAA\nAEBpFJAAAAAAQGkUkAAAAABAaRSQAAAAAEBpFJAAAAAAQGkUkAAAAABAaRSQAAAAAEBpFJAAAAAA\nQGkUkAAAAABAaRSQAAAAAEBpFJAAAAAAQGkUkAAAAABAaRSQAAAAAEBpWmodgP5jwIDh6epqTaVS\nm9578OCetLX11GTfAAAAAP2VApJd5uWXB2TChL1rtv/Fi9crIAEAAAB2MW/BBgAAAABKo4AEAAAA\nAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAA\nSqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABK\no4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAASqOABAAAAABKo4AEAAAAAEqj\ngAQAAAAASqOABAAAAABKo4AEAAAAAEqjgAQAAAAAStNS6wAAZRswYHi6ulpTqdTmNZfBg3vS1tZT\nk30DAABArSkggT7v5ZcHZMKEvWu2/8WL1ysgAQAA6Le8BRsAAAAAKI0CEgAAAAAoTWEF5AsvvPCm\n25YuXVrU8kmSf/7nf8573vOeHH300Rk3bly+/vWvJ0mee+65nHrqqRk7dmzGjRuXH/zgB9XvefXV\nVzNt2rR0dHTkkEMOyV133VXd1tPTk0suuSRjxozJ2LFjM3v27ELzAtC/mVsANBJzC4CyFPYZkB/9\n6EezYMGCDBo0KEmyYsWK/PZv/3aeeOKJonaR6dOn58EHH8xhhx2WlStX5pBDDskZZ5yRT3/603nf\n+96Xb3/721myZElOP/30rFixIs3Nzbn++uvT2tqaJ598MitWrMj48eNz4oknZsiQIbntttvy+OOP\n56mnnsq6dety9NFH58QTT8y73vWuwjID0H+ZWwA0EnMLgLIUdgbkmWeemWnTpiVJnn322UyaNCk3\n3HBDUcsnSZqamrJu3bokyUsvvZR3vOMdGThwYL7xjW9k1qxZSZJjjjkmBx54YBYuXJgk6ezsrG5r\nb2/PCSeckLvvvjtJMn/+/Fx00UVJkiFDhmTq1Km54447Cs0MQP9lbgHQSMwtAMpS2BmQl1xySVas\nWJGZM2dm0aJF+dM//dNMmjSpqOWTJHfeeWdOP/307LHHHnnxxRfzrW99K+vXr8+mTZuy3377Vf/e\nqFGj0tXVlSTp6urKqFGjqtva29u3uW3RokXbzbFhw4aiDqkwGzdu3OLf9eb1XLW96HpPT/db3nf1\n/POr52xJo9y39Z7P/bstW/v5tba21ijN22NuvbXGeOzLtzPqOVsiX2/Jt3PMrV9ua9S5VbR6fayW\noT8da+J4+7r+crxlzK1e/1/lY489Vv3zOeeck4svvjinnHJKOjo68thjj2XcuHG93UWSZPPmzbnm\nmmvyD//wD5kwYUKWLFmSD3/4w3n00UfT09NTyD521OrVq7N58+Zdus8dtWbNmlpH2IbRNd37a69t\nyqpVq7b5d+r551fP2er/vq33fO7fbfn1n19zc3MOOuigGibaMebWjqnvx758vVHP2RL5eku+HWdu\nvX31PLeKVk+P1bL1p2NNHG9f15ePt6y51esC8iMf+cibbvvmN7+Zb37zm6lUKlm2bFlvd5EkefTR\nR/Pss89mwoQJSV4/9X/48OF57LHHMmDAgKxdu7b6qtyKFSsycuTIJK+/Ordy5cq0tbVVt02cODFJ\nMnLkyKxcuTLjx49/0/dtywEHHFDIMRVp48aNWbNmTdra2jJw4MBax3mTjRs3Zjv9S+kGDGjJiBEj\ntrqtnn9+9ZwtaYz7tt7zuX+3bVs/v3pmbm1bIzz25ds59Zwtka+35Ou7zK1dqz89VvvTsSaOt6/r\nb8dbpF4XkMuXLy8ix3aNGDEizz77bB5//PEccsgheeqpp7Js2bIccsghmTJlSubMmZOrrroqixcv\nzurVq3P88ccnSSZPnpy5c+fm2GOPzfLly7Nw4cLMmTMnSTJlypTccsstmTx5cl588cV0dnbmvvvu\n226Wen4LxcCBA+s6Xy1VKk3b/dnU88+vnrPV2o7ct7XU6I+9Wqv3+/etmFs7pt4f+/LtvHrOlsjX\nW/L1PeZWbfSnx2p/OtbE8fZ1/e14i1DoB3v98Ic/zIIFC5IkH/zgB3PMMccUtvZ+++2Xm2++OWee\neWaam5vT3d2d2bNnZ/jw4bnuuusyffr0jB07NoMGDcrtt9+e5ubmJMkVV1yRGTNmZMyYMWlpacns\n2bMzdOjQJK9f5W3JkiXp6OhIU1NTLr/88hx22GGFZQag/zK3AGgk5hYAZSqsgLz55ptzzTXX5GMf\n+1gqlUrOOOOMXHnllbnwwguL2kWmTp2aqVOnvun2/fbbLw888MBWv2f33XfPnXfeudVtTU1NufHG\nG3PjjTcWlhEA3mBuAdBIzC0AylJYAfnVr341jzzySPbdd98kyWc/+9mcdNJJhRaQAAAAAEBjaSpy\nsTfKx1//MwAAAADQPxV2BmRHR0f++I//ODNnzkyS3HLLLeno6ChqeSjdgAHD09XVmkql0F5+hw0e\n3JO2tp6a7BsAAACgLIUVkHPnzs0ll1ySd7/73UmSU045pXr1M2gEL788IBMm7F2z/S9evF4BCQAA\nAPQ5hRWQ++6771t++DAAAAAA0D8VVkBu2rQpN9xwQ/7lX/4lSTJx4sRceumlaWkpbBcAAAAAQIMp\nrB287LLL8vTTT+cTn/hEKpVKbr311qxcuTJ/+Zd/WdQuAAAAAIAGU1gB+a//+q959NFH09T0+gU8\nPvShD1U/DxIAAAAA6J8Ku9xvT09Puru7t/i6p8cFNQAAAACgPyvsDMjf+q3fygc/+MGcf/75SZKv\nf/3rOfXUU4taHgAAAABoQIUVkF/4whfyV3/1V7nnnnuSJJMnT87FF19c1PIAAAAAQAMqrIBsamrK\nxz/+8cyaNStJUqlUiloaAAAAAGhQhX0GZFdXVyZOnJjddtstu+22W0499dR0dXUVtTwAAAAA0IAK\nKyDPPffcnHzyyVmzZk1++tOf5qSTTsq5555b1PIAAAAAQAMqrIB87rnncsUVV2TvvffOPvvsk8sv\nvzzPP/98UcsDAAAAAA2osAJyzJgxWbp0afXrpUuXpqOjo6jlAQAAAIAG1OuL0Jx++umpVCr5xS9+\nkSOPPDLHHXdckuThhx+u/hkAAAAA6J96XUB+9KMfrf75Vz/z0ec/AgAAAAC9LiDPO++8InIAAAAA\nAH1QYZ8BCQAAAADw6xSQAAAAAEBpCikge3p68uyzzxaxFAAAAADQhxR2BuQpp5xS1FIAAAAAQB9R\nSAFZqVQyfPjwPP/880UsBwAAAAD0Eb2+CvYb9txzzxx11FGZNGlS9txzz+rtX/7yl4vaBQAAAADQ\nYAorII844ogcccQRRS0HAAAAAPQBhRWQV111VVFLAQAAAAB9RGEF5KpVq/Lxj388//v86EuCAAAg\nAElEQVS//5tHH300jz76aL7//e/nD//wD4vaBfRbAwYMT1dXayqVwq4b9bYMHtyTtraemuwbAAAA\naGyFFZAzZ87MtGnT8sUvfjFJcvjhh2f69OkKSCjAyy8PyIQJe9ds/4sXr1dAAgAAADulsNOp1q5d\nm3POOSdNTa8v2dLSkpaWwvpNAAAAAKABFVZAtrS0pKfnl2dIrVu3bouvAQAAAID+p7ACcsqUKZk5\nc2Z+/vOf59Zbb80pp5ySCy+8sKjlAQAAAIAGVNh7pP/oj/4od9xxR1566aV85zvfyWWXXZZp06YV\ntTw7wIVKAAAAAKg3hX5I49lnn52zzjorSVKpVIpcmh3gQiUAAAAA1JvCTpXr6urKxIkTs9tuu2W3\n3XbLqaeemq6urqKWBwAAAAAaUGEF5LnnnpuTTz45a9asyU9/+tOcdNJJOffcc4taHgAAAABoQIUV\nkM8991yuuOKK7L333tlnn31y+eWX5/nnny9qeQAAAACgARVWQI4ZMyZLly6tfr106dJ0dHQUtTwA\nAAAA0IAKuwjNL37xixx55JE57rjjkiQPP/xwjjvuuHzsYx9LknzrW98qalcAAAAAQIMorIA899xz\nt/jMR5//CAAAAAAUVkCed955RS0FAAAAAPQRhX0GJAAAAADAr1NAAgAAAAClKaSA7OnpybPPPlvE\nUgAAAABAH1LYGZCnnHJKUUsBAAAAAH1EIRehqVQqGT58eJ5//vm84x3vKGLJurZsWSWbN1d2+X4H\nD+5JW1vPLt8vAAAAAOyswq6Cveeee+aoo47KpEmTsueee1Zv//KXv1zULurGKafsmRde2PUfn7l4\n8XoFJAAAAAANpbAC8ogjjsgRRxxR1HIAAAAAQB9QWAF51VVXFbUUAAAAANBHFPY+4lWrVuW0007L\nUUcdlSR59NFHc8MNNxS1PAAAAADQgAorIGfOnJmzzjorPT2vf0bh4Ycfnnnz5hW1PAAAAADQgAor\nINeuXZtzzjknTU2vL9nS0pKWlsLe4Q0AAAAANKDCCsiWlpbq2Y9Jsm7dui2+BgAAAAD6n8IKyClT\npmTmzJn5+c9/nltvvTWnnHJKLrzwwqKWBwAAAAAaUGHvkf6jP/qj3HHHHXnppZfyne98J5dddlmm\nTZtW1PIAAAAAQAMqrIC8//77c/bZZ+fss8/e4rbf+q3fKmoXAAAAAECDKewt2J/97Gd36DYAAAAA\noP/o9RmQS5cuzeOPP56XXnop99xzT/X2l156Ka+88kpvlwcAAAAAGlivC8iHH344X/va17J27drc\ncMMN1dsHDx6cL33pS71dHgAAAABoYL0uIM8777ycd955+eu//utccMEFRWQCAAAAAPqIwi5Cc8EF\nF+TOO+/MggULUqlUcsopp+TMM88sankAAAAAoAEVdhGaK664Il/60pdyxBFH5PDDD8+XvvSlfOpT\nnypqeQAAAACgARV2BuQ//uM/5sc//nF22223JMnFF1+cI488Mn/xF39R1C4AAAAAgAZT2BmQ++yz\nTwYNGlT9esCAARkyZEhRywMAAAAADaiwMyDf+973ZuLEiTn33HOTJH/3d3+X973vfbnnnnuSJB/+\n8IeL2hUAAAAA0CAKKyD/8z//M0kyb9686m0//vGP8+Mf/ziVSkUBCQAAAAD9UGEF5Pe///2ilgIA\nAAAA+ojCCsgkee2117J8+fJs2LChetu4ceOK3AUAAAAA0EAKKyDvvffeXHTRRVm3bl322GOPrFu3\nLqNGjcry5cuL2gUAAAAA0GAKuwr2lVdemX//93/Pu971rrzwwgv5+te/nsmTJxe1PAAAAADQgAor\nIJuamjJq1Khs2rQpSXLOOefke9/7XlHLAwAAAAANqLC3YA8YMCBJMnz48Nx9991pb2/PunXriloe\nAAAAAGhAhRWQl156adatW5drrrkmZ511Vl588cV85StfKWp5gD5rwIDh6epqTaVS2Enpb8vgwT1p\na+upyb4BAADo+worIM8+++wkyXve8548+eSTRS0L0Oe9/PKATJiwd832v3jxegUkAAAApSmsgEyS\nRYsW5emnn65+DmSSnHvuuUXuAgAAAABoIIUVkB//+MfzwAMP5Kijjkpzc3OSpFKpKCABAAAAoB8r\nrIBcsGBB/ud//ietra1FLQkAAAAANLjCrniw//77Z9CgQUUtt1UbN27MJZdckrFjx+bII4+snl35\n3HPP5dRTT83YsWMzbty4/OAHP6h+z6uvvppp06alo6MjhxxySO66667qtp6enlxyySUZM2ZMxo4d\nm9mzZ5eaH4D+xdwCoJGYWwCUpddnQN5zzz1JkvHjx2fy5MmZOnXqFmdBfvjDH+7tLqo+/elPp6mp\nKUuXLk2SrF27Nknymc98Ju973/vy7W9/O0uWLMnpp5+eFStWpLm5Oddff31aW1vz5JNPZsWKFRk/\nfnxOPPHEDBkyJLfddlsef/zxPPXUU1m3bl2OPvronHjiiXnXu95VWGYA+i9zC4BGYm4BUJZeF5A3\n3HDDFl/PmTOn+udKpVJYAfnKK69k3rx5eeaZZ6q37bfffkmS+fPn5+mnn06SHHPMMTnwwAOzcOHC\nnHjiiens7My8efOSJO3t7TnhhBNy9913Z8aMGZk/f34uuuiiJMmQIUMyderU3HHHHbn66qsLyQxA\n/2VuAdBIzC0AytTrAvL73/9+ETm26+mnn87QoUNz7bXXZsGCBdl9991z1VVX5aijjsqmTZuqwzFJ\nRo0ala6uriRJV1dXRo0aVd3W3t6+zW2LFi3aJcezM3p6urNhw4atbtu4cWMKvqj52yZf77xVvnrO\nlsi3I+Trna3la4TPG66nufVW928tvf7Y+uW/6418O6+esyXy9ZZ8O8fc+uW2Rp1bRavXx2oZ+tOx\nJo63r+svx1vG3Crs/ypvvvnmTJ48OUOHDk2SvPDCC/nWt75VfcWrtzZt2pSVK1fm8MMPz5//+Z/n\n0UcfzQc/+MH813/9V3p6egrZR7177bVNWbVq1Tb+xuhdlmVr5Oudbeer52yJfNsmX+/8er7m5uYc\ndNBBNUy0Y+ppbq1evTqbN2/epfvcUWvWrKl1hG2Sb+fVc7ZEvt6Sb8eZW29fPc+totXTY7Vs/elY\nE8fb1/Xl4y1rbhVWQN500025+OKLq18PGzYsN910U2EF5MiRI9Pc3Jxp06YlSY466qi0t7fnP//z\nPzNgwICsXbu2+qrcihUrMnLkyCSvvzq3cuXKtLW1VbdNnDixuubKlSszfvz4N31fPRowoCUjRozY\n6raNGzdmm/3BLiBf77xVvnrOlsi3I+TrnW3lq2f1NLcOOOCAwo+vtzZu3Jg1a9akra0tAwcOrHWc\nN5Fv59VztkS+3pKv7zK3dq3+9FjtT8eaON6+rr8db5EKKyC39qpYka9aDRs2LCeddFLuv//+nHrq\nqVm+fHlWrFiRQw89NFOmTMmcOXNy1VVXZfHixVm9enWOP/74JMnkyZMzd+7cHHvssVm+fHkWLlxY\n/ZzKKVOm5JZbbsnkyZPz4osvprOzM/fdd19hmYtWqTTV9ds35Oudes5Xz9kS+XpLvnLU09yq55/f\nwIED5euFes5Xz9kS+XpLvr7H3KqN/vRY7U/Hmjjevq6/HW8RCisg999//8yfPz9nnnlmkqSzszP7\n779/Ucsnef0CNxdccEE+/elPp7m5OTfffHP233//XHfddZk+fXrGjh2bQYMG5fbbb09zc3OS5Ior\nrsiMGTMyZsyYtLS0ZPbs2dW3iU+fPj1LlixJR0dHmpqacvnll+ewww4rNDMA/Ze5BUAjMbcAKEth\nBeRXvvKVfOQjH8mnPvWpJMnuu++ef/zHfyxq+STJ6NGj873vfe9Nt++333554IEHtvo9u+++e+68\n886tbmtqasqNN96YG2+8sdCcAJCYWwA0FnMLgLIUVkAecsgh+Z//+Z888cQTSZKDDz64+qoYAAAA\nANA/FVZAJq9fKefQQw8tckkAAAAAoIE11ToAAAAAANB3KSABAAAAgNIUUkBu3rw5n/70p4tYCgAA\nAADoQwopIJubm/P973+/iKUAAAAAgD6ksLdgT5o0Kddee21Wr16dn//859V/AAAAAID+q7CrYF99\n9dVJkiuvvDKVSiU9PT2pVCrZvHlzUbsAAAAAABpMYQVkd3d3UUsBAAAAAH1EoVfBfuSRR3Lbbbcl\nSV588cU8++yzRS4PAAAAADSYwgrIm266KTNmzMjnPve5JMkLL7yQadOmFbU8AAAAANCACisgb775\n5vz7v/97Bg8enCR55zvfmeeee66o5QEAAACABlRYATlo0KDstttuW9zW0lLYR0wCAAAAAA2osAJy\n3333zdKlS1OpVJIkX/va1zJy5MiilgcAAAAAGlBhpyh+5Stfydlnn53HH388I0aMyODBg3PvvfcW\ntTwAAAAA0IAKKyDHjBmTRYsW5YknnkhPT08OPvjgNDc3F7U8AAAAANCACv2Qxh/+8IdZsGBBKpVK\nTj755IwfP77I5QEAAACABlPYZ0Bef/31mTp1al544YU8//zzmTp1ar785S8XtTwAAAAA0IAKOwPy\n5ptvzn/8x39k2LBhSZIrr7wy733ve3PZZZcVtQsAAAAAoMEUdgbk4MGDq+VjkgwdOjSDBw8uankA\nAAAAoAEVdgbkiSeemPPPPz8XXHBBkuRrX/taTj755Dz22GNJknHjxhW1KwAAAACgQRRWQH7jG99I\nkixcuHCL2zs7O1OpVLJs2bKidgUAAAAANIjCCsjly5cXtRQAAAAA0EcU9hmQAAAAAAC/TgEJAAAA\nAJRGAQkAAAAAlKaUArKnpyfr168vY2kAAAAAoIEUVkBecMEFefHFF7Nx48YcddRRaWtry0033VTU\n8gAAAABAAyqsgHzkkUeyzz775P7778/RRx+dn/70p5k7d25RywMAAAAADaiwArKnpydJ8oMf/CCn\nnXZaBg8enObm5qKWBwAAAAAaUGEF5G/8xm/k4x//eL7xjW/k5JNPzmuvvZbNmzcXtTwAAAAA0IAK\nKyBvv/32HHzwwbnzzjuzzz775Jlnnslll11W1PIAAAAAQANqKWqhd7zjHfnkJz9Z/bq9vT3nn39+\nUcsDAAAAAA2o1wXk6NGjU6lU3nL7smXLersLAAAAAKBB9bqAvPfee5Mkd955Z1asWJGZM2cmSW65\n5ZaMGjWqt8sDAAAAAA2s1wXkYYcdliS5//77s3jx4urtEyZMyLHHHpurr766t7sAAAAAABpUYReh\neemll/Lyyy9Xv3755Zfz0ksvFbU8AAAAANCACrsIzbRp0/Le9743Z555ZpLkG9/4Rs4555yilgcA\nAAAAGlBhBeTnPve5HHvssfnud7+bJPnCF76QU089tajlAQAAAIAGVEgBuXnz5px//vm57bbbMmnS\npCKWBAAAAAD6gEI+A7K5uTlLly4tYikAAAAAoA8p7C3Yv/mbv5mLL744559/fvbcc8/q7ePGjStq\nFwAAAABAgymsgOzs7EyS/Mu//Ev1tkqlkmXLlhW1CwAAAACgwRRWQC5fvryopQAAAACAPqKwAjJJ\nfvjDH2bBggVJkg9+8IM55phjilweAAAAAGgwhVyEJkluvvnmTJ48OWvXrs1zzz2XM844I7feemtR\nywMAAAAADaiwMyC/+tWv5pFHHsm+++6bJPnsZz+bk046KRdeeGFRuwAAAAAAGkxhZ0AmqZaPv/5n\nAAAAAKB/KqyA7OjoyB//8R+nq6srXV1dufLKK9PR0VHU8gAAAABAAyqsgJw7d26efvrpvPvd7857\n3vOePPXUU5kzZ05RywMAAAAADaiwz4Dcd999c+eddxa1HAAAAADQBxR2BuRJJ52U6667LkuWLElP\nT09RywIAAAAADaywAvJzn/tcXnnllfzBH/xB2tra8rGPfSw33XRTUcsDAAAAAA2osALyAx/4QK6+\n+ur8//buPsiq+rwD+LMv4CYkKmAgBlhYyi4gFHYJiMAkiNYifWFkxJI4RRIqwnRi4qTaOG0nNmnK\npAk1tUgxhoSqsQEVfI9kYmKcrUkMDIjE+ArsLkFQCmoCqMvL6R+MNyKwXth79ty7+/n8o7tn9/A9\n+9tznnu/e18eeeSR+MY3vhEbNmyIL37xi4XaPQAAAABQggpWQP7TP/1TTJgwIaZMmRKbNm2KJUuW\nxO7duwu1ewAAAACgBBXsTWiWLVsWgwcPjnnz5sVFF10UQ4YMKdSuAQAAAIASVbBHQO7cuTNuueWW\nePPNN+MLX/hCjBgxIubNm1eo3QMAAAAAJahgBWRERK9evaJnz55x5plnxu7du2Pt2rWF3D0AAAAA\nUGIK9hTsoUOHRmtra1x44YXxF3/xF/Gtb30r+vTpU6jdAwAAAAAlqGAF5EMPPRS1tbWF2h0AAAAA\n0AkU7CnYykcAAAAA4L0K+hqQAAAAAADvpoAEAAAAAFKjgAQAAAAAUpNqAXnrrbemuXsAAAAAoMil\nWkBu3749zd0DAAAAAEUu1QLyK1/5Spq7BwAAAACKXEELyFWrVsXChQsj4sijHzdt2lTI3QMAAAAA\nJaZgBeSXv/zlWLZsWfz3f//3kR2Xl8f8+fMLtXsAAAAAoAQVrIC8//7746GHHooePXpERMTZZ58d\ne/fuLdTuAQAAAIASVLAC8gMf+EBUVFQc9bkkSQq1ewAAAACgBFUWakcDBw6MxsbGKCsriwMHDsTC\nhQujvr6+ULsHAAAAAEpQwQrI//zP/4w5c+bEpk2bokePHjFlypS48847C7V7AAAAAKAEFayA7Nu3\nb6xZsyb2798fSZLkXgsSAAAAAOi6CvYakJdeemn88Ic/jKqqKuUjAAAAABARBSwgp0+fHt/4xjdi\nwIAB8aUvfSmef/75Qu0aAAAAAChRBSsg58yZEz/72c+isbExPvCBD8Sf/dmfxaRJkwq1ewAAAACg\nBBWsgHzHgAEDYsSIEVFXV5faoyCXL18e5eXl8cADD0RExK5du2LatGlRV1cXo0aNisbGxtzXvvnm\nm3H55ZdHbW1tDBs2LFatWpXbliRJXH311TFkyJCoq6uLJUuWpJIXgK7N3AKglJhbABRawd6EZv36\n9bF8+fJYuXJljBs3LubOnRv3339/oXaf09zcHMuWLYsJEybkPnf99dfHhAkT4pFHHol169bFjBkz\noqmpKSoqKmLRokVRVVUVL774YjQ1NcX48ePjggsuiJ49e8Ydd9wRzz33XLz00kvx2muvRUNDQ1xw\nwQUxfPjwgucGoGsytwAoJeYWAGko2CMgP/3pT0e/fv1iw4YN8fDDD8dll10W3bt3L9TuI+LIX9Cu\nvPLKuPnmm4/a91133RULFiyIiIixY8dGv3794vHHH4+IiJUrV+a2DRo0KM4///y49957c983b968\niIjo2bNnzJo1K37wgx8UNDMAXZe5BUApMbcASEvBHgH53qdbHzp0KB588MG45JJLCvVPxI033hif\n+MQnoqGhIfe5PXv2xMGDB6NPnz65zw0cODBaWloiIqKlpSUGDhyY2zZo0KA2tz355JMFy1toSXI4\n3nrrreNua21tjQIu5ymRr31OlK+Ys0XIlw/52ud4+aqqqjJKc3KKZW6daH2zdOR36w//LTbynbpi\nzhYhX3vJd2rMrT9sK9W5VWjF+ruahq50rBGOt7PrKsebxtwq+L3K559/Pr773e/G7bffHv379y9Y\nAfnMM8/EqlWrjnq9ka7mwIGDsW3btja+oqbDshyPfO3Tdr5izhYhX9vka5/35quoqIjBgwdnmCg/\nxTS3Xn755Th06FDWMY7rlVdeyTpCm+Q7dcWcLUK+9pIvf+bWySvmuVVoxfS7mraudKwRjrez68zH\nm9bcKkgBuX///li5cmUsW7Ystm7dGm+++Wb84he/iGHDhhVi9xER0djYGM3NzVFbWxtJksTOnTvj\nqquuin/+53+OysrKePXVV3N/lWtqaorq6uqIOPLXuebm5ujbt29u29SpUyMiorq6Opqbm2P8+PHH\nfF8x6tatMgYMGHDcba2trdFmf9AB5GufE+Ur5mwR8uVDvvZpK18xK6a59bGPfSyNQ2yX1tbWeOWV\nV6Jv374Ff8mWQpDv1BVztgj52ku+zsvc6lhd6Xe1Kx1rhOPt7Lra8RZSuwvIefPmxerVq+OTn/xk\nXH/99TFt2rTcO6AV0oIFC3KvLRIRMWXKlPjiF78Yf/mXfxm/+tWvYunSpXHDDTfE2rVr4+WXX47J\nkydHRMTMmTPjlltuiXPPPTe2bt0ajz/+eCxdujQiIi677LL4zne+EzNnzozXX389Vq5cGQ8//HBB\ncxdSWVl5UT99Q772KeZ8xZwtQr72ki8dxTS3ivnn1717d/naoZjzFXO2CPnaS77Ox9zKRlf6Xe1K\nxxrheDu7rna8hdDuAnLFihUxduzYmD9/fkydOjXKysqirKysENnaVFZWFkmSRETE17/+9Zg9e3bU\n1dXFaaedFnfeeWdUVFRERMR1110Xc+fOjSFDhkRlZWUsWbIkevXqFRERs2fPjnXr1kVtbW2Ul5fH\ntddeGyNGjEg9OwBdj7kFQCkxtwAopHYXkDt27IiVK1fGV7/61bjqqqviiiuuiAMHDhQiW5t++tOf\n5v6/T58+8aMf/ei4X/fBD34wVqxYcdxt5eXlsXjx4li8eHEqGQHgHeYWAKXE3AKgkMrbu4MPfehD\n8Td/8zfx85//PNasWRNvvfVWtLa2xsSJE+O//uu/CpERAAAAAChR7S4g3+2cc86JRYsWxfbt2+Pv\n/u7vivr1FAEAAACA9BW0gHxHZWVlXHrppQpIAAAAAOjiUikgAQAAAAAiFJAAAAAAQIoUkAAAAABA\nahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBq\nFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoU\nkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQ\nAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAA\nAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAA\nAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAA\nAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoqsw4AAAAdqVu3/tHSUhVlZcX3t/gk\nqYoDB2qipaVSvlNQjPkqKpIYPDjJOgYAZEoBCQBAl7JvX7eYNOmMrGPQRfTufTg2b/591jEAIFPF\n8WdBAAAAAKBTUkACAAAAAKnxFGwAAAAATkkxv7ZyoRXbaw2ffnoSffuWxusMKyABAAAAOCVeWzk7\na9f+vmQKyOzrWgAAAACg0/IISAAAACA1nqKbrVJ6mi6dlwISADq5LVvK4tChsqxjHKUYb5y/m3yn\nLkmqonv3/lnHAKCIeIputkrpabp0XgpIAOjkLrroQ7F7d3GVVHRuTzxxMCIOZh0DAIAi4d4IAAAA\nAJAaBSQAAAAAkBpPwQYAAKBoFONrFxdaMb6WrzcqAdKkgAQAAKBoeO3ibHijEiBNruoAAAAAQGoU\nkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQ\nAAAAAEBqFJAAAAAAQGpKpoB8++23Y8aMGTFs2LBoaGiIqVOnxubNmyMiYteuXTFt2rSoq6uLUaNG\nRWNjY+773nzzzbj88sujtrY2hg0bFqtWrcptS5Ikrr766hgyZEjU1dXFkiVLOvy4AOiczC0ASom5\nBUCaSqaAjIiYP39+PPfcc7Fhw4aYPn16XHnllRER8aUvfSkmTJgQL7zwQnzve9+Lyy+/PA4dOhQR\nEYsWLYqqqqp48cUXY82aNfG3f/u38dprr0VExB133BHPPfdcvPTSS/Hkk0/GN7/5zXj22WczOz4A\nOhdzC4BSYm4BkJaSKSBPO+20uPjii3Mfn3feedHc3BwREXfffXcsWLAgIiLGjh0b/fr1i8cffzwi\nIlauXJnbNmjQoDj//PPj3nvvjYiIu+66K+bNmxcRET179oxZs2bFD37wgw47JgA6L3MLgFJibgGQ\npsqsA5yqm266KS655JLYs2dPHDx4MPr06ZPbNnDgwGhpaYmIiJaWlhg4cGBu26BBg9rc9uSTT3bQ\nEZy8JDkcb7311nG3tba2RtbLKV/7nChfMWeLkC8f8rXP8fJVVVVllObUdcW5Rdd25PpRfIrhugal\nwNzqetq6TdgerrvZS2ttI6xv1tJa2zTub5Xkb8nChQtj8+bNceutt8b+/fuzjtNhDhw4GNu2bWvj\nK2o6LMvxyNc+becr5mwR8rVNvvZ5b76KiooYPHhwholOXledW3Rtr7zyStYR2pDtdQ2KnbnVNb3/\nbcL2cN3NUrprG2F9s5PG2qZ1f6vkCshFixbFfffdFz/5yU+iqqoqqqqqorKyMl599dXcX+Wampqi\nuro6Io78da65uTn69u2b2zZ16tSIiKiuro7m5uYYP378Md9XjLp1q4wBAwYcd1tra2ukej3Jg3zt\nc6J8xZwtQr58yNc+beUrBV15btG19e3bN7p37551jGMUw3UNipm51XWldZvLdTd7ad6etr7ZKqX7\nSiVVQN54442xYsWK+MlPfhIf/vCHc5+/7LLLYunSpXHDDTfE2rVr4+WXX47JkydHRMTMmTPjlltu\niXPPPTe2bt0ajz/+eCxdujT3fd/5zndi5syZ8frrr8fKlSvj4YcfzuTY8lFWVolr6OUAABHWSURB\nVF7UTzuUr32KOV8xZ4uQr73kS09Xn1t0bd27dy/Zcxe6KnOrayvl21y0zdp2XqW0tiVTQG7fvj2u\nvfba+KM/+qOYMmVKJEkSVVVV8Ytf/CK+/vWvx+zZs6Ouri5OO+20uPPOO6OioiIiIq677rqYO3du\nDBkyJCorK2PJkiXRq1eviIiYPXt2rFu3Lmpra6O8vDyuvfbaGDFiRJaHCUAnYW4BUErMLQDSVDIF\nZL9+/eLw4cPH3danT5/40Y9+dNxtH/zgB2PFihXH3VZeXh6LFy+OxYsXFywnAESYWwCUFnMLgDSV\nZx0AAAAAAOi8FJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBq\nFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoU\nkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQ\nAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAA\nAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAA\nAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAA\nAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAA\nQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABA\nahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBq\nFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGoU\nkAAAAABAahSQAAAAAEBqFJAAAAAAQGoUkAAAAABAahSQAAAAAEBqFJAAAAAAQGq6fAH50ksvxaRJ\nk2Lo0KExfvz4ePbZZ7OOBAAnZG4BUErMLQAiIiqzDpC1+fPnx4IFC2L27NmxatWqmDNnTvzqV7/K\nbU+S5Jjv6dXrcEdGzKmoODbL0dsjevfOJtuRf1++9mgrXzFnO7Jdvrb/ffna4/3yRRz/Wt1ZldLc\nouuqqMg6Qduyvq7RtRzvGmxumVvFKJ/bXKe+b9fdLKW5tkf2b32zkvbavqMQc6ss6UrT7z127doV\ntbW1sWfPnigvP/Jg0LPPPjueeOKJGDx4cEREHDx4MPbt25dlTADeR48ePaKysvP/Tc3cAugczC1z\nC6CUFGJudemnYG/bti3OPvvs3DCMiKiuro6WlpYMUwHA8ZlbAJQScwuAd3TpAhIAAAAASFeXLiAH\nDBgQO3bsiMOH//BaBS0tLVFdXZ1hKgA4PnMLgFJibgHwjs7/wiNt+MhHPhJjxoyJO+64I+bMmRP3\n3HNPDBgwIPd6JBER5eXl0aNHj6O+r6ysLMrKyjo6LgBx5AWQ3/vyxe9+aldnZm4BlB5zy9wCKCVp\nza0u/SY0EREvvPBCfOYzn4ndu3fHGWecEcuXL48RI0ZkHQsAjsvcAqCUmFsARCggAQAAAIAUdY3H\n/gMAAAAAmVBAAgAAAACpUUDm4aWXXopJkybF0KFDY/z48fHss89mHekoX/jCF6KmpibKy8vj6aef\nzjrOUd5+++2YMWNGDBs2LBoaGmLq1KmxefPmrGMdZerUqVFfXx8NDQ0xefLkeOqpp7KOdIzly5dH\neXl5PPDAA1lHOcagQYNi+PDh0dDQEGPGjIm7774760g5ra2tcfXVV0ddXV2MHj06rrjiiqwj5ezZ\nsyf3MxszZkwMHTo0unfvHq+//nrW0XJ++MMfxsc//vFoaGiIUaNGxe233551pKOsWbMmxo0bF/X1\n9TFx4sSiu/51lHxn1EMPPRTDhw+PoUOHxsyZM2Pv3r1Fk+/Xv/51TJ48Oc4555wYNWpUXHnllfH2\n228XTb53+8xnPhPl5eXxu9/9rmiybdu2LaZPnx7Dhg2LkSNHxpIlS1LPdjL5/u3f/i1GjBgRDQ0N\nMXHixFi7dm3q2fK9bZTVeZFPvizPi5O9bdmR50VE/vmyOjfyzZfFuVEMin1uFVo+x9vc3ByVlZUx\nZsyY3O3DrVu3ZpC2fYr92ltI+RxrZ1nXiJO7X1/q65vvsXam9c23E2n32ia8rwsuuCC5/fbbkyRJ\nknvuuScZN25cxomO1tjYmGzfvj2pqalJNm7cmHWco7z11lvJI488kvv45ptvTs4///wMEx3rjTfe\nyP3/vffem4wePTrDNMdqampKJk6cmEycODG5//77s45zjJqamuTpp5/OOsZxXXPNNcnnP//53Mev\nvPJKhmnatmjRomT69OlZxzhKr169kl//+tdJkhz5Payqqkr27t2bcaojXnvttaR3797Js88+myTJ\nkevgyJEjM06VjXxm1N69e5O+ffsmL7zwQpIkSfK5z30uue6664om34svvphs2rQpSZIkOXz4cDJr\n1qzkK1/5StHke8fq1auTefPmJeXl5UfNjqyzffzjH09WrVqV+/jVV19NPVu++Z566qlk4MCByf79\n+5MkSZLvf//7ybnnnpt6tnxuG2V5XuSTL8vz4mRuW3b0eXEy+bI6N/LJl9W5UQyKfW4VWj7H29TU\nlPTs2bOjoxVcsV97CymfY+0s65ok+d+v7wzrm++xdqb1zacTKcTaKiDfx6uvvpqcccYZyaFDh3Kf\n++hHP5ps3rw5w1THN2jQoKIrIN9r3bp1SU1NTdYxTmj58uVJQ0ND1jFyDh8+nPzJn/xJsn79+uT8\n888vygKyWH/v9u3bl5x++unJ73//+6yj5GX48OHJAw88kHWMo5x11llJY2NjkiRJsnHjxqR///7J\ngQMHMk51xLp165KhQ4ce9bnTTz892bBhQ0aJspHvjLr77ruTadOm5T7+zW9+k/Tv379o8r3XokWL\nks9+9rNpxzupfDt37kzGjRuX7N27NykrK0u9aMk326OPPppMmjQp1SzHk2++jRs3Jv369cv9Aejm\nm29OLr300g7L2daMyuq8eLeTmaEddV682/vl6+jz4r3aypfVufFubeXL+tzISrHPrULL93ibmpqS\nM888s6PjpabYr72F1NaxdrZ1fbcT3a/vbOubJCc+1s66vifqRAqxtp6C/T62bdsWZ599dpSX/+FH\nVV1dHS0tLRmmKl033XRTXHLJJVnHOMacOXOiuro6brjhhrjjjjuyjpNz4403xic+8YloaGjIOkqb\nZs+eHaNHj4558+bF//3f/2UdJyIiNm/eHL169Yp//dd/jXHjxsXkyZPjpz/9adaxjuvnP/95vP76\n6/Hnf/7nWUc5yooVK2LGjBkxaNCg+OQnPxm33XZbVFZWZh0rIiJqa2tj9+7d8ctf/jIiIh544IHY\nu3dvNDU1ZRusg+U7o1paWmLgwIG5jwcNGhQ7d+6Mw4cPF0W+d9u3b18sW7asQ2bFyeS76qqr4pvf\n/Gb06NEj9Vwnk+03v/lNnHXWWfHpT386xowZE5deemmHPP0n33yjRo2Ka665JmpqaqK6ujr+4z/+\nIxYvXpx6vnxkdV6cio48L05GR58XJyOrcyNfxXxupKnY51ahncyc2b9/f4wbNy7Gjh0b//Iv/xJJ\nknRk1A7TWdY2X511XU90v74zrm9bHUZnWt/360QKsbYKSDrMwoULY/PmzbFw4cKsoxzjtttui5aW\nlvja174Wf//3f591nIiIeOaZZ2LVqlXxj//4j1lHaVNjY2Ns3Lgx1q9fH7179445c+ZkHSkiIg4e\nPBjNzc0xcuTIWLt2bdx0000xa9as2LVrV9bRjvG9730vrrjiiqNunGbt0KFD8bWvfS3uu+++aGpq\nikcffTT++q//Ovbs2ZN1tIiIOP300+Oee+6J66+/PsaNGxePPvponHPOOUVTkHJqDhw4EJ/61Kfi\n4osvjunTp2cdJ+e73/1uDBw4MCZPnpx1lGMcPHgwHnvssbjhhhti/fr18ad/+qfxV3/1V1nHymlq\naorVq1fHli1boqWlJa655pqiylcKnBenxrlBKfnYxz4W27dvj7Vr18ajjz4ajY2N8e///u9Zx6Kd\nOuu6FvP9+kJr61g72/p2RCdSPPd2i9SAAQNix44dR7W6LS0tUV1dnWGq0rNo0aK47777Ys2aNVFV\nVZV1nBOaPXt2PPbYY/Haa69lHSUaGxujubk5amtro6amJn75y1/GVVddFd/+9rezjnaU/v37R0RE\nRUVFXHPNNfG///u/GSc6orq6OioqKuLyyy+PiIj6+vqoqamJTZs2ZZzsaPv27Yu77ror5s6dm3WU\nozz11FOxY8eOmDRpUkREjB07Nvr37x8bNmzIONkfTJ48OX72s5/F2rVrY9GiRbF9+/Y455xzso7V\nofKdUdXV1Uc9OnTr1q3HPCIjy3wRR8qCWbNmRb9+/eJb3/pWqrlONt9jjz0W999/fwwePDhqamoi\n4sijlzZu3Jh5turq6mhoaIhhw4ZFxJE5tmHDhjh06FBq2U4m36pVq2LUqFHRt2/fiIj47Gc/G088\n8UQcPHgw1Xz5yOq8OBlZnBf5yuK8OBlZnRv5KuZzI03FPrcKLd/j7datW5x11lkREXHmmWfG3Llz\no7GxsUOzdpTOsrb56Izr+n736zvT+r7fsXbG9Y04cSdSiLUtvd+CDvaRj3wkxowZk3sI6j333BMD\nBgyIwYMHZ5ysdNx4442xYsWK+PGPfxwf/vCHs45zlDfeeCN27NiR+/i+++6Ls846K3r27JlhqiMW\nLFgQ27dvjy1btsTWrVvjvPPOi1tvvTXmz5+fdbSc/fv3xxtvvJH7+H/+53+K5univXv3jgsvvDDW\nrFkTEUcukE1NTTF8+PCMkx1txYoVUV9fH3V1dVlHOco7N5ife+65iDjyDo5btmyJoUOHZpzsD3bu\n3Jn7/69+9atx4YUXdrlrc74z6uKLL44NGzbECy+8EBERS5cujU996lNFk+/QoUMxa9as6N27d9xy\nyy2p5zrZfN///vejubk5dz2OiNi0aVOMHj0682zTpk2L3/72t/Hyyy9HRMTDDz8cw4cPj4qKitSy\nnUy+wYMHxxNPPBH79u2LiIgHH3wwhg4dWhSPVs7qvMhXVudFvrI4L05GVudGvor53EhTsc+tQsv3\neHft2pUrn99+++1YvXp10dymLrTOsrb56Gzrms/9+s6yvvkca2dZ33w7kYKsbftenrJreP7555MJ\nEyYkdXV1ybhx43LvClss5s+fn/Tv3z/p1q1b8tGPfjSpra3NOlLOb3/726SsrCwZMmRI0tDQkNTX\n1yfnnXde1rFympubk3PPPTcZNWpUMnr06OSiiy4qyjdUSZIkmTJlStG9Cc2WLVuShoaGZPTo0cmo\nUaOSSy65JGlubs46Vs6WLVuSKVOmJH/8x3+c1NfXJ/fee2/WkY4xadKk5Lbbbss6xnGtWLEi97Mb\nNWpUsmLFiqwjHWXevHnJsGHDktra2uSKK67o8Dc/KBbvnVHPPPNMkiRJ8uUvfzn59re/nfu6Bx98\nMPfzmjFjRvK73/2uaPLdeeedSXl5eVJfX5/U19cnDQ0Nyec+97miyfdeHfVuv/lm+/GPf5z72U2e\nPLnDbqfkm+8f/uEfkmHDhiX19fXJpEmTkvXr16ee7US3jYrlvMgnX5bnRb4/v3fryHfBzjdfVudG\nvvmyODeKQbHPrULL53hXr16djBw5Mqmvr09GjhyZfP7zn09aW1uzjH1Kiv3aW0j5HGtnWdckaft+\nfWdb33yPtbOs7/E6kaeffjpJksKvbVmSlPCrZAIAAAAARc1TsAEAAACA1CggAQAAAIDUKCABAAAA\ngNQoIAEAAACA1CggAQAAAIDUKCABAAAAgNQoIAEAAACA1CggAQAAAIDUKCABAAAAgNQoIAEAAACA\n1Pw/GvU7r2g76LEAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fc74c0c58d0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(3,3,figsize=(14,20), facecolor='white')\n",
"fig.subplots_adjust(hspace=0.)\n",
"for i, author in enumerate(['Clancy', 'Ghost', 'Greaney']):\n",
"\n",
" # chapters in book\n",
" df_ = ave_chapters.loc[author]\n",
" ax[0,i].bar([x for x in range(len(df_.index))], df_['num_chapters'])\n",
" ax[0,i].set_xticks([x+0.4 for x in range(len(df_.index))])\n",
" ax[0,i].set_xticklabels(df_.index, rotation = 90)\n",
" df_ = book_words.loc[(author)]\n",
" ax[1,i].bar([x for x in range(len(df_.index))], df_['book_words'])\n",
" df_ = ave_chapter_words.loc[(author)]\n",
" ax[2,i].bar([x for x in range(len(df_.index))], df_['Ave words per chapter'])\n",
"\n",
"ax[0,0].set_ylim([0,100]); ax[0,1].set_ylim([0,100]); ax[0,2].set_ylim([0,100]);\n",
"ax[1,0].set_ylim([0,500000]); ax[1,1].set_ylim([0,500000]); ax[1,2].set_ylim([0,500000]);\n",
"ax[2,0].set_ylim([0,12000]); ax[2,1].set_ylim([0,12000]); ax[2,2].set_ylim([0,12000]);\n",
"\n",
"ax[0,0].set_ylabel('Number of chapters per book')\n",
"ax[1,0].set_ylabel('Number of words per book')\n",
"ax[2,0].set_ylabel('Ave. words per chapter per book')"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>title</th>\n",
" <th>author</th>\n",
" <th>words</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1 Without Remorse</td>\n",
" <td>Clancy</td>\n",
" <td>38</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>5 The Cardinal of the Kremlin</td>\n",
" <td>Clancy</td>\n",
" <td>29</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>6 Clear and Present Danger</td>\n",
" <td>Clancy</td>\n",
" <td>31</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>7 The Sum of All Fears</td>\n",
" <td>Clancy</td>\n",
" <td>44</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>8 Debt of Honor</td>\n",
" <td>Clancy</td>\n",
" <td>48</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>Executive Orders</td>\n",
" <td>Clancy</td>\n",
" <td>49</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>Patriot Games</td>\n",
" <td>Clancy</td>\n",
" <td>27</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>Red storm rising</td>\n",
" <td>Clancy</td>\n",
" <td>44</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>The Hunt for Red October</td>\n",
" <td>Clancy</td>\n",
" <td>18</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>Commander-In-Chief</td>\n",
" <td>Ghost</td>\n",
" <td>82</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>Tom Clancy Support and Defend</td>\n",
" <td>Ghost</td>\n",
" <td>51</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>Back Blast_ A Gray Man Novel</td>\n",
" <td>Greaney</td>\n",
" <td>79</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>Ballistic</td>\n",
" <td>Greaney</td>\n",
" <td>57</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>Dead Eye</td>\n",
" <td>Greaney</td>\n",
" <td>58</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" title author words\n",
"0 1 Without Remorse Clancy 38\n",
"1 5 The Cardinal of the Kremlin Clancy 29\n",
"2 6 Clear and Present Danger Clancy 31\n",
"3 7 The Sum of All Fears Clancy 44\n",
"4 8 Debt of Honor Clancy 48\n",
"5 Executive Orders Clancy 49\n",
"6 Patriot Games Clancy 27\n",
"7 Red storm rising Clancy 44\n",
"8 The Hunt for Red October Clancy 18\n",
"9 Commander-In-Chief Ghost 82\n",
"10 Tom Clancy Support and Defend Ghost 51\n",
"11 Back Blast_ A Gray Man Novel Greaney 79\n",
"12 Ballistic Greaney 57\n",
"13 Dead Eye Greaney 58"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_ = pd.DataFrame()\n",
"df_['title'] = ave_chapters.index.get_level_values(level='title')\n",
"df_['author'] = ave_chapters.index.get_level_values(level='author')\n",
"df_['words'] = ave_chapters.num_chapters.values\n",
"df_"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA7sAAAK6CAYAAAD4sUvnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xt0VOW9//HPzARy4aLBJlqDSYiZkVsioUiMSAMRiaFW\npIBQaoQGMdECdlksaKmIBcXKwRaMQUS8IEcSS/FyEFmAGlKrQgREEJoQmKQVbHLkTkIkk/n9wWF+\npqBkwuzsycz7tZYLZj8z+/l+ZjeUL8++WNxut1sAAAAAAAQQq9kFAAAAAADgazS7AAAAAICAQ7ML\nAAAAAAg4NLsAAAAAgIBDswsAAAAACDg0uwAAAACAgEOzCwAAAAAIODS7AAAAAICAQ7MLAAAAAAg4\nNLsAAAAAgIBjerO7devWc7atXr3ahEoAAAAAAIHC9GY3OztbVVVVntfr1q3Tww8/bGJFAAAAAIC2\nzvRmd/Hixbr99tt17NgxlZSUaPLkyVqzZo3ZZQEAAAAA2jCL2+12m11EUVGRFixYoEOHDuntt9/W\nNddcY3ZJAAAAAIA2zLRmd+HChU1ev/LKK7r22mt17bXXSpKmTp1qRlkAAAAAgAAQYtbE27Zta/I6\nKSlJjY2N2rZtmywWi0lVAQAAAAACgV+cxgwAAAAAgC+ZtrJ7VkNDg55++mmtX79ekpSZman7779f\nISGmlwYAAAAAaKNMX9mdOnWqKioqNGnSJFksFi1dulTdunU755peAAAAAACay/RmNzk5Wdu3b5fV\neuYpSA0NDerbt6927NhhZlkAAAAAgDbM9Ofsut1uNTY2NnnNZcQAAAAAgIth+oWxt9xyi4YOHaoJ\nEyZIOvMIoqysLHOLAgAAAAC0aaafxtzY2KjnnntOGzdulCQNGTJE99xzj+e0ZgAAAAAAvGV6s3vW\n2TJ4xi4AAAAA4GKZvnx64MABDRs2TBEREYqIiNCtt96qgwcPml0WAAAAAKANM73Zzc3N1Y033qiD\nBw/q4MGDuvHGG3XPPfeYXRYAAAAAoA0z/TTmPn36aPv27RfcBgAAAABAc5m+sut2u/XVV195Xn/1\n1Vc8eggAAAAAcFFMf/TQtGnTlJKS4nnc0LvvvqunnnrK5KoAAAAAAG2Z6acxS9LOnTv1wQcfSJIG\nDx6sXr16mVsQAAAAAKBNM31lV5K6deumI0eOyGKxKD4+3uxyAAAAAABtnOnX7G7cuFEJCQmaOnWq\nJk+erKuvvlrvv/++V/u4//771a1bN1mtVu3YscOzvaamRllZWXI4HEpOTlZJSYlnrK6uTuPGjZPd\nblf37t21atUqn2UCAAAAAJjL9JXdX//613rrrbeUmpoqSdq8ebMmTpyozz//vNn7GD16tKZPn64b\nb7yxyfYZM2YoLS1Na9euVWlpqUaMGCGn0ymbzab58+crLCxM5eXlcjqdSk1NVUZGhiIjI5vso7Gx\nUY2NjU22WSwWWSyWFiYGAAAAAHjD7XafcyNjq9Uqq/W7129Nb3atVqun0ZWk/v37y2azebWPs03u\nf4YvKipSRUWFJKlfv36KiYlRcXGxMjIyVFhYqGXLlkmS4uPjNXjwYK1evVo5OTlN9tHY2KiTJ096\nnQsAAAAAYJwOHTp8b7Nr+mnMQ4cO1UsvveTp1F955RUNHTr0ovd76NAhNTQ0KDo62rMtLi5OVVVV\nkqSqqirFxcWddwwAAAAA0LaZtrIbGRkpi8Uit9uto0ePKjc3V5J0+vRpXXrppfrjH/9oVmkAAAAA\ngDbOtGZ3+/bthu6/S5cuCgkJUXV1tWd11+l0KjY2VtKZldzKykpdfvnlnrHMzExDawIAAAAAtA7T\nmt1vn0JslNGjR6ugoECzZs3Sli1bdODAAaWnp0uSRo0apcWLF6t///7av3+/iouLVVBQcM4+zncj\nqgudG95StbW1Ki8vl91uV0REhM/37++COT/ZyU724EF2spM9eJCd7GT3nfPdS+lCNw02/QZVvpCX\nl6c1a9bo3//+tzIzM9WpUyeVlZVp3rx5ys7OlsPhUGhoqFasWOG5+dWDDz6onJwcJSYmKiQkRPn5\n+erSpcs5+z7fF3ihu361lMVikcvlksViMWT//i6Y85Od7GQPHmQnO9mDB9nJTnbj5/s+AdHsLl68\n+Lzbo6OjtW7duvOORUREaOXKlUaWBQAAAAAwian/1OByubRq1SozSwAAAAAABCBTm12bzaa5c+ea\nWQIAAAAAIACZfhJ537599be//c3sMgAAAAAAAcT0a3Y//vhjvfTSS0pISFDHjh0927du3WpiVQAA\nAACAtsz0Zjc/P9/sEgAAAAAAAcb0Zjc9PV2nT59WVVWVrr76arPLAQAAAAAEANOv2f3ggw8UFxen\nwYMHS5K2bNmiO++80+SqAAAAAABtmenN7owZM1RSUqLLLrtMknTddddp27ZtJlcFAAAAAGjLTG92\nXS7XOacvt2/f3qRqAAAAAACBwPRmNywsTCdOnJDFYpEkff755woPDze5KgAAAABAW2b6Dap+//vf\na+jQofrXv/6lO++8Uxs2bNB///d/m10WAAAAAKANM73ZHTp0qOx2u95991253W7Nnj2buzIDAAAA\nAC6K6c2uJEVHRyspKUkWi0VXXHGF2eUAAAAAANo406/Z3bhxoxISEjR16lRNnjxZV199td5//32f\nzvHOO+/oRz/6kVJSUpScnKxXXnlFklRTU6OsrCw5HA4lJyerpKTEp/MCAAAAAMxh+srur3/9a731\n1ltKTU2VJG3evFkTJ07U559/7rM5srOztWnTJvXq1UuVlZXq3r27Ro4cqenTpystLU1r165VaWmp\nRowYIafTKZvN5rO5AQAAAACtz/Rm12q1ehpdSerfv7/Pm02r1arDhw9Lko4ePaof/OAHat++vV5/\n/XVVVFRIkvr166eYmBgVFxcrIyPDp/MDAAD4q7Kqap38psHQOWyXXqmyg0clHTVsjg7tQ+SIjTZs\n/wDaHtOb3aFDh+qll17S+PHjJUnLly/X0KFDfTrHypUrNWLECHXo0EFHjhzRX//6Vx0/flwNDQ2K\njv7/fyjGxcWpqqrqgvurra31PCrJl+rq6pr8GmyCOT/ZyR5syE72YOPP2U9+06B7l/vujDqzFGQn\n6eTJk2aX0YQ/H3ejkZ3svuZ2u73+jMXdkk/5UGRkpI4ePap27dpJkk6fPq1LLrnkTHEWiw4dOnRR\n+3e5XBoyZIjmzJmjAQMGqLS0VLfddpu2b9+u2NhYnTp1yvPeMWPGKCsrSxMmTPBsa2xs1PHjx5vs\nc9++fXK5XBdVFwAAgD+wXXplwDS7riMHzC4DgEFsNpsSEhKabOvUqZOs1u++DZXpK7vbt283fP8H\nDx7UgAEDJJ05Xblr167asWOH2rVrp+rqas/qrtPpVGxs7AX3abfbDVvZdTqdio+PV3h4uM/37++C\nOT/ZyU724EF2svtb9jOnFweGHj16mF1CE/583A8eP6g6V62xk7gl+f6vzE2E2yL0w04/NHYSL/nz\ncTeakdndbrfXC46mN7txcXGG7v+qq67SwYMHtWfPHnXv3l179+7Vvn371L17d40ePVoFBQWaNWuW\ntmzZogMHDig9Pf2C+4yIiPjef0G4WOHh4erQoYNh+/d3wZyf7GQPNmQne7Dxz+yB0+z633d7hj8e\n97ojtfrdlofMLuOizb3uCb/7bs/yx+PeWozIfr4zbi/E9GbXaNHR0VqyZInuuOMO2Ww2NTY2Kj8/\nX127dtW8efOUnZ0th8Oh0NBQrVixgjsxAwAAAEAACPhmVzpzLe6YMWPO2R4dHa1169aZUBEAAAAA\nwEjGnYsLAAAAAIBJTG92n3vuOR09euZakV/96lfq16+fNm3aZHJVAAAAAIC2zPRmNz8/X5dccok+\n/PBD7dy5U3PnztW0adPMLgsAAAAA0IaZ3uyGhJy5bPi9997TXXfdpczMTDU0NJhcFQAAAACgLTO9\n2bVarSosLFRhYaGGDBkiSfrmm29MrgoAAAAA0JaZ3uzm5+frtdde06RJkxQXF6eysjJlZGSYXRYA\nAAAAoA0z9dFDLpdLf/3rX/XGG294tjkcDi1cuNDEqgAAAAAAbZ2pK7s2m03vv/++mSUAAAAAAAKQ\n6acxDxs2THPnztWBAwd07Ngxz38AAAAAALSUqacxS9Jjjz0mSfr9738vi8Uit9sti8Uil8tlcmUA\nAAAAgLbK9Ga3sbHR7BIAAAAAAAHG9NOYJenTTz/V8uXLJUlHjhzRwYMHTa4IAAAAANCWmd7sPvvs\ns8rJydGjjz4qSfr66681btw4c4sCAAAAALRppje7S5Ys0ccff6zOnTtLkq6++mrV1NT4dI5vvvlG\nU6ZMkcPh0LXXXqu77rpLklRTU6OsrCw5HA4lJyerpKTEp/MCAAAAAMxh+jW7oaGhCg8Pb7ItJMS3\nZU2fPl1Wq1VlZWWSpOrqaknSjBkzlJaWprVr16q0tFQjRoyQ0+mUzWbz6fwAAAAAgNZlerMbFRWl\nsrIyWSwWSdJLL72k2NhYn+2/trZWy5Yt05dffunZFh0dLUkqKipSRUWFJKlfv36KiYlRcXGxMjIy\nfDY/AAAAAKD1md7s/ulPf9LPf/5z7dmzR1dddZU6d+6st99+22f7r6ioUJcuXTR37lxt2LBBERER\nmjVrlvr06aOGhgZP4ytJcXFxqqqquuA+a2trPc25L9XV1TX5NdgEc36ykz3YkJ3swSaYs7emkydP\nml1CExz31sFx9x9GZne73V5/xvRmNzExUZ988on+8Y9/yO1265prrvHpacQNDQ2qrKxU79699cQT\nT2j79u0aOnSodu7c2aIvTJLKy8sNfQ6w0+k0bN9tQTDnJ3twIntwIntw8sfstkuvNLsEn9m9e7fZ\nJZyXPx730Cvam12Cb7g57v7IiOw2m00JCQlefcb0Zvf222/XG2+8oR49epyzzRdiY2Nls9k8d3ju\n06eP4uPj9fnnn6tdu3aqrq72rO46nc5mnUJtt9sNW9l1Op2Kj48/5zrmYBDM+clOdrIHD7KT3d+y\nlx08anYJPvPtv0/6A38+7vuOVJhdgm9YOO7+xMjsbrfb6wVH05vd8502fPY6Wl+47LLLdNNNN+nd\nd99VVlaW9u/fL6fTqZ49e2r06NEqKCjQrFmztGXLFh04cEDp6ekX3GdERISsVuNuZB0eHq4OHToY\ntn9/F8z5yU72YEN2sgcb/8weOM2u/323Z/jlcT9idgG+43ff7f/xx+O+9997VddQa+gcoVe018H6\nA1K9b/drlVVdO17l1WdMa3afe+45LV68WGVlZerbt69n+9GjR9WrVy+fzlVQUKCJEydq+vTpstls\nWrJkiX74wx9q3rx5ys7OlsPhUGhoqFasWMGdmAEAAIAA1loN374jFYb+o0J4SIQSL0/06jN1DbX6\n3ZaHDKrIWJ3addKzNz7n1WdMa3ZvueUWXXPNNbr33nv19NNPe7Z37txZycnJPp2rW7dueu+9987Z\nHh0drXXr1vl0LgAAAAD+qy03fN8297onzC7B75nW7MbFxSkuLs5zQfm//vUvWSwWxcTEmFUSAAAA\nACBAGHfhaTPt2LFDPXr0UFJSkpKSktSzZ0999tlnZpcFAAAAAGjDTG92J06cqMcee0yHDx/WoUOH\n9Nhjj+nuu+82uywAAAAAQBtmerN76tQpjR492vN61KhRqq/38a27AAAAAABBxfRmt2/fvvrggw88\nr4uLi/WjH/3IvIIAAAAAAG2e6c/Z3bp1q1599VXFx8dLkucZuGcfR7R161YTqwMAAECgKquq1slv\nGgydw3bplSo7eFRGPs+4Q/sQOWKjDds/0FaZ3uw+88wzZpcAAACAIHTymwbdu/xzs8u4aAXZSWaX\nAPgl05vd9PR0s0sAAHzL4S++kPvECcPnSZBUv2uXjLxLg6VjR0X27GngDAAAwF+Z3uzW1dVp0aJF\n2r59u06dOuXZ/te//tXEqgAEu2Bu+NwnTqhuxEgDK2o94atXmV0CAAAwienN7qRJk9S5c2f9/e9/\n129+8xu99NJL+vGPf2x2WQCCHA0fAABA22b63Zg/++wzPfvss+rcubOmTJmiDz74QJ9++qnZZQEA\nAAAA2jDTm93w8HBJUkhIiE6ePKlOnTqppqbG5KoAAAAAAG2Z6acxd+nSRYcPH9awYcOUmZmpH/zg\nB+ratavZZQEAAAAA2jDTm901a9bIZrPpD3/4g1asWKEjR47orrvuMmSuF198URMnTtQbb7yh2267\nTTU1NbrrrrtUUVGhsLAw5efna+DAgYbMDbRFwXyTJiAYtcbPPD/vAIDWYnqza7PZJEkWi0V33nmn\nYfNUVlZq6dKlSktL82ybMWOG0tLStHbtWpWWlmrEiBFyOp2emoBgx02agOASKD/z/LwDACQ/uGZ3\n69atuuWWW+RwOJSQkOD5z5fcbrfuvvtuPfPMM2rfvr1ne1FRkfLy8iRJ/fr1U0xMjIqLi306NwAA\nAACg9Zm+sjt+/HhNnjxZaWlphq2oLliwQAMHDlRKSopn26FDh9TQ0KDo6GjPtri4OFVVVV1wf7W1\ntbJYLD6vs66ursmvwSaY8wdz9tZ08uRJs0swDdn9Bz/vrYPjHpz87bi3JrIHp2DO3hymN7s2m025\nubmG7X/Xrl1atWqVSkpKfLbP8vJyuVwun+3vPzmdTsP23RYEc35/y+7bcyzMt3v37ma/l+yBw5vs\nrcnfft6lwDr2HPfms116pdkl+Iy3xz2Ys4de0f7Cb2oL3GT3RsBkbybTm90BAwaotLRU/fr1M2T/\nJSUlqqyslN1ul9vt1ldffaV77rlHjz76qEJCQlRdXe1Z3XU6nYqNjb3gPu12u2Eru06nU/Hx8Z5H\nMgWTYM7vr9nrd+0yuwSf6tGjR7PfS/bA4U321uCvP+9SYB17jnvzlR08anYJPuPtcQ/m7PuOVBhU\nSSuzkN0bAZO9mUxrdlNSUmSxWHT69Gk9//zzSkxMVFhYmGd869atPpknLy/Pc12uJA0ePFgPPPCA\nfvrTn2rz5s0qKCjQrFmztGXLFh04cEDp6ekX3Oc3//iHZMDKrlX/96/q+/YZepdKyb/vVBkeHq4O\nHTqYXYYp/C270f87bG3efLdkDxz+9DP1bf728y4F1rH3t+/2LH887lLgNHzef7dBnP2IMXWYgexe\nCKDszWFas/unP/3JlHktFovcbrckad68ecrOzpbD4VBoaKhWrFjRrOuG68b/Ujp82OhSDcWdKgEA\nAAAEMtOa3bMrqKdOnVJoaKjntODGxkZ98803hs373nvveX4fHR2tdevWGTYXAAAAAMAcpj96KCMj\nQ8eOHfO8Pn78uIYMGWJiRQAAAACAts70Zre2tlaXXHKJ5/Ull1yiEydOmFgRAAAAAKCtM73ZbWxs\nbNLcHjt2TA0NDSZWBAAAAABo60x/9NAvfvELDRkyxHPH5MWLF2v8+PEmVwUAAAAAaMtMb3anT5+u\nK664QmvWrJEkTZ48WXfeeafJVQEAAAAA2jLTm11JGj9+PKu58FuHv/hC7la4jjxBUv2uXYY+59Kf\nn68MAAAA+JJfNLuAP3OfOKG6ESPNLsMneL4yAAAAggXNLpqF1U0AAAAAbYlpze769et1880369ix\nY+rcubNZZaCZWN0EAAAA0JaY9uihGTNmSJIGDRpkVgkAAAAAgABl2sru6dOn9eSTT6q6uloLFy48\nZ3zq1KkmVAUACHatcdkGl2wAAGA805rd559/Xi+//LLq6uq0bdu2JmMWi8WkqgAAwS5QLtvgkg0A\nQLAzrdlNTU1Vamqq4uLiNH36dLPKAAAAAAAEINOu2T1r+vTp2rx5sx5//HE9/vjjKi0t9en+6+vr\nNWLECHXv3l0pKSnKzMxURUWFJKmmpkZZWVlyOBxKTk5WSUmJT+cGAAAAAJjD9GZ3yZIlGjVqlKqr\nq1VTU6ORI0dq6dKlPp0jNzdXe/bs0bZt23Tbbbfp7rvvlnSm0U5LS1NZWZmWLVumcePGyeVy+XRu\nAAAAAEDrM73ZfeaZZ/Tpp5/qT3/6k55++mmVlpae94ZVLRUaGqpbbrnF8/r6669XZWWlJOn1119X\nXl6eJKlfv36KiYlRcXGxz+YGAAAAAJjDtGt2vy0qKuq8vzfCn//8Z91+++06dOiQGhoaFB0d7RmL\ni4tTVVWVofP7k5MnT5pdgmnIHpzIHpzIHpz8LXtdXV2TX2EMfzvurYnswSmYszeH6c2u3W7X7373\nO+Xm5ko6c5dmu91uyFyPP/64KioqtGTJEtXW1hoyR1uye/fuZr83wcA6zED25iF74CB78wVSfrL7\nH6fTaXYJ57BdeqXZJfiMt8c9mLOHXtHeoEpamZvs3giY7M1kerO7ePFiTZkyRX379pXFYtGQIUNU\nUFDg83nmz5+vN954Qxs3blRYWJjCwsIUEhKi6upqz+qu0+lUbGysz+f2Vz169Gj2e+t37TKwktZH\n9uYhe+Age/MFUn6y+4+6ujo5nU7Fx8crPDzc7HKaKDt41OwSfMbb4x7M2fcdqTCoklZmIbs3AiZ7\nM5ne7EZFRWnlypWGzrFgwQKtXLlSGzduVKdOnTzbR48erYKCAs2aNUtbtmzRgQMHlJ6ebmgt/qRD\nhw7Nfm+9gXWYgezNQ/bAQfbmC6T8ZPc/4eHhflhb4DR83n+3QZz9iDF1mIHsXgig7M1herNrtC+/\n/FLTpk3T1VdfrcGDB8vtdissLEwfffSR5s2bp+zsbDkcDoWGhmrFihWy2WxmlwwAAFrZ4S++kPvE\nCUPnSNCZ1XMj/1HB0rGjInv2NHAGAGg7Ar7ZjYmJUWNj43nHoqOjtW7dulauCAAA+Bv3iROqGzHS\n7DIuWvjqVWaXAAB+w/RHDwEAAAAA4GumNrsul0tDhgwxswQAAAAAQAAytdm12Wyqra39ztOMAQAA\nAABoCdOv2b3uuut066236s4771THjh0922+77TYTqwIAAAAAtGWmN7s7duyQJD3//POebRaLhWYX\nAAAAANBipje777//vtklAAAAAAACjOl3Y25oaNB//dd/6b777pMkVVRU6L333jO5KgAAAABAW2b6\nyu7kyZPlcrn0t7/9TZJ02WWXacyYMSotLTW5MgAAAABAW2V6s/vxxx9r+/btSklJkSRdeumlOn36\ntMlVAQAAAADaMtNPYw4LC2vy2uVy8SgiAAAAAMBFMb3ZTU5O1quvvqrGxkbt3btXeXl5GjRokNll\nAQAAAADaMNOb3QULFqikpERfffWVbrjhBlmtVj355JNmlwUAAAAAaMNMv2a3Y8eOeu655/Tcc8+Z\nXQoAAAAAIECYvrJbX1+vefPmaciQIbr55pv1xz/+UfX19a02/969ezVgwABdc801Sk1N1e7du1tt\nbgAAAACAMUxf2c3Ly9PXX3+tKVOmSJJefPFF7dmzR8uWLWuV+XNzc5WXl6fs7GytWrVK48eP1+bN\nm1tlbgAAAACAMUxvdj/66CPt3r1bFotFknTrrbeqV69erTJ3TU2NPv30U61fv16SNHLkSE2ePFn7\n9u1TQkKCJMntdp/7wUsvbZX6DGWzeXfXa5tNiow0rp7WRHav3k/2AEB2rz8TEPnJ7vVngjW71SJd\nEm76XwkvmtUisnvzGVnVqV0ngypqPVZZye7lZ9pq9o4hHc/Zdt5e7Vss7gu9w2ADBgzQ+vXrFRER\nIUmqra3V0KFD9be//c3wubdu3apf/OIXTU5dTk1N1ZNPPum5I3RDQ4NOnjxpeC0AAAAAgObr0KGD\nQkK++x+sTPunrIULF0qSunfvrtTUVN1xxx2SpL/85S+67rrrzCoLAAAAABAATGt2t23b5vl9v379\ntG/fPklS37595XK5WqWGq666SgcPHlRjY6Os1jP36qqqqlJsbGyrzA8AAAAAMIZpze6LL75o1tQe\nUVFR6tu3r5YvX67x48frL3/5i6666irP9boAAAAAgLbJ9Gt2JWnt2rUqLy9XQ0ODZ9sDDzzQKnOX\nlZVpwoQJ+vrrr3XJJZfoxRdfbHKDrMbGxnMu/LZYLJ4bagEAAAAAjOV2u8+5IZXVavWcoXs+pt9+\nbty4cdq9e7dSUlJks9kkqVUbSYfDob///e/fOX6hLxAAAAAA4H9MX9nt3r27du3a5Wl0AQAAAAC4\nWKYvWcbHx6u+vt7sMgAAAAAAAcT0ld1du3Zp0qRJGjRokMLCwjzbH3nkEROrAgAAAAC0ZaZfs/vQ\nQw+pffv2OnXqlE6fPm12OQAAAACAAGB6s/uPf/xD//jHP8wuAwAAAAAQQEy/Zveaa67RsWPHzC4D\nAAAAABBATF/ZDQ8PV9++fTV06NAm1+wuWLDAxKoAAAAAAG2Z6c1uz5491bNnT7PLAAAAAAAEENPv\nxgwAAAAAgK+ZvrL72GOPnXc7jx4CAAAAALSU6c3u8ePHPb8/deqU3nnnHaWlpZlYEQAAAACgrfO7\n05i//vprTZgwQW+//bbZpQAAAAAA2ijTHz30ny677DLt27fP7DIAAAAAAG2Y6acxL1y40PN7l8ul\nzZs364orrjCxIgAAAABAW2d6s7tt2zbP70NCQtSnTx/dc889JlYEAAAAAGjr/O6aXQAAAAAALpZp\nK7ubNm363vEf//jHrVQJAAAAACDQmLaye911152zzWKx6MCBAzp48KBcLpcJVQEAAAAAAoFpK7tb\ntmxp8vrQoUOaM2eOXn31Vc2ePdukqgAAAAAAgcD0Rw+dOnVKTzzxhHr27ClJ2r17t2bOnGlyVQAA\nAACAtsy0ZrexsVFLliyR3W7Xnj179Mknn2jBggW67LLLzCoJAAAAABAgTLtmt2fPnqqvr9ejjz6q\na6+99pzx5ORkE6oCAAAAAAQC05rd+Ph4WSyW845ZLBbt27evlSsCAAAAAAQKnrMLAAAAAAg4pt+g\nCgAAAAAAX6PZBQAAAAAEHJpdAAAAAEDAodkFAAAAAAQcml0AAAAAQMCh2QUAAAAABByaXQAAAABA\nwKHZBQAAAAAEHJpdAAAAAEDAodkFAAAAAAQcml0AAAAAQMCh2QUAAAAABByaXQAAAABAwKHZBQAA\nAAAEHJq5XvfQAAAgAElEQVRdAAAAAEDAodkFAAAAAAQcml0AAAAAQMCh2QUAAAAABByaXQAAAABA\nwKHZBQAAAAAEHK+a3VOnTp2zrbq62mfFAAAAAADgC141u2PHjpXb7fa8PnTokDIzM31eFAAAAAAA\nF8OrZveaa67R1KlTJUnHjx/XsGHD9Ktf/cqQwgAAAAAAaCmL+9tLtc3w85//XL1799b69es1YsQI\n3X///UbVBgAAAABAizSr2T127Jjn96dOndKtt96qjIwMPfzww5Kkzp07G1chAAAAAABealaza7Va\nZbFY5Ha7Pb96dmCxyOVyGVokAAAAAADe8Po0ZgAAAAAA/F2Itx/45z//qZKSEklSenq6YmJifF4U\nAAAAAAAXw6u7Mb/55ptKSUlRUVGRXn/9daWkpOjtt982qjYAAAAAAFrEq9OY+/btq6KiIiUmJkqS\n9u7dqzvuuENbt241rEAAAAAAALzl1cquy+XyNLqSlJiYqMbGRp8XBQAAAADAxfCq2Y2OjtbSpUvV\n2NioxsZGvfDCC4qKijKqNgAAAAAAWsSr05grKir0i1/8Qlu3bpXFYlHfvn21YsUKJSQkGFkjAAAA\nAABeadGjh06cOCFJ6tixo88LAgAAAADgYnl1GrMkvf7663rggQf0wAMPaNWqVS2aND4+Xj169FBK\nSor69u2r119/XZJUU1OjrKwsORwOJScnex5xJEl1dXUaN26c7Ha7unfv3mRut9utKVOmKDExUQ6H\nQ/n5+U3mmzNnjhITE2W32zVz5swmYy+88IIcDofsdrtyc3PlcrlalAkAAAAA4D+8es7uY489pjfe\neEN33XWXLBaLnnjiCe3evfucBvJCrFarioqKlJSU1GT7jBkzlJaWprVr16q0tFQjRoyQ0+mUzWbT\n/PnzFRYWpvLycjmdTqWmpiojI0ORkZFavny59uzZo7179+rw4cNKSUlRRkaGevTooU2bNqmwsFA7\nd+6U1WrVgAEDNGDAAGVlZWn//v165JFHtH37dkVFRWn48OFasmSJ7r33Xk9NZ69P/jaLxSKLxeJV\nZgAAAABAy7jdbv3nSclWq1VW63ev33p1GnNycrI+/vhjRURESJJOnjyptLQ07dixw6tCu3Xrpjff\nfFPJyclNtnfq1EkVFRWKjo6WJF1//fV6/PHHlZGRod69e2vZsmXq37+/JGnMmDHKzMxUTk6Obr31\nVt1111264447JEnTp09XaGioHnvsMU2ePFmxsbH67W9/K0kqKCjQRx99pFdeeUXz58/Xvn379Oyz\nz0qS1q5dqyeeeEKbNm3y1NTQ0KCTJ096lQ8AAAAAYKwOHTooJOS712+9Oo3Z7XZ7Gt2zO2/BJb+S\npOzsbF177bWaNGmSvv76ax06dEgNDQ2eRleS4uLiVFVVJUmqqqpSXFycZyw+Pt7QMQAAAABA2+VV\ns9u/f39lZ2dr06ZN2rRpk8aPH+9ZafVGSUmJPvvsM23dulWXXXaZxo8fL0ktbpwBAAAAAPg2r5rd\nhQsX6sorr/TcoOqHP/yhFi5c6PWkXbt2lSTZbDb9+te/VklJibp06aKQkBBVV1d73ud0OhUbGyvp\nzCpvZWXlecdiY2N9PgYAAAAAaLta9Oihi1FbW6vTp0/rkksukSQtWLBAb731lj744APl5OQoLi5O\ns2bN0pYtW/Szn/3Mc4Oq2bNnq7KyUsuWLdP+/fuVlpamL774Ql26dNHLL7+sV199VevWrdORI0fU\nt29frVmzRr169VJxcbEmT56szZs3y2q16sYbb9Ts2bM1bNgw7d+/XwMHDtTWrVsVFRWl22+/XZmZ\nmbrvvvs89bpcLs+jls7q0KHD914IfTHfTXl5uex2e5PTxYNFMOcnO9n9KfuRbdtUN/6XZpfhE+Ev\nv6hLU1LMLqMJfz3urYHsZCd78CA72X2dvbGx8Zx7KXXs2FE2m+07P+PV3ZgPHz6shx56SBs2bJDF\nYtHNN9+suXPnKjIystn7+Pe//62RI0eqsbFRbrdbCQkJeuWVVyRJ8+bNU3Z2thwOh0JDQ7VixQpP\n8Q8++KBycnKUmJiokJAQ5efnq0uXLpLOXP9bWloqu90uq9WqadOmqVevXpKk9PR0jRkzRr1795bF\nYtHYsWM1bNgwSWdulDV79mzdcMMNslgsGjx4sHJzc5vUe767Ll/orl8tZbFY5HK5ZLFYDNm/vwvm\n/GQnu19ld7mkw4fNrsI3XC7/+m7lx8e9FZCd7GQPHmQne2tkv9ATcrxqdidMmKCuXbt6nnG7dOlS\nTZgwQW+++Waz99GtWzdt3br1vGPR0dFat27decciIiK0cuXK845ZrVYtWrRIixYtOu/4zJkzv/Px\nSBMnTtTEiRObUTkAAAAAoK3wqtktKytr0tguWrRIPXr08HlRAAAAAABcDK/Wlq+88krV1NR4XtfU\n1CgmJsbnRQEAAAAAcDGatbL7wAMPSJIiIyOVlJSkn/zkJ5Kkd955RwMHDjSuOgAAAAAAWqBZze7Z\nOycnJSUpKSnJsz0vL8+YqgAAAAAAuAjNanZnzZpldB0AAAAAAPhMcN0LGwAAAAAQFGh2AQAAAAAB\nh2YXAAAAABBwmt3sulwu9ezZ08haAAAAAADwiWY3uzabTVFRUaqtrTWyHgAAAAAALlqz7sZ8VmJi\nogYMGKDRo0erY8eOnu1Tp071eWEAAAAAALSUV81uY2Oj+vTpo/Lycs82i8Xi86IAAAAAALgYXjW7\nL774olF1AAAAAADgM17djfno0aOaPHmyfvrTn0qSvvjiC7322mstnvzFF1+U1WrVW2+9JUmqqalR\nVlaWHA6HkpOTVVJS4nlvXV2dxo0bJ7vdru7du2vVqlWeMbfbrSlTpigxMVEOh0P5+flN5pkzZ44S\nExNlt9s1c+bMJmMvvPCCHA6H7Ha7cnNz5XK5WpwHAAAAAOAfvGp2c3NzdcUVV2j//v2SpG7duunJ\nJ59s0cSVlZVaunSp0tLSPNtmzJihtLQ0lZWVadmyZRo3bpyn+Zw/f77CwsJUXl6ud999V/fdd58O\nHz4sSVq+fLn27NmjvXv36pNPPtFTTz2l3bt3S5I2bdqkwsJC7dy5U7t27dK6deu0du1aSdL+/fv1\nyCOP6MMPP1R5ebm++uorLVmypEV5AAAAAAD+w6tmt6ysTDNnzlS7du0kSeHh4XK73V5P6na7dffd\nd+uZZ55R+/btPduLioqUl5cnSerXr59iYmJUXFwsSSosLPSMxcfHa9CgQVq9erXnc5MmTZIkRUZG\nasyYMZ4V56KiImVnZyssLEzt27dXTk6OZ2zVqlUaPny4oqKiJEl5eXkXtVINAAAAAPAPXl2z++3G\nVDpzanFLmt0FCxZo4MCBSklJ8Ww7dOiQGhoaFB0d7dkWFxenqqoqSVJVVZXi4uI8Y/Hx8d879skn\nn3jGBg4c2GSssLDwgvv8PrW1tYbcmKuurq7Jr8EmmPOTnewwzsmTJ80uoYlgPu5kJ3uwITvZg42R\n2VvSd3rV7A4ePFhz587VqVOntGHDBj399NP62c9+5tWEu3bt0qpVq5pcj9vWlJeXG3ptr9PpNGzf\nbUEw5yd7cPK37AlmF+BjZy9r8Tf+dtxbE9mDE9mDE9mDkxHZbTabEhK8+1uKV83uH/7wBz311FPq\n3LmzHn74Yd1+++2aPn26VxOWlJSosrJSdrtdbrdbX331le655x49+uijCgkJUXV1tWd11+l0KjY2\nVtKZVd7KykpdfvnlnrHMzExJUmxsrCorK5WamnrO586OnfWfY/v27Tvv2Pex2+2Grew6nU7Fx8cr\nPDzc5/v3d8Gcn+xk96fs9bt2mV2CT/Xo0cPsEprw1+PeGshOdrIHD7KT3dfZ3W631wuOXjW7ISEh\neuihh/TQQw95Ncm35eXlea69lc6sFj/wwAP66U9/qs2bN6ugoECzZs3Sli1bdODAAaWnp0uSRo0a\npcWLF6t///7av3+/iouLVVBQIEkaPXq0nn/+eY0aNUpHjhxRYWGh1qxZ4xmbPHmypkyZIqvVqmXL\nlmn27NmSpJEjR2rgwIF69NFHFRUVpcWLF2vs2LEXzBARESGr1avLnb0SHh6uDh06GLZ/fxfM+clO\ndn9Qb3YBPuZP3+23+dtxb01kJ3uwITvZg40R2RsbG3X8+HGvPuNVx3b48GHl5eV5HuPz7Tsit5TF\nYvGcfz1v3jz9/e9/l8PhUE5OjlasWCGbzSZJevDBB1VbW6vExERlZWUpPz9fXbp0kSRlZ2ere/fu\nstvtSk1N1bRp09SrVy9JUnp6usaMGaPevXurV69eyszM1LBhwySduZv07NmzdcMNN8jhcOjyyy9X\nbm7uReUBAAAAAJjPq5XdCRMmqGvXrp5n3C5dulQTJkzQm2++2eIC3nvvPc/vo6OjtW7duvO+LyIi\nQitXrjzvmNVq1aJFi7Ro0aLzjs+cOfOc5+ueNXHiRE2cONHLqgEAAAAA/syrZresrKxJY7to0SK/\nuxYKAAAAAACvTmO+8sorVVNT43ldU1OjmJgYnxcFAAAAAMDF8GplNzIyUklJSfrJT34iSXrnnXc0\ncOBAPfDAA5LOPD8XAAAAAACzedXsJiUlKSkpyfP623dVBgAAAADAX3jV7M6aNcuoOgAAAAAA8Bnj\nHhYLAAAAAIBJaHYBAAAAAAHHq9OYAQSXw198IfeJE4bPkyCpftcu1Rs4h6VjR0X27Nns9wdzdgAA\ngEDgVbP7z3/+U5dffrnat2+vDz/8UNu2bdP48ePVqVMno+oDYCL3iROqGzHS7DJ8Inz1Kq/eH8zZ\nAQAAAoFXpzEPHz5cjY2N+vLLLzV27Fh9+OGHysnJMao2AAAAAABaxOtrdsPCwrRmzRrl5ubqtdde\nU1lZmRF1AQAAAADQYl41u/X19aqvr9f69es1ePBgo2oCAAAAAOCieNXs/vznP9cVV1yhqqoq3XDD\nDTp48KAiIiKMqg0AAAAAgBbxqtmdOXOm9u/fr48++kgWi0WdOnXSX/7yF68nzczMVJ8+fZSSkqL0\n9HRt375dklRTU6OsrCw5HA4lJyerpKTE85m6ujqNGzdOdrtd3bt316pV//+GK263W1OmTFFiYqIc\nDofy8/ObzDdnzhwlJibKbrdr5syZTcZeeOEFORwO2e125ebmyuVyeZ0HAAAAAOBfmnU35k2bNn3v\neExMjFeTvv766+rcubMk6Y033tCECRO0fft2TZ8+XWlpaVq7dq1KS0s1YsQIOZ1O2Ww2zZ8/X2Fh\nYSovL5fT6VRqaqoyMjIUGRmp5cuXa8+ePdq7d68OHz6slJQUZWRkqEePHtq0aZMKCwu1c+dOWa1W\nDRgwQAMGDFBWVpb279+vRx55RNu3b1dUVJSGDx+uJUuW6N577/UqDwAAAADAvzSr2f3Nb34jSXK5\nXNq+fbsSEhJksVhUUVGhPn36aOvWrV5NerbRlaQjR47IZrNJOtMEV1RUSJL69eunmJgYFRcXKyMj\nQ4WFhVq2bJkkKT4+XoMGDdLq1auVk5OjoqIiTZo0SZIUGRmpMWPG6LXXXtNjjz2moqIiZWdnKyws\nTJKUk5Oj1157TVlZWVq1apWGDx+uqKgoSVJeXp6eeOIJml0AAAAAaOOa1exu2bJF0plG8cknn9TN\nN98sSdqwYYNWrlzZoonHjx+v999/XxaLRe+8844OHTqkhoYGRUdHe94TFxenqqoqSVJVVZXi4uI8\nY/Hx8d879sknn3jGBg4c2GSssLDwgvv8PrW1tbJYLC2J/b3q6uqa/Bpsgjl/MGdvTSdPnjS7BNOQ\n3X8E88872ckebMhO9mBjZHa32+31Z5rV7J5VWlrqWV2VpCFDhnhWfb318ssvS5KWL1+u3/72t1q+\nfHmLApihvLzc0Gt7nU6nYftuC4I5v79lTzC7AB/bvXt3s99L9sDhTfbW5G8/762J7MGJ7MGJ7MHJ\niOw2m00JCd79LcWrZtdms+n999/3PHaouLhYVqvXj+ptIjs7W3l5eZKkdu3aqbq62rO663Q6FRsb\nK+nMKm9lZaUuv/xyz1hmZqYkKTY2VpWVlUpNTT3nc2fHzvrPsX379p137PvY7XbDVnadTqfi4+MV\nHh7u8/37u2DO76/Z63ftMrsEn+rRo0ez30v2wOFN9tbgrz/vrYHsZCd78CA72X2d3e12e73g6FWz\nm5+fr7Fjx6pdu3aSpIaGBs8pwc119OhR1dbW6oc//KGkMzeouuyyy9SlSxeNHj1aBQUFmjVrlrZs\n2aIDBw4oPT1dkjRq1CgtXrxY/fv31/79+1VcXKyCggJJ0ujRo/X8889r1KhROnLkiAoLC7VmzRrP\n2OTJkzVlyhRZrVYtW7ZMs2fPliSNHDlSAwcO1KOPPqqoqCgtXrxYY8eOvWCGiIiIi27yv094eLg6\ndOhg2P79XTDn97fs9WYX4GPefLdkDxz+9DP1bf72896ayE72YEN2sgcbI7I3Njbq+PHjXn2m2c2u\n2+1Wt27dVFFRoT179kiSunfv7ml8m+vo0aMaPXq0Tp06JYvFoujoaP3P//yPJGnevHnKzs6Ww+FQ\naGioVqxY4bl51YMPPqicnBwlJiYqJCRE+fn56tKli6Qzq8OlpaWy2+2yWq2aNm2aevXqJUlKT0/X\nmDFj1Lt3b1ksFo0dO1bDhg2TJHXr1k2zZ8/WDTfcIIvFosGDBys3N9erPAAAAAAA/+PVyu7NN9+s\nnTt3KikpqcUTxsbGem4e9Z+io6O1bt26845FRER8582wrFarFi1apEWLFp13fObMmec8X/esiRMn\nauLEic2oHAAAAADQVjT7XFyLxaKuXbvqf//3f42sBwAAAACAi+bVym7Hjh3Vp08fDRs2TB07dvRs\nX7Bggc8LA/zF4S++kPvECcPnSdCZGwMZeb2kpWNHRfbsaeAMANqy1vjzjj/rAACtxatmNykp6aJO\nYQbaIveJE6obMdLsMnwifPUqs0sA4McC5c87/qwDAEheNruzZs0yqg4AAAAAAHzGq2b3+PHjmjFj\nhtavXy9JyszM1OOPP65OnToZUpy/OrJtm+TlM56aqzVO75I4xQsAAABAYPOq2b3vvvsUERGhoqIi\nWSwWPffcc7rvvvu0fPlyo+rzS3XjfykdPmx2GReFU7wAAAAABDKvmt0dO3bos88+87x+9tlnde21\n1/q8KAAAAAAALkazHz0kSS6XS8ePH/e8PnHihFwGnc4LAAAAAEBLebWyO378eF1//fUaM2aMJKmo\nqEi//OUvDSkMAAAAAICW8qrZffDBB9W7d29t3LhRkjR//nzdcssthhQGAAAAAEBLedXs/utf/1JW\nVpaysrKMqgcAAAAAgIvmVbObnp6udu3a6aabbtJNN92kjIwMXXrppUbVBgAAAABAi3h1g6qKigq9\n8847uvbaa7Vy5Updc8016t+/v1G1AQAAAADQIl6t7ErSN998o/r6etXX16tz586y2+1efb6+vl5j\nx47V7t27FR4erujoaD377LO6+uqrVVNTo7vuuksVFRUKCwtTfn6+Bg4cKEmqq6vTxIkTtWXLFtls\nNs2dO1cjR46UJLndbk2dOlVr166V1WrV/fffr1/96leeOefMmaOXXnpJFotFY8aM0Zw5czxjL7zw\ngp588km53W5lZGTo2Weflc1m8/ZrAQAEiMNffCH3iROGzpEgqX7XLtUbOIelY0dF9uxp4AwAAPg3\nr5rdrl276qqrrtIdd9yhOXPmKCkpqUWT5ubmem5slZ+fr7vvvlvvv/++pk+frrS0NK1du1alpaUa\nMWKEnE6nbDab5s+fr7CwMJWXl8vpdCo1NVUZGRmKjIzU8uXLtWfPHu3du1eHDx9WSkqKMjIy1KNH\nD23atEmFhYXauXOnrFarBgwYoAEDBigrK0v79+/XI488ou3btysqKkrDhw/XkiVLdO+997YoFwCg\n7XOfOKG6ESPNLuOiha9eZXYJAACYyqvTmMeNG6eGhgYVFRWpsLBQH3zwgU6fPu3VhKGhoU3u4Hz9\n9dersrJSkvT6668rLy9PktSvXz/FxMSouLhYklRYWOgZi4+P16BBg7R69WpJZx6BNGnSJElSZGSk\nxowZo9dee80zlp2drbCwMLVv3145OTmesVWrVmn48OGKioqSJOXl5XnGAAAAAABtl1cru3/84x8l\nSV9//bXefPNN/fKXv1RNTY1OXMTpXn/+8591++2369ChQ2poaFB0dLRnLC4uTlVVVZKkqqoqxcXF\necbi4+O/d+yTTz7xjJ09FfrsWGFh4QX3GQxOnjzZ7Pd+U1lp+Gl9Uuud2tf+W8c92Hhz3AMN2YMT\n2YOTv2Wvq6tr8mswITvZgw3Zjcnudru9/oxXze7HH3+sDRs2aMOGDfr88891/fXXa8iQIV5Petbj\njz+uiooKLVmyRLW1tS3eD1pm9+7dzX5vQmNjQJzWJ505tc+r7AbWYgayNw/ZA4c32aXAyk92/+N0\nOs0u4Rydoq5S7WmXoXPYLr1S/zzyjXTkG8PmiGhn0/Gafxq2/4vhj8e9tZA9OBmR3WazKSHBu/+n\n8qrZ/c1vfqMhQ4boD3/4g9LS0hQS4vX9rTzmz5+vN954Qxs3blRYWJjCwsIUEhKi6upqz+qu0+lU\nbGyspDOrvJWVlbr88ss9Y5mZmZKk2NhYVVZWKjU19ZzPnR076z/H9u3bd96xYNCjR49mv7d+1y4D\nK2l9ZG8esgcOsjdfIOUnu/+oq6uT0+lUfHy8wsPDzS6nibKDR3Xv8s/NLuOiFWQncdz9CNnJ7uvs\nbrdbLpd3/zDnVbf64YcferXz77JgwQKtXLlSGzduVKdOnTzbR48erYKCAs2aNUtbtmzRgQMHlJ6e\nLkkaNWqUFi9erP79+2v//v0qLi5WQUGB53PPP/+8Ro0apSNHjqiwsFBr1qzxjE2ePFlTpkyR1WrV\nsmXLNHv2bEnSyJEjNXDgQD366KOKiorS4sWLNXbsWJ9kbAs6dOjQ7PcaeVqxGcjePGQPHGRvvkDK\nT3b/Ex4e7oe1HTW7AJ/xv+/2DP887q2D7GT3lcbGRh0/ftyrz7R8abaFvvzyS02bNk1XX321Bg8e\nLLfbrbCwMH300UeaN2+esrOz5XA4FBoaqhUrVngeA/Tggw8qJydHiYmJCgkJUX5+vrp06SJJys7O\nVmlpqex2u6xWq6ZNm6ZevXpJktLT0zVmzBj17t1bFotFY8eO1bBhwyRJ3bp10+zZs3XDDTfIYrFo\n8ODBys3Nbe2vBAAAAGhVe/+9V3UNxl5GGHpFe+07UiEdMW6O8JAIJV6eaNwEaNNavdmNiYlRY2Pj\neceio6O1bt26845FRERo5cqV5x2zWq1atGiRFi1adN7xmTNnaubMmecdmzhxoiZOnNiMygEAAIDA\nUNdQq99tecjsMi7a3OueMLsE+LFmPXpo/fr1kqRjx44ZWgwAAAAAAL7QrGZ3xowZkqRBgwYZWQsA\nAAAAAD7RrNOYT58+rSeffFLV1dVauHDhOeNTp071eWEAAACt5fAXXxj+PPnWepZ8ZM+eBs4AAG1H\ns5rd559/Xi+//LLq6uq0bdu2JmMWi8WQwgAAAFqL+8SJgHiefPjqVWaXAAB+o1nNbmpqqlJTUxUX\nF6fp06cbXRMAAAAAABfFq7sxT58+XZs3b9aGDRskSUOHDlW/fv0MKQwAAAAAgJZq1g2qzlqyZIlG\njRql6upq1dTUaOTIkVq6dKlRtQEAAAAA0CJerew+88wz+vTTTxUVFSVJevjhh3XTTTfp7rvvNqQ4\nAAAAAIBv7P33XtU11Bo6R+gV7bXvSIV0xLf7tcqqrh2v8uozXjW7kjyN7n/+HgAAAAD8XVtu+L4t\nPCRCiZcnevWZuoZa/W7LQwZVZKxO7Trp2Ruf8+ozXjW7drtdv/vd75SbmyvpzF2a7Xa7VxMCAAAA\ngFnacsP3bXOve8LsEvyeV83u4sWLNWXKFPXt21cWi0VDhgxRQUGBUbUBAAAAhimrqtbJbxoMncN2\n6ZUqO3hU0lHD5ujQPkSO2GjD9g+0VV41u1FRUVq5cqVRtQAAAACt5uQ3Dbp3+edml3HRCrKTzC4B\n8Ete3Y0ZAAAAAIC2oNWb3fvvv1/dunWT1WrVjh07PNtramqUlZUlh8Oh5ORklZSUeMbq6uo0btw4\n2e12de/eXatWrfKMud1uTZkyRYmJiXI4HMrPz28y35w5c5SYmCi73a6ZM2c2GXvhhRfkcDhkt9uV\nm5srl8tlUGoAAAAAQGtq9WZ39OjR+vDDDxUfH99k+4wZM5SWlqaysjItW7ZM48aN8zSf8+fPV1hY\nmMrLy/Xuu+/qvvvu0+HDhyVJy5cv1549e7R371598skneuqpp7R7925J0qZNm1RYWKidO3dq165d\nWrdundauXStJ2r9/vx555BF9+OGHKi8v11dffaUlS5a03hcBAAAAADBMs5tdl8ulIUOGXPSEN954\no6688kq53e4m24uKipSXlydJ6tevn2JiYlRcXCxJKiws9IzFx8dr0KBBWr16tedzkyZNkiRFRkZq\nzJgxeu211zxj2dnZCgsLU/v27ZWTk+MZW7VqlYYPH+55fFJeXp5nDAAAAAD+H3v3Hhdlnf///zED\nJgct8OxqgAZ4RjEVT6ViSvrpoImhrIiLKVZqZfq1Lc10re2g2UaIqavtqjfBUqvVNVfNzC1Tqcw8\nBSqHSg1SPKMJzO8Pf85GWg1yzVw487zfbt6cud5zvef1YnCc11zvg9zYHC52vby8OH/+PGVlZYYH\nceLECUpKSqhX73+ryAUHB5Ofnw9Afn4+wcHB9raQkBCntomIiIiIiMiNrUKrMXfs2JF77rmHYcOG\nUaNGDfvx++67z/DAxPnOnTtndgimUe6eSbl7JuXumZS7Z1Lunkm5y6+pULF7ZUGpBQsW2I9ZLJZK\nF7u1atXC29ubgoIC+9Xd3NxcgoKCgMtXefPy8qhfv769LSYmBoCgoCDy8vKIioq66rwrbVf8su3w\n4biaOCEAACAASURBVMPXbPMUV+Y2O6KpE+Mwg3J3jHJ3H8rdce6Uv3J3nCfn7hXwBydF4nrK3XHV\nG9zkpEhczKbcK8JtcndQhYrdzZs3OysOBg8eTFpaGtOmTWPnzp0cOXKEHj16ABAbG8u8efPo1KkT\nOTk5bNmyhbS0NPt5CxYsIDY2lpMnT5KRkcHatWvtbWPHjmXcuHFYrVYWLVrE9OnTARg0aBB33HEH\nzz33HHXr1mXevHkMGTLEaflVRS1atHD4sRf37nViJK6n3B2j3N2HcnecO+Wv3B3nyblnHT3lpEhc\nT7k77vDJQ06KxMUsyr0i3CZ3B1Wo2C0pKeFvf/sbhw4dYu7cuRw6dIi8vDyio6Md7mPMmDGsXbuW\nH374gZiYGGrWrElWVhYvvvgiCQkJhIeHU716dZYtW4aXlxcAkyZNIikpidDQULy9vUlNTaVWrVoA\nJCQkkJmZSVhYGFarlYkTJ9KqVSsAevToQVxcHK1bt8ZisTBkyBD69+8PQJMmTZg+fTpdu3bFYrHQ\nq1cvkpOTK/LjuOH5+/s7/NiLTozDDMrdMcrdfSh3x7lT/srdcZ6cO7hPwafcK+Ckc+Iwg3KvADfK\n3REVKnbHjh1LaWkp//3vfwGoXbs2cXFxZGZmOtzHvHnzrnm8Xr16rF+//pptfn5+pKenX7PNarWS\nkpJCSkrKNdunTJly1f66V4wcOZKRI0c6ELWIiIiIiIjcSCpU7H722Wfs2rWLyMhIAAICArh06ZJT\nAhMRERERERG5Xg5vPQTg4+NT7n5paalTtiISERERERERqYwKFbsREREsXbqUsrIyDh48yJgxY+jZ\ns6eTQhMRERERERG5PhUqdl999VW2bt3KsWPH6Nq1K1arlZdeeslZsYmIiIiIiIhclwrN2a1RowZv\nvvkmb775prPiEREREREREam0ChW7Fy9eZM6cOWzcuBGLxUKfPn147LHHqF69urPiExEREREREamw\nChW7Y8aM4fjx44wbNw6AxYsXc+DAARYtWuSU4ERERERERESuR4WK3W3btrF//34sFgsA99xzD61a\ntXJKYCIiIiIiIiLXq0ILVNWuXZvi4mL7/YsXL1KnTh3DgxIRERERERGpDIeu7L7++usANG/enKio\nKB588EEA3nnnHTp27Oi86ERERERERESug0PF7pdffmm/3aFDBw4fPgxA+/btKS0tdU5kIiIiIiIi\nItfJoWJ38eLFzo5DRERERERExDAVWqAKYN26dWRnZ1NSUmI/NmHCBEODEhEREREREamMChW78fHx\n7N+/n8jISLy8vADsKzPfqA4ePEhiYiI//vgjAQEBvPXWW7Ro0cLssERERERERKQSKlTsfvHFF+zd\nu9de6LqD5ORkxowZQ0JCAitXriQxMZEdO3aYHZaIiIiIiIhUQoWK3ZCQEC5evIifn5+z4nGpwsJC\nPv/8czZs2ADAoEGDGDt2LIcPH6Zp06YA2Gy2q08MCHBlmM7h5UVZWVmFHk9goPPicSXlXqHHK3c3\noNwrfI5b5K/cK3yOp+ZutcAtvhWe2VblWC0o94qcg5Wa1Wo6KSLXsWJV7hU850bNvYZ3jauOXbNW\n+xmL7fce8TN79+5l1KhR9OzZEx8fH/vxZ599tgJhVh1ffPEFf/zjH9m/f7/9WFRUFC+99BI9e/YE\noKSkhHPnzpkUoYiIiIiIiFyLv78/3t6//oVVhb7K+vOf/8xNN93EhQsXuHTpUqWDExEREREREXGG\nChW733zzDd98842zYnG5W2+9laNHj1JWVobVagUgPz+foKAgkyMTERERERGRyrBW5MHNmjXj9OnT\nzorF5erWrUv79u1ZsmQJAO+88w633nqrfb6uiIiIiIiI3JgqNGc3Li6Ozz//nL59+5abs/vqq686\nJThXyMrKYsSIERw/fpxbbrmFxYsX06pVK3t7WVnZVRO/LRbLDb/lkoiIiIiIyI3CZrNdtSCV1Wq1\nj9C9lgoNY27ZsiUtW7a8vuiqqPDwcD799NNfbf+9H6CIiIiIiIhUPRW6sisiIiIiIiJyI6jQld0Z\nM2Zc8/iNuvWQiIiIiIiIuKcKFbtnzpyx375w4QL//ve/6dKli+FBiYiIiIiIiFRGpYYxHz9+nBEj\nRvCvf/3LyJhEREREREREKqVSKy/Vrl2bw4cPGxWLiIiIiIiIiCEqNIz59ddft98uLS1lx44dNGjQ\nwPCgRERERERERCqjQsXul19++b8Tvb1p164do0ePNjwoERERERERkcrQ1kMiIiIiIiLidhy6svvx\nxx//Zvudd95pSDAiIiIiIiIiRnDoym7Hjh2vPtFi4ciRIxw9epTS0lKnBCciIiIiIiJyPRy6srtz\n585y90+cOMHMmTNZunQp06dPd0pgIiIiIiIiIterQlsPXbhwgb/+9a+0bNkSgP379zNlyhSnBCYi\nIiIiIiJyvRwqdsvKypg/fz5hYWEcOHCA7du38+qrr1K7dm1nxyciIiIiIiJSYQ7N2W3ZsiUXL17k\nueeeo23btle1R0REOCU4ERERERERkevhULEbEhKCxWK5dgcWC4cPHzY8MBEREREREZHrpX12RURE\nRERExO1UaIEqERERERERkRuBil0RERERERFxOyp2RURERERExO2o2BURERERERG3o2JXRERERERE\n3I6KXREREREREXE7KnZFRERERETE7ajYFREREREREbejYldERERERETcjopdERERERERcTsqdkVE\nRERERMTtqNgVERERERERt2NYsXv8+PGrjmVlZRnVvYiIiIiIiIjDDCt2BwwYwMWLF+33c3Nzuffe\ne43qXkRERERERMRhhhW7Dz74IPHx8QAcPXqU/v37M2fOHKO6FxEREREREXGYxWaz2Yzq7Mknn+Ts\n2bNs376dqVOnMmjQIKO6FhEREREREXFYpYvd3bt322+XlpYyevRoevbsSUJCAgARERGVi1BERERE\nRESkgipd7DZp0uTXO7dYOHz4cGW6FxEREREREakwQ4cxi4iIiIiIiFQF3kZ2tmPHDjZu3AhA3759\n6dChg5Hdi4iIiIiIiDjEsNWY58+fT2xsLAUFBRQWFjJo0CAWLlxoVPciIiIiIiIiDjNsGHNERASb\nNm2ibt26ABQWFtK7d+9yC1iJiIiIiIiIuIJhV3YBe6H7y9siIiIiIiIirmRYsRsWFsYzzzxDfn4+\n+fn5TJ06lbCwMKO6FxEREREREXGYYcXuvHnzOHToEO3bt6d9+/YcPHiQtLQ0o7oXERERERERcZi2\nHhIRERERERG3Y9jWQyUlJcyZM4cNGzYAEBMTw2OPPYa3t6G7G4mIiIiIiIj8LsOu7I4fP55Dhw4x\natQoLBYLCxcupEmTJrz++utGdC8iIiIiIiLiMEO3Htq1axdW6+VpwCUlJbRv315bD4mIiIiIiIjL\nGbZAlc1mo6ysrNx9TQcWERERERERMxg2ofbuu++mb9++jBgxAoB//vOf9OvXz6juRURERERERBxm\n2DDmsrIy3nzzTTZt2gTAXXfdxejRo+3DmkVERERERERcxfCth650Z7FYjOxWRERERERExGGGXXbN\nz88nJiYGX19ffH196devH/n5+UZ1LyIiIiIiIuIww4rd4cOHc9ddd/HDDz9w7NgxevfuzfDhw43q\nXkRERERERMRhhg1jbtWqFXv37i13rHXr1uzZs8eI7kVEREREREQcZtiV3dDQULKysuz3s7KyCAsL\nM6p7EREREREREYdVeuuhgQMHYrFYOHv2LG3btqVr164AbNu2zX5bRERERERExJUqPYz5H//4x2+2\nJyYmVqZ7ERERERERkQozfOshEREREREREbMZNmdXREREREREpKpQsSsiIiIiIiJux5Bi12azcfTo\n0Ur389hjj9GkSROsViu7d++2H09KSqJZs2ZERkZyxx13kJmZaW8rLi4mPj6esLAwmjdvzsqVK8vF\nNW7cOEJDQwkPDyc1NbXc882cOZPQ0FDCwsKYMmVKpeMXERERERGRqqHSqzFf0adPn0rvqTt48GAm\nT55M9+7dyx1/4IEHWLhwIVarlbVr1zJ48GBycnIAmDVrFj4+PmRnZ5Obm0tUVBTR0dEEBgayZMkS\nDhw4wMGDBykqKiIyMpLo6GhatGjBxx9/TEZGBnv27MFqtdKtWze6detGv379yj13WVkZZWVl5Y5Z\nLBYsFkulchURERERERHH2Gw2frnclNVqxWr99eu3hhS7FouFxo0b8+OPP1KnTp3r7udKkfvLJO65\n5x777c6dO3PkyBHKysqwWq1kZGSwaNEiAEJCQujZsyerV68mKSmJFStWMGrUKAACAwOJi4tj+fLl\nzJgxgxUrVpCQkICPjw9w+erx8uXLr1nsnjt37rpzEhEREREREeP5+/s7v9gFqFGjBu3ataN///7U\nqFHDfvzVV1816ikAeO211+jfv789qfz8fIKDg+3tISEh5Ofn/2rb9u3b7W133HFHubaMjAxDYxUR\nERERERFzGFbstmnThjZt2hjV3TUtXbqUd955h48//tipzyMiIiIiIiI3NsOK3WnTphnV1TVlZGTw\nl7/8hQ8//JC6devajwcHB5OXl0f9+vUByM3NJSYmBoCgoCDy8vKIioqytwUFBZVru+LnbSIiIiIi\nInJjM6zY/fbbb3n44Yf57rvv2LVrF7t27WLz5s088cQTle57xYoVTJ06lU2bNtGoUaNybbGxscyb\nN49OnTqRk5PDli1bSEtLAy4veLVgwQJiY2M5efIkGRkZrF271t42duxYxo0bh9VqZdGiRUyfPv2q\n577WQlS/Nzb8ep0/f57s7GzCwsLw8/MzvP+qzpPzV+7KXbl7DuWu3JW751Duyl25G+daayn93qLB\nhhW7ycnJxMfH88orrwDQunVrEhISKlTsjhkzhrVr1/LDDz8QExNDzZo1ycrKYtiwYTRs2JD7778f\nm82GxWJh06ZNBAYGMmnSJJKSkggNDcXb25vU1FRq1aoFQEJCApmZmYSFhWG1Wpk4cSKtWrUCoEeP\nHsTFxdG6dWssFgtDhgyhf//+V8V0rR/g7636db0sFgulpaVYLBan9F/VeXL+yl25K3fPodyVu3L3\nHMpduSt35z/fbzGs2C0oKGDYsGHMnj37csfe3nh7V6z7efPmXfP4Tz/99Kvn+Pn5kZ6efs02q9VK\nSkoKKSkp12yfMmWK9tcVERERERFxQ4aV297e3uW2DCoqKrpqCyERERERERERVzCs2B08eDDJycmc\nPn2ahQsX0qdPHx566CGjuhcRERERERFxmGHDmJ988kmWL1/OqVOn+M9//sOECROIj483qnsRERER\nERERhxlW7AIMHTqUIUOGAL8/WVhERERERETEWQwbxpyfn09MTAy+vr74+vrSr18/8vPzjepeRERE\nRERExGGGFbvDhw/nrrvu4ocffuDYsWP07t2b4cOHG9W9iIiIiIiIiMMMK3YLCwuZNGkSt9xyCwEB\nAUycOJEff/zRqO5FREREREREHGZYsRsaGkpWVpb9flZWFmFhYUZ1LyIiIiIiIuIwwxaoOnv2LG3b\ntqVr164AbNu2ja5du/LAAw8AsGrVKqOeSkREREREROQ3GTpnd968eQwfPpzhw4eTlpZGQkIC999/\nP/fff79DfTz22GM0adIEq9XK7t277ccLCwvp168f4eHhREREsHXrVntbcXEx8fHxhIWF0bx5c1au\nXGlvs9lsjBs3jtDQUMLDw0lNTS33fDNnziQ0NJSwsDCmTJlSyZ+AiIiIiIiIVBWGXdlNTEysdB+D\nBw9m8uTJdO/evdzxp556ii5durBu3ToyMzMZOHAgubm5eHl5MWvWLHx8fMjOziY3N5eoqCiio6MJ\nDAxkyZIlHDhwgIMHD1JUVERkZCTR0dG0aNGCjz/+mIyMDPbs2YPVaqVbt25069aNfv36VToPERER\nERERMZeh++xW1pUi12azlTu+YsUKDh06BECHDh1o1KgRW7ZsITo6moyMDBYtWgRASEgIPXv2ZPXq\n1SQlJbFixQpGjRoFQGBgIHFxcSxfvpwZM2awYsUKEhIS8PHxASApKYnly5er2BURj1e0bx+2s2ed\n/jxNgYt793LRic9hqVGDwJYtnfgMIiIiUlVVqWL3Wk6cOEFJSQn16tWzHwsODrbv4Zufn09wcLC9\nLSQk5Dfbtm/fbm+74447yrVlZGQ4NRcRkRuB7exZigcOMjsMQ/iuXvn7DxIRERG3ZEixa7PZOHbs\nGA0bNjSiuyrv/PnzWCwWw/stLi4u97en8eT8lbtyF+c5d+6c2SGU48mvu3JX7p5GuSt3T+PM3H85\n+tcRhl3Z7dOnD3v27DGqO7tatWrh7e1NQUGB/epubm4uQUFBwOWrvHl5edSvX9/eFhMTA0BQUBB5\neXlERUVddd6Vtit+3vZ7srOzKS0tNSbBa8jNzXVa3zcCT85fuXumqpZ7U7MDMNj+/fvNDuGaqtrr\n7krK3TMpd8+k3D2TM3L38vKiadOKfUoxpNi1WCw0btyYH3/8kTp16hjRZTmDBw8mLS2NadOmsXPn\nTo4cOUKPHj0AiI2NZd68eXTq1ImcnBy2bNlCWlqa/bwFCxYQGxvLyZMnycjIYO3atfa2sWPHMm7c\nOKxWK4sWLWL69OkOxRMWFua0K7u5ubmEhITg6+treP9VnSfnr9yVe1XK/eLevWaHYKgWLVqYHUI5\nVfV1dwXlrtyVu+dQ7srd6NxtNluFLzgadmW3Ro0atGvXjv79+1OjRg378VdffdXhPsaMGcPatWv5\n4YcfiImJoWbNmmRlZfHiiy+SkJBAeHg41atXZ9myZXh5eQEwadIkkpKSCA0Nxdvbm9TUVGrVqgVA\nQkICmZmZhIWFYbVamThxIq1atQKgR48exMXF0bp1aywWC0OGDKF///4Oxenn54fVatiuTVfx9fXF\n39/faf1XdZ6cv3JX7lWBMxeMMkNV+tn+XFV73V1JuSt3T6PclbuncUbuZWVlnDlzpkLnGFbstmnT\nhjZt2lSqj3nz5l3zeL169Vi/fv012/z8/EhPT79mm9VqJSUlhZSUlGu2T5kyRfvrioiIiIiIuCHD\nit1p06YZ1ZWIiIiIiIhIpRhW7H777bc8/PDDfPfdd+zatYtdu3axefNmnnjiCaOeQkRERMQpXLG/\ntPaWFhFxLcOK3eTkZOLj43nllVcAaN26NQkJCSp2RUREpMpzl/2ltbe0iMj/GLbKUkFBAcOGDbMv\n3OTt7Y23t2G1tIiIiIiIiIjDDCt2vb29y230W1RUdF0b/4qIiIiIiIhUlmHF7uDBg0lOTub06dMs\nXLiQPn368NBDDxnVvYiIiIiIiIjDDBtn/OSTT7J8+XJOnTrFf/7zHyZMmEB8fLxR3YuYxhWLloAW\nLhERERERMZJhxe4HH3zA0KFDGTp0aLljd999t1FPIWIKd1m0BLRwiYiIiIh4DsOGMT/99NMOHRMR\nERERERFxtkpf2c3KyuLAgQOcOnWK999/33781KlTnD9/vrLdi4iIiIiIiFRYpa/sbtu2jTlz5lBQ\nUMCcOXPsf9555x1mz55tRIx2//73v7n99tuJjIwkIiKCf/7znwAUFhbSr18/wsPDiYiIYOvWrfZz\niouLiY+PJywsjObNm7Ny5f+GcdpsNsaNG0doaCjh4eGkpqYaGq+IiIiIiIiYo9JXdhMTE0lMTOTv\nf/87I0eONCKmX5WQkMDHH39Mq1atyMvLo3nz5gwaNIjJkyfTpUsX1q1bR2ZmJgMHDiQ3NxcvLy9m\nzZqFj48P2dnZ5ObmEhUVRXR0NIGBgSxZsoQDBw5w8OBBioqKiIyMJDo6mhYtWjg1DxEREREREXEu\nwxaoGjlyJOnp6WzcuBGLxUKfPn148MEHjeoeAKvVSlFREXB5mHSdOnW46aabePvttzl06BAAHTp0\noFGjRmzZsoXo6GgyMjJYtGgRACEhIfTs2ZPVq1eTlJTEihUrGDVqFACBgYHExcWxfPlyZsyYYWjc\nIiJy43DFCuxafV1ERMT5DCt2J02axEcffcSwYcMAmD17NpmZmbz88stGPQXp6ekMHDgQf39/Tp48\nyapVqzhz5gwlJSXUq1fP/rjg4GDy8/MByM/PJzg42N4WEhLym23bt2//3TjOnz+PxWIxKi274uLi\ncn97Gk/P31XOnTtndgjlePLr7sm5u1JFf+fdZQV239Ur9e/dQ+l1rzqUu3L3NM7M3WazVfgcw4rd\n9957j6+++gpfX18ARo8eTdu2bQ0rdktLS5k5cybvvvsu3bp1IzMzk/vuu49du3ZdV+KVkZ2dTWlp\nqdP6z83NdVrfN4Kqln9TswMw2P79+80O4Zqq2uvuSlUtd0//nXen/PXv3XF63Z2vKr7urqLcPZNy\nN5aXlxdNm1bs3dqwYjcgIIDq1avb71erVo3AwECjumfXrl0cPXqUbt26AZeHKzdu3Jjdu3dTrVo1\nCgoK7Fd3c3NzCQoKAi5f5c3Ly6N+/fr2tpiYGACCgoLIy8sjKirqqvN+S1hYmNOu7Obm5hISEmL/\n0sCTVNX8L+7da3YIhqpqc9Kr6uvuClU1d0//nXen/PXv3XF63Z2nKr/uzqbclbtyN47NZqvwBUfD\nit3OnTsTExPD8OHDAVi6dCldunSxb0d03333Var/W2+9laNHj3LgwAGaN2/OwYMHOXz4MM2bN2fw\n4MGkpaUxbdo0du7cyZEjR+jRowcAsbGxzJs3j06dOpGTk8OWLVtIS0sDYPDgwSxYsIDY2FhOnjxJ\nRkYGa9eu/d1Y/Pz8sFoN26L4Kr6+vvj7+zut/6ququXvzDl1ZqjIz9YVcxet/P9XVA4f9tj5i/qd\nd66K/mzdKf+q9Hv1c1Xtdx70urtCVXzdXUW5K3dP44zcy8rKOHPmTIXOMazY/frrrwHsi0EBfPXV\nV3z11VdYLJZKF7v16tVj/vz5PPjgg3h5eVFWVkZqaiqNGzfmxRdfJCEhgfDwcKpXr86yZcvw8vIC\nLs8lTkpKIjQ0FG9vb1JTU6lVqxZweXXnzMxMwsLCsFqtTJw4kVatWlUqThF34i5zF+Hy/EURERER\n8RyGFbubN282qqtfFRcXR1xc3FXH69Wrx/r16695jp+fH+np6ddss1qtpKSkkJKSYmicIiIiIiIi\nYi7Dil2AS5cukZOTw4ULF+zHIiIijHwKERERERERkd9lWLG7Zs0aRo0aRVFREf7+/hQVFREcHExO\nTo5RTyEiIiIiIiLiEMOK3alTp/LZZ58xYMAAvvzyS5YuXcpXX31lVPciIi7lisW54PLiXBf37vXY\nxblEREREnMWwYtdqtRIcHExJSQkAw4YNY86cOUZ1LybTB3/xNFqcS0REROTGZlixW61aNQAaN27M\n6tWrCQkJoaioyKjuxWT64C8iIiIiIjcSw4rdxx57jKKiImbOnMmQIUM4efIkr732mlHdi4iIiIiI\niDjMsGJ36NChANx+++1kZ2cb1W2VdPLLL6G01Cl9u2IYL2gor4iIiIiIuDdDtx7avn07hw4dss/b\nBRg+fLiRT1ElFCf+CW7wIdoayisiIiIiIu7MsGL34YcfZv369bRr1w4vLy8ALBaLWxa7IiIiIiIi\nUrVZjepo48aN7Nu3j1WrVvH222/z9ttvs2LFCqO6B+Cnn35i3LhxhIeH07ZtW3shXVhYSL9+/QgP\nDyciIoKtW7fazykuLiY+Pp6wsDCaN2/OypX/u6Jps9kYN24coaGhhIeHk5qaami8IiIiIiIiYg7D\nruw2bNiQ6tWrG9XdNU2ePBmr1UpWVhYABQUFADz11FN06dKFdevWkZmZycCBA8nNzcXLy4tZs2bh\n4+NDdnY2ubm5REVFER0dTWBgIEuWLOHAgQMcPHiQoqIiIiMjiY6OpkWLFk7NQ0RERERERJyr0sXu\n+++/D0BUVBSxsbHExcXh4+Njb7/vvvsq+xQAnD9/nkWLFvH999/bj9WrVw+AFStWcOjQIQA6dOhA\no0aN2LJlC9HR0WRkZLBo0SIAQkJC6NmzJ6tXryYpKYkVK1YwatQoAAIDA4mLi2P58uXMmDHDkJhF\nRERERETEHJUudufMmVPuflpamv22xWIxrNg9dOgQtWrV4vnnn2fjxo34+fkxbdo02rVrR0lJib3w\nBQgODiY/Px+A/Px8goOD7W0hISG/2bZ9+3ZD4r0RnDt3zuwQTKPcPZNy90zK3XE/5eVhO3vWSdFc\n5opdByw1anDTz/5/9zRV7Xe+uLi43N+eRLkrd0/jzNxtNluFz6l0sbt58+bKduGQkpIS8vLyaN26\nNX/961/ZtWsXffv2Zc+ePdeVuMD+/fsdfmxTJ8ZhBuXuGOXuPpS749wp/wrnXlZG8cBBTorGdXxX\nr9TrXgXl5uaaHYJplLtnUu7G8vLyomnTir1bGzZnd/78+cTGxlKrVi0Ajh8/zqpVq+zDhCsrKCgI\nLy8v4uPjAWjXrh0hISF8/fXXVKtWjYKCAvvV3dzcXIKCgoDLV3nz8vKoX7++vS0mJsbeZ15eHlFR\nUVed5wkqMjf54t69TozE9ZS7Y5S7+1DujnOn/JW74zw5d2crLi4mNzeXkJAQfH19zQ7HpZS7clfu\nxrHZbJSWllboHMOK3blz5zJ69Gj7/dq1azN37lzDit3atWvTu3dvPvjgA/r160dOTg65ubm0bNmS\nwYMHk5aWxrRp09i5cydHjhyhR48eAMTGxjJv3jw6depETk4OW7ZssQ+1Hjx4MAsWLCA2NpaTJ0+S\nkZHB2rVrDYn3RuDv7+/wY5053MwMyt0xyt19KHfHuVP+yt1xnpy7q/j6+lbZ2JxNuSt3T+OM3MvK\nyjhz5kyFzjGs2L3WUOKKVt6/Jy0tjZEjRzJ58mS8vLyYP38+DRs25MUXXyQhIYHw8HCqV6/OsmXL\n7Hv9Tpo0iaSkJEJDQ/H29iY1NdV+9TkhIYHMzEzCwsKwWq1MnDiRVq1aGRqziIiIiIiIuJ6hsY8B\nJQAAIABJREFUWw+tWLGCBx98EICMjAwaNmxoVPcANGnShA8//PCq4/Xq1WP9+vXXPMfPz4/09PRr\ntlmtVlJSUkhJSTE0ThERERERETGXYcXua6+9xv3338//+3//D7hcZL733ntGdS8iIiIiIiLiMMOK\n3ebNm7Nv3z6++eYbAJo1a2YfSiwiIiIiIiLiSoYVu3B5OeiWLVsa2aWIiIiIiIhIhVnNDkBERERE\nRETEaCp2RURERERExO0YUuyWlpYyefJkI7oSERERERERqTRDil0vLy82b95sRFciIiIiIiIilWbY\nMOb+/fvz/PPPc+TIEU6fPm3/IyIiIiIiIuJqhq3GPGPGDACmTp2KxWLBZrNhsVgoLS016ilERERE\nREREHGJYsVtWVmZUVyIiIiIiIiKVYuhqzJ9//jlLliwB4OTJkxw9etTI7u0WL16M1Wrl/fffB6Cw\nsJB+/foRHh5OREQEW7dutT+2uLiY+Ph4wsLCaN68OStXrrS32Ww2xo0bR2hoKOHh4aSmpjolXhER\nEREREXEtw4rduXPnkpSUxHPPPQfA8ePHiY+PN6p7u7y8PBYuXEiXLl3sx5566im6dOlCVlYWixYt\nIj4+3j58etasWfj4+JCdnc0HH3zAI488QlFREQBLlizhwIEDHDx4kO3bt/PKK6+wf/9+w2MWERER\nERER1zKs2J0/fz6fffYZN998MwC33XYbhYWFRnUPXL4S+9BDD/HGG29w00032Y+vWLGCMWPGANCh\nQwcaNWrEli1bAMjIyLC3hYSE0LNnT1avXm0/b9SoUQAEBgYSFxfH8uXLDY1ZREREREREXM+wObvV\nq1fH19e3fOfehnUPwKuvvsodd9xBZGSk/diJEycoKSmhXr169mPBwcHk5+cDkJ+fT3BwsL0tJCTk\nN9u2b99uaMxV2blz58wOwTTK3TMpd8+k3D2Tcq86iouLy/3tSZS7cvc0zszdZrNV+BzDqtG6deuS\nlZWFxWIB4K233iIoKMio7tm7dy8rV64sNx9XKqciQ7abOjEOMyh3xyh396HcHedO+St3x3ly7q6S\nm5trdgimUe6eSbkby8vLi6ZNK/ZubVix+9prrzF06FAOHDjArbfeys0338yaNWuM6p6tW7eSl5dH\nWFgYNpuNY8eOMXr0aJ577jm8vb0pKCiwX93Nzc21F9rBwcHk5eVRv359e1tMTAwAQUFB5OXlERUV\nddV5nqBFixYOP/bi3r1OjMT1lLtjlLv7UO6Oc6f8lbvjPDl3ZysuLiY3N5eQkJCrRgG6O+Wu3JW7\ncWw2W4W3tTWs2A0NDWX79u1888032Gw2mjVrhpeXl1HdM2bMGPvcW4BevXoxYcIE7r33Xnbs2EFa\nWhrTpk1j586dHDlyhB49egAQGxvLvHnz6NSpEzk5OWzZsoW0tDQABg8ezIIFC4iNjeXkyZNkZGSw\ndu1aw2Ku6vz9/R1+7EUnxmEG5e4Y5e4+lLvj3Cl/5e44T87dVXx9fatsbM6m3JW7p3FG7mVlZZw5\nc6ZC5xg6qXbHjh1s3LgRi8XCXXfdZb9i6gwWi8U+bvvFF18kISGB8PBwqlevzrJly+yF9qRJk0hK\nSiI0NBRvb29SU1OpVasWAAkJCWRmZhIWFobVamXixIm0atXKaTGLiIiIiIiIaxhW7M6aNYuUlBQe\neOABAOLi4hg/fjwTJkww6inK+fDDD+2369Wrx/r166/5OD8/P9LT06/ZZrVaSUlJISUlxSkxioiI\niIiIiDkMK3bnz5/PF198Qe3atQGYOnUqnTt3dlqxKyIiIiIiIvJrDNtn9+abb7YXugC1atWy77kr\nIiIiIiIi4kqGXdmNjo5mxIgRjBw5Eri89dBdd93F7t27AYiIiDDqqURERERERER+k2HF7ttvvw3A\nli1byh3PyMjAYrFw+PBho55KRERERERE5DcZVuzm5OQY1ZWIiIiIiIhIpRg2Z1dERERERESkqlCx\nKyIiIiIiIm7HsGHMIiIiIiI3kqz8As79VOLU5/AK+ANZR08Bp5z2HP43eRMeVM9p/YvcqJxS7Nps\nNs6ePUvNmjWd0b2IiIiISKWd+6mEh5d8bXYYlZaW0MbsEOQGcfCHgxSXnHfqc1RvcBOHTx6Ck8b2\na8VK4xq3Vugcw4rdkSNHMnv2bPz8/OjYsSPZ2dnMmjWLRx55xJD+L168yJAhQ9i/fz++vr7Uq1eP\nuXPnctttt1FYWMjw4cM5dOgQPj4+pKamcscddwBQXFzMyJEj2blzJ15eXjz//PMMGjQIuFyUjx8/\nnnXr1mG1Wnnsscd49NFHDYlXRERE5Eagq5viaW7kgu/nfL39CK0fWqFzikvO88zOPzspIueqWa0m\nc7u/WaFzDCt2P//8cwICAnj//feJjIxk69atdO/e3bBiFyA5OZm7774bgNTUVB566CE2b97M5MmT\n6dKlC+vWrSMzM5OBAweSm5uLl5cXs2bNwsfHh+zsbHJzc4mKiiI6OprAwECWLFnCgQMHOHjwIEVF\nRURGRhIdHU2LFi0Mi1lERESkKtPVTc+kgu/GLPh+7vmOfzU7hCrPsGLXZrMBsHXrVu655x5uvvlm\nvLy8jOqe6tWr2wtdgM6dOzN79mzg8h6/hw4dAqBDhw40atSILVu2EB0dTUZGBosWLQIgJCSEnj17\nsnr1apKSklixYgWjRo0CIDAwkLi4OJYvX86MGTMMi1tEREREpKpRwSeewLBit0GDBjz88MOsW7eO\nZ555hkuXLlFaWmpU91f529/+xoABAzhx4gQlJSXUq/e/YSvBwcHk5+cDkJ+fT3BwsL0tJCTkN9u2\nb9/utJirmnPnzpkdgmmUu2dS7p5JuXsm5e6ZlLtnUu7yawwrdpctW8bSpUtJTEwkICCA3NxcJkyY\nYFT35bzwwgscOnSI+fPnc/68c4dfuLP9+/c7/NimTozDDMrdMcrdfSh3x7lT/srdcZ6cu1fAH5wU\niespd8dVb3CTkyJxMZtyrwi3yd1BhhW7derU4fHHH7ffDwkJYcSIEUZ1bzdr1izeffddNm3ahI+P\nDz4+Pnh7e1NQUGC/upubm0tQUBBw+SpvXl4e9evXt7fFxMQAEBQURF5eHlFRUVed5wkqMjf54t69\nTozE9ZS7Y5S7+1DujnOn/JW74zw598sLR7kH5e64wycPOSkSF7Mo94pwm9wdVOlit0mTJlgsll9t\nP3z4cGWfwu7VV18lPT2dTZs2ldvWaPDgwaSlpTFt2jR27tzJkSNH6NGjBwCxsbHMmzePTp06kZOT\nw5YtW0hLS7Oft2DBAmJjYzl58iQZGRmsXbvWsHirOn9/f4cfe9GJcZhBuTtGubsP5e44d8pfuTvO\nk3N35grJrqbcK8CJi0a5mnKvADfK3RGVLnbXrFkDQHp6Orm5uSQnJwOwYMGCcvNhK+v7779n4sSJ\n3HbbbfTq1QubzYaPjw/btm3jxRdfJCEhgfDwcKpXr86yZcvsi2NNmjSJpKQkQkND8fb2JjU1lVq1\nagGQkJBAZmYmYWFhWK1WJk6cSKtWrQyLWURERERERMxR6WL3SnH4wQcfsHPnTvvxbt260alTJ8NW\nNm7UqBFlZWXXbKtXrx7r16+/Zpufnx/p6enXbLNaraSkpJCSkmJIjCIiIiIiIlI1WI3q6NSpU+VW\nAzt37hynTrnP0BARERERERG5cRi2QFV8fDydO3fmwQcfBC7vfTts2DCjuhcRERERERFxmGHF7nPP\nPUenTp3YtGkTAC+99BL9+vUzqnsRERERERERhxlS7JaWljJixAiWLFlC//79jehSRERERERE5LoZ\nMmfXy8uLrKwsI7oSERERERERqTTDhjH36tWL0aNHM2LECGrUqGE/HhERYdRTiIiIiIiIiDjEsGI3\nIyMDgA0bNtiPWSwWDh8+bNRTiIiIiIiIiDjEsGI3JyfHqK5EREREREREKsWwYhdgx44dbNy4EYC+\nffvSoUMHI7sXERERERERcYghC1QBzJ8/n9jYWAoKCigsLGTQoEEsXLjQqO5FREREREREHGbYld03\n3niDzz//nLp16wLw9NNP07t3bx566CGjnsIpDh48SGJiIj/++CMBAQG89dZbtGjRwuywRERERERE\npBIMHcZ8pdD95e2qLDk5mTFjxpCQkMDKlStJTExkx44d9nabzXb1SQEBLozQSby8KCsrq9DjCQx0\nXjyupNwr9Hjl7gaUe4XPcYv8lXuFz/HU3K0WuMXX0I+EprBaUO4VOQcrNavVdFJErmPFqtwreM6N\nmnsN7xpXHbtmrfYzFtvvPcJBgwYNonnz5iQnJwOwYMEC9u3bx8qVK43o3ikKCwsJCwvjxIkTWK2X\nR3Q3bNiQTz75hKZNmwJQUlLCuXPnzAxTREREREREfsHf3x9v71//wsqwObvz5s3j0KFDtG/fnttv\nv52DBw+SlpZmVPdO8e2339KwYUN7oQsQFBREfn6+iVGJiIiIiIhIZRk2bqNu3bqkp6cb1Z2IiIiI\niIjIdTPsym7v3r158cUXyczM/N2x01XFrbfeytGjR8uNdc/PzycoKMjEqERERERERKSyDJuzu3Xr\nVjZs2MDGjRs5ePAg3bt356677uKRRx4xonuniY6OJjExkcTERN555x1efvnlcgtUlZWVXTXx22Kx\nYLFYXB2qiIiIiIiIR7LZbFddVLVareWmpP6SYcXuFadOnWL16tVMnz6do0ePcuHCBSO7N1xWVhYj\nRozg+PHj3HLLLSxevJhWrVqZHZaIiIiIiIhUgmHF7pQpU9i0aRMXL16kV69e9O7dmx49euDv729E\n9yIiIiIiIiIOM6zYbdCgAU2bNiUhIYE+ffoQGhpqRLciIiIiIiIiFWboMObdu3ezceNGNm3aRG5u\nLl27dmXBggVGdS8iIiIiIiLiEMNWYwaoVasWgYGBBAQEcPz4cXbu3Glk9+KmysrKOHLkCPn5+fY/\n7q60tJSWLVuaHUaVYLPZOHPmjNlhuERpaSkJCQlmh2Gab7/9lp9++gmATz75hDfeeMNjXnvxPKWl\npaxcudLsMFxuw4YNAJw+fdrkSEREDLyy26xZM3766Sd69+5t/1OvXj0junZr3377LQ8//DDfffcd\nu3btYteuXWzevJknnnjC7NBc4q233mL8+PFUq1bNvpKaxWKhoKDA5Micr0ePHqxbtw4/Pz+zQ3G5\nkSNHMnv2bPz8/OjYsSPZ2dnMmjWryq/eboSoqCi2b99udhimaN++PZ9++inHjx+nc+fOdO/enZKS\nEt5++22zQ3O6N998kyFDhnDLLbfw6KOPsn37dl599VXuvPNOs0NzOqvVetUOBrfccgtdunQhNTWV\nkJAQcwJzgfbt2/PFF1+YHYZL3X777Xz++ecemfuoUaN+c7eO+fPnuzAa1xo4cOBv5r5q1SoXRiOu\ndurUKZ555hlyc3NZs2YN+/bt46uvvmLo0KFmh4a3UR2tWbOGsLAwo7rzGMnJycTHx/PKK68A0Lp1\naxISEjym2P3LX/7Czp07adasmdmhuFxoaCjdunVj8ODB1KhRw358/PjxJkblGp9//jkBAQG8//77\nREZGsnXrVrp37+4RxW6vXr0YPXo0I0aMKPe6R0REmBiV6/j4+LB27VqSk5OZMmUKbdu2NTskl0hN\nTSU5OZlPPvmEPXv28PzzzzNx4sRyW925qxkzZlBSUsKoUaMA+Pvf/87FixepX78+ycnJrF+/3uQI\nnad9+/b897//pXv37maH4jKXLl3ipZdeoqCggNdff/2qdnf+P65169YA7N27l48//pghQ4ZgsVhI\nT093+y+2BgwYYHYIVcL8+fOJjY2lVq1aABw/fpxVq1bZ3//cVXJyMq1bt+ajjz4CoEmTJsTHx7tX\nsatC9/oUFBQwbNgwZs+eDYC3tzfe3oa9LFVenTp1PLLQhcvDt9u1a0d2drb9mKfs33xlQMnWrVu5\n5557uPnmm/Hy8jI5KtfIyMgA/jfUDy6/7ocPHzYrJJe5cOECFy9eZMOGDTz++ONmh+NSV97XP/zw\nQ4YPH05MTAx//vOfTY7KNd59910yMzPt95999lk6dOhAZmamW1/pAvjss8946623aNq0abkvt9z5\niueCBQv4xz/+QXFxMV9++WW5Nnf/P+6xxx4D4M4772T79u3ccsstADz++OPcd999ZobmdImJieXu\nX7x4kerVq5sUjXnmzp3L6NGj7fdr167N3Llz3b7YzcrKIj093T51w9fX96r9cM3iOVVVFeXt7V3u\nl6GoqKjK/HK4woABA3jttdeIj4/Hx8fHfvzmm282MSrXWLx4sdkhmKZBgwY8/PDDrFu3jmeeeYZL\nly5RWlpqdlgukZOTY3YIpomPj6dBgwaEh4fTtWtXjh496jHD+K1WKxkZGWRkZLB27VoA+/xld3fm\nzBkKCwupW7cuAIWFhfa52tWqVTMzNKdLTU01OwSXi4qKIioqiuDgYCZPnmx2OKb48ccf7YUuXB62\nX1hYaGJErvP1118zdOhQTp48yXfffcfnn39ORkYGL7/8stmhucS1PsN7wuebm266qdz94uLiKlPP\nGLpAlVTc4MGDSU5O5vTp0yxcuJA+ffrw0EMPmR2WyzzzzDNMmDCBBg0a2Bc3CwwMNDsslzh16hRj\nx47l3nvvBWDfvn0sX77c5KhcY9myZTRr1oz09HQCAgL4/vvvmTBhgtlhucyOHTt44YUXeOGFF8pd\n8XJnZWVl9OnTh5ycHLZt24bFYqFmzZq88847ZofmEqmpqSxfvpxRo0YRHBxMVlYW0dHRZoflEhMm\nTKBt27aMHDmSkSNHEhkZyRNPPMHZs2fp1q2b2eE5VY8ePejatSuNGzemR48e9j+eYPLkyaxcuZIX\nXngBgO+//56vv/7a5Khco3Xr1jz00ENs27aNbdu2MXr0aPsQZ3c3btw45s2bZ/9yq3379vYv+DxB\nw4YNWbFihf1+RkYGDRs2NDEi1+jVqxfPP/88Fy5cYOPGjcTGxvLAAw+YHRZg8NZDcn2WL1/Ou+++\ni81mY8CAAcTHx5sdkrjAkCFDaN26Nenp6ezZs4fi4mK6dOnCrl27zA7NqUpLS4mJiWHjxo1mh2KK\n+fPnM3PmTB544AEsFgurVq1i6tSpHvElV9u2bfnqq6/MDsNUnjq0b8+ePWzevBm4/KHIUz74f/TR\nR8THx+Pt7U1+fj47d+7kb3/7G0uXLjU7NKd79tln2blzJ4cOHSIrK4ujR48yaNAgPv30U7NDc7rT\np0/z3HPPsWnTJgDuuusupk2b5hGj1q5MUYiMjLQPY//5bXd34MAB7r//fi5evAiAn58f7733nttP\n9ywpKeGVV14pV89Mnjy5akxRsznRm2++6czu3U5ZWZnt9OnTZochLhIZGWmz2Wy2du3a2Y9FRESY\nFY5LdenSxVZaWmp2GKZo06aNraCgwH6/oKDA1qZNGxMjcp1BgwbZsrOzzQ7DFF999ZWtVatWtkaN\nGtlsNpstMzPTNmnSJJOjEmeLioqyHTx4sNz7fMuWLU2MyHUiIiJsJSUl5XL3lPc6TxYVFWX76aef\n7J9x8vPzbbfffrvJUblWSUmJbe/evba9e/faSkpKzA7HJaryZzqnztn9/vvvndm9W/DULVh69OjB\nli1bCAwMLLdghc1mw2KxcOLECROjc42qPL/B2Tp27Mg999zDsGHDyi3a4u4LeFxxZXjXL2+7uxMn\nTtCuXTu6du1a7nX3hC0pxo8fz7x58xg3bhxweWjf8OHDPWIe2xdffMHTTz/N4cOHKSkpsR/3hEXZ\nSktLue2228od++V7v7vy9fW96qqOp/wfV1payrvvvsuhQ4fK/c4//fTTJkblGmPHjmXAgAEUFhYy\nZcoUli5d6hHvc+fOncPf39++v3Tjxo3tx8H916IJCQlhzJgxjB49mjp16pgdTjlOLXanT5/uzO7d\ngqduwZKeng7g9kN2f8sv5zfMmTOnysxvcLbdu3cDl1ftvMJisXhEsRsWFsYzzzxDcnIycPln4O7D\nm65ITEy8asVOT3H27Nly289YLBaPKXoSExMZO3YsXbp0qRpD2lzIx8eHs2fP2r/U/frrr/H19TU5\nKtcIDg5m69atWCwWLl26xAsvvEC7du3MDssl4uPjyc/Pp2PHjh73Oz9s2DCaNm3Ke++9x08//cTS\npUs9YuutO+64gy+++IKAgAAsFov94s2Vv919kaoNGzaQlpZGq1at6Nu3L2PHjiUqKsrssC4z8jLx\nO++8Y3v++edtNpvN9t1339l2795tZPdu6cqw1YkTJ9refvttm81WfliruK9Lly7ZXnjhBVunTp1s\nHTt2tD3//PMeM9zFkxUUFNji4uJstWvXttWuXds2ZMgQ2w8//GB2WC514cIFs0NwOU8e2te2bVuz\nQzDN+vXrbV26dLHVrVvX9sc//tFWv35926ZNm8wOyyWOHTtmi4mJsXl7e9uqVatm69u3r62wsNDs\nsFwiPDy8Sg/rdCZ99vds586ds7355pu2oKAgW4cOHWzLli2zlZWVmRqTYQtUefJCBJURExND06ZN\nWbduHbt27cLf35/bb7/dfuXLXUVGRv7mfnvuvAehXHbp0iVycnK4cOGC/VhERISJEYmzefKWFEuX\nLmX58uXs3r2bxMRE+9C+Bx980OzQnO7RRx/lT3/6Ex06dDA7FFPk5OTwwQcfYLPZiImJuWpYs7s7\nf/48NpsNf39/s0Nxmd69e7Nu3TqPGb3xc7fddhu1atXiT3/6E/Hx8QQEBJgdkks98sgjzJ0793eP\nuSObzcZ7771HSkoKx44dY+TIkWzevBlvb29Wr15tWlyGFbtt27bliy++oEOHDvYV1yIiIty+aKus\nH3/8kaVLl9K5c2c6d+5Mbm4uH330ESNGjDA7NKfasmXLb7Z7wtYMM2bMuOpYQEAAXbp0oWPHjiZE\n5Dpr1qxh1KhRFBUV4e/vT1FREcHBwR6zB+327duvmss1fPhwEyNyjZ49ezJz5kzGjRvHl19+ic1m\no3Xr1uzdu9fs0Fzi008/5b333sNms3Hfffd5xNA+gDZt2vDNN98QGhpabj91T/lS89y5c3z55ZdY\nLBbatWvn9kVfdnY2YWFhv/r5zxO+1HzkkUfYvXs3DzzwQLnfeXefonbFRx99xFtvvcWaNWvo06cP\nSUlJ9OnTx+ywXKJ9+/ZXvbe1a9fO7aft/fWvf2X+/Pm0atWK8ePH07dvX3tbWFgY2dnZpsVm2Jxd\nT16I4HqVlpYyZMiQcluwhISEuH2hC55RzP6e/fv389FHH3HPPfdgsVhYs2YNnTt35o033mDs2LGM\nHz/e7BCdZurUqXz22WcMGDCAL7/8kqVLl3rMljQPP/ww69evp127dvb3TIvF4hHFrifPWwXo2rUr\nXbt2NTsMl3vjjTfMDsE0mzZtIj4+nkaNGmGz2Th69CjLly+nV69eZofmNE888QRr1qzh/vvvv6rN\nYrF4xMJkZ86coUmTJuW227FYLB5T7Pbs2ZOePXty7tw5Jk6cyN133+32c1YzMjJIT08nJyen3Por\np06dKrcgo7s6cuQI69evJzw8/Kq2K+v0mMWwYteTFyK4Xl5eXpw/f56ysjKsVqvZ4Zhi3759TJ8+\nnezs7HJXuTxhREBRURG7du2ifv36APzwww8kJCTw2Wefcccdd7h1sWu1WgkODra/5sOGDWPOnDkm\nR+UaGzduZN++feW+7fcU3t7eXLp0yT6F4dtvv/WYxVs8+b3Ok7/cfPzxx3n//fftC7Xs2LGDkSNH\n8vXXX5scmfOsWbMGwGNG6lzLkiVLzA7BVAUFBSxZsoTFixdjs9l46aWXzA7J6Zo3b87999/PF198\nUe6LnptvvpnevXubGJlzFRUVERgYSEpKylVtV0Z53H777SZE9j+GFbuvv/46iYmJfP311/j7+9Or\nVy+WLVtmVPduy9O3YBkyZAjDhw/n0Ucf9ZgPvVd899139kIXoH79+hw5coRatWpRrVo1EyNzviv5\nNW7cmNWrVxMSEkJRUZHJUblGw4YNqV69utlhmMJTt6QAz3yve/LJJ5k9ezYDBw685hoNnrDllNVq\nLbciaadOnTzm9QcoKyvj2LFj5b7gCQoKMjEi1zh9+jTPPvssubm5vPvuu+zbt489e/Z4xBz9e++9\nl+3btzNo0CAWLVpEp06dzA7JJdq2bUvbtm35v//7P/uWgjabjbNnz1KzZk2To3Oe3r1724dt9+7d\nm02bNtnb4uLiqsR0FcOK3fr16/PBBx945EIEleHJW7DA5avbEydONDsMUzRq1Ijp06eTlJQEwOLF\ni/nDH/5AaWnpby7e5Q4ee+wxioqK+Mtf/mJfsOi1114zOyyXiIqKIjY2lri4uHJXdz3h37ynbkkB\nnvle17NnTwAGDBhgbiAm6tu3L2+99ZZ9y60lS5aUm8vmzt566y3Gjx9PtWrV7KPXLBYLBQUFJkfm\nfGPGjCE8PJyDBw8Cl6eoxcfHe0SxO3ToUN5++22PHL0E8NRTTzF79mz8/Pzo2LEj2dnZzJo1y22H\nsP98yuqJEyd+tc1Mhi1QNWjQIEaOHMndd9/tsUNypeImTJjAgAEDuPPOO80OxeWOHTvG+PHj7d+C\n9e7dm9dee41atWqRnZ1NmzZtTI5QnOFac/UsFgsffvihCdGIq3jye93PecKVDoDAwED7HpunTp2y\nj2a5dOkSAQEBV30odEe33XYb//73v2nWrJnZobjclUWKIiMj7fN227Zt6zFrU+zYscO+Hk2fPn3c\nftHNn7uyGNX777/PqlWreP311+nevbvbTln5+YJcv1yc61qLdZnBsCu79913Hy+//DKjRo1i2LBh\nJCUleeQb3PV4++232bBhA3B5K6JBgwaZHJHrxMbGEhMTQ82aNfHx8bFvvu0JC1g0aNCAFStWXLPN\n3QvdU6dO8cwzz5CXl8e//vUv9u3bx1dffcXQoUPNDs3pNm/ebHYILterV6/fHK3gCYXBlOT7AAAg\nAElEQVS+J7/XjRw50qOudABuv/KqI+rUqeOxnwN/ufDehQsXqsxVLmebP38+M2fO5IEHHsBisRAb\nG8vUqVN56KGHzA7NJa68zlu3buWee+7h5ptvduupC6WlpZw5cwabzVbu9pW2qsCwK7tXHD58mH/+\n858sWbKEBg0a8MknnxjZvduZMWMG7777LsOHD8disbBkyRIGDBjAlClTzA7NJZo1a8bkyZPp0KFD\nuTeDVq1amRiV63jqFjRDhgyhdevWpKens2fPHoqLi+nSpYvHfED0tC+41q5d+/+xd99RUZ37/vjf\nG1CxYUFPLCiKIqh0RIoI0lGjgo0SEAFB8YjREIOixK5RokZNCBppil2MHk0siFgAEUG6Agoo1sRC\nU+oM8/2Dxb6OYHJ/v5vZD2fv57XWXYt59l1Zb3LCzDzt8wHQMtG/e/cufHx8wDAMoqOjoa+vj7Cw\nMMIJZU/I73VC2+n4WG1tLfvepqenh27duhFOJFvV1dUAgJ9++gldu3aFu7u71JFWJSUlUtE48803\n36Bv3744ePAgwsPDsXPnTujp6bXbcpBvdHR0kJiYyN5bffXqFWxsbATz9+7g4AA1NTVcuHAB2dnZ\n6N69OwwNDXn7+8vJybGnWFq1vmYYpkNMeP/xyW5TUxPOnDmDqKgo3LlzB69fv/4n//G8o6Ojg7S0\nNPbD7/379zA1NeXtH8XHDA0NkZmZSToGEZ9qQfOp3V4+EfIRLyEvcJmYmCA5ORkKCi2HihobG2Fh\nYYG0tDTCyWRPyO91rX/bK1asYO+sf/i3z2epqamYNWsWBgwYAKCl6n58fDxMTU0JJ5Od/4Yvv7LW\n1NSE7777DmfOnIFEIoGTkxNCQkLY9z4+09HRafMdtr0xvnr9+jXi4uJgYmICExMTPHr0CNeuXRNE\nW9GO6h/7q7t79y6io6Nx/PhxGBkZwcfHB2fPnv2n/vG8JZFIpFZ5u3fvLpijLgAwdepUnDt3DtOm\nTSMdhXNCbkHz8RGvuro6wfx3f+rUKakFrgULFsDU1FQQk923b99KHWeWk5MTxN1FQNjvdQMGDEBA\nQAAuXLiA1atXo6mpSRATHqDlrvapU6cwYcIEAC2T3+XLl/N6gae5uZl0BGKWLVuGH374AadOnUJo\naChCQ0NJR+Kcuro6Vq9ejYULFwJoKcCqrq5OOBV3+vXrh2XLlrGvhw0bRie6hP1jk103Nzd4e3sj\nKysLgwcP/qf+sbw3fvx4eHp6ws/PDwAQGRkpmDLtALB3715UVVWha9eu6NKlC7vyK4QvwEJuQWNl\nZYXNmzejvr4eV65cwa5du6SasPOZkBe4bG1t4ejoyB7Vj4uLg52dHeFU3BDye93hw4cRFxcHLy8v\n9O7dG48ePcJXX31FOhYn6urq2IkuAJiZmaG+vp5gItkrKCjA8+fP2/xtX7lyBYMHD8bo0aMJJZO9\na9euAQDCwsIEUYOiPREREQgMDISBgQEYhoGtrS1+/vln0rFkzs3NDUePHoW+vn67NSo6QqEmofrH\njzG3EovFOHfunKBbDvxvvH//Hhs2bGAr8tra2iI0NFQwrZseP37c7riqqirHSbi3YsUKlJaWCrIF\njUgkQlhYmNQRr+DgYF4XcWjl6+uLxsZGqQUuBQUFREZGEk4meyKRCPv375d6v/Pz8xPE0T4hv9cJ\n2YQJE7B+/XrY2toCABITE/Htt9/yup7JjBkzsG7dOujr60uNZ2dnY926dThz5gyhZLI3depUlJeX\no6ysDGPGjGnzPD09nUAqiguZmZkwNDTE9evX231uaWnJcSKq1T8+2S0qKkJkZCQOHjwIFRUVZGRk\n/JP/eIqHXrx4gaKiIkyaNAkikQjNzc1tjrnyEW1BI0xCXeASi8UICQnBtm3bSEehOEJ3OoCMjAzM\nmjWLXchrbm5GfHw8DA0NCSeTHSMjI9y5c6fdZ9ra2sjLy+M4EXcaGxtx584dzJ8/HxEREW2e29jY\nEEjFjRs3bvzlc6G3XaPI+Ucmu7W1tTh+/DgOHDiAsrIy1NXV4datW9DU1PwnMvJabW0tYmNj8eDB\nA6mKvHv27CGYijunTp1CUFAQGIbBo0ePkJOTg1WrVuH3338nHY2Sgc8//xznz58HAPz8888ICAgg\nnIji0vjx4wW7s/Hnn39i7dq1yMnJkTrGyucJH93paNHU1ISioiIALVW5W3vu8tXo0aNx//79/8/P\n+CQ/Px9aWlqkY3CqvV66DMPg+fPnePHiBe/v6Ts7O/9li73Tp09zmIY7Bw8e/MvnHaHDyP/57Jif\nnx9Onz4NCwsLrFy5EpMnT4a6ujqd6P4vzZw5E506dYKRkZEgjnB+bOvWrbh79y57xEtXV/eTx/34\nqKmpCWVlZVJffnV0dAgmkq1nz56xP//yyy+Cmuz+3QLW0qVLOUpCzpQpU7B582Z4e3ujR48e7LgQ\nWpH4+vrC3NwciYmJ2LFjB/bt29fmmCffGBoaQiwW48CBAzh06BDpOEQ4OTnhzJkzUhOf1jG+6tGj\nB4qKitr02C0qKuL9CZZWffr0gZOTE548eYLMzEzk5OTg+vXrvH6f/3g3/+3bt9i0aRPi4uKwfv16\nQqm4I9Rrm+fOnQPQ0nLs+vXrMDc3B8MwSE5OhqWlJT8mu8eOHcO4ceOwcOFCODg4gGGYv1zZoKSV\nl5fj3r17pGMQIy8vD2VlZakxIRxhBoDz58/Dz88PFRUV6N69OyoqKqCqqoqysjLS0WRGyO8NH7ZZ\n+bgqr1D+vbT2mPywQqlQWpE8efIEwcHBiIuLw7Rp0+Dg4ABLS0ts3LiRdDSZkpeXR3FxMekYxJSX\nl7cZKykpIZCEO19//TVmzJiB3bt3w8TEBABw69YtfPXVV/j2228Jp+PGwoULMXv2bOzatQsAMGbM\nGHh4ePB6stuqvr4eu3btwu7du+Hu7o779++3+Z7HR15eXqQjEHHy5EkALTvbGRkZ7MJeQUFBh/l7\n/z9Pdl+8eIHjx49jw4YN8Pf3x7x589DU1PRPZBMETU1NvH79Gv369SMdhYiePXvijz/+YL/sJyYm\nom/fvoRTcSM0NBRpaWlwcnJCVlYW4uLieN9ntrKyEufOnYNEIkFVVRX+85//SD3nc3Gu6Oho9md9\nfX2p10Ih5JYkrYt4ioqKePPmDfr06SOYPvRWVlbw9/fH/PnzpXb0+XyKZd++fYiIiEBxcTEMDAzY\n8aqqKowdO5ZgMtlzcXFBbW0t/P398fTpUwCAiooK1q5dC1dXV8LpuPHy5UvMnz8fu3fvBgB06tSJ\n94X4mpubceDAAWzcuBHW1ta4ffu2oArw/V2F+Z07d3KUhIyHDx9KnWAZO3YsHjx4QDDR//g//+X1\n6NEDvr6+8PX1xb179xAVFYXGxkaYmZnBw8MDixcv/idy8tbmzZthamoKIyMjqYq8UVFRBFNx57vv\nvsPkyZNRWloKc3NzlJWV4bfffiMdixNycnJQVVVl72p7eHiwq8B8NXToUPYNf+jQoVK/L8MwvJ7s\nfkgoO7kfKysrY++oGhoaYtiwYWQDcWjUqFF48+YNPDw8YGxsDCUlJV4XKfrQ8ePHAQAJCQnsGMMw\nKC0tJRVJ5hwdHaGhoYGAgACp9zklJSVeT/JbeXt7w9vbG69evQIA9O/fn3Aibn08sa2srOT9Yp+W\nlhYaGhqwZcsW6OrqoqqqCrm5uexzvv9336tXL9IRiFJSUkJMTAy7wx0bGyu1uEmSTFoPiUQinD17\nFlFRUYKZuPz/ZW5uDjU1NYwbN07qzu6///1vgqm4VVVVhdTUVEgkEpiZmaF3796kI3HCxMQEaWlp\nmDx5Mvz9/TFs2DDMmjWL118AqRYGBga8Lkz0saamJvj6+iI+Ph7q6uoAgAcPHmDWrFmIjIzkfcGe\nj6WkpKCiogKOjo683+0Rurq6OigqKrILXBKJBA0NDVKL20IQGBiIvXv3ko7Bme3bt+PRo0e4fPky\n1qxZg/DwcN4fYx42bNgnF3L5vrhFtdzJ9/T0RHZ2NhiGgb6+PmJjY9vc3SdBZn12qf+dsWPHoqCg\ngHQMIsRiMbS1tQV7Z/no0aNwdHRESUkJ3NzcUFlZyd5xofjnwyPby5cvb7OLz+dd7dWrV6OoqAj7\n9+9nrym8efMGCxcuhLq6OrZu3Uo4IXfevXvH7vD07NlTsLv8QmFmZoYLFy6wuz5VVVWYOnUqkpOT\nCSfjltAW+ADg0KFDUr3kO0KhHoob6enpyM7Olio+yueFjg/V1NQAaPl86yjoZJcwd3d3hIWFYfDg\nwaSjEGFpaYkLFy6gW7dupKNQlEy111e5Fd/7K48aNQq5ubltdrNqa2uhq6vbYe71yMKBAwfw7Nkz\nrF27FgAwcOBAtk7Bjz/+KKiK5EKkp6eH7Ozsvx3jO319fakifRTFV1u2bMGpU6dQXl4OS0tLJCQk\nwMbGBr/++ivpaDLXUTuM0PNThL169QpaWlowNTWV+iLI135cHxs5ciQmTJiAOXPmSJ3t5/sK2OPH\njxEeHs7u6mtrayMgIABDhw4lnIySlaSkJNIRiOnUqVO7xza7devG++rrBw4ckHo/HzBgAF68eIH3\n799j6tSpdLLLc83NzXj37h37+VZdXc3WaRCSI0eOkI7AmXPnzmHr1q3sqTUtLS2sXLkSn3/+OeFk\nFBeOHDmCjIwMmJiYID4+HkVFRQgJCSEdS+Y6cocROtklzMPDAx4eHqRjENPc3Aw9PT2pnR2+H+u7\nf/8+JkyYAAcHB9ja2kIikeDOnTvQ19dHSkoK7VFN8Y68vDzKy8vbLOY8evQIcnJyhFJxo7m5GYMG\nDWJft1bi7d69OxobG0nFojjyxRdfwNbWFosWLQIARERECKpFyYsXL1BWVgaRSMQWq7KwsCCcSnYu\nXrwIPz8/hIaGwtjYGBKJBOnp6fD390dMTAzs7e1JR6RkTFFREYqKimhuboZEIoGGhgbv240BHbvD\nCD3G3EE0NDSgS5cupGNwpqam5pPn+bOysqCvr89xIu588cUXsLCwwMKFC6XGf/nlFyQlJfF6BVzo\npfmFKiYmBmFhYdi5c6dU382goCAEBQXBx8eHcELZGTlyJB4+fNjuM3V1dV4f4W714sUL/PDDD3jw\n4IHUrubHrcf4KjY2li3WOX36dMEscG/evBlhYWFQU1NjC3AyDIP09HTCyWTH0dERwcHBba6tXL9+\nHVu2bMGlS5cIJaO4MnHiRFy9ehW+vr7o378/VFRUEBUVhby8PNLRZMrQ0BCZmZnQ1tZmf9fWMdLo\nzi5heXl5bHGip0+fIjMzE8ePH8f27dtJR5OpadOm4dKlS20m+Dk5OZgyZQpevHhBKJnsZWZm4vDh\nw23GFyxYgB07dhBIxB2hl+YXqvnz56OxsRELFizA8+fPAQCDBw9GSEgIrye6QMvvefv2bRgbG0uN\np6enY+DAgYRScWvmzJkwNDSEk5OTVNcBofDy8hLUbm6rqKgolJSUQFlZmXQUzpSWlrZbn8HS0hL+\n/v4EEnFPJBIhPj4eJSUlUotb3377LcFU3Pn555/R2NiIHTt2ICQkBKmpqTh06BDpWDLX2lVBRUUF\nv/76K4YNG4aKigrCqVrQyS5hgYGBiIiIQGBgIICWioXz5s3j/WR39OjRmDt3Ln799Vf2GGNOTg4c\nHR0RHh5OOJ1sfWoHn2EY3u/utxbpEaJZs2YhPj4e27dvxzfffEM6Duf8/f3h7+8vuL6ba9aswcyZ\nM7Fu3TqMHz8eQMtEd8OGDYiMjCScjhvv37/Hjz/+SDoG5xITE7Fhwwa2CrGBgQFCQ0Nha2tLOBk3\nPvvsM0FNdAH8ZV/R7t27c5iEHFdXV7x8+RLjx48X1OJWXV0dYmJi0KdPH4wZMwZr167FrVu3oKmp\nKYjPuy+//BIVFRXYuHEju4n3ww8/kI4FgB5jJm7cuHHIyMiQqlQohKqFEokE7u7u6NSpEw4ePIi8\nvDzY29vjxx9/xKxZs0jHkyldXV0kJyejvT+9iRMndpg7DrKwZ8+ev3zO58JkWlpayMvLg6GhoeBa\ncAjd5cuXsXHjRqlJz5o1a+Dg4EA4GTe8vb0REhLC9lgWggsXLsDPzw+rV6+GqakpACA1NRVbtmzB\n/v37MWXKFMIJZW/t2rWoqqqCu7u7VIG6jlCdVVZGjBiBH3/8sd3P96VLl37ySgOfaGhooLCwkPf1\nVz7m4eGByspK1NbWQl5eHqqqqpg1axauXr2KwsJCnDt3jnREwaKTXcJMTExw8+ZNGBsb4+7du3jy\n5AmcnZ2RkZFBOprMiUQiODk5oU+fPrh69Sp2796N2bNnk44lc3JycmAYRurDsPU1wzAQi8UE08mW\nt7f3Xz6Pjo7mKAn3fH19cfz4cTQ0NEjdV2/93/3t27cE01GU7OTl5cHa2hrq6upSkx4+t9syNjbG\n/v37oaurKzWenZ0Nf39/Xt9bbTV8+PA2YwzDoLS0lEAabpibm//lJO/mzZscpiHD1tYWv/32G+9P\nqn1szJgxuHfvHurr6zFw4EC8efOGPbn44T1WvqqqqsLq1avx+PFjnDt3Dvfu3UNOTg7c3NxIR6OT\nXdLi4uJw9OhR5ObmwsvLC3Fxcdi+fTvmzp1LOppMtRYmqa2tRWBgIBwdHTFnzhz2+fTp00lFowh5\n9eoV74/6/PHHH7C2tsbvv//e5pmqqiqBRBQle7q6upgxYwbGjRsndaxx6tSpBFPJVusX3/aMHj0a\n9+/f5zgRRXFj0aJFyMnJgbOzs9TiFp9PbgH4yxOaBgYGvD/R5erqCi0tLRw7dgz5+fmoq6uDqalp\nh+gpTu/sEubh4QE1NTWcPXsWjY2NiIuLg7m5OelYMrdr1y72Zy0tLTx9+pQdYxiGTnYFQiKR4MKF\nCzhw4AASEhJQU1NDOpJMffbZZ0hNTUWvXr3YnX2hHfVqampCeXk5RowYQToKxaENGzaQjsCphoYG\nNDc3t2mtJRaL0dDQQCgVN6qrq//yuZKSEkdJKBIaGhqgqakptaAjhM+5+vp65OXlQSKRSP0MtNzn\n5bvi4mIcO3YM8fHxAICuXbu2e5yfBDrZ7QDMzMxgZmbGvuZ76x0ASEpKIh2BIqi0tBSRkZGIjY3F\nmzdvsGvXLhw4cIB0LE7U1tbCzc0NV69eBcMwsLGxwS+//CKIyrzXrl2Du7s7FBQUUF5ejjt37mD3\n7t2Ii4sjHY2SoQkTJiA7Oxt6enqko3DGzs4Oy5cvx44dO6Cg0PJVSywWY/ny5bwvUNW7d+82V3Va\n8f2qDsXv60h/pa6uTmqj5sOfhTDZ79y5s9Trurq6DjPZpceYCcrIyMDjx48xadIkKCsro6CgAKtX\nr0ZKSgpbsZSi+OTw4cOIjIxEQUEBPD09MX/+fEybNg1lZWWko3Fm2rRpMDU1xeLFiwEAERERSElJ\nEUTxChMTExw+fBizZ89mj3iNHTsWBQUFhJPJ3qZNm7BmzZq/HeMjbW1tFBUVYeTIkVLHGvl8rK+6\nuhpTpkxBeXk5DA0NAbS0nRsyZAguXLhAdzcpXnv+/Dny8/NRX1/PjtETe/y2atUq9OjRA3Fxcdi7\ndy927doFIyMjrFu3jnQ0OtklZdu2bdi6dSs0NTXx9u1bBAYGIjg4GIsXL8aaNWvQu3dv0hEpGXv9\n+jX69ev3t2N8IicnB1tbW8TFxeFf//oXAEBNTY3XBUs+pqen1+YOS3tjfGRkZIQ7d+4Irvo80P6d\nLSHc4wKA69evtztuaWnJcRLuJSYmSlXhtra2FsQuz8cSEhJgZ2dHOgbFgaioKGzYsAFv376Furo6\ncnJyYGJiguTkZNLRKBkSiUQICwvDmTNnIJFI4OTkhODg4A7RfooeYyYkJiYG9+7dw6BBg1BYWAgt\nLS1cunQJNjY2pKNRHLG3t2/zRbe9MT5JTExEVFQURo8eDUdHR3h7e3eYYy5ckUgkePnyJQYMGAAA\nePnypWD+HSgqKuLdu3fsl/28vDx07dqVcCrZunTpEi5evIhnz57hq6++YserqqoIpuKOWCzGgQMH\ncOjQIdJRiLCxsaGf6wCCg4MFMdn18/P7y8WM/fv3c5iGjF27diErKwvW1tbIzMzEjRs3EBMTQzoW\nJWMKCgpYtWoVVq1aRTpKG3J///9CyYKioiIGDRoEANDU1MSoUaME/YHI94IdH2psbER1dTXEYjFq\nampQXV2N6upqPHnyBO/fvycdT6asrKxw6NAhlJaWwtzcHCtXrsSzZ88QEhIiiKOsAPD1119DX18f\nPj4+8PHxgYGBAb755hvSsTgRGhoKe3t7PHv2DB4eHrCzs8OmTZtIx5IpRUVF9O7dG3JycujVqxf7\nf1paWjh9+jTpeDInLy+P4uJi0jEowoSyoKelpYWxY8cCAG7cuIFBgwZh8ODBuHnzpmB29Dt37ow+\nffpAJBIBACwsLARxcknI7ty5AxcXF2hpaUFLSwuurq4dqoUqPcZMyOjRo3HixAn2A8DFxUXqNZ+b\nrn8oNzcX7u7uqKysxNOnT5GZmYnjx49j+/btpKPJzPr167F+/fo2BTyUlJQQFBSE0NBQgum4l5OT\ngwMHDuDo0aN4/fo16TicKCgoYIu0WVlZsV+OhKCsrAwXL16ERCKBg4ODYKoy5+TktOm5KhQrV67E\n27dvMX/+fPTo0YMdF8rnHNVydSs4OJh0DM5YWFjg3Llz6NWrF4CWkxzTp0//5JF+PjEzM0NKSgpm\nz56NiRMnQlVVFcHBwXTRi6du3bqFKVOmYNGiRTA2NoZEIkF6ejr27duHCxcuwNjYmHREOtklZdiw\nYZ9c5eN70/UPTZo0CZs2bUJgYCCysrIgkUigpaUliF2+gIAA/Pzzz6RjdBgNDQ2Ca0IvNOfOncPU\nqVPbtGMRgpqaGqxcuRIJCQkAAAcHB2zZsgU9e/YknEz2hg8f3mZMSJ9zQiQWi+Hg4IArV66QjkJE\ne32W/6r3Mp9cvXoVhoaGeP36NRYtWoTKykps3bqV91XIhcrZ2Rnz5s2Ds7Oz1PjZs2cRHR2NM2fO\nEEr2P+hklyJq3LhxyMjIEGTBGooSGisrKxQXF+OLL76At7c3Ro8eTToSZzw9PdGtWzcEBASAYRjs\n27cPNTU1gr3LyncHDx78y+fz5s3jKAk5ZmZmSE5OFuTi1ty5c6GkpARfX18ALe14KisrceLECcLJ\nKOqfNWrUqE/u2v/VMy7RAlUUUQoKCmhqamJ3uZ88edIhKrdx4eLFi1i2bBlKS0shFoshkUhoD0KK\n15KSklBaWoqDBw9i6tSp+Oyzz+Dj4wM/Pz/S0WQuNzcXOTk57Ovw8HBBHWtOT09nd/ns7e0xbtw4\nwolkq7WVWHV1Na5fvw5zc3MwDIPk5GRYWloKYrJrZGSEzz//HB4eHlLH14XQgubAgQNYt24dFi1a\nBACwtbXF999/TziVbO3Zs+cvny9dupSjJBSXunXr9sln3bt35zDJp9GdXYqouLg4HD16FLm5ufDy\n8kJcXBy2b9+OuXPnko4mc6NGjcLevXthamoqNcHvKG8OshAbGwsvLy8UFhZCU1OTdBwihNhyqj31\n9fVYvnw59u/fL4gFHi0tLdy6dYs9tvzu3TuYmJggPz+fcDLZ279/PzZt2oSZM2eCYRicPn0aoaGh\nWLBgAeloMufs7IyNGzdCS0sLQMt9/W+//Rbx8fGEk8melZVVmzGGYXD16lUCaShZk5OTg5GREcaO\nHdumIBnDMIiKiiKUjJKlj2sQfcjFxQX3798nkEoanexSxKWmpuLs2bOQSCSYPn06zM3NSUfiROsR\nbiExNDREZmamYPqLtkfI/VYB4O7du4iOjsaJEydgZGSE+fPnY/bs2aRjyVxYWBhiYmLg4uICADhx\n4gS8vb0RFBREOJns6ejoIDExEf379wcAvHr1CjY2NsjNzSWcTPa0tbWRl5cnNaajoyOI313IxGIx\nzpw5g5KSErYqMQCEhIQQTCVb0dHRiI6ORlNTE3x8fODm5ia1o0/x039DDSJ6jJmw3NzcNhUp2xvj\nMzMzM5iZmZGOwbnPP/8cZ86cgZOTE+konAoICGjTc7TVzp07CSTiRmNjI+rr69mWU63rjFVVVbxv\nOdVKR0cHjY2NmD9/PrKzszFw4EDSkTizYsUKaGlpITExEQDw/fffw9HRkXAq7rROdD/+me+UlJQQ\nExMDLy8vAC2nW4QyARCJRNi9ezdKSkoQHh6OkpISPH78GNbW1qSjyZy7uzvKy8thZGQkmKtZ3t7e\n8Pb2xoMHDxAVFQV9fX1MmDABK1euFOxJLiF49OgR6Qh/i052CZs/f36bHZ32xvjq0aNH2LZtW5vV\nTyEcc9q9ezeqqqrQtWtXdOnShb2z+/btW9LRZObkyZM4efIk23NUSLZu3cq2nPrwd29tOSUEERER\nglzYajV58mRMnjyZdAzOqaurY/Xq1Vi4cCEA4JdffoG6ujrhVNyIioqCp6cn/P39wTAM9PX1ERsb\nSzoWJ5YsWQKxWIzk5GQAgLKyMlxcXARxoik7Oxv3798XZHEudXV1rF+/HmPHjsVXX30FQ0NDOtml\niKKTXUL+/PNPvHz5EnV1dcjLyxPkLg/QUrHQxsYGS5YsEczqZyshNllXU1NDcHAwBg0aBE9PT9Jx\nOLV27VqsXbtWkC2nHjx4AHV1dfTo0aPd45t8PskSFBSEHTt2wNnZud2jXqdPnyaQilsREREIDAyE\ngYEBGIaBra2tYP4GNDQ0kJ6ejpqaGgAQRKupVmlpacjOzoa+vj4AoHfv3mhqaiKcihsqKioQiUTo\n3Lkz6SicysrKQmRkJC5cuAAHBwecP38e48ePJx2LEjg62SXk6NGj+OGHH/D8+XOpyoS9evXCN998\nQzAZt+rr67F161bSMYhQVVXFixcvUFRUhEmTJkEkEqG5uZl0LE54enri5MmTUj1HZ82aRTgVN37+\n+WeUl5fjxo0bYBgGFhYWGDJkCOlYMrV8+XKcP38eM2bMaPOso9zpkZVJkyYBgMExLv0AACAASURB\nVOCuK3yIYRgcO3ZMauz169eE0nBLyEd5FRUVpV6LxWLBfMZpaGjA2toaM2fOlPr3sHjxYoKpZMvA\nwAAKCgrw9vZGaGgounbtCqClIjnQcoqJokigBaoI27hxI0JDQ0nHIMbd3R3fffcdhg4dSjoK506d\nOoWgoCAwDINHjx4hJycHq1atwu+//046msxt3LgRv/76K+bNmweGYXDo0CE4OTlhzZo1pKPJ3JEj\nRxAYGAgLCwsAQHJyMvbu3QtXV1fCyShZEYvFCAkJwbZt20hHIULIRdkWLVrEHuW9f/8+KisrYWtr\nK4ijvP7+/rCwsEBYWBji4+Oxbds2KCoqYu/evaSjyVx7J5cYhvnb/sv/zT48sv3hKRbaVpEijU52\nCSsvL293nO+Tv9YjfTU1NcjIyICpqanU6qcQjvYZGhri8uXLsLW1RVZWFgBg7NixKCgoIJxM9nR0\ndJCWlsb2Z3v//j1MTU0FUaFUU1MTFy5cwPDhwwG03Ft3dHREYWEh4WSy5+TkhDNnzvztGB+NHz8e\n6enppGNwqrUo28SJE5GcnCx1XcfW1hZFRUWEE8qenp4ee5S39X1eV1dXqucyX7179w5BQUHs37eT\nkxN27tzJ6/Z6FEV1PPQYM2GGhoZgGAYSiQT19fWora2FsrIy/vzzT9LRZOrDI30eHh4Ek5AjLy8P\nZWVlqTGh3O+RSCRSjci7d+/ebo82PurWrRs70QVayvb/VVN2Pmlvca+kpIRAEu5NmTIFmzdvhre3\nt1Q1Xj4f7aNF2YR9lLdHjx7Yt28f9u3bRzoKEX/88QcKCgpQX1/Pjk2ZMoVgIooSJjrZJezVq1dS\nr0+fPi2IFd/WNgwXL15s037j4sWLJCJxrmfPnvjjjz/Y4z6JiYno27cv4VTcGD9+PDw9PeHn5wcA\niIyM5H0Ri9Z7S1OnTsW6deuwYMECSCQSREdHY9q0aYTTyda+ffsQERGB4uJiGBgYsONVVVUYO3Ys\nwWTc2bBhAwAgNDSUXeDk+9E+IRdla6Wjo4O4uDg0Nzfj4cOH2LZtG3uPm6/+7qjuvHnzOEpCTmxs\nLL799ltUVFRg+PDhyM/Px/jx4+lkl6IIoMeYO6Bx48YJ4j4PIOy7XBkZGfD390dpaSm0tLRQVlaG\n3377DXp6eqSjydz79++xceNGXLlyBQBga2uL0NBQXh9vk5OTYyc5H+P7pOfx48coKytDQEAAIiIi\n2HElJSXo6OgIrhK70Dx58gSfffYZOnfujJSUFGRlZcHLy0sQlYmFeJR3zpw5AFoW+K5fvw5zc3Mw\nDIPk5GRYWloKYkFbR0cHSUlJ7DWlpKQkHD58GAcOHCAdjaIEh052CWvd7QFajjfdvn0bS5cuRXFx\nMcFUsldcXIzCwkIsX74cu3btYserqqqwefNmQdxfBFp+39TUVEgkEpiZmaF3796kI1EUJQOLFy9G\neHj4347xkYGBAVJTU/HmzRuYmJjA3NwcIpEIJ0+eJB2NkiFnZ2ds3LgRWlpaAICCggJ8++23iI+P\nJ5xM9lo3LbS1tZGXlwdAOAv5FNXR0GPMhPXu3Zvd7ZGXl4e6ujr27NlDOpbM3bp1CzExMfjzzz+l\nJrtKSkrYsWMHwWTcad3tmDx5MlJSUhAXFyeY3Q6hy8zMxL179+Dp6YnKykrU1dVh4MCBpGPJnJWV\nVbu9Zq9evUogDbfS0tLajKWmphJIQoaioiJ+++03LFy4EGvWrIGuri7pSEScPXsW69atY4tV8dnD\nhw/ZiS7QUoDxwYMHBBNxp3PnzpBIJFBXV8fevXsxbNgwvHv3jnQsTpiYmGDp0qWYM2cOOnXqRDoO\nRdHJLmlCKVTxMS8vL3h5eSEyMhK+vr6k4xAxY8YMpKam4tmzZ3B1dYW5uTmuX79Odzt4Ljw8HPv2\n7cO7d+/g6emJN2/eYMGCBUhKSiIdTea+/vpr9uf6+nocOXIEo0aNIphI9o4fP45jx46hrKwMM2fO\nZMerqqqkClXxWUNDAxoaGpCQkIBly5aRjsOJ27dvw8fHB+Xl5XB1dUVISAjc3d3x7NkzbNq0iXQ8\nTigpKSEmJoat0REbGyuY/+bXr1+P6upqbNu2Df7+/qisrBREyyWgpT5BeHg4VqxYAR8fHyxatAiD\nBw8mHYsSMDrZ7QCePHmCmzdvAgAsLS0F9aYg1IluK7rbITz79+9HWloazMzMAAAjRoxoU6iOr6ZO\nnSr1esaMGbC2tiaUhhuampqYMWMG7t69ixkzZrDjSkpKsLGxIZiMO25ubhgwYABGjRoFMzMzvHjx\ngvcVyJctW4bFixfDxsYGJ0+ehLGxMZydnXH16lV07dqVdDxOREVFwdPTE/7+/mAYBvr6+oiNjSUd\nixN2dnYAgF69egliIfND9vb2sLe3R3l5OSIiImBkZIQJEyZg2bJlmDBhAul4lADRO7uEnT17Fr6+\nvmwBh5SUFERGRvK+OivVcqTr7t278PDwYD8EhNJ/sVV1dTVEIhH7WgjVqI2NjXH79m2pvputvTiF\npqGhAWPHjsXDhw9JR5G5V69eoX///qRjEFNZWQklJSXIycnh3bt3qKqq4vXC7sfv5QMHDsTTp08F\nWYytpqYGAOgVHYHJycnBnj17cOnSJcycORM3b97EhAkT8OOPP5KORgkM3dklbP369UhLS8PIkSMB\ntNxxmTt3Lp3sCoAQdztaHT9+HIGBgaioqJBqw9LY2Eg6msz1798fxcXF7N3VmJgYDB06lHAqbjg7\nO7O/t1gsRm5urmBacfTv3x8nTpxAdna2VN/NnTt3EkzFnQ+L7/Xo0YP3x1k/ntQOHDhQkBPdFy9e\noKysTGpR08LCgmAiStaOHTuGvXv3orq6GkuXLsWPP/6Irl27QiwWY+TIkXSyS3GO7uwS1t5OnhB2\neUxNTXHr1i0sW7YMP/zwA+k4xAhtt6OVmpoaTpw4gXHjxpGOwrmHDx/Czc0NBQUFUFZWhpKSEs6f\nP4/hw4eTjiZzHx5hVFBQwMiRI2FsbEwwEXeWLl2KsrIyZGZmws3NDSdPnoSdnR0iIyNJR6NkoFu3\nbtDU1GRfFxYWSr0WQlXezZs3IywsDGpqauxEn2EYpKenE05GydK0adPw5ZdfwtbWts2zc+fO0c0c\ninN0skuYnZ0dXFxc4OPjAwCIjo7GsWPHkJCQQDiZbI0ePRrXrl2Dvb09kpOT2/QeVVJSIpSMOyKR\nCLt370ZJSQnCw8NRUlKCx48f8/4OIwCYmZkJqhLtx5qbm1FUVASJRAINDQ1B7vgIjba2NnJycqCv\nr4+cnBy8fPkSXl5euHTpEulolAxcv379L59bWlpylIScESNGID09HcrKyqSjcC4wMLBNQar2xiiK\nkj16jJmwiIgIfPHFF1i8eDEYhoGBgQHi4uJIx5K5uXPnYvjw4WhoaECvXr2knjEMA7FYTCgZd5Ys\nWQKxWIzk5GQAgLKyMlxcXJCRkUE4mez5+/tjy5YtmD17NhQVFdlxvh/nlUgkuHjxIgoKCgAAWlpa\nGD16NOFU3JkyZQoOHTrEfvl9/fo15s+fj/PnzxNOJnuKioqQk5MDwzBoamrCgAED8Pz5c9KxKBkR\nwmT273z22WeCnOgCQEpKSpux1s96vqurq8PevXvbXNk4ffo0wVSUkNHJLmEjRoxAWloa23+N7/eY\nWq1fvx7r16/HhAkT2v1QEIK0tDRkZ2dDX18fQMudtqamJsKpuNHQ0IBNmzbh+++/lzre9ueffxJO\nJjuVlZWwsbHB69evoa+vD4lEgr1796J///5ITExss+jDR8+fP5f68tuvXz/BTPh69uyJ2tpamJub\nw8PDAwMGDOD9Hf1P9VVuJYT+ykJmZ2eHZcuWwd3dXWpRU0dHh2Aq2Tp58iROnDiBR48eYe7cuex4\nVVUV7//eW/n5+UFJSQmpqakICgpCTEwMvadNEUUnux2AkAs4tE50W7/wDho0iGQcTn344Q+0FOwR\nSt/lLVu2IC8vDyNGjCAdhTMbN26EoaEhwsPDoaDQ8tbb1NSEwMBAbNiwATt27CCcUPbEYjFEIhH7\n+zc2NgqiKBkAHD16FAoKCggLC8POnTtRUVGBU6dOkY4lU619lZOSknD37l34+PiAYRhER0ezi3wU\nfx08eBBAS9eJVgzDoLS0lFQkmRs5ciQcHByQnp4OBwcHdlxJSYltR8R3OTk5yMvLg46ODgIDAzF/\n/vw2becoikt0skuY0As4FBYWYtasWexkV0VFBSdPnpQq5MFXOjo6iIuLQ3NzMx4+fIht27Zh0qRJ\npGNxQkVFRVATXQC4fPky0tLS2IkeAHTq1Ak7duyAsbGxICa7kydPxpw5c/Dll18CAHbv3i2Iasz5\n+fkoLi6Grq4uRowYgdWrV5OOxInWL7gbN25EcnIy+9/+nDlzBLGgK5FI8PLlSwwcOJB0FCLKyspI\nR+Ccvr4+dHR0kJGRAV9fX9JxiGjtI62goID379+jZ8+eguklT3VMdLJLWFRUFEpKSgR7ryUgIACr\nV6+Gu7s7gJaS9QEBAYJowr5z504EBQXh5cuXmDBhApycnLBt2zbSsThhbW2NoKAguLi4COZ4m0Qi\nQffu3duMtzfGV5s3b8aWLVvwzTffAACmT5+O4OBgwqlkKzw8HCEhIdDQ0EBRURGio6Ph7OxMOhan\n3r59K3WcWU5ODm/fviWYiDt2dnbIz88nHYOohoYGNDQ0sK/5XoBSXl5eENW2P6Vv376oqKjAlClT\n4ODggH79+kFFRYV0LErAaDVmwoRelba9NktCaL0kFotx5swZzJo1i3QUItprs8P3422GhobIzMxs\n95mBgYGgvxzxmZaWFn7//XcMHToUeXl5CAgIEEyhmlaLFy/GgwcPMG/ePABAXFwcRo4ciZ9++olw\nMtlzdHREXFwc+vXrRzoK59LS0uDt7Y3i4mKpcSEUoFy/fj0UFRXh7e0tVYtFCPd2xWIx5OXlIZFI\ncOTIEVRUVGDevHm8X+SgOi462SUkNzcXABAfH4+qqipBFXD4kKGhIQ4dOoQxY8YAAO7duwdPT89P\nTgr4hE5whOXjvputJBIJiouL8f79ewKpuPXkyRMEBATg6dOnyM7ORnZ2NpKSkrB8+XLS0WRGX18f\nWVlZ7Gsh/t2LRCLs27ePLUhla2sLPz8/qSP9fDV79mykpaVhypQpUpOenTt3EkzFDWNjY+zZsweL\nFi3CjRs3sGfPHigqKiIoKIh0NJmTk5NrMyaEThNisRgODg64cuUK6SgUxeL/J00HNWPGDKnXQirg\n8KEtW7bAwsKCndzn5eXh8OHDhFNxw8DAAMnJyTA3NycdhXPl5eXtjvO59dCFCxdIRyBu4cKFcHd3\nR1hYGICWXU9PT09eT3br6+uRl5fH9hKvq6uTei2EhU0FBQX8+9//xoIFC9ClSxfScTilra0NbW1t\n0jGIaGpqgrGxMUQiEXr27InVq1fDyMhIEJNdoXRW+Ji8vDxqa2vR3Nzc7oSfokigO7sUca9evcLt\n27cBACYmJoI57qWlpYXCwkKoqalJrfgLYdenf//+YBgGEokE9fX1qK2thbKyMq9bD1HAuHHjkJGR\nIbXb+fHOJ98MGzbsk+13hLKwmZubC3d3d1RWVuLp06fIzMzE8ePHsX37dtLRKBkyNjbG7du3MWnS\nJOzcuRNDhgyBkZERHj16RDoaJ54/f85eWZg4caJgCpV9+eWXePDgATw8PKS+20yfPp1gKkrI6M4u\nYU5OTjhz5szfjvFZ//798fnnn5OOwTkh3Ff7lI8rM54+fRo5OTmE0lBcUVBQwIfrqxUVFeD7eqtQ\nvtj/laVLlyIiIgKBgYEAWk61zJs3TxCT3ZqaGqxcuRIJCQkAAAcHB2zZsgU9e/YknEz2XF1d8ebN\nG4SEhMDS0hJNTU3YtGkT6VicOH/+PObPnw8TExMwDIMlS5YgJiZGENXnW6/p/fLLL+wYwzB0sksR\nQ3d2CWvv/pa2tjby8vIIJaK48HErEup/dv0o/tqxYweKioqQmJiIVatWISIiAvPnz8eSJUtIR6Nk\nSIg7+q08PT3RrVs3BAQEgGEY7Nu3DzU1NTh06BDpaJxqampCfX29ICb5QMt3u6NHj0JDQwMAUFxc\nDFdXV0Gc3KKojobu7BKyb98+REREoLi4GAYGBux4VVUVxo4dSzAZJWu0FQlQXV3N/iwWi3H79m2p\nMYqfgoKCcPToUVRVVeHy5cv46quv2LZjFH8pKCigqamJPc795MkTtq883+Xm5kqdWgkPD4euri7B\nRNy6f/8+Hjx4AJFIxI7NnDmTYCJuiMVidqILAKNGjeJ9caqmpibU1NSgb9++AFp6y9fX1wNoOcbd\np08fkvEoAaOTXUIcHR2hoaGBgIAA7Nq1ix1XUlISRMESIQsPD0dubq5UKxKhTXZ79+7N3tmVl5eH\nuro69uzZQzqWzL1//x5dunSBgoIC3r59i6ysLGhoaAiqB6Gbmxvc3NzY142NjejcuTPBRJSsLVmy\nBE5OTnj16hXWrFmDuLg4QRxhBlomPTU1NeyO5rt373g/6WkVFBSEw4cPY8yYMeziBsMwgpjs9u/f\nHzExMZg/fz4AIDY2lvf1SNasWQMlJSWsXr0aAODn5wc1NTXU19fj1q1b2Lp1K+GElFDRyS4hqqqq\nUFVVxf3790lHIeLvJjZLly7lKAn3OnXqxFYd1tbWRm1tLeFE3GtubiYdgXMHDx7EwoUL0a9fP8TG\nxsLDwwMqKiooLS3FTz/9BBcXF9IRZW7KlCmIi4tjV/5LS0sxd+5cenyd5zw8PKCmpoazZ8+isbER\ncXFxgqlC7+XlBRMTE/bv+8SJE/D29iacihtnz55FaWmpIHrLfuznn3+Gm5sbFi1aBIZhoKWlhaNH\nj5KOJVOXL19Gamoq+7pv375ISkpCc3MzLCwsCCajhI5OdgkJCgrCjh074Ozs3G6lztOnTxNIxZ2/\nuqv1qcqlfEFbkfyPyspKXLt2DSNGjOB9e47vv/8ehYWFqKqqgoWFBa5cuYJx48bh4cOHmDVrliAm\nu9bW1jAyMkJcXByePHmCr7/+WhD9RinAzMwMZmZm7OusrCzo6+sTTMSNFStWQEtLC4mJiQBa3gcc\nHR0Jp+LGkCFDoKioSDoGEerq6sjIyEBlZSWAltNMfCcnJ4euXbuyr728vNjxhoYGUrEoihaoIuXc\nuXOYNm0aYmNj233e+iZB8Y+QW5F4enoiKCgIenp6qKyshI6ODnr06IHXr19j27ZtvN7x+LAgz7Bh\nw6Sq9AqlWA8AXL9+HQ4ODlBWVsbNmzehpqZGOhIlQxkZGXj8+DEmTZoEZWVlFBQUYPXq1UhJSWlT\nlZ1PTE1NcevWLSxbtgw//PAD6ThE3LlzB9999x0cHBykJr3z5s0jmIo7p06dwpUrV8AwDOzs7Hh/\nfHvEiBEoKSlp95mamhqvv9tQHRvd2SVES0sLAJ3UAi296PLz89lCBgC/+7EJuRVJZmYm9PT0AACH\nDx+Guro6EhMTUV5ejhkzZvB6sisnJ4eCggJUVFTg/fv3SElJwYQJE1BYWCiYO3yPHj3CihUr4OXl\nhfz8fGzevBk//fSTYHd/+G7btm3YunUrNDU1sWrVKgQGBiI4OBiLFy9GTEwM6XgyVVlZiT/++ANJ\nSUmoqalp02JLSUmJUDLuREREIDc3l63NALQs6AphshscHIyEhAR88cUXAIAtW7bgzp07vL63amho\nKHVPudXBgwelCrFSFNfoZJcQXV1dKCsrw8rKCtbW1rCyssLgwYNJx+JcVFQUNmzYgLdv30JdXR05\nOTkwMTHh9WRXyD6c1Ny8eZMtzNV6h5nPNm7cCAsLC8jJyeHYsWNYs2YNXrx4gRcvXmD//v2k43Fi\n4sSJ+P777+Hi4gKxWIzg4GCMHz+e7ctI8UtMTAzu3buHQYMGobCwEFpaWrh06RJsbGxIR5O5uXPn\nYvjw4WhoaECvXr2knjEMI4gFrmvXrqGoqAgKCsL7qvnrr78iOzubva8cEBAAPT09Xk92t27dCnNz\nc1y+fBnGxsYAgNu3b+Pq1au4efMm4XSUkNFjzISIxWLcuXMH165dQ1JSElJTUzFo0CBYWVnBxsYG\nc+bMIR2RE9ra2rhx4wasra2RlZWFGzduICYmBlFRUaSjUTKgq6uLGzduoHv37lBVVcXvv//OtuEY\nPXq0oAq2icViZGdnY8iQIfjXv/5FOg4niouLMWrUKKmx3377DVOnTiWUiJKlj4/njxkzBvfu3SOY\niHsTJkxASkoK6RhE2NnZ4ffff0enTp1IR+Hc+PHjcfv2bfbKklgshqmpKdLT0wknk62XL1/ip59+\nYvsJ6+vr49///jcGDhxIOBklZHSy20GIRCIcO3YMGzduxMOHDwWx6gu0HHvJzMyEtrY28vLyALQ0\nY6eN1/kpIiICYWFhUFJSQo8ePdjV3ry8PAQGBuLatWtkA1IyUVBQwPYPb2hoQJcuXdhn169fh6Wl\nJalolAyNHj0aJ06cYI/wuri4SL0WUjE+IVq4cCHy8/MxY8YMqVM9fO620OrLL79EUVERe1Xt0KFD\n0NDQgJ2dHYCWyvQURXGDTnYJKi8vl9rZ/de//gULCwtYWlrC3t6edDxOmJmZISUlBbNnz8bEiROh\nqqqK4OBgFBcXk45GyUhmZiaePn0Ke3t7tnJjUVERamtrBVGdVYg+XMD6eDGLLm7xl5CL8VFotwYD\nwzCCOLk1ceLETz5jGAY3btzgMA1FCRud7BIyfPhw9OvXD1OnToWlpSVMTEykSrYLxdWrV2FoaIjX\nr19j0aJFqKysxNatW2Fra0s6msxs2LDhL59/++23HCWhKG58eJz146OtQqpETVEURVEUt4RXNaCD\nsLGxQUpKCi5fvozGxkY0NTXB3NxccM3Xra2tAQC9evVCQkIC4TTcqKmpAQA8ffoUiYmJmD59OhiG\nwX/+8x9BFG6hhOfD3b2Pd/r43lebooTswoULePDgAUQiETv21VdfEUzEHaG1HqKojopOdgk5cOAA\ngJYJT1JSEo4fP46lS5dCWVkZkyZNwubNmwkn5IZIJEJ8fDxKSkqkPgz5vLsZFhYGALC3t0d2djYG\nDRoEoGXH9+OS/RTFB3V1dcjLy4NEIpH6ufUZRfHV+PHj2xQlam+Mj9zd3XH//n3o6+tLtR4SAiG2\nHmpPRUUFDh06hKioKGRnZ5OOQwkUPcbcAYhEIqSlpSEpKQlxcXGCKlA1e/ZsvHz5EuPHj2c/DIH/\nmRDymZaWFvLz8/92jKL+29G7m5RQfXwnXSQSQVtbWxCV5zU1NVFQUCD12S4Uo0aNkmo9VFtbCz09\nPcHUI7ly5QoOHDiA8+fPY9q0aXB3d8e0adNIx6IEiu7sEpKamopr167h2rVrSE1NxeDBg2FlZYX1\n69dj0qRJpONxJi8vD4WFhYJZ7f2QiooK1q5diwULFgAAIiMjoaKiQjgVN6qqqrB69Wo8evQI58+f\nx71795CTkwM3NzfS0SgZePToEekIFMWpbdu24bvvvsO7d+/Qt29fdryurg7z5s0jmIw7w4YNQ0ND\ng+CuZwFA7969peqwdOnSBb179yaYSPaePHmCqKgoREdHo1+/fvD29satW7dw9OhR0tEogaM7u4So\nqanB2toakyZNgpWVFQYPHkw6EhG2trb47bffpFqRCMXLly+xdOlSJCYmAmjpSfjDDz9gwIABhJPJ\nnqurK7S0tHDs2DHk5+ejrq4Opqam9JgTRVG8UFVVhYqKCgQEBCAiIoIdV1JSQp8+fQgm405BQQH8\n/PwwadIkqdZDfL6m1EqIrYcUFBRgZWWF77//Hrq6ugBavuvSkzsUaXSySxG1aNEi5OTkwNnZWXB9\n+ISs9Wjfh5V4dXV1kZOTQzgZRVEU9U+YPn06qqurYWBgILhrSkJsPbR27VrExsZiwIAB8PX1haur\nK3R1delklyKOHmOmiGpoaICmpqbU/SUhHWm+fft2m+JcQjji1rlzZ6nXdXV1oOtuFEXxzd27dxES\nEoLS0lKIRCJIJBLB3FMvKipCUVER6RhE3Lx5k3QEzq1fvx7r1q1DQkICIiMj8c0330AsFiMhIQE2\nNjaQk5MjHZESKDrZpYiKjo4mHYGYgIAAXLp0CXp6elKVKoUw2bWyssLmzZtRX1+PK1euYNeuXbQt\nA0VRvOPl5YUlS5bA1NRUcIWaNDQ0UF1dDSUlJdJROJeamtruuJmZGcdJuMUwDOzt7WFvb4+3b9/i\n4MGDCAoKwqtXr/DixQvS8SiBoseYKSKuX78OS0tL/Oc//2n3+fTp0zlOxD11dXXk5eVJHd8WCpFI\nhLCwMJw5cwYSiQROTk4IDg4W3JdBiqL4TU9PT7C1CFxcXJCZmQl7e3upz7mdO3cSTMUNfX199uf6\n+no8fPgQY8aMEexVnTt37sDIyIh0DEqg6M4uRURcXBwsLS2xa9euNs8YhhHEZHfgwIGCLMwFtBSy\nWLVqFVatWkU6CkVRlMxMmDABGRkZGDduHOkonBszZgzGjBlDOgYRrbUoWt26dQtHjhwhlIY8OtGl\nSKI7ux3QqFGjBNOLTchWrFiB0tJSuLi4SK16C2GiLxKJEB8f3+a+shCqdFIUJRza2tooKirCyJEj\npd7nP+y9SwnDxz2XKYriBt3ZJSQ3N/eTz2pqajhMQsbfVSK0sLDgKAk5GRkZAICff/6ZHRPKrrar\nqytevnyJ8ePH06PLFEXx1o8//kg6AjE1NTVYuXIlEhISAAAODg7YsmULevbsSTiZ7N27d4/9WSwW\n4/bt22hoaCCYqONoaGgQ7Kk2igy6s0uInJwchg0b1m4F2mfPnqGxsZFAKu60HmkRi8XIzs6Gmpoa\nGIZBSUkJ9PT06Oonz2loaKCwsFBQlbcpiqKExNPTE926dUNAQAAYhsG+fftQU1ODQ4cOkY4mc0OG\nDAHDMJBIJFBQUIC6ujo2bdqE8ePHk45GHN3hprhGd3YJUVVVRXJyMgYNEcCGOgAAFxdJREFUGtTm\n2ZAhQwgk4tadO3cAAD4+Pti2bRvbaP3KlSs4duwYyWicampqQllZGerr69kxHR0dgom4MWTIEDQ2\nNtLVXYqieM3KyqrdRb2rV68SSMOt3NxcqYJM4eHh0NXVJZiIO0+ePCEdocOie2wU1+hkl5Dp06ej\ntLS03cnu1KlTCSQiIyMjA1FRUexrW1tbBAUFEUzEnfPnz8PPzw8VFRXo3r07KioqoKqqirKyMtLR\nZGbPnj0AgJEjR2LSpElwdnaWuse2dOlSUtEoiqL+cV9//TX7c319PY4cOYJRo0YRTMQdsViMmpoa\n9thyTU0NxGIx4VTcevz4Mc6dO4eRI0fC0dGRdJwOgZ7oorhGJ7uE7N69+5PPIiIiOExClry8PJKS\nkmBlZQWgpSWRUBqPh4aGIi0tDU5OTsjKykJcXBzv2xJ8WKFSU1MT9+/fZ1/TD0CKovjm48XrGTNm\nwNramlAabnl5ecHExAQuLi4AgBMnTsDb25twKtmys7PD9u3boa+vj5cvX8LAwAAGBgZ49OgRFi5c\nKLX4QVEUN+hklyLqp59+gqurKzp16gSgpUrv8ePHCafihpycHFRVVdlqxB4eHu22YuITe3t7uLm5\nkY5BURRFhFgsxvPnz0nHkKnq6mq8ffsWK1asgJaWFhITEwEAixcvhoeHB+F0svX06VO2x+7hw4cx\nceJEnDlzBm/evIGVlRWd7IIeY6a4Rye7FDESiQTDhw9HSUkJCgsLAbTs9rVOfPmu9fdUUVHBr7/+\nimHDhqGiooJwKtkKCwujk12KogTD2dmZPbUiFouRm5uLKVOmEE4lW9988w3s7OwwbNgwTJ48GZMn\nTwYAnD59GsHBwVIdCPima9eu7M8pKSnszr6ysjIUFITxlfv169fo16/fJ8dMTExIxKIEjFZjpoiR\nSCTQ1tZGfn4+6ShEHD16FI6OjigtLYWrqysqKyuxe/duuLu7k44mM7QKI0VRQhIbG8v+rKCggJEj\nR8LY2JhgItn7q/f5sWPHoqCggONE3DE0NMS5c+fQq1cvqKqqIiUlBRoaGgBaFvNbF/b5rL3//eln\nP0WSMJaZqA6JYRioqKi0uwooBK07nIaGhnjw4AHhNNx4+vQpvvrqq08+37lzJ4dpKIqiZMvLy4t0\nBM61Xs1pD99rcqxcuRJ6enro3LkzJk6cyE50b926BVVVVcLpZKuxsRH19fVsYbLWvbSqqiq8f/+e\ncDpKyOhklyKqR48e0NPTw5QpU9CjRw92nE56+EleXh69evUiHYOiKEqm/mpRD+D3Z1xTUxOqq6uh\npKQkNV5VVYWmpiZCqbgxZ84cmJmZ4eXLl+zdXQAYOnQo9u3bRzCZ7G3duhXr168HwzBSn/NKSkqC\n6bJBdUx0sksRpa2tDW1tbdIxKI4MHDgQa9euJR2DoihKpj78sr9v3z4sXLiQYBpuubq6wtPTEzEx\nMejTpw8AoKKiAr6+vnB1dSWcTvYGDx6MwYMHtxnju7Vr12Lt2rUICAjg9b1s6r8PvbNLURRn9PX1\npdoPURRF8Z3Q3vfEYjF8fHwQHx8PdXV1AMCDBw8wa9YsREVFQV5ennBCSpaePHmCzz77DJ07d0ZK\nSgqysrLg5eXF9lumKK7RyS5FXHp6OrKzs1FfX8+OLV26lGAi2ROLxXBwcMCVK1dIR+HUuXPnMG3a\nNNIxKIqiOCPU4jwlJSXs721gYIARI0YQTkRxwcDAAKmpqXjz5g1MTExgbm4OkUiEkydPko5GCRQ9\nxkwRtWXLFpw6dQrl5eWwtLREQkICbGxseD/ZlZeXR21tLZqbm3lfsONDdKJLURQlDCNGjBDsBFci\nkbAtp4RIUVERv/32GxYuXIg1a9ZAV1eXdCRKwOhklyLqyJEjyMjIgImJCeLj41FUVISQkBDSsThh\nZGSEzz//HB4eHlLFuaZPn04wFUVRFPV/tWfPHvbnP//8U+o1wP/TS0I3fPhwLF68GAsWLEDfvn1J\nx+FUQ0MDGhoakJCQgGXLlpGOQ1F0skuRpaioCEVFRTQ3N0MikUBDQwMlJSWkY3EiNzcXAPDLL7+w\nYwzD0MkuRVHUf7kP7+ja2dlJvRbyjp9Q/P777wgPD4empiamTp2KJUuWwNDQkHQsTri5uWHAgAEY\nNWoUzMzM8OLFC3Tr1o10LErA6J1diqiJEyfi6tWr8PX1Rf/+/aGiooKoqCjk5eWRjkbJQGVlJXr3\n7k06BkVRFEXJ3Lt373Dw4EF89913GDx4MJYvX445c+bwfsGjsrISSkpKkJOTw7t371BVVSWIitRU\nx0QnuxRR+fn5GD58OGpraxESEoKKigqsWbMGenp6pKNxoqmpCWVlZVLFuXR0dAgmkq3OnTtj8uTJ\nWLBgAaZOnSqo+8oURVGUsJw/fx579+7F48eP4ePjg2vXrqFbt244deoU6WgyJbTvNlTHRie7FBFi\nsRgNDQ1tjra8f/8eXbt2FcQk6Pz58/Dz80NFRQW6d++OiooKqKqqoqysjHQ0mdHQ0IC/vz8iIyNR\nWVmJefPmwcfHB6NGjSIdjaIoiqL+EWFhYYiIiIC6ujqWLl2KKVOmsM9GjhyJhw8fEkwnWx9/t6ms\nrMTQoUN5/d2G6tj4P6OgOqRVq1YhLi6uzfiRI0ewatUqAom4FxoairS0NIwePRpv3rzBwYMHMXv2\nbNKxZKp79+4ICgrCvXv3cOrUKbx+/Rrjxo2DhYUFDh48SDoeRVEURf2flZaW4vz587h48aLURBdo\n+Z7DZx9/t4mNjeX9dxuqY6M7uxQRhoaGSE9Pb9NcXiQSQU9PD/n5+YSSccfQ0BCZmZnQ1tZm7yi3\njvFVe/0m379/j2PHjiE6OhrJycmEklEURclGU1MTysvLBduGR4iePXuGfv36oUuXLgCA+vp6vH37\nFoMGDSKcTPaE+N2G6tjozi5FRHNzc5uJLgAoKCgI4ggzAHTq1AkAoKKigl9//RVZWVmoqKggnEq2\n2ltb6969O3x9felEl6Io3rl27RpUVVVhZWUFALhz5w48/l97dxtTdf3/cfx1OFxpXmxaTpQUnAun\nolxoDbWZqZloTmwkmEpl6WiKWm4kXc+LUlyazTRzlK7ELiyXVwyQtXTeyCCuNNLhVYY5VGTi4cID\n53fDcf6S5n8FnI+e7/Nxi/M9d543GOe8+X4/n8/MmYar0N7i4uLU1NTkft3U1KS4uDiDRZ5jxe82\nuLtx9BCMqKmpUX19vfu/ns3q6+vlcDgMVXnWwoULVVVVpWXLlikxMVFXrlzRunXrTGe1qwMHDphO\nAACPee2113Tw4EH3Y5zDhw9vcQwRvFNDQ4M6dOjgft2xY0fV19cbLPKc5u82y5cvV0JCgiW+2+Du\nxrALIyZPnqyUlBRt2LBBvr43fg2dTqcWL16sSZMmGa7zjMTEREnSsGHDdOLECcM1ntGtWzfTCQDg\nMY2Njbc8vuzv72+oBp5UWVmpBx54QJJ04cKF2z7Z5I2av9tER0db5rsN7m4MuzBi+fLlmjRpkvr1\n6+c+aL2goEChoaHau3ev4TrPqK6u1uuvv64zZ85o9+7dOnbsmIqKitwfFACAe1tgYKBqamrc56qW\nlJS0uOMH77RgwQKNHDlSs2fPliRt27ZNaWlphqva1w8//HDH96dMmeKhEqAlNqiCUXl5ee5NC6Kj\no/X4448bLvKchIQEDR48WDt27FBpaalqa2sVExOjwsJC02kAgDaQnZ2td955R+Xl5Ro/frxyc3O1\nfft2S33WWVVubq727dsn6cag99hjj5kNamfN69Jvx2azKS8vz4M1wP9h2AUMad6ZODIy0r2Ga+jQ\noSoqKjJcBgBoK6dOnVJWVpZcLpcmTJjArswA4EE8xgwY8vd1W7W1tZZZ0wMAVhEaGqrk5GTTGfCg\ns2fPKj09XeXl5XI6ne7r2dnZBqva37Vr1+Tn5yd/f38VFhbqwIEDGjBggGX2YsHdiWEXMGTMmDFa\nsWKF6urqlJubq7Vr12ratGmmswAAbaSgoEBpaWk6efJki6Hn5MmTBqvQ3p555hk9+uijevHFF297\nzKI32rJli+bPn69OnTrp/fff1/Lly/XII49o48aNys/P11tvvWU6ERbFY8yAIU6nU+np6dq1a5dc\nLpemTp2q1NRUy3wwAoC3Cw8P1/z58xUTE9Pib/ugQYMMVqG9DRkyRMXFxaYzPCo8PFxZWVmqrq5W\ndHS0ysvL1atXL1VXV2vEiBE6evSo6URYFHd2YVTzjsSnT5/Wnj17LLUjsa+vr5YuXaqlS5eaTgEA\ntAO73a558+aZzoCHDRo0SOfOnVNwcLDpFI/x9fVV79691bt3b/Xr10+9evWSJHXt2pXjtmAUwy6M\nmjdvngYPHqwff/xR0o21TTNmzPDqYXf9+vV3fD8lJcVDJQCA9jRy5Ej98ssvGjZsmOkUeFBVVZWG\nDBmiUaNGKTAw0H3966+/NljVvpqP15KkgICAf3wP8DSGXRh1/Phx7dixQzt37pQkdejQwes3aWre\nefl2+EAAgHtfZGSkbDabrl+/rk8//VT9+/dvMfQUFBQYrEN7i4+PV3x8vOkMjyorK1NUVNQtP7tc\nLh0/ftxkGiyOYRdGWXFH4s8++8x0AgCgHa1bt850AgyaM2eO6QSP279/v+kE4LYYdmGUFXckzsjI\nkNPp1Ny5c1tc37x5s/z9/fXcc8+ZCQMAtIlNmzYpMzPTdAYM+u6771RYWKi6ujr3tdWrVxssal+j\nR482nQDclo/pAFjbsmXL5OPjoy5duigtLU0jR47Um2++aTqrXW3evFnTp0+/5fr06dO1YcMGA0UA\ngLb0+++/m06AQYsXL9aWLVu0ZcsW1dfX68svv1RlZaXpLMCSOHoI8LDhw4fryJEjt30vIiJChYWF\nHi4CALSlqKgo1uVaWHh4uAoLCxUVFaWioiKdP39ezz//vLKyskynAZbDY8wwyul0aufOnSovL5fT\n6XRf9+bDxy9fvvyP7129etWDJQCA9lBcXKxu3brdct3lcslms93xcwD3vsDAQNntdvcmZUFBQaqo\nqDCdBVgSwy6MSkhI0F9//aWHH35YdrvddI5HREVFKSMjQy+88EKL61u3blVkZKShKgBAWwkLC9O+\nfftMZ8CQzp07y+FwaMSIEUpKSlJQUFCL3bi92eeff37L3iOpqalatWqVmSBYHsMujCopKVFZWZml\njtxZtWqVRo0apezsbMXExEiSDh8+rJ9++kmHDh0yXAcAaK2AgAD17dvXdAYM+eKLL2S327VmzRql\np6erqqrKq8/YvdnHH3+sBx98UGPHjpV0Y2+W4uJiw1WwMtbswqhx48Zp7969txxA7u0uXLigDRs2\nKD8/X5IUHR2tl19+WT179jRcBgBorcjIyDueqQ54q4qKCj3xxBPKzMzUgQMHtGvXLmVlZVnmzjbu\nPgy7MGL9+vWSpGPHjqmoqEhxcXEt/hCmpKSYSgMAAPjX4uPj7/ikmlXu7paWlmrKlCnq2bOncnJy\ndN9995lOgoXxGDOMuPk/3gMGDNBvv/3mfm2lR5oBAIB3ePLJJ00nGBMXF9fi+5uvr6/8/f01a9Ys\nSTfOHQZM4M4ujMjMzFRiYqLpDAAAgDbhcrnU0NBwy9Ks+vp6+fv7e/U/87du3XrH95OSkjxUArTE\nsAsjOIMQAAB4k9TUVIWEhCg5ObnF9U2bNunMmTN67733DJUB1uVjOgCwusrKSuXl5en8+fOmUwAA\nwH+Um5uruXPn3nJ9zpw52rNnj4Eiz4uNjdWlS5fcry9evKjJkycbLILVsWYXRpw7d06vvPLKP77/\nwQcfeLDGs2bPnq01a9aoR48eysvL0/Tp0xUaGqrTp09r8+bNmjp1qulEAADwLzU1Nclut99y3c/P\nz6sfYb5ZRUWFunfv7n59//33q6KiwmARrI5hF0bY7XZ17drVdIYRRUVF6tGjhyTp3XffVU5OjiIi\nInTq1ClNmzaNYRcAgHtQTU2NGhoa5O/v3+J6Q0ODHA6HoSrPamxslNPplK/vjRGjoaFBDQ0Nhqtg\nZQy7MCIoKEhvv/226Qwjamtr3T87HA5FRERIkkJDQ9XY2GgqCwAAtEJsbKwWLVqkjz76yH2Ht7Gx\nUa+++qomTpxouM4zJk6cqPj4eC1cuFCS9OGHHyo2NtZwFayMDapgRGRkZIvjh6xkwYIF8vHx0YoV\nK7RixQoNHjxYM2bMUFZWltLT05WXl2c6EQAA/Es1NTWKjY3VH3/8oWHDhkmS8vPz1bt3b+3fv1+d\nOnUyXNj+rl+/rpUrV2rv3r2SpClTpig1NVV+fn6Gy2BVDLswYvfu3XrqqadMZxjR0NCg1NRUZWRk\nqFu3bjpz5ozsdrvGjh2rjRs3KjQ01HQiAAD4j7Kzs5Wfny9Jio6O1vjx4y2zZhe42zDsAoY4HA6V\nl5fL6XSqT58+LTZ0AAAAuBf9/PPPKiwsVF1dnftaSkqKwSJYGcMuAAAAgFZbuXKlvv32W509e1aj\nR49WTk6Oxo4dq++//950GiyKc3YBAAAAtNr27dt1+PBhBQcHa+fOnTpy5Ih8fBg3YA6/fQAAAABa\nLTAwUIGBgWpqapLL5VJYWJjKy8tNZ8HCOHoIRnzzzTeKj4+XJF28eFFJSUk6dOiQIiMjtW3bNvXp\n08dwIQAAwH+Tk5OjEydOyOl0uq9ZYd1qhw4ddP36dUVERGjJkiUKDg7mWEUYxZpdGBEVFaWCggJJ\n0ksvvaTu3btr0aJF2r59uw4ePMjaDgAAcE+aPXu2fv31V0VGRrrP27XZbMrIyDBc1v5KS0sVGhoq\nh8OhtLQ0VVVV6Y033lBERITpNFgUwy6MuPmc3aFDh6qgoMD9gTB06FAVFRWZzAMAAPhPwsLCdPTo\nUfn68gAlYBprdmFEXV2dSkpKVFxcLEnuQVcSZ9EBAIB7VkhISIvHl62gtrZWGzdu1I4dO9TU1KQl\nS5YoPDxc8fHx+vPPP03nwcK4swsjQkJC5OPjo+Zfv4MHDyo4OFjV1dUaM2aM+xFnAACAe0lpaamS\nk5M1ZswYBQYGuq+npaUZrGpfM2fO1JUrV+RwOGS329W3b189/fTTysvLU1lZmXbv3m06ERbFsIu7\nisPh0IULFxQaGmo6BQAA4F+Li4tTZWWloqKiWjy5tnbtWoNV7WvgwIE6duyY6urqFBQUpEuXLrmP\nHAoPD1dJSYnhQlgViwlwV+nYsSODLgAAuGcdPXpUx48fN53hUQEBAZJuHD3U/PReMz8/P1NZAMMu\nAAAA0FYeeughXb16VZ07dzad4jHNe7G4XK4WP0s31vMCpvAYMwAAANBGEhMTVVBQoAkTJrRYs7t6\n9WqDVe0rJCTkHzcYtdlsOnnypIeLgBu4swsAAAC0kf79+6t///6mMzzq9OnTphOA2+LOLgAAAADA\n63DOLgAAANBGampqtHDhQg0cOFADBw7U4sWLVVNTYzoLsCTu7AIAAABtJCkpSb6+vkpOTpbNZtMn\nn3yiuro6bdu2zXQaYDkMuwAAAEAbGTJkiIqLi//fawDaH48xAwAAAG3E5XLp2rVr7tfXrl0T95YA\nM9iNGQAAAGgjzz77rGJiYpSQkCBJ+uqrrzRr1izDVYA18RgzAAAA0Ib27Nmj3NxcSdK4ceM0efJk\nw0WANTHsAgAAAK2UmJiozMxM0xkAbsKaXQAAAKCVysrKTCcA+BuGXQAAAKCVbDab6QQAf8NjzAAA\nAEAr+fr6qkuXLrdcd7lcstlsunz5soEqwNrYjRkAAABopbCwMO3bt890BoCbMOwCAAAArRQQEKC+\nffuazgBwE9bsAgAAAK3EykDg7sOaXQAAAACA1+HOLgAAAADA6zDsAgAAAAC8DsMuAAAAAMDrMOwC\nAAAAALwOwy4AAAAAwOsw7AIAAAAAvA7DLgAAAADA6/wPvteRBCy/x30AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fc7509ae588>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"book_chapters = [len(dfBooks.loc[dfBooks.author == 'Clancy', 'author']),\n",
" len(dfBooks.loc[dfBooks.author == 'Ghost', 'author']),\n",
" len(dfBooks.loc[dfBooks.author == 'Greaney', 'author'])]\n",
"\n",
"s1,f1 = [0,book_chapters[0]]\n",
"s2,f2 = [book_chapters[0], book_chapters[0] + book_chapters[1]]\n",
"s3,f3 = [book_chapters[0] + book_chapters[1], book_chapters[0] + book_chapters[1] + book_chapters[2] ]\n",
"\n",
"fig, ax = plt.subplots(3,1,figsize=(10,6), facecolor='white', sharex=True)\n",
"fig.subplots_adjust(hspace=.6)\n",
"for i, author in enumerate(['Clancy', 'Ghost', 'Greaney']):\n",
"\n",
" # chapters in book\n",
" df_ = pd.DataFrame()\n",
" df_['title'] = ave_chapters.index.get_level_values(level='title')\n",
" df_['author'] = ave_chapters.index.get_level_values(level='author')\n",
" df_['chapters'] = ave_chapters.num_chapters.values\n",
" df_['book_words'] = book_words.book_words.values\n",
" df_['chapter_words'] = ave_chapter_words['Ave words per chapter'].values\n",
" df_['color'] = STD_COLORS['1']\n",
" df_.loc[df_.author == 'Ghost', 'color'] = STD_COLORS['2']\n",
" df_.loc[df_.author == 'Greaney', 'color'] = STD_COLORS['3']\n",
" \n",
" # Chapters per book\n",
" ax[0].bar(df_.index, df_.chapters, color=df_.color, label = df_.author.values)\n",
" ax[0].set_xticks([x+0.4 for x in range(len(df_.index))])\n",
" \n",
" # words in book\n",
" ax[1].bar(df_.index, df_.book_words, color=df_.color, label = df_.author.values)\n",
" \n",
" # words per chapter\n",
" ax[2].bar(df_.index, df_.chapter_words, color=df_.color, label = df_.author.values)\n",
" ax[2].set_xticklabels(df_.title, rotation = 90)\n",
"\n",
"ax[0].set_ylim([0,100]);\n",
"ax[1].set_ylim([0,500000])\n",
"ax[2].set_ylim([0,12000])\n",
"\n",
"ax[0].set_ylabel('Number of chapters per book')\n",
"ax[1].set_ylabel('Number of words per book')\n",
"ax[2].set_ylabel('Ave. words per chapter per book')\n",
"\n",
"ax[0].set_axis_bgcolor('white')\n",
"ax[1].set_axis_bgcolor('white')\n",
"ax[2].set_axis_bgcolor('white')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Simplistically we could use syntactic features like average words per chapter or total words in each book to classify these books, and determine who wrote them. But where is the fun in that.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Lexical analysis\n",
"\n",
"For our first model we'll use lexical analysis and kmeans clustering to model our books\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import nltk\n",
"sentence_tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')\n",
"word_tokenizer = nltk.tokenize.RegexpTokenizer(r'\\w+')\n",
"from scipy.cluster.vq import whiten\n",
"from sklearn.cluster import KMeans\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's look at a series of lexical parameters:\n",
"* words per sentence\n",
"* average deviation of sentence length\n",
"* lexical diverstity (the number of unique words / the total number of words)\n",
"* chapter length\n",
"* commas per sentence\n",
"* semicolons per sentence\n",
"* colons per sentence"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# create lexical and punctuation feature vectors for each chapter\n",
"num_chapters = len(dfBooks.index)\n",
"fv_lexical = np.zeros((num_chapters, 4), np.float64)\n",
"fv_punct = np.zeros((num_chapters, 3), np.float64)\n",
"\n",
"for e, ch_text in enumerate(dfBooks.chapter_text):\n",
"\n",
" tokens = nltk.word_tokenize(ch_text.lower()) # includes punctuation\n",
" words = word_tokenizer.tokenize(ch_text.lower()) # excludes punctuation\n",
" sentences = sentence_tokenizer.tokenize(ch_text) # including punctuation\n",
" \n",
" vocab = set(words) # unique set of all words used\n",
" \n",
" words_per_sentence = np.array([len(word_tokenizer.tokenize(s)) for s in sentences])\n",
" \n",
" # Lexical features\n",
" \n",
" # average number of words per sentence\n",
" fv_lexical[e, 0] = words_per_sentence.mean()\n",
" \n",
" # sentence length variation\n",
" fv_lexical[e, 1] = words_per_sentence.std()\n",
" \n",
" # lexical diversity\n",
" fv_lexical[e, 2] = len(vocab) / float(len(words))\n",
" \n",
" # chapter length\n",
" fv_lexical[e, 3] = len(ch_text)\n",
" \n",
" \n",
" # Punctuation features\n",
" \n",
" # commas per sentence\n",
" fv_punct[e, 0] = tokens.count(',') / float(len(sentences))\n",
" \n",
" # semicolons per sentence\n",
" fv_punct[e, 1] = tokens.count(';') / float(len(sentences))\n",
" \n",
" # colons per sentence\n",
" fv_punct[e, 2] = tokens.count(':') / float(len(sentences))\n",
" \n",
" \n",
"# apply whitening to decorrelate the features\n",
"fv_lexical = whiten(fv_lexical)\n",
"fv_punct = whiten(fv_punct)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can visaluse these parameters for each of the authors below"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABVwAAAS9CAYAAAC775IuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8VNXdP/DPnUlCdsJqkS1sRiohJKIBVChbDUIVpVUf\nRaCI60/buiFqtdSK1AX1ad0rAQStoqLU4lIVW9FWCgLCAxjWhBiQCNlmMpNklvP7I95hMpl9zsy9\nM/N5v168yMzcc+73nnvuZPKdc89RhBACRERERERERERERBQxg9YBEBERERERERERESUKJlyJiIiI\niIiIiIiIJGHClYiIiIiIiIiIiEgSJlyJiIiIiIiIiIiIJGHClYiIiIiIiIiIiEgSJlyJiIiIiIiI\niIiIJGHClYiIiIiIiIiIiEgSJlyJiIiIiIiIiIiIJGHClYiIiIiIiIiIiEgSJlyJiIiI4oDZbEZO\nTg6uu+46rUPRrQ0bNmDixIlahyFdVVUVXnjhBa3DICIiIqIgMeFKREREFAdef/11jB49GuvWrYPF\nYpFat8PhkFpfLPiKWVGUGEcS/fY7fPgwnn/++ajug4iIiIjkYcKViIiIKA4sX74cd999N8aPH4/X\nX3/d9XxBQQG2bdvmerxq1SrMmjULAHD8+HFcccUVGDNmDIqKivDAAw+4ths0aBAWLVqE0tJSzJs3\nD8ePH8ekSZNwzjnnoLCwEL/61a9c29rtdtx8880oKCjAuHHjcOedd3YYSbpmzRqMGTMGo0ePxk9+\n8hPs3LmzU/wfffQRLrzwQgCAyWRCWloaXnrpJQDA6tWrsWDBAgDAwYMHMXXqVBQVFaGkpATr1693\n1WEwGLB48WKce+65uPfee11xnXHGGRgzZgw+/fRT17YHDhzA+eefj+Li4k7H7s5gMOD+++9HSUkJ\nzjzzTLz66quu17Zu3YrJkyfj3HPPxdlnn40333wTQPuI027dumHRokU4++yz8cwzz3Sos6WlBVde\neSVGjBiB4uJilJWV+WyrXbt2uc7b1KlTcdVVV2HkyJE499xzUVlZCQC46aabsG/fPpSUlGDmzJmu\n45sxYwZKS0sxatQoPPvssx2OaenSpSgtLcWQIUOwcuVK12vffPMNysrKUFRUhFGjRuHFF18E4L+v\nEBEREVGIBBERERHp2u7du0X//v2F0+kUf/vb38S4ceNcry1dulTccsstrscTJkwQGzZsEEIIceGF\nF4rPPvtMCCGE3W4XZWVl4s033xRCCJGfny+uu+46V7nW1lbR3NwshBDC4XCIGTNmiNdff10IIcTT\nTz8tfvrTnwqHwyHsdruYOnWqmDhxohBCiC+++EJcdNFFoq2tTQghxKZNm8RZZ53V6RisVqvo0aOH\naGtrE+vXrxfnnXeeuOKKK4QQQlxzzTXitddeE0IIUVpaKv7yl78IIYTYv3+/6NGjhzhy5IgQQghF\nUcRDDz3kqvOZZ54RU6ZMEXa7XdhsNjFx4kRXXL/+9a/FH//4R9e29fX1XttWURTxu9/9TgghxKFD\nh0T37t1FVVWVaGhoEMXFxeK7774TQghx4sQJMWDAAHH06FFRWVkpFEURa9as8Vrn22+/LcrKyjrt\n219brVy5UuTl5YmqqiohhBCLFi0SN954oxBCiH/+85+iuLjYVZ/D4RCjR48WFRUVQgghLBaLGDly\npNi6davrmJ588kkhhBDffPONyMnJcZ27M844w3VehRDi5MmTQgj/fYWIiIiIQpOidcKXiIiIiPwr\nLy/HnDlzoCgKpk2bhhtuuAEVFRUoKCjANddcg+LiYjzxxBOorq7G/v37UVZWBovFgk8++QS1tbUQ\nQgAAmpubUVFR4ap33rx5rp8dDgcWLlyIzz//HEIIfP/99ygsLMTll1+OjRs3Yvbs2TAY2m+Omjt3\nLpYvXw4AWL9+PXbu3InS0lLXfhoaGtDa2oouXbq46k9PT8eoUaPw+eef4+OPP8aiRYtw++23QwiB\njRs3YtmyZTCbzdi2bRvmz58PABg6dCjOP/98bNq0CVdddRUA4Je//KWrzk8++QRz5syB0WgEAMyf\nPx/l5eUAgPHjx2PhwoUwmUyYMGECpkyZ4rN91dG1gwYNwoQJE/DZZ5+hR48eOHToEKZNm+Y6LkVR\nUFFRgUGDBiEtLQ1XX3211/qKioqwd+9e3HLLLRg/fjwuuuiigG0FAGPHjsWAAQNcPz/99NNe66+o\nqMDu3btx5ZVXuuoxm83Ys2cPzj77bABwtVdBQQFSU1Px3XffufZ1+eWXu+rq3r17UH2FiIiIiILH\nhCsRERGRjtntdqxevRppaWl49dVXIYSA1WrF8uXL8eijj6Jv374455xz8M4772D37t2uxKgQAoqi\nYPPmzUhNTfVad3Z2tuvnJ554At9//z22bNmC1NRU3HHHHWhpafFazn2eVCEE5s6di4ceeijgsUyZ\nMgUff/wxNm3ahEceeQSFhYVYs2YNunfvjl69esFsNneag9XzsXvM/uK67LLLcN555+Gjjz7C008/\njaeeegobNmzwWk5NMqo/K4oCIQRGjBiBzz//vNP2VVVVyMzM9BnHoEGDsGfPHmzcuBEfffQRFi5c\niK+//jpgW6Wnp7t+NhqNsNvtPuPt0aNHh6kk3CmK0qEug8Hgsy61vkB9hYiIiIiCxzlciYiIiHRs\n/fr1GDJkCKqrq3Ho0CEcPnwY//nPf/Dyyy+7FmuaN28eysvLsXr1atfo0KysLEycOBEPP/ywq65j\nx47h6NGjXvdTX1+PH/3oR67RkG+88YbrtUmTJuHVV1+F3W6HzWbDyy+/7Hrt4osvxpo1a1BdXQ2g\nPXn31Vdfed3H5MmT8eqrryIvLw8ZGRmYPHkyHnjgAdfo0+zsbJSUlGDFihUA2ucp/eKLLzBhwgSv\n9U2ZMgVr1qyB3W5HW1ubq5xatnfv3pg9ezYeffRRbN682Wcbq+UqKyvx+eefY/z48Rg3bhwOHz6M\nTz75xLXd119/7UpcuidpPdXU1AAAZsyYgccffxwAUF1dHVJbucvNzUVjY6PrcUFBAXJzczvMzXrw\n4EE0NDT4ja2goACZmZkd5gA+efKkz76iHgcRERERhYYJVyIiIiIdKy8vx+zZszs8d+aZZ6Jfv354\n9913AQCXXHIJtmzZgh/96EcoKChwbffKK6/gwIEDKCwsxMiRIzFr1iycPHkSQOeRo7/+9a/x5Zdf\norCwEHPnzsXUqVNdr91www3Iz8/HWWedhQsuuABDhw5FXl4eAOD888/Ho48+iksvvRTFxcUYMWJE\nh4Seu9GjR6OpqcmVYJ06dSqOHDnS4Xb/V155Ba+99hpGjRqFyy+/HMuXL0ffvn29xnzddddh6NCh\n+PGPf4zx48ejuLjY9dqbb76JwsJClJSU4Morr8QLL7zgs40dDgdKSkpQVlaGP//5z+jfvz/y8vKw\nYcMGPPzwwyguLsZZZ52Fe+65B06n02ss7nbt2oXzzjsPxcXFKCkpwZw5czBixIiQ2srdyJEjcdZZ\nZ6GwsBAzZ86E0WjEu+++i3Xr1mHUqFEYMWIEFixYAKvV6jU29bHRaMT69etRXl6OkSNHori4GOvW\nrQPQvpiXZ1+pq6sLGBsRERERdaYIf1/PExERERGhfY7Q7Oxs2O12XH311Rg9ejTuuusurcOKmMFg\nQENDA3Jzc7UOhYiIiIgSBOdwJSIiIqKApkyZgtbWVrS0tOCCCy7Ar371K61DksLfSFUiIiIionDo\nboTre++9h/vvvx9OpxMOhwN33nkn5syZo3VYRERERERERERERAHpLuHao0cPfPbZZzjrrLNQVVWF\nM888EydOnEBWVpbWoRERERERERERERH5pbspBQwGA+rr6wEAjY2N6NmzJ7p06eJ63el0uhYrUCmK\nwtvBiIiIiIiIiIiIKChCCHiOQzUYDDAYDBHXrbuE62uvvYZLL70UWVlZaGhowLp165CScipMp9OJ\n5uZmDSMkIiIiIiIiIiKiRJOVlSUl4Rp5DRI5HA489NBDeOedd1BZWYmPP/4Ys2fPRl1dndahERER\nEREREREREQWkq4Trjh07cOzYMZx33nkAgNGjR6Nfv37Yvn27xpERERERERERERERBaarhGv//v1x\n7NgxfPPNNwCAAwcO4NChQygoKNA4MiIiIiIiIiIiIqLAdDWHa+/evfHiiy/i8ssvh9FohNPpxDPP\nPIN+/fq5tvG2OJas+RWI9MZisWD//v0YNmwYMjMztQ6HKGrY1ykZsJ9TMmA/p2TBvk7JgP2cEp23\ndaK85R3DoauEKwBcccUVuOKKK3y+7u3AZa0gRqQ3iqLA4XBAURT2cUpo7OuUDNjPKRmwn1OyYF+n\nZMB+TslIVsKVVwwRERERERERERGRJEy4EhEREREREREREUnChCsRERERERERERGRJEy4EhERERER\nEREREUnChCsRERERERERERGRJEy4EhEREREREREREUmSonUAsWCqqoKzsVF6vYauXZEzcGDA7RwO\nBx566CG89tprSE1NRUpKCs4991xMmzYNixcvxvbt26XHRkRERERERERERLGXFAlXZ2MjzNOmS683\n+/0NQW03f/58NDQ0YPPmzcjNzQUAvPXWW6irq4OiKNLjIiIiIiIiIiIiIm1wSoEoO3jwIN566y2s\nXLnSlWwFgFmzZmHw4MGuxw6HA2VlZTj33HNRWFiI2bNnw2q1AgD+9a9/obCwEP/v//0/jBo1CoWF\nhdi2bZur7IYNG3Duuedi1KhRKCkpwZYtW7Bs2TLccMMNrm0aGxvRq1cvNDQ0xOCoiYiIiIiIiIiI\nkhMTrlG2bds2DBs2DN26dfO7ndFoxF//+lf897//xa5du5Cbm4s///nPrtcrKirwy1/+Ejt27MAt\nt9yCe++9FwCwb98+zJ8/H6+88gp27NiBLVu24Mwzz8SCBQuwfv16NDU1AQBWrFiBmTNnIi8vL3oH\nS0RERERERERElOSYcNUJIQSWLVuGkpISjBw5Eu+99x527Njhen3o0KEYPXo0AGDs2LE4dOgQAODj\njz/GtGnTMGzYMADtiducnBx07doVP//5z1FeXg4AeO6553DLLbfE+KiIiIiIiIiIiBLX0boa7Dte\ngaN1NVqHQjrChGuUlZSUYP/+/aivr/e73SuvvIJ//vOf2LRpE3bu3Ik77rgDLS0trtfT09NdPxuN\nRtjt9oD7vvXWW/Hcc8/hgw8+QO/evVFUVBT+gRARERERERERUQdmmxl3/ud2mG1mrUMhHWHCNcqG\nDBmCWbNm4dprr0VjY6Pr+XXr1rlGqQJAQ0MDevbsiaysLJhMJqxcuTKo+i+88EJ8+OGH2LdvHwDA\nbre7phEoKCjA4MGDcf311+PWW2+Vd1BERERERERERETkFROuMVBeXo6RI0eitLQUhYWFOOuss/DR\nRx+he/furm3mzJmD5uZmDB8+HNOnT8f48eODqnvIkCFYsWIFrr76aowaNQpjxoxxJV8B4LrrroPD\n4cCsWbOkHxcRERERERERERF1lKJ1ALFg6NoV2e9viEq9wTAajVi8eDEWL17c6bVLLrkEAJCbm4uP\nPvrIa/kJEyZg27ZtrsdnnXVWh9GxZWVlKCsr81r2008/xc033wyj0RhUrERERERERERERBS+pEi4\n5gwcqHUIMXfs2DFMmjQJPXr0wIcffqh1OEREREREREREREkhKRKuyahPnz7Yu3ev1mEQERERERER\nERElFc7hSkRERERERERERCQJE65EREREREREREREkjDhSkRERERERERERCQJE65ERERERERERERE\nkjDhGgN2ux2///3vMXz4cBQWFuLss8/GZZddhq+//hqrVq3CpZdeKm1fq1atwr59+6TVR0RERERE\nRERERMFL0TqAWKiurYfJapNeb05GKvr37hZwu3nz5sFisWDz5s3Izc0FAGzcuNGVGFUURVpMK1eu\nRLdu3XDGGWdIq5OIiIiIiIiIYutoXQ0A4PTufTWOhIhCpauEa11dHSZPnuxKQDY3N+Pw4cOora1F\nXl5e2PWarDbML98uK0yX8vnFAbc5cOAA1q9fj2+//daVbAWASZMmAWgfkWoymXDVVVfh//7v/5Ce\nno61a9ciPz8fAPDYY49h1apVMBqNGDlyJJ599lnk5OTg3XffxW9/+1sYjUbY7XYsWbIEtbW12Lp1\nK2677TYsXrwYDz/8MMrKyqQfNxERERERERFFl9lm1joEIgqTrhKu3bt3x/btpxKjy5Ytw2effRZR\nslVr27dvx9ChQ9G1a1ef22zduhVff/01BgwYgHvuuQePPPIInnvuObz//vtYuXIlvvzyS+Tk5OCG\nG27AokWL8Mwzz+D+++/Hiy++iNLSUgBAU1MTcnNzsWbNGtx22224+OKLY3WIREREREREREQclUv0\nA13P4bp8+XIsWLBA6zCkOnToEIqLi3HmmWdi/vz5AICxY8diwIABrp8PHjwIAPjkk09wxRVXICcn\nBwBw00034aOPPgIATJ48Gb/+9a/x2GOP4euvv+4wepaIiIiIiIiIKNbMNjNH5hJBxwnXf//732ho\naMD06dO1DiUixcXFOHDgABobGwEAgwcPxvbt23HPPfegoaEBAJCenu7aXp0iwBv3uV6XLVuGFStW\nICsrC3PnzsXjjz8exaMgIiIiIiIiIiKiYOhqSgF35eXlmDNnDgyGwDlhi8Xid+Ep4XTKDK1Dvc3N\nzX636dOnD6ZPn465c+fi2WefdU0tUFdXB7vdjtbWVtjtdlc9LS0tcDgcaG5uxvnnn497770XN9xw\nA7Kzs/H0009j4sSJaG5uxr59+3DGGWdg7ty5sNvt2LhxI2666SZkZWWhtrY2YFwUH6xWa4f/iRIV\n+zolA/ZzSgbs55Qs2NcpFpxOAQCa/X0fTj/XOmYtqMfsdIqkOu5EIISIWt26TLg2Nzdj7dq12Lp1\na1Db79+/Hw6Hw+frhpzeskLroLWtDXv37g243W9+8xuUl5dj3LhxSElJQW5uLvLy8jBnzhxUVlbC\nZDK56qmurobFYsHevXvRr18//PSnP8W4ceNgNBoxdOhQ3H333di7dy8WLlyII0eOICUlBRkZGa7n\np0yZgoceegiPP/44br75ZowbNy4qx06xVVlZqXUIRDHBvk7JgP2ckgH7OSUL9nWKprReaQAQVN4h\nmkLp53qJOZbUY24LMkdE+mE0GjF48OCo1K2IaKZzw7R8+XKsWrUKn332WafXnE4nTCZTh+eMRqPf\nEa6VtSZcu/Jr+XHOK0J+7xzp9RKprFYrKisrkZ+fj4yMDK3DIYoa9nVKBuznlAzYzylZsK9TLFQ3\nVQMA+uf212T/4fRzrWPWQnVTNRZuvgOPli5LquNOBEKITgM4c3JygrrbPhBdjnBdsWIFrr/++qC3\nz8zM9NsYuVltKJ9fLCO0DnIyUpGVlSW9XiJPGRkZ7GuUFNjXKRmwn1MyYD+nZMG+TtFkMLcPLNO6\nj4XSz/UScyypx2wwKEl13InA26BOWXSZcP3888+l1te/dzep9RERERERxZPq2noA/FxMREREFAu6\nTLgSEREREZE8JqtN6xCIiIiIkkbkkxIQEREREREREREREQAmXImIiIiIiIiIiIik4ZQCRERERERE\nRJRQjtbVwGwzIzs1G6d376t1OESUZDjClYiIiIiIiBLO0boaHK2r0ToM0ojZZsad/7kdZptZ61CI\nKAklxQhX9Zst2YL9psxut2PJkiV47bXXkJKSgrS0NAwcOBCLFy/GyJEjpcdFRERERESU7JhoIyIi\nrSRFwlX9Zku2x8c+EdR28+bNg8ViwebNm5GbmwsA2LhxIyoqKjolXJ1OJwwGDjwmIiIiIiIiIiKK\nR8zsRdmBAwewfv16rFixwpVsBYBJkybhF7/4BVatWoVJkybh5z//OYqKirBlyxYcP34cV1xxBcaM\nGYOioiI88MADrnJ33XUXSktLUVJSgp/85CfYv3+/6zWDwYClS5eitLQUQ4YMwcqVKzvEMWPGDJSW\nlmLUqFF49tlnAQDLli3DDTfc4NqusbERvXr1QkNDQxRbhYiIiIiIiIiIKDElxQhXLW3fvh1Dhw5F\n165dfW7z3//+Fzt27MDQoUMBAGVlZbjvvvtwwQUXwOFwYMaMGXjrrbcwa9YsLFq0CI899hgA4PXX\nX8evfvUrvP/++666MjIysHnzZlRUVOCcc87BnDlzAAD/8z//g1deeQVnnHEGrFYrxowZg9LSUixY\nsAAFBQV47LHHkJubixUrVmDmzJnIy8uLYqsQERERERFRPFDnweXCU0REwWPCNcYOHTqEWbNmwWq1\nYty4cZgwYQLGjRvnSrZaLBZ88sknqK2thRACANDc3IyKigoAwIcffoinn34aJpMJTqcT9fX1Heq/\n6qqrAAAFBQVITU3Fd999h8bGRuzevRtXXnmlq06z2Yw9e/bg7LPPxs9//nOUl5fjN7/5DZ577jms\nXbs2Vs1BREREREREOsa5cImIQseEa5QVFxfjwIEDaGxsRNeuXTF48GBs374dq1atwvr16wEA2dnZ\nru2FEFAUBZs3b0ZqamqHuqqrq3Hrrbfiq6++Qn5+Pnbt2oUJEya4XlcUBenp6a7HBoMBdrsdQgj0\n6NED27Zt8xrjrbfeiosvvhhnnnkmevfujaKiIplNQERERERERHGOI12JiIIndQ7Xt956Cw8//DAA\noKamBrt27ZJZfVwaOnQoLrnkElx77bVobGx0Pd/c3Ox1+6ysLEycONHVjgBw7Ngx1NTUoLGxEWlp\nafjRj34EIQT+/Oc/dyirjl71VFBQgNzc3A5zuh48eNA1OragoACDBw/G9ddfj1tvvTXcQyUiIiIi\nIqIEZbaZOdqViChI0hKuDzzwAF566SVXUs9gMHRYjCmZrVy5EiNGjEBpaSkKCwsxfvx4fPLJJ7j7\n7ru9bv/KK6/gwIEDKCwsxMiRIzFr1izU1dVhxIgRuPLKK/HjH/8YpaWlyM/P71BOURSvj41GI/7+\n979j3bp1GDVqFEaMGIEFCxagpaXFte11110Hh8OBWbNmyT14IiIiIiIiIiKiJCJtSoH169dj27Zt\nGD16NACgT58+MJv18e1Xdmo2Hh/7RFTqDUZKSgoWL16MxYsXd3qttLQUc+fO7fBcz549sXr1aq91\nPfnkk3jyySddj++9917Xzw6Ho8O2tbW1rp8HDRqEv/3tbz5j/PTTT3HzzTfDaDT6PRYiIiIiIiIi\nil9H62pgtpmRnZrNKSKIokRawjUjI6NTss7XLe6xxjcQ344dO4ZJkyahR48e+PDDD7UOh4iIiIiS\nRHVt+/RW/Xt30zgSouTEpFvyMtvMuPM/t0dlYBoRtZM2pcDAgQOxadMmKIoCm82G3//+9xg1apSs\n6ilK+vTpg7179+Lzzz9HVlaW1uEQERERUZIwWW0wWW1ah0GUtNSkG+dlJSKST9oI1z/96U+YO3cu\ndu3a5Vr4ac2aNbKqJyIiIiKKGEdVEiUnjuYkIqJYkpZwPe200/DBBx/AYrFACMHRkkRERESkOxxR\nSZSceAs1ERHFkrQpBV588UXU1dUhMzMTWVlZOHnyJP7yl7/Iqp6IiIiIiIiIiIhI96QlXJ999ll0\n797d9bhHjx549tlnZVVPREREREREREREpHvSphQQQnR6zuFwyKqeiIiIiIhIquraepisNuRkpHJe\nXyIiIpJG2gjXPn36YO3ata7Hr7/+Ovr06SOreiIiIiIiIqlMVhvml2/n3L5ERKQ7R+tqsO94BY7W\n1WgdCoVB2gjXp556CpdccgkWLlwIAMjMzMT69etDrqetrQ133HEHPvzwQ2RkZKCoqAgvv/yyrDCJ\niIiIKM5xVCIREZF+KcKAfccrkJ2ajdO799U6nLjFxf7im7SE65lnnok9e/agoqICAFBQUACj0Rhy\nPXfffTcMBgP27dsHAKitrZUVIhERERHFMTXRanc4cP2qnSifX6x1SEREROSh1dGCe7csYqKQkpq0\nhCsAKIqCvLw82O121NS0D3keMGBA0OUtFgvKy8tdZQGgd+/eMkMkIiIiojil3v79/DUjtQ5Fcxzl\nS0REkVKEAUfrajgKlSgKpM3hunLlSuTl5aGwsBBnn302zj77bIwePTqkOg4ePIju3btjyZIlOOec\nczBhwgRs3LhRVohERERERAmBc4+SVo7W1XA+QaIQ6PmaaXW0wGwzax2Gruj5fFF8kTbC9Q9/+AO2\nbNmCgoKCsOuw2+2oqqrCiBEjsHTpUuzYsQNTp07Fnj170KtXL5/lLBYLFEUJe79EemW1Wjv8T5So\n2NcpGbCfR044nepPrsfNzc1h1RFqOb1RjyPYNojVcYfSz/VwLkJtRwKaWk0AgK5x0F5OZ/t7RXNz\ns+tnp1NIOdeJ8J4ebJuo26ni5VqRfc7DFck1496HZXI/p/7aJ5x+HmzdehXO+YpWX9NLH05kQojA\nG4VJWsK1Z8+eESVbgfbpB4xGI6666ioAwKhRozBo0CDs2rULkyZN8llu//79cDgcEe2bSM8qKyu1\nDoEoJtjXKRmwn4fPkNM+1ZT62bi1rQ179+4Nq45Qy0VDRl4vtDoUdDEKWBu+D6msehzBtkGsjzuY\nfq6HcxFqOxKQ1isNQMfzltUzCzbFhlSRiuYTnZMCWT2zAMDra9HkHqv6c5vkcx3P7+nBtom6nSpe\nrpVonfNw4wgnhkjKBlOvECKo9gmln6f1SoPyw3I+Wrd9OHy1ub/3sWj1Nb304URmNBoxePDgqNQt\nLeE6c+ZMPPXUU7jqqquQnp7uej43NzfoOnr06IHJkyfjgw8+wLRp03D48GFUVlZi+PDhfssNGzaM\nI1wpIVmtVlRWViI/Px8ZGRlah0MUNezrlAzYzyNXWds+6kT92NclLQ35w4fjRFP7yJueuYHbVa0j\nP8Dny1iorDXh5tVfY/m8ooCfd72VBU61QbDbR/u4Q+nnejgXobYjAdVN1QCAIcOHdHjut5vvwaOl\ny7z2ZbVMqP08Uu6xqj+npaV1iD1cifCeHmybqNupZLRfLMg+55HGEU4MkZQNpl5FUZCaluqz/nD6\neXVTNezMFDlfAAAgAElEQVTO9ulutG57X+osJwEA3TN7dHrNV5v7ex+LVl/TSx9OZEKIqA3glJZw\nve+++wAAt99+OxRFgRACiqKEHPhzzz2Ha6+9FnfffTeMRiNefPFF9OnTx2+ZzMxMGAzSpqMl0p2M\njAxkZWVpHQZR1LGvUzJgPw9OdW09AHRYEEoxqKNKlB8eG5CVlYWqH0abDAyiXdU69HAO1FjU44hm\n2VgfdzD9XA/nIpJzkKwM5vbrz7291OcMBsVrO3orEwvu+w0UY7ji+T092DZRt1PFy/FG65wHS50H\n1GAIv/9H69pxP6fBtE8o/dxgVgBn8HVrocb8LQDv7eqrzf2di2j1Na37cDJwOp0wmUxRqVtawtXp\nmlMrMoMGDeJCWURERERJjotBERFRPONiVETJTeqw0K+++gqrV68GADQ0NODYsWMyqyciIiIiCkl1\nbT32VNW6RswSeWNQBPsJERFJdbSuBodqD2Hf8QrXiGdKHtISrs8++yzmz5+PxYsXAwBOnjzpWvyK\niIiIiEgLJqsN88u3c8Qs+dXS5mQ/ISIiqcw2Myy2Ztz5n9s54jkJSUu4vvjii/jyyy9di2QNGTIE\n338f2mqrRERERERERETJ4GhdDUc/EiUoaQnXLl26dFq1LiVF2hSxRERERERERD4drath4oriitlm\nlj760fM6SNTrIlGPixKHtIxor169sG/fPihK+ypqK1euxIABA2RVT0REREQUNnWOTrvDgRSj0fW8\nOmdn/97dtAqN/KiurYfJakNORirPEQXEW3aJOl8HiXpdJOpxUeKQNsL1qaeewtVXX41vvvkG/fv3\nx2OPPYannnpKVvVERERERGFT5+h0Ojs+b7LadDtvZ3VtfdIv4sQ5eImIiCgeSRvhOnToUGzevBkV\nFRUQQqCgoABGt9EDREREREQUPCYZiUg29Rbs07v31TgSIqLEJm2E68yZM2EwGDB8+HD8+Mc/htFo\nxMyZM2VVT0REREQU9zhqlYi0ZLaZNb8VmwtFyaG246HaQ3HTnpx3lZKJtITrkSNHOj138OBBWdUT\nEREREcU9PU1hUF1bjz1VtUwAky4xMZO4orFQVDASLdGrtqPF1qxJe4ZDDwl/oliJOOH6wgsvoLi4\nGBUVFSgpKXH9GzJkCAYNGiQjRiIiIiIikozzo5KeMTFDsmmV6NUTNelsd9i1DiUhKcKQMAl9ilzE\nc7iWlZWhoKAAN910E5588knX87m5uRg5cmSk1RMRERERRZ06yrN/724aRxJ91bX1MFltsDscWodC\nRFHGOVv1R8tzoiadHz7njzHft14drauB2WZGdmp2xOek1dECYXMG3pCSQsQJ14EDB2LgwIHYu3ev\njHiIiIiIiGIumUZ5qiNbn7+GgyOIEl0yj+bUK54TfVGT0I+PfULrUCjBRJxwVVVWVuKRRx7BwYMH\nYbefGp6+ceNGWbsgIiIiIpKC85YSEVGkZI1WVYQB+45XSBllSdEXzqhYnuPkIy3hevnll2Py5Mm4\n5ZZbYDQaZVVLRESU1ExVVXA2NsLQtStyBg7UOhyihOFtRKtBEdhTVYucjNSkmFqASA9k3s5LFGuy\nRqu2Olpw75ZFHGUZJ8IZFctznHykJVxbWlqwdOlSWdURERERAGdjI8zTpiP7/Q1ah0KU8FranLhx\n9U6Uzy/WOhSipMHbeSkSnKOWiPRKWsJ1xIgROHLkCAYMGCCrSiIiIooiU1UVAHDkLBERhYyJLu88\nR+xyBG90cT5UItIraQnX77//HkVFRRg7dizS09Ndz69bt07WLoiIiEgiZ2Oj1iEQESWV6tp6mKy2\nhJi2goku7zxH7HIEL8mmJvHtDnvA7Uj/+OVV4pKWcJ09ezZmz54tqzoiIiIiIqKEYrLaML98e9JM\nW8GED5F8ahL/4XP+GHC7SBytq0FTqwlZPbMiqof845dXiUtawnXu3LkAgNbWVnTp0kVWtUREROSG\ni2gRRR8XzyKSw18iIdhRehQcTl1AspltZizcfAceKuZaPUThMMiqaNeuXRgxYgSGDBkCAPjqq6+w\ncOFCWdUTERERTi2ixekAiKKnpc2J+eXbYbLatA6FKGGpo/ScwqlpHEfraqSNxD1aV6NZAlltz3ga\nLacIA/Ydr+BI6CDI7Kfx5mhdDfsJxSVpCddbb70Vzz//PHr16gUAKCkpwYYNXFGZiIiIiEiG6tp6\nVNfWax0GUQdaJhllMNvM0pKUZps5qgnkREu6tTpa4i5JHG2+ktAy+2m8iccvE4gAiQlXs9mM888/\n3/VYURSkpaXJqp6IiIiIKO7ITJKarDbdjrpN5mRwdW099lTVJu3xRzvJSKckc9ItWSRzEpojWSnR\nSEu4pqSkwGazQVEUAEB1dTWMRqOs6omIiJKOqaoKTlv8jhoiIn0nSVUGRUScLNTyOLVOeKoLYen9\nPCcSJma0x3NAMriP2uZIVko00hKut9xyC2bOnInvv/8ev/3tb3HBBReENYdrfn4+hg8fjuLiYpSU\nlOCNN96QFSIREVFccTY2QjgdWodBRAmupc0Z18lCJjyTT6wTM0wudsbkGMnAUduUyFJkVTR79mwM\nHjwY69evR1tbG9asWdNhioFgGQwGrF27FoWFhbJCIyIiIiKNVdfWw2S1IScjFf17d9M6nJhL1tvN\nZVFH4SZj3yHtqcnFx8c+oXUoREQUJ6QlXAFg3LhxGDduHBobG1FdXR1WHUIICCFkhkVEREREMaAm\nFb0lxdRRiOXzi2Mdli5w9GVkWtqccAq2IWlLXdAoOzUbXbvkaR0OkTTq6O3Tu/fVOBKixCFtSoGy\nsjI0NDTAbDajqKgIM2bMwAMPPBBWXddccw2Kiopw3XXX4cSJE7JCJCIiIqIoiof5Sin6MvJ6obLW\nxFG9cUrrOXH1LJkXNKLEFg+39ivCwGk9KK5IG+F6/Phx5OXlYe3atbjkkkvw+OOPo6SkBA8++GBI\n9WzatAn9+vWDw+HAfffdh7lz52LDhg1+y1gsFtdiXUSJxGq1dvifKFGxr3vndIoOPzc3N7ueUx/L\nqD/Seig4ydDPhbN9pXJvfUp9TTidQfU5b3WpzwGiQ13B7FctAwi35zpt7bX+SPjal3vcvvbjeVzu\njyNpT19tEsmxqnVarVa0OhTcvPprLJ9X5LdOf+fNcxt/MYbaFr7qj7SOYMpGEmusNDW34tqVvs+f\n++8mb6+5l/Hc1t9rvsr6iyFQGffHwZbxdVyej729p8v+vV1nOYlmuwVZKZnontkjZm3iq25VpMcV\n6NyHU5d7ebXdHMLRof5IzwUAdM/sEXD/nq+p/J0Db2W9vR5OmUBl3Z/zdY2G8tnF23Xg+Vo412ir\nowWOVge6upU1KgZ8c+wb1zUSaoze9uvrnHorowgF3xz7xtXXPOP31d6RvteRPNG8w15awtVmax/N\n8Nlnn6GsrAypqalISQm9+n79+gEAjEYjfvOb36CgoCBgmf3798Ph4KIilLgqKyu1DoEoJtjXO+rv\nFEj5IQnQ1taGg3v3or+z4+NI6wcQcT0UmkTu54ac3gCAvV76lPpaa1ub19eDqUt9Tv1srNYVzH7V\nMkK0l/NGMaR4rT8S6v49ucftaz+ex+X+OJL29NUmkRyrWmdl5bdBx+bvvHlu4y/GUNvCV/2R1hFM\n2UhijZVAMab1Suv0nGJs/7/No4zntt5eU//Y9VXWXwyByrg/DraMN95iraypBNDxPT2tV1qntvC1\n32Ck9UrDb7ffg4eKl+J4VW1EbXLk+yMAAJtic9URbGzezmOkxwWcak9FKDjy/RE0nwg9oeStTdR2\nWzJ6aYcYZcR8vKo24P49X1P565dqW3heD+51dEntgoMnDsJgVIIu47l/b/trc/ud6Ov6DeWzi7fr\nwLPOcK5RNVb3sooRuG/rqWsklBh97dfXOfVWpsXegvu2nuprvmJUXwumTbztM5w+S8ExGo0YPHhw\nVOqWlnAdMWIEpk2bhr179+LRRx+FxWIJuQ6LxQKbzYauXbsCAF599VUUFwee52vYsGGw19ZCNJmg\n5OYg9bTTQt43kR5ZrVZUVlYiPz8fGRkZWoeTFGzHjwMA30diLNn7uq9+17b/AISt/UNwWloahg8b\nirb9B2B3exyJtv0HACDieig4ydDPK2tNAID84cN9vtYlLc3r68HUpT6n3tik1hXMftUyitJ+/Xhj\nczi91h8Jdf+e3OPOTO8CR1o/ZKenoGduRqeyagzujyNpT19tEsmxqnWelp+PIyctQcXm77x5buMv\nxlDbwlf9kdYRTNlIYo2VQDFWN3Veq8PubE/ipaWlYcjwIT639faaeqeir7Luz3m+FqiM++Ngy3jj\nLdbT80/v9J5e3VTdqS187TcYnmWDaZOMLulI65uGNEMq2pw2OIQDRjXjAyANaQHbxFfdKlnHpban\nTbQhpUsqhodxTXhrE199S0bMnuWCOScqf/1SjdVXzABgc7bht9vvwcPn/DHoMp7797a/1LTUTjF6\nxh/KZxdv14FnneFco2qs7mXV/aj9PtiRrv72G8y59nXe/MUo872O5BFCRG0Ap7SE68qVK/HBBx+g\nqKgImZmZqKmpwdKlS0Oq4/jx45g1axacTieEEBg8eDBefvnlgOUyMzNhMpvRPH0Gst/fgKwoZaeJ\ntJKRkYGsrCytw0gKjeb2uYuS8X3EVFUFAMgZOFCzGJK1r/vqd3aDAvXXv8GgICsrC3aD0uFxJNS6\nkrHNtZTI/VwxtI9O8jy+6tp6ONSRTAZDUMfvrS71OUDpUJev/XorAyhQDD6WMXCIDtsGG6s/p/bf\nkXvcLTYnbly9E+XzizHQy/GqMSiGZhgUgaoTzRG1p682ieRY1Trb/yC3BBWbv/PmuY2/GNVtwjkG\nX30qnDo8y3pbRC6SWGMlUIwGs5ep3H6YmcHzd5Pntv5e81XWXwxGxYga87fITs3G6d37dirj/lj9\nOZT9+ItVTT65v6cbzEqntvC132B4lg2mTVodrbh3yyI8fM4fXf8bjJ3/7A8lNm/nUcZxdXguzM81\n3trEV9+SEbNnuWDOicpfv+xU1iNmAK6+5TNGb2U89u+r7T1j9Iw/lM8u3q4DzzrDuUY9X3Pfj9rv\nHx/7hNc4PRcF87ffYM61rzb2F6O31721ibd9yvjcT945nU6YTN6/HI+UtIRreno6Zs6c6Xrct29f\n9O0b2gp3gwYNwrZt22SFREREIXA2NmodAhElKJPVBp/TpkaBt0RXomhpa0/OPn/NSACAQRHYU1WL\nnIzUhDzeeMYF5KKv1dHiSrIQ+aIIA/Ydr4DdYdc6FIoy9VyrX8Ko9Lgg2NG6GphtZtgddqR4+VKE\n4p+Pr/eJiIiIiOKTyWpLmmRXS5sT88u3u463urZe6uryXLGeiOJdq6MFd/7ndjhFDL/5I02o5zqY\nBKvWiXizzcx+meCYcCUiItIZU1WVa4oHIoovWicoZSebTVZbh4RuspCduNZaMP1S3cbOxYiJKAkw\nEU/RJiXh6nA48Kc//UlGVUREREnP2dgYcIoHp9GIxp07mZgl0plkTVAmmkQbJR1Mv1S3ieX0H6E4\nWlfjmoeRtKPVqMCjdTXYd7wirvtAPPXho3U1nIIhAvF0ril6pCRcjUYjVq1aJaMqIiIiCoKwWGCe\nNj1h595VR/lytC8RUXJTExdmm1mX8zAmG61GBaq3X8dzH3Dvw1rfzh6I2WbmyM8IyHi/YtI7/kmb\nUmDq1Kl45ZVXZFVHRESUdGQkFxMlQamO8g1mtC8lLnVBqES6tZtID6I1ZYKaRJI5souJ1uSmjmzV\nW+Ip0hGMer2dXfbIzGi8JyQLJr3jn7SE6wsvvIBrrrkG6enp6N69O7p164bu3bvLqp6IiCjhyUgu\nMkFJicRzQSiKL0yY61e0pkxQk0jNbRZdJslIW+EkT/W6sFCifhEQynEFk5wNZRErokQjLeG6Y8cO\nHD58GBUVFdi+fTt27NiB7du3y6qeiIiIiBKQ1otMUfQwYR5YPPT/cObO1OvoPX8452L0yUiecsSk\nfiRq0plIFmkJ14EDByItLQ2HDx/GwIED0bdvX/Tp00dW9URERESUgOJhkal4SIrFk2jdzh6P4qH/\nJ8LcmcGIdfLIW4I3ERaGijYZIyYVYWAbJzgm5kkPpCVc33zzTYwZMwbz5s0DAOzevRszZ86UVT0R\nERERkSbiISkWT6J1OztRPPGW4E2W5LbWWh0tbOMYi/UiYZzKgPRAWsJ16dKl2LZtG7p16wYAKCoq\nQlUCLNpBREQkm6mqCo07dybE4lZEiUydg9TucHh9nSM1ieKDt9W+9boYU6gS5TgoscXjNCOxxmlN\nEo+0hKvRaESPHj06PJeWliareiIiooThbGyEedr0kBa3chqNaNy5E04b/6Biwjr5BEp8Ros6B6nT\nx9+HJqsNzS1tnG6AAlKnpYh1H6Z23lb71utiTN74uwU+no6DKNbiafoIf9OacIqE+CQt4ZqTk4Pj\nx49DURQAwCeffILu3bvLqp6IiCipCYsF5mnTIZzh/7Gu50RloNhMVVWu18JJWFN8C5T41BIXhqJg\nqNNS6LEPk/7xFvj4wDl4gxer0ZyJcu1wioT4JC3h+sgjj2DatGk4dOgQzj//fMyZMwfLli2TVT0R\nERFFSM+JSjU2u9nsdSSvs7FRl3ETEVHyUYQB1U3VyOqZFbX6tZgmIBoJw2S6TZpz8AYv1ovUEWlB\nWsJ19OjR+PTTT/HXv/4V9957L3bv3o1Ro0bJqp6IiIiSgIyRvESJhnPFUqKIt+Sbr/lRWx0tWLj5\nDtiU6Ixs12q+y2gkDJlYSzycN5goONISrgDQ2NiIkydPor6+HiaTSWbVRERERJQA1PlYD3z7fULP\naRnJvLOeCVaT1ZY0Uxaoc50ywRy8eErIq8k3b4tYySQrscv5UeNPtPuWnsVqvtJkvi60Gn1O8Ula\nwvXVV19FcXEx1q1bhzfffBMlJSV47bXXZFVPREQx4j5XJhGRbOqcp+YWe4c5LQ2KiJukUTAimXc2\nHhKs0UryqXOdqouRJWpCXibP/hIPCVhvi1jJrl/rUZXxlJiJp1gDiXbf0rNEma9UL7x9caPV6HOK\nT9ISrg8++CC2bt2KdevW4e2338aWLVuwePFiWdUTEVGMcK5Mko1J/MQlczRiS5tT90lGOiXaSWE9\nL5Smd/GQsE8G0UzMyJ6agUkkiiexmpokWl/cJNIXHOSftIRrZmYmBg0a5Hqcn5+PzMxMWdUTEXWi\n5xXXiegUJvETlzoakcmdxBAPIyOJEk04yaNYjeDV85y7sbp9nvRHDyPYI8EvOJJHiqyKpk+fjsWL\nF2PBggUQQmDFihX42c9+hqamJgBAbm6urF0REQE4tap59vsbtA6FiIKgfjmSM3CgxpEQRSZaSUn3\neV9TjMao7MOfREmcV9fWw2S1IScjFf17d4ta/WlGBW0OwWkPKCJ6ThzpObZWRwuEjQkrItIvaSNc\nlyxZggcffBADBgzAwIEDsXjxYvzhD39AXl4eunWT/0GHEksijVQM59ZZ3m5LRMlAxkhXU1UVnDbe\ngkXaitYt27yNPnj+RuNGc+R1dW096s0tXuchDkUki6rJxFHNFAvB3kKt5xG1oeAt4/rlr4/xvJFs\n0hKuTqfT5z8Hv/WlANSRiolwy2k4CQXebkuUHNQvl/SWMIynL32cjY0QTn6uIEp2Ws1TarLapCTE\n9ZJc19N8r2qyIxESbv7ITCoerauJi+RQsLdQx/ut4ireMh6ZaL4X+OtjPG8km7SEKxElD72OSI6n\npBElJ/XLJb0lDLX80kevSWgiIootNdnR3GZJ6FFmMpOKZpuZySFKOOp7QSIk3ym56TbhumLFChgM\nBvztb3/TOhQi8qDXEckcKUzxxmk0RpxsdBqNAb9o0HNSU69JaCJKbNW19bq4pZ86i/YoM942TJ4S\nZSoDItIXXSZcq6qq8NJLL2Hs2LFah0JERBrS62hqWYTFEnGyUVgsAb9okJHU5AhyCkeizQ9pUERC\nHY8v3s6bOudoohy/Os+r1rf0U+zJTOh2Se2COstJCVElnnhKYpptZtfI6niJmYj0T3cJVyEEFixY\ngKeffhppaWlh15Nof6Qn2vFQ/GGyhbSg19HUehTKNRrMqNhOZRJkBDl/n8aWnuaHlKGlzanb45G5\nCJO386bOOarX49eDZEnI0yltzlY02y1ah6FL8TYfK29jp3iQLHNdJwppCdcHHngADQ0NEEJg+vTp\n6NmzJ956662Q63niiSdwwQUXoLi4OKJ4ovFHupYJJyYd4lsi/IGfKMkWokQVyjUazKjYWDBVVUmd\n5iCY91r+PqVEpZdFmJKZmpCPZGR3oo0Kp/ikCAMTOiFIlmkqjtbVeD1OdTRzJKOa42UBOK3xi4H4\nkiKrovXr1+PBBx/ERx99hJSUFHzxxRe48sorMWvWrKDr2L17N9566y1s2rQppH1bLBY4nQIA4HQK\nNDc3d3osg72+AQDQ3LOnlPpCEY3j0ZNEOj71WNyPw17fAMv0Gcjc8Hev/cdbGQCwWq0d/teSe4x6\nOV++rvtIYpJRR7xSj10Vyzbw1df10tdk8WzjYF8Lp1739vL2eqAyvrYP5TzYjh+HaDJBOOxQjKc+\ncqh12Osb/E5zEKhN1H7hvh/rxTN9vte616lFn9LTe7os4ofsnnA60dzc7Hqstq3okP0TAf9X6zlV\n1n+ZQPt1f81zPz6OKKgYvZXxjCXQ/qqOnYDd7ui0rawYPft3OG3ibdtAbd6xf3cs4xmL+346vxZM\n/+gYo2ds3toBAE40WX22va/j6xif/7Zvam7tdHz+jst9v2rZUN6f/PV/z20691PfMarb+vq8Faxo\n/H7zfD7c2LztJ9DvT09CnOpngX7P+4ux+vsjsPlJOMWiHVWtjhY4WoMbLa8IBd8c+wZZKZnontnD\n7z6DjTHYc+CtTLD7df8c4F7G1+cDz89B7mXszhbcu2URHj7nj35jDEU0rjdf9QXaR5fULjjSWAUn\nBO7578IOx+l0CjS1miKOsanV1GmaD29tEE57RlomnL4V7f0lyt9GeiBE+O+tgUhLuBoM7YNl//Wv\nf+EXv/gFCgoKoChKSHVs2rQJVVVVGDZsGIQQ+O6773D99dfj2LFjuOGGG3yW279/P07/YYRMW1sb\nDu7di/4/dE71sQxqnbLqC2ffMo9HTxLp+Lz1k0DHF6hvVVZWSo4ydO4x6uV8ecYh4xrV8jrXWn+P\nX+patIFnX9dLX5NFPR71F7v7/7a2Nq9lUuC7jL+y3t6DQinjK3bLoUMAgGOtrT63dS9jv/QypL/9\nFmyOUx+i1f30dwq/xxeoTdyvfXU/7s/7Ow6nwQDz7j2wZ6QHdSwy6eE9XRZDTm8AQGtbG/bu3et6\nvPeH9lcfA4BiaP/YqX6u9fa/Wo9aNlCZQPt1f81zP94EG6O3Mp6xBNpfa1ub3/1FGuNej2sgnDbx\ntm2gNq+s/NZnGc9Y3Pfj+Vow/QMAKo+dgA3ez4G3dlDL+mpHX8cXTNlQ2jHU/frjr/97buO5H38x\nqtum9Wqf5q3N47E7xageT+f38jZffdlPGX9l3WNQt/UXW6gxureb5348/wcAm83uKpPWK83nfgLF\n2NbWpnk7hrO/FnsL7tt6Dx4qXorjVbWu7dyPM9QYgz0H7mWOfH8EAGBTbEHvz9t5a/PxvqHG4V4m\nmOML97x56y/hnmuVr3MeKMY2Zyvu23oPloxeKuX4gi3j2QbeykbSJqG+J/i7vv3tL9z+H8z7CUXO\naDRi8ODBUalbWsI1KysLjzzyCF577TV88cUXAS92b2688UbceOONrscTJ07EbbfdhosvvthvuWHD\nhsF24CDsANLS0jB82FC07T/Q4bEMbfsPAIDf+tRRNkpuDlJPO03KftV9yz4ePUmk4/PWTwIdn6++\nZbVaUVlZifz8fGRkZEQv6CC4xxiL82U7fhwA/F5HnnEEc40GIqOOeKUeuyqWbeCrryfSewNw6njU\nLyTd/09L9f4HmLC1ddo2mLLe3oNCKeMtdgBI+yFxOnz4cJ/betuv+/6G5ua0H1uTye/xBWoTz9/5\nall//cW1bWsL7JdehswNfw/qWGTQ03t6MIJ5H66sbR/V0iUtDfnDh7seZ/fNBwCYW06N1lKT7ur3\n8d7+T0tL61A2UBnP/eb/cC7dH6s/e+7H6zEHGaO3Mp6xRLq/SGPM9+jX4bSJt20Dtflp+fk4ctLS\noUxmehc40vohOz0FPXMzXNu678czzkDH1aEOH+egi0c7nGhqH33rr2/5Oj73+EI9b77aPJT9+uOv\n/3tuk5neBRm5+R2uTV8xqjFVN1UDaD+2IcOHuB67szttP5Tt/F6empbqNW5/ZfyVdY/B/X3fV2yh\nxjhk+BDXz5778fwfAFJTU1xlqpuqfe5HZozBlvFX1ls7RrI/9fhU7scZaozBngNvMaYhLej9dRuY\nBwBotltcZdTjqLOcRLPd4hq5q8bhfq6DOb5wz5u3/hLuuVb5OueBYlTJOr5gy3i2gbeykbRJqO8J\n/q5vf/sLt//7219Gl3R0G5jXYVQ5hUcIAYeE+e+9kZZwXblyJZ5++mk8+uijOO2003DgwAHMnj07\nojqDHSHrrKsDfmggg0FBVlYW7Aalw2NP6vxuOQMHBh2PWqe3+lSNZjOap89A9vsbkCUxSx7oeOJd\nIh2ft34S6PgC9a2MjAzN28U9xlicr0Zz+7w0/q4jzzjUx84TJwCEdn171hnMcYXzPqJn6rGrtOhz\nnn09kd4bgM5t7M7g47Vgfv17K+utHUMp4ymc/uFepsP+fri+FYPi9/gCtklqCuwHD7o+A7iX8xWf\n53Fo0bf08J4ejGDehxVD8w//G5CVleV63NzmdD3v4lBHhCk+/1cMho5lA5Tx3K/aroqhGQZFoOpE\nMxyicx0d4nIXZIzeynjGEun+Io3Rs4+5t1GwMXrb1l+bA/jhywRLhzItNiduXL0T5fOLMbBDnehQ\nhzhRP4QAACAASURBVHs9gY6rQx0+zoFnO1SdOPW8r3b0dXwd4gvxvPlq81D264+vc+GtXVtsTji9\nxOnvXBvMHX8Xq4878DN3sK/3cn9l/JX1FoNRMaLG/C2cwoEUo48/cYOM0b3dvB6rB0U51c8MZsXn\nfvy2X4gxBlvGX9lAsYS6P8/fpx3qDjHGxtb2qfxO795XaoyeZa1O66l6nKeez8rKQo35WyzcfAce\nH/tEh7bqcK6D2F+4MXrtL2Gea5Wvcy67bwUqG2wZb23QqWwMYlT7o3s/CWl/IZYJ5v2k1dEKoYi4\n+Dypd06nEyZTaNNiBEvaollDhw7FU089hcsuu8z1eNGiRRHVuXHjxoCjWwFANDX5nQPOGy4ARJS4\nYnV9832ESNsFJYXFAvO06SF/BiD5DIrAnqpa2KM0QiAcXESKKDIpqc1xsxCQupCM5xyQFJ/MNjMX\nBSLdiHV/jGTxMdKXiEe4Tpw40e9I1I0bN0a6i7hgqqpqT75IXG2ZEp9WSQoiIln4pQMB7cnNG1fv\nxPPXjASMWkdDslTX1usqiU6x1eq04r7/3uV1ISAiT4ow4GhdDU7v3lfrUIjiGr9sSBwRJ1zvvPNO\nAMCnn36Kbdu2Yf78+VAUBStWrEBxcXHEAUbKaTSicedOGLp2jeptv87GRpinTUfGO+uitg9KPExU\nEMmnfgEW7ff9ZOH+haIh1fvHhlj9riVtJdo0KhSYyWrjCGEdqq6th8lqQ05GKvr37qZ1OEQA2kcZ\nCxvfMIiIVBFPKTB9+nRMnz4dn3/+Of7xj39g9uzZuPrqq/Hee+9h06ZNMmKMiHq7IRNbFO9MVVVo\n3LlTV6Ni1SSLnmIiUr8A4/t+6LxND6C2p7/b9vm7NjlwGhUifTBZbZhfvh0mqy3wxhQy3s5LiUgR\nhriZIoQoUUibw7Wurq7D1AIGgwF1dXWyqpfG849JLeeeIwqFHpNIwSZZon2dOY1GXsdEEjChJgc/\nWxDpgzq3cHVtvdahRIVBEQl7bFpS52s8WlfD5JTGeA7k4TzHRLEX8ZQCqilTpqCsrAxz5swBAKxZ\nswZTp06VVb00nn9I8g9LouiL9nUmLBY4OcecrvDWY0pm/GxBeqXHxc1k8jw+dW7h8vnhT3OmJjT1\neOt+S5sTTsFRrtFitpmlJqfcRximGKX9Ga47MkcHyz4HMnD0MxEFS9oI1z/96U+49NJL8c477+Cd\nd97BzJkz8b//+7+yqo9bHOVC3kTSLziaM3aiOY1DPL03hBNrrEdKxlN7xpLah8NZ0DGcsnqZZiSc\n90nZfUgvbUHJq7q2vsM/oD1BN798e8LOyxqN4zNZbbx1n6RIlhGGsV7RPdYS/fiISB4pX605HA7c\nd999eOSRR3DzzTfLqDJhcJQLeRNJv5A5mlMPoxBjtcBROPtRp3HIfn+D9Hji6b0hHmKNhxhjzVRV\nBfuJk7BcfElYCzqGsxiksFhgnnlZVK6ZUITzPim7D+mlLSh5xVOSUM+jSLXExbE64zyUREQUL6SM\ncDUajfj0009lVEVEMSR7FGI4I0LVpI7dbI7uPK86nAPXFz0ukEbxx9nY6HehK6JE5D6ak7RxoskK\ng9EYUhmOIvVOxuJY1bX1CTWNRLKMEiUiovgnbUqBiy66CEuWLMHRo0fR1NTk+hcP1Nv+GioqmOSg\nuBGrBeBCqTeU5Knn7crCYoGzsZG3hiO+ksOUeNTfieFMQyCzjnjC9y39YOJOe+YWO4RQAm9IIQsn\neaombRN1GgmiaOOoaiIKl7SE64MPPoj7778f/fr1Q15eHvLy8tCtW+xvfQnnjzzXSutNTUxyUFTJ\nTEJ4jk6N1pyZ4dSrJk89uScl1KSi5wg8b/vjiE/yhYku+dTfiZGMjpVRRzyJ9ZzFscbrjPyJh1HF\nBkVoGmN1bb2UEaZMnhLFHkdVE1G4pCVcnU5np38ODW5dSbY/8ki/vP2Bmuz9M9ykhOeIz0gWAopH\n4SQ7kiVBkuiJLiI94HVG/sTDqOKWNqemMZqsNt0nSWUlhZPV0boarl5PREQdSFk0S1VdXY1NmzYB\nACZMmIC+ffvKrD4iXNmdYi2cP071sIhVPAhlMR91sSw1OauOMo72Il0yhZukJnl4bVK0sY/FP4Mi\nEmquTEou8ZAU1jOuWk9ERJ6kjXBdv349iouLsXbtWrzxxhsoLi7Gu+++K6v6iPm6xTneJcsotngV\n6hQC0R5F5K+/RHLbvp7na/ScusA1hUgE7Ryr+XOjhVM0hI4j/DqLt34fLK2Oi30sPFrfKu6upc3J\n270DiIekdDzESERERPonLeH6+9//Hl9++SXeeecdvP322/j3v/+N3/3ud7Kq1x29JCz4B5q+hTOF\ngJq8jEbf8tdfIlmoKZpTJZiqqmKSyPWXZHFfWM81YjYG8+dGSzQX5dJTEi6a1xLFX78Plp6PS0/X\nl15ofas4hSYektLxECMRERHpn7SEq8PhwNChQ12Phw4dCmcCf1LhKuIULTJGYOpZOKN+1URuNEbS\nqgkMf0kW94X14vW8BDO6OZh29fVlUzDtGGuJfi1R8PSUqOzTpQva9h/wG4+v60xP1xcRySV7tDZH\n6hIREWlLWsK1d+/eeOmll1wLZi1fvhy9evWSVb2m9PSHGpHWIh1xGslo2GiMpE2WBEYwo5v9taua\n7LafOOk1iZks7UjxSXb/jOQulxRrCyzTZ/iNh1/qEiUf2aO1ozFSVxEGLgxFREQUJGkJ1+effx4v\nvfQS0tPTkZGRgZdeegkvvPCCrOo1xUQC0SnuI04DidcvKyIZSauX6UZki+a0EUTxhglRIkpGrY4W\nLg5FFCP8goMo/qXIqmjIkCH48ssvYTa3/xLOzs6WVTURxal4TUYIiwXmmZch4511IZdVEzHZ728A\nANdt9oauXSNefZyrmBOFJtG++NALvhcRERFFV6ujBcKWuFM0EiUDaSNcFyxYgNdffx1WqzXuk61c\naIWSSTTmRdWDQMflNBpjco1HMhLOM8ZIR9uHeq71NEKZ78sUjljfoRLONaOn6yxYvPMnuXFuUCIi\nigVFGLDveAXsjsT6O5WSh7SE64QJE7BhwwYUFxdj5MiRuP322/Hee+/Jqj6muNAK6Ym6wEq0EqKJ\neqt4oOMSFosm13goyRXZMYZ6rrVMqngu5MX3ZYpULL5cCueacS+TqF+AUWKJxtyg8aC6tl7qolZE\nRORfq6MFd/7ndjhFkv3CoYQhLeF6zTXX4OWXX0Z1dTXuuusuvP322/jZz34mq3qipKUusOIrSeae\nwOMoQP3wlTjR08gwPSd3glnIiygUvr5w0NN1oPUXYKHMQa22m7DJW+SHSM9MVpvURa2ISJ84qpKI\nZJGWcH3ppZdw5ZVXoqCgAO+88w7uuusufPPNN7KqTwiB/pCJx9sKSXvuCTxfowA9+xb7WvRpnTgJ\nRjzE6Eu0+3CiLn5GnQW6DmT1NVNVFdr2H0CKEnFVURPKFCin2o2jToiijdM4EMUOR1USkSzSFs26\n+eabce655+KJJ57A5MmTkZGRIavqhOG5mI631/VK5sI/FHuefUvPfS0ZqdeX6NIFSmur1JF20UoY\nqqPbtHpPiHYfVt+vM//xAZOuSU5WX3M2NsIyfQbS335LSn1EySoZb+tvaXPixtU78fw1I7UOhYiI\niIIkbYTryZMnsXDhQvzjH//AuHHjMHHiRCxZsiTkei688EKMGjUKxcXFmDBhAnbs2CErxJD5WlTH\nVFWli1sPYymShX8o9mRMLcBRsLHjur6amoIacep+bjxHYnqet2hNYRDOnKp6HjXqKzat5voliiXP\nOZOJ9Iy39hMREVE8kJZwzcnJwbRp03DppZfioosuQmVlJZ544omQ63njjTewY8cObN++Hbfddhvm\nzZsnK8SQ+fpD29nYGDAhEqsV0KONf4TFJxkLDOlprlHqyNnYCLvZjMadO2E/cRLmadM7PI7leQvl\nvU7PX9zoOTbSRjJ96cQ5k4mIiIiI5JKWcL3wwgvRp08fLFmyBDk5OVi7di1OnDgRcj25ubmunxsa\nGmAwSAsxpjyTtbJHxXomQqP1hyH/CCPSJ895J7Waj5UjQClRRftLp0T5YpaIiOLT0boaLgxFRBRF\n0uZwvfPOO3HBBRcgPT094rrmzp2LTz/9FIqi4L333pMQnfaCGRXrSf1DzH1+RPfVlC0XX4KMd9YB\nSGHCg0hjelrpnIj0T1gscAZYAEeruZLd388MqdI+KtL/Z+/Ow6Mqz/+Pf2bJAiGglMUtAkGxuCCl\noBBQBMPXhYpUXAARVBBEweoPFK1L68bXKmrVL4prURaXSylIAatQRGy0ioigRZC1URBFICSZbDPn\n/P6IM80yk1lyJnMm835dl9eYybmf5z7nPHNC7jznOQBgIyVVJTwYCgDiyLJ/RQ8ZMsSqpvTyyy9L\nkubNm6fbbrtNy5YFf8iUn2GYEbUb6XbRxBiGqdLS0qDbhYr1x4Ta3v8978FD1V+3axf4nunxqGT4\nJT8XWuv3E6zdWFTt2yfzcLHMOn/1DJV7Y/n3IV7tNyWrxqNhmCorK2t0H6HGZ8gYp1MHN3wh0+eV\nwxX7JSIenzc79Bcqxqyo/9msFed06tCOHTLrxIc7P8l+HGt+nhv6nPvHuv813PUz1PeDfS+S60rd\n3Gq2YeU11upz3ZjYZB9bTd1fQ2O5wfNa45oabY7+n/ktl/2t1r8FYhmHVfv2SZLSOnYMm0fNf2sY\nhivCHszAq2mE+gXeDPtaPzaWmPCxqZdjfPoLFmOYNcdTdLGlpaU13k/t8xbuWISKkfTze1bkWF+y\nX8utjPEzTUOGEd1dmRzH1OmPHJOzv2TJMdlrJ3ZgmrGf63BsPW3hqquu0qRJk3Tw4EEdeeSRIber\nrKqS++eDZDbwWlVZGTTerdhjKisrtX3zZuUY4WP9MYbTqZKv/i1vi0ztragIfN/fxvbNm+t9Haz9\nYP34YyXp6IwMucvK6/UTiRzDlPe3lwSepuzvz7+/VvPvX7zab0o5NS6WjR1bhbt2Kefn92MZy3XH\nZyQxhsej8t+OUOZf31KVL/g/yBvar2hzbGxMqFi75Wh4PPJ66hfQo/l8xztHq/vz759fJJ/zXbt2\n1dq2bn/hxnSw4xnJdaVubjXbCHWNjYXV57oxsck8tpr6miA1PJaDjcfAz/wa19Saosmxbj+xjEN/\n7LYDB0J+r3HnQIHXihAxDqe73rbhYmOJiSQ21XKMV39W57h582Y5szs0SX92Oo7BYsMdi1AxkuTM\n7mBRjvWvCZWhYl3WxoSKjSUmnjlKUlWdu5vslmNT9pcMOYaKJcfQMX4cE/vluDnJayd24HK5lJub\nG5e2bVVwLSoqksfj0dFHHy1JWrx4sdq1a9dgsVWS0tPSArfrOxyOkK/paelB482qyphj0tPT1f3E\nE1T5zTZ5w8QG+qkol/e31TNWunfvHvh+5TfbJEndTzyh3tfB2g/Wjz/WH+8J0k9ddWe9VO3bJ+Pg\nwaD9+ffXav79i1f7kWpoBlCk/OdNavzY6nzcsfLt2Bl1bOB8tWyhrl5fg7NVG5NjU3/eoukvGXKU\n2xU4P5F8vhOSYyP68++fo3W20jp2bPBzXlZWpl27dqlz585q0aJFyGtezWtuMMGul5FcV+rmVrON\nUNfYWER6La/JTmM5GXIMFduYHKXqc1/z7o+64yXSHP2iybFuP7GMw4ZirRmXCrympweP8f8Rr+a2\n4WJjiYkkNtVyjFd/wWIM05TXZ8aUY+fu3bXrh2JLcwwVa6fjGCw23LEIFSNJu34otijH+teEtPS0\noLFeo8rSmFCxscTEM0dJSktzy+FwRhxjh+MYr/6SIcdQseQYOsaPY2K/HLt27xo0DpEzTVO+MMt8\nxcrygmtFRYUyMjJiii0qKtJll12m8vJyORwOdejQQX/729/CxjmdDkVyeJxOR9D3G4oNF+N0OpSV\nlSVvkO3qxtbtxx/r52/D/17Nr4O1H6yfYO3V7aeuopKS6tifq/pFJSVSiFuNwrUVq0hzjbe6xyIW\nNc9VY8aW0txyffudHA6p7o2okY5ls6xMZT/fFupMs378NyQen7do+kuKHGucHyv7s815+3n/Wq1Y\npqzc3P9+NtLc8m7fHnRdyhYtWjR4zWvomisFv15Gcl2pew2q2Uaoa2wsIr2W12SnsZwMOYaKbUyO\nhssl7/btMmutny4pzS1j//6gcVbmWHdcxjIOG4q1Zlw6Aq+OUA889Zn1tg0bG0tMBLEpl2Oc+gsW\n46x1O3t0OWZlZcnhLI0qJlyOIWNtdByDxYY7FqFiJFXHWZJjfaGuCWpgKdBYYkLGxhITQWxjcnQ4\nnLXjbZhjU/WXDDmGjCXHqGJs01+K55jI2klzYRiGiouL49J2dIvNNGDjxo069dRT1bVrdYX9s88+\n02233RZVG8cff7z+9a9/6YsvvtCGDRv07rvvqkePHlalCCQV0+ORZ+hv/ntfF9BMmB6PSi4YGnjY\nX/Hu3YHZ5fHQVE+DL969W0UbN/Lk+WbIP2brPvzS9HgS8tDK4t27GWdAM1f4w0F54zTjBgAAxJ9l\nBdebbrpJc+bMUfv27SVJvXr1CvuwKzQN/9OG+eUMgJ34C6FGUZHMw/H5q6LUdEUxo6ioViEZiBej\nqIhxBjRzxWVVoW44AwAAScCyJQVKSko0YMCAwNcOhyPk+kBoWoGnHL/7joo2bgx6G2+s/EVcq9oD\nkDpMj0cGs3eAsPx/ODWqvHKmBf+nW+CPFxkZclRUWPqzHgAAAEB0LJvh6na7VVVVFVjEt7CwUC6X\nK0wU4qV4924ZdZ6YWfc2Xis0ZpZNsFsi4zEb199PsP78twAf2rIl8MtsqNwAIBpcR2CVUEsa1BSY\nYX34MDOtAQAAgASzbIbrlClTNHz4cP3444+66667NH/+fD388MNWNZ9SrPgF3SgqavAXs0SoOxs2\n2C+D/tm4rVaEX47CP5sn3Cyehn7p9P+C2mLxohoPL3LziyrQDIW6tjZ2FqD/WlT3j1w116gNvFdV\n9xF4QOy4ywTNDeuWAgCA5sKyguuYMWOUm5urJUuWqLKyUvPnz6+1xAAil6hiX2MKvZH80mf1fvmL\npZEUZ60QaYEXgD3F69pa8w834fq12x/CkNxiGdM1f16H+mMBkCisWwoAAJoLywqukpSXl6e8vDwr\nm4SCLw/QGP7b9usWDhtTjIgm1ooZvMGOSbwLok1d4AWQnPwPAwPsqObP63B/LAAAAAAQG8sKroMG\nDQqs3+p3xBFHqF+/frrpppuUkZFhVVfNRqjCZ73tLF4eIJrb9uPBillmwY4JBVHAnmo+8MeKtuxS\nzAw1O5CHgQEAEqHwh4OJTgEAAPzMsodm/frXv5bb7db48eM1YcIEpaen65hjjtG6des0depUq7pp\nVuLxECs78D+IKlFFkUgKMv4cG1MASvR+Askikgf+RNNWqGtmLIXdxhSD/X/kYZkAAIAdFJdVqbis\nKtFpAAAAWVhwLSgo0IoVK3TllVdq9OjRWrp0qdatW6cFCxZo7dq1VnXTLFk5+yvafuNRLAw8KTmC\nQnI89r2hgkygXwsKJdHsJ4D4i6Wwa2UxGAAAAAAAycKC608//VRrSQGHw6GDBw/K7XYrMzPTqm6a\npUT9wh9JYdIKDc0mtWLfE1WwBmC9qn37+DwDFirevZs7MQAAAIAmZlnB9dxzz9UFF1ygefPmad68\nebrooos0ePBglZSUsH5rE7LjL1ZWzCZtaL+YoQY0D0dnZMg4eJDPM2Aho6iIOzEAAACAJmbZQ7Oe\nfPJJPfvss1q8eLEk6Te/+Y0mTZokt9utjz/+2KpuEEYif6my+sE4NR8oZtV+MRsWsC93WbnkCL8d\nAAAAAAB2ZlnB1e1268Ybb9SNN95oVZOwIf+6r9mdOtX7nunxqGT4JWqxeFGj+/G31WrFslrvN3b2\nrpU5AgCQrIp37+aPjwAAAECcWFZwlaQ33nhDGzZsUHl5eeC9xx57zMoukGCmxyPDl7hbfaOZ6Wq3\npRUA2F8ks+CLd++uvk2bYhWSmFFUxNIdAAAAQJxYtobrTTfdpHnz5mnu3LlyOBx68803VcSaYSkt\n0bfvN/W6dXZcPxdAdCJZE9qKdamBeEv0z2AAAAAglVlWcF29erWWLFmi9u3b69FHH9Unn3yib7/9\n1qrmkYSay8OsinfvjuiXVh5MAgBIhGDLAzSXn8EAAABAMrKs4JqZmSmn0ymHw6GqqiodddRR2rNn\nj1XNAwlRvHu3vPt/4pdWAJJY9xL2xPIAAAAAgL1YtoZrdna2PB6PBgwYoDFjxuioo45Sy5YtrWoe\nNtNUt877H9KVKJH8EpvoHAE0HQpbAAAAAIBwLJvh+uqrr8rtduuRRx5Rjx49lJaWpjfffNOq5mEz\nTXX7vOnx2P42/WTIEQAAAAAAAE3DkhmuPp9P06dP17x58yRJd955pxXNAgAAAAAAAEBSsWSGq8vl\n0tatW61oCgAAAAAAAACSlmVruA4aNEgTJ07U1VdfrVatWgXe79Gjh1VdALZguFwq2riRB+cAAAAA\nAACgHssKrq+//rok6b333gu853A4tGPHjojbqKio0MiRI7V582a1aNFCHTp00NNPP62uXbtalSbQ\naKbHo5Lhl6jF4kWJTgUAAAAAAAA2Y1nBdefOnZa0M2nSJJ1//vmSpNmzZ2vChAlavXq1JW0DAAAA\nAAAAQDxZsoar31tvvaWZM2dKkvbs2aNNmzZFFZ+RkREotkpS3759tXv3bitTBAAAAAAAAIC4sazg\nes899+iFF17Q3LlzJVUvJzBp0qRGtfnEE09o+PDhFmQHAAAAAAAAAPFn2ZICS5Ys0fr169W7d29J\n0tFHH62SkpKY25s5c6a2b9+u5557Luy2hmFG1Gak20UTYximSktLg24Xj/6simnu/ZFj4mKae3/k\nGJ/+TNOIa3/JcEzIMTn7I0c/M/BqGqE+z2bY1/qxscSEj029HOPTX7AYw6w5ZhKfY+hY+xxH++ZY\nn32vQU0f42eahgwjunlMHMfU6Y8ck7O/ZMmxtLQ06jjUZpqxn+twLCu4tmjRQi6Xq9Z7sSY+a9Ys\nLV68WKtWrVJmZmbY7SurquQ2/b+0h36tqqwMGu9W7DGVlZXavnmzcozwsQ31E88c7dwfOYaP8UvE\nMWFskWNT99fQtnbJMRmOY7z6S4YcQ8XaJUc/O+cYW6wCrxUhYhxOd71tw8XGEhNJbKrlGK/+kiHH\nULHkGElM/WtCZahYl7UxoWJjiYlnjpJUVeW1dY5N2V8y5BgqlhxDx/hxTOyX4+bNm4PGIXIul0u5\nublxaduygmunTp20du1aORwOVVVVaebMmerZs2fU7Tz22GN67bXXtGrVKmVnZ0cUk56WJtPwSape\nyiDUa3paetB4s6oy5pj09HR1P/EEVX6zTd4wsQ31E88c7dwfOYaP8UvEMWFskWNT9WeahqqqvA1u\nm+gcGxPT1DnGq79kyDFUrF1y9LNzjrHFKvCanh48pspn1Ns2XGwsMZHEplqO8eovWIxhmvL6TNvk\nGCrWTsfRvjnWvyakpacFjfUaVZbGhIqNJSaeOUpSWppbDocz4hg7HMd49ZcMOYaKJcfQMX4cE/vl\n2LV716BxiJxpmvL5fHFp27KC65NPPqlx48Zp06ZNysrK0qBBg7RgwYKo2vjuu+80ffp0de3aVYMG\nDZJpmsrMzNRHH33UYJzT6VAkh8fpdAR9v6HYcDFOp0NZWVnyBtmubmyicrRzf+QYXUxT95cMOYaK\nJcfoYhLdXzS34iX6mNj5OMa7v2TIMVQsOUYXE32sI/DqcIb4PPvMetuGjY0lJoLYlMsxTv0Fi3Ea\nhiT75Bgy1kbH0b451hfqmqAGVgaKJSZkbCwxEcQ2JkeHw1k73oY5NlV/yZBjyFhyjCrGNv2leI5Z\nWVnhG0eDDMNQcXFxXNq2rODasWNHvfPOO/J4PDJNM6YTf+yxx8oIuaYQAAAAAAAAANhbdKt7N2DE\niBFavny5MjMzqbIDAAAAAAAASEmWFVyHDRumhx9+WDk5OZoxY4a2bNliVdMAAAAAAAAAkBQsK7iO\nGzdO77//vtauXasWLVrowgsvVP/+/a1qHgAAAAAAAABsz7KCq19OTo5OOeUUdevWjVmuAAAAAAAA\nAFKKZQXX9evXa+rUqTr22GM1d+5cXXvttdqzZ49VzQMAAAAAAACA7bmtamjUqFG65ppr9Pnnn+vY\nY4+1qlkAAAAAAAAASBqWFVzrLh/g8/m0dOlSDR8+3KouAAAAAAAAAMDWLF/DdcuWLbrtttt07LHH\n6oEHHrC6eQAAAAAAAACwLUtmuHo8Hr3++ut64YUXtHPnTpWVlemjjz7SL3/5SyuaBwAAAAAAAICk\n0OgZrtddd51ycnL09ttv6/bbb9d//vMfHXHEERRbAQAAAAAAAKScRs9wfe2119S7d29NmjRJ5513\nnhwOhxwOhxW5AQAAAAAAAEBSafQM171792rMmDG677771KlTJ911112qqqqyIjcAAAAAAAAASCqN\nLri2atVK48ePV0FBgd555x2Vl5ersrJSeXl5evrpp63IEQAAAAAAAACSQqMLrjWdfPLJmjVrlr77\n7jtNmzZNy5Yts7J5AAAAAAAAALA1Swuufm63WyNGjKDgCgAAAAAAACClxKXgCgAAAAAAAACpiIIr\nAAAAAAAAAFiEgisAAAAAAAAAWISCKwAAAAAAAABYhIIrAAAAAAAAAFiEgisAAAAAAAAAWISCKwAA\nAAAAAABYhIIrAAAAAAAAAFjEVgXX3/3ud+rSpYucTqc2btyY6HQAAAAAAAAAICq2Krhedtll+uc/\n/6nOnTsnOhUAAAAAAAAAiJo70QnUNGDAAEmSaZoJzgQAAAAAAAAAomerGa4AAAAAAAAAkMxsNcM1\nVoYR2YzYSLeLJsYwTJWWlgbdLh79WRXT3Psjx8TFNPf+yDE+/ZmmEdf+kuGYkGNy9keOfmbg8k7f\nwAAAIABJREFU1TRCfZ7NsK/1Y2OJCR+bejnGp79gMUatO9USn2PoWPscR/vmWJ99r0FNH+NnmoYM\nI7p5TBzH1OmPHJOzv2TJsbS0NOo41BbPO+ybRcG1sqpKbtP/S3vo16rKyqDxbsUeU1lZqe2bNyvH\nCB/bUD/xzNHO/ZFj+Bi/RBwTxhY5NnV/DW1rlxyT4TjGq79kyDFUrF1y9LNzjrHFKvBaESLG4XTX\n2zZcbCwxkcSmWo7x6i8ZcgwVS46RxNS/JlSGinVZGxMqNpaYeOYoSVVVXlvn2JT9JUOOoWLJMXSM\nH8fEfjlu3rw5aBwi53K5lJubG5e2m0XBNT0tTabhkyQ5HI6Qr+lp6UHjzarKmGPS09PV/cQTVPnN\nNnnDxDbUTzxztHN/5Bg+xi8Rx4SxRY5N1Z9pGqqq8ja4baJzbExMU+cYr/6SIcdQsXbJ0c/OOcYW\nq8BrenrwmCqfUW/bcLGxxEQSm2o5xqu/YDGGacrrM22TY6hYOx1H++ZY/5qQlp4WNNZrVFkaEyo2\nlph45ihJaWluORzOiGPscBzj1V8y5BgqlhxDx/hxTOyXY9fuXYPGIXKmacrn88WlbVsVXK+//not\nW7ZM+/bt03nnnafs7Gxt3bo1bJzT6VAkh8fpdAR9v6HYcDFOp0NZWVnyBtmubmyicrRzf+QYXUxT\n95cMOYaKJcfoYhLdXzS34iX6mNj5OMa7v2TIMVQsOUYXE32sI/DqcIb4PPvMetuGjY0lJoLYlMsx\nTv0Fi3EahiT75Bgy1kbH0b451hfqmqAGVgaKJSZkbCwxEcQ2JkeHw1k73oY5NlV/yZBjyFhyjCrG\nNv2leI5ZWVnhG0eDDMNQcXFxXNq2VcF1zpw5iU4BAAAAAAAAAGIW3ereAAAAAAAAAICQKLgCAAAA\nAAAAgEUouAIAAAAAAACARSi4AgAAAAAAAIBFKLg2kuFyqWjjRhlV3kSnAgAAAAAAACDBKLg2kunx\nqOSCoTINX6JTAQAAAAAAAJBgFFwBAAAAAAAAwCIUXAEAAAAAAADAIhRcAQAAAAAAAMAiFFwBAAAA\nAAAAwCIUXAEAAAAAAADAIhRcAQAAAAAAAMAiFFwBAAAAAAAAwCIUXAEAAAAAAADAIhRcAQAAAAAA\nAMAiFFwBAAAAAAAAwCIUXAEAAAAAAADAIhRcAQAAAAAAAMAiFFwBAAAAAAAAwCIUXAEAAAAAAADA\nIhRcAQAAAAAAAMAiFFwBAAAAAAAAwCIUXAEAAAAAAADAIrYruG7btk39+/fXSSedpDPPPFObN29O\ndEoAAAAAAAAAEBHbFVwnTZqk66+/Xlu2bNFtt92mcePGJTolAAAAAAAAAIiIO9EJ1PTjjz/qs88+\n03vvvSdJGjFihKZMmaIdO3YoNzdXkmSaZv1Ap1NyuaQjj2z41Rmivmx1TKjYZMiRY5KcOcarv2TI\nMZnPWzLk2GT9mdVfO2TjHJPhOMa5v2TIMZnPWzLkWCfW6XCoTQu3nA4FXp2O4CE1twn1Wjc2lphI\nYlMtx3j1FyzGdNgrx2Q+b4nP0anstGw59d9Xh4IH19zGiphQsbHExDVHh/PneBvn2IT9JUOOSTO2\n7JRjkGtByh8Tm+RoGEbQOEQu2DEMWneMgcO0qiULrF+/XldeeWWtZQTOPPNM/elPf9I555wjSfJ6\nvSotLU1QhgAAAAAAAACao6ysLLndjZ+farslBQAAAAAAAAAgWdmq4JqTk6O9e/fWmtL7n//8R8cf\nf3wCswIAAAAAAACAyNiq4Nq+fXv16tVL8+bNkyS9+eabysnJCazfCgAAAAAAAAB2Zqs1XCVp69at\nuvrqq/XTTz+pTZs2+stf/qJTTjkl8H3DMOotautwOORwhFj9HQAAAAAAAABqME2z3kOynE6nnKEe\nHBsF2xVcAQAAAAAAACBZ2WpJAQAAAAAAAABIZhRcAQAAAAAAAMAiFFwBAAAAAAAAwCIUXAEAAAAA\nAADAIhRcAQAAAAAAAMAiFFwBAAAAAAAAwCIUXAEAAAAAAADAIhRcAQAAAAAAAMAiFFwBAAAAAAAA\nwCIUXAEAAAAAAADAIhRcAQAAAAAAAMAiFFwBAAAAAAAAwCIUXAEAAAAAAADAIhRcAQAAAAAAAMAi\nFFwBAAAAAAAAwCIUXAEAAAAAAADAIhRcAQAAAAAAAMAiFFwBAAAAAAAAwCIUXAEAAAAAAADAIhRc\nAQAAAAAAAMAiFFwBAAAAAAAAwCIUXAEAAAAAAADAIhRcAQAAAAAAAMAiFFwBAAAAAAAAwCIUXAEA\nAAAAAADAIhRcAQAAAAAAAMAiFFwBAAAAAAAAwCIUXAEAAAAAAADAIhRcAQAAAAAAAMAiFFwBAAAA\nAAAAwCIUXAEAAAAAAADAIhRcAQAAksCiRYvUu3dv9erVS927d1d+fn7ge0888YR++OGHkLGzZ8/W\nNddcE/R755xzjnJzc9WrVy9169ZN5513npYvX255/vHWp08fffDBB4lOw3Ivv/yytm7dmug0AAAA\nEAV3ohMAAABAw77//ntNmjRJn3/+uY477jhJ0oYNGwLf//Of/6xBgwapQ4cOIdtwOBwh33/iiSd0\n0UUXSZLWrFmjkSNH6plnntHw4cMt3AtrmKYpKfT+NCWfzyeXyxXXPubOnasjjzxS3bp1i2s/AAAA\nsA4zXAEAAGxu3759crvdOuKIIwLv9ezZU5J0//33a8+ePbriiivUq1cvbdy4USUlJRo5cqS6d++u\ns88+W5s2bWqwfX8RU5IGDhyoP/7xj5o5c2bgvUcffVR9+/ZV7969deGFF6qwsFBlZWVq165drZm1\n9957r6ZNm1av/f79++vjjz+WJN12222BorEkde3aVd9++60k6ZFHHtGpp56q008/XVdddZWKi4sD\n7V566aU6//zzddppp+n7779XQUGBfvWrX6lHjx669tpr5fP5Am0+8MADOuWUU9SrVy/16tVLhYWF\n9XLyt3nuueeqe/fuuvjii3Xw4EFJktfr1R133KG+ffuqV69eGjlypIqKiiRJ11xzjcaPH6+BAwfq\ntNNOq9fu0qVLdfrpp6tXr17q0aOHli5dKqn6HF5xxRXq27evTj/9dN1zzz2BmC5duugPf/iD8vLy\n1LVrVz344IOSpBdffFHr1q3TLbfcol69eumdd94JeT78+zRy5EgNGzZMp5xyivLz83Xo0KFAP3/6\n05/Uo0cP9ezZU3l5eSovL5ckzZ8/P9DeOeeco40bN9bbLwAAAESOgisAAIDN9ejRQ/3791enTp10\nySWXaNasWdqzZ48k6e6779YxxxyjN954Q+vXr1ePHj103333KTMzU5s3b9bf/va3qG+1P/PMM/Xv\nf/9bkrRw4UJt2bJFH330kdatW6fRo0dr8uTJatGihS699FLNmzcvEPfyyy9r/Pjx9drLz8/XypUr\nJUmrV69WTk6Ovv76a+3YsUNpaWk67rjjtGLFCs2dO1cfffSRvvjiC7Vs2VK33357oI2PP/5Y8+fP\n15dffql27dpp5MiReuyxx7Rx40aNGjUqMOP30KFDevTRR7V+/XqtX79eBQUF6tixY9D9/PDDD/Xa\na69p8+bNOu6443THHXdIqi78tmrVSh9//LHWr1+vU089VXfeeWcgbv369VqxYkXgGNV0991367nn\nntP69eu1ceNGDRw4UJI0btw4TZkyJdDmp59+qrfeeisQV1RUpIKCAn3yySd65JFHtHfvXo0fP169\ne/fW448/rvXr1+v888/Xq6++GvR8+H3yySd65ZVX9NVXX6l9+/Z69tlnA+fmr3/9qwoKCrRhwwat\nWLFCGRkZKigo0Kuvvqq1a9dq3bp1euCBBzR69OiGhgcAAADCYEkBAAAAm3M4HHrzzTe1detWrVmz\nRsuXL9fMmTO1bt065ebmSqo9S3XVqlX685//LElq3bq1Ro8erR07dkTcX822lixZonXr1qlXr16S\nJMMwArfzX3311ZowYYKmTZum1atXq127djr55JPrtZefn6+7775bkydPltvt1uWXX6733ntPGRkZ\nOvfccwM5X3HFFcrOzpYkTZ48WZdffnmgjQsvvFDt2rWTJH399ddKS0vToEGDJElDhgwJHIfWrVur\nW7duGjNmjIYMGaKhQ4fq2GOPDbqfQ4cOVfv27SVJEydO1IgRIyRJixcv1uHDh/Xmm29KkqqqqtSl\nS5dA3GWXXaaWLVsGbTM/P1+/+93vNGLECP3P//yPTj/9dHk8Hq1atUo//PBD4NiWlpZqy5YtgTh/\nkfMXv/iFcnNztXPnTh199NH12l+8eHHI8yFJ559/fmAmdL9+/fTll19KkpYtW6brr79erVq1kiS1\nadNGUvX53bhxo84888xAbocOHVJFRYUyMjKC7iMAAAAaRsEVAAAgSXTr1k3dunXTddddpwsuuEBv\nv/22br755rBx0a53+sknn+jUU0+VVF18veOOOzRhwoR62/Xt21emaerTTz/Vyy+/HPLBXP369dOm\nTZu0ZMkSnXvuucrPz9ddd92ljIwMjRw5MqKc/YXCUPzbO51OffzxxyooKNDq1avVt29fvfbaa+rf\nv3/Y/fa3YZqmnnrqqVoPJos0l1mzZmnz5s1avXq1xo0bpzFjxmjy5MlyOBz617/+pbS0tKBxmZmZ\ngf93uVzyer1Bt2vofETTTs32xo0bpwceeKDB7QAAABA5lhQAAACwuT179qigoCDw9cGDB7Vz506d\ncMIJkqpnK/rXGJWqZ1n+5S9/kSQdPnxYr776asR9rV27Vvfee2/gdv7hw4drzpw5tdY3rfnArmuu\nuUZPPfWUli9fHvJWdLfbrb59++r+++9Xfn6+TjvtNP373//WmjVrNHjw4EDOb7zxhkpKSiRJzz77\nrM4777yg7f3yl7+U1+vVmjVrJEkrV67U9u3bJUklJSX6/vvv1b9/f911110aMGCAPv/886DtLF++\nXD/++KMk6YUXXtCQIUMC+/z444+rrKxMklRWVhZ0+YBgtmzZou7du+uGG27Q5MmT9fHHHysrK0uD\nBg2qtS7u3r17A8tCNKR169a1zm248xHKsGHDNGfOHB0+fFhS9RIGhmFo2LBhmj9/fmAdWNM09dln\nn0W0rwAAAAiOGa4AAAA25/V6dd9992nXrl1q2bKlvF6vrrnmGv3mN7+RJE2dOlUTJkxQVlaW5s6d\nq7vvvlsTJkxQ9+7d1b59e5111lmqqKgI2f4tt9yiP/7xjyotLVWnTp304osv6oILLpBUfav7gQMH\nNGjQIDkcDnm9Xl177bWBh3aNGTNGnTp10qWXXhq4TT2Y/Px8rVmzJjDT9IwzztA333wTuP39/PPP\n11dffaW+ffvK5XKpR48eevrpp4O2lZaWptdff12TJ0+WYRjq06dPIJ+ioiJdeuml8ng8kqpnBY8b\nNy5oO2eddZZGjRql7777Tt26ddPcuXMlSTNmzND999+vM888Uw6HQw6HQzNmzNDJJ58cdrbw73//\ne23dulVpaWnKysrSM888I0lasGCBbrnlFp122mlyOBxq1aqVnn32WR1zzDH12qz59cSJEzVt2jQ9\n/vjjmjlzZtjzEcqYMWO0d+9e5eXlye12q1WrVlq5cqUGDBighx9+WL/97W/l8/lUWVmpoUOH6te/\n/nWD7QEAACA0h1lzkS4AAAAgBdx7770qKirSY489luhUAAAA0MywpAAAAAAAAAAAWKTJZ7j+7ne/\n09tvv63du3drw4YN6tGjhyTpxx9/1NixY7V9+3ZlZmZq9uzZOuuss5oyNQAAAAAAAABolCaf4XrZ\nZZfpn//8pzp37lzr/dtvv139+vXT1q1b9dJLL2n06NHy+XxNnR4AAAAAAAAAxKzJH5o1YMAASdVP\nQK3pjTfeCDxdtnfv3jr22GNrPbnWzzAMGYZR6z3/wwwAAAAAAAAAIBzTNOvVJ51Op5zOxs9PbfKC\nazAHDhyQ1+tVhw4dAu916tRJ//nPf+ptaxiGSktLmzI9AAAAAAAAAM1cVlaWJQVXHpoFAAAAAAAA\nABaxRcG1bdu2crvd+uGHHwLv7dq1S8cff3wCswIAAAAAAACA6Nii4CpVP0zrmWeekSR9+umn2rNn\njwYOHJjgrAAAAAAAAAAgck1ecL3++uuVk5Oj7777Tuedd566desmSXrooYdUUFCgbt266dprr9WC\nBQvkcrnqxfNwLKSS8vJy7dixQ+Xl5YlOBYgrxjpSAeMcqYBxjlTBWEcqYJwjFVlVd2zyh2bNmTMn\n6PsdOnTQ3//+97DxFFyRanw+X6JTAJoEYx2pgHGOVMA4R6pgrCMVMM6RaqyqO9pmSQEAAAAAAAAA\nSHYUXAEAAAAAAADAIhRcAQAAAAAAAMAiFFwBAAAAAAAAwCIUXAEAAAAAAADAIhRcAQAAAAAAAMAi\n7kQn0BSM/ftlFhdb3q4jO1vOdu3Cbufz+fTII49o0aJFcrvdcrvd+vWvf638/Hw99NBDWrt2reW5\nAQAAAAAAAGh6KVFwNYuLVTb0IsvbbbFsqRRBwfXGG29UUVGRVq5cqdatW0uSlixZooMHD8rhcFie\nFwAAAAAAAIDEYEmBONu5c6eWLl2qZ555JlBslaSLL75YnTt3Dnzt8/k0YsQIDR48WHl5eZo4caLK\nysokSR9++KHy8vI0ffp0DRgwQHl5edqwYUMg9u9//7sGDx6sAQMG6Oyzz9b69ev11FNP6eabbw5s\nU1RUpK5du+rQoUPx32kAAAAAAAAgRVFwjbMvvvhCubm5OuKIIxrczuVy6cUXX9Q//vEPFRQUKDs7\nW88991zg+998842uvPJKffjhh7ruuut0//33S5K2bdumKVOm6Pnnn9eHH36o1atX68QTT9TYsWO1\nfPlyHT58WJK0YMECDR06NGweAAAAAAAAAGJHwdUmTNPU//3f/+nss89WXl6e3n33XW3atCnw/dzc\nXP3qV7+SJPXp00e7du2SJL3//vvKz89X165dJVUXbrOzs9WmTRtdfPHFmj9/viTppZde0nXXXde0\nOwUAAAAAAACkmJRYwzWRTj/9dO3YsUOHDh1qcHbpG2+8oQ8//FArVqxQVlaWnn322VoP08rIyAj8\nv8vlktfrDdv3xIkTNWrUKHXr1k3t27fXaaed1ridAQAAAAAAANAgZrjGWZcuXXTRRRdpypQpKioq\nCrz/9ttvB2apStVrrLZt21ZZWVkqLi7WwoULI2r/3HPP1T/+8Q9t27ZNkuT1egPLCJx44onq3Lmz\nbr75Zk2cONG6nQIAAAAAAAAQFAXXJjB79mydcsopys/PV15envr27av3339fRx55ZGCbkSNHyuPx\n6IwzztDll1+uvLy8iNru0qWLZs+ereuuu04DBgxQfn6+tm/fHvj+2LFj5fP5NGzYMMv3CwAAAAAA\nAEBtDtM0zUQnEQ3DMFRcXBxdzP79MqOMiYQjO1vOdu0sb9dKt956qzp27Kjp06cnOhXEoLy8XIWF\nhcrJyVFmZmai0wHihrGOVMA4RypgnCNVMNaRChjnSEXZ2dlyOhs/PzUl1nB1tmsn2bwwarXvv/9e\nw4YNU9u2bfXHP/4x0ekAAAAAAAAAKSElCq6p6KijjtInn3yS6DQAAAAAAACAlMIargAAAAAAAABg\nEQquAAAAAAAAAGARlhSALfgfbJYMDyIDAAAAAAAAQmGGK2zBLC5W2dCLZBYXJzoVAAAAAAAAIGYU\nXAEAAAAAAADAIimxpMCB0kqVVvgsbzcrw6W2Welht/N6vZo1a5YWLVokt9uttLQ05eTkaMaMGdq0\naZOWLVumBQsWWJLTwoULdcYZZ+iEE06wpD0AAAAAAAAAkUuJgmtphU8T5n5hebsvXH262maF3+6G\nG26Qx+PRypUr1bp1a0nSmjVrtH37dkmSw+GwLKeFCxfqiCOOoOAKAAAAAAAAJABLCsTZjh07tHz5\ncs2ePTtQbJWkgQMHavjw4ZKkkpISTZgwQXl5eRo8eLB2794d2O7JJ59Uv3791L9/f02cOFHFP69x\numLFCvXv319nn3228vLytGLFCr3yyivasGGDfv/73+vss8/WypUrm3ZnAQAAAAAAgBRHwTXONm7c\nqC5duqhNmzYht/n888/1hz/8QQUFBRo4cKCeeOIJSdJ7772nhQsX6t1339U///lPtWzZUvfee68k\n6cEHH9QTTzyhDz74QAUFBerfv7/Gjh2rnj17aubMmfrggw+Un5/fJPsIAAAAAAAAoBoF1ya2a9cu\nnXXWWerTp49uvPFGSdIZZ5yhnJwcSVKfPn20c+dOSdXLDvz2t79Vdna2JOnaa6/V6tWrJVXPkL39\n9tv15JNPatOmTbVmzwIAAAAAAABIDAqucdajRw/t3LlTRUVFkqTOnTtr7dq1uuWWWwLvZWRkBLZ3\nuVzyer1B26q51uuDDz6o2bNnq2XLlpo8ebKeeuqpOO4FAAAAAAAAgEhQcI2z3NxcXXjhhZo6dWqg\nwCpJHo8nbOw555yjxYsXq6SkRJI0d+5cDR48WJL0zTff6KSTTtKECRM0fvx4ffrpp5Kk7OxsHT58\nOA57AgAAAAAAACAcd6ITSAVPP/20HnnkEeXn5ystLU1t2rRRu3btdPPNN2vr1q0h4/Lz87V582YN\nGTJETqdTp5xyih599FFJ0n333aft27fL7XYrKysr8P7VV1+tu+66S08//bTuuece1nEFAAAAAAAA\nmpDDNE0z0UlEwzAMFRcXRxVzoLRSpRU+y3PJynCpbVa65e2mIt/OnSobepFaLFsqV5cuiU7HNsrL\ny1VYWKicnBxlZmYmOh0gbhjrSAWMc6QCxjlSBWMdqYBxjlSUnZ0tp7PxCwKkxAzXtlnpapuV6CwA\nAAAAAAAANHes4QoAAAAAAAAAFqHgCgAAAAAAAAAWoeAKAAAAAAAAABah4AoAAAAAAAAAFqHgCgAA\nAAAAAAAWcSc6gVTg9Xo1a9YsLVq0SG63W2lpacrJydHtt9+uU089NdHpAQAAAAAAALBIShRciyoO\nyeP1WN5uS3dLtck4Iux2N9xwgzwej1auXKnWrVtLktasWaNt27bVK7gahiGnk4nHAAAAAAAAQDJK\niYKrx+vRbZ9Mt7zdh8+YFbbgumPHDi1fvlxfffVVoNgqSQMHDpQkLVy4UK+++qqOPPJIbd++XU88\n8YSOP/54zZgxQ4WFhSorK9OFF16oO++8U5J09913q6CgQFVVVcrOztaTTz6prl27SpKOPPJI3X33\n3Vq2bJl++ukn3XrrrbryyisDedxxxx3av3+/KioqdPXVV2vChAl66qmntH37dv35z3+WJBUVFalX\nr1767LPPdMQR4YvJAAAAAAAAAP4rJQquibRx40Z16dJFbdq0CbnN+vXrtXbtWuXm5kqSRowYoWnT\npikvL08+n09XXHGFlixZoosvvli33HKL7r//fknSokWLNGPGDL355puBtjIzM7Vq1Sp98803Gjx4\nsEaNGiVJGj9+vJ5//nmdcMIJKisrU35+vnr37q2xY8eqT58+uu+++9S6dWstWLBAQ4cOpdgKAAAA\nAAAAxICCaxPbtWuXrrrqKpWXl+uMM85Q//79dcYZZwSKrR6PR2vWrNGPP/4o0zQD723btk2StGrV\nKj3//PMqKSmRYRg6dOhQrfYvu+wySdKJJ54ot9utffv26fDhw/r666917bXXBtosLS3V119/rZ49\ne+riiy/W/PnzdcMNN+ill17SX/7yl6Y6HAAAAAAAAECzYruC6/Lly3X33XfLMAz5fD5Nnz5dY8eO\nTXRaMevRo4d27typoqIitWnTRp07d9batWu1cOFCLV++XJKUlZUV2N40TTkcDq1atUppaWm12vr2\n229122236f3331enTp301VdfaejQoYHvOxwOZWRkBL52Op3yer0yTVNt27bVBx98EDTHiRMnatSo\nUerWrZvat2+v0047zcpDAAAAgAQ7UFopSWqblZ7gTAAAAJo/2z2d6aqrrtIrr7yizz//XEuXLtWk\nSZNUWlqa6LRilpubqwsvvFBTp05VUVFR4H2PJ/hDvLKysnTWWWfp0UcfDbz3/fffa8+ePTp8+LDS\n09PVsWNHmaap5557rlasf/ZqXSeeeKKys7O1YMGCwHs7d+4MzI498cQT1blzZ918882aOHFizPsK\nAAAAeyqt8Km0wpfoNAAAAFJCTAXXiooKq/MIcDqdOnjwoKTqBzi1a9eu1qzNZPT000+re/fuys/P\nV15eni644AKtWbNGN998c9Dtn3/+ee3YsUN5eXnKy8vT2LFjdfDgQZ188sm65JJLdOaZZ+rcc8/V\n8ccfXyvO4XAE/drlcum1117T0qVLNWDAAPXr109Tp05VeXl5YNuxY8fK5/Np2LBhFu89AAAAAAAA\nkDocZqhpkUFs3LhRo0eP1qFDh/Ttt9/qs88+0+uvv66HH37YsoRWrVqlkSNHKisrS4cOHdKiRYs0\nePDgwPcNw1BxcXFUbRZVHJLHG3xGaWO0dLdUm4zm8XCpW2+9VR07dtT06dMT0r9v506VDb1ILZYt\nlatLl4TkYEfl5eUqLCxUTk6OMjMzE50OEDeMdaQCxjkSqfBAmSQpp22LuPbDOEeqYKwjFTDOkYqy\ns7PldDZ+QYCo1nC96aabNGfOHE2dOlWS1KtXL40dO9aygqvP59MDDzygxYsXq3///lq3bp2GDRum\nL7/8Um3btg0ZV3OmZjAZylSGKw4XBzN833a3b98+XXrppTryyCP16quvJmx/3EZ13d80zKQ/plaq\nrKys9Qo0V4x1pALGORLJNA1J8f+3K+McqYKxjlTAOEcqiNcfE6IquJaUlGjAgAGBrx0Oh9LTrVt4\nf8OGDdq7d6/69+8vSerdu7eOO+44ff755zr33HNDxu3Zs0c+H2tSxWrhwoWSpAMHDujAgQMJySHn\n54Kr1+tVYWFhQnKws3379iU6BaBJMNaRChjnSARndgdJUmHhnibpj3GOVMFYRypgnFcVg5oxAAAg\nAElEQVTLapelKkeV0sw0le5P3mcN4b9cLpdyc3Pj0nZUBVe3262qqqrA2qCFhYVyuVyWJZOTk6O9\ne/fq66+/1i9/+Utt27ZNO3bs0EknndRg3DHHHGNZDkgM93d75FX1GMs5lvPpV1lZqX379qljx46W\n/nEDsBvGOlIB4xyJ9ENp9eSEDjk5ce2HcY5UwVhHKmCc1/aT9yfd9ekdeqjPI8qJ889TJL+oCq5T\npkzR8OHD9eOPP+quu+7S/PnzLV2/tUOHDnruued0+eWXy+VyyTAMzZ49W8cdd1yDcawlkvx8zuoi\nvsPp4HwGkZ6eznFBSmCsIxUwzpEIDk/1Gq5NNfYY50gVjHWkAsZ5NWdpdd3C6aBugfCiKriOGTNG\nubm5WrJkiSorKzV//vxaSwxY4YorrtAVV1xhaZsAAAAAAAAA0BSiKriWl5erX79+ysvLkyQZhqHy\n8nIq+wAAAECSOVBaqdIKn7IyXGqbxa2iAAAAVnFGs/HgwYN1+PDhwNfFxcXKz8+3PCkAAAAA8VVa\n4dOEuV+otIKHzwIA4q+o4pCKKg4lOg2gSURVcPV4PGrTpk3g6zZt2qikpMTypAAAAAAAAJIVxcX6\nPF6PPF5PotMAmkRUBVfDMGoVWA8fPiyv12t5UgAAAAAAAMmK4iKQ2qJaw/XKK69Ufn6+rr/+eknS\nnDlzNG7cuLgkBgAAAAAAAADJJqqC64wZM3TUUUdp2bJlkqQpU6ZozJgxcUkMAAAAAAAAAJJNVAVX\nSRo3bhyzWgEAAAAAAAAgiKgKrocOHdKzzz6r7du311q79aWXXrI8MQAAAAAAAABINlEVXC+99FK1\nb99e/fr1k8vlildOAADgZ8b+/TKLi+XIzpazXbtEpwMAAAAACCOqguvevXu1cuXKeOUCAADqMIuL\nVTb0IrVYtlSi4AoAAAAAtueMZuOuXbvq0KFD8coFAAAAAAAAAJJaVDNcW7ZsqV69eun8889XZmZm\n4P3HHnvM8sQAAAAAwO4OlFaqtMKnrAyX2malJzodAABgA1EVXLt3767u3bvHKxcAAAAASCqlFT5N\nmPuFXrj6dLXNSnQ2AADADqIquP7hD3+IVx4AAABA3B0orZQkZiICAIC4KKqoXoqzTcYRCc4EiRTV\nGq6FhYX6zW9+o549e0qSNmzYoMcffzwuiQEAAABWK63wqbTCl+g0AABAM+XxeuTxehKdBhIsqoLr\npEmTNHLkSJmmKUk69dRT9dJLL8UlMQAAAKCxDpRWqvBAWWBmKwDES1HFocDMNsAKjCkgeUVVcP3h\nhx80ZswYOZ3VYW63W253VKsSAAAAAE3Gv74ms1oBxFu8Z7VRfEs9zJS0j6KKQ/KZRqPi95bu4TOc\nQqIquLrd7sDsVkk6ePBgra8BAAAAAGhO7FIoofiWuii2J57H65Gp2AuuHq9Ht30ync9wComq4HrZ\nZZdp0qRJOnz4sF544QUNGTJEEyZMiFduAAAAAAAkFIUSJBrFdiD5RLUewLRp0/Tqq6+qqKhI7777\nrv7f//t/Gj16dLxyAwAAAFKOf73ZtlnpCc4EAAAAsYiq4PrOO+9o1KhRGjVqVK33zj//fMsTAwAA\nAFKRf73Ztlnxaf9AaaVKK3wyDJYGAwAAiIeolhT4/e9/H9F7AAAAAOzJ/yAxg2cxAEBKa6q1Yf3r\nIDfmoVNAsolohuvWrVv19ddfq6ioSG+//Xbg/aKiInk8rCMCAAAAe3M5HSo8UCbDMOV0OhKdDgAA\nCedfF7ZNxhFx7+e2T6ZrZp+HFGreX1HFIXm8HrV0t4x7PkBTiKjg+tFHH2nu3Ln64Ycf9Pjjjwfe\nb926tR599NG4JQcAAABYoaLKp+vnbdKcq06TU/EvuPpv28/KcLEWq41xnlKDfwYfRRykkmQb9/6i\n7MNnzEqanIGGRFRwHTdunMaNG6cXX3xR48ePj3dOAAAgBGP/fpnFxXJkZ8vZrl2i0wEQgv+2/Reu\nPj1ua7Gi8ThPqaGpZvEBdtLcxn2yFZD9/DN3WU4h9US1huv48eO1d+9eFRQU6IMPPgj8BwAArGfs\n3y/5fLXeM4uLVTb0IpnFxZa0b+zf3+h2AL8DpZU6UFqZ6DSAqPmXnGD8AkDj+ddstXJ9WI/XEygi\nJ5rL4Yp4//wzd01RcE01URVcH3zwQXXv3l1TpkzRtGnTNG3aNE2fPj1euQEAkNLM4mLJiN8/zszi\nYksKt4BfaYVPpRW+8BsCNlNRVT3TlfEbXlM9ZAdA8vIXGe1SILVahVHRrPcP1ohoSQG/l156Sdu3\nb9cvfvGLeOUDAAAANDv+mZOsE2o91mFtWs3tNmU0PR6OBCAVRDXDtWPHjhRbAQBAk2HZAzQXdp79\n63I6kvpWev86rHY9vgBqa+6zH5Ec4rHsAVBTVAXXIUOG6Oabb9Ynn3yijRs3Bv4DAACxo6gYGsse\nAPFXUWXfYjCSg90KFyx70PxxjkOz07Hxr3Ua6oFRicyVwj/iLaolBV555RVJ0pIlSwLvORwO7dix\nw9qsAABIIYGCYrt2iU0EAIAY+AsXD58xyxa3iLPsQXKJ5enznOPQEl1ALKo4FCiwVhgV+v2nt2tm\nn4eCbst5RHMWVcF1586d8coDAAAAAADYVCyF0Ug0VdGNtWObhsfrkan4PfQVSBZRLSkgSW+99ZZm\nzpwpSdqzZ482bdpkeVIAAAAAEu9AaaUKD5Ql9RqvgJ3Y6XbvaHm8noTPnmwMO91CbrdlOPBfyfwZ\nhb1EVXC955579MILL2ju3LmSqpcTmDRpUjzyAgAAAOLmQGklRcQI8EAqwFrJXrSENWIp/vrXQ021\nYqC/OB1qHVir8RmFVaIquC5ZskR/+9vflJWVJUk6+uijVVJSEpfEAAAAkLriXRAtrbDPg6KYRZqc\n/OfNMMxEp2J7Vs8YY3Zg6uBc/1eFURH3Gbp2nN3pL06n2jIFdjwXiE5UBdcWLVrI5XLVes80+QcG\nAAAArNXUBdFEznhlFqn9RDIe/OfN4PehsKyeMWanW8MTrbkXJK041009QzJRrCjQMbvTPjgXyS+q\ngmunTp20du1aORwOVVVV6d5771XPnj3jlRsAAABQTzxmhNppxmtDmA3bNJJlPAAUn8Oz8wxJK5cJ\noEAH2EtUBdcnn3xSDz74oDZt2qSsrCwVFBTo8ccfj1duAAAAQD2pPCM0lfcdAJqbplgmIBU015ne\nqbpub3MRVcG1Y8eOeuedd1RUVKSDBw/q73//u9q1axev3ACg2TL275exf3+i0wAAxJnL6WA2KgDA\nFppTYbLmEgrxmOlthzVUKcgnt6gKrkuXLtXhw4fVsmVLPfPMM7r00kv15Zdfxis3AGi2zOJimcXF\niU4DwM/4IwjipaKKW9MBAPbQnJagiPcSCtG035wK2bBOVAXXO++8U61bt9YXX3yh+fPna8iQIZo8\neXK8cgMAAGgS/BEkucXrgVesl4rGSOSD2AAATcdfyK7wVVB0RUBUBVe32y1JevfddzVx4kRNmjRJ\npaWlliZUWVmpqVOnqlu3bjr99NM1duxYS9sHAABA82L1A478hdbiMi/rpSJmPHirPjvcoovGqbum\nZDQz+/zb+kz7PbwqGfmP5/7y/XE9rlntsvST9yc+u0H4Pw/+Y19hVDSL2cOwRlQFV5/Pp3/96196\n6623NGjQIElSVVWVpQnNmDFDTqdTW7du1RdffKFZs2ZZ2j4AAIDdsKSBvfgfTGWYpuVtM+sxOswy\nbl5S8Snqze1W47prSkZzi7p/W1MUXK3gP55lcT6uVY4q3f7prSn32Y2E//PAmEYwURVcH3jgAU2a\nNEkDBgxQ9+7dtWXLFnXr1s2yZDwej1566SU9+OCDgfc6dOgQU1vG/v3y7dzJLy8AgObJ7W7WP+eS\nuQAZS+4saZA6mPUYHX/xm2OGSMR7Bm0sTwxvTmtmJhtm1AJIpKgKrhdddJE2bNgQmHV60kkn6a23\n3rIsme3bt6tt27Z68MEH1adPHw0cOFD/+Mc/YmrLLC5W2dCL+OUFQFSSuciDFFNW1qx/zsWrANkU\nf5ClePpfzOZEc+SfdWsY1s+ATibBipuxFCStFO8ZtPF+YrgVs2Gb24zaaAV7cj2zD9FcpPrnO9m4\nE51ATV6vV7t379app56q//3f/9WGDRs0ZMgQ/fvf/1b79u1DxpWXl9d7z/3zP4BMwwz6/WTjPnxY\nKi6RslvJ27p1otOxXHM7X1aprKys9Yr4cxcdliRVtmoV335+HvOM92qpPtZDjQe3Ycrx8//7r4/u\nOr/gN+a6aedxWHc/rcrRXXRY5RcNU+bSt2t9zq08FqHaamic2/lcRMP8eRaRfz9KyqtnJbZ0Rf/L\nbt22gn3PNA2Vl5dHtG2o9/wxNduoG+PvJ5b8Q+VQs71Y9ifSnEqqascF27+G2ou2P6uv56H69+9X\nq7TocwzWfs2vw52DknKfrnt5k+ZcdVrQ2Lpt2/FzXfP4Rcu/1EZJVfWzPDLMzMB75UaF7vz0dj3U\n5xFlmJn1Yvwae0z87Rlm7Z+BofoJ5Bdjv/54s8bXwca6YZpyO936ruQ7tXC1UEtHy3q5NpRLibdU\nt396a73jVzePYPvsbz9cG41hmGatY1Bzf+qei1DxkkK2ESw+3LmuG1PirT8u/f3V7TfeItmvcDnV\nHNOhjlvN/Qu2FM6BsgOS1OB49G9TN+e64zuS41ZznAR7rdlOzf7CnetoYj2mR2W+ssDnMFSeDfXn\nV7O/hvarZo41YyM918HyqxsTz893KsvMjM+xtFXB9fjjj5fL5dLo0aMlST179lSXLl20adMmDR48\nOGTcnj175PPVvs0o5+dfXLxerwoLC+OXdBPJMUx5f3uJ3H9dpMKiokSnY7nmdr6stm/fvkSnYEtH\nZ2TIXVYub4tM7a2osKRN/1iM9zhsqn6STaqO9VDjIccw5Vbt66N/W9OM/rpZ9zNj53GYU6fgalWO\noX7eWHkswrUVbJzb+VxEw5ldvRRUYeGeoF83pq1g36uq8qqwcE9E2/p//zHN6ji/YLnWjfH3E0v+\ndfur228k+9PiiP9OPPD9/M/3SHPyt1Wz31DHpG5/ZYd+rJdbpKy6nofq3//+weIfYs6xZjt1z3W0\nY6qhHGMZ//FW8/hFK719eq2vC/cW/n/27jw+qur+//h7loRACAgioBZFFhGFhMQFxIWitRVBakVb\nl1oRUHBB61b3autSF7T1a+tWCthqtf2JxYW679IKKFBsRcMmIkEkLCEkkwmz/P5IZpxMZiZ3Zu6d\nuTPzej4ePjAz99zzuXfO3GQ+87nnfPtY5O+mzRsTtklHaH9G+wk9Hqvf0l6lkqSG2viLQcc6vi1b\nW8Z45Fgv3qdYfpdPN310g+6o/I22bd3WLtZEscQ7rujnYx1z9P7j7SOW0l6l2uPYo6JgUYfnweFS\nyv3FGyepnJN4bSIfj+4v3vi0Sqj/7XtakpmR57aj90y77aS45z7y+Hz+9r9v6n0td91EjkeXw6Ut\nTVvkdDkU8AfD24RExpzsmIocJ+0ulK0xhvbvc7TEm2gsRR6nz+9r877uVNQpfBzR5+bm5d++D+PF\nmbC/VpH9JTquyBgj2xp9rWPFl877Dca4XC4NGDDAkn3bKuG6995768QTT9Qrr7yicePGaf369fri\niy80dOjQhO3222+/do+5N9XIJ8ntdqvf/u2fzzX5djzR8v34UtXc3KwtW7aoT58+Ki4u7rhBgXFv\nqlHTj05XyYsvqF+/fqbtU5Ll4zBT/eSKdMe6e1dLZXKu3gEQbzy4N9XI0fpHW+j6GLpeOhyONo8b\n7SfyPWPncRiKLcSsGOP9vjHzXLg31chRXKSDmve0uTMl0Ti382uRjG8aWr4A7916TY7+WWqprGts\n9qtLsSthdV2sttHPFRW51btfP0Pbtr5l5HBI7qJv/wSOFWt0m1A/yYjcR2R/0f0aOZ7Qz5IUujPW\naEyRbd0up3xF+yn0fUb0OYnur19ELEb7M/tvl3j9x3q90n2dIveR7JjqKMZsifd+C8XWpW9LbMlU\num7ztU1e9OnX59vHIn439enXJ2GbaEYq0qL3Z7Sf0OOx+g09l+hvyVjH16NPj3ZjfZtvm/zyt4kt\nOlYjsUQfV/TzsY45Xn9GbPNt081Lb9DdR97X4Xno6Pg66kdSu3GSyjmJ1yby8ej+4o1Pq4T6D9Up\nhs5tY7BRjf4GQzFFjul45z7y+NxuV/QuwiLbNAebdfPyG3TnkXfL7W7/OyoUc58+fbQjsCNhjCGN\nwZapNjx+TzjWdhfK1hhD+3e3pqQSjaXI43S7XW3e15HHEevcJIo5letIouOKjDGybUfXx3jSfb8h\n+wwnXP1+v4YPH65PP/3Uynj0yCOPaOrUqbruuuvkcrn0+OOPa999903YJlb5r9/ZMpgdTodl5cGZ\nlG/HEy3fjy9dxcXFWT8vofkOnb16ZTWOSFaMm9A+rT7fmeon16Q61v2bN0uSSlJcaDHb4o0Hv9Oh\n8N91reM8tG1IMuM/+j1j53EYfZxmv8ejz5uZ58LvdEgej5pOO12dF77YblzGGud2fi2S4Wj0SPr2\nOKJ/lqStjR5d+MQnmj25Qr3KOhveV6znHA6nSkpK2m0bmje2Z2lx+Lk27R3fLmMQK9boNqF+QqLn\npe1Z2j6xGLmPyP6i+zVyPG3jCcSMKZ7Itt49Ac34S/tb4aP3F+tcGO0vxKy/XeL1b0aMkfsJ/xzn\nNUjUJrptrBizJd77LRSbZ09L0iPRezGas6H99Tn0WOgZp6PtNTZWm2g7Grbr+qXX6t6jZqlnaU9D\nMRjtJ/R45LZ13p1q9DUqqKBcHYydWMcXSrJGjnVngyP8hUYotuhYY8XS0XFFPx/rmOP1Z0RHbULz\nRTodHR+fkX6ix0kq5yRem8jHo/uLNz6tEm887mjYHk44dhRT5D7infvI43M62vYZ3X+ybYqLi6Wm\nxDGG7GjYHt4u/MWe2v8bq79EYyky5sjnIt9v8cZU9L5CY7l7p71Suo4kOq5Yx2fk+hiPkesJ7M1w\nwtXlcmmfffZRY2OjunRJ/I1jOg466KCUF8oCYJ3wAjA2SrgC+aqQF24L1Na2XG/8fskVv0oD+WN7\nQ7MavH6VdnLFTFymIrSifc9SU3YXd/8hVvWD7ItM3iO/hBZUuuvIu5XkWtKmikwA2ZWVC5EBmRQa\ny3Z+vyF/JDWlwKBBg3TMMcfozDPPVNeIhSYuv/xy0wMDAKBQFfIK98H6ennGn6rOC55LOeFqx4p8\nxNfg9WvavP9o9uQK9SxtXz2aSS6ng9Xn0YbVyXt8W2nqj1rALBcSkWbI9wRQobyOmeRyuLS5oabd\newbG1Xl3cv5guaS+ygsEAhoxYoRWr16t5cuXa/ny5VqxYoVVsQEAkLRAba3869fnZJVooLY25bjT\naZtvgvX1BZ20znUNXn+7CtJM8e5pSf7GWuU5E0j4Il+EEkKhZFu0Ou/O8HOhStOg2iY/Gn2NVFZ2\nIBeSRryO5vMGvDHfM4mQpG2rZToR689FLrxHYZ2kKlznzp1rVRwAAJgiXCG58MWcmwIjnSRhqG3o\nTzqqO+1p306d5N5Uo0D3brxGKQhNP5CvCUnvHn94jlWn4s+plwi3wNubFVNo2JE34NWNS6/XvUfN\nilnZaFZVZyiJ1MXdpSArKK1KGlGVmn9C78m7WheXgnHxvjgyItZ7tNCvW4UkqQrXuro6XXbZZTr1\n1FMlSZ9++qmefvppSwIDAADJo7rTILc7K5XQbk+Tmk6dyGuUotD0A9mqQM0F6VQIb29oTntKh917\npM577ZOx/nJNaAxnq4o734Qq/YxUUHZUdVuI6rw7Y1Y9UpUKfMvs90My1y3ktqQSrtOnT1ffvn21\nfv16SS0LXN1zzz2WBAYAQC5PDwBrmDZ1gscjz/hTSXyiIJN+8ZgxnUNjs19ev7Hq3GxOHwH7SuXW\nZyNtzExyuBwubfNtU2kv8yb3terW48jpG6LFm87BCG5RB4DEkkq4VldX6+abb1ZRUZEkqXPnzgpS\nYZAQc+oByIZ8ufaEpgfIt6QYieTUWV3Bmy/vHRhH0s8csRLX2xuatXG7h4S2RfL1y4JU5qdMpU20\n6MRkokSlN+DV9Uuv1R7Hnrj7SzYhadX0AKHqvETHE09H5yDdcw4A+SyphGtxcdt5hjweDwnXDnBr\nJ4Bs4NpjbyklkltvgZefxJCV0wHw3rFGNhJDhbIAVbaSmtGvaazENbfPWyuVLwvyNUlrhujbhtO9\njdisJLBZ0yCkcjxm3UpNNSyAQpRUwnXs2LG688471dTUpDfeeENnnHGGTj/9dKtiA4CkUJmGvNZ6\nC7wCfFhJdjoArg3ZFysxZHVC1Lsn9+d7NZIcy1ZSk8rg3GTkdYtO4puZ9LODZJJ/2U4Uhm75z/W5\nHs2sho0372ympVIxbHS/+fR+AwpZUgnX22+/XU6nU926ddONN96oY445RrfccotVsQFAUqhMA/JX\nOklTrg32ZCQhGkrK5mNFntFkKklNZFp0Er+jpJ9Vc49aJZnkn9FtrUq+pSPTyWKXw5WRc5DOvLNm\nx2FFIjxfkuzJyrXrCGBEUglXt9utG264QYsXL9aSJUt04403yuVyWRUbAACwgtuddPIy21WiJE3z\nn8vpaJeADCVlcyHpmOyt/SRTkS+smns0l1iVfEtHpudY9Qa8pp+DVJNw2a5MtksVbi7hOvItO36B\ng9QklXDdsWOHZsyYoUGDBmnw4MG65JJLtGPHDqtiy0kshAIAsD2PJ+nkZaKEJ7/7YAbvnvgJyFyY\njzXTt/bnwjlBZuT7vKzpJB/MXigKmZVqEi7bC3rFq8JlbGVPLpz7UIx2/AIHqUkq4Tp58mS5XC7N\nnz9fzz77rFwulyZPnmxRaLkpX1fUhn1ku8oMAKLF+92XTCI2tC2LgpHAjiUf5mM1m53PSUlxkb5p\n8KeVDA5VDJNQ7liuVksbrUJMJ/mQzYWirJQLySOzmVm1mqnpD6IlGlvZrspNh53GY7zzmAvv61yI\nEclJKuFaXV2tP/zhD6qoqFBFRYUeeughVVdXWxUbgBi4rTbzMpX8yHaSJZTMJ6kPsyTzJWRoWxYF\ny98vb62oyIyehsCqSr98nkvWCl5fUBc+8UlayeBQxbAdE8odyXbFabb7NyrZKkQ7JXWyrRATM/HG\nSyrjworpD9KV7arcdNhpPObyeUT+SSrhut9++2nr1q3hn7du3ar999/f9KBSke1EBYD8E7quBHfu\nzEjyI9tJllAyn6Q+AMn8OyqsqMiMnobAqkq/RHPJcms/osUah+lU7JoxP3A+jFM7JXVgH4yLwsOX\nL8gVSSVce/TooeHDh2vq1KmaOnWqysvL1bNnT1111VW66qqrrIrRkGwnKgDkn3yvuOOLKhtwu7mN\nPg/ka1U4X74YY+db+2EP2xuaVe/xtRknyVRNmzE/MOMUsEYhJ/+ydewk2bM3LQaSk1TCdfjw4br4\n4ot1wAEH6IADDtCMGTN02GGHqXv37urevbtVMQJAYimsuA6+qLIFjyevk/rRMp2YzFR/JCYRKVuV\nhPlQwZjroqe4CGnw+tslOhNVTecTkgJIRjaTl3XendrcUJN0/4Wc/CvkY8+06Llp7TgtBtpzJ7Px\nrbfealUcAGBYoLa2JbkRqgr0eBT0+bISRyRnr14ZjwHICa1fioSTkhHvlXbvZxNlOglaiF/8bG9o\nVoPXr9JOLvUsLc52OLbg3ePXjL98okfPG561fp1yZLTvjoSSwdkaJ6EkqNV9e/f45U8y4Z3MubH6\nPIbez2Ym7b0Br/zB/E4qGxWZMHE5kqp7KhihBFL3Tntlpe9fLLlG9x41S9077RVeLb6Lu0v452zF\nZhehMRw6J7kgX7708Qa8unHp9brryLuzHQqSwJUegC0kU4lml1v9rZ7zNF9vU0bmhaaPSCWpmU7b\nMI+nzXskcnG20BzJ2X4/m6EQK13NuNUZ+a+jas50Fnna3tAcThDGu03fqrl9zZBMpavVVbG5vFBZ\nLohezKeQb0XPBaEEbCgJTDXnt2PY6/e2qba0s2QqQUNVzrlwXMgNJFwBJM2KuT8LJVGRbGK5EM6J\nIa1znZKAjsHAlBrpfEkR3daMLwLafFGRB4lWIF9FJjOtlE5CNPJ2/UK5TR/5IZkEXr5U6RlFMtoe\nXA6Xtvm2yelqe9dE9JcH+SKUZM+340L2kHAFkDQz5/40pXouh5BETVHrXKe5fu4sGe9R1aNWix7D\ngdragnn/Zptdqt7tEgcSS6dqNCTW3KMoHMWdPFR72USm5muMnicyW6gmtUeS3Rvw6vql1yoofg8A\nqUgq4bpx40Y1N7f84bZo0SL9/ve/V32Of/gFMoHV4OOzy/QAQCbk43hvU6WapUrk8DW2piYjX+CY\neU3Pxap3u8SBxDJ1G70Zid1ckqmqXzvwBjxUexWYXK5czFRVbKb6YVEkIPcllXD94Q9/qEAgoE2b\nNumss87SokWLNGXKFKtiA/IGq8G3KOSqqHw7dqu/RDBaCZpv5zXnZboSuTXBG5oHNrh7d0YS2mZe\n03Mpecn7zXyhOUdzOYFndmJ3e0Ozrc8JVb+APWWqKpbq2/xjl8pu5J+kpxQoKSnRwoULNX36dD39\n9NOqrq62Ii4gZyXzgdQOH14zWX2bqcRCNs9rvPNp9bFnuora6i8RjFaCWrlgGVXpOaA1wZtPFcN2\nluj9lg+Jw2wIzTmaCwm8eAtSpSJRVWymFm6ye2IXAJAZuVzZDXtLKuHq9Xrl9Xr1+uuva+zYsVbF\nBOS0ZBJAoW2zlSCMXCE8VyqsjMhmxVgqiUgz5vWkitpc0efTDl+O5JTWytNcnts1K695Dp+3XEoc\npsPldBTU7fORzFyQKlPTHUSLTPRmKrFrVCGPrVzWqaiTGoNUOwJmClWcZnsOWyBdSSVczz77bPXt\n21dffvmlRo8erc2bN6tLly5WxQYUDCMJQisW22GFcHvIx3k9800u3fYdKdmpGeaj8KAAACAASURB\nVExLMuZB5WlWXvNcOm85nBxOh3dPdhKFSE68atxsJXqNYGzlpuaAVx6/J9thAHklVHHK1A3IdUkl\nXG+++WatX79e//73v+VwOFRWVqZnn33WqthshwonZBNJOWvx/kY+SnZqhlxNLMNaMa+PuZQcRsEx\nsxoXQP6r8+4Mz9/JfJ4AzOI2stF7772X8Pn999/flGDsLvwhtFev7AYCwHRZSTLlUYVYKBnj5PoI\nxBSorZW7bpfkkHzZDiZJJOEBILOsTPqFbtPu3mkv0/cdq59c0OhrDM/f6Q14dePS63XXkXdnOSoA\nuc5QwvXqq6+WJPn9fq1YsUIDBgyQw+HQ2rVrNWLECC1btszSIAF0zM4JLypH4/B45DntdHVe8Fzb\nxyMTsS5X+OFYr3GgtrYlGZLlpK2RL6RCsTrKymw5TgErBevr1XTqRJX8Y362Q8kI5qIE8o/L4cqp\nJFouszLpF3mbtpVVnNwODiQW+mKli7uL5V+AIDsMTSmwdOlSLV26VCNGjNCrr76qNWvWaPXq1Xrt\ntddUVVVldYwFI5VbmrkNGiF2vhU4ldjazClZU2PaivFprT7vdps7z2U8UbfqhvqLdR5zaaoJFvYC\n7Cmt62Icdp4rE4UjNJdrIGB8YaxU2pgpcmEvu/EGvCTR8khkVaeZ6rw7ScwDBjBXbf5Lag7Xjz76\nSCeddFL45+9973taunSp6UFlgh0TlakkpeycZEN8dhx/KWmtxEzqWDpoE51cDNbXK7h7t2mJurSS\nfh5PVua5NLu/ZBdgy5vxCsRi56k9UrnGpoAvQ5ALXE5H0onI0FyugaDx5Gm8NplKhPJlBXJdo6/R\ncAKJ+VIB5LOkEq4ul0tvv/12+Od3331XTmdSu7ANEpXIJsvGX4Y+nIe1VmImdSyhNh5PzCQH703r\nhBKtwZ07k6qKteNrQhK4Y4HaWnsmEe2mg8WfsjrWUrnGAnnKuye7ichcS4Rmu1IXMCJU4WdFpa0R\nRqpxSQoDSFVS2dI//OEPOv/88zVw4EANHDhQP/vZz/TII49YFVteITlQeKx+zROtGh1KZppZeWq6\nfF/hOtPn04Bcmn6gI4aSwEm8BmbcUm3FbdnpCNbX58VrbZoUK1nt+IUDgMKwvaE55aRpKtW9uYDk\nF8xkpBo320lhALnLcMI1GAzqoIMO0tq1a7VgwQItWLBAa9as0ahRo6yML2/wga3wBOvr21dxmnjr\nasIxlU7lqQnjtM38qzZJPmUclWnZl8RrYMYt1fl2W3ayU0/YXr5/ydPKbol/AKlr8MZOmhZy9SrJ\nLwBArkiqwvWkk05SUVGRhg8fruHDh6uoqMiquID8EP0BP88/8Efesp6NuU4LSbaSYXmXhEN7rV8M\nJTv1BOwh3xL/ANrL1+pVAADyieGEq8Ph0He+8x3VUjEBIA7Lb1m38+I2GZat6QGM9lvQ1c25Ls+/\nGCp0Cd+boWk4amq41iKvbW9oLsjq0EQ4J0D66rw7mfICQJg7mY27du2qESNG6JRTTlHXrl3Djz/w\nwAOmB5aMwLZtSa22DdhZoLZWwfp6OcrKpK5dtW+nTnJvqpGy9Is7+j2T1YV4PB55TjtdnRc8l53+\nYVi4uq5Xr7jbhMaWM8E2QN5yu7PyN0nC92bENTZ8rXW5MhsgkAENXj/VoVE4J0D6Gn2N+sWSa3TX\nkXdnOxQANpBUwjU0lYDdBHfvTmq1bcDOQhWEnRe+KHXtKrenSU0/yl6SMfo9UxAL8di8kjZfVp83\nkpQF7CT0hVjkvNwpJ009HgV9PvOCAwAAQM5xOVyq8+7MdhiwQFIJ11tvvdWqOLIqsqIw1Uqrdh/C\nAOQum1fSZiXpbfMktGWyVIUIewp/IRa6NuRQ0pRxDLNELtjkdDqyHQ6AVi6Hi9vZgRzkDXjlDxbY\nZ6wCkdSiWfX19br00kt18MEH6+CDD9bMmTNVn+MVo4Ha2vDCIGasTp33lX8AYsv3hKSZ83rm0rny\neLgzAtkX9Z5JZY5kFjGEWViwCbAnb8CrXyy5RkHxeRQA7CCphOsll1win8+nv//97/p//+//ye/3\n65JLLrEqtowoiNujgVahD+lGPqzny6JHgdralkVgrD6WeAnJXEouZkrUuQrU1sq9a1eWg0Ky8uUa\nYTkzrgFR75lQ8jTyNQhd67jWwM4iq2MBAADyWVIJ15UrV+qxxx7TiBEjVFFRoYcfflgrV660Kras\nyViCJhWhFYTtGBtsL/Qh3UilU75UQ4Wqz7N2LFle8d1QUizLSeFgfb1UvzsrfSN1+XKNsJyF14DI\n1yCVO21I0iLTqI4FAACFIqmEq9/vbzOFwO7du+XPwz/Ss56gSaT1g5stY8tzmUjEt1kMye2We1ON\n3EyPlproJGKBVppGVsLFPfZ0EkIFPMeprb+cAwxgOiTkou0Nzdre0JztMCy3vaGZSmAAAHJYUgnX\n888/X6NGjdKvf/1r/frXv9aoUaN0wQUXWBLY3Llz5XQ69cILL6S3o2QqQuMkZGJViPFBO3eYddtr\nJhLxbaa48HjUdOpEKReqQOyYzIxOIkb/3JoozLvbouMkQC2bPiXRHKd2qciPOifJTK2RSEfXhOh+\nEia9AQCGNHj9avDm/7W0weunEhgAgByWVML12muv1axZs7Rr1y7t2rVLs2bN0tVXX216UBs2bNDs\n2bN19NFHp7+zZCpC41R5xbpt0tZVsGiD214zIMu3zaekNVGYd+PDTos82aUiP+qcJDO1Rjqi+2HO\ncAAAAAAoDO5kNv7qq680btw4jRs3zqp4FAwGNW3aNP3+97/XVVddlfwO7FhpZ4XI43S5sh0NgDyU\nSvVn1qtZAQAAAADIsqQqXMeMGaNDDjlEl156qZ577jnt3LnT9IAeeOABHXfccaqsrExtB7lYaZeK\nQjlOAFmTSgWonSuG8276CAAAAACALSVV4bp27VqtW7dOb7zxhp555hldfPHFOvDAA7VkyRJTgvnf\n//6n+fPn6/3330+qXTAQVEfrCgUDQTU1NckdY/L5eG3jtYl8LO5+3W75vvlGitE2ntA+Ym0TK+7o\nOHNZ9Pm0Yt/p7tdojJGvVaJxGYzzmhpZIyuybSgWd4z3QXSsRsZ/ovdKqjEabWvWOUm1jZG2hRaj\nGf0lGlPftm35t7m5ZSGUeOOvo/GZqJ9g3a4O28Taf6z3W2SM0W1S+X0T3Y/RNum0zYexlUx/6cQo\nJR5bsWQyxlixdXT97+g6n6i/jmINBlP/MjiVtplqk+n+cjVGo9OOxmrb1NSUMI5cPSeZ6i/0nu9o\nP4b7aX0xI39Tx5tXNpjg31TaxGubShsrY5Ra7tCMPKN2izGT/eVCjPHaphOj1PL+C5j0nrEixnTa\nJNqHla9bIBhsd17tck7s8rrleh7ILkpKSizZb1IJV6nlw7DX65XX61W3bt00ePBg04J5//33tWHD\nBg0ePFjBYFBff/21LrroIm3evFnTp0+P287n98sdehPG+TecAPX52rV3K3Ybn8+njRs3ql/Uh43I\nx6K3Ce+jsVG+Rk/bfkpKpA1fyte5RJu93nZxhPaxcePGuM/FOj6fz9dybFLM/aZi306d5PY0hWON\n/jnW9un0H30+zZTovKayn45ijBwv8cZW6HWLJbpNSLy2oVj6BYLt2kbHGj2WY/UXb9wnapPO8aXb\nJl5bYjQnRjP6k9stbfgynKGJ29bp0JYtWyTFv+YlupZLin09ThBjdJtY1/RY77fIGKPbJHoP5dLr\nlqsxxmubVoytv787HMMG+gsxM8ZY476j63+890rqx6fwv3v2xG7jcLrbbdtR21TaGGlbaDFa1Z/Z\nMW7cWCNnWe+M9Gen82hWjBs31kiSnGW9zYkx9EREY58/TltX+23TaROvbSptLI1Rkj9qKjvbxZjB\n/nIhxnht04lRkjZu3qjifYptG2Na5zEkw6+bz+drd15tc05s8rpt3Gxu7qQQuVwuDRgwwJJ9J5Vw\n/c53vqN+/frpxz/+se644w4NHz7c1GBmzJihGTNmhH8eO3asrrzySk2cODFhO7fLJUeg5Redw+GI\n/a+3SSUud8sH/yiO1sEd3cbtdqvf/vvJvammzfahx3xR2/ii9uF2te3L4W2S70enq+TFF9SvX7/2\nx9HaT7/994v5XPT+I/txt/7hFGu/yXLv2iVH3S55ImJ1b6pRk5HYU+w/+nyaKdF5TXY/RmKMHC/x\nxlas8RGvTfjxOG1Dsbg31bRrGx6fu1or++p3d9hfvHGfqE06x5dum3htidGcGE3pr/XaV7TguQRt\ng1IgoD59+qi4uDj+NS/BtVyS4etxvDaxrumx3m9S+2tCrJ9NPY82GCe5EGO8tmnFaGgMG4sx/LyJ\nMcYa99G/qxL9LWPO66bwv+6i2G38AbXbtqO2qbQx0rbQYrSqv1htgsHUY+zdr5++afAn1aajGOO1\ntdN5NCvG3q1/h3/T4DcnxtATEY3d7thrR/jlj9thKm3itU2ljaUxquXDeuQ13nYxZrC/XIgxXtt0\nYnQ73XLv61a41tmGMaZ1HkMy/Lq53W716ddH23zb4rbN97HVUYx9+vWJ2Q72kFTC9ZxzztHbb7+t\nv//979q2bZu2bdumY445RkVFRZYEF/3hJO52zjS3i7O+lsPpUElJifxR7SIfi7dNzP5C75XiIhVt\n3ixHWZmcvXp9+3Tr9rHKmWPtP1Y/ZpRC+zdvllpvNYo+vtDP8eJLtf+O9p9IoLZWwfr6dufTrNiS\njbHNa5Vg7bZkx2O8tqFY/E5Hu7bh12/z5pYHYvUZr02i91WSMRpta9Y5SbmNgbYFF2OG+gvd3dil\nqUmObdu+fSCZ/txuFUVcvwy1UcfX9HjX2HhtHMVFKt69W0ED7zdDMdrodcuFGOO2zeMYY12zo39X\nJfpbJtn+OorV4Yi3REDHtzG3b5tKm47bFl6M1vQXu42x29VjtS0pKZEj6g6xjvsz1mduvm7JtQm9\n51vOoQkxtn4WC10FHJKccT6fhYroI7dNp028tqm0sTJGqeUza2R7u8WYyf5yIcZ4bdOJsTng1Y1L\nr9ddR95t2xjTOY+K2DYT/YWedTpa/pZxNjjits33sdVRjFbdCg9zJLVo1r333qulS5fqpZde0oAB\nA3TBBReoR48eVsWmt956q8Pq1pzUuuBV0OORf/36uIu4sMCLMcH6+pbzadOFeqzGOEFeqd+d+oKA\n2VpM0O2Wf/16KXRLocdTsNcjAED2bG9o1vaG5myHAQCmcDlc2txQI38ac2MD2ZRUwvXDDz/UHXfc\noUmTJunaa6/VoYceqttvv92q2PJfKPEa54O5nVf7tjMjCchAbW3CZHcuMX2cRCePACSWrUQvAAAR\nGrx+NXj5+w1AfvAGvPrFkmsUNHjnBGA3SSVcr776au3Zs0e33367tmzZooULF+rKK6+0KjYgrkBt\nrQI1NTETg/ESkJGJ2IKpik0leUryCAAAAAAAIGVJzeG6aNEiq+JAjspWhWiwvl7as0ee005X59ZF\nTNokF13tJ50OJ1djzPMaEn08seaEzSkez7fnKMY5ARCFCm8AAAAAQJqSqnBFfkpnDlBbTXtgQmVm\n6HiMHFc+TUsAoBUV3gAAAACANJFwhb2Spq3VZbmQxCyYaQmADNm3Uyc5SHQCGRGoraWSGwAAALAI\nCddE3O6cSPzFkrMr13ewkJjpcijBC+Q7t6dJYhVSwFTx/h4I1tdTyQ0AAABYJOlFsz799FOrYrEf\njydnqxeD9fUKejwtycTWxaWiP3DZOikbSoTW1KQco6Hjy3SCF4C9MGcr8kCialVb3cUCdGB7Q7MC\ngWC2wwAAAEhbUgnXbt26acKECTrqqKP0yCOPqK6uzqq4YIZQMnH37pZ/QwnY1iRktj6ERSZCQ/Og\ntvugGBF7sL4+peQwHzIBdIg5W5EHqFZFvmjw+hUIknAFAAC5L6mE66233qp169bpnnvu0eLFizV4\n8GCde+65VsWGVqbNsxZKYrYmXrNV0RVKhAZqaxXcudNQsiOyjW2rcgEAsAuqtwEAAICsSWkO17Fj\nx+rSSy/VySefrGeffdbsmGwv0wtNmF65YpOKrlSOy7KqVT6YAgDyiU1+1wMAAACFKKmE6zfffKP7\n779fw4YN0+TJk1VeXq4NGzZYFZttmZ4AzbNkX2iagJyqROWDKQCD4k6FAgAAAACAkky4HnrooVq9\nerVmz56t//3vf7rmmmvUt29fq2IrHHmW7AvW18dciCpXpwMguQIgUugaly/XbAAAAACAudzJbLxx\n40Z17tzZqlhgRyZW3+bqAlah5ErnBc9lOxQAAAAAAADYXFIVrrW1tZowYYJGjBghSVqxYoV++9vf\nWhJYIctWJWjMfqOrb93unKxSBQAAAAAAADIhqYTr9OnTddZZZykYDEqShg0bpjlz5lgSWCFLZ2Go\ndJK1hvr1eOJvE6callvyAQAAAAAAUCiSXjTrpz/9qZzOlmZut1tud1KzEsBi6SRr0xZnLlpbzXeY\nZwuUAQAAAAAAwF6SSri63e5wdask7dixo83PgO1ZuEBZri4KBsC4QG0tX9gAAAAAABJKKuF65pln\navr06dq1a5dmz56tk046SdOmTbMqNiCnZLW6GEBGBOvr7VGtDwAAAACwraTmA7j66qv117/+VXV1\ndXrttdd01VVX6ZxzzrEqNuS6fL19P/q4WEgMAAAAAAAArZKegPWcc84hyQpjPB55TjtdnRc8l+1I\nUhbz9uHo4/J4FPT5Mh8cAAAAAAAAbMfwlAILFizQUUcdpa5du6pr164aNWqUFixYYGVsQNZx+zAA\nAAAAAACSYajC9Z///Kcuvvhi3XbbbRo5cqSCwaCWLFmiSy65RJ06ddK4ceOsjhM2wy30AAAAAAAA\nQHuGEq4PPvignnnmGY0ZMyb8WGVlpQ499FDdfvvtJFwLEItDAQAAAAAAAO0ZmlJg/fr1bZKtIccd\nd5w2bNhgelAAAAAAAAAAkIsMJVy7du0a97nS0lLTggEAAAAAAACAXGZoSoGdO3fqxRdfVDAYbPdc\nXV2d6UEBAAAAAAAAQC4ylHA94IAD9MADD8R9DgAAAAAAAABgMOH6zjvvWBwGAAAAAAAAAOQ+Q3O4\nAgAAAAAAAAA6RsIVAAAAAAAAAExCwhUAAAAAAAAATELCFQAAAAAAAABMYmjRrAsuuEAOhyPu83Pm\nzDEtIAAAAAAAAADIVYYqXI844ggdfvjhKi4u1ocffqgBAwZo4MCBWrJkiTp16mR1jAAAAAAAAACQ\nEwxVuF566aWSpOOPP14ffvihunXrJkmaOXOmJkyYYF10AAAAAAAAAJBDkprDdevWreFkqyR169ZN\nW7duNT0oAAAAAAAAAMhFhipcQyoqKjR58mRNnTpVkjR37lxVVFRYEhgAAAAAAAAA5JqkKlxnz56t\n3r176+c//7l+/vOfa5999tHs2bOtig0AAAAAAAAAckpSFa7r1q3Tvffe2+axlStXqry83NSgAAAA\nAAAAACAXJVXhOnnyZEOPAQAAAAAAAEAhMlTh+s033+jrr7+Wx+PRJ598omAwKEmqq6tTQ0ODpQEC\nAAAAAAAAQK4wlHB9+umn9bvf/U41NTWaOHFi+PHu3bvrF7/4hWnBeL1enXXWWVq1apU6d+6s3r17\n6+GHH9bAgQNN6wMAAAAAAAAArGJoSoErrrhC69ev180336z169eH/1uxYoWmTp1qakDTp0/XZ599\npuXLl2vixImaNm2aqfsHAAAAAAAAAKskNYfrLbfcIqll8azf/e53eumll0wNplOnTjr55JPDP48a\nNUobNmwwtQ8AAAAAAAAAsIqhhOv3vvc9rVixQpJUU1OjI444Qq+++qquueYa3XPPPZYF9+CDD+q0\n006zbP8AAAAAAAAAYCZDc7hu2rRJI0aMkCT99a9/1ZgxY/SPf/xDO3bs0JgxY3TdddeZHthdd92l\ntWvX6vHHH+9w22AgKIeBfQYDwZiPJ2rbUZtgIKimpia5Y2wX3TZbMdq5P2JMrk2m+8uFGOO1Jcbk\n2mS/v9j7MKs/XrfstbFLf8SYXJu0+gsGDOzZvLaZapPp/nI1xqDBy3khnRO79We4TeuLGfmbOhDn\nBY7+bZ5um3htU2ljZYySFAwGFXlG7RZjJvvLhRjjtSXG+G0S7aNQz4ldYmxqaorZDskpKSmxZL+G\nEq6dO3cO//+//vUvnXLKKZKkHj16yO02tIukzJo1SwsWLNCbb75p6MB9fr/coT8IEvzr8/litncr\n9TY+n08bN25Uv0DHbRP1Y2WMdu6PGDtuE5KNc8LYIsZM95doW7vEmAvn0ar+ciHGeG3tEmOInWNM\nra3C/+7ZE7uNw+lut21HbVNpY6RtocVoVX+5EGO8tsRooE3oiYjGPn+ctq7226bTJl7bVNpYGqMk\nv99v7xgz2F8uxBivLTEmaBPCObFdjBs3b4zZDsa5XC4NGDDAkn0bypY6nU599dVX2muvvfTuu+/q\n7rvvDj/X2NhoakAPPPCAnnnmGb355psqKysz1MbtcskRaPlF53A44v7rdsU+XEfr4E6ljdvtVr/9\n95N7U418HbRN1I+VMdq5P2LsuE348SycE8YWMWauv6B8Pn/CbbMfY+ptMh2jVf3lQozx2tolxvDz\nNo4xtbYK/+suit3GH1C7bTtqm0obI20LLUar+ovVJhi0V4zx2hKjgTahJyIau93RGZjWtvLH7TCV\nNvHaptLG0hjV8mE98hpvuxgz2F8uxBivLTEmaBPCObFdjH369YnZDvZgKOF64403qrKyUm63W2PH\njtXBBx8sqaXatX///qYFs2nTJl1zzTUaOHCgxo4dq2AwqJKSEv373/9O2M7hdCR8vsPt/LEfNtLG\n4XSopKRE/hjbtWuboB8rY7R1f8SYVJtM95cLMcZtS4xJtcl2f8ncEZn1c2Lj82h1f7kQY9y2xJhU\nm7T6c8RbIqDjN3r7tqm06bht4cVoTX+x2xi7oGf/nNjnPMZvm+UYWz/Yh64CDklOR+xrQmj2kcht\n02kTr20qbayMUZIcDkeb9naLMZP95UKM8doSY/w2itg2E/3lwjmxS4xW3QoPcxhKuJ5++ukaPXq0\ntmzZovLy8vDj/fv3NzTHqlH777+/AoHU5z0CAAAAAAAAgGwyPAFr37591bdv3zaP7bfffqYHBAAA\nAAAAAAC5Kt79JAAAAAAAAACAJJFwBQAAAAAAAACTkHAFAAAAAAAAAJOQcAUAAAAAAAAAk5BwBQAA\nAAAAAACTkHAFAAAAAAAAAJOQcAUAAAAAAAAAk5BwBQAAAAAAAACTkHAFAAAAAAAAAJOQcAUAAAAA\nAAAAk5BwBQAAAAAAAACTkHAFAAAAAAAAAJOQcAUAAAAAAAAAk5BwBQAAAAAAAACTkHAFAAAAAAAA\nAJOQcAUAAAAAAAAAk5BwBQAAAAAAAACTkHAFAAAAAAAAAJOQcAUAAAAAAAAAk5BwBQAAAAAAAACT\nkHAFAAAAAAAAAJOQcAUAAAAAAAAAk5BwBQAAAAAAAACTkHAFAAAAAAAAAJOQcAUAAAAAAAAAk5Bw\nBQAAAAAAAACTkHAFAAAAAAAAAJOQcAUAAAAAAAAAk5BwBQAAAAAAAACTkHAFAAAAAAAAAJOQcAUA\nAAAAAAAAk5BwBQAAAAAAAACTkHAFAAAAAAAAAJOQcAUAAAAAAAAAk5BwBQAAAAAAAACTkHAFAAAA\nAAAAAJOQcAUAAAAAAAAAk5BwBQAAAAAAAACTkHAFAAAAAAAAAJOQcAUAAAAAAAAAk5BwBQAAAAAA\nAACT2C7humbNGh1zzDEaMmSIRo4cqVWrVmU7JAAAAAAAAAAwxHYJ1+nTp2vGjBn6/PPP9Ytf/ELn\nn39+tkMCAAAAAAAAAEPc2Q4g0tatW/Xxxx/r9ddflyRNmjRJl112mdatW6cBAwZIkoLBYPuGTqfk\nckk9eiT+1xknv5xOm9DzTmfHbbMVo537I0ZzYrSqv1yIMZdft1yIMWP9BVt+dsjGMebCebS4v1yI\nMZdft1yIMaqt0+FQ985uOR0K/+t0xG4SuU28f6PbptLGSNtCi9Gq/mK1Cdosxlx+3bIfo1NlRWVy\n6tt/nXHqdSK3MaNNvLaptLE0RkeotcN4GxucR6v6y4UYc2Zs2SnGGNeCgj8nNo4R6YuZd0yBI2jW\nnkywbNkynXvuuW2mERg5cqTuueceffe735Uk+Xw+NTQ0ZClCAAAAAAAAAPmotLRUbnf69amkxAEA\nAAAAAADAJLZKuPbr10+bN29WIBAIP/bll1/qgAMOyGJUAAAAAAAAAGCMrRKu++yzj6qqqvSXv/xF\nkvTss8+qX79+4flbAQAAAAAAAMDObDWHqyRVV1dr8uTJ2rZtm7p37665c+fqsMMOCz8fCATaVMBK\nksPhkMMRZ/Z3AAAAAAAAAIgQDAbbLZLldDrljLdwbBJsl3AFAAAAAAAAgFxlqykFAAAAAAAAACCX\nkXAFAAAAAAAAAJOQcAUAAAAAAAAAk5BwBQAAAAAAAACTkHAFAAAAAAAAAJOQcAUAAAAAAAAAk5Bw\nBQAAAAAAAACTkHAFAAAAAAAAAJOQcAUAAAAAAAAAk5BwBQAAAAAAAACTkHAFAAAAAAAAAJOQcAUA\nAAAAAAAAk5BwBQAAAAAAAACTkHAFAAAAAAAAAJOQcAUAAAAAAAAAk5BwBQAAAAAAAACTkHAFAAAA\nAAAAAJOQcAUAAAAAAAAAk5BwBQAAAAAAAACTkHAFAAAAAAAAAJOQcAUAAAAAAAAAk5BwBQAAAAAA\nAACTkHAFAAAAAAAAAJOQcAUAAAAAAAAAk5BwBQAAAAAAAACTkHAFAAAAAAAAAJOQcAUAAAAAAAAA\nk5BwBQAAAAAAAACTkHAFAAAAAAAAAJOQcAUAAAAAAAAAk5BwBQAAAAAAAACTkHAFAAAAAAAAAJOQ\ncAUAAEBSnnjiCf3oRz8ybX8XXnih3n333ZTbX3DBBfq///s/Q9vus88+YzsECwAAIABJREFU+vLL\nLyVJEyZM0OrVq1PuNxmRfT3xxBOqrq7OSL8AAADIPHe2AwAAAEDucTgcpu3rj3/8o2n76khk3C+9\n9JKp+/b7/XK5XDGfi+xr3rx56tGjhw4++GBT+wcAAIA9UOEKAAAA0zz55JMaNWqUjjjiCH33u9/V\nJ598Ikm666679MMf/lCS1NzcrCOOOEJPP/20JGns2LF64YUXJEm7du3ShRdeqOHDh6uyslLTpk2T\nJL311lsaPXq0Dj/8cA0fPlxz5swxFM8LL7ygQw89VCNGjNB1113X5rmDDjpIK1eu1L/+9S+Vl5e3\neW7s2LF68cUXJUmvvfaajjvuOB155JEaNWqU3nnnHUnSu+++q2HDhmnatGmqqqrSggULNHv2bB12\n2GGqqqpSRUWFli5d2qavP/3pT/roo4905ZVXqqqqSi+//LLKy8v14Ycfhvt+/PHHdfbZZxs+5wAA\nALAXKlwBAABgin/96196+umn9f7776uoqEgffPCBzj77bP33v//VjTfeqPHjx+v+++/X+vXrdeSR\nR8ZMKl5xxRUqLS0NJ2q3bdsmSTr88MO1aNEiORwO7dixQ5WVlTr55JO13377xY1n69atmjJlihYt\nWqQhQ4boj3/8Y3h/kUaPHq3m5mYtW7ZMVVVVWrdunaqrqzV+/HitX79et912m1577TV17dpVa9eu\n1XHHHacNGzZIkj777DM9+uijmj17tiRpr7320ueff64+ffrI7/fL6/W26Wvq1Kl68skndeWVV2ri\nxImSpJqaGj300EMaNWqUJOnhhx/Www8/nOzpBwAAgE2QcAUAAIApnn/+ea1cuVIjR45UMBiUJO3c\nuVNer1edOnXSX/7yF1VWVqpnz55avHhxzH0sXLgwXBUqSXvvvbckqba2VlOmTFF1dbXcbre2b9+u\n//73vwkTrh9++KEqKio0ZMgQSS3JzpkzZ8bcdvLkyZo7d66qqqr05z//Weeee66cTqdeeeUVrV27\nVscff3z4mNxud3ge2AEDBujYY48N7+d73/uefvrTn+rUU0/VuHHjNHjw4A7P27nnnqtf/vKX2rp1\nqz7//HM5nU6NHj26w3YAAACwJxKuAAAAMEUwGNT555+vO+64I+bzX3zxhQKBgOrr69XQ0KDi4uJ2\n2zgcjnBiM9KMGTM0fvx4zZ8/X1JLxWtTU5NpsZ9//vkaMWKE7rvvPv35z3/WwoULw8d00kkn6ckn\nn2zX5quvvlLXrl3bPPbss89q2bJleuedd3TKKafozjvv1I9//OOEfZeUlGjy5Ml69NFHtWrVKl16\n6aWmHRcAAAAyjzlcAQAAkLRYSdGJEyfqySef1MaNG8PbfPzxx5Ja5mY9++yz9eSTT2rGjBk677zz\nYu534sSJmjVrVnj/tbW1kloqZQ888EBJ0nvvvaf//Oc/HcZ49NFHa+XKlaqurpYkzZkzR3v27Im5\n7b777qsjjzxSV155pfr06aOhQ4dKkn7wgx/ojTfeCE9xIKlNBW4kv9+vtWvXqqqqSldddZXOOOMM\nLVmypN123bp1U11dXZvHLrnkEj3++ON6++23de6553Z4bAAAALAvEq4AAABI2muvvaYDDjhA/fr1\n0wEHHKBrrrlGxx57rO6991796Ec/UmVlpYYNG6a//e1vkqRp06bpvPPO05gxY3TNNdfI6XTqvvvu\nk9RS1RrywAMPqKmpScOHD1dVVZVuuukmSdJvfvMbXXfddaqqqtK8efPC851Gt4/Uq1cvzZkzR6ed\ndpoqKyu1du3a8BQFsdpNnjxZjz/+uKZMmRJ+bODAgfrrX/+q6dOnq7KyUocddpgefPDBmP35/X5N\nmTJF5eXlqqys1LJly3TVVVe16+uiiy7SnXfeqaqqKr3yyiuSpP3331+VlZU677zzVFJS0sHZBwAA\ngJ05grHKEwAAAABkTENDgw455BB98MEH4UpeAAAA5KaMV7heccUVOuigg+R0OrVy5co2z912220a\nMmSIysvLdeKJJ2Y6NAAAACDjHnvsMQ0dOlSXXXYZyVYAAIA8kPEK1w8++CC8muuCBQtUXl4uSXrw\nwQf1/vvv629/+5tcLpe++eYb9e7dO5OhAQAAAAAAAEBa3Jnu8Nhjj5XUfqGFWbNm6e2335bL5ZKk\nuMnWQCCgQCDQ5jGHwxF37i4AAAAAAAAAiBQMBtvlJ51Op5zO9CcEyHjCNZb6+npt2bJFCxYs0LPP\nPiuHw6Err7xSP/7xj9ttGwgE1NDQkIUoAQAAAAAAAOSr0tLS/Em4+nw++Xw+eb1effjhh9qwYYNG\njx6toUOHavjw4dkODwAAAAAAAAAMyfiiWbH06NFDZWVlOvfccyVJBx54oI455hgtXbo0y5EBAAAA\nAAAAgHG2SLhK0tlnn62XX35ZkrR9+3YtWbIkvKAWAAAAAAAAAOQCRzB6dliLzZgxQwsXLtSWLVu0\n9957q6ysTNXV1dq+fbsuuOACrVu3Tg6HQ5deeqmmT5/err3f79fu3bvbPGbW/AqA3TQ2Nmr16tUa\nPHiwunTpku1wAMsw1lEIGOcoBIxzFArGOgoB4xz5LtY6UV27dpXL5Up73xmfw/XRRx+N+XjPnj31\n/PPPd9je4XC0e8ysFcQAu3E4HPL7/XI4HIxx5DXGOgoB4xyFgHGOQsFYRyFgnKMQxco7poJ3DAAA\nAAAAAACYhIQrAAAAAAAAAJiEhCsAAAAAAAAAmISEKwAAAAAAAACYhIQrAAAAAAAAAJiEhCsAAAAA\nAAAAmISEawb4/X796le/0tChQ1VeXq6qqirNmDFDzz//vCorK7MdHgAAAAAAAACTuLMdQCbUb9ig\nQF2d6ft1du+usgMP7HC7KVOmaOfOnVq8eLG6desmSZo/f762b98uh8NhelwAAAAAAAAAsqMgEq6B\nujrtHjfe9P12fXlhh9usXbtW8+fP18aNG8PJVkmaNGmS3n333fDPfr9f48eP1/bt2+XxeFRRUaE/\n/vGP6ty5s959911ddtllOv7447Vo0SL5/X498cQTqqqqkiQtXLhQv/rVr9Tc3Cyn06nHHntM7733\nnqqrq/XYY49Jkurq6jRo0CCtXr1ae+21l8lnAgAAAAAAAIDElAKWW7ZsmQYPHqwePXok3M7lcunp\np5/WkiVL9Mknn6hbt2566KGHws9//vnnuuCCC7RixQpddtlluvHGGyVJ1dXVmjJlip566imtWLFC\nS5cu1SGHHKJp06bp+eef165duyRJc+fO1WmnnUayFQAAAAAAALAQCVebCAaDuv/++1VVVaXy8nL9\n85//1IoVK8LPDxo0SEcccYQk6eijj9a6deskSW+88YbGjRunwYMHS2pJ3JaVlal79+4644wzNGfO\nHEnSI488ossuuyzDRwUAAAAAAAAUloKYUiCbqqqqtHr1au3YsSNhletTTz2ld955R++//75KS0v1\n0EMP6e233w4/X1JSEv5/l8sln8/XYd8zZ87UxIkTdcghh6h3796qqKhI72AAAAAAAAAAJESFq8UG\nDhyoSZMmaerUqaqLWLjrueeeC1epStLOnTvVq1cvlZaWqr6+XvPmzTO0/x/84Ad69dVXVV1dLUny\n+XzhaQSGDBmiAQMG6KKLLtLMmTPNOygAAAAAAAAAMZFwzYA5c+aovLxcI0eO1PDhw3XYYYfp9ddf\nV8+ePcPb/OxnP1NDQ4OGDh2q8ePH6/jjjze074EDB2ru3Lk699xzNWLECI0aNSqcfJWkCy+8UH6/\nX5MmTTL9uAAAAAAAAAC05QgGg8FsB5GMQCCg+vr6No+VlZXJ6YyfO67fsEGBiOpSszi7d2+Jqa5O\nzu7dVXbggab3ka6ZM2eqb9++uummm7IdClLQ0NCgVatWaejQoSotLc12OIBlGOsoBIxzFALGOQoF\nYx2FgHGOfJdKjtGogpjD1cpEaN3Kldo9bry6vrzQsj5SsXnzZp1wwgnae++99eqrr2Y7HAAAAAAA\nAKAgFETCtRDtu+++WrVqVbbDAAAAAAAAAAoKc7gCAAAAAAAAgElIuAIAAAAAAACASUi4AgAAAAAA\nAIBJSLgCAAAAAAAAgElIuAIAAAAAAACASdzZDiATNn6zQ/WePabvt6xzkboZ2M7n8+nOO+/UM888\nI7fbreLiYh144IG69dZbtWLFCi1YsED/+Mc/TInpiSee0NFHH62DDz7YlP0BAAAAAAAAMC7jCdcr\nrrhCL7zwgjZs2KAVK1aovLy8zfNvvfWWvv/97+uBBx7Q5Zdfbkqf9Z49mjJnuSn7ijRnSqWhhOvk\nyZPV2NioxYsXq1u3lhZvvfWWqqurJUkOh8O0mObNm6cePXqQcAUAAAAAAACyIONTCpx55platGiR\n+vfv3+65Xbt26YYbbtD48eMzHZZl1qxZo+eff15z584NJ1sl6YQTTtCZZ54pSaqvr9c555yj8vJy\nHXXUUfriiy/C2913330aNmyYKioqdN5556m+vl6S9OKLL6qiokJVVVUqLy/Xiy++qD/96U/66KOP\ndOWVV6qqqkqvvPJKRo8VAAAAAAAAKHQZT7gee+yx2m+//RQMBts9d9lll+mWW25Rz549Mx2WZZYv\nX65Bgwape/fucbf56KOPdPfdd2vlypU68cQTdc8990iSXn75Zc2bN0///ve/9Z///EddunTR9ddf\nL0m65ZZb9Pjjj2vZsmVauXKlxowZo6lTp+qII47Qb3/7Wy1btkwnn3xyRo4RAAAAAAAAQAvbLJo1\nf/58uVwuTZgwIduhWGrdunWqrKzUIYccoilTpkiSjj76aB1wwAHh/1+7dq0k6c0339RPfvITlZWV\nSZIuvvhivf7665KkE088UVdccYXuu+8+/ec//2lTPQsAAAAAAAAgO2yxaNaWLVt0xx136N13302p\nfWNjY8J5UIOBQKqhJRQMBBQItFTqBgJBNTQ0tNtmyJAhWrNmjWpqatS9e3f16dNHH3zwgZ566im9\n9NJL8nq9crvd4bZ79uyR1+tVQ0OD9uzZo+bm5vBzTU1NCgZb+vn1r3+tzz77TO+9957OO+88nXXW\nWbriiivk9/vV1NQUMxbkHo/H0+ZfIF8x1lEIGOcoBIxzFArGOgoB4xz5Ltbd92axRcL1448/1tdf\nf60RI0YoGAyqtrZWL774orZu3arbb7+9w/arV6+W3++P+7yzrLeZ4YZ5m5vV3NwsSWpubtbaVati\nbnfsscfqvPPO0y233KKuXbtKktauXav6+nrV1NSovr5eq1rbbty4UY2NjVq1apUGDhyoBx98UN//\n/vfVpUsXzZo1S5WVlVq1apW++OIL9e/fX8cdd5y2bt2qN998U9///vflcDj02WefacCAAZYcM7Ij\ncl5fIJ8x1lEIGOcoBIxzFArGOgoB4xz5yuVyWZY/s0XC9ZRTTtHmzZvDP19wwQWqrKzU5Zdfbqj9\n4MGDE1a4fvFNfdoxxtKpuFjFxcXySSouLtbQwYNibvfMM8/onnvu0UUXXaSioiLttdde6tWrl269\n9VZVV1errKxMQ4cOlSRt2LBBXbp00dChQzV06FA1NDRoxowZcrlcGjZsmH7729+qrKxMt99+u9as\nWaOioiJ16dJFv/vd7zR06FBdfvnluuGGG/Tcc8/ptttu00knnWTJsSMzPB5POLneuXPnbIcDWIax\njkLAOEchYJyjUDDWUQgY58h3wWAwYQFnOhxBK+tnY5gxY4YWLlyoLVu2aO+991ZZWZmqq6vbbDNl\nyhSNGDEiZsI1EAiovr5tArWsrExOZ/zpaDd+s0P1nj3mHEBkv52L1O3rjdo9bry6vrxQ3cvLTe8D\nha2hoUGrVq3S0KFDVVpamu1wAMsw1lEIGOcoBIxzFArGOgoB4xz5LpUco1EZr3B99NFHO9xmzpw5\npvbZr3cPU/cXqe7rjZbtGwAAAAAAAEBuST9lCwAAAAAAAACQRMIVAAAAAAAAAExDwhUAAAAAAAAA\nTELCFQAAAAAAAABMQsIVAAAAAAAAAExCwhUAAAAAAAAATOLOdgCZULN9k3bv2W36frsWdVWpge18\nPp/uvPNOPfPMM3K73SouLtaBBx6o2267TeXl5abHBQAAAAAAACA7CiLhunvPbl3z76tM3++sox8w\nlHCdPHmyGhsbtXjxYnXr1k2S9NZbb+nzzz9vl3ANBAJyOik8BgAAAAAAAHIRmT2LrVmzRs8//7zm\nzp0bTrZK0gknnKAzzzxTTzzxhE444QSdccYZqqio0NKlS7Vlyxb95Cc/0ahRo1RRUaFf/vKX4XbX\nXnutRo4cqaqqKn33u9/V6tWrw885nU795je/0ciRIzVw4EDNmzevTRwTJkzQyJEjNWLECD388MOS\npPvvv1/Tp08Pb1dXV6d99tlHO3futPCsAAAAAAAAAPmpICpcs2n58uUaNGiQunfvHnebJUuWaMWK\nFRo0aJAk6eSTT9ZNN92k4447Tn6/XxMmTND8+fM1adIkXX/99brvvvskSX/72990+eWX6+WXXw7v\nq3Pnzlq8eLE+//xzHXnkkfrZz34mSTr77LP11FNP6eCDD5bH49GoUaM0cuRITZs2TUOGDNF9992n\nbt26ae7cuTrttNO01157WXhWAAAAAAAAgPxEwjXD1q1bp0mTJsnj8Wj06NEaM2aMRo8eHU62NjY2\n6s0339Q333yjYDAoSWpoaNDnn38uSXr11Vf1+9//XvX19QoEAtqxY0eb/Z9zzjmSpCFDhqioqEhf\nf/216urq9L///U9nnXVWeJ+7d+/Wp59+qsMPP1xnnHGG5syZo5///Od65JFH9Pe//z1TpwMAAAAA\nAADIKyRcLVZZWak1a9aorq5O3bt314ABA7R8+XI98cQTev755yVJXbt2DW8fDAblcDi0ePFiFRUV\ntdnXxo0bNXPmTH388cfq37+/PvnkE40ZMyb8vMPhUElJSfhnp9Mpn8+nYDCovffeW8uWLYsZ48yZ\nMzVx4kQdcsgh6t27tyoqKsw8BQAAAAAAAEDBYA5Xiw0aNEg//OEPNXXqVNXV1YUfb2hoiLl9aWmp\nxo4dq7vuuiv82ObNm7Vp0ybV1dWpuLhYffv2VTAY1EMPPdSmbah6NdqQIUPUrVu3NnO6rl27Nlwd\nO2TIEA0YMEAXXXSRZs6cmeqhAgAAAAAAAAWPhGsGzJs3T8OGDdPIkSM1fPhwHX/88XrzzTd13XXX\nxdz+qaee0po1azR8+HCVl5dr0qRJ2r59u4YNG6azzjpLhx56qEaOHKn+/fu3aedwOGL+7HK59NJL\nL+m5557TiBEjNGzYME2bNk1NTU3hbS+88EL5/X5NmjTJ3IMHAAAAAAAACogjGK8s0qYCgYDq6+vb\nPFZWVianM37uuGb7Ju3es9v0WLoWdVXpV9u0e9x4dX15obqXl5veR6bMnDlTffv21U033ZTtUBCh\noaFBq1at0tChQ1VaWprtcADLMNZRCBjnKASMcxQKxjoKAeMc+S6VHKNRBTGH634997ds33VfbbNs\n35mwefNmnXDCCdp777316quvZjscAAAAAAAAIKcVRMIV8e27775atWpVtsMAAAAAAAAA8gJzuAIA\nAAAAAACASUi4AgAAAAAAAIBJSLgCAAAAAAAAgElIuAIAAAAAAACASUi4AgAAAAAAAIBJSLgCAAAA\nAAAAgEkynnC94oordNBBB8npdGrlypXhx6dMmaIhQ4aosrJSxx13nD766KNMhwYAAAAAAAAAacl4\nwvXMM8/UokWL1L9//zaPn3766Vq1apWWL1+u66+/XmeeeWamQwMAAAAAAACAtLgz3eGxxx4rSQoG\ng20enzBhQvj/R40apZqaGgX+P3v3HudEfe9//J1kLyzLgiBy6qHIAqJyLKgoKoii1ta2WNRyrLUq\nVkXEVk9rj1Vra6/q0Xppq0WpPaI99VJ9tP4U77VesXihAkIrclnYFYEKCCx7zyaZ3x84cTeby0wy\nk5lJXs/Hw8fKbr4zn/nON7Obd775TiKhcJhVDwAAAAAAAAAEgy/TzF/96lf60pe+RNgKAAAAAAAA\nIFCKPsM1l/vvv19/+tOf9Oqrr1pu097erlAo5GJVmSUSRvJrW1ubJzWgdHV0dPT6CpQqxjrKAeMc\n5YBxjnLBWEc5YJyj1KV++t5JvgpcH374Yf385z/Xiy++qH322cdyu7Vr1yoej7tYWWYjPg5co9Go\nGlat8qQGlL7GxkavSwCKgrGOcsA4RzlgnKNcMNZRDhjnKFWRSESjR492Zdu+CVwfeeQRXXvttXrh\nhRc0fPhwW23Hjh3r2QzX6Np1ikmqqqrSuLH7e1IDSldHR4caGxtVX1+vmpoar8sBXMNYRzlgnKMc\nMM5RLhjrKAeMc5Q6wzBcm8BZ9MB17ty5euqpp/Thhx/q5JNPVl1dndasWaNzzjlH++67r0499VQZ\nhqFQKKQXXnhBgwcPzrnN/v37e7beayy8J+gNh0Oqra31pAaUvpqaGsYXygJjHeWAcY5ywDhHuWCs\noxwwzlGqEomEWlpaXNl20QPX+fPnp/1+NBotciUAAAAAAAAA4CxvpoUCAAAAAAAAQAkicAUAAAAA\nAAAAhxC4AgAAAAAAAIBDCFwBAAAAAAAAwCEErgAAAAAAAADgEAJXAAAAAAAAAHAIgSsAAAAAAAAA\nOITAFQAAAAAAAAAcQuAKAAAAAAAAAA4hcAUAAAAAAAAAhxC4AgAAAAAAAIBDCFwBAAAAAAAAwCEE\nrgAAAAAAAADgEFuB61lnnaXFixe7VQsAAAAAAAAABJqtwPWEE07QN7/5TU2cOFH33HOPOjs73aoL\nAAAAAAAAAALHVuA6Z84cLV++XLfffrteeOEFjRo1SldeeaWamprcqg8AAAAAAAAAAiOvNVwPPPBA\njRs3ThUVFXrvvfc0depU3XTTTU7XBgAAAAAAAACBYitwfeONN3T22Wfr0EMPVWdnp9544w0tXLhQ\n7733nubNm+dWjQAAAAAAAAAQCBV2Hjxnzhx9+9vf1j333KN+/folv19bW6sf/OAHjhcHAAAAAAAA\nAEFia4brTTfdpAsvvLBX2Prss89Kki6++GJnKwMAAAAAAACAgLEVuKabxXrNNdc4VgwAAAAAAAAA\nBJmlJQXWrFmj9957T83NzVq4cGHy+83NzWpvb3etOAAAAAAAAAAIEkuB6+uvv6777rtPW7du1S9/\n+cvk9wcOHKhbb73V1g6//e1va+HChWpqatLy5cs1YcIESdK2bds0a9YsNTQ0qF+/fpo3b56OPfZY\nW9sGAAAAAAAAAC9ZClzPO+88nXfeebrnnnt04YUXFrTDM844Q1dddZWmTp3a6/tXX321Jk+erGee\neUZ///vfdfrpp6uxsVGRSKSg/QEAAAAAAABAsVgKXNeuXauxY8dq0qRJWrFiRZ+fm7NUrTCDVsMw\nen3/kUceUUNDgyTpiCOO0PDhw/XKK6/oxBNPtLxtBFdLU5MSzc0KDxqkupEjvS4HAAAAAAAAyIul\nwPXyyy/Xk08+qVNPPbXPz0KhkNavX19QETt27FAsFtOwYcOS3xs5cqTef//9graL4Eg0N6v1i9M1\n4JmnvC4FAAAAAAAAyJulwPXJJ5+UJG3YsMHVYvLV3t6uUCjkyb4TCSP5ta2tzZMaSgH9mF5HR0ev\nr0CpYqyjHDDOUQ4Y5ygXjHWUA8Y5Sl3qp++dZClwNS1ZskQHH3yw+vfvr0ceeURvvfWWvvvd7+rf\n//3fCypiyJAhqqio0NatW5OzXBsbG7XffvtZar927VrF4/GCasjXiI+Dwmg0qoZVqzypoRTQj9k1\nNjZ6XQJQFIx1lAPGOcoB4xzlgrGOcsA4R6mKRCIaPXq0K9u2FbjOnj1bS5cu1dq1a/WDH/xA//mf\n/6nzzz9fzz33XMGFnHHGGbrrrrv04x//WEuWLNHmzZs1bdo0S23Hjh3r2QzX6Np1ikmqqqrSuLH7\ne1JDKaAf0+vo6FBjY6Pq6+tVU1PjdTmAaxjrKAeMc5QDxjnKBWMd5YBxjlJnGIZrEzhtBa6RSESR\nSETPPPOMLrnkEn33u9/VYYcdZmuHc+fO1VNPPaUPP/xQJ598surq6rRmzRrdeOONOvfcc3XAAQeo\nurpaDzzwgCKRiKVt9u/fX+Fw2FYdTomF9wS94XBItbW1ntRQCujH7GpqaugXlAXGOsoB4xzlgHGO\ncsFYRzlgnKNUJRIJtbS0uLJtW4FrV1eXPvzwQz3xxBO66aabJMl2Ejx//vy03x82bJgjM2UBAAAA\nAAAAwCu2poVefvnlOvDAAzVo0CBNnDhRDQ0NGjx4sFu1AQAAAAAAAECgWJ7hGo/HNXjwYO3atSv5\nvfr6ej3//POuFAYAAAAAAAAAQWN5hmskEtH111/f53tVVVWOFwUAAAAAAAAAQWRrSYGJEyfqtdde\nc6sWAAAAAAAAAAg0WzfNeuONN3Tfffdp9OjRGjBgQPL7S5cudbwwAAAAAAAAAAgaW4HrvHnz3KoD\nAAAAAAAAAALPVuA6bdo0dXd36/3339eYMWPcqgkAAAAAAAAAAsnWGq4vv/yyRo4cqRNOOEGStGTJ\nEp1zzjmuFAYAAAAAAAAAQWMrcL366qu1aNEi7b333pKkSZMmadmyZa4UBgAAAAAAAABBYytwjcfj\nfZYSqKqqcrQgAAAAAOVn49ad2rh1p9dlAAAAFMzWGq79+vVTa2urQqGQJGnlypWqqalxpTAAAAAA\n5aOlo9vrEgAAABxhK3C99tpr9fnPf16bNm3SOeeco7/+9a968MEH3aoNAAAAAAAAAALFVuD6+c9/\nXmPHjtWzzz4rwzD005/+tM8SAwAAAAAAAABQrmwFrk888YSmT5+uSy65xK16AAAAAAAAACCwbN00\n67bbbtOIESN05ZVXatWqVW7VBAAAAAAAAACBZCtwfemll7Ro0SL1799f06dP1+TJk/W73/3OrdoA\nAAAAAAAAIFBsBa6SNHr0aP3kJz/Ru+++q0MPPVRz5851oy4AAAC1XB5RAAAgAElEQVQAAAAACBzb\ngevSpUt12WWXaeTIkdq4caMefvhhN+oCAAAAAAAAgMCxddOsCRMmKBqN6hvf+IaWL1+ufffd1626\nAAAAAAAAACBwbAWu8+fP15QpU9yqBQAAAAAAAAACzVLgunbtWo0dO1YDBgzQihUr+vx8woQJjhcG\nAAAAAAAAAEFjKXC9/PLL9eSTT+rUU0/t87NQKKT169c7XhgAAAAAAAAABI2lwPXJJ5+UJG3YsMHV\nYgAAAAAAAAAgyCwFru+//37Wn++3336OFCNJTz/9tK699lolEgnF43FdccUVmjVrlmPbBwAAAAAA\nAAC3WApcDz/8cIVCIUnSRx99pMrKSklSd3e39t57b23dutWxgs4991y9+uqrOvjgg9XU1KSDDjpI\nM2fOVG1trWP7AAAAAAAAAAA3WApct23bJkm66qqrtP/+++vCCy+UJC1YsEANDQ2OFhQOh7Vz505J\nUnNzs4YOHarq6mpH9wEAAAAAAAAAbgjbefBzzz2niy66SOFwWOFwWLNnz9azzz7raEF//OMfdfrp\np6u+vl7HHXecfv/736uiwlIuDAAAAAAAAACespVkRqNRrV69WgceeKAkac2aNerq6nKsmHg8ruuu\nu06PPfaYjjnmGP3973/XjBkz9I9//ENDhgzJ2K69vT255EGxJRJG8mtbW5snNZQC+jG9jo6OXl+B\nUsVYRzlgnKMcFDLOjURCkvhbEIHANR3lgHGOUmcYhmvbthW43njjjTrmmGN0yCGHSJJWrFihBQsW\nOFbM8uXLtWXLFh1zzDGSpCOOOEKf/vSntWzZMn32s5/N2G7t2rWKx+OO1WHHiI+Dwmg0qoZVqzyp\noRTQj9k1NjZ6XQJQFIx1lAPGOcpBPuM8XDdMkrSKvwURIFzTUQ4Y5yhVkUhEo0ePdmXbtgLXGTNm\naNWqVXrjjTckSZMnT9bQoUMdK2bEiBHasmWL3nvvPR100EFat26d1q9fn5xRm8nYsWM9m+EaXbtO\nMUlVVVUaN3Z/T2ooBfRjeh0dHWpsbFR9fb1qamq8LgdwDWMd5YBxjnJQyDhv3NoiSaofN86N0gBH\ncU1HOWCco9QZhuHaBE7bi6Pus88++vKXv+xGLRo2bJjuvvtuffWrX1UkElEikdC8efP06U9/Omu7\n/v37Kxy2tRytY2LhPUFvOBxSbW2tJzWUAvoxu5qaGvoFZYGxjnLAOEc5yGech8J7lhLg+YEg4ZqO\ncsA4R6lKJBJqaWlxZdu+uxvVmWeeqTPPPNPrMgAAAAAAAADANm+mhQIAAAAAAABACSJwBQAAAAAA\nAACHWFpS4Pbbb8/68//6r/9ypBgAAAAAAAAACDJLgeuyZcsy/iwUCjlWDAAAAAAAAAAEmaXA9d57\n73W7DgAAAAAAAAAIPEuBa0+bN2/WP/7xD3V2dia/N2PGDEeLAgAAgH+1NDUp0dys8KBBqhs50uty\nAAAAAF+xFbguWLBAP/vZz7Rjxw6NHTtW77zzjo4++mgCVwAAgDKSaG5W6xena8AzT3ldCgAAAOA7\nYTsP/uUvf6lly5ZpzJgxevvtt/Xiiy/qgAMOcKs2AAAAAICPbN6xSZt3bPK6DAAAfM1W4FpVVaXB\ngwcrFotJko477jgtX77clcIAAAAAAP7S2t2q1u5Wr8sAAMDXbC0pUF1dLcMwdMABB+hXv/qVRo4c\nqdZWftkCAAAAAAAAgGQzcL3uuuu0e/du/eIXv9DcuXO1a9cu3XnnnW7VBgAAAAAAAACBYitwPfHE\nEyVJgwYN0vPPP+9KQQAAAAAAAAAQVLbWcJ09e7Y++uij5L+3b9+uiy++2PGiAAAAAAAAACCIbAWu\nb7/9tvbee+/kv4cOHaolS5Y4XhQAAAAAAAAABJGtwDUWi/X6t2EYikajjhYEAAAAAAAAAEFlK3A9\n+uijdemll6qpqUmNjY267LLLdPTRR7tVGwAAAHxsx4DBerdpq9Z9sE3vNm3Vxq07vS4JARcOGYyl\ngNi8Y5M279jkdRkAAPiSrcD11ltvVVtbmyZNmqSjjjpKXV1d+uUvf+lWbQAAAPCxtph0wYJlau2M\n6YIFy9TS0e11SQi4zmiCsRQQrd2tau1u9boMAAB8qcLOgwcOHKh7773XrVoAAAAAAACQw+Ydm9Ta\n3aoBlQP070OGe10OgBSWAtdXXnlF06ZN08KFC9P+fMaMGY4WBQAAAAAAkI25rEU5Bo6t3a264vXv\n6pbJt9luS1gLuM9S4Hr//fdr2rRpaZcPCIVCBK4AAAAAAEvKOSSDs1jWIj+FhLUArLEUuP7ud7+T\nJL300kuuFgMAAAAAKG2EZACAUmfrplkPPfRQn+/dfPPNjhVTblqamtS8YoVampq8LgUAAAAAAACA\nA2wFrrfeeqsuueQSRaNR7dy5U6eccooWLVrkaEHRaFSXXXaZDjjgAB1yyCGaNWuWo9v3k0Rzs1q/\nOF2J5mavSwEAAAAAAADgAFuB6+LFixWJRHTUUUdp0qRJOv744zPeSCtfV111lcLhsNasWaN33nlH\nt9xyi6PbBwAAAAAAAAC3WFrD1VRVVaVRo0bpiSeeUCKR0KRJkxwtpr29XQsWLNCmTZuS3xs2bJij\n+wBgj7nkRd3IkR5XAgAA0NfGrTvV0tGtuppKjRg22OtyAAAA7M1wPfXUU/Xiiy9q2bJlevzxxzVn\nzhxdd911jhXT0NCgIUOG6Prrr9ekSZM0bdo0vfjii45tH4B9ieZmlr0AAAC+1dLRrQsWLFNLR7fX\npQAAAEiyOcP1qKOO0jXXXCNJGjJkiJYsWaLZs2c7VkwsFlNTU5M+85nP6H/+53+0fPlyfe5zn9O7\n776rffbZJ2O79vZ2hUIhx+qwI5Ewkl/b2tqK1rbU0BfpdXR09PrqBfPccF7gJj+MdcBtpTTOzd8N\nn9jzbyORKMnfF9t3d6i1M6YB/So0dGCN1+X4WiHj3EgklM9Y2tPOmfHHuc4t9fmfT5+Xwt+XpXRN\nD7JSGEv5KkYWwTi3Zkf7R2qLtau2or+G9N/b63Jgg2Gk/k3rHFuBqxm2dnV1qbq6WgMHDtQjjzzi\nWDH77befIpGIvv71r0uSDj30UI0aNUorV67UiSeemLHd2rVrFY/HHavDjhEfX6ii0agaVq0qWttS\nQ19k19jY6Nm+zXPDeUExeDnWgWIphXFu/m4w/0g1/1btika1yue/L2r22vMmfseubZbbhOuG6ZsP\nrtKdXx+nbZsaXaqstOQzzsN1wxQK73l5YmcsheuGWWpj5dxzrnOr2qeq17/zec6b2/D79cKKUrim\nB1kpjSW7zGOPplz7aofWSpLatmcOUjO1zYRxnl3VPlX64bLv67rD/kcfNm31uhzYEIlENHr0aFe2\nbStwXblypc466yzt2rVLH3zwgd5++209/PDD+sUvfuFIMXvvvbc++9nP6tlnn9UXv/hFbdiwQY2N\njRo3blzWdmPHjvVshmt07TrFtGd923Fj9y9a21JDX6TX0dGhxsZG1dfXq6bGm1kW0bXrJInzAlf5\nYawDbiulcW7+3jb//jL/DKuuqlJ9jr/biiXTTMXGrS2SpH2G10uSpVmMZhs/HZ9fFTLOG7e2qDu+\nZ7aqnb62en7Mx2V7bcG5zm3j7o29/j1m3Ji8t5FPW78opWt6kJXCWMqXeexVVVW9jt/8frZrXaa2\nqfId56U64zPTcVntT/iPYRiuTeC0Fbhedtllmj9/vi677DJJ0sSJEzVr1izHAldJuuuuu3ThhRfq\nqquuUiQS0d1336199903a5v+/fsrHLa1HK1jYuE9rzDC4ZBqa2uL1rbU0BfZ1dTUeNYv5rnhvKAY\nvBzrQLGUwjg3fzd84uPgNRz2zbE1bW/Thfe9owUXHKaRPWoKhffM+GmL7gn2Rlqo12zjp+Pzu3zG\neSjcJsWNj/8/fV9v3LpTknrdHMvq+TEfZ+Ux5XKu0/VnLuHW3s//fPrJ3EYp9LHfr+mbd+y5IfW/\nDxnucSXuKKWxZJd57Kmvoa30Saa2mdgd55taP9CVb/63bpl8m+/PzeYdm9Ta3aoBlQNyPk8yHZfd\n/oR/JBIJtbS0uLJtW4Fra2urpk6dmvx3KBRSVVVVlhb2jRo1ihtlAQAAAOjDqRtjbdy6Uy0d3aqr\nqbQVNgZVpuPlRmOlr7W71esSAF9r7W7VFa9/V7dMvs3rUvqwEwbDf2xNC62oqFB3d3fy42MbN25U\nJBJxpTAAAAAESzhkJGfMFWrj1p2ObcspTh6fFzZu3al3m7YG+hjsyHa8LR3dumDBspIPHM0+2Nna\n6dvj3bxjk9Z8uDo5ExOAP2zesUkbd29MrgmL4jPDYN44CSZbgeull16q0047Tdu2bdMPf/hDHXvs\nsbryyivdqg0AAAAB0hlNOBbotHR0572tjVt3KubCelxOHp8X7IaMfgy97SiXUDUbsw8SCa8ryczN\nQGHzjk0EuUCeWrtbdeWb/63uUHCvoVwD4CVbSwqcc845Gj16tB5//HFFo1Hdf//9vZYYAAAAALzW\n0tFtO2DquZZluX3cPBM/BZVuBb/hkKF3m7aW/bkuVcwKy46PK6PUcQ2Al2zfaWrKlCm66aab9Itf\n/EJTp07VFVdc4UZdgZOIRNS8YoVampqK2hYAAKBcuPmR+JaObrV1Rl37+HXQZ4uavFqWoJAZz9l0\nRhMlMwvWD2PMq+UBWJbAvs07NmlX5y4+ruyATOPP69mVXu8fKHe2A9dUjzzyiBN1BJ7R3q7WL05X\nork542NamprSBqtW2gIAAJQ7tz8iboZvbnz8Ol1gGMQ1VfmYvn+5FUrbkbo8QLECH3O/bdF23wRM\nfg+BW7tblTB8vNZEgGRaFqO1u9XTMNvr/QPlruDA1TAMJ+ooC4nmZseC1UzhLQAAgJ+5ETL6YWZf\nPszw0pxZG8RjALIpduDTFe+0vD8zEF2/db0roSg3u0GxhIywr8P9bAp5U8btN3RSt795xybF4jHX\n9ofSU3DgGgqFnKijZLU0NbkSijoZ3hbCreMDAAClyY0Zktlm9plrdPo5zPTqY+1BnGFbqoL6pkEm\nZgDk53DCDETbu9sIRUuU32YZuxUQdsU7XQ33qyurtXH3Rq3fut7x/jTflMmnb9x+Qyd1+8wKh12W\nbpp1+umnpw1WDcPQRx995HhRpaSQQNQMMutGjnSqHMd5HfgCAABk0xlNaO4fVmjBBYc5ts2eN9gK\nIjOEjsXjmvN7Z/vGjkL6MejnIJXXSwE4rSveqWuWXK0bJt3odSl5M8MfbiYV3L4wQ/VbJt/mdSmS\ngnsDp2iiSz/4+/d1w6Qbdc2Sq13pz6D2DZCNpcD1tNNOy+tnKAxhJvwkCG8AAABQDD3DsY1bd6ql\no9u3d7nvOWsyFo9L+iSEnn/uBK/KklRYyOingNLvYyAozFmxAyoHWA72Nu/YpNbuVkszac3HWt1+\na3drXjW5yavgkzCsdIWMsDbv2OTImApqMA+4xVLget5557ldBwCf4w0AAIBVpTb7MBtziQSvZonm\n0jOYdONmYMhvDLgZ0gb1+WfOirUze86cwWhlJm0+sx3zqclN5Rx82g3M3axD8jZUtPNGQy5d8U4Z\n3c78cijn8WmFX8YwiqfgNVwB+Bc3V4MdrMkMwCl+uFt6qTLXXV33wTZfrb/q9Bqk+ay9W4z1ep06\nTifXMk6tycrzL9tx+HVtX7dvkFMqirVuabHXR/XLTciKfSO4dOPe7Auv1hMN8k26vGA+V3Z17vLF\nGEbxELjmyQyyEt3OLwRP6AGn+OXmagiGRHOzY2OF6xiAnuyEVFYe62SwVkiAtnHrzuTH9NP9zI0a\nzaCutTPmyY22MnE6ZM/nRmKF3Hys57q22Th9nFb363RN2dq4cWM7UyGhabGDrqAqVjDplwA0lR+D\n+XR3u7daox/HfT436TJDx/Vb1/vu/DjJXKKh5zn2OiCHdwhc82QGWUYi/z+Osm3bauiRiEQINeAK\nAjMUwsnwFkDw2QmErDy2kGCtkNrStc30MX0nQytmDGeWLfS2wxxTTiy7YCfEd3K/QeDH8Mjkx6Cu\nVBQyG9Zsa/Xj806NMSdn8Ka7271fnwduMUPH9u62kjj2TLN8u+KdyfPb2t2qzTs2ObL0A4KJwDXg\njPZ2Qg24olwDM4JmAPCG0x9JhzPMGZjmEgZOhJtOyhZ6FyIcMnqNx3Tj05zFnNonpRaQF/uj415x\nIgQjtE0vdTasnTHlxOxAMxxbv3V9zv1a/fh3unMd5I/al9vYLfT8WZ3l29rd2mfs5jNOgjy2yllJ\nBK6tH3xAQALfILALtnINmgHAa+lCqmKsyYnszBmY5hIGxZ6J6cRH7vPRGU30Go/pxqc5i9mr2anZ\n3qRwst9yfXS83IKabJyeuVissLvYYU6xlyMww7H27rac+7Ua8KY713Y+ap+pz716g6OQsZtuyQS/\nz+os9PwVIp/9FKs2OKskAldj924CkoBycy1crxDYAQDgDCeXDkAwldtH7u3M9M42k7aY/dba3aq2\naLutj31LnwROxQ5m8tmvV7PLihVMBinMKZWZfpn63I1z7vabIumWTGC9UneUyvgvFyURuJaDUr3b\nvJtr4QIAAJi8milZiGIvs+D0/vx6t3s/C+pyBGZ4ZCdkydTGSqBgd11Pp2oNQiDpNbfDPbfORb5j\nKqizOZH5zRfzxlfF2r+dfXEtChYC14DgbvMAAAD5C+JMyWKHb+b+7ASv2R5rfuS+rTNK8JqHcg2s\nswUKZkBhrq/pxiw6K4Hh5h2btHH3RtUOrbXcxon95vNYJ23esSm5DmqmkLFY4Z6TodjmHZvyHlOl\nNpvT6bHlxEx2Mwxfv3W9o7VlevPFvPGV28z9t0XbmbFaoghcPZCIREruY/QA3Mf6wABQ2vyyZq2d\noNfKY1OXhnB75m4QZzOnYwbWPfutmOOjorLNk4/8Z5PP7FS7rASGrd2tuvLN/1Z3qNtym1SpwZad\nbbgdamYK3Vq7W5ProDp5DvIJ+ZwMxbwMTf32EXGnx5YTz1lzmYX27jbLtaXOWPbzWtOZxnIQZk8j\nOwLXImlpakoGrEZ7e9qP0SciEcIUABmxPjCAcmU1QCv2R/Dzka1GJ9asDUIfuD1zN9ds5o1bd7oS\nxoZDhqt9nxrAOinduOlKdPQKSor1MVs/c3Ld2XTBltfhW88ZxG4Eupn6z+mQz431gd0K7Jz8iHi2\n56jZJ7lmKJuCFval3mws9eZnQVxWodRmT5cjAtciSTQ351yn1Ghv912YUqprxwJwB7NwAbjB6nIA\nflz/MjWEc7tGP/aB19Kdg0KWlsj0BkBnNOFK3xdjxq6VcVOsj9n6mdszbL1enzGf47MTEqduP1Mw\nmk+42bONk+fJ7RA6dT+FhJzZnqNmn1idoeyHsM/Kurqpy4yU+zUK/kLg6pJSCR1YO9ZdpTJO4Kwg\nv9Hh9CzcIPcFPsG1DuXMrRAulflx86B/jN4NTp+DfNYDLmQ5gCCuP+w1P398OFW6Wt2YoemWQkLi\n1GDU7AtzNqKdWZZuzWAsxjIWxdyPX1h5jqbOUk2nGP0WpOsJ/IXA1SV89BdWWBkn+1ZXK7p2na/D\nCkIxZ/FGxyfoi9LA70TAfebHzfMJ5Zz8KPz23R2q2WsfW22CsAxCodxcDiAIih1YBOnjw+lqLYXw\nzTznhYSmbs+yDFKQFqRarSjkOcr1BEHh28D13nvvVTgc1sKFC70uBfBURUen2qef4uuwglAMCAbe\nHAm2IM4UzhakOXGDKLfXzPTq5kt2jitTjXZCTCdngLZ2xtQVD9lq4+dlEMohDDa5Od4JLD7hVXDm\nVUjlh4+mZxKkcRmkWt0WpLAW5c2XgWtTU5P+93//V5MnT/a6lJJm54VbIhLhRboDzLBj1+rV9GUO\nQQwWiongrDQ5Me6zbcPPb44EYUzbqdGN43F7prAbNWcL0py4QZTbH9f36qPcdo4rU41+DjGDpJz6\n0W9LFzh5ky4/3QDIq+Asn/0STiGbIN5Ir1SC6yD2fTnyXeBqGIZmz56t3/zmN6qqqvK6HF9oaWpS\norvwPxBSX0hle+FmPtbcr9He7tsX6UGSDDt276Yvc+AjyNn5OTiDfWZI6sS4D+pzxxzTsdZWV9+Y\nyhUqOhVYB+k5avZJbPtHganZj5yYsRskbs8uBpy8SZdbsyyrK6u1o/0jS4+1cgOgfKTend1JdsIp\nAqDyw430vEPfB4PvAtfbbrtNxx57rA477DBb7Up5BmaiuVlGovCP9uTzQtGJ/QLlzIkZY/nMemSG\nsD9lGg+pIWk5nb+Mb/C59MZUrt+FQQ2sC7nWFOt3fqaPK3v1sX2nmbMD2zqjJXE8uRTrZmClplTG\nO/aIJrrUFmu39FgrNwDKJFOYuXnHJt/cnT1IARDhsD+ZN4tbv3V9YG4aB2RT4XUBPf3zn//Un//8\nZy1atMhWu0TCkNHVodbTvqL+Tz2ptqFDXaqw9z4zfb+trS3jz/Pdbrbtm9/LpPvDD2XsbpHx8QUr\ndRvp2uY6vtTHZdt/Nqn7yXUsQWAe06716yVJlf/2b31+lvr/mY65o6Oj1+Pt9o25j0Lapso2XhLh\nsHYuf0ehgXW9jjsfhY4tr/fb83nXMeM0W9em1PMW27mr1897Pn8znVuzTbZ9mjWa56uQY+/+8ENJ\nkpEybqxuyxzrPce8lHsMm/s1WRl3ZhunH2tFbOcutU8/pc946HMttHD+UqWeg7a2tozn2Mo1IbVt\nIbKNLbNPah57NG07p68BufrAyu9GK3Wle2ymcW639mz9mOta03NMp/590HM/Vo/vE0byq5Hh88id\n8YTm/mGl5p87vlebzmg8+X0jlNrWyPk10/6cbpO5be/H9DyebPtra2vr8X1rNeZqk61tsdokjD0/\n7+jo6FOrkUikHIP7NWZu6/7Y6vk8Mr+fbnxkapvpXIdl6J8b/qV4wlAknGm93PQ1Zj8HqW36yuc1\nTr6vi8y2Zj9a3U6xazSMhBKJ3vOY0v2tlul1gBVd8U7Fu/qG9Lu7WpIBbup+Mr0utdqfXpzrYu0v\nU386tb9CM4Fs28i13SCft1iiU9csuVo3TLox+dXu/px4vtlp4+T+Uv/2snqsKIxh5D/+c/FV4Lpo\n0SI1NTVp7NixMgxD//rXvzRnzhxt2bJFF198ccZ20e5uVXzcSdFoVA2rVrle64iPB795coyU/Y9I\n8+SoUPo2Pb92R6Np92e2Td2+2SbbMY9IGIqd/hX1+39/TruNdG1zHV/q4/Lt89T9uHn+9q2uliRt\n6eoq6DG5JM/99j0fL1q3Y0efn6We66zn7+Ov+fSNub9C2qZqWLVK+1ZXq6KjU7GaftrS1ZV8bKK9\nXZ2nz1TF/3u013Hno9Cx5fV+Mz3v7NSQ6XrSvn69+nVHs27XynGYNZrnq5BjtzNeTOmeb42NjWm3\nm+s4TVbGndmm52Mz1ZjusYVIPR5zvxUhKZamC9Mdc2qtZj9WdHT2aZvpHFsZj6lt85F6fHZ+35jX\nyfaP37wq5Lqcbn+pfZDsx4+vzdlqtdp/mR6bOs577j/bcVr5vZ2rtp5jOvU6Zed3cd/zpuTXrgx/\ny4TCFX0em6ttPm2stPVDjatWrVK4bpitNo1btqtb/umTTG2kPeM89fi6otFex12MGjO1LcbYatyy\nXZLUsWtb1nOdrm228dERjeuS+1fqrnPGKxZLP8s4U40hGWrcsj3tjc36tul7XY5m6pOIs216tl31\n8fWoap8qy22KVaMkdadZ+m3VqlWq2mfP8njmMZj/dqvG1P2k/rtnbVLu/vTiXHu5PydrzNT3dvaX\nbhvVldVq2N6gcCRUcI122piCcN6K9Xyzsz+71zqTledoahvYF4lENHr0aFe27avAde7cuZo7d27y\n3yeccIIuv/xyzZgxI2u7qsrK5MfgqqqqNG7s/nnt385snujadYpJCoX2XOzMr+b+o2vX9WljfByQ\npLbp+bWqMv1F2Wxb1b9GY2JxGfFYcv9VldmPObXW1BrTtc11fD0fl7qNQvqxkPPXc/9S3xlpyVrH\njctaT8/H5DO7LfXcp/ZXz/OW7jE9dXR0KL5+g6T8+sbcX75t0zHHTvvpe2aUjxs3zpXzmG18uiE5\nO3B3iyP7zdQnPWdkGtGo1NmVfK70nG3W87ylnouqeCI59yRTX1vpv9TxYbbZf2CdpMLGvSndeOlT\n47hx6ujoUGNjo+rr61VTU5OxxtTnZLbnW65aze0Zu1tkRKPqyFJjPn2Sad+pfd5++ldU+dijadct\nz3RuU59/kqSU9ub2Y+r7u6Oqf43279+/z/H07N9c1w8r18fU47Pz+8a8TlbF98zcyXbttiPTcaX2\nY7ZarVzj0j020zjvuX9Lv6PyqC3dNS7X7/ps57hvWyW/ZlqDv/vjc9nzsbna5tPGSls/1DhgeL2a\n27tt1ygf9Um6NgnDUHd3t+rr6/VhS6xXm+qqKtWPG6fGrS3pj82FGjO1LebYGtfjmK3uL9f4yLfG\naNxQZaRa1RErbfpelyurKtPuL5bodrRNz7Zjxo2RJG3cvdFym2LVKEmVlRUKhXrPcB0zbow27t4o\nSaqp7qeq4VWKG3FXa0zdT1VVVa86etYm5e5PL861l/tzssZMfW9nf+m20Z2I6ofLvp+c+VmsfjQF\n4byl9pvbNVrZn91rnbkudFusPWeNZhvkzzAMxV1a5sdXgWuqnr/IsgmHQ4r3+P/a2tq89tfc2qq2\n6adowDNPqTZHwh3L8PEdc//pfm7lFIYzbNdsa3R0qOO0r/T66GWuY06tJbVGs6257lvdyJE5jy91\n2z2/V1A/VlYo1tCg8KBBqhs5Mmtb8wYzqY9tbt2zdlDqvnvWmqlt6vFk2padY0rXX1Lvc53YvmcG\nRLpjbu3xeLtj29xfIW1T9Rw7mcZ7Ic/D1P0Xuh2rzHMdcmi/mfrE3I8kJbq61HHaV5LPFfO5Yz6/\nrVxPMvW1lf7LeB4dGPemdOMlW401NTVpH5Paf2Zt2Z5vVkeDs9gAACAASURBVJ7nmfrcbKt4XOHK\nCkt9kml/PWV77qS7/ie2b1e8s1Ohri4Z1dUKdXVJH/9BkG18mMdn/iz1d4fR0aFwItHneHr2b2qt\nPX9HpD42k9TjyzZW0+nZJ+l+V9nR85ymqyfbWEp9TGqfmNKNs3THnTrOez7eynPWSm2p0l3jcv2u\nz3aO+7YNJb+GwhluERA3+jw2Z9t82lho64ca26IJfTJJ3+UaLbR1qk04kVC/qkp92BJT3OjdNhIJ\nqWl7m+KGoYpImsTPhRozti1iP9bW1ioUbsvYJl3bXOPD6RrTt+kr02sVZVklIp82Pdua17Rwa8hy\nG7v7K6TGUCjcp31tbe2eeiV1xbv6fDzajRpT9xMJRbSp9QMljLgqIp+87Lfan16ca0/352CN5rg1\nx4CVNun21WcbQejHYu8vpU3PcV+MGtOdp3zHlvnc3NT6wSfbyVFjsV4rl7JEIqGWlsxvBBfCdzfN\n6unFF1/MObu1UE7fmMS8eVcizUdL/M4PNwpJ3izFxo29zDta2zmP+dw92ombH2WrJ9++L6eb63jF\nzXPvFDs1pt6kqNiKtf9cz/OWpqaMNeRzE6Ge1ySnxkqiuVmJ3buTN5GyU1O248u7lubmtNcc85zu\nWr3a9edKvtdLN24MZdaSrSavb+rJ7wh4oStm6ML73lHqMqHmjcWyLuEKwBFd8c68b9IF73Fjr/ww\n7uEnvg5cC2E1fHA6ZDQDQ7fv9Ftusr1gtBPSFiKfkNYNZl+Y/6Ubw14Hapm4/cLfre375dxnYyfs\nK9YdyQvZf+oYduPNrERzsyt9YLS35xwrxXhzLt/jy1Vb6jWnpalJse0f9QqFs4XcPf8rB8X6HZWJ\nE3/nlNP5AoBCmXda9+sd1jfv2ESQFwBd8U61drfmfiBKBs/N0lOygWsQApIgSkQinrzo8sPsW7+w\nNKPK40AtE6fPY+obK4yT7GGfX4N4077V1ck1I1PHcCFvZjl93Uodd/n0qxNvzrkV2tqtzU6wa+X6\nZUcxZp+3NDUlZ+66Pivb5mzYYgWhXFuBwmzculMxl9aHg//4fYZda3crQR7gQzw3S0/JBq52BHkZ\ngGKzMnPLb6y8IHU7iHJi+1bGaab9eBWUu82tN1a8/ghwzzpyzla1cf3yOojPVWtFR2fyhj6FSH0e\n2LluWenP1HHnVb8W6xMV+fyOtNrGzrIH6a7lTlwDcl2fey7r4HZfZ5oNm/Ha3mOZB/6GAfyrpaOb\nZRQKwKwvAEAQlVzgms8Lw1JaBsBPH/vzTWhlYWaO24GJne1nmrGVa5z2/Fhv6mOCGJSnU6y1VAv5\nCHA+oXem65aV81aM61e+15XU47JUa0X+b4CZ+8v0PLDCTn+W0pt1VpZtsdOfVtvkMzvWaV6/EZFO\n6u/PXDW6tTwGAPgBs74AAEFUcoFrKYWn+fDyY3/pZpVlmqmTb2BWrJuceRVc91oL0eZ59NML7tRw\nsWd/mn2ez811vF4qxNKM0wzBSLbw1O/XrXyvK3kFdR0dltqke44WK3y2FSAHRKl9ZNxPbz7mo5A3\nffzyZicAAABQzkoucHWTn1/AOVlbvh9NtDpLqJAX9lbuBO3E7Oae+ylkFpvdtn4KTQuRGi727M9k\nkJDj5jp+lHpcfr4mpMrnee3n4/MqICyV56jJz+e4EJY+2ZDj+hzUvvH6Jl0AAAAAyjhwzeeFlJ9n\nADlZm5VAIbX//LB+nFuzzVK3a2f2kN9nwBUaKJRqYGGVn68JqfIJCot1fC1NTcmbZaG4gjSGe3Ji\nOYdc1+eg9g0AAAAA75Vt4FoOL6Ss3qjJifC51GZ9ZVNKs4cSzc2Ktbbm/fFTJwILNz7+6kXQ6/aN\n1/LlVF9kOk9ObD/R3OzIzbJQPvz+ZhYAAABKX8gIa82HqxWL++s1IPyhbANXO4I6Sy/TR/xTZwb5\nOXwOat8HiRlcFBK8OrF/cwymO+c57yKesrZqzzFttjXXjLWzdqydNX79eOMdybnnd6Y3Gvx8/fAa\n16/iCcK6pYlIRNG167RvdbXXpQAAABcRwpWPrninrnj9u0oYCa9LgQ8RuKaR7u7AQQsUsn3EP0gz\ng4LY935mBkDZbjjkdX+nO+epYWZqEJrthlTJG22Za8baWDvWyhq/CI5iB6CMk+Lxy/XLlO53sNHe\nrvbpp6iio7PPY/0cFAMAAHsI4QBIZRC45jPrxW8v3PJRTh/xz8TtF7Fuz6gyZ0NVhBzc5scBUCFB\nkFvr9abOUs22vyC9aVBqgjCTMBOvA1A/rHWN4rDzO9jrcQkAAADAeSUfuJZCeFoq/DC7zIkbrZh6\nfhTfjeMyZ0PJMBzfdiHcCvMzzVJ1a3+ZAl5kl7oEBQFibua1jzfCEHTMxgUAAACsKfnANRUvFrzj\n5CyefGeKuTEzMtvH2eFfnLfCMMvYOmYwlo9S+Rsj05uTjGUAAADAmrIJXM3ZbHZeLDADzl3ZQtNc\nM1GZKYZcnJzNXOroK5SKbDe6K8b4LlYgaSXYLeR5zRsqAAAAQGHKJnDNZzYbM+DclS005cUeCsUY\nso6+QqlIHculupyDlWA31/O6kBCa9YgBAACA7Cq8LgAAgo7wAfAn3jTNrJAQutQCbAAAAMBpZTPD\nFQDcQvgAAAAAAABMzHAFUNZYpxmAX7G+MgAAABBMzHAFUNa46zaAYqro10/RtessvdnD+soAAABA\nMBG4AuiFGVUA4KLODrVPP4U3egAAAIASRuAKoBdmVAGA+xKRCEuaAAAAACWKNVzhup4zJsOVDDkA\nAIz2diXivLEFAAAAlCJmuOahpamJj1vbUC4zJluampitBAAAAAAAUOZ8Fbh2dXXp9NNP10EHHaTD\nDjtMJ598shoaGrwuq49Ec3PJh4ewj5svAQAAAAAAwFeBqyRdfPHFeu+997Rs2TLNmDFDs2fP9rok\nAAAAAAAAALDEV4FrdXW1vvCFLyT/ffTRR6uJj2gDAAAf6bk2OQAAAACk8lXgmurXv/61TjvtNK/L\nAAAASCqXtckBAAAA5Me3t4y/4YYb1NDQoLvvvjvnYxMJw9I2rT6u0DbF3l8Qaiz2/qjRuzalvj9q\ndGd/hpFwdX9B6BNqDOb+qNFkJL8aiUzPZyPn175t82mTu2351ejO/tK1SRg9x4z3NWZu659+9G+N\nffn3GlT8NibDSCiRsDePiX4sn/1RYzD3F5Qa29rabLdDb4aR/7nOxZeB6y233KLHHntML7zwgvr1\n65fz8dHublUY5ov2zF+7o9G07SvkbJtMbfNpU+wai70/aszdxuRFnzC2qLHY+8v2WL/UGIR+dGt/\nQagxU1u/1Gjyc435tVXya1eGNqFwRZ/H5mqbTxsrbcutRrf2F4QaM7WlRitt+l4TopnaRpxtk6lt\nPm3crFGSulOWl/FbjcXcXxBqzNSWGjO3MdEn/qtx1apVadvBukgkotGjR7uybd8Frrfddpv++Mc/\n6oUXXlBdXZ2lNlWVlcmP9YVCoYxfqyqr0rY3uqOOtsnUNp82xa6x2PujxtxtTF70CWOLGou1P8NI\nqLs7lvWxXtdYSJti1+jW/oJQY6a2fqnR5Oca82ur5NeqqvRtuuOJPo/N1TafNlballuNbu0vXZuE\nYSgWN3xTY6a2fupH/9bY95pQWVWZtm0s0e1om0xt82njZo2SVFlZoVAobLmNH/rRrf0FocZMbakx\ncxsTfeK/GseMG5O2HawzDEPxuDvLhPkqcN20aZOuuOIKjRkzRieccIIMw1C/fv30+uuvZ20XDodk\npXvC4VDa72drm0+bTG2DUGOx90eN9toUe39BqDFTW2q018br/dn5KJ7XfeLnfnR7f0GoMVNbarTX\nxn7bUPJrKJzh+Rw3+jw2Z9t82lhoW3Y1urS/dG3CiYQk/9SYsa2P+tG/NfaV6ZqgLCsD5dMmY9t8\n2lhoW0iNoVC4d3sf1lis/QWhxoxtqdFWG9/sr8xrrK2tzb1xZJVIJNTS0uLKtn0VuA4fPlyJjGsK\nAQAAAAAAAIC/2VvdGwAAAAAAAACQEYErAAAAAAAAADiEwBUAAAAAAAAAHELgCgAAAAAAAAAOIXAF\nAAAAAAAAAIcQuAIAAAAAAACAQwhcAQAAAAAAAMAhBK4AAAAAAAAA4BACVwAAAAAAAABwCIErAAAA\nAAAAADiEwBUAAAAAAAAAHELgCgAAAAAAAAAOIXAFAAAAAAAAAIcQuAIAAAAAAACAQwhcAQAAAAAA\nAMAhBK4AAAAAAAAA4BACVwAAAAAAAABwCIErAAAAAAAAADiEwBUAAAAAAAAAHELgCgAAAAAAAAAO\nIXAFAAAAAAAAAIcQuAIAAAAAAACAQ3wXuK5bt07HHHOMDjzwQB111FFatWqV1yUBAAAAAAAAgCW+\nC1wvvvhizZ07V6tXr9aVV16p8847z+uSAAAAAAAAAMCSCq8L6Gnbtm16++239fzzz0uSZs6cqUsv\nvVTr16/X6NGjJUmGYfRtGA5LkYg0eHD2r+EM+bLTbTK1DUKN9Ekwa3Rrf0GoMcjnLQg1Fm1/xp5/\nh+TjGoPQjy7vLwg1Bvm8BaHGlLbhUEiDaioUDin5NRxK36TnYzJ9TW2bTxsrbcutRrf2l66NEfJX\njUE+b97XGFZdZZ3C+uRrSOkb93yME20ytc2njas1hsIft/dxjUXcXxBqDMzY8lONaa4FZd8nPqkx\nkUikbQfr0vVh2twxDyHDqS05YOnSpTr77LN7LSNw1FFH6aabbtLxxx8vSYrFYmpra/OoQgAAAAAA\nAAClqLa2VhUVhc9P9d2SAgAAAAAAAAAQVL4KXEeMGKEtW7b0mtL7/vvva7/99vOwKgAAAAAAAACw\nxleB6z777KOJEyfqD3/4gyTpT3/6k0aMGJFcvxUAAAAAAAAA/MxXa7hK0po1a/SNb3xDH330kQYN\nGqR7771XBx98cPLniUSiz6K2oVBIoVCG1d8BAAAAAAAAoAfDMPrcJCscDiuc6caxNvgucAUAAAAA\nAACAoPLVkgIAAAAAAAAAEGQErgAAAAAAAADgEAJXAAAAAAAAAHAIgSsAAAAAAAAAOITAFQAAAAAA\nAAAcQuAKAAAAAAAAAA4hcAUAAAAAAAAAhxC4AgAAAAAAAIBDCFwBAAAAAAAAwCEErgAAAAAAAADg\nEAJXAAAAAAAAAHAIgSsAAAAAAAAAOITAFQAAAAAAAAAcQuAKAAAAAAAAAA4hcAUAAAAAAAAAhxC4\nAgAAAAAAAIBDCFwBAAAAAAAAwCEErgAAAAAAAADgEAJXAAAAAAAAAHAIgSsAAAAAAAAAOITAFQAA\nAAAAAAAcQuAKAAAAAAAAAA4hcAUAAAAAAAAAhxC4AgAAAAAAAIBDCFwBAAAAAAAAwCEErgAAAAAA\nAADgEAJXAAAAAAAAAHAIgSsAAAAAAAAAOITAFQAAAAAAAAAcQuAKAAAAAAAAAA4hcAUAAAAAAAAA\nhxC4AgAAAAAAAIBDCFwBAACQl3g8rp/+9KcaN26cJkyYoIkTJ2ru3LnavXu3XnnlFR122GGO7q+p\nqUm//e1vHdveqFGjtGLFCse2l+rxxx/XW2+9lfy3G30CAAAA/yFwBQAAQF4uuOACLV26VG+++aZW\nrFihpUuX6nOf+5x27NghSQqFQo7ub8OGDZo/f35ebePxuKO1WPHYY4/p9ddf7/U9p/sEAAAA/kPg\nCgAAANsaGhr05z//Wffdd58GDhyY/P7MmTNVX18vSeru7ta3vvUtHXrooRo/fryWLl0qaU/4+YUv\nfEFHHnmkxo8fr3POOUcdHR2S9swCHT9+vM477zyNHz9ekyZNSs5CveSSS7RmzRpNnDhRp512miRp\n3bp1OuWUU3TUUUfp0EMP1Z133pmsJRwO6yc/+YmOPPJIXXPNNVmP58MPP9SZZ56po48+Wocccoh+\n9KMfJX82atQo/fjHP9aUKVM0ZswYXX/99cmfrV69WlOmTNH48eM1c+ZMnXzyyfq///s/PfPMM1q4\ncKFuueUWTZw4UQsWLMjaJwAAACgdBK4AAACwbenSpRo7dqwGDx6c8TGrV6/W+eefr+XLl+vSSy9N\nhp6RSEQPPfSQ3nrrLa1cuVIDBw7UHXfckWz37rvv6vzzz9fKlSt15ZVX6swzz5QkzZ8/XwceeKCW\nLl2qxx57TIlEQmeddZZuu+02vfnmm3r99df129/+Vm+//XZyW5WVlXrrrbd00003ZT2e8847T5de\neqneeOMNLV26VEuWLNGf//zn5M+bm5u1ePFivfXWW7r55pu1ZcsWSdK5556ruXPnauXKlbr++uv1\n6quvSpK++MUvasaMGfre976npUuX6oILLsjaJwAAACgdFV4XAAAAgNK0//7764gjjpAkTZ48Wbfe\neqskyTAM3XrrrXr66acVi8W0e/duTZkyJdmuvr5exx9/vCTpjDPO0Jw5c/TBBx/02f7q1av1z3/+\nU1/72tdkGIYkqbW1Ve+++64OP/xwSdL555+fs8729na98MIL2rp1a3I7bW1tWr16dfIxX//61yVJ\ne++9t0aPHq0NGzZowIABWr58uc4991xJ0kEHHaSpU6fm1ScAAAAoHQSuAAAAsG3ixIlau3atdu7c\nmXGWa79+/ZL/H4lEFIvFJEkPPPCAXn75ZS1atEi1tbW644479NJLL2XcVygUSrv2qWEY2nvvvTN+\nLD8UCmnAgAE5j8UwDIVCIb355puqrKy0dSypdeVaozXTdgAAAFA6WFIAAAAAto0ZM0YzZ87UhRde\nqObm5uT3H330UTU2NmZtu2vXLg0dOlS1tbVqaWnRfffd1+vnjY2NeuWVVyRJf/rTn/SpT31Kw4cP\n18CBA3vt68ADD9TAgQN7tW9oaNCuXbskKTlbNZfa2lqdcMIJuuGGG5Lf27JlizZv3py1XV1dnQ45\n5BD94Q9/kLRnxu1rr72W/HlqvQAAACgPBK4AAADIy4IFCzRhwgQdddRRGj9+vA4++GA9//zzGjJk\nSNZ2s2bNUltbm8aNG6fp06fruOOO6/Xz//iP/9B9992nCRMm6KabbtJDDz0kSZowYYIOPvhgjR8/\nXqeddpoikYieeOIJPfroozr00EP1mc98RrNnz07egCvXbNOeP3/ggQe0bt06jR8/XhMmTNDMmTP1\n0Ucfpd1Oz3///ve/1/z58zVhwgR9//vf15FHHqm99tpL0p71XR9++GEdfvjhyZtmAQAAoPSFDKtv\n/QMAAAAue+WVV3T55ZdnXCbAb9ra2lRbWytpz8zcKVOmaMmSJRo+fLjHlQEAAMArrOEKAAAA5Gnx\n4sX63ve+J0lKJBL61a9+RdgKAABQ5oo+w/Xb3/62Fi5cqKamJi1fvlwTJkyQJG3btk2zZs1SQ0OD\n+vXrp3nz5unYY48tZmkAAAAAAAAAUJCir+F6xhln6G9/+5vq6+t7ff/qq6/W5MmTtWbNGi1YsEBf\n//rXFY/Hi10eAAAAAAAAAOSt6EsKTJ06VVLfu8Y+8sgjamhokCQdccQRGj58uF555RWdeOKJvR6X\nSCSUSCR6fS8UCuW8KQIAAAAAAAAASHuyydR8MhwOKxwufH6qL9Zw3bFjh2KxmIYNG5b83siRI/X+\n++/3eWwikVBbW1sxywMAAAAAAABQ4mprax0JXIu+pAAAAAAAAAAAlCpfBK5DhgxRRUWFtm7dmvxe\nY2Oj9ttvPw+rAgAAAAAAAAB7fBG4SntupnXXXXdJkpYsWaLNmzdr2rRpHlcFAAAAAAAAANYVPXCd\nO3euRowYoU2bNunkk0/WAQccIEm68cYbtXjxYh1wwAG64IIL9MADDygSifRpz82xUE46Ozu1fv16\ndXZ2el0K4CrGOsoB4xzlgHGOcsFYRzlgnKMcOZU7Fv2mWfPnz0/7/WHDhum5557L2Z7AFeUmHo97\nXQJQFIx1lAPGOcoB4xzlgrGOcsA4R7lxKnf0zZICAAAAAAAAABB0BK4AAAAAAAAA4BACVwAAAAAA\nAABwCIErAAAAAAAAADiEwBUAAAAAAAAAHFLhdQEAAABBkti+XUZLi0J1dQoPHep1OQAAAAB8piwC\nV/OFkdOsvtCKx+O6+eab9eijj6qiokIVFRU6/PDDddJJJ+nGG2/UokWLHK8NAAC4w2hpUcf0L6vm\nqSckAlcAAAAAKcoicDVfGDnN6gutb33rW2pubtZf//pXDRw4UJL0+OOPa+fOnQqFQo7XBQAAAAAA\nAMAbrOHqsg0bNuiJJ57QXXfdlQxbJenUU09VfX198t/xeFwzZ87UiSeeqClTpmjOnDnq6OiQJL32\n2muaMmWKrrjiCk2dOlVTpkzR8uXLk22fe+45nXjiiZo6daqOO+44LV26VHfccYe+853vJB/T3Nys\nMWPGaNeuXe4fNAAAAAAAAFCmCFxd9s4772j06NHaa6+9sj4uEononnvu0YsvvqjFixerrq5Od999\nd/Lna9eu1dlnn63XXntNF110kX7+859LktatW6dLL71Uv/vd7/Taa6/ppZde0tixYzVr1iw9/fTT\n2r17tyTpgQce0PTp03PWAQAAAAAAACB/BK4+YRiGfvOb3+i4447TlClT9Je//EUrV65M/nz06NE6\n7LDDJEmTJk1SY2OjJOnll1/WSSedpDFjxkjaE9zW1dVp0KBBOvXUU3X//fdLkhYsWKCLLrqouAcF\nAAAAAAAAlJmyWMPVS4cccojWr1+vXbt2ZZ1d+sgjj+i1117TM888o9raWv32t7/tdTOt6urq5P9H\nIhHFYrGc+54zZ47OOussHXDAAdpnn300fvz4wg4GAAAAAAAAQFbMcHXZqFGj9OUvf1mXXnqpmpub\nk99fuHBhcpaqtGeN1SFDhqi2tlYtLS168MEHLW3/s5/9rF588UWtW7dOkhSLxZLLCIwdO1b19fX6\nzne+ozlz5jh3UAAAAAAAAADSInAtgnnz5unggw/WSSedpClTpujoo4/Wyy+/rMGDBycf87WvfU3t\n7e068sgj9dWvflVTpkyxtO1Ro0Zp3rx5uuiiizR16lSddNJJamhoSP581qxZisfjmjFjhuPHBQAA\nAAAAAKC3kGEYhtdF2JFIJNTS0mKvzfbtMmy2sSJUV6fw0KGOb9dJ3/ve9/Rv//ZvuuKKK7wuBXno\n7OzUxo0bNWLECPXr18/rcgDXMNYRJPENG9Qx/cuqeeoJRUaNstyOcY5ywDhHuWCsoxwwzlGO6urq\nFA4XPj+1LNZwDQ8dKvk8GHXav/71L82YMUNDhgzRT37yE6/LAQAAAAAAAMpCWQSu5ehTn/qU3nrr\nLa/LAAAAAAAAAMoKa7gCAAAAAAAAgEMIXAEAAAAAAADAIQSuAAAAAAAAAOAQAlcAAAAAAAAAcAiB\naxHEYjHdeOONOvLIIzVlyhRNmzZN55xzjlauXKkHH3xQZ599tmP7evDBB7Vu3TrHtgcAAAAAAADA\nugqvCyiGHW1RtXXFHd9ubXVEQ2qrcj7um9/8ptrb2/XXv/5VAwcOlCS98soramhokCSFQiHHanrw\nwQe11157af/993dsmwAAAAAAAACsKYvAta0rrtn3veP4dv/3G4doSG32x6xfv15PP/20/vnPfybD\nVkmaNm2apD0BaWtrq2bPnq13331X/fr107333quRI0dKkm6//XY99NBDCofDOvjgg3Xrrbeqrq5O\nzzzzjK677jpFIhHFYjFde+212rZtm5YvX65rrrlGN954o370ox/ppJNOcvy4AQAAAAAAAKTHkgIu\nW7FihUaNGqVBgwZlfMyyZcv04x//WIsXL9a0adP061//WpL0/PPP68EHH9Rf/vIX/e1vf1P//v31\n05/+VJJ0/fXX69e//rVeffVVLV68WMccc4xmzZqlQw89VDfccINeffVVwlYAAAAAAACgyAhci6yx\nsVHHHnusJk2apG9961uSpCOPPFIjRoyQJE2aNEkbNmyQtGfZgdNPP111dXWSpAsuuEAvvfSSpD0z\nZK+++mrdfvvtWrlyZa/ZswAAAAAAAAC8QeDqsgkTJmjDhg1qbm6WJNXX12vRokW6/PLLk9+rrq5O\nPt5cIiCdnmu9Xn/99Zo3b5769++vSy65RHfccYeLRwEAAAAAAADACgJXl40ePVpf+tKXdNlllyUD\nVklqb2/P2fb444/XY489ptbWVknSfffdpxNPPFGStHbtWh144IGaPXu2LrzwQi1ZskSSVFdXp927\nd7twJAAAAAAAAAByKYubZnntzjvv1M0336yTTjpJlZWVGjRokIYOHarvfOc7WrNmTcZ2J510klat\nWqXPfe5zvW6aJUk/+9nP1NDQoIqKCtXW1ia//41vfEM//OEPdeedd3LTLAAAAAAAAKDIQoZhGF4X\nYUcikVBLS4utNjvaomrrijteS211RENqqxzfLmDq7OzUxo0bNWLECPXr18/rcgDXMNYRJPENG9Qx\n/cuqeeoJRUaNstyOcY5ywDhHuWCsoxwwzlGO6urqFA4XviBAWcxwHVJbpSG1XlcBAAAAAAAAoNSx\nhisAAAAAAAAAOITAFQAAAAAAAAAcQuAKAAAAAAAAAA4hcAUAAAAAAAAAhxC4AgAAAAAAAIBDCFwB\nAAAAAAAAwCEVXhdQDM1du9Qea3d8u/0r+mtQ9V45HxeLxXTLLbfo0Ucf/f/t3XuUFOWd//FPXxgG\ncUARIV6Gq4h4QSBRRFSC6HrhiKhR1F3AqCskR8+ajSsed83uMeru/mJcjZdkxQUv0eMxalBWY9YQ\nRfYYgzqgxlUJDAzITAZGYGjmSk/X74+h2p6mL1XdVd1V1e/XOZ5xuuvyraqnqplPP/WUotGo+vXr\np9raWt1xxx06+eSTHa8LAAAAAAAAQHlURODaHm/X7Wtvc3y5/+/0+y0Frt///vfV3t6u3/3udxo0\naJAkafXq1dq4ceNBgWsikVA4TMdjAAAAAAAAwI9I9lxWX1+v119/XY8++mgybJWkGTNmaO7cuXru\nued0ySWXaMGCBZo+fbrq6uq0Y8cOffe739V5552nO/CoYwAAIABJREFU6dOn6957703Od9ddd2nW\nrFk655xzNHv2bG3atCn53uGHH64HHnhAs2bN0qRJk/Tss8/2qWPevHmaNWuWzjrrLD3xxBOSpIcf\nfli33nprcrrW1laNHTtWe/bscXO3AAAAAAAAAIFUET1cy+njjz/W6NGjNXjw4KzT1NXVac2aNRoz\nZowk6YorrtAPf/hDnXnmmerp6dG8efP0yiuv6NJLL9UPfvAD/fjHP5Ykvfzyy1qyZIlefPHF5LKq\nq6u1atUq/fnPf9a5556ra665RpJ0ww03aOnSpTruuOPU0dGh8847T9/61re0YMECnXbaabr77rs1\naNAgPfvss5o9e7YOOyx/z10AAAAAAAAAfXkucH399dd11113KZFIqKenR7fddpsWLFhQ7rIcs2XL\nFs2fP1+dnZ06/fTTNX36dJ1++unJsLW9vV2rV6/Wzp07ZRhG8rWNGzdKklatWqWlS5dq3759SiQS\nB/VEvfLKKyVJ48aNUzQaVXNzs/bu3avPP/9c119/fXKZbW1t+vzzzzVp0iRdeuml+uUvf6nvf//7\nWrZsmZYvX16q3QEAAAAAAAAEiucC1/nz5+udd97RSSedpIaGBp1wwgm64oorNHDgwHKXVpCJEydq\n8+bNam1t1eDBgzVq1CitWbNGzz33nF5//XVJ6rNthmEoFApp1apV6tevX59lffnll7r99tv19ttv\na+TIkfr00081e/bs5PuhUEj9+/dP/h4OhxWPx2UYhoYMGaJ33nknY4033XSTrrnmGh1//PE68sgj\ndcoppzi5CwAAAAAAAICK4bkxXMPhsHbv3i2pdzzRoUOH9gkR/WbMmDG6+OKLdcstt6i1tTX5ent7\ne8bpBw4cqLPPPls//elPk6/95S9/UWNjo/bu3auqqioNHz5chmHo8ccf7zOv2Xs13bhx41RTU9Nn\nTNfNmzcne8eOGzdOo0aN0q233qqbbrqp4G0FAAAAAAAAKp3nAtfnn39el112mUaNGqVzzjlHTz31\nlKJRz3XEteWxxx7ThAkTdN555+nMM8/URRddpNWrV/d5WFWqpUuXqr6+XmeeeabOPPNMLViwQLt3\n79aJJ56oyy+/XFOnTtWsWbM0YsSIPvOFQqGMv0ciET3//PNauXKlzjrrLE2bNk233HKLOjs7k9Mu\nWLBAPT09mjNnjsNbDwAAAAAAAFSOkJGtW2QZ9PT06LzzztM999yj6dOn64MPPtCcOXP0pz/9SUOG\nDJEkJRIJxWKxPvOlBoeZtBvt6ujpcLzeAZEBOiR0iOPLLYc777xTw4YNyxoCozy6u7vV3Nys4cOH\nq6qqqtzlAK6hrcNPotsb1XnJHFWvfFXxY462PB/tHJWAdo5KQVtHJaCdoxJUV1f3+b2mpkbhcPH9\nUz3VdXT9+vVqamrS9OnTJUnf+ta3dOyxx2rdunWaNWtW1vkaGxvV09NTqjKT2tWur/RVydfrpJaW\nFn3ve9/T4MGD9fDDD2vbtm3lLgkZNDc3l7sEoCRo6/CD2kTvd9XxeLygz03aOSoB7RyVgraOSkA7\nR1BFIpHkQ+yd5qnAtba2Vk1NTfr88891wgknaOPGjaqvr9f48eNzznf00dZ7l6Cv2tpavffee+Uu\nA1nwjSIqBW0dfhLd3qi4pGg0qlp6uAJ90M5RKWjrqAS0c6Bwngpchw0bpscff1xXXXWVIpGIEomE\nHn30UR177LE550vv/gsETVVVFe0cFYG2Dj/oCfeOkR4Khwpqr7RzVALaOSoFbR2VgHYO2OepwFWS\n5s2bp3nz5pW7DAAAAAAAAACwrfhRYAEAAAAAAAAAkghcAQAAAAAAAMAxBK4AAAAAAAAA4BACVwAA\nAAAAAABwCIErAAAAAAAAADiEwBUAAAAAAAAAHELgCgAAAAAAAAAOIXAFAAAAAAAAAIcQuAIAAAAA\nAACAQwhcAQAAAAAAAMAhBK4AAAAAAAAA4BACVwAAAAAAAABwCIErAAAAAAAAADiEwBUAAAAAAAAA\nHELgCgAAAAAAAAAOIXAFAAAAAAAAAIcQuAIAAAAAAACAQwhcAQAAAAAAAMAhBK4AAAAAAAAA4BAC\nVwAAAAAAAABwCIErAAAAAAAAADiEwBUAAAAAAAAAHELgCgAAAAAAAAAOIXAFAAAAAAAAAIcQuAIA\nAAAAAACAQwhcAQAAAAAAAMAhBK4AAAAAAAAA4BACVwAAAAAAAABwCIErAAAAAAAAADiEwBUAAAAA\nAAAAHELgCgAAAAAAAAAOIXAFAAAAAAAAAIdE7UxcV1enO++8U/X19YrH48nX6+vrHS8MAAAAAAAA\nAPzGVuC6cOFC3XzzzZo2bZoikYhbNQEAAAAAAACAL9kKXCORiBYtWuRWLQAAAAAAAADga7bGcJ0+\nfbo++OADt2oBAAAAAAAAAF+z1MN18uTJCoVC2r9/v5YuXarjjjtO1dXVyffr6upcKxAAAAAAAAAA\n/MJS4Prggw+6XQcAAAAAAAAA+J6lwHXGjBmSpGXLlun666/v896yZcuS7wMAAAAAAABAJbM1husj\njzxy0GuPPvqoY8UAAAAAAAAAgJ9Z6uG6du1a/eEPf9DOnTv1s5/9LPl6a2ururq6XCsOAAAAAAAA\nAPzEUuDa1NSk9evXq729XevWrUu+PmjQID355JNu1QYAAAAAAAAAvmIpcL300kt16aWX6je/+Y0u\nuugiVwvq7u7WD3/4Q/32t7/VgAEDdOqpp+rpp592dZ0AAAAAAAAA4ARLgatp586dB4Wfhx12mL75\nzW/qmGOOcaSgJUuWKBwOa8OGDZKkHTt2OLJcAAAAAAAAAHCbrcD12Wef1TvvvKOzzjpLoVBI//u/\n/6vTTz9dGzZs0IMPPqirrrqqqGLa29u1bNkybd++PfnasGHDilomAAAAAAAAAJRK2M7Ehx56qNat\nW6c333xT//M//6N169ZpyJAhevfdd3XPPfcUXcymTZs0ZMgQ3XvvvTrttNM0Y8YM/f73vy96uQAA\nAAAAAABQCrZ6uG7YsEEnnHBC8vfx48dr48aNGjVqlMJhW9ltRvF4XA0NDTr55JP1r//6r1q/fr3O\nP/98/d///Z+OPPLIrPN1dnYWvW7Ai7q7u/v8BIKKtg4/iSYMSZKRMGz9G4R2jkpAO0eloK2jEtDO\nUQmqq6tdWa6twLWmpkZPP/205s+fL0l65plndOihhzpWzIgRIxSJRHTttddKkiZNmqTRo0frk08+\n0bnnnpt1vsbGRvX09DhWB+A1zc3N5S4BKAnaOvyg9kDgGo/HtW3bNtvz085RCWjnqBS0dVQC2jmC\nKhKJaMyYMa4s21bgunz5cs2fP1833nijQqGQTj31VD311FNqa2vTT37yk6KLOeKIIzRr1iy98cYb\nuuiii7R582Zt2bJFEyZMyDnf0UcfXfS6AS/q7u5Wc3Ozhg8frqqqqnKXA7iGtg4/iW5vVFxSNBpV\n7THW/w1CO0cloJ2jUtDWUQlo50DhbAWu48eP19q1axWLxST19ng1nX/++Y4U9POf/1w33HCDlixZ\nokgkoscff1xHHXVUznnc6v4LeEVVVRXtHBWBtg4/6AmHJEmhcKig9ko7RyWgnaNS0NZRCWjngH22\nAldJampq0ubNmxWPx5OvnXPOOY4VNHr0aB6UBQAAAAAAAMCXbAWu9957r37yk59ozJgxikQikqRQ\nKKS1a9e6UhwAAAAAAAAA+ImtwHXZsmXatGmTjjjiCLfqAQAAAAAAAADfCtuZePjw4YStAAAAAAAA\nAJCFrR6u559/vm699VZde+21fQZMnjhxouOFAQAABM1R/fsrur1RicGDFB46tNzlAAAAAHCBrcD1\n6aefliS98soryddCoZDq6+udrQoAACCAoh2d6rzscg14baVE4AoAAAAEkq3AdfPmzW7VAQAAAAAA\nAAC+Z2sMV0l66aWXdN9990mSGhsb9cknnzheFAAAAAAAAAD4ka3A9Uc/+pGeeOIJPfnkk5J6hxNY\ntGiRG3UBAAAAAAAAgO/YClxfeeUV/fd//7cGDhwoSTrqqKO0b98+VwoDAAAAAAAAAL+xFbgOGDBA\nkUikz2uGYThaEAAAAAAAAAD4la2HZo0cOVJr1qxRKBTS/v37dd9992nSpElu1QYAAAAAAAAAvmIr\ncP3Zz36mhQsX6pNPPtHAgQM1c+ZMPfvss27VBgAAAAAAAAC+YitwHT58uN544w21t7fLMIzkWK4A\nAAAAAAAAAIuB68cff5zz/YkTJzpSDAAAAHolWlpkxGIK1dQoPHRoucsBAAAAYJGlwPXSSy/N+l4o\nFFJ9fb1jBQEAAEAyYjF1zL5EA15bKRG4AgAAAL5hKXDdvHmz23UAAAAAAAAAgO+Fy10AAAAAAAAA\nAAQFgSsAAAAAAAAAOITAFQAAoNSiUSVaWspdBQAAAAAXWA5ce3p6tGTJEjdrAQAAqAwdHTJisXJX\nAQAAAMAFlgPXSCSit956y81aAAAAAAAAAMDXbA0pcPHFF+vee+9VY2Oj9u7dm/wPAAAAAAAAACBF\n7Ux89913S5LuuusuhUIhGYahUCiknp4eV4oDAAAAAAAAAD+xFbgmEgm36gAAAAAAAAAA37M1pIAk\nffjhh3rmmWckSXv27FFTU5PjRQEAAAAAAACAH9kKXB977DFdf/31+pd/+RdJ0ldffaVrr73WjboA\nwDcSLS1KtLSUuwwAAAAAAOABtgLXxx9/XO+9954GDRokSRo7dqx27tzpSmEA4BdGLCYjFit3GQAA\nAAAAwANsBa79+/fXgAED+rwWjdoaBhYAAAAAAAAAAstW4HrkkUdqw4YNCoVCkqQnn3xSI0aMcKUw\nAAAAAAAAAPAbW91TH3zwQV1zzTX6/PPPVVtbq0GDBmnlypVu1QYAAAAAAAAAvmIrcD3uuOP0xz/+\nUV988YUMw9D48eMViUTcqg0AAAAAAAAAfMXWkAJz585VOBzWhAkTdOKJJyoSiWju3Llu1QYAAAAA\nAAAAvmIrcN26detBr23atMmxYgAAAAAAAADAzywNKfCf//mf+sUvfqENGzZoypQpyddbW1t10kkn\nuVYcAAAAAAAAAPiJpcD1wgsv1Pjx4/W9731P//Ef/5F8fdCgQZo4caJrxQEAAAAAAACAn1gKXEeO\nHKmRI0fqs88+kyR9+eWXCoVCOuaYY1wtDgAAAAAAAAD8xNYYrh9//LEmTJigU045RaeccopOPPFE\nffTRR27V5lmJlhYlWlrKXQYAAAAAAAAAj7EVuN5www26++67tXv3bu3atUt33323brzxRrdq8ywj\nFpMRi5W7DAAAAAAAAAAeYytw7ezs1JVXXpn8/Tvf+Y66urocLwoAAMBvKuUOmErZTgAAAKBQtgLX\nKVOm6O23307+vnr1an3zm990uiYAAADfqZQ7YCplOwEAAIBCWXpolqmurk6//OUvNWrUKEnSli1b\ndOKJJ2rKlCnJ9wEAAAAAAACgUtkKXB955BG36jjI8uXLdcMNN2jFihWaM2dOydYLAACCxbz9PTx0\naJkrAQAAAFAJbAWuM2bMcKuOPhoaGvTEE09o2rRpJVkfAAAIruTt7wSuAAAAAErAVuDa0dGhhx9+\nWOvXr1dnZ2fy9ZdfftmxggzD0I033qhHHnlEf//3f+/YcgEAAAAAAADAbbYemvW3f/u32rJli959\n913NnDlTDQ0NGjlypKMFPfDAAzr77LM1efJkR5fLE3UBAKgsfPYDAAAAKAdbPVw/+ugjffLJJ5o4\ncaJuueUWXXfddZo9e7ZjxXz66ad66aWXtGbNGlvzpfa2zSbauleS1H3ooQXV1mdZCcPyeoFidHd3\n9/kJb+KaUDzaOtxgfvabnDpHzXPeSBh9lpnvWtDd3a2qlN/T57e6nnLjmodcuJ6jUtDWUQlo56gE\n1dXVrizXVuA6YMCA3pmiUbW1tammpkY7d+50rJg1a9aooaFB48aNk2EY+stf/qKbbrpJTU1NWrRo\nUdb5Ghsb1dPTk3PZtQf+ONi2bVvRdTq5LMCK5ubmcpeAHLgmOIe2DieZ56bJqXPUXG48Hu+zTCvX\ngtoDPw3DOGh+q+tx21H9+yva0an4gGo1dXVlrYtrHnLheo5KQVtHJaCdI6gikYjGjBnjyrJtBa5D\nhgzR7t27dfHFF+uCCy7Q0KFDdeyxxzpWzOLFi7V48eLk7zNnztQPfvADzZkzJ+d8Rx99dN5lR7c3\nSpJqj8k/bSmXVQmie/dKsX1SzaGKDxpU7nJ8pbu7W83NzRo+fLiqqqryz4Cy4JpQPNo63GCemyan\nztHo9kbF1fsFdOoy810Luru7paa/SJJCoZCikWjOmrKtx23R7Y3qvOxyVa98VbW1tRnfl7jmITOu\n56gUtHVUAto5UDhbgetrr72mSCSiH//4x3r22We1Z88eLViwwK3aFAqFLE1npftvTzhkedpSLqsS\n9DQ1qeOSORrw2kpVDxtW7nJcY44TGHbhKdhVVVW0Nw/jmuAc2jqcZJ6bJqfalrncUDjUZ5l2rwXp\n81tdj9vyrZdrHqzgeo5KQVtHJaCdA/bZClwjkYik3iD0b/7mb1wpKNXvf/97x5fpZiiGymbEYr3/\nQ9sCAHgc/x4CAAAA3GMrcK2rq9Odd96p+vp6xePx5Ov19fWOF+YWQjEAAIIp0dIiIxZTqKamrEGi\nH8JM/j0EAAAAuMdW4Lpw4ULdfPPNmjZtWrK3KwA4wQ8BBQBvM2Ixdcy+RANeW1nWIJEwEwAAAKhs\ntocUWLRokVu1AKhgBBQAAAAAACAIwnYmnj59uj744AO3agEAAAAAAAAAX7PUw3Xy5MkKhULav3+/\nli5dquOOO67PE+rq6upcKxAAAAAAAAAA/MJS4Prggw+6XQcAAAAAAAAA+J7lHq67du3SqFGj+ry+\nZcsWDRkyxI26AAAAAAAAAMB3LI3hevvtt+vDDz886PW6ujotWbLE8aIAlE+ipUU9mzcr0dJS7lIA\nAAAAAAB8x1LgunbtWl1xxRUHvX755ZfrnXfecbwoBFQ0SojnA0Yspo7Zl8iIxcpdCgAAAAAAgO9Y\nClzj8Xj2BYQtLQKQOjoI8eAr9PYFAAAAAAB2WUpL9+/fr7179x70emtrq/bv3+94UQDgBZXS25dg\nGSifREsL5x4AAAAQMJYC16uvvlrz58/X7t27k6/t3r1b3/3ud3X11Ve7VhwAwH2VEiwDXmTEYrbP\nPUJaAAAAwNssBa7/9E//pMMOO0y1tbWaPHmyJk+erNraWtXU1Oiuu+5yu0YA8BTCDgDlVEhICwAA\nAKB0olYmikQieuqpp/SjH/1IdXV1kqQpU6Zo7NixrhYHAF6UDDqGDi1vIQAAAAAAwHMsBa6msWPH\nErICAAAAAAAAQBa2AlfASeYt2eEMvQQTLS0yYjGFamoyvg8AALLjcxQAAAAoH0tjuFYanthdGrnG\noOMhPgAAFI7PUQAAAKB8CFwz4I8UAFbw8CwAAAAAAJCOIQUCKtft+pWMWyzhJL6UAQAAAAAA6ejh\nmks06tvea7lu169k9F5GOnqpAgAAAAAAJwW+h6vZo1E9PVIkYm/mjg4Z8bhET0hUgD7nSgBY7c2c\nDN85zwEgJ76cAgAAAKwJfA9Xs0ejEok+r9OrDegr27niV/RmBgBncfcMAAAAYE3ge7hmQ682wL/K\nNRYvX9IAAAAAAIB8At/DFcHkhR7KiZYW9WzeXPY6gsbKsc3XezXR0uLK0Aj07voa7R9eYrbHoAyJ\nAgAAAMDfCFzhS14Ivrhl3To7AbkTx9aIxUo/NEI0WlEBJO0fXhK0IVEAAAAA+BuBKwDX5QpRA9Mz\nraODABIAAAAAABC4Aiit9FvRneiZ5oUhJgAAAAAAACQC12CrsFuc4Q9u3Iru+hATB84l3/fCrXAE\n8wdjnwAAAACA8whcg4xbnIGsbAVNB84lxof0Ny+M/ew17BMAAAAAcF603AWg9BItLTJiMYVqahQe\nOrTc5aCEzICR4y5CJhtS2415/aC3LwAAAAAAmdHD1YKg3XKZfkt30LYvKBItLYpub9RR/fs7tkxP\n9WazeJt+avsMzAO2fCa13fA0+GDicwAAAAAAnEPgaoGnQioXBH37yin9AVF2GLGYOi+Zo2hHpwuV\neYDF2/SNWExGR4d6Nm+WsWcPYR/gAj4HAAAAAMA5BK4ouUrqSZXsTXwgMKyU7XYcY6gCqCD05gcA\nAAD8jcAVjrATogauJ1U0mn/beYCZOywOSyAV19sYKEYlfcmE7MxhYqKh/NMydAcAAADgb4ENXO30\nDrEaxPBHc3aBC1Ht6OioqG331Hlgo+dr+tjFudC7LAMb4XYpeKod5lHs9ZEvC4LBHCZGhlHuUgAA\nAAC4LLCBq53eIVaDGC+Hik6GD34KMlB6Xj4PnELvsl59rgUeG9ahEtqh1HsMzLGLg7i9fN4AAAAA\nCKLABq6VxsnwoVKCDJReoqWl9D0kS90z88D6ghAicS04WKkDQiMW80zI7YZC21jeXr9WhnoBAAAA\nAJcQuDqMWz/hB+XqVVaW8KjUPTMZrzfQigmh6c1ZnNT9l/fOlAob6gUAAACAt1R84Op0jzs740T6\nmReDA8Ju6yq656LHxiJF5ajo884B7D9rGIMaAAAAKL+KD1yDfrumW7z4h2+lhN1OSrS0KNHY6Nof\n514M5r02Fqnk8y8LuHW7IL4+5hXCk9cvCxiDGgAAACi/wAWu9OwoowCNXVkpjFhMxr59rv1x7sVg\n3ot8/WUBt24XxNfHvEJw/QIAAABQqMAFrvTsKCPGrvQsv/bUChKOAeBN9DYGAAAA4LRouQtI1dXV\npauvvlqfffaZBgwYoGHDhumxxx7T2LFjy10afCj9j+fw0KFlqsQZiZYWGbGYQjU1trelUkJwLwcm\nyWPg83boR15uF24yt7sU1z671ycvHBOzZvX0qGPOXA14bSXnJwAAAABHeK6H66JFi/T5559r3bp1\nmjNnjm688cZyl+QrbveiK3kvvSLGhzRvBw3KbaFWbkGu9J5aQTnWlSbR0qLo3r2uLb9S20Upt9vu\nEAleOCbcEQMAAADALZ4KXPv3768LL7ww+fsZZ5yhhoaGMlbkP27/EVvyP5ItjA/JuL29Ei0tMvbs\nYVgHj0v90sKJthuEkN2IxaTYvnKXUR4+GPs6CG0MAAAAAErJU4Fruoceekhz584tdxnwODd6Kflh\nvM30Go1YjJ5aPpD6pYUTbddPD1+yE9wVE/J5JSC0dB0pYuzrUm2nn9oYAAAAAHiBp8ZwTXXfffdp\n06ZNevzxx/NO29nZmfz/aMLIOp2R5b1QyvudnZ19lpFtnvT1pq/fXFapZNru9O1KnzZ9e81p0n/P\ntZ7UefKtz3wvXb71ZNqXqTWm15TpOKZPm+/4RFt7b2/uPvTQ7NNk2a5c7dFOu0idt7u7++Djllaj\n1WOQLpTl9Wy15mofubYh3/rMdZoyta1c0tuW3Xmcuo6kTpdrmZnaqKJRxTfVSzWHKj5oUJ7q+y43\nb5s+cMt+puVmW0ZqffmOm6X20LpXnZfMUfXKV/ucW73r6V1Xd3d3zmnTa8vYRtPmzXbdKoSt9t+a\neZiEXNetTOvLel4XsY/Sp0mtLds0uY5zcjkW23AhxyTTdT/b9d58L52d67OVz0Ir53m299JrLKS2\n+I4dvT9T9rWdtpW+3vT3kvvXHPLDwXMJwWVex82fQFDR1lEJaOeoBNXV1a4s15OB6/33368VK1Zo\n1apVlja8sbFRPQduya01/0gwDv4Zj8czzh898Id+PB7Xtm3b+iwj2zyStG3btoNeM+c1l1UqtRn+\nkEvfrvRp07fXnCb991zrSZ0n3/qy7c9c6zHnMf+obOrqOqjG9GOevl2p67F6fFKXf1T//op2dCo+\noFpNXV3J380UJH27sm17rvUe1b9/n9+burr61N/c3GzpuOU7BpmY86SfM9lqzdU+sk1rZX3Z9mPq\ndmWaJ9O8+daTa32pdRdyHcm2/3K1x+Ty29vVedkViv76ZW1rbc24nnS223SG5aYvI9keU7Y133Gz\n0x6y7ptwSM3NzVlrSj0PrVyncl0LClVs+zfntXptsHJeF3KuZjrG2aa10saS22OxDRdyTDJd9zN9\nbps/833e5DsGdtqYle1Kf6+Yz47ksnbv6Z03ZV/baVtWty9XWwayMa/nQNDR1lEJaOcIqkgkojFj\nxriybM8Frg888ICef/55rVq1SjU1NZbmOfroo5P/H93eqLikUKg3DUv9GY1k3txQT+8fPNFoVLXH\nHN1nGdnmkaTaY44+6DVzXnNZTovu3ds71mFa76Ho9saDpk3frmw1mvOa06T/3mf9aetJnSff+rLt\nz1z70Zwnur932aMHD+6dILZPoap+Gt29XyEl+hzz9O1KXY/V45O6D6LbG9V52eWqXvmqamtrk7/3\nW/GylGG7sm17pn2Tvj5JvdsVjiS3S5KGDx+u6M6WvMct1zHIxpwn/ZzJV6uV9p2rXeY7RzNtV6Z5\nMs2bbz251meus9DrSLb9l6s9Wt33mRTSpvMtI1lr9OttzXfcrLaHTLX2rs+QEgkNHz5cVVVVGWtK\nPw9tb88BlmpNu9Yme/gdGGu20PZvzpvt2pDeE9nKtbWQczXTMc41bb42ZvVad9D6c6w32zyp+6/f\nIQMyfg5Y+bzJV7O5vtE1vb2H0z9zs7flvusz21LqNT1TjanrsVpbIduVvoxCzqFM6wVM3d3dam5u\nTl7PgaCiraMS0M6BwnkqcN2+fbtuu+02jR07VjNnzpRhGKqurtYf/vCHnPOl9oLtCWe/8TWU7b2e\nr9+vrq7us4ys8yhzt2NzXnNZTutpalLHJXM04LWVqh427KD19p1YGWtJr9H83Zwm/fc+i0xbT595\n8qzPfC9dvvX0maetrfdnOCR1dKhz7uUacCD4TJ0+/Tia67F6fFL3Qbb9lb7OTNuTPm229faZLsN2\nVVVVJdeR87iZx6Cqn/o1NSlUU6Pw0KE5zwu+qQxlAAAYiklEQVRleV5TvlqttO9c7TLbOk2ZtiuX\ng9qWzXmcuo6kTpdrmdnaUqZ5cymkTedbRiHHzU57yLRvjAPD2FZVVeU877K1fzvbY6lW81r729+o\nat8+GanXHqvLyHJ8M9WUrLWpSZJUFe4dYt3IcG1NtLT0jqd6YKel709zTFfDxrU8tbZs04aq+qlq\n3z6Fhw7Nuzyr7THXerPN02f/ZfkcMGtIZ+f6nHz/wLHP9Jlr6Tw321K+GlPWY7m2Ararz3TRaO9n\nRf/+Mrq6DvrMyHlNkHu3XyEYzOs5EHS0dVQC2jlgn6cC12OOOUYJHvrjmuQf6UU8ER0+0dGhjrmX\na8BrK6UM4YhTzDZl/pGe+nrFO/D0+fR9A/e4co3r6JCRY2gZt+R6QJX5EKtMAV6+ea3Idl4n90Va\ne060tPjjc8UP5+SBGu3uT/Oam2u7Mk5jflaseLkknxkAAABApQiXuwCnmE9r9sUffWXixBPR7eCY\nlIalJ6G7JNvTy41YjCea53n6fFlCqgNhTqKxsSRPty+F1PZf6muclZr8KNt5nWt6q/u8rPsmzzlZ\nkGg0uU2ObNeBGu22YSvXXHMav7dPAAAAwA8CE7h65Q/twDCDmSL+KAvcMSmw55HbCDf9yU5IVYw+\n4YoZOO3b53zwVCapIVIhvQLdCJ4q5ZzMuf+yfIYUsm/S1+P2lxW22kVHR3KbXD3mDnwmmyqlfQIA\nAADlFJjAFQ5zoyeQ3xXY8wgoJy+EK6Xo7V5IgF3wvkkLv8ztKyoMO9BT0k9y7j8HP0PS1+P2lxVe\nOGcOYu7Pjg777cSHbQsAAD9r7dqjprZGtXbtKXcpAMqIwDWVR3swlur2v4q6zTBbYNLYWDn7ACiR\nwPV2TwsT7d6Cn22ZeefP9hmVK1ArZhiJEn8mOhJcW1HMfiz354OVduLEPAAAoGDt8XbdvvY2tcfb\ny10KgDIicE3l0R6Mpept48lePW7JFpjs21c5+8AFjNubQRGhVUV9CeIGK/veR4Fk1s+oA4FaxvZi\ncxiJPrfrl/gzMT24dq3959mPueax9fng0S9xc/JjzQAAAIAHEbjCU0oe2Ln4x6VvntztoMD1ZHRC\nEaFVqcaFDGw7tbLvixnXNn35Zd6fTrSXUo0t3Ef6fjvwu7Fnj/e+ALNzjD36JW5OGdo0X/oAAAAA\n9hG4VoJShwBFrK/kgZ2LfxCXJbgA7PBjIOSAkvec9BIvhuzp+83L+9HLtblxbBmOAAAAACgIgWsl\ncOAPRFs9T738B2kQ0OOo4lTK0AJH9e+v6N69fV90IUTK2RPUi4Gkk0p9ffbK2KeVgM9eAAAAwDMI\nXGFJEG4V99It/kUFaPQ4qjiZAsJ8X4J4OqTNEsJFOzql2L6+05Y6RCK0ystW2zKHbOjo8G57BAAA\nAACHEbiiYhRyi79bIW1FPaAMrjjoS5C0ENMLbSxrKFzIA4iCIgA9aAtqW3xRBAAAgIBp7dqjprZG\ntXbtKXcp8CAC10oW1FvTHdwux8dhDUDYUiqe7qHpRR4MMQvpGR+q6hfsc4QetAAAAEAgtMfbdfva\n29Qeby93KfAgAle/4GEY1nl5u4IStpQgOPZCD01f8vsXKUE5RwAA8KBdbd3a1dZd7jIAAAg8Ale/\nKFcIQY9MZEIo5l1e/sLBCX4PlAEAKKO2rh61dfHvegAA3EbgWgbmuIa+CA0I1gDP8dID4Eou6IEy\nAACAAxhbMng4poC/ELi6JUcvLHNcQ0IDME6p9/ghzHR8bGEAAAA4wiuhGGNLBg/HFPAXAle3pPXC\nIlhDJoEZpzRAQ08QZhamoGscwwMAqACMmVm5zGNPG6gsQQ7FWrv2lD1IBgC/IHAtkcAEayi5aHW1\notsbvR1mBmDoCb4UKY55jbO1HxkeAEAFYMzMymUee9oAgqI93h7IIBkA3EDg6nOERBWgs0Odl8zx\ndZjpB3wp4gz2IwAAAOCs1q496jH4exDwk2i5C8DXzOA0PHSo5XkINgAAgFeZt1EPGVhV5koAb9jV\n1q22rh4N7B/hvABgWXu8XYaCHbi2du1Re7xdh0QP0eD+h5W7HKBo9HD1EHqGBQO9juEW2hYAv+FW\naqCvtq4e3fjkR0WdF7vaurVtVwfjwsJTGN/VWZW4P4M8/jEqE4Er4DCCcxQty0PIaFsA/IyQyL70\nhy355eFLAw47UjvaenxRqx85EdrCX/wQvjG+q7PYn5XLD+c7rAlE4Jr46itvP1AICAB6V5ZQAB5C\nBgDpCInsS+8h7Jcew109If3tU5/4olZ4H+FD+cI39j3KIRKKqKmtseLannm+EbYHRyACV2PfPoIJ\nwGX0rgQAuCFoPV+Dtj1+5OQx8EuvYq8rJrgjfHCGnWPg9+CntWuPbwI7P9VaKl2JroxDCzjxBYCX\nv0Tw6/mG7AIRuMLHDtw6Tc9Jl2S5NR0AAK8IWs9XP25PIaGik0Gk06Fm+jEoZmgGv/Qq9jqngwS7\nIZWXQ5ZSsXMMnDhe5j5P3felChf9NBaon2othJPH3Il26adQk+uW/xG4orwO3DpNz0mXcGs6AMCj\nzF6IiYRhedog9TTMFfoVE0AWMm8hoaKTQaTboaYfh2agZ21udkMqp0KWQsIjO/OUIkguVYhj7vPU\nfR/0cDGbSg7OKvWYO8FP4TAyI3B1GeNeAgAAHMzshZgw8geufuw1mo0ZpOUK/ewEgulhtB/CRCeV\nI5jM9gWAk7VkOo52vqQohFe+2MgVOprv9RiFdyYopsddIeGRnXlKESTnmseJ/YuDEZwBlYnAtVBp\nt8InWlryP1Xc4u3dfgpp/VQrgNJJtLQwlAUAZOB0IBqkMLoQ5QiYzX3euT9R0rDbzpcUxSzf7ja0\ndu1RS2eLYz0/c4WO5nuGCg8Ey9XjznwQUEtnS59t9lLvRyf2L4LBSrv0Uts1lWrYCjtfTjBOb+Ui\ncC1U2q3wRiyW/9Zti7d3++nhRH6qFUDpGLEYQ1kAcJ2Xbrt2u/ehXaXeN1bW55UelE7p2m89oIyE\nQ7bbhzmP1/dXe7xdHS73/CwFt8Mj80FAHWm9Hb3Q+9FOeOTGE+RLHdxlWl++UMztGt3Yr5lYDf+s\ntMtC2q7b+9HOdcXqvshUs9UvJ1q79ii2f59j1zqz5vQvbuBNBK4ekK13LAAAALIr5tZ7N2optveh\nk6FtqXt+muvbt18KRyJZp/FLb1ynA2sznM3XPlLXayfQtctLX1a4IVNAYgZa2ULFQsKjgUMHqt1w\nLyy1EoQ6EdTZ6dma7Qnyxci27+2Ec3amzbS+fEGd28F4tv3qdEBZ7i86vPAFg8nqviim5vZ4e/K8\nSu3lXuywJulf3MCbCFw9wFLv2HQ8fR4AAMCyQsK+UvfIdPuWcauKCePau3tkGCFJ/umhmUm5xsIt\n1XrT17OrrfugoD+995cXbx/OJlNAYgZaTtwuHwlF9FX8K/VE4+ro6Sh6edlYCULdCEDtSA+FnWgn\n5jLa4+3q6unKGE6lr8etIK/c49ra2a5c+97qdjh5/NySunw/3a6f2sv99rW3ZW3bCA4CV7/i6fNw\nWzTK+LyVhmMOwOPyBXhO99rzYo/MbPugkFvWs0kN4/KFzrn2udlD0xzrtJDa/DAMgZP7vhzLl3qP\neXrQn977y4lAy0+hbS5diS7d8f4/yJBzx6S1a08yDMvXGzeTUt2Sni49FLbSTvLVmrqM9EDZDNhi\n+/dl7RVrdb+Z7THXPPlCby+16Vz73up2OHGeW1mG3d7LqedD6vKt9lL1YpBs58uScgf/KAyBK4DM\nOjoYn7fScMwBuCRT77l0kXAoGd6Z4Vr6Lfb5brEuda/EctyWnW0fWL1l3a58obOVfV5Ibeaxj3XE\nPRd6p0vfvnINR+AUM+DtcWF9uYIYrwQKucb3tNI70G7YZ0q99Thfb9xMNZa6p6udUDh92mJqzRcc\n2rmF22yPqfMUUk96GFzuNpzOSrssJmgtJIi0sz4rPb3T21h6qF+qINktPNDOnwhcPSzR0kJvMwAA\n4HuZes+l69rfkwzvzHDNK7fYZ5MrbCxFr0Q7rD7UyisP2sp37L1Ua7pCxhbesbfLse0pdt98HfA6\nUo5l6YFCJBSx3QPOid5nucb3zBd22AnuinngUKmDn1wBr51xX9OnTQ/J3OpBmH4Lt1uBqJ3esMWE\ns3Z7MxcTKEu9YxV/Ff8qa+12ejWnb2+uY24n1E9vY4WE+k4+kMpLPZ9RPgSuHmbEYvQ2AwAAgeJE\nEOmlMDNbLXZ6PeZ7WFamea3uA3NeK8MElKqHsNmbuZj1ZZrXyYeOZVufld7adpfb24M3bntfmPsx\n0zLNYRy8PBRDPl2Jrj5hSaZeemYg4+RTwFN5rcdiMcFWJla3z62ANz0kK9WDqayEj/n2jZVALf1L\nA3P7Up9cX0gQWurezPtD+3XH+/9w0G38dmrPtu9zHXMnx11Ol+l64sQDqcr1pQi8icAVAAAAjrDS\ns86J26OdDDOLZXV7coWL+XpzZpq3mPUWMjatkw/AMnszO8WszRx+wM0e0VZ6a5eKuR8ztf/0oSey\nnQdWztlCxhN140E2mXrpFXLrvdVpig3FysVOSMVtytll2zd2ArX0Lw1Sl51tnxdzvhXyxYBXemLa\nGY7DCcX2+s21XLtBq53e/PAXAlcAAAA4IrUXYCl71hUTZiK71N6c+cbPLadCQnwnA+RCuPWQs1zT\nZNpHlsbgtRHgpfc47erpstQL0KlepNl6FOaSbRo7gUym0MrJ7ULp9me+9XipF25qTYUG53a2p5hx\ne63U4UYA6ocwM1swD/8jcC2naFQ9mzdLPd77hytgYixhAIBdTtyaXsyt27vaurVjb5etW+7TX7N7\ni78f5Qv9vNSbsxC5ts8Mac1b7832UqrjWuoHYbnByrieVoIEJ28bthNcOBngZQqt3Lwd2o5sgVOp\nexQWq1T7s5D1eDVcL7b3aiQU0VfxrxSOhCTZ61FeiuNlpQ07HWZmO9ZutQGvti1YQ+BaTh0d6ph9\niZTg5IF3MZYwAKAcign7egNfa7eXp/bKNUO39FvTzeDOfLBRqcY6dVp6AFlMz1AvjJ+bj5WhJ77u\nuRv3bA9eq4oZ67cQfh+j0CuBqNsKua0d9nitLTk1jmhXokt3vP8PMmTt+lHqa4LbbdjOw+LcagNe\na1uwh8AVAAAAFSc9nMoV0qaGcn4O5NwYP7dUsj0gyg6/BuVWFTPWL+BXXhmDtByy9X70+5chpcZ+\nhFsIXAEAAFAQ89Z7q7fve4EZ3HkhfPNTb9FSyTacQ64HRAGoXJUcitH70RnsR7iFwBUAAAAF+fpp\n9+4/Hd4pZnDnBfQ+PFi+h5y5HZQTgpeG38YPBYKGsUEB93kucN24caOmT5+u8ePHa+rUqfrss8/K\nXRIAAABS8eBPBBQheGkwfihQXvTqBNznucB10aJFWrx4sb744gvdfvvtWrhwYblLAgAAQCoe/AlU\nrEoeMxMAAKui5S4g1c6dO/Xhhx/qzTfflCRdccUVuvnmm1VfX68xY8ZIkoxM3zaHw1IkIh1+eO6f\n4Sz5cjHzmO+Hw/nnLVeNXl5fIfuxXDV6eT+6tT4/1Ojn4+aHGku2PqP395A8XKMf9qPL6/NDjX4+\nbn6oMW3ecCikwQOiCoeU/BkOZZ4ldZpsP9PnLWQeK/NWWo1urS/TPIbHavTzcSt/jWHV9KtRWF//\nDCusznhn7/QpfXdSp8k0T8b15Zgn27yFzONqjSFz7pD1eUpdYwnX54cafdO2vFRjhmtBxe8TD9eI\n4mXMHQsQMpxakgPq6ur013/9132GEZg6dar+/d//Xd/+9rclSfF4XG1tbWWqEAAAAAAAAEAQDRw4\nUNFo8f1TicQBAAAAAAAAwCGeClxra2vV1NSkRMp4YFu3btWIESPKWBUAAAAAAAAAWOOpwPXII4/U\nlClT9Mwzz0iSXnzxRdXW1ibHbwUAAAAAAAAAL/PUGK6StGHDBl133XX66quvNHjwYC1fvlwnnXRS\n8v1EItGnB6wkhUIhhUJZRn8HAAAAAAAAgBSGYRz0kKxwOKxwtgfH2uC5wBUAAAAAAAAA/MpTQwoA\nAAAAAAAAgJ8RuAIAAAAAAACAQ3wZuG7cuFHTp0/X+PHjNXXqVH322WflLgkoyN/93d9p9OjRCofD\n+vjjj5Ov79y5UxdddJGOP/54TZw4UWvWrEm+19HRoWuvvVbjxo3TCSecoJdeeqkcpQOWdXV16bLL\nLtMJJ5ygyZMn64ILLtCmTZsk0dYRLBdccIEmTZqkyZMna8aMGVq/fr0k2jmCafny5QqHw3r11Vcl\n0c4RPKNGjdKECRM0efJkTZkyRb/61a8k0dYRLN3d3brlllt0/PHH69RTT9WCBQsk0c4RLLt27Upe\ny6dMmaLx48erqqpKe/bscbWtR53ekFJYtGiRFi9erPnz5+ull17SwoULtXbt2nKXBdh25ZVXasmS\nJTrrrLP6vH7HHXdo2rRp+s1vfqMPPvhAl112mbZs2aJIJKL7779f1dXV+vOf/6wtW7Zo6tSpOvfc\nc3X44YeXaSuA/BYtWqQLL7xQkvToo4/qxhtv1FtvvaUlS5bQ1hEYv/rVrzRo0CBJ0ooVK3Tddddp\n/fr1tHMETkNDg5544glNmzYt+Rr/dkHQhMNhvfDCCzrllFP6vE5bR5AsWbJE4XBYGzZskCTt2LFD\nEu0cwTJkyBCtW7cu+ftPf/pTvfPOOzrssMN0/fXXu9fWDZ/ZsWOHMXjwYKOnpyf52je+8Q1j06ZN\nZawKKM6oUaOMjz76KPn7oYceajQ3Nyd/nzp1qrFq1SrDMAzjpJNOMv74xz8m35s3b57xX//1X6Ur\nFijSBx98YIwePdowDNo6gmv58uXGlClTDMOgnSNYEomEcd555xl1dXXGt7/9beOVV14xDIN2juBJ\n//e5ibaOoGhrazMGDRpkxGKxg96jnSPIJkyYYLz66quGYbjb1n3Xw3Xbtm066qijFA5/PRrCiBEj\ntHXrVo0ZM6aMlQHO2LVrl+LxuIYNG5Z8beTIkdq6daskaevWrRo5cmTG9wA/eOihhzR37lzaOgJp\n4cKFeuuttxQKhfT666/TzhE4DzzwgM4++2xNnjw5+RrtHEE1f/58SdLpp5+uf/u3f1MoFKKtIzA2\nbdqkIUOG6N5779Xvfvc7HXLIIfrnf/5nTZo0iXaOwHr33Xe1Z88ezZ492/V/v/hyDFcAgD/dd999\n2rRpk+67775ylwK44qmnntLWrVt1zz336Pbbb5ckGYZR5qoAZ3z66ad66aWX9I//+I/lLgVw3Zo1\na/TRRx+prq5ORxxxhBYuXCiJazqCIx6Pq6GhQSeffLLef/99PfTQQ7r66qsVj8dp5wisZcuWacGC\nBX06cbrFd4FrbW2tmpqalEgkkq9t3bpVI0aMKGNVgHOGDBmiaDSaHD9HkrZs2ZJs4yNHjlRDQ0PG\n9wAvu//++7VixQq98cYbqq6upq0j0ObPn6+3335bktSvXz/aOQJhzZo1amho0Lhx4zR69Gi99957\nuummm/TCCy9wPUfgHHvssZKkSCSiW2+9VWvWrOHfLgiUESNGKBKJ6Nprr5UkTZo0SaNGjdInn3zC\nv10QSG1tbXrhhRd0/fXXS3I/e/Fd4HrkkUdqypQpeuaZZyRJL774ompraxlOAIFy5ZVX6uc//7kk\n6f3331djY6NmzJghSfrOd76jX/ziF5KkzZs3a/Xq1Zo7d27ZagWseOCBB/T888/rzTffVE1NTfJ1\n2jqCorW1VU1NTcnfV6xYoSOOOEJDhgyhnSMwFi9erO3bt6u+vl6bN2/WGWecoaVLl2rx4sW0cwRK\ne3u7Wltbk78/99xzyWE0rrrqKto6AuGII47QrFmz9MYbb0jqbbNbtmzRiSeeyDUdgfT8889r0qRJ\nOv7445OvudrWnRhwttS++OILY9q0acbxxx9vnHbaacaf/vSncpcEFGTRokXGsccea/Tr18/4xje+\nYYwbN84wDMNobm42/uqv/soYN26ccfLJJxurV69OztPW1mbMmzfPGDt2rDF+/HjjxRdfLFf5gCVf\nfvmlEQqFjOOOO86YPHmyMWnSJOOMM84wDIO2juBoaGgwTj/9dGPixInGqaeeapx//vnJh63QzhFU\nM2fOTD40i3aOIKmvrzcmT55snHrqqcbEiRONuXPnGg0NDYZh0NYRLPX19cbMmTONU045xZg0aZLx\n61//2jAM2jmCafr06cZTTz3V5zU323rIMBicAwAAAAAAAACc4LshBQAAAAAAAADAqwhcAQAAAAAA\nAMAhBK4AAAAAAAAA4BACVwAAAAAAAABwCIErAAAAAAAAADiEwBUAAAAAAAAAHELgCgAAAAAAAAAO\nIXAFAAAAAAAAAIcQuAIAAAAAAACAQwhcAQAAAAAAAMAhBK4AAAAAAAAA4JD/D/ZGPxaU2hlsAAAA\nAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fc7480c4cf8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, axes = plt.subplots(figsize=(15,15), facecolor='white', nrows=4, ncols=1, sharex=True)\n",
"\n",
"ax_a = axes[0]\n",
"ax_b = axes[1]\n",
"ax_c = axes[2]\n",
"ax_d = axes[3]\n",
"\n",
"x_ticks = [i for i in range(len(dfBooks.index))]\n",
"\n",
"\n",
"s1,f1 = [0,book_chapters[0]]\n",
"s2,f2 = [book_chapters[0], book_chapters[0] + book_chapters[1]]\n",
"s3,f3 = [book_chapters[0] + book_chapters[1], book_chapters[0] + book_chapters[1] + book_chapters[2] ]\n",
"\n",
"ax_a.bar(x_ticks[s1:f1], fv_lexical[s1:f1, 0], color=STD_COLORS['1'], label = 'Clancy')\n",
"ax_a.bar(x_ticks[s2:f2], fv_lexical[s2:f2, 0], color=STD_COLORS['2'], label = 'Ghost') \n",
"ax_a.bar(x_ticks[s3:f3], fv_lexical[s3:f3, 0], color=STD_COLORS['3'], label = 'Greaney')\n",
"\n",
"ax_b.bar(x_ticks[s1:f1], fv_lexical[s1:f1, 1], color=STD_COLORS['1'], label = 'Clancy')\n",
"ax_b.bar(x_ticks[s2:f2], fv_lexical[s2:f2, 1], color=STD_COLORS['2'], label = 'Ghost') \n",
"ax_b.bar(x_ticks[s3:f3], fv_lexical[s3:f3, 1], color=STD_COLORS['3'], label = 'Greaney')\n",
"\n",
"ax_c.bar(x_ticks[s1:f1], fv_lexical[s1:f1, 2], color=STD_COLORS['1'], label = 'Clancy')\n",
"ax_c.bar(x_ticks[s2:f2], fv_lexical[s2:f2, 2], color=STD_COLORS['2'], label = 'Ghost') \n",
"ax_c.bar(x_ticks[s3:f3], fv_lexical[s3:f3, 2], color=STD_COLORS['3'], label = 'Greaney')\n",
"\n",
"ax_d.bar(x_ticks[s1:f1], fv_lexical[s1:f1, 3], color=STD_COLORS['1'], label = 'Clancy')\n",
"ax_d.bar(x_ticks[s2:f2], fv_lexical[s2:f2, 3], color=STD_COLORS['2'], label = 'Ghost') \n",
"ax_d.bar(x_ticks[s3:f3], fv_lexical[s3:f3, 3], color=STD_COLORS['3'], label = 'Greaney')\n",
"\n",
"titles = ['Average words per sentence', 'Std Dev words per sentence', ' Lexical diversity', 'Chapter length']\n",
"axes = [ax_a, ax_b, ax_c, ax_d]\n",
"legend_loc = ['upper left', 'upper left', 'upper left', 'upper left']\n",
"axes_grid = [True, True, True, True]\n",
"ax_data = zip(axes, legend_loc, axes_grid)\n",
"for axis, legend_loc, grid in ax_data:\n",
" handles, labels = axis.get_legend_handles_labels()\n",
" axis.legend(handles, labels, loc=legend_loc, frameon=False)\n",
" axis.grid(grid)\n",
" axis.set_title(titles[axes.index(axis)])\n",
" axis.set_ylabel(titles[axes.index(axis)])\n",
"\n",
"ax_a.set_axis_bgcolor('white')\n",
"ax_c.set_axis_bgcolor('white')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can see from the above that:\n",
"* Mark Greaney tends to average longer sentences\n",
"* has a more diverse vocabulary\n",
"* writes shorter chapters.\n",
"\n",
"All good for classification"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABVUAAAS9CAYAAABH+rnkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XmcU/W9//F3kpmBYWCQRVoXFFkKlHWmKlpvq1hsRSwF\n0aJeq7LUrdIFva71V3pduijS1m52AbytrdeHcG0rWq8WaW2LVB0WK8imkzudQUaYISSzZvv9MZ6Y\nCUkmJznJyfJ6Ph4+MMk53+/nfM/3nMl85nu+X0c4HA4LAAAAAAAAAJASp90BAAAAAAAAAEAhIakK\nAAAAAAAAACaQVAUAAAAAAAAAE0iqAgAAAAAAAIAJJFUBAAAAAAAAwASSqgAAAAAAAABgAklVAAAA\nAAAAADCBpCoAAAAAAAAAmEBSFQAAAAAAAABMIKkKAABQJILBoL75zW9q4sSJmjp1qmpra3XDDTfo\n6NGjdodW1L7//e+rubnZ7jAAAACQQ2V2BwAAAABrLF68WEeOHNGWLVtUXV0tSVq3bp1aWloir0tN\nMBiUy+XKah3f+973NHPmTI0YMSKr9QAAACB/MFIVAACgCOzfv1/r1q3T2rVreyVQFyxYoFGjRkmS\nHnzwQU2ePFnTpk3TF77wBXm9XknSN7/5TS1cuFBz587V+PHjNXfuXL355pu68MILNWHCBF155ZWR\n8hYtWqTrr79eF1xwgcaMGaMlS5bo1Vdf1cyZMzV27FjdcsstkW1XrVqlGTNmqLa2VjNmzNArr7wi\nSQqHw7r55ps1adIk1dTU6IwzzlB3d/cxx7Ro0SItWbJE55xzjiZMmKBFixapq6tLkuTz+XTdddfp\nrLPO0vTp03XDDTcoEAhIkmbOnKmvfOUr+vjHP67PfOYzx5T7i1/8QpMmTVJtba2mTZumV199VZK0\nb98+XXzxxZoxY4amT5+uH//4x5F9nE6nvvWtb2nGjBkaM2aMHnvsMUnSvffeq6amJi1cuFC1tbXa\nsWOHAoGA7rzzTp111lmqra3V5ZdfLo/HEzmmG264QbNmzdL48eN16aWXRuL2+/267bbbNGXKFNXU\n1Oiiiy6K1L9y5UqdddZZOv3003XRRRepoaEhpX4BAACA7CCpCgAAUATq6uo0btw4DRkyJO7nf/zj\nH7V27Vpt3rxZ27dv14ABA3THHXdEPn/99df161//Wrt379bRo0f1xS9+UevXr9ebb76pXbt26bnn\nnots+89//lPPPvusdu/erb/85S/69re/rT/96U/asWOHHn/8ce3atUuSdPXVV2vLli2qq6vTD37w\nAy1atEiStH37dm3cuFFvvvmmtm7dqo0bN6qioiJu3P/4xz/0wgsvaNeuXTp8+LBWrVolSbrlllv0\nyU9+Uq+88oq2bdumYDCo73//+5H99u7dq7/+9a968cUXjynz1ltv1caNG1VXV6e6ujpNmjRJoVBI\nV1xxhR5++GFt2bJFmzdv1qOPPqrXX389sl9lZaW2bNmiZ599VsuWLVMoFNI999yjE088UU8++aTq\n6uo0depUPfjggxo4cKBeeeUV1dXVafLkybr77rsj5Wzfvl0bNmzQW2+9pXfffVfr1q2TJD3wwAPa\nu3evtm7dqq1bt+pXv/qVJOm3v/2tdu/erc2bN+u1117TlVdeqRtvvDFJbwAAAEC28fg/AABACXjx\nxRe1cOFCDRo0SJJ044036vOf/3zk809/+tOREa61tbXq37+/BgwYIEmqqanR3r17NXv2bEnS5z73\nOZWXl0uSpkyZos985jNyOp0aMGCAPvrRj2rv3r2aOHGiXn/9dT3wwAM6fPiwysrKtGfPHnV1dWn0\n6NEKBoNavHixzjvvPM2ZMydh3J///OcjcSxZskSPPPKI7rjjDj399NN65ZVXtHLlSklSZ2dnJCZJ\nuuqqq+R0xh8/MGvWLF111VX67Gc/q9mzZ2vcuHHatWuX3nzzTV1++eUKh8OSekbD7ty5Ux/72Mck\nKTJid/z48SovL9e7776rE088UZIi+0jS008/raNHj+qpp56S1DMC9bTTTot8Pn/+fPXr10+SdOaZ\nZ2r//v2SpA0bNui73/2uysp6vqIPGzYsUt5rr72m2tpaSVIoFJLD4UjYZgAAAMg+kqoAAABFoLa2\nVnv37lVra2vC0arRYpNy/fv3j/y/y+U65rXxiHqq2/r9fi1YsEB//vOfVVtbK6/Xq+OOO05dXV2q\nrq7WP//5T/35z3/Wxo0bdeedd+rll1/W6NGjU447HA5r3bp1Gjt2bNztBg4cmLCMp556SnV1ddq0\naZMuuugi3X///Zo8ebKGDRumurq6hPVGH6fT6ezVJtHC4bAeeeQRzZo1K+7nydo2UXl33nmnli5d\nmnQ7AAAA5A6P/wMAABSBMWPGaMGCBVqyZElk/k5JWr9+verr6zVr1iw9+eST8vl8kqRHH3007nyj\nVuns7JTf79fIkSMlST/4wQ8inx06dEg+n0+zZs3SAw88oFGjRmnnzp1xy3nqqafU3t6uYDCoNWvW\n6IILLpDUM9rzO9/5joLBoCTpyJEjkRGfyQSDQe3fv1+1tbVavny5Lr30Uv3jH//Q+PHjVV1drbVr\n10a23b9/v44cOSKp90jUWIMHD+7V5vPmzdOqVavU0dEhSero6Eh4fNHmzp2r73//+5H5ZQ8dOhQp\n76c//alaW1slSYFAQNu2beuzPAAAAGQPSVUAAIAisXr1ak2dOlUzZszQlClTNGnSJL3wwgsaOnSo\nLrzwQi1atEhnnXWWpk2bJq/XqwceeCClcqNHtcaOcE30etCgQbrvvvt0xhln6Iwzzug1OrOhoUEX\nXHCBpk+frilTpmjKlCmRqQVinXHGGfr0pz+tSZMmaejQofrKV74iqWcRrP79+2v69OmaNm2aZs2a\nJbfbHTemaMa0A1OnTlVNTY3q6uq0fPlyuVwuPfPMM1q/fr2mT5+uyZMna+nSpZHEaLLjXrZsmZYu\nXRpZqOqOO+7Q6aefrhkzZmjatGk6++yztX379j5ju/322zVu3DjV1taqtrZW1157raSeaQeuvfZa\nzZw5UzU1NaqpqdFLL72UsBwAAABknyOc7M/uAAAAgE0WLVqkmpoaffnLX7Y7FAAAAKAXRqoCAAAg\nL7EYEwAAAPKVLSNVn332Wd1zzz0KhUIKBoO69dZbdfXVV+c6DAAAAAAAAAAwzZak6rBhw/SXv/xF\nkyZNktvt1oQJE3To0CFVVVXlOhQAAAAAAAAAMKXMjkqdTmdk9VKPx6Phw4erX79+kc9DoZBCoVCv\nfRwOB4+AAQAAAAAAAEhJOBxW7HhSp9MppzPzGVFtSao+8cQTmj9/vqqqqnTkyBGtX79eZWUfhBIK\nhdTW1mZHaAAAAAAAAACKVFVVlSVJ1ZwvVBUMBnXffffp6aefVn19vV588UVdddVVamlpyXUoAAAA\nAAAAAGBazpOq27Zt04EDB3TOOedIkk4//XSdfPLJ2rp1a65DAQAAAAAAAADTcp5UHTlypA4cOKC3\n3npLkrRv3z69/fbbGj9+fK5DAQAAAAAAAADTcj6n6ogRI/Szn/1Mn//85+VyuRQKhfSjH/1IJ598\ncmSbeAtSWTXfAZBv2tvbtXfvXo0bN04DBgywOxwgK+jnKBX0dZQC+jlKBX0dpYB+jmIXb92meHnH\ndNiyUNXChQu1cOHChJ/HOzirVuYC8o3D4VAwGJTD4aCPo2jRz1Eq6OsoBfRzlAr6OkoB/RylyKqk\nKlcMAAAAAAAAAJhAUhUAAAAAAAAATCCpCgAAAAAAAAAmkFQFAAAAAAAAABNIqgIAAAAAAACACWV2\nBwAAQKnzut0KeTxyDh6sQaeeanc4AAAAAIA+FE1S1fiF1Gqp/oIbDAZ133336YknnlB5ebnKysp0\n5plnavbs2VqxYoW2bt1qeWwAgOIQ8njkmz1HA5/bYHcoAAAAAIAUFE1S1fiF1Gqp/oK7ePFiHTly\nRFu2bFF1dbUkad26dWppaZHD4bA8LgAAAAAAAAD2YE5VC+zfv1/r1q3T2rVrIwlVSVqwYIFGjx4d\neR0MBnXhhRfqzDPP1JQpU3TVVVepo6NDkvTnP/9ZU6ZM0Ze+9CVNnz5dU6ZMUV1dXWTfDRs26Mwz\nz9T06dNVW1urV199VStXrtT1118f2cbj8ej444/XkSNHcnDUAAAAAAAAQGkiqWqBuro6jRs3TkOG\nDEm6ncvl0m9/+1v94x//0BtvvKHq6mo98sgjkc93796tRYsWadu2bbr55pt11113SZL27NmjxYsX\n6/HHH9e2bdv06quvasKECVq6dKl+97vf6ejRo5KkNWvWaN68eTruuOOyd7AAAAAAAABAiSOpmkPh\ncFgrV65UbW2tpk6dqmeffVbbtm2LfD527FidfvrpkqSzzz5bb7/9tiTpxRdf1OzZszVu3DhJPcnZ\nQYMGafDgwbr00ku1evVqSdJPfvIT3XzzzTk+KgAAAAAAAKC0FM2cqnaqra3V3r171dramnS06uOP\nP65Nmzbp5ZdfVlVVlR555BG99NJLkc/79+8f+X+Xy6VAINBn3cuWLdPcuXM1YcIEjRgxQtOmTcvs\nYAAAAAAAAAAkxUhVC4wZM0YLFizQkiVL5PF4Iu+vX78+MtpUko4cOaLhw4erqqpKXq9Xa9euTan8\nz3zmM3r++ee1Z88eSVIgEIg88j9+/HiNHj1a1113nZYtW2bdQQEAAAAAAACIi6SqRVavXq2pU6dq\nxowZmjJliiZNmqQXXnhBQ4cOjWxz9dVXq62tTRMnTtScOXP0yU9+MqWyx4wZozVr1ujf//3fNX36\ndJ111lmRBKskffGLX1QwGNSCBQssPy4AAAAAAAAAvRXN4//OwYM18LkNWSk3FS6XSytWrNCKFSuO\n+exzn/ucJKm6ulovvPBC3P3PPfdc1dXVRV5PmjSp1yjXCy+8UBdeeGHcfV966SXddNNNcrlcKcUK\nAAAAAABgVlNLo3x+nwaWD9SJQ0+yOxzAVkWTVB106ql2h5BzBw4c0Pnnn69hw4bp+eeftzscAAAA\nAABQxHx+n27dvFwPnf2w3aEAtiuapGopOuGEE7Rr1y67wwAAAAAAAABKCnOqAgAAAAAAAIAJJFUB\nAAAAAAAAwASSqgAAAAAAAABgAklVAAAAAAAAADCBpKpFAoGAvvnNb2rixImaMmWKPvaxj+mSSy7R\n9u3b9dhjj2n+/PmW1fXYY49pz549lpUHAAAAAAAAIHVldgdglYbmVnk7/JaXO6iyXCNHDOlzu2uv\nvVbt7e3asmWLqqurJUkbN26MJD8dDodlMa1du1ZDhgzRRz7yEcvKBAAAAAAAAJCaokmqejv8Wrx6\nq+Xlrl5c0+c2+/bt0+9+9zv961//iiRUJen888+X1DOy1Ov16sorr9Q///lP9e/fX08++aRGjRol\nSXrwwQf12GOPyeVyaerUqfrxj3+sQYMG6Q9/+IO+/vWvy+VyKRAI6P7771dzc7Nee+01fe1rX9OK\nFSv0wAMP6MILL7T8uAEAAAAAAADEx+P/Fti6davGjh2rwYMHJ9zmtdde07e//W3t2LFDn/rUp/Sd\n73xHkvTcc89p7dq12rx5s7Zv364BAwbojjvukCTdc889+tnPfqa6ujrt2LFD5557rpYsWaLTTz9d\nq1atUl1dHQlVAAAAAAAAIMdIqmbB22+/rZqaGk2YMEGLFy+WJJ199tk65ZRTIv+/f/9+SdKf/vQn\nLVy4UIMGDZIk3XjjjXrhhRckSZ/61Kf0la98RQ8++KC2b9/eaxQsAAAAAAAAAHuQVLVATU2N9u3b\nJ4/HI0kaPXq0tm7dqjvvvFNHjhyRJPXv3z+yvfE4fzzRc6+uXLlSa9asUVVVla655ho99NBDWTwK\nAAAAAAAAAKkgqWqBsWPH6nOf+5yWLFkSSaxKUltbW5/7zpo1S08++aR8Pp8k6dFHH9WnP/1pSdLu\n3bs1ceJE3XTTTbrxxhv1yiuvSJKqq6t71QMAAAAApaippVFNLY12hwEAKEFFs1CV3dauXav77rtP\nM2bMUHl5uYYMGaLjjz9et99+u956662E+1144YV68803ddZZZ/VaqEqS7rrrLu3Zs0fl5eWqqqrS\nT37yE0nSddddp1tuuUWrVq1ioSoAAAAAJcvn99kdAgCgRJFUtUhZWZlWrFihFStWHPPZjBkzdM01\n10Rez5kzR3PmzIm8vuWWW3TLLbccs9+6devi1hW7PwAAAAAAAIDcKZqk6qDKcq1eXJOVcgEAAAAA\nAADAUDRJ1ZEjhtgdAgAAAAAAAIASwEJVAAAAAAAAAGACSVUAAAAAAAAAMCHnj/+3tLToU5/6lBwO\nhySpra1N77zzjpqbm3XcccflOhwAAAAAAAAAMCXnSdWhQ4dq69atkdcrV67UX/7yFxKqAAAAAABY\nqKmlUT6/TwPLB+rEoSfZHQ4AFBXbH///5S9/qaVLl9odBgAAAAAARcXn9+nWzcvl8/vsDgUAik7O\nR6pG+/vf/64jR45ozpw5GZdl/AXOaqn+RS8QCOj+++/XE088obKyMlVUVOjUU0/VihUrNHXqVMvj\nAgAAAAAAAGAPW5Oqq1ev1tVXXy2ns+8Bs+3t7ZF5WOM52uXVbVtusTI8SdJ3Z6zU4La2PrdbsmSJ\n2tvbtXHjRlVXV0uSNm3apO3bt2vMmDG9tg2FQikdM0pDR0dHr3+BYkQ/Ty4UCkf+bUvhZw7yF30d\npYB+jnxi/AzNxs/PYujrfMdAX8z2c/oUCk04HM5a2bYlVdva2vTkk0/qtddeS2n7vXv3KhgMJvy8\n4vgKq0Lrpbu7W7t27Uq6TUNDg/7whz9ow4YNamxsVGNjoyTpQx/6kD70oQ/pwQcf1IYNG1RdXa2G\nhgbdddddOuGEE/TQQw/p3XffVVdXlz75yU/qhhtukCR9//vf19atWxUIBFRVVaW7775bp5xyiiTp\nzDPP1I033qg///nPOnLkiJYsWaLPfvazkTgefvhhtba2qru7W/Pnz9dll12mX//61/q///s/3XXX\nXZIkn8+n+fPna/369Ro0aFBW2g3m1dfX2x0CkHX08/hGvv/ltLu7W/v7+JmDwkBfRymgnyMfGL8H\n9vU7WyYKua8b7ZPK77Uoban2c/oUCo3L5dLo0aOzUrZtSdUnnnhC06dP10c+8pGUth83blzSkaoN\nRxusCq2XiooKjZk4Juk2u3bt0tixY3XGGWfE/byurk67du3S3//+98io1Xnz5uk//uM/dM455ygY\nDOrSSy/V7t27NW/ePN1///0aNmyYJOmpp57ST3/6U/3P//xPpLxTTz1VW7Zs0Z49e3Tuuefq1ltv\nlSRdf/31+uUvf6lx48apo6NDM2fO1Gc/+1nddtttqqmp0UknnaTq6mr96Ec/0rx583TmmWda0UTI\nUEdHh+rr6zVq1ChVVlbaHQ6QFfTz5Lr37lNAPT9zJo4ba3c4yAB9HaWAfo58Yvwe2NfvbOkohr5u\ntE8qv9eiNJnt5/QpFJpwOJx0kGYmbEuqrlmzRtddd13K2w8YMCDpI/NOX+KEayacToeqqqqSbtO/\nf385nc7Idm+//bYWLFigjo4OffzjH9e5556rj3/845G5Vdvb27Vp0yYdPnw4Mgy5ra1NbrdbVVVV\n+t3vfqcf/vCH8nq9CoVCam1t7RXDtddeq6qqKtXU1Ki8vFxer1cej0e7du3S4sWLI2W2t7frnXfe\n0b/927/psssu03//93/rq1/9qn75y1/qySef7PO4kFuVlZWcExQ9+nl8AWfPz7BUfuagMNDXUQro\n58gHxu+B2eyLhdzXjfbhOwb6kmo/p0+h0IRCIXm93qyUbVtS9a9//atdVVuupqZG+/btk8fj0eDB\ngzV69Ght3bpVjz32mH73u99JkgYOHBjZPhwOy+FwaMuWLSovL+9VVkNDg5YtW6bXX39do0aN0htv\nvKFzzz038rnD4VD//v0jr51OpwKBgMLhsIYNG6a6urq4MS5btkxz587VhAkTNGLECE2bNs3KJgAA\nAAAAAABKBqslWWDs2LH63Oc+pyVLlsjj8UTeTzRpc1VVlWbOnKkHHngg8t6BAwfU2Ngoj8ejiooK\nffjDH1Y4HNYjjzzSa99EE+yOHz9e1dXVWrt2beS9/fv3q7W1NfL56NGjdd1112nZsmXpHioAAAAA\noMg0tTSqqaXR7jAAoKCQVLXI2rVrNXnyZM2YMUNTpkzRJz/5Sf3pT3/S7bffHnf7xx9/XPv27dOU\nKVM0depULViwQC0tLZo8ebIuv/xyffSjH9WMGTM0atSoXvvFzitrvHa5XHrmmWe0fv16TZ8+XZMn\nT9bSpUvV2dkZ2faLX/yigsGgFixYYO3BAwAAAAAKls/vk8/vszuMkkRCGyhctj3+b7WB5QP10NkP\nZ6XcVJSVlWnFihVasWLFMZ/NmDFD11xzTa/3hg8frl/96ldxy1q1apVWrVoVeX3XXXdF/j92ct3m\n5ubI/5922mn6/e9/nzDGl156STfddJNcLlfSYwEAAAAAANlHMhsoXEWTVD1x6El2h5C3Dhw4oPPP\nP1/Dhg3T888/b3c4AAAAAAAAQEErmqQqEjvhhBO0a9cuu8MAAAAAAAAAigJzqgIAkANet1tet9vu\nMAAAAAAAFmCkKgAAORDyeOwOASgoDc2tkqSRI4bYHAkAAABwLJKqAAAAyDveDr/dIQAAAAAJ8fg/\nAAAAAAAAAJjASFUAAAAgSxqaW+Xt8GtQZTlTGQAAUKCaWholSScOPcnmSJBPGKkKAAAAZIm3w6/F\nq7cynQEAAAXM5/fJ5/fZHQbyDElVAAAAAAAAADCBpCoAAAAAAAAAmEBSFQAAAEBWNDS3qqG51e4w\nAAAALMdCVQAAAACygrlkASB7WDwJsBdJVQAAAAAAgALDwknWaWpplM/v08DygSSpkTIe/wcAAAAA\nAEDJ8vl9unXzchLVMIWkKgAAAAAAAACYQFIVAAAAAAAAAEwgqQoAAAAAAAAAJpBUBQAAAAAAAAAT\nSKoCAAAAAAAAgAkkVQEAAAAAAADABJKqAAAAAAAAAGACSVUAAAAAAAAAMKHM7gAAAAAAAABgnaaW\nRvn8PpU5ytW/rJ9OHHqS3SEBRYeRqgAAAAAAAEXE5/fp1s3L1e5vk8/vszscoCiRVAUAAAAAAAAA\nE0iqAgBQxLxut7xut91hALZqaG5VQ3Or3WEAAACgiDCnKgAANvG63Qp5PAr5A1mrI+TxZK1soFB4\nO/x2hwAAAIAiw0hVAABsEvJ45Js9R+FQ0O5QgLzR0Nyqne5mBYJcFwAAAMhfJFUBAACQN7wdfi1e\nvVWhkN2RAAAAAImRVAUAAAAAADCpqaVRTS2NdocBwCa2JFW7u7u1bNkyfeQjH9G0adN09dVX2xEG\nAAAAgCJnTCnBYmXWaGpp1J6Du0kkAZJ8fp98fp/dYQCwiS1J1dtvv11Op1N79uzR9u3b9dBDD9kR\nBgAAAIAiZ0wpwYJl1vD5fbp183ISSQCAkleW6wrb29u1evVqNTZ+8JfNESNG5DoMAAAAAAAAAEhL\nzkeq7t+/X0OHDtX999+vM844Q+eee642btyY6zAAAMh7XrdbXrfb7jAAAACQpxxhJ1NyADbJ+UjV\nQCAgt9utyZMn61vf+pa2bdumCy64QDt37tTxxx+fcL/29nY5HI4cRgrkRkdHR69/gWJEP5dCobAk\nqa2t7Zj3ol+3tbXJf/Cgwke9CgcDcrjK1DZ8uKX1Invo65kLh0LG/ykcClnSd40y7bgOjLqtOpZ8\nYKaf29n2sTEU0zmwk/FzxfiZZbds/pwrhnt6queL7wvpsaLdkpXR0n5YbYF2VZUN0NABw3q9b+wb\nCHXqrlfv0HdnrNTgBN8zk51/s/083+4BVunruLhGClc4HO57ozTlPKl6yimnyOVy6corr5QkTZ8+\nXaeddpreeOMNnX/++Qn327t3r4LBYK7CBHKuvr7e7hCArCulfn5Cv34q6+hUoLK/DnR1aeT7X8T2\n79oV2cZ4z/hB393drf27dmlkKKzA/EvU/3/WyR8M9drHrHj1IvtKqa9bzTmoZ1qocFjq6u7WLgv6\nrlGmFWWlW7dVx5JPUunndrZ9bAzFeA7sUHF8haSen1n50J5GPNmMpZDv6amer1y0YzGyot2SlVFx\nfIW+vvVO3VfzLR10Nx+zjyQ5XD3/xp5jY5twOJzS9ZpqP8+3e4BV+jourpHC5XK5NHr06KyUnfOk\n6rBhw/SpT31Kf/zjHzV79my98847qq+v18SJE5PuN27cOEaqoih1dHSovr5eo0aNUmVlpd3hAFlR\niv28e+8+tc+/RAM2PKOJEyeqe+8+SdLEcWN7bROQIj/fKioqNHHc2F7vV5RX9NonnThi60X2lGJf\nt1p9s1eS5HD0XBOj+viOaKZMK8pKt+5+Fh1LPjDTz+1s+9gYiukc2KnhaIOknutzzMQxNkfzQTzZ\niKUY7umpnq9stmMxs6LdkpWR6PwZ70tSIORPuo3D4VB5RXnCGM3283y7B1ilr+PiGilc4XA4a4M0\nc55UlaSf/OQnWrJkiW6//Xa5XC797Gc/0wknnJB0nwEDBsjpzPkUsEDOVFZWqqqqyu4wgKwqpX4e\ncPYkSp1Oh6qqqiKvo4/feM8Qu230e5nGUSrtni9Kqa9bzeE0HqtzyOF0WtKORpl2nBOjbquOJZ+k\n0s/tbPvYGIrxHNjB6ev9881uRjzZjKWQ7+mpnq9ctGMxsqLdkpWR6PwZ70uS3p81J9k2qVyvqfbz\nfLsHpMOYf/bEoSdF3uvruLhGClcoFJLX681K2bYkVU877TQWpwIAAACAAhcvOQF7cU6QC8YCWQPL\nBxZcX/P5fXaHgCLB0E8AAAAAQFp8fh8JijzDOUEudAU7devm5fQ1lDSSqgAAAAAAAMhYU0tjZLQ0\nUOxsefwfAAAAAAAAxaWUR642tTTK5/cV5JQISA8jVQEAAAAAAAATmloatefg7sjIXJ/fx5QIJYak\nKgAAAAAAAGCCkURt627XnoO7FQgG7A4JOUZSFQAAAEXP6Qhrp7tZDc2tdocCAEUvdgQfUMyMRbtC\n4ZDdoSCUAHJ3AAAgAElEQVTHSKoCAGADr9utkJ+/ZgO50tkd0uLVW+Xt8NsdCgAUPR6DBlAKSKoC\nAGCDkMejcChodxgAAAAAgDSQVAUAAAAAAAAAE8rsDgAAAAAAkD+MeTBPHHqSzZEAyKamlkYd7fKq\naniV3aEABYmRqgAAwFZet1tet9vuMIC809DcyuJasIXP7ztmLkxj4SFWtwZSUwiLdfn8Pt225Rb5\nHcw3DqSDpCoAALBVyONRyOOxOwwUgYbm1qJKQHo7/CyuhbxhLDzE6tZAalisC6kohOQ7EiOpCgAA\ngKLg7fCTgMyiYktaA4BVmloaSYohLSTfCxtzqgIAAADok5GwHlpVYXMkyBWr5lZtammUz+/TwPKB\nzNOKokRCTEWXVOa+hVQwUhUAAAAAcIx4c6umWw4jsYDiZtX9Il9w30IqGKkKAICFvG53zxyhfhby\nAAAAAOzGqFNkCyNVAQCwUMjjkW/2HIVDQbtDAQAAJYD5PFGMrFzAiVGnyBaSqgAAAACAgleqq2gX\n22PXpaqppVFvN79dkn04HhKhKAQkVQEAAIA80tDcqp3uZgWCjHgHzCAJg3zkCDtTSpT6/D61+9vo\nw0ABIakKAAAA5BFvh1+LV29VKGR3JACATHUFO0mUvq9UR5MzRUfxIqkKAECeCLlc8uzYkVeLXHnd\nbnl27JDX7c5JXbmoBwBQWkhoAPmhVEeTM0VH8TKVVG1oaNDFF1+s6dOnS5K2bdumVatWZSUwAABK\nTbi9PaVFrnKZfDQW3gp5PDmpKxf1AABKCwmN1KT6mDpQSozrIhDMn0EPyB+mkqrXX3+9Lr/8coXD\nYUnS5MmTtXr16qwEBgBAIrkcPZmPijn5aIzWLdVzi9LT0NyqhuZWu8MAAB5TR9GwcpoB47oIhZmT\nB8cylVRtbm7WVVddJaezZ7eysjKVlZVlJTAAABLJ5ehJ5JYxWpdzi1Lh7fDL2+G3vFxjsSsStgCK\nWanO0YnkSnWaAeSeqaRqWVlZZJSqJLW2tvZ6DQAAANiN0Z8fLHaVjYQtAOQLkmcoVMYfBJhWoLCZ\nSqpedtlluv7663X06FH94he/0AUXXKClS5dmKzYAAADgGH2NwszW6E+gFDGfIIBMsFBcfMYfBJhW\noLCZSqrecsstmjlzpk4//XT97//+r5YvX66bb745W7EBAAAL5dtctLlccAvFhVGYx+Jxf2QL8wkC\nyAQLxaGYmZ4Q9YorrtAVV1yRjVgAACh66SQRjX0GnXpqRnUbc9EOfG5DRuVYhXlTAesYiebVi2vs\nDgUAAKAkmBqpetFFF+nw4cOR14cOHdLFF19seVAAABSrkMdjOpmYzj6FLuRy5dWoWgAAAByLKUJQ\nykwlVQ8cOKBhw4ZFXg8fPlxNTU2WBwUAAEpbuL1dvtlzSi6ZjPQYj74HgkG7QwEAoKTkeooQY4En\n5mlFPjCVVA0EAgoEPvjrQ3d3t7q7uy0PCgAAWMvrdivkZwQBipPx6HuIKR+BvMLq1gDMSGVRK2OB\nJ+ZpRT4wlVSdPXu2LrvsMm3atEmbNm3SwoULddFFF2UrNgAAYJGQx6NwKPkoPhaOAgBYidWtAWs4\nws6SGJnJolYoNKYWqrr//vv1wAMP6LbbbpMkzZ07V7fffntWAgMAoBiEXK6CSVTm86P2XrdbIY9H\nzsGDM16wCwAAoJB0BTsV9vPHCSDfmEqqlpeX6xvf+Ia+8Y1vZCseAACKSri9XSHmecxYyOORb/Yc\nDXxug92hAH1qaG6VJI0cMcTmSAAAyH+lMAoXxclUUjUQCGjdunXav39/r7lV/9//+3+mKh01apQq\nKyvVv39/ORwO3XnnnbrssstMlQEAANITcrnk2bGDUZ84hjGqOlm/KPSEodMR1k53swZVlmftGLwd\n/qyUC/sUer/PBSMpcuLQk2yOBEChseKRf+5BsIOppOrll1+ud999V2eeeaZcLlfalTqdTj355JOa\nMmVK2mUAAID0hNvb5Zt3CaM+cYxUpoCwKmHY0Nwqb4c/q8nNeDq7Q7rhVzu0enFNzurMB9lKCtp1\nHnONRHnfimUexKaWRvn8Pg0sH6jB/Y6zOxwAKSqWexAKi6mk6htvvKG33npLDocjo0rD4bDC4XBG\nZQAAAKBweTv8Wrx6a8klN+2SraQg5xHFxlhc66GzHyapiqJl/PEgEAz0vTGAhJxmNh45cqS6u7st\nqfgLX/iCpk2bpi9+8Ys6dOiQJWUCAFDqvG53wSyMBQCFrqG5NTIKGEB2NLU0FtScm00tjdpzcHde\nJyyNPx6EwskXvyq0ts8F2gTRTI1UHTt2rM477zzNnz9f/fv3j7z/5S9/2VSlL7/8sk4++WQFg0Hd\nfffduuaaa7RhQ/JHENvb2zMeIQvko46Ojl7/AsXI6n4eCoUj/7a1tVlSplWM2Pp6L53yjGM13ot3\n7IHWIz2fDR/eZ92x7Rev3Gy2dSrtYtSbz+c8WqHf05P1LUM4FOpzm1QY5YRDoV5lGe9L4WM+S7Rv\n7D4GY9+e98KRbeLVa6XoNkp0nPG2jX3PTKyJ2iT2dbxyDh3tkK8zoIH9yzS8urLPOqL7eTrHl2t9\nxWimjNj9j7Z1xX2/0KVzfzbE+xkSu4+Vou9biX5WpHJvi902FAoXzD099vhSaZNEZaSyrZmYrCjr\naJdXkjQ4Tjl2fz+I1/+Pdnl125Zb9MAZ3z5m23gxJvruGHt9Re+fbJ945Sb7zBCvn8dr+76+WxrM\n9Md47djXtsmu89htEr1OVm6iNo5uk0RtYeY7dqJ9YJ1sPilvKqna1dWlCRMmaNeuXZH30kl0nnzy\nyZIkl8ulr371qxo/fnyf++zdu1dBVk9GEauvr7c7BCDrrOrnI9//EtLd3a39UT+T8oERm/HDOxwO\ny5/gKY8yHbttsn2NYzXqiHfssZ+NjPrCFltfbPvFKzebbT0yzhfRRDGmE8cJ/fqprKNTgcr+OtDV\nZVHUqSnUe3qyvmVwDhohSb2+D6bDKKeru7tXWcb74fCxnyXaN3Yfg7Gvc9AIOZxlkW3i1Wul6DZK\ndJzxto19z4jVobB2/+uw+rnC6jjyXtI6Y9sk9nWiGG76zS79+MqJeq+xvs/jqq//1/v/1qd1fLnW\nV4xmyojdPx+OLxsqjq+I/L/j/aU0Yn9Gdb/fntHbSr3bwvgsdp9sxBodS2w90dukWl53d7fq378e\n8v2eHnt8qbRJvDKMc23FeUq1XjNlxSvHynrSEa//x/b7vvp/vOst9voKh8O99k+2T2y5sfvGfmaI\n18/jtX2i4zPqiW6L2DL6ukaj9+1r22TXeew2iV4nKzfeccYeX6rnOpV2tKsPlwKXy6XRo0dnpWxT\nSdU1a9ZkXGF7e7v8fr8GDx4sSfrNb36jmpq+52AaN24cI1VRlDo6OlRfX69Ro0apsjLx6BCgkFnd\nz7v37lNAUkVFhSaOG5t5gBYyYjN+ZjkcDlWUV8TdNuzvjmyT6N/ofY1j7d67r9drSfIfPKjwUa/C\nwYAcrrJjto1XX2z7xSs3m20dHVtfMaYTR/fefWqff4kGbHhGEydOtCzuZAr9nh6vD8Sqb+4ZoTEq\nwzY1yulXUdGrLON9h6PnfMerJ3bf2H0Mxr71zV75g6HINvHqtVJ0GyU6znjbxr5nxNodDOum3+zS\nL6+dlrAvJ2qTAf37qbJ6lHydgWPqSbRvX8f1oVGjIv38oDdg+vhyLdHxHTraMyor2ejc2DJijyMf\nji8bGo42RP4/EOqZjzf2Z1RFRYXGTBzTa1tJGjNxzDHlxO6TjVijY4mtJ3qbVMurqKjQiaNOLIh7\neuzxpdIm8cowzrUV5ynVes2UFa8cK+tJR7z+H9vvY/t/S/thSdLQAcOOKSP2HESXVV5Rfsw5jrdP\nbGyx+8Z+ZojXz+O1faLjM+qJbovYMvq6RqP37WvbZNd57DaJXicrN95xxh5fX+faTDva1YdLQTgc\nztogTVNJVY/Ho7vvvltut1t/+MMftHPnTm3fvl1XXHFFymUcPHhQCxYsUCgUUjgc1ujRo/Vf//Vf\nfe43YMAAOZ2mpoAFCkplZaWqqqrsDgPIKqv6ecDZ8+XD6XTk3XVjxBbNGec9SUrlR3v0vsaxGnVE\nH7vH51PbnItV+fR6Ocsdx2wbr77Y9otXbjbbOl5bJYoxsm15mUKHDmnQqaemXL4d/aRQ7+nx+kAs\nh7Otz21SYZTjcDp7lWW8LzmO+SzRvrH7GIx9Hc42KRiObBOv3mTMrnAf3UaJjjPetrHvGbGmEnOi\nNun0hxSKapdU2rOv4zJ+6a6srJSjzfzx5Vqi43Mf6nn/1BRiS3Qc+XB82eD0Rd2fE0y5aNxbe22r\n3m0R+1k27sdGHdGxxNYTvU2q5Tmdjl59PZ/PcezxpdImcct4/1xbcZ5SrddMWfHKsbKedMTr/7Hv\nRbZ9P8ZG378i2x5TRsw5iP4s+hiT7WMsQhUKB+PuGy9uKX4/j9f2iY7PqMdgpj8ma8dE2ya7zmO3\nSfQ6WbnxjjP2+Po61/FiS3TM+fh7TbEIhULyer1ZKdtUUvX666/X5MmTtWnTJknSaaedpiuvvNJU\nUvW0005TXV2dqSABAAAkKdzerlAff2n2ut0KeTwK+fN3gQgUllytcG8kbwNMeQUgDSyek98cYWdk\nAasyl6lUjCnGIlSxc7oCsJ6poZ979uzR17/+dZWX9wx5rqyszOqEryguXrdbnh07WJUaAPKc1+0u\n6Ht1yOORb/YchUMkpgqB0xHWTnczK6jrg+RtKPlizAWhobmVcwrkmM/vk8/vszsMJNAV7NStm5cr\nFO77Jh+dgEV+ampp5PzAXFI1eo4q6f0VP0mqIkXGL7khj8fuUAAASYQ8Hu7VyJnO7pAWr94qb4ff\n7lBgIW+Hn3MKAGkyk4AtdkaCOd9GYvdMscD5KXWmkqozZ87U/fffr87OTr344ou69NJLNX/+/GzF\nBgDIkkIfiQgAAAAgdU0tjXmXmEyFkWBmFDbykamk6r333iun06nq6mrdddddOuecc/SNb3wjW7EB\nALKEkYjIllwl7O38wwDT2QBAZgo1uQMUslKcHoJpFJBtpmZH3rlzp+68807deeedkfd27NihqVOn\nWh4YAGSDsYCNc/DglFYPR37gvBWOVJL1ZpKRIZdLnh07jll0ys4/ChjT2Qx8boNtMQBAISu1xA4A\ne3QFO3XXq3ewaBeyxtRI1WuvvTal9wAgXzG3b2HivPUotGkbjBGdR3bv7jWy08xI6XB7O4tOIW0s\nlpSZXLUf5wkAABSilEaqNjc3691331VHR4feeOONyOJUHo9HbW1tWQ0QAAD0MJNUzofkq5EMr3x6\nvTrmXcLITuRcsoWSnI6wdrqbNaiyXCNHDMlhVIUjVwtNsaAVkB6mUAAAe6WUVP3tb3+r733ve2pq\natLcuXMj7w8ePFi33XZb1oIDAADpKfVRvbBHQ3OrvB3+gkhUdnaHdMOvdmj14hq7QwEsUUjXn8FI\nCp449CSbI8lMU0ujfH6fBpYPzOmxZHsaBbuOCwAKRUqP/3/lK1/RO++8o69//et65513Iv9t27ZN\nS5YsyXaMAAAgzxXa1ATIDm+HX4tXb2XkIUpaQ3Ordrqbcz6lQSFef8WycI7P7yvK1cmL9bgAwCqm\nFqq65557FAqF9O677yoQ+GDBiFNOOcXywAAAQP6Lnie1L9GLTjnLTX0FAYCCYSQ3GQUNZI8xipZV\n3RGrqaWRfoGcMbVQ1WOPPabjjjtOU6ZM0cc+9jF97GMf0+mnn56t2AAAQJ5j0SkAhcKYR5dFsYDC\nZ4yiDYVDdofSCwm9DzS1NNoy76/P78uoXzjCTu05uDsr59GuNkH2mEqq/ud//qdeffVVHT58WO+9\n957ee+89NTc3Zys2AADQB6/bHRn9CcA8KxJtZlavZ6V7+3R2hwru8fhssWuKgnQ0tTRqz8HdJCKQ\nEiNpVagJvWJSqNN7dAU7s5awL9Q2QWKmkqrDhw/X+PHjsxULAKAEGUlB5uNMT8jjYfQnkAErEm3e\nDn/K+5vZFsiWQpp/lXk9YYaRtCJ5BSAXTCVV582bp+9973tqbm7W0aNHI/8BQK7kejEcFt/JPiMp\nyGr1+c2YD5XrAQBQ6gpx9KzxSHMhxZyPCvHcA8geU0nVu+++W8uXL9eHP/xhDRkyRMcdd5yGDBmS\nrdgA4Bhm5m8sxPqAfGXMh8r1gGwxHsMPBO0Zde10hAviUWgA9ivE0bPGI82FFHM+KsRzXyyyOdcp\nkC5TSdVQKBT5LxgMRv4FAACFi3lZkQ+Mx/BDNk1F19kdKohHoYFixQhAoG+lvNBRNuc6BdJlKqkq\nSa+//rp+9atfSZKOHDmiAwcOWB4UAKD4kcjLH8zLikLAAk9AcUt1BGApJ5VyhRGB+Yu5YoH8Yiqp\n+uMf/1iLFy/WihUrJEmHDx/WlVdemY24AABFjkReZow5TklKIx8YK4knenTfioQoCzwBkEo7qZSr\n0byMCASA1JhKqv7sZz/TK6+8ourqaknSmDFj9N5772UlMAAA+hJyuUp24SRjjlOS0sgHxkriiR7d\nJyEKwCwjgchoyQ/a4kjnEebzRMaaWhq5rgCLmEqq9uvXT5WVlb3eKysrszQgAABSFW5vZ+EkACgB\nxmhopoAoHcZ0AKmMliz2x9XNtAXQF5/fl7AvMbcxYI6ppOrxxx+vPXv2yOFwSJLWrl2rU045JSuB\nAbCXMd9lPo4CNB57zsfYAOQ/r9ttyf2DexGQO8ZoaEY8Ix4eVweskercxgB6mBpm+r3vfU9XXHGF\n3nrrLY0cOVLV1dV65plnshUbABsZ810OfG6D3aEcI9zeLt+8S0zH5nW7mX8SiFKq87JaNbrZ7L3I\nSL4OOvVUS+rPZ05HWDvdzRpUWa6RI4bYHQ6AEmX1aLumlkb5/L6sjog1Yj5x6ElZqwMAYA1TI1XH\njh2rLVu26PXXX9fzzz+vHTt26LTTTstWbABgqZDHw/yTQJRSm5c1kxGqVoxuDXk8BTFdhRUjcDu7\nQ0U9qjAbj6I3NLcmXOgLwLGaWhr7TJpavahVLh7DL+WFuACg0JhKqr766qvq7OzUxIkT9c9//lO3\n3367mpqashUbAACAZTJJahZKQtQKRrK9VI43Hdl4FN3b4U+40BeAY5Vy8rGQ5pB1hJ3MzwmkwLiu\nuV4Ki6mk6tKlS9WvXz/t3btXd999t8rLy7Vo0aJsxQYAAIAssmp+WZjX0NzKoktAjqUyurUQFNIc\nsl3BTvn8vqJpexS2fE7yG9d1qf6xqFCZmlPV5XLJ5XLpueee04033qjly5erpqYmW7HZzut2K+Tx\nyDl4cEnMfwYAyZTSfJDIHHMYJ5cv3zEYjWqfYp0aAchndiUrmCfVvrYHonUFOxX25+6PEfmawIV1\nTI1U7erq0sGDB/WHP/xB5513niQpWMRzPxkL9fALB5AZRkLlntfttnxV8lJ6/BmZYw7j5PiOgUJX\nedzxqm/2Mg8sjpHOiMSmlsaCeJQ9XaU8VUGha2pp5JFspI1rv/iZSqp+7Wtf0/jx4zV48GDV1tZq\n//79GjKEFV0BKTtJrGJBMi73sp2wob8DgDlOR1g73c2WJCHzYeqArqBDS9ZuZx7YLMuHc21WOkkE\nn99XEI+yo/QYi5ORGMs/+fwoP0qH6TlVjxw5oqeeekqSNGrUKL3wwgtZCcyMRKPgGB2HXGLUEeyU\n6yQn/R0oHdlY6b4UdXaHtHj1VkuSkN4OP9MHlAgrznUhJmZRmhgVCjOM+XoBO5lKqsZyuVyqqKiw\nKpa0JRoFx+g4AKWCJCeQWMjl4o+sGcjGSvfFiuQV8hFJeBQKRoUCKDSmFqoCAAClLeRyybNjh+0L\nLJkRbm9XKE/mfTTaL9EiXiwIV9hIXAEAAJSOjEaq5hpz+AEoJIU+BUmhx4/sCLe3Myo6A0b7JVrE\ni6dsAOsYU1ewmBZSYTx6XswLZgGZKvZF5QCzUk6qBoNBzZo1K5ux9InHW4HSVYgJvkJPjiSK3+t2\nJxxlBwBAvjCmrmAxLaTCePQ82wtmFfu8oSSnixuLygG9pZxUdblcam9vV4hvJUBJMR5VjU1o5irJ\nadSTSYKyEBOy+Szk8SQcZZdRucx7iSLFPQgAejjCzpJPuBX7vKG5Sk4DQD4w9fj/GWecoYsvvli/\n+c1v9Pvf/z7yX7rWrFkjp9OZURkAsivRo765GoVpRT2ZlpEosVysjKlWcj0aNdzeXtAje1FcMkmE\nntCvn/wHD0Ze5+p+mUnMJH7T43SEWZjKJsaj/blufxYjy0xXsLMkEm5NLY1FOxIVAPABUwtV7dix\nQ5L085//PPKew+HQ3LlzTVfsdrv1i1/8QmeffbbpfQEgl8Lt7fLNu0QDn9tgdyg5YUy1Uvn0etm5\nnmF0gofpBpBrmSRByzo6FQ7mPmGQ0R+P+INGWjq7QwqFC2txqtiE4MgRQ2yKJDPGo/2rF9fkvF47\nGOetUM9XqSmkUagkfwEgfaZ+W37ppZcsqTQcDmvp0qX64Q9/qOXLl1tSJgCguEQnebIx3QCQDuYU\nRqGzKylYqBqaW+Xt8CsQDKrM5Up5W6tx3pAtuU4AG0ncE4eelNN6ASAbTD3+HwgEtHLlSt10002S\npP3792vjxo2mK3344Yf1iU98QjU1uf3LMgAAQCayNacwUOicjrAtj+Nnm5nFrgpxYayy8raiXjQJ\n+cfn9xXUSF7Yo6mlsaTnXkbhMDVS9eabb1YwGNRf//pXSdKwYcO0cOFCvfbaaymX8eabb2rdunV6\n+eWXTQXas0hWWJIUCoXV1tYW+cx4P/q9ZO+nKlF9SE+xt2e6x9fR0dHr33xhHE/061Suu2RlpXPe\nY+NIFpOZMtLZ1+y5zfQeZEZs/+urP0bH5j94UOGjXjmqB6n8Qx9KeMyZtGO8ft5Xeck+z+S8ZFui\nuK0sLxv7xNs3tq1jt0v2uZl6Mtk3Wf/u671k/Sb2+k31XmT08XA4ZHrfePWakc6+qcQWfj9DFA6F\ner2OriccySKFe/2bzj7R/xr7R2+fLCZjn/gS1xOvvl57plWfjtk20xhTac9MYow9/th6jNe9v7P0\nxNbZHdQNv3pDv7x2Wkz96lVG3KOOczyJtok9vtiYDx3tiW14dWVa/TJRvbHtmKxfxtaTiXTasa/z\nGP1eV6hDd//jP7TyrFVqeO//NHTAMEmp3aP7+jnQ188Isz9fzPzcSSW2vuIJhcLHfH/pK6bY17E/\nB8x+R0sUW7K4oyVrx1T2T7RPX9um8l6yY0/lZ2Oq/SPTa7Cv79iZfA9K5XtCvFj6KjPd76IdHR0p\n9+V0YowuzxF26K0Db6mqbICGDhh2zH5Hu7wpzb2caTumcy2kWke698d8+92mGITD6f/e0RdTSdVX\nXnlF27Zti4wwPe644+T3m3sU5eWXX5bb7da4ceMUDof17rvv6rrrrtOBAwd0/fXXJ9xv7969OvH9\nx+26u7u1f9euyGcj3++M0e8lez9Vxv6x9SE9xd6emR5ffX29xRFlxjge4waU6nWXrKx02mVknB82\nZTLX1tFlpLOv2X1i681Ff4/tf331x+jYRobCCsy/RGX/s177Wlp6nXt/1P6ZtKMhup/H9jEz9SWK\nMR8kOq54jOOK3taKfa2qL7ato/8NOZ3yvblTZQ4pkOB7Sq5ijJXqOUjWb2Kv33j9MeH9UZLfH9Db\n6exrwf0ynftUtNjrzTlohCSpq7tbu6Je74qqx3jP+M5q/JvOPtH/GvtHb78rSUzGPvE4nGWm6ouW\nTn2xscbWk06MqbRnJjHGHn9sPcbr+vp/pXzOo+tJJN7xJNomtvxEMb/XWJ9Wv0xUb2w7JuuXsfVk\nIp12NOqtPO74ntdBxzH7fhBrT7CdgU51dHXqoLtZklRxfEVkW8f7sx7E3o+7368netvYWI3P4t3L\nu2P6pVFPbLmp1BcbYyqxxYpXX31jvaQPvr/0FVPsa6Oe6Nex2yaKI/ozM+0Ye5yJYo4tW+r7XKci\nXqzxYkx27IliTNYmic55ptdgonNrpj8mOm+x/aOvfROd676unWTXW3Syqb6+PqW+nE6MRhlGeZ2B\nTt392p26r+ZbOuhutq0dU73OEh1fNu6Pxr5Vw6skSW2HSLBmyuVyafTo0Vkp21RStX///r1eB4NB\nhUw+33LDDTfohhtuiLyeOXOmvva1r/W52NW4cePk37dfAUkVFRWaOG5s5LPuvfskqdd7yd5PVffe\nfXHrQ3qKvT3TPb6Ojg7V19dr1KhRqqyszF6AJhnH43D0fBFP9bpLVFaq2ybaN1rY3x03plTKSGdf\ns/vE1puL/h7b//rqj9GxJdrX4XCoovyD/TNpx3j9PLaPmakvUYz5INFxxWMcV/S2sf+ms69V9cW2\nda9tuzoVmH+Jyp9er4oKe2OMleo5SNZvYq/feP0x3v2xo6NDwbffUXl5mSZ+5COm9o1Xrxnp7JvK\nPba+2StJ6ldRoVETJ0Zej5o4MbKP8d77hxX5N519ov+teH//6O2jy4st39gnHv/7i4elWl+0dOqL\njTW2nnRiTKU9M4mxX8zxx9ZjvP7QqFH6v8PtKcUYXU8i8Y4n0Tax5SeLOZ1+maje2HZM1i9j68lE\nOu14TBu5jt33g1g/uE+WV5RrzMQxkqSGow2RbQMh/zHbSj3tMWbimF7bRov+LN69vLyivNf2Rj2x\n5aZSX2yMqcQWK159J446sdf3l75iin0d257xtk0UR/RnZtox9jgTxRxbttT3uU5FvFjjxZjs2BPF\nmKxNEp3zVONOJNG5NdMfE503M9dbsnPd17WT7HoztpGkUaNG6ZD/UNyyomNNJ0ajjEyu62y0Y6rX\nWaLjy8b9MXbfiRn+HEFPwjqYhfnOJZNJ1alTp+rXv/61QqGQ9u3bp+985zs677zzMgog+iJOZsCA\nAfI6e7Z1Oh2qqqqKfBZ4//3o95K9n6pAgvqMFakHnXpqWuWWqkTtWSwyPb7Kysq8ahfjeAypXnfJ\nyiGd7hYAACAASURBVErn+GLjkCTjdphqW0eXkc6+ZveJrdfq8xrvHhTb//rqj9GxJdo3dv9M2tEQ\n3c/jndtU64uNMXSo5wugmftytu7liY4rnlR+tKezr1X1xba1lfVZGWOsVM9Bsr4be/3G64/RZVdV\nVcnrdsvVekQOh+RwOE3tm6heM9LZN5V7rMPZM0LC4XT2eh1dj/Ge5Oj1bzr7RP9r7B+9fbKYjH3i\nCoYj26RSX7S06ouJNbaedGJMpT0ziTH2+GPrMV73/HGsPaUYo+tJJN7xJNomtvxkMafTLxPVG9uO\nyfplbD2ZSKcdUzkHsZ9Jve9HTl/UvSHBGBpj+17bxtSX6DNj/15CyctNWl9MjC6HS42+fykUDqrM\ndeyvvPHaMV59xh+Cje8vfcUU+zq2PeNtmyiO6M9MtWPMcSaKOW7ZfZzrVMSLNdWfwca+LodLnq4j\nkcWsUmmTRP0j02sw0bk10x/jlmvyejP2iauPayfuvjH19Cvvp0P+QwqFg3HL6hVrOjEqeX+0qx1T\nvc7i7Zusnkzuj4naHukLhULyer19b5gGUwtVPfzww3r55Zf17rvv6uMf/7icTqe+853vZBTAxo0b\n+xylmm9CHk+vVamBYuF1uyOJJrPbpLIvrME96FjptAntCKuFPB61z7n4g2d/ASALGppbi3JRMCt1\nBTt16+blKc3J2Jeq4VVqaT+c1r5NLY0sApaCppZG7Tm4O7IwUVewk8Wscqw71KXbttxiyTUDlBJT\nSdWBAwfq0Ucf1cGDB9Xc3KxHH31UAwYMyFZsAHIslSRTom3ive91u+XZsUMhvz0rN6aaJPbs2EFC\nGIjD63bbdv2iOBgrwgey9MhVNjQ0t5KsgqWs7lPeDr8Wr94qb4e5tS2QHr/Dr7ZAe98bxsFK96nx\n+X2WJcEzQRIcVnGEnb3+UIDiZSqp2tXVpW9/+9uaNWuWLrjgAn33u99VV1dXtmIDUOBCHo98s+co\nHLLnl+lUk8S+2XMyGrFY7MlbRiGXrpDHY9v1ix6Ffv11doe0ePVWmZyC31beDj/JKliKPgUUhtgk\neFNLY8KkmCPsLOoEbLEfX7b1NVq+lPtWsTE1p+oNN9ygw4cPa9myZZKkNWvW6K233tLq1auzElw2\neN1uhTweOQcPZk5UoMjYdX0bCdlkc3QayduBz23IWVzxpJOcseIRef/BgzqhX7+MywFiFfs858U2\nRYUxWm/kiCE2RwIgU4X+i39TS6N8fp8Glg+MzN2J/GJ3//L5fQmTYl3BToX9BfQXQ5OK/fjsVsp9\nq9iYSqpu3rxZu3btiiwudfHFF2vSpElZCcwqIZdLnh07IkmWTBIbRsIm5A/IWW6q6QDEYXUyxO7E\nZSEkP3IVY+y5DR/1qqy7Oyd1o7QUwnWXTOz3lGzJlz8qM1oPKB6F/ou/8cj5Q2c/bGscRuIwNrGb\n6P1MGcnwQkgkZ3vqBBLrADJl6vH/YcOGqaOjI/K6q6tLw4cPtzyoVMXO1xjvEblwe3vGj/Ya7H6U\nGfkjV49jRtdTyI+PJ5KPCwUV+qO2mTCSO1bMoZmP5xbIlkyuHSu/pyQTO9WJlfe6hubWgpozFYXD\njvltWQQKuZZo3tVszcfKIlAfMBLrtAeAdJlKqk6YMEEzZszQvffeq3vvvVdnn322JkyYoB/84Af6\nwQ9+kK0YE4pNclrxS3wpJ1SQulwljKLrsWLuz2wzEguFfA0VejLQiuSO3X844j4Ms+y+9yS6dsz0\n5ZDLldP4U5pz+v12DfuTjy71dvgLas7UVLFglbXSaU875iJlESgAAJAqU8+wh0IhnX766Xr77bcl\nSbW1tQoGg9q6dWtkSoBCV8jJFCBWrh/3DLe3yzfvEtvnDbVCPib1UpmCxDgHlU+vz3F01uE+DLPy\n9d5jpi+H29sVyrPRnka7hl/6u92h2IKkmrVoTwB24TH/4pbJ3LvZmmYDpcNUUnXNmjXZigNAFKsS\nerFzjObLnHqFIB8Te8b57EmYlhX9Aj1W66v/054ArOR0hLXT3czUCHE0NLfK2+FXhcuh7mBYgWBQ\nZS6X3WEBKFL5Mn8usiOT6RuY+gGZMvX4fzHjcVNkSzp9K1uPoOfLFALZvt5y/RitXfJxqoLYua7t\nqD/Rue+r/2fSnvwMARCrszukxau3FuXUCJkyHrH3dQZoI+QtR9iplvbDdoeRV5paGjMaFQgAxaYg\nl7C3cjGVSJlRv0hno3yUrnhJmugRc86oxd6KJSnT1zWU7URgPj5G25dMRkl63e68uV/Fjqa1o347\n5Ftyu1Tx8xtWY7QpUPwcYaf2HNytQLD3z46uYKeCYXuv/USx2YVRffkt3/oLUAoKcqRqthdTyZfF\nWpDfMlkYJdGIuXwceZgOriHzMjn3IY+HtgaUnXsPo5BLG6NNkQ3JFu1qaG7VTnczi6TlUFewU7du\nXq5QOP8u9HyOzdDU0qg9B3czgjUPFEJ/AYqNqaRqd3d35P/ffvttPfPMMwryl3uUKOOX92JIgqaC\nEWDIB/RDWCmVhGmx/LHLCk5HmEQPYAFvhz/hwl3G1Ags7IVCYcxX2tbdbmqUZD5PJZDPsSE7mloa\nGeGLtJhKqp5zzjnyer06fPiwPvGJT+hb3/qWvvSlL2UrtoJh1SgWYy5CRsQgHzH69FhWzB+aq1Fw\nxTLajn4IK5ViwjSTP0x0dod6JXqSjbaDfYptyoJ0jseKNii2dgQykcpj5WZHSfr8vrydTiCfY0N2\n+Pw+RvgiLaaSqoFAQIMGDdKGDRt0zTXX6G9/+5v+9re/ZSu2gmHVL2X5sogQsqNYklqZKPQ2iJ3y\nwbhmM0nw5SqpU4rJI6BUJbvXWvmHiWSj7WCfTKYsMBKJ+ZQsT+d4rJi2wYoySMyiWPBYOTLFfK8o\nVmk9/r9p0yadf/75kiSXy2V9VHF4d+7kcU8UtFwltfI5cZlPib10RmsV45QP+bTIlV3y+ZoB0pFP\n91oUFiORSLLcGszJC1jLzsfySz0pmGnbk5hHsTKVVJ05c6Y++tGP6m9/+5vOPfdctba2qqwsN6s7\n+y6/MuVRFfyCjFLGL9Op4THyHixyxTUD5DumGSgdnGsUmlJPtOWanY/ll3pSkCkRgPhMZUQfeeQR\nbd++XaNHj1Z5ebmCwaB+/vOfZyu2tMX75TgXi5sYidxBp56atTqAbLDzjxDGtekcPLjXteN1u3uS\nXf6AnOW5+eONVfijTvHjfo9CEX0vLVSMmiwdnGsUmq5gp+569Q49cMa3JfUkWVngyB7RCe4yV2H9\n7gCgcJkaqepwODR9+nT169dPR48eVUVFhcaMGZOt2CwVOyot5HJZnvhgtBOiFdKIaTv7bqJH6q2Y\nr9Qu3AuKH+e4eMTOlVxsCvleCpQypyPMqN0sytZK313BzrRH87HifGZKfSQpAHuY+hPOK6+8okWL\nFmnPnj293g8W4OTr4fZ2hQowbuQ/I2FPwgUA8l+4vV2+eZdo4HMb7A6ll3hJXuNnS+zI/lKW64WA\nWHgIudLZHVIonNrI3Ybm/8/encfJVZaJAn6reiHQdBLC7hgmJBgIS0iAQEzYhCgwKLJcBB3BDZF1\nZBwEZWbAcZQBBe5FB1S8ow4Cl59oBBVwZJGdGWFIhJEIZDWyxZCk00kn6aXO/SNWk3S6On26a+1+\nnn8qXXXe87711enTnbe/852V0bquo1/HZZpth7JqvNO3S6sBak+qmaqf/exn4wc/+EFMnjw5Vq1a\nFV/+8pfja1/7WqlqG5JqafYiA5O0tWmollnrkiUlX96jWLY2K845AiqrWs4nvc2Gzs869TPmbeW+\nEZAbD1GNWtd1bHZc9jXLtee2AMDApWqqdnR0xGGHHRadnZ3R3Nwcf//3fx933nlnqWobklwySrn0\n567u1dTAyzcbV730UuqGRjEuby3FkiC9KbTcQXcdzhFQUS6XL4+ly1YO+5lyxWQ8K6vaZjCvb89Z\nn5ayKNUyCn1xczCgmqRqqjY0NERExI477hjPPfdc/OlPf4o//elPJSlsOBvq67tRHv25q3uvM6HK\ncFO33nQ3G1evrkhDwwzj0qimxj1QPVrXdZgpV0TGs7IGM4N56bKV8eKSZdZPpSZVYhkFa6cC1SRV\nU/XMM8+Mt956K6644oo46qijYuzYsXHRRReVqrZhq+dMNk0JyqnnTd3YUjEaz2lmxlbL5cgDMVRm\n3uY/A+dioJLcvKh6LF22siifRf5yfDNLAaD2pLpR1d/+7d9GRMT73ve+WLFiRaxfvz6am5tLUhhv\nGwoNibTcjINqlr+xzbZ3zx7UPvp7s7z85ciDycfg5D+D7X71y4KN1UrN8qY4fH7UgjQ3L6K0NEFL\nx+XdANSKVDNVIyLmzZsXP/vZz+LnP/95PPDAAzF7tv/kU3xD9WYc/tPOUDPclivpa5kIs7xrWy1/\nfq5oAYYSl3cDUCtSzVT9u7/7u7j99ttj3333jbq6uoiIyGQyceqpp5akOBhqijHDsdr4j/zwlj+m\nt7//3kqXAsNG/o8Z+as5htofIKm8TW+8VP/n3/kBoNg2nZleX5eqPQVVIdVRe88998TChQtju+22\nK1U9QI3xn/nqtuns6GyDX1SKzR8VqAR/zKDU1rfn4rwfPh/fPmtyhJ4qACWyoWt9XPHMF+LqaddU\nuhQYkFSX/48dOzZGjBhRqloAhpyBLPlQzEvqa/mS5lowVG7EBdBf2UwSi5e1RtYMVgBgmEs1belr\nX/tanH766XHcccdt1lw9++yzi15Yrep5SV4x9pWfYZZvsLhxE2xUC2vUDmTJB7PQBq9Y58v8TfOq\n+RgDKKf8LNZvffSASpcCZfXaileH1M2zXlvxaqVLAKh5qZqq3/72t+P555+PJEk2W1NVU/VtxWyG\nbN6MqTcbCnoYimvUUhx9nS/TLImQv2meYwyAWrbpOrkMzJqONUPq5llrOtZUugSAmpeqqfrII4/E\nSy+9FPX11uUDKLVamIlbi3r+wQqA4slmkli6bGWly6CHzdbJBQCKItWaquPHj48kSUpVC9SkWmh8\n1UKNbMl6qADUmvXtuWhd11HpMvqk8VvYaytedVk4Q1b+TvOOcaBYUk3RGT9+fBx99NHxwQ9+cLM1\nVf/mb/6m6IXVumKurUp1G8wl6Lm6umh/ZX7svs02g66jr5sauUyeamKdUig9f0yDwta35yKXVHfj\nt1KKdUl4vnk1lNYgHSxjUnn5O81f9+4bKl0KMESkmqna3t4eEydOjHnz5sWcOXNizpw5MXfu3FLV\nVtPyM8ysg0pfkra2aDvx/VG/bv2g9+Uu5FS7+hEjov2V+dG5/K2yzMDNN5X6+oMDDFVDeab70mUr\nrQtJSTi2imdD1/q49OnPDak1SAer55hosmJmONS+VDNVv//97xcl6XHHHRdvvvlmZDKZGDlyZNx4\n440xZcqUouy7nPxHHSCF9eui7ZTTyjZjupg3DgSqR+u6jsjp01ACjq3qlkmyQ6oBlZ81efW0aypd\nChXiZmFQ+1LfoeP++++PV155JTo73/6L2uc+97lU+7jrrrti5MiRERFx9913x8c//vGanPFqViCV\nUIylJdLc/RxqncugAah22UwSLy5ZZqZsHzZ0rY+kQ9cbgOqR6vL/j3zkI3HFFVfE3LlzY968eTFv\n3rz4/e9/nzppvqEaEbFq1arIZlOVAcNaMZaWGMqXhUJPjneAoasYN51aumxlxW9ctb49F5/83hwz\nZQGghqSaovbcc8/F7373u6irqxt04o997GPx61//OjKZTNx3332D3h8MN26GBgAMxlCYHVmMm061\nrnPTKgAgvVRN1XHjxsWGDRtiu+22G3Tif//3f4+IiB/+8Idx2WWXxb33Dm7Nu1wuGVDM2rVrtxqf\n327Tbfqbb9Mcm8Zt+lx/9rnpa73F1oL8e+g5JoPdthK29vkP5Hhct25d1BWI63n8Rby9XuR29/4i\n1u6004ByDrTWcsWUO18t1FjufGnPdYXOk0k/b1RRDePY2zl7sPlq4bMud76hXmOS5CKXS3clTsF8\n9XWxcu5vI+lxM5Pevu+Kkq+gJJKC0+iSrT5uGTuQmK3HDqca8+erjc+lz7e+Kxfn/fCF+PZZB/QZ\n23uewjUXfn8ba3779fTvK1/PpvsoXGN1fW6b11h4LPrKt2lMb2NROLZQbW9zLt9S/veXNOf0ahrH\nQj8jBpuvP/+H7m++UtXY1/57/vwc6M/TWjj+y51PjcWPqcZ+SK1JkoF/5luTqql6/fXXx6xZs+Lo\no4+OESNGdD9/5ZVXDriAs846Kz7zmc/EypUrY4cdduhz2/xA9PbY0d7ea0x99B2zYN68iIgYu8lB\n2zOm/c/b5bdJk699kxyb5tn0uZ6vbe399RZbC/Lvr+eYDHbbShibS7Z6bPWmUEz9iBHRuXBRZDIR\nnb18v/c8/jZ97Hl89idfX7UOJKY/sQOJqeUay52v0jXmstlY87sXoz4TfdQYm8VU4zhGRK/n7Gqr\nsZz51Ji+xoiIjgJr+A4oX3sS6085LUb89CebxRT7/L/12IgNBWIy2frubQo99owdSEx/YodTjYtf\nXx4RERu6MiXNN+/P58Vs8y7dMXlp8kVEzJs3L7LNu/QZ01u+/Lb5ejbdR6Eaq+1z27TGvsair3yb\nxvQ2FoViC9f49vd5e6H3V7fltoOJKRQ7kJhS19jx5/uI5M/p1VhjodiIjcdL486NRc+XP5Ybd26s\n2hr72n/+PeSf7/l1f/OV4nOr1PdbXjXXWAvjWIoa51VhP6TW1NXVxfjx40uy71RN1S9+8YvR2NgY\n69evj46OgV0m09LSEm1tbbH77rtHxMYbVe20005bbahGRGQymYKPjQ1bngAjIpKO9j5jJr1rr4iI\naH9lfsGYxsaN27W/Mj86U+bLx+bl8+w1sjkiIhp23XWz1zpj6+9v0/3Vkvz76zkmg922Etpfmb/V\nY6s3hWJi/broPOW0aLh7djQ2bhnb8/jbNHbT47O/+fqqdSAx/YkdSEwt11jufBWvccP66Dzl1Gi4\ne3avsUmSi+TPPzeqeRwjYotzds/vu2qosZz51Ji+xoiIhob6yGS2nNVUzHzFPv9vPTZ6/RkVEdHR\nleveptBjz9iBxPQndrjVGBGxTV1p842bNCkiIhYva+2OyUuTLyJi3KRJsXhZa58xveXLb7vNn+vZ\ndB+Faqy2z23TGvsai77ybRrT21gUii1c49vf5w2NDb2+v85c4Z/fA4kpFDuQmFLXWN9QFx0dnd3n\n9GqssVBsRMSESRNi6eqlRc83YdKEiIhYunpp1dbY1/4bGxs3e77n1/3NV4rPrVLfb3nVXGMtjGMp\nasx/vzFwSZJEV4mWOkrVVH3ppZfipZdeGlTClpaWOP3002P9+vWRyWRil112iV/84heD2mdERDab\n6fX5voYtm81EU1NTRER0bhLfMya/3abb9Dffpjk2y7NmTURENG3SLe8ssM+e+TbdXy3Jv7+eYzLY\nbSuhM5vZ6rHVm/58G/cWm1u+PKLASaC343Mw+QZa49ZiizkmtVBjufNVe425XLaXCw2Lk6/Yn1uv\n5+xB5nNsFSemUGw11pjJZHuNL2q+hvroXLAgoqsrsg2b/0pXmjHJRKbQzUW7ku5tCj1uETuQmH7E\nDrsay5Avf17MZNduEhN9xhTS1NS0cT99xPSe78//2fxzPZvuo3CNVTyOUXgs+sq3aUxvY1EwtmCN\nbyt0Tog+VvAZSEzB2IHE9CN2MDXm/zjWfU6vwhoLxsbG4yW7pjif9aax+WM5u2ZwY5JJsvHqmj9G\nLtnyJ0+xxqS3Mci/h/zzPb/ub76SfG7D+PtNjb3HVGM/pNbkcrlobW0tyb5TNVX33nvvWL16dYwc\nOXLACffYY4/4r//6rwHHF1vrkiWVLgG2KtfS4s7lUAZuAEctya+tve3dsyPlr3RQs4bCzbWAjTZ0\nrY8rnvlCXD3tmkqXAjAgqX4D33bbbeOggw6K973vfZutqXrDDTcUvbByybW0VLqEksg3izUFCjNG\nQE/5JtX29w/u5okAlMb69lyc98Pn49tnTd7s+aXLVlaoIgBguErVVN13331j3333LVUtDEDrkiWR\na2nZYlbVUG0WD0bPJmpvY1RoPAEAqF6t6wZ2vwcAgIFK1VS96qqrSlUHA5RraYk1J5w4qFlVw6WR\n2J9GczHGEwAAYKh6bcWrlS4BoCoUXkW+F62trXHhhRfGxIkTY+LEiXHxxReXbLHXoaZ1yZKqXb81\n30g0uxVgo/zaqrmOzkqXAgBQVdZ0rIk1HWsqXQZAxaVqql5wwQXR2dkZP/rRj+Kuu+6Krq6uuOCC\nC0pV25CSa2nRtKwS1dzgHohcXd2Qej9QDZK2tlhzwoluEAcAAECvUl3+//zzz8dvf/vb7q9vvvnm\nOPDAA4te1HBSyZsl5S/7H24zsYZacztpa4ucO+ACAAAAlE2qmapdXV2bXe6/Zs2a6NLMGZRKzmDN\nX/ZvJhYAAAAA9F+qmaof+9jHYvr06XHGGWdERMSPfvSj+MQnPlGSwujbcJ1lCgBAbcpmknhxybLo\nNCkDABgCUs1U/fznPx/XX399rF69OlavXh3XXXdd/N3f/V2paqMPg5ll2rpkSc3cgCV/sxhrhgIA\n1Lb17bn45PfmRC5X6Uqqw9JlKzWYAaCG9Wum6urVq2PFihUxbty4OP744+P444+PiIjFixfH6tWr\nY+TIkSUtkuLKN2S3vXt26tj8DNnsqFFlWQc2aWuLNSefGtvff+9W64qozNq0AABD2dJlKytdwpDQ\ncxxb13VoMFMymSQbL7/5UnR2Vf9EmlJ6bcWrw34MgNLp10zVyy67LP77v/97i+efe+65uPzyy4te\nFNUr35At9zqwW5uxWsm1aQEAhrLWdR3Ruq6j0mXUPONIOW3oWh+XPv25yCXDu3O/pmPNsB8DoHT6\n1VT9zW9+E6eddtoWz5966qnx2GOPFb0oiq91yZKavoQ+aWurSDO31scNAACAwjJJNl5b8WqlywBq\nUL8u/+/sLDxdPptNtSwrFWIW58AYNwAAgKFrQ9f6SDrMZgXS61dTtaOjo9e1U1taWqKjwyUs1SS/\n5mmuozOyDf36eEnBrFUAAAAA+jXN9Mwzz4yzzjorVq58e3H1lStXxic+8Yk488wzS1Yc/Zdfc7Rz\n+Vux5oQTI8ltvJNoNV++Xq7aWpcsiZbnn49cx+AXKLd2KwAA1SCbSeLFJcuis6ur0qUAwLDUr6bq\nP/zDP8To0aNj7NixMXXq1Jg6dWqMHTs2mpub4x//8R9LXSP9kF9zNN9MzUvTBMzV1fXa5CxV8zNf\nW7H2X+hmVvmba/UcGwAAqs/SZStj6bKVW99wmFvfnotPfm9O5Fy1DKlkkmy8/OZL0dk1+Ek3wPDW\nr+vD6+rq4t///d/jyiuvjOeeey4iIg466KCYMGFCSYuj+FqXLCk4YzNpa4tcL3/pzrW0dDcsizLb\nc5N9ZRvqizbzM2lrizUnnxrb339vUfYHAED5ta6zvBhQOhu61scVz3whrp52TaVLAWpcqkU3J0yY\noJFa43ItLQOasZlvWG579+zNns+v4ZodNSqa//IvB7Cv4q/7mm/apqkJAAAAAPqrX5f/QyH5S+uL\nuc5oX7Npey5R0NvSAfmlEKx9CgDAULJ02UprqAJAlXB7+BrUV9NxKOhrNm3PJQqK1TjNz7gdyuMK\nAEBta13XYQ1VAKgSZqrWoIFewl9KhW5yFbGxYVms9VhLxc2sAAAAAOgvTdUSK+YNnqpZ0tZWcNao\nhiUAAAAAQ4mmaonl1/fUUCy/4dLQBgAAAKC8NFXZQm83f6o2/alRQxsAAACAUnCjKrZQCzd/KlaN\nAAAAAJCWmapVYKhepm4tVQAAAACGIk3VKuAy9coZqg1tAAAAAEpHU5WSaF2yJHWjshJruWpoAwAA\nAJCWNVUpqnxTNNfSkrpRaZ1UAAAAAGqBpipFpTEKAAAAwFDn8n8GxFqkAAAAAAxXmqoMyHBbi7QS\n670CAAAAUJ1c/g/9YFkDAAAAAPLKPlN1w4YNccopp8Q+++wTU6dOjeOOOy4WLFhQ7jIAAAAAAAak\nIpf/f+Yzn4nf//73MWfOnDjppJPinHPOqUQZAAAAAACplb2pus0228Txxx/f/fX06dNjibUqAQAA\nAIAaUfEbVd14441x8sknV7oMAAAAAIB+qeiNqq6++upYsGBB3HLLLYPeVy6XlCwml0ti7dq1m21f\nynzFih1szNq1a1PtpxI1liq2t8+8FHmKFVsL+dRYm/mKVWOS5EqWbziN41DKN9RrTJJc5HLp/nZd\n/WOSRJIr9L2cbPVxy9iBxGw9dvjVWO58PY+baq6xmsex3PkKbfs25/It5X9/SXNOH6rjWO58aqzN\nfGosfky+L8PAJcnAP/OtqVhT9brrrou77747HnrooRgxYkS/YvID0dtjR3t7rzH1MfiY9vb2WDBv\nXozNlSdff2IHEpO2xgXz5kVExNhcUrU1DjZfoZien3mpa8yr5jGphc+tmmosd77aqDFqoMbqH8dy\n51Nj+hojIjo6OsuWr3xjErGhQEwmW9+9TaHHnrEDielP7HCrsdz58jF51VxjNY9jufMVjnn7+7y9\nUL66LbcdTEyh2IHElLrGjs6N5/L8Ob0aa6x0PjUWp8Zy5+sZk1fNNdbCOJaixnl/7sswcHV1dTF+\n/PiS7LsiTdUbbrgh7rzzznjooYeiubm533GZTKbgY2NDY68xSUf7oGMaGxtj0rv2ivZX5kdnGfL1\nJ3YgMWlr3Gvkxs8mWd1atTUONl+hmE0/80KKWWNeNY9JLXxu1VRjufNVe41Jkouko6OqaxxoTLlr\nLHc+NaavMSKioaE+MpktZzXV9phs/PnYm46uXPc2hR57xg4kpj+xw63GcufLx+RVc43VPI7lzlc4\n5u3v84bGhl7zdeYK//weSEyh2IHElLrG+oa66Ojo7D6nV2ONlc6nxuLUWO58PWPyqrnGWhjHM0jJ\nNAAAIABJREFUUtQ4YdKEXuPpvyRJoqurqyT7LntT9dVXX41LL700JkyYEO95z3siSZIYMWJEPP30\n04Pabzab6fX5voatvzHZbCaampqic5PtS5mvP7EDielP7GYxa9ZEREQmm6neGgeZr2BMQ310LlgQ\n0dUV2Ybev03KVWO586kxXUy15Kv2GnO5bC8XGhYn33Aax0rkU2O6mLxMJttrfG2PSSYy2QKXv3Yl\n3dsUetwidiAx/YgddjWWO19Xz7N5NddYxeNY7nwFY95W6JwQfazgM5CYgrEDielH7GBqzP9xrPuc\nXoU1VjyfGlPFVE0+NaaKKRhbhhqbmpq2noQ+5XK5aG1tLcm+y95U/Yu/+IvIFVwfCKpD0tYWa04+\nNba9e3ZUeOlhAAAAAKpMujsoAAAAAAAMc5qqAAAAAAApaKoCAAAAAKSgqQoAAAAAkIKmKgAAAABA\nCpqqAAAAAAApaKoCAAAAAKSgqQoAAAAAkIKmKgAAAABACpqqAAAAAAApaKoCAAAAAKSgqQoAAAAA\nkIKmKgAAAABACpqqAAAAAAApaKoCAAAAAKSgqQoAAAAAkIKmKgAAAABACpqqAAAAAAApaKoCAAAA\nAKSgqQoAAAAAkIKmKgAAAABACpqqAAAAAAApaKoCAAAAAKSgqQoAAAAAkIKmKgAAAABACpqqAAAA\nAAApaKoCAAAAAKSgqQoAAAAAkIKmKgAAAABACpqqAAAAAAApaKoCAAAAAKSgqQoAAAAAkIKmKgAA\nAABACpqqAAAAAAAplL2p+tnPfjb23HPPyGaz8fzzz5c7PQAAAADAoJS9qXr66afHk08+GePGjSt3\nagAAAACAQasvd8LDDz88IiKSJCl3agAAAACAQbOmKgAAAABACmWfqVoquVz6ma/9jcnlkli7du1m\n25cyX7Fi1Vi5fLVQY7nzqbE28xWrxiTJlSzfcBrHoZRvqNeYJLnI5dL97br6xySJJFfoeznZ6uOW\nsQOJ2Xrs8Kux3Pl6HjfVXGM1j2O58xXa9m3O5VvK//6S5pw+VMex3PnUWJv51Fj8mLVr16aOZ3Ol\nvFK+ppqq+YHo7bGjvb3XmPoYfEx7e3ssmDcvxubKk68/sQOJUWP11phnTIZOjeXOVxs1Rg3UWP3j\nWO58akxfY0RER0dn2fKVb0wiNhSIyWTru7cp9NgzdiAx/YkdbjWWO18+Jq+aa6zmcSx3vsIxb3+f\ntxfKV7fltoOJKRQ7kJhS19jRufFcnj+nV2ONlc6nxuLUWO58PWPyqrnGWhjHUtQ4b968XuPpv7q6\nuhg/fnxJ9l1TTdVMJlPwsbGhsdeYpKN90DGNjY0x6V17Rfsr86OzDPn6EzuQGDVWb415xmTo1Fju\nfNVeY5LkIunoqOoaBxpT7hrLnU+N6WuMiGhoqI9MZstZTbU9Jht/J+pNR1eue5tCjz1jBxLTn9jh\nVmO58+Vj8qq5xmoex3LnKxzz9vd5Q2NDr/k6c4V/fg8kplDsQGJKXWN9Q110dHR2n9OrscZK51Nj\ncWosd76eMXnVXGMtjGMpapwwaUKv8fRfkiTR1dVVkn2Xval63nnnxb333htvvvlmHHfccdHc3Bwv\nv/zyoPebzWZ6fb6vYetvTDabiaampujcZPtS5utP7EBi+hOrxuLkK2aN5c6nxnQx1ZKv2mvM5bK9\nXGhYnHzDaRwrkU+N6WLyMplsr/G1PSaZyGQLXP7alXRvU+hxi9iBxPQjdtjVWO58XT3P5tVcYxWP\nY7nzFYx5W6FzQvSxgs9AYgrGDiSmH7GDqTH/x7Huc3oV1ljxfGpMFVM1+dSYKqZgbBlqbGpq2noS\n+pTL5aK1tbUk+y57U/Xb3/52uVMCAAAAABRNujsoAAAAAAAMc5qqAAAAAAApaKoCAAAAAKSgqQoA\nAAAAkIKmKgAAAABACpqqAAAAAAApaKoCAAAAAKSgqQoAAAAAkIKmKgAAAABACpqqAAAAAAApaKoC\nAAAAAKSgqQoAAAAAkIKmKgAAAABACpqqAAAAAAApaKoCAAAAAKSgqQoAAAAAkIKmKgAAAABACpqq\nAAAAAAApaKoCAAAAAKSgqQoAAAAAkIKmKgAAAABACpqqAAAAAAApaKoCAAAAAKSgqQoAAAAAkIKm\nKgAAAABACpqqAAAAAAApaKoCAAAAAKSgqQoAAAAAkIKmKgAAAABACpqqAAAAAAApaKoCAAAAAKSg\nqQoAAAAAkIKmKgAAAABACpqqAAAAAAApVKSpOn/+/Jg5c2bsvffecdhhh8W8efMqUQYAAAAAQGoV\naap+5jOfifPOOy9eeumluOyyy+JjH/tYJcoAAAAAAEitvtwJ//SnP8V///d/xwMPPBAREaeddlpc\ndNFFsXDhwhg/fnxERCRJsmXg6NERdXURO+zQ+2O2QH+4GDHZbORyuY3blyNff2IHEqPG2qzRmNRm\njcakR2xSAzXWwjgak5qqMZsZEmOSzWRi1Lb1kc30/pYiNj6f36bQY8/YgcT0J3a41WhMarPG6hmT\nbDQ3NEc2spGJ3hNm4+1tej4OJKZQ7EBiSl1jNrKRzWT/vJ/qrLHS+dRYnBorPiaZGqixFsaxBDXm\ncrle4+m/3saw177jAGSSYu2pn5577rn467/+680u+T/ssMPi2muvjaOPPjoiIjo7O2Pt2rXlLAsA\nAAAAGOKampqivn7w80zdqAoAAAAAIIWyN1XHjh0br7/++mbTb//whz/EHnvsUe5SAAAAAABSK3tT\ndeedd46DDjoofvjDH0ZExI9//OMYO3Zs93qqAAAAAADVrOxrqkZEvPzyy/Hxj3883nrrrRg1alR8\n//vfj/3226/79Vwut8VCsplMJjKZAqu1AwAAAABsIkmSLW5Mlc1mI1vopq0pVKSpCgAAAABQq9yo\nCgAAAAAgBU1VAAAAAIAUNFUBAAAAAFLQVAUAAAAASEFTFQAAAAAgBU1VAAAAAIAUNFUBAAAAAFLQ\nVAUAAAAASEFTFQAAAAAgBU1VAAAAAIAUNFUBAAAAAFLQVAUAAAAASEFTFQAAAAAgBU1VAAAAAIAU\nNFUBAAAAAFLQVAUAAAAASEFTFQAAAAAgBU1VAAAAAIAUNFUBAAAAAFLQVAUAAAAASEFTFQAAAAAg\nBU1VAAAAAIAUNFUBAAAAAFLQVAUAAAAASEFTFQAAAAAgBU1VAAAAAIAUNFUBAAAAAFLQVAUAAAAA\nSEFTFQAAAAAgBU1VAAAAAIAUNFUBAAAAAFLQVAUAAAAASEFTFQAAAAAgBU1VAAAAAIAUNFUBAAAA\nAFLQVAUAAAAASEFTFQAAAAAgBU1VAAAAAIAUNFUBAAAAAFLQVAUAAAAASEFTFQAAAAAgBU1VAAAA\nAIAUNFUBAAAAAFLQVAUAAAAASEFTFQAAAAAgBU1VAAAAAIAUNFUBAAAAAFLQVAUAAAAASEFTFQAA\nAAAgBU1VAIAaMnv27DjkkEPioIMOikmTJsWsWbOKuv/XX389jjrqqAHHL1myJHbYYYciVlTbWlpa\n4tprr610GQAAFFkmSZKk0kUAALB1b7zxRhxwwAExZ86ceOc73xkREXPnzo0pU6ZUuLK3LVmyJKZO\nnRorVqyodCn90tXVFXV1dSXb/+LFi2Pq1KmxcuXKkuUAAKD8zFQFAKgRb775ZtTX18fo0aO7n9u0\noTp//vx4//vfH4cddlhMmTIlbr755u7XstlsXH311TF9+vQYP3583HPPPXHNNdfEtGnTYu+9947H\nHnssIracafr000/HEUccEVOmTIkpU6bEz3/+84iIePbZZ2PmzJlx4IEHxvTp0+Opp57qteb/+I//\niIMPPjimTJkS73nPe2LevHkREfHoo4/GAQccEBdeeGFMmTIlDjjggHjuueciImL58uVx3HHHxYEH\nHhhTpkyJT33qU73ue88994zLLrssDjnkkJg4cWJcd911/R6LL33pS3HooYfGFVdcsdk+kySJiy66\nKPbbb7+YOnVqTJs2Ldrb2yMi4le/+lUcccQRMW3atJg+fXo88sgjW30v559/fqxZsyYOOuigOPTQ\nQ7s/xzPOOCOmT58eBx54YFx55ZWbvaerrroqZsyYERMmTIivfvWr3a+99tprcfrpp8fkyZNjypQp\ncdVVV0VExJo1a+Lcc8+N6dOnx5QpU+K8886Lzs7OXscMAIAiSQAAqAm5XC457bTTkjFjxiSnnHJK\n8vWvfz159dVXkyRJkq6uruSQQw5JXnrppSRJkqStrS2ZPHly8uyzzyZJkiSZTCb55je/mSRJkjz0\n0EPJ9ttvn9x6661JkiTJXXfdlUybNi1JkiRZvHhxssMOOyRJkiQrVqxIdt111+TJJ5/srmHlypVJ\ne3t7ssceeyQPPPBAkiRJ8sQTTyS77bZbsnbt2s3i33zzzWTHHXdMfve73yVJkiS33357su+++yZJ\nkiSPPPJI0tDQkDzzzDNJkiTJt7/97eT4449PkiRJ/vf//t/Jeeedt1nO3owbNy752Mc+liRJkixf\nvjzZY489kqeffrpfY/GVr3yl133OmTMnmTRpUvfXq1evTpIkSRYuXJi8+93vTlpbW5MkSZL58+cn\nu+++e9Le3t7reznuuOO2GM+84447LnnssceSJEmSzs7O5Pjjj09+/OMfd7+nz372s93vadSoUclr\nr72WJEmSvOc970muvfba7v0sX748SZIkOffcc5Mf/vCH3c+fc845yXXXXdfr+wMAoDjqK93UBQCg\nfzKZTPz4xz+Ol19+OR599NG477774uqrr45nn302NmzYEL/73e/izDPPjOTPqzutWbMmXnzxxTj4\n4IMjIuJDH/pQREQccsgh0dbWFmeccUZERBx66KExf/78LfI9/fTTsc8++8SMGTO6nxs9enT8z//8\nT9TV1XWv5zpz5szYbbfdYu7cufEXf/EX3dv+5je/icmTJ8e+++4bEREf+chH4sILL4zXXnstIiL2\n2muvOOSQQyIi4t3vfndcf/31ERExffr0+D//5//E5z//+TjiiCPi+OOPLzgm+VmsO+64Y5x66qnx\n4IMPxqhRo7Y6Fp/4xCd63d/48eOjq6srPvnJT8bRRx8dJ554YkRE/PKXv4wFCxbEkUce2b3P+vr6\n+MMf/tDne+mpra0tHnrooVi2bFn3ftauXRsvvfRS9zYf+chHut/T+PHjY9GiRTFy5Mh44okn4oEH\nHujebscdd4yIiLvvvjv+8z//szvn+vXro77er/kAAKXkty0AgBozceLEmDhxYnz605+OE044IX72\ns5/F+973vthxxx27LzvvKZPJxIgRIyIiutcQbWxs7P66EpeL5+vpWcP06dNj7ty58eCDD8bs2bPj\nH//xH2Pu3LmRyWS2us9MJhNJkmx1LLbffvteXxs5cmT8z//8Tzz66KPx8MMPxxe/+MV4/PHHI0mS\neO973xu33XbbFjF//OMfC76XnpIkiUwmE//1X/8VDQ0NvW5TaF/599abn/zkJ7HXXnv1+hoAAMVn\nTVUAgBrx2muvbbZ26cqVK2PRokWx1157xd577x0jR46MH/zgB92vL1iwIFatWhURsUUzrq+v8/+e\nMWNGvPLKK/Hkk092P79y5crYe++9I5fLxUMPPRQREU899VS8+eab3eu75uOnT58eL7zwQrz44osR\nEXHnnXfGO9/5znjHO97R5/tcvHhxNDU1xf/6X/8rvvGNb8Qrr7wSa9as6XXb/PtdsWJF/PSnP41Z\ns2alHotNLV++PNasWROzZs2Kq6++OsaNGxcvvvhiHHfccfHggw/GCy+80L3tM888U3A/+RwjR46M\ndevWRUdHR0RENDU1xXve8564+uqru7d9/fXXu2fvFtLU1BRHHnnkZjNgly9fHhERJ598clx77bXR\n1dUVERGrVq2KBQsW9Lk/AAAGR1MVAKBGdHZ2xpe//OXYZ5994qCDDoqjjjoqPvGJT8T73//+qKur\ni1/84hcxe/bsmDJlSuy///5xzjnnxLp16yIitpjl2dfX+X+PHj06fvrTn8bll18eBx54YBx88MHx\n1FNPRUNDQ8yePTuuvPLKmDJlSnzuc5+Ln/zkJ7HddtttFr/TTjvF7bffHmeddVZMmTIlvvOd78Rd\nd9211ff5yCOPxMEHHxxTp06Nww8/PK677rpobm7uddudd945DjnkkJg+fXr8zd/8TRx22GGpx2JT\nS5cujfe+973dN5w64IAD4oQTTogJEybEHXfcEZ/5zGdi6tSpsd9++8WNN95YcD/5HDvssEOcffbZ\nMXny5O4bVd12220xf/78OOCAA2Ly5Mlx2mmnxVtvvdVrbZt+feutt8YzzzwT+++/fxx00EFx0003\nRUTEDTfcECNGjIgpU6bEgQceGLNmzYolS5ZsbZgBABiETNLXn+oBAKBK7bnnnnHPPffE5MmTK10K\nAADDjJmqAADUpP6ssQoAAKVQkabqfffd131J1+TJk+PWW2+tRBkAANSwhQsXmqUKAEBFVOTy/x13\n3DEee+yx2G+//WLJkiWxzz77xPLly6OpqancpQAAAAAApFJfiaTZbDZWrlwZEREtLS2x0047xTbb\nbNP9ei6Xi1wut1lMJpNxiRcAAAAA0C9JkkTP+aTZbDay2cFfvF+Rpuqdd94Zp5xySjQ1NcWqVati\n9uzZUV//dim5XC7Wrl1bidIAAAAAgCGqqampKE3Vsq+p2tXVFV/5ylfi7rvvjsWLF8eDDz4YH/3o\nR2PFihXlLgUAAAAAILWyN1Xnzp0br7/+esycOTMiIg455JB45zvfGXPmzCl3KQAAAAAAqZW9qTp2\n7Nh4/fXX4/e//31ERMyfPz8WLlwYe++9d7lLAQAAAABIrexrqu6yyy5xyy23xIc+9KGoq6uLXC4X\nN910U7zzne/s3sYNqRhO1q9fH6+99lq84x3viBEjRlS6HCgJxznDhWOd4cBxznDhWGc4cJwzHBWr\n71iRG1WdccYZccYZZxR8XVOV4aarq6vSJUDJOc4ZLhzrDAeOc4YLxzrDgeOc4aZYfceyX/4PAAAA\nAFDLNFUBAAAAAFLQVAUAAAAASEFTFQAAAAAgBU1VAAAAAIAUNFUBAAAAAFKor3QBxZJbvjyS1tai\n7zfT3BzZnXba6nZdXV3x9a9/PWbPnh319fVRX18fBx98cMyaNSuuueaaePzxx4teGwAAAABQfkOm\nqZq0tsa6Ez9Q9P1ue+/PI/rRVL3wwgujpaUlHnzwwRg5cmRERNxzzz2xcuXKyGQyRa8LAAAAAKgM\nl/8XwaJFi+LnP/95fOtb3+puqEZEfPCDH4xx48Z1f93V1RWnnXZaHHPMMTFjxow499xzY926dRER\n8cQTT8SMGTPi0ksvjcMPPzxmzJgRc+fO7Y79j//4jzjmmGPi8MMPjyOPPDKee+65+OY3vxmXXHJJ\n9zYtLS0xYcKEWLVqVenfNAAAAAAMU5qqRfDb3/42xo8fH6NHj+5zu7q6uvi3f/u3ePjhh+Opp56K\n5ubmuOWWW7pff+WVV+Kv//qv44knnohPf/rT8c///M8RETF//vy46KKL4rvf/W488cQT8etf/zre\n9a53xdlnnx333XdfrF69OiIibr/99jjxxBO3WgcAAAAAMHCaqmWUJEn867/+axx55JExY8aM+NWv\nfhUvvPBC9+vjx4+PqVOnRkTEtGnTYvHixRER8cgjj8SsWbNiwoQJEbGxOdvc3ByjRo2KD37wg3Hb\nbbdFRMT3vve9+PSnP13eNwUAAAAAw8yQWVO1kg488MBYuHBhrFq1qs9Zoj/60Y/iiSeeiPvvvz+a\nmpriO9/5zmY3sNpmm226/11XVxednZ1bzX3uuefGhz/84Zg4cWLsvPPOccABBwzuzQAAAAAAfTJT\ntQj23HPP+MAHPhAXXXRRtLS0dD//s5/9rHu2acTGNU/HjBkTTU1N0draGnfccUe/9n/sscfGww8/\nHPPnz4+IiM7Ozu5L/t/1rnfFuHHj4pJLLolzzz23eG8KAAAAAOiVpmqR3HTTTbHffvvFrFmzYsaM\nGTF9+vR45JFHYocdduje5swzz4y2trY49NBD40Mf+lDMmDGjX/vec88946abbopPf/rTcfjhh8es\nWbNiwYIF3a+fffbZ0dXVFSeddFLR3xcAAAAAsLlMkiRJpYvoKZfLRWtra7qY5csjSRnTH5nm5sju\ntFPR91tMn//852PXXXeNSy+9tNKlMADr16+PpUuXxtixY2PEiBGVLgdKwnHOcOFYZzhwnDNcONYZ\nDhznDEfNzc2RzQ5+numQWVM1u9NOEVXe/Cy2N954I0466aQYM2ZMfOlLX6p0OQAAAAAwLAyZpupw\ntNtuu8VvfvObSpcBAAAAAMOKNVUBAAAAAFLQVAUAAAAASEFTFQAAAAAgBU1VAAAAAIAUNFUBAAAA\nAFKor3QBxbJibXus3dBV9P02bVMXY5oat7pdZ2dnXHfddTF79uyor6+PhoaGGDt2bFx++eXxwgsv\nxL333hu33357UWq644474tBDD4299tqrKPsDAAAAAPpvyDRV127oinN+8Nui7/f/fvzAGNO09e0u\nuOCCaGtriwcffDBGjhwZERGPPvpoLFiwICIiMplM0Wq64447YvTo0ZqqAAAAAFABLv8vgoULF8Z9\n990XN910U3dDNSLiqKOOipNPPjkiItasWRPnnHNOzJgxI4455phYsmRJ93bf+MY34t3vfnfMnDkz\nzj333GhtbY2IiPvvvz9mzpwZRx55ZMyYMSPuv//+uPXWW2Pu3LlxxRVXxJFHHhkPPvhged8sAAAA\nAAxzmqpF8Pzzz8eee+4Zo0aNKrjNnDlz4qqrroqnnnoqjjrqqLjxxhsjIuKBBx6IO+64I371q1/F\nk08+Gdttt1380z/9U0REfPWrX40bb7wxHnvssXjqqadi5syZcfbZZ8eUKVPi6quvjsceeyxmzZpV\nlvcIAAAAAGykqVoCixcvjiOOOCKmTZsWF154YUREHHrooTF27NiIiJg2bVosWrQoIjYuEXDKKadE\nc3NzRER88pOfjF//+tcRsXGm6xe+8IX4xje+ES+88MJms2ABAAAAgMrQVC2CyZMnx6JFi6KlpSUi\nIsaNGxePP/54/O3f/m33c9tss0339nV1ddHZ2dnrvjZde/WrX/1q3HTTTbHddtvF+eefH9/85jdL\n+C4AAGDoWrG2PZauWBcr1rZXuhQAYAjQVC2C8ePHx1/91V/FxRdf3N1EjYhoa2vbauzRRx8dd999\nd6xZsyYiIn7wgx/EMcccExERr7zySuy9995xzjnnxKc+9al45plnIiKiubk5Vq9eXYJ3AgAAQ1P+\nxrZrN3RVuhQAYAior3QBQ8XNN98cX//612PWrFnR0NAQo0aNip122ikuueSSePnllwvGzZo1K+bN\nmxfvfe97I5vNxn777RfXX399RER8+ctfjgULFkR9fX00NTV1P//xj388/uEf/iFuvvnmuPLKK62r\nCgAAAABllEmSJKl0ET3lcrlobW1NFbNibXtJ/urctE1djGlqLPp+IW/9+vWxdOnSGDt2bIwYMaLS\n5UBJOM4ZLhzrDAe1epwvXbEuzvnBb+P/fvzAGDtm20qXQw2o1WMd0nCcMxw1NzdHNjv4i/eHzEzV\nMU2NMaap0lUAAAAAAEOdNVUBAAAAAFLQVAUAAAAASKHsl/+vWLEijj322MhkMhERsXbt2li0aFEs\nW7YsRo8eXe5yAAAAAABSKXtTdcyYMTFnzpzur6+//vp47LHHNFQBAAAAgJpQ8cv//+3f/i3OOeec\nSpcBAAAAANAvZZ+puqmnnnoqVq1aFSeeeGIlyyiKzs7OuO6662L27NlRX18fDQ0NMXbs2PjCF74Q\n+++/f6XLAwAAAACKpKJN1e9973tx9tlnRza79Qmz69ev7/P1tqQt1nWtK1Zp3bat2za2y2y31e0u\nvPDCWLduXdx7773R3NwcERFPPPFEvPjii7HXXntttm0ul+vXe2Z4aG9v3+wRhiLHOcOFY53hoFaP\n8yTJdT9u7f8WEFG7xzqk4ThnOBgxYkRJ9ptJkiQpyZ63Yu3atbH77rvHs88+GxMnTtzstVwuF62t\nrZs9t3Dhwujq6iq4v8adG+Mf5nyx6HV+Zeq/RPuf+j65LF26ND760Y/GvffeG9tvv/0Wr//iF7+I\ne++9N0aOHBlLly6NK664Inbfffe47rrr4o033ogNGzbEkUceGeedd15ERNx4440xZ86c6OzsjKam\npvj7v//72GOPPSIi4tBDD43zzz8/Hn300Vi1alV86lOfig984APdddxwww2xcuXKaG9vj1NOOSVO\nP/30uO222+IPf/hDXHHFFRERsWbNmjjllFNi9uzZ3Q1gAAAYyrLNu8QFd8yLmz8yKXKtyypdDgBQ\nBnV1dTF+/PjNnmtubi7KZMeKzVS98847Y8qUKVs0VAt5xzve0efrb3W+VYyytlBfXx+7jt21z23m\nzJkT48ePj0mTJvX6+pgxY+LFF1+Mhx56KPbcc8+IiPjwhz8cn/3sZ2P69OnR1dUVH/3oR+O3v/1t\nvP/9748rrrgixowZExERd999d/zrv/5r/L//9/+697fbbrvFQw89FPPnz4/jjz++uxl7zjnnxM03\n3xwTJkyIdevWxYknnhjHHntsXHjhhTFz5swYPXp0NDc3xy233BInnnhi7LvvvsUYIgapvb093nzz\nzdh1112jsbGx0uVASTjOGS4c6wwHtXqcL1u7cYJGQ0N97DJ2bIWroRbU6rEOaTjOYeAq1lT9/ve/\nH+eee26/t9/aVN3s2sxgS+p9v5nMVnM3NjZGZpPtFi9eHGeddVasX78+Dj300Jg5c2Ycdthh3U3X\ntra2ePzxx+Ott96K/EThtra2WLJkSYwYMSKefPLJ+O53vxtr1qyJXC4Xq1at2qyGD3/4wzFixIjY\nf//9o6GhIVpaWmL16tXx8ssvx/nnn7/ZPhctWhSHHXZYnHzyyXHXXXfFBRdcELfeemv1IrSLAAAg\nAElEQVR8//vfL9n0ZwamsbHRZ8KQ5zhnuHCsMxzU2nGeadu4VFgmk62puqm8WjvWYSAc55BexZqq\nTzzxRKVSF93kyZNj0aJF0dLSEqNGjYpx48bF448/HnfccUfcd999ERHR1NTUvX2SJJHJZOKhhx6K\nhoaGzfb1xz/+MS677LJ45JFH4i//8i/jd7/73WY38spkMrHNNtt0f53NZqOzszOSJIkxY8bEY489\n1muN5557bnz4wx+OiRMnxs477xwHHHBAMYcAAAAAAIYNd0sqgvHjx8df/dVfxcUXXxwtLS3dz7e1\ntfW6fVNTUxxxxBFx/fXXdz/3xhtvxGuvvRarV6+OxsbG2HXXXSNJkrjllls2iy20BO673vWuaG5u\njttvv737uUWLFsWqVau6Xx83blxccsklqWYIAwAAAACb01QtkptvvjkmTZoUs2bNihkzZsQJJ5wQ\njz76aFxyySW9bv/d7343Fi5cGDNmzIgZM2bE2WefHStXrox99903Tj311DjssMPi2GOP7b5BVV4m\nk+n167q6urjzzjvj5z//eRx++OHx7ne/Oy6++OLN7mx69tlnR1dXV5x00klFfvcAAAAAMHxkkkJT\nHysol8tFa2trqpiWDauirbP3maGDsV39djFqm9FF328lfP7zn49dd901Lr300kqXwibWr18fS5cu\njbFjx1rDhiHLcc5w4VhnOKjV43zpinVxzg9+G//34wfG2DHbVrocakCtHuuQhuOc4ai5uTmy2cHP\nM63YmqrFNmqb0UOm+Vlsb7zxRpx00kkxZsyY+NKXvlTpcgAAAACgpg2ZpiqF7bbbbvGb3/ym0mUA\nAAAAwJBgTVUAAAAAgBQ0VQEAAAAAUtBUBQAAAABIQVMVAAAAACAFTVUAAAAAgBQ0VQEAgIpZsbY9\nVqxtr3QZAACpaKoCAAAVs3ZDV6zd0FXpMgAAUtFUBQAAAABIQVMVAAAAACAFTVUAAAAAgBQ0VQEA\nAAAAUtBUBQAAAABIQVMVAAAAACAFTVUAAAAAgBQ0VQEAAAAAUtBUBQAAAABIQVMVAAAAACAFTVUA\nAAAAgBQ0VQEAAAAAUtBUBQAAAABIQVMVAAAAACAFTVUAAAAAgBQ0VQEAAAAAUtBUBQAAAABIQVMV\nAAAAACAFTVUAAAAAgBQ0VQEAAAAAUtBUBQAAAABIQVMVAAAAACCFijRV29vb4+KLL46JEyfGgQce\nGGeffXYlygAAAAAASK2+Ekkvv/zyyGaz8fLLL0dExLJlyypRBgAAAD20bFgVERGjthld4UoAoHqV\nvana1tYW3/ve9+LVV1/tfm6XXXYpdxkAAAD0oq2zLSI0VQGgL2W//H/BggUxZsyY+OpXvxrTpk2L\no446Kh5++OFylwEAAAAAMCBln6na2dkZS5Ysif333z/+5V/+JebOnRvvfe9748UXX4ydd965YNz6\n9evLWCWUT3t7+2aPMBQ5zhkuHOsMB8U+zpMkFxGl/30/nydJcv5vsRW5JIkI/wdzTmc4cJwzHIwY\nMaIk+80kyZ9/YpbJW2+9Fbvttlu0t7dHJpOJiIhDDz00rrnmmjjmmGMiIiKXy0Vra+tmcQsXLoyu\nrq5ylgoAAJRYtnnjUmC51tLeZyHbvEtccMe8uPkjk0qeq9Y17twYERHtf9JkAaC21dXVxfjx4zd7\nrrm5ObLZwV+8X/aZqjvuuGMce+yx8ctf/jJOOOGEWLRoUSxevDgmTZrUZ9w73vGOMlUI5dXe3h5v\nvvlm7LrrrtHY2FjpcqAkHOcMF451hoNiH+fL1m6cOLHL2LGD3ld/8jQ01Jc8V617q/OtiIjYdeyu\nFa6kspzTGQ4c5zBwZW+qRkR861vfik996lNx+eWXR11dXdxyyy2x++679xlTqqm6UC0aGxsd5wx5\njnOGC8c6w0GxjvNM27qIKP3v+/k8mUzW9+dWZNduvKLQOG3knM5w4DiH9CrSVN1zzz3dnAoAAAAA\nqEmDX0AAAAAAAGAY0VQFAAAAAEhBUxUAAAAAIAVNVQAAAACAFDRVAQAAAABS0FQFAAAAAEhBUxUA\nAAAAIAVNVQAAAACAFDRVAQAAAABS0FQFAAAAAEhBUxUAAAAAIAVNVQAAAACAFFI1VTs7O+P666+P\n888/PyIiFixYEA8//HBJCgMAAAAAqEb1aTa+6KKLoqurK5544omIiNhxxx3jjDPOiGeffbYkxQEA\nAAAAVJtUTdX//M//jLlz58bUqVMjImL06NHR0dFRksIAAAAAAKpRqsv/R4wYsdnXXV1dkcvliloQ\nAAAAAEA1S9VUnTx5ctx2222Ry+Vi/vz5cd5558XRRx9dotIAAAAAAKpPqqbqDTfcEI8//ni88cYb\nMXPmzMhms3HNNdeUqjYAAAAAgKqTak3V7bffPr7zne/Ed77znVLVAwAAAABQ1VLNVL3qqqvirbfe\n6v56+fLl8U//9E9FLwoAAAAAoFqlaqrec889seOOO3Z/vdNOO8U999xT9KIAAAAAAKpVqqZqLpfb\n4rn29vaiFQMAAAAAUO1SNVX33nvv+NrXvhZdXV3R2dkZ1157beyzzz6lqg0AAAAAoOqkaqreeOON\n8ctf/jK23XbbaGpqigcffDC++c1vlqo2APj/7N1/nBP1ncfx9yRhd2Fl+SGCxS4iotQqskspolQp\nPaw/2nJtuZaeRfEsFqx99KpH6Q9rH/ZOvdpar716PjztnViqx51Sf1yp3lXbKhUVlR/lUX8DpXss\nrO4uuyzJbrJJ5v5YJmRDfk2SyUyS15MHj2wm8/1+PzPznezmk+98BwAAAAAAzwnYWXny5Mn6zW9+\no2AwKElqbGx0JCgAAAAAAAAA8CpbSVVJ2r9/v/bs2aNoNJpYdsEFF5Q0KAAAAAAAAADwKltJ1Vtu\nuUU/+MEPNG3aNPn9fkmSYRjasmWLI8EBAAAAAAAAgNfYSqr++7//u3bt2qXjjz/eqXgAAAAAAAAA\nwNNs3ahq0qRJJFQBAAAAAAAA1DRbI1UvvPBCffWrX9Vll12mhoaGxPKzzz675IEBAAAAAAAAgBfZ\nSqr+7Gc/kyQ99thjiWWGYWj37t2ljQoAAAAAAAAAPMpWUnXPnj1OxQEAAAAAAAAAFcHWnKqStGHD\nBt16662SpPb2du3cubPkQQEAAAAAAACAV9lKqn7nO9/RT3/6U61du1bS0KX/K1eutN3o1KlTdcYZ\nZ6i1tVWzZ8/WQw89ZLsOAAAAAAAAAHCDrcv/H3vsMW3dulVz5syRJL3nPe/R4cOHbTfq8/n0X//1\nX5o5c6btsgAAAAAAb+kN90iSxtSPdTkSAADKw9ZI1ZEjR8rv9w9bZpqm7UZN0yyoHAAAAADAe0LR\nkELRkNthAABQNraSqieffLI2bdokwzA0ODio7373u2ppaSmo4csvv1yzZs3S1Vdfrc7OzoLqAAAA\nAIBa0h2MqK27X93BiNuhAABQ02xd/v/P//zPWr58uXbu3KnGxkYtXLhQP//5z203umnTJr33ve9V\nLBbTDTfcoOXLl2vjxo1ZywwMDNhuB6gEkUhk2CNQjejnqBX0ddSCUvdz04xLcv7vfasd04xX9GeL\nwwMxXX3/Tt27fKZG+eOOtBE/clWhnf1USBmv4z0dtYB+jlrQ0NDgSL2GWcB1+KFQSKZpqrGxsegA\nDhw4oBkzZqi3tzexLB6Pq6+vb9h6u3fvViwWK7o9AAAAAN7hGz1RkhTve8fxdr704Gu667IzHG/L\nSeXYjroT6iRJkXfzT7IUUgYAAKf5/X5NmzZt2LLRo0fL57N18X5atkaqzp07V1u2bNGoUaOOWZav\nUCikwcFBjRkzRpL04IMPqrW1NWe5yZMn2wkVqBiRSEQdHR2aNGmS6urq3A4HcAT9HLWCvo5aUOp+\n/k5waODExObmouvKp50RIwKOt+WkcmxHV7RLkjSpeZKjZbyO93TUAvo5UDhbSdVoNDrs+eDg4DEj\nSnPp6OjQkiVLFI/HZZqmpk2bpp/97Gc5yzk1VBfwirq6Ovo5qh79HLWCvo5aUKp+boT6JTn/977V\njmH4Kvr8LMd2+IKGJHvHpJAylYL3dNQC+jlgX15J1dtuu03f+973dPjwYY0fPz6xvL+/X1dccYWt\nBk855RRt3brVXpQAAAAAAAAA4BF5JVVXrVqlpUuX6pprrtHdd9+dWN7U1KRx48Y5FhwAAAAAAAAA\neE1eSdUxY8ZozJgxeuKJJ5yOBwAAAAAAAAA8zdacqlu3btW3vvUt7d69W9FoVKZpyjAM7d6926n4\nAAAAAAAAAMBTbCVVly9fri9/+cs699xz5ff7nYoJAAAAAAAAADzLVlLV7/dr5cqVTsUCAAAAAAAA\nAJ7ns7Py/Pnz9fLLLzsVCwAAAAAAAAB4nq2Rqs8++6zuvfdeTZ8+XQ0NDYnlW7duLXlgAAAAAAAA\nAOBFtpKqd955p1NxAAAAAAAAAEBFsJVUXbBggQYHB/XnP/9Zp556qlMxAQAAAEBF6g5GFAzH1Fjv\n1/jGOrfDAQAADrE1p+rvfvc7nXzyyVq4cKEk6aWXXtKyZcscCQwAAAAAKk0wHNOKtTsUDMfcDgUA\nADjIVlL1G9/4hjZt2qTjjz9ekvTBD35Q27ZtcyQwAAAAAAAAAPAiW0nVWCx2zGX/dXVc0gIAAAAA\nAACgdthKqjY0NOjw4cMyDEOStHPnTo0cOdKRwAAAAAAAAADAi2zdqOrGG2/URz/6Ue3bt0/Lli3T\nU089pQcffNCp2AAAAAAAAADAc2wlVT/60Y/qtNNO05NPPinTNPXd7373mOkAAAAAAAAAAKCa2Uqq\nRiIRnXLKKbrmmmu0e/duvfrqq5o6dar8fr9T8QEAAABAwbqDEQXDMcXjptuhAACAKmJrTtX58+er\nr69PXV1dOv/88/WP//iPuvbaa52KDQAAAACKEgzHtGLtDsVNkqoAAKB0bCVVo9GoRo8erY0bN2r5\n8uV67rnn9NxzzzkVGwAAAAAAAAB4jq2kaiQSkST97ne/00c+8hFJ4tJ/AAAAAAAAADXF1pyqCxcu\n1Pvf/37FYjH967/+qw4ePKhAwFYVAAAAAACgRHrDPZKkMfVjXY4EAGqLrYzoT37yE+3YsUPTpk3T\niBEjFIvFdO+99zoVGwAAAABUJL/PUFt3vxrr/RrfWOd2OKhioWhIEklVACg3W5f/G4ahlpYWNTU1\nSZImTJig1tZWRwIDAAAAgEoVHhy6QVYwHHM7FAAA4ABbSVUAAAAAAAAAqHUkVQEAAAAAAADAhryT\nqrFYTF//+tedjAUAAAAAgIx6wz2JGzMBAOCmvJOqfr9fv/3tb52MBQAAAACAjELRUOLGTAAAuMnW\n5f+XXnqpbrnlFrW3t+vQoUOJ/wAAAAAAAABQKwJ2Vv77v/97SdKNN94owzBkmqYMw1Asxh0tAQAA\nAAAAANQGW0nVeDzuVBwAAAAAUJTuYESSNL6xzuVIAABAtbN1+b8kvfLKK1q3bp0kqaenR/v37y95\nUAAAAABgVzAcUzDMVXQAAMB5tpKqd911l6666irddNNNkqSuri5ddtllTsQFAAAAAAAAAJ5kK6l6\nzz336IUXXlBTU5Mk6dRTT9W7777rSGAAAAAAAAAA4EW2kqr19fUaOXLksGWBgK1pWQEAAAAAAACg\notlKqp5wwgl68803ZRiGJGnt2rWaMmWKI4EBAAAAAAAAgBfZSqr+6Ec/0uc//3m9/vrram5u1g9+\n8AP9+Mc/Lrjx++67Tz6fT48//njBdQAAAAAAAABAOdm6dn/69Ol68cUX9cYbb8g0Tc2YMUN+v7+g\nhvfu3auf/vSnOvfccwsqDwAAAAAAAABusDVSVZK2bNmiDRs26JFHHtHLL79cUKOmaWrFihW68847\nVVdXV1AdAAAAAAAAAOAGW0nV22+/XUuXLlVXV5c6Ozu1dOlS3XHHHbYbveOOO3T++eertbXVdlkA\nAAAAAAAAcJOty//vuecebd26Vccff7wk6cYbb9S8efN0/fXX513HH//4R23YsEGbNm2yFejAwICt\n9YFKEYlEhj0C1Yh+jlpBX0ctKHU/N824pNL8vZ+uLmtZ8nMnP1s43Z5Vv5PbETdNSfaOSSFlClGu\ndqTKeU8v5z5B9amUfg4Uo6GhwZF6bSVVm5qaEglVSRo/fryamppsNbhp0ybt3btXp512mkzT1IED\nB/TFL35R+/fv18qVKzOWa29vVywWs9UWUEk6OjrcDgFwHP0ctYK+jlpQqn7uGz1RktTW1u5IXday\nI3knDQ5GS9JWrhicas+q38ntqDthaIq2tv1tjpYpRLnaSeb193Q39gmqj9f7OVAov9+vadOmOVK3\nraTqRz7yEV155ZX6whe+IElau3atFi1apD/84Q+SpLPPPjtnHatWrdKqVasSzxcuXKjrrrtOixcv\nzlpu8uTJdkIFKkYkElFHR4cmTZrEHMOoWvRz1Ar6OmpBsf388KAUisQ0qs6v40ZI7wSHBk5MbG4u\nOrZ0dVnLDGPo+YgRgZK0lSsGp9qz6ndyO7qiXZKkSc2THC1TiHK1I1XOe3o59wmqT6X0c8CLbCVV\nH3roIUnSM888M2z5f/7nf8owDO3evdt2AIb110YOTg3VBbyirq6Ofo6qRz9HraCvoxYU2s/fDfXr\n6vt36qdXztKE0SNlhPollebv/XR1WcsSzw2fo+en0+1Z9Tu5Hb7g0Gc0O/UXUqY33CNJGlM/1tF2\niuX193Q39gmqj9f7OeBFtpKqe/bsKXkAv/nNb0peJwAAAAB4XXcwomA4psZ6v8Y31t4IsVA0JMle\nUhUAAK/wuR0AAAAAANSiYDimFWt3KBjm3hEAAFQakqoAAAAAAAAAYANJVQAAAAAAAACwoeCkqmma\n6uvrK2UsAAAAAFBW3cGIuoMRt8Owze8z1Nbdn4i9OxgZ9hwAADjLVlL1C1/4gnp6ehSJRNTS0qJJ\nkybprrvucio2AAAAAHBUMByryDlNw4PD52NlflYAAMrLVlL1lVde0dixY/Xkk0+qtbVVBw4c0N13\n3+1UbAAAAAAAZNQb7lFvuMftMAAANchWUtU0TUnSpk2b9PGPf1xNTU3y+/2OBAYAAAAAQDahaEih\naMjtMAAANchWUvXEE0/UNddco4ceekiLFi3S4OCgYjEuLwEAAAAAAABQO2wlVR944AHNmDFD69ev\n19ixY7Vv3z5df/31TsUGAAAAAAAAAJ4TsLPyhAkT9NWvfjXxfOrUqbryyitLHRMAAAAAAAAAeJat\npOrWrVt1ww03aNeuXYpGo4nlu3fvLnlgAAAAAAAAAOBFtpKqy5cv15e//GWde+653KAKAAAAAIAy\n6Q33KBQNaVRglMbUj3U7HACoebaSqn6/XytXrnQqFgAAAAAAkEYoGtKaLav1/bm3k1QFAA+wdaOq\n+fPn6+WXX3YqFgAAAAAAAADwPFsjVZ999lnde++9mj59uhoaGhLLt27dWvLAAAAAAAAAAMCLbCVV\n77zzTqfiAAAAAAAAAICKYCupumDBAklSe3u7JGny5MmljwhVK97ZKbOvT8bo0fJNmOB2OAAAAAAA\nAEBBbM2p+tprr+nMM89M/J85c6Zef/11p2JDlTH7+tT/sU/I7OtzOxQAAAAAAACgYLaSql/60pd0\nww036ODBgzp48KBuuOEGXXPNNU7FBgAAAAAAAACeYyupevDgQV122WWJ55/73Od08ODBkgcFAAAA\nAAAAAF5lK6nq9/v16quvJp6/+uqr8vv9JQ8KAAAAAAAAALzK1o2qbr31Vl1wwQU6++yzJUk7d+7U\nAw884EhgAAAAAAAAAOBFtpKqF110kV599VVt2bJFkjRv3jxN4C7uAAAAAAAAAGqIraSqJE2cOFEf\n//jHnYgFAAAAQI3qDkYkSeMb61yOBAAAILe8kqrjxo2TYRjHLDdNU4ZhqLu7u+SBAQAAAKgdwXBM\nkjS+0eVAkJfecI8kaUz9WJcjAQDAHXklVbdv3+50HAAAAACAChGKhiSRVAUA1K68kqonn3xy4udQ\nKJRIsra0tGjUqFHORAYAAAAAQBn1hnsUioY0KjBK9WpwOxwAgIf57Ky8efNmnXrqqbr22mt17bXX\navr06Xr++eedig0AAAAAgLIJRUNas2V1YiQuAACZ2LpR1fXXX6+HH35Y8+fPlzSUZL3uuuv0wgsv\nOBIcAAAAAAAAAHiNrZGq/f39iYSqJJ133nkaGBgoeVAAAAAAAAAA4FW2kqrHHXecnnrqqcTzp59+\nWo2N3J4TAAAAAAAAQO2wdfn/j3/8Yy1ZskR+v1+SFI/H9Ytf/MKRwAAAAADATd3BiILhmBrr/Rrf\nWJfXuvG4WaboqkdvuEeSNKZ+rMuRAACQP1sjVefMmaO3335bjz/+uB5//HG99dZbmj17tlOxAQAA\nAIBrguGYVqzdoWA4lve6cZOkql2haIgbQwEAKo6tpOp///d/KxgM6qyzztJZZ52lw4cPa+PGjU7F\nBgAAAAAAAACeYyupeuONN2rs2KOXZIwdO1Y33nij7UYvuugitbS0qLW1VQsWLND27dtt1wEAAAAA\ngKU33KP9wfbEdAIAADjJVlI1lWEYisVyXwqT6qGHHtL27du1bds2XXfddbryyiuLCQMAAAAAUONC\n0ZDWbFnNVAIAgLKwlVQdPXq0Nm/enHj+3HPPafTo0bYbbWpqSvzc09Mjn6+o3C4AAAAAAAAAlE3A\nzsrf//739alPfUrve9/7JElvvfWWHnnkkYIaXr58uX7729/KMAz96le/KqgOAAAAAAAAACg3W0nV\nc889V6+99pqef/55SdJ55503bI5VO+6//35J0rp167RmzZqcN7waGBgoqB14RyA+dCdUM25yPJNE\nIpFhj0A1op+jVtDXUQuK7eemGU88DgwMJJ5bivk70aoruY7U+q12s5XJFGs+badbnqlsvvUfHhx6\nPG5E5u2xE2sucXPo7/Zs9aSuk0+ZTHVY8imbrV3r57hZ+OeN5Dq89p6eafsK2feAxWv9HHBCQ0OD\nI/XaSqpK0rhx43TppZeWLIDLL79cK1eu1MGDBzVu3LiM67W3txc0fyu8o/lIUjUajaqtrc3laLyn\no6PD7RAAx9HPUSvo66gFhfZz3+iJkqTBwaja2toTzy1tbe0Fx2TVlVyHtczK31ntZiuTKdZ82rba\nydReIfVb6x3seyfj9tiJNZe6E+okSW37M//NnrpOPmUy1WHJp2y2dq2fo9GorTjS1R+NRtXx7lAf\n98p7eqbtK2TfA6m80s+BUvP7/Zo2bZojdeeVVF2wYIGeeeYZjRs3ToZhJJabpinDMNTd3Z13g729\nvQqFQnrPe94jSXr00Uc1YcKErAlVSZo8eXLebcCbAvvaFZUUCATUfBLH0xKJRNTR0aFJkyaprq4u\ndwGgAtHPUSvo66gFxfbzd4JDAyVGjAhoYnNz4rllYnNzwbFZdSXXYS2zPsZY7WYrkynWfNq22snU\nXiH1J8eYaXvsxJpLV7RLkjSpeVLe6+RTJlMdlnzKZmvX+jkQCNiKI139gUBA4yaN89R7eqbtK2Tf\nAxb+dgEKl1dSdf369ZKk7du3F91gb2+vPvOZz2hgYECGYWjixIn65S9/mbOcU0N1UT4x39BffobP\n4HimUVdXx35B1aOfo1bQ11ELCu3nRqh/6NHwqaGhIfHcUsy5Y9WVXEdq/Va72cp0ByMKhmMyTSNt\nmWxtH7M8S9nUfZGr7nT7K3U/5hNrLr6gkWgv33XyKZOpDks+ZbO1a/3sMwr/vJFch5Vg8sp7eqbt\nK2TfA6m80s+BSpJXUtUaVXryyScX3eCUKVP04osvFl0PAAAAADghGI5pxdoduvvymW6HAgAAPMpn\nZ+Vnn31Wc+fO1fjx49XU1KTRo0erqanJqdgAAAAAwBHdwYi6g9yYBQAAFMbWjaquvvpq3XLLLZo7\nd678fr9TMQEAAACAo4JhboIL9/SGexSKhjQqMEpj6se6HQ4AoAC2kqpNTU36q7/6K6diAQAAAACg\n6oWiIa3Zslrfn3s7SVUAqFC2Lv9fsmSJ1q1bp0iEy2QAAAAAAAAA1CZbSdUzzjhDX/rSlzRy5Ej5\n/X75fD6mAQAAAACAEmK+VwAAvM/W5f/XXXedHnvsMc2ZM4dkKgAAAAA4wJrvdXyjy4EAAICMbCVV\nJ06cqI985CNOxQIAAAAAAAAAnmfr8v/Fixfrzjvv1DvvvKNDhw4l/gMAAABArai2y/N7wz3qDfe4\nHQYAABXF1kjVb3/725Kkr3zlKzIMQ6ZpyjAMxWIxR4IDAAAAgHLpDkYUDMcUj5tZ16u2y/ND0ZAk\nOXYX+t5wj0LRkEYFRlXlne6rffsAAOnZGqkaj8cT/2OxWOIRAAAAAErJjdGgwXBMK9buUNzMnlSF\nPaFoSGu2rE4kb6tNtW8fACA9W0lVSXrllVe0bt06SVJPT4/2799f8qAAAAAA1LZgOJYYEeoV1XbZ\nPwAAKJytpOpdd92lq666SjfddJMkqaurS5dddpkTcQEAAACAp3gx0QsAANxhK6l6zz336IUXXlBT\nU5Mk6dRTT9W7777rSGAAAAAAAAAA4EW2kqr19fUaOXLksGWBgK17XQEAAACAY/w+Q23d/VymDwAA\nHGUrqXrCCSfozTfflGEYkqS1a9dqypQpjgQGAAAAoHpZyc94vLQ3hQoPDt1sisv0AQCAk2wNM/3R\nj36kv/7rv9brr7+u5uZmNTU16Ze//KVTsQEAAACoUuHBmFat26m7L58pnwy3wylYdzCiYDhW8uQw\nAADwNltJ1enTp+vFF1/UG2+8IdM0NWPGDPn9fqdiAwAAAABPC4aHRsbefflMt0NBit5wjyRpTP3Y\nktUXioY0KjCqZHUCACqXrcv/Jcnn86m+vl7/+7//qyeeeMKJmAAAAAAAKEooGlIoGippfWu2rC5p\nnQCAypVXUnXRokXavn27JKm9vV1z5szR//zP/2j16tW67bbbHA0QAAAAAAAAKKwsTWkAACAASURB\nVERvuEf7g+2J0etAqeSVVN23b59aWlokSQ8++KAWLFigJ554Qs8//7weeOABRwMEAAAAAAAACsEo\nczglr6TqyJEjEz9v3rxZl156qSRp3LhxCgRsTcsKAAAAAAAAABUtr6Sqz+fT//3f/+nw4cN65pln\ntGDBgsRroRCZfgAAAAAAAAC1I69hpt/61rfU2tqqQCCghQsX6vTTT5c0NGp16tSpTsYHAAAAAJ7U\nHYwoHjdtl5Gk8Y11ToQEAADKJK+k6qc//Wmdd9556ujo0Nlnn51YPnXqVN1zzz2OBQcAAACgdvl9\nhtq6+9VY7/dkEjIYjilu2kuqBsMxSdL4RiciAuC23nCPQtGQRgVGaUz9WLfDAeCgvC7/l6QTTzxR\ns2bNkmEYiWWTJ0/WlClTHAkMAAAAQG0LD8a0Yu2ORCISALyOmyIBtSPvpCoAAAAAAAAAgKQqAAAA\ngArVHYwk5igFAMApveEe9YZ73A4DHpPXnKoAAAAA4DVHpwUgsQoAcI41nQPz5CIZSVUAAAAAFY05\nVwEAQLmRVAUAAAAAlJx1F/SYGXc7lJwqKVYAgDcwpyoAAABQ4bqDEbV19zO/KEquN9yj/cH2guYS\ntO6Cbsr7icpKihUA4A0kVQEAAIAKFwzHtGLtjpq5DN5KIsfjptuhVD0r2WjNJwgAAIaQVAUAAABQ\nUawkctwkqVqrSnUnbmskLpf9AwDsIqkKAAAAAKgooWioJKNnuewfAFCosidVw+GwPvWpT+l973uf\nWltbddFFF2nXrl3lDgMAAAAA4FHFzOUKAEA5uDJSdeXKlXr99de1bds2LV68WCtWrHAjDAAAAABw\nlN9nqDsYSfxHfpjLFQDgdWVPqtbX1+viiy9OPJ83b5727t1b7jAAAAAAwHHhwZiC4aP/AQBAdXB9\nTtUf//jH+uQnP+l2GAAAAAA8yu8z1Nbdz0hPAADgGQE3G7/11lu1a9cu3XPPPTnXHRgYKENEcFIg\nPnR3VjNucjyTRCKRYY9ANaKfo1bQ1+EW88idy00z7vjfWcX2czPNXdaTl1nxJy8LD8a0at1O3bt8\npkb548NeS1eftXxgYOCY1zMtT7csV5l8pSuXXF/qcbOWp+6LfLbH75M6+wZ03Ij844ub5rD2kp9b\nP8fN4X/DZyuTuo6Z9Dzd65Z0r+Uqk1w2tUy6mDJtu1VrcqypfT1XTKnLsyllmXy2E+VTyLF1Uy38\n7VKKY8J5VtkaGhocqde1pOrtt9+uRx99VE8//XReG9fe3q5YjMtlKlnzkaRqNBpVW1uby9F4T0dH\nh9shAI6jn6NW0NdRbr7REyVJg4NRtbW1l6XNQvu5FauVGzPNobgtVvy+0RNl+ALD1rW2L7mO5LKS\nEmXSrZtueXK76WLLVia5vdQymbYvXXupx81anrwvMsWYGttAJK7+eFQH+945ps1M6k6oG6p/f9sx\nz62f/YZfHQMdGmGOULAzmLVMar1WsNFoNP3rkupH1KetP1uZZMmxWmXSxZRp21MPXDQaVce7Q33c\n6uu5Ykpdnk0py+SznSifQo6tF1Tz3y6lOCacZ5XL7/dr2rRpjtTtSlL1jjvu0Pr16/X0009r9OjR\neZWZPHmyw1HBaYF97YpKCgQCaj6J42mJRCLq6OjQpEmTVFeX/o9EoNLRz1Er6OtwyzvBocEHI0YE\nNLG52dG2iu3nVqyGocRjYMTRjyVW/O8EY4rFNWxda/uS60guKylRJt266ZYnt5sutmxlkttLLZNp\n+9K1l3rcrOXJ+yJTjJn2iZ1+0BXtkiRNap50zHPr54gZ0be3fVPf++AP1NzcnLVMar1WsIFAIP3r\nWerPViZZcqxWmXQxZdr21AMXCAQ0btK4YX09V0ypy7MpZZl8thPlU8ixdVMt/O1SimPCeYZ0yp5U\n3bdvn1avXq1TTz1VCxculGmaamho0PPPP5+1nFNDdVE+Md/QHyiGz+B4plFXV8d+QdWjn6NW0NdR\nbkaof+jR8JWt7xXaz61Yhy0zjt7qwapzaL34Mes1NDQMqyO57JB4xnUlKeD3KxTzyTCGX0aebt1s\n7aa2l82xMQ5vL/W4WcuH74v0MWbaJ3aOjS9oDGsv+bn1s2GtaxjDlqcrk1pvatnU1yXpyEVtx9Sf\nrUyydGXSxZRp261ak2O1EkxWX88VU+rybEpZJp/tRPkUcmy9oJr/dinFMeE8QzplT6qedNJJiscL\nm4sIAAAAAIoRHowpFk8/LycAoPr1hnskSWPqx7ocCSrdsV+ZAgAAAAAAAFUoFA0pFA25HQaqgGs3\nqgIAAAAAAKhmveEehaIhjQqMYmQkUGUYqQoAAAAAHtAdjKitu19xpicAqkYoGtKaLasZGQlUIZKq\nAAAAAKqO32dUXIIyGI5pxdodipuVEzMAALWKpCoAAACAqhMeJEEJAACcQ1IVAAAAAADApt5wT+JO\n8gBqD0lVAAAAAAAAm8p1F3mSt4A3kVQFAAAAAADwqHIlbwHYQ1IVAAAAAIAi+Q0/owkBoIaQVAUA\nAACAKtUdjKg7GHE7jJoQjocZTQgANSTgdgAAAAAAAGcEwzFJ0vhGlwNBVtYI1zH1Y22XAQC4g6Qq\nAAAAAAAuska42kmqMioWANzF5f8AAAAAAAAAYANJVQAAAABAXvyGX/uD7YqZcbdDATwt33OlN9zD\nVA5VjmNcvUiqAgAAoKpkuzFPdzCitu5+btwDFCgcD2vNltUyRVK12vWGe7Q/2E4yqED5niuhaIip\nHKocx7h6kVQFAABAVQmGY4mb86R7bcXaHRlfLwXuto5SoS/BTaFoSGu2rCYZBAAZcKMqAAAAoIS4\n23pxsiUR/T5Dbd39isfNMkbkHieT//noDfdUxGX+TEkAAHADI1UBAAAAeEa2kcbhwaGRxnGzNpKq\nTrMu786UjAxFQxVxmT9TEgAA3EBSFQAAAFWBS6UBe6zLu0lGAgBgH0lVAAAAVIVsIxwBoFSs6Qa4\ngZP3cJd1AOVEUhUAAACexyhUVJvuYKRm5oYthhcTmNZ0A/newKnYRF+uaRpwFHdZB1BOJFUBAADg\neYxCRbUJhmPMDZsHuwlMLyo20VfMNA1WQtZLSWkAqBYkVQHUlHhnp2J79ije2el2KAAAAICjrIRs\nJSelAcCrSKoCqClmX5/6P/YJmX19bocCAChQdzCitu5+pgMA8uT3GZwzAACUGElVAAAAVJRgOKYV\na3dU3XQAJIvhlPBgdZ4zQCXx4vzAAIpDUhUAAAA4ws0bYnk9WczNwlAskkqoZdUwPzCA4UiqAgAA\nAEdwQ6zMqn3fdAcjisfduXGUdXm+W+2XC0klAEA1IakKAAAAz2FUJMotGI4pbrqT1LQuz3e6feZW\nta9xQqNCZm0kgXvDPRU3krgSY0Z16A330O9AUhUAAADeU+2jIgGnpftigrlV7Rs0BtUf63c7jLII\nRUMVN5K4EmNGdQhFQ/Q7KOB2AAAAAACA0iJxCgDl1RvuUSga0qjAKI2pH+t2OCgDRqoCAAAAQBZ+\nn8El86gYxV6WbN1QLGbGSxgVUBmKmVKCkdO1h6QqAAAAAGQRHmQ6ikpWa3MfFntZsnVDMVMkVVF7\nyp0YZV7gykZSFQAAAABQtVKTjLWWZAXgXYxurWxlT6r+7d/+rU455RT5fD794Q9/KHfzAAAAAIAa\nxg1mAAClUPak6mc+8xk999xzmjp1armbBgAAgEd0ByNq6+5nnkrAQxjBCQBA/sqeVP3Qhz6kyZMn\nyzTNcjcNAAAAjwiGY1qxdgfzVHpYdzBC0ttjuoMRxePOfY5iBCdQGL6QQDr0i+oXcDsAO+KdnTL7\n+mSMHi3fhAluhwMAAABULSvhPb7R5UCQEAzHFGdwSs3oDfcoFA0pZnLDKK+zvowYUz/W5UjgJXxJ\nVf0qJqk6MDCgQO8hDXxisRr++3FFjjvO7ZBgU+DIt+pm3NTAwIDL0XhHJBIZ9ghn0Q/dQT9HraCv\n5888kiQwzXja92Prdeu15OeZypopiYds9ebbbiEKrSNXbE6VzVVn6jGIRGJHHgvr56nHKdOyYurz\nSplytGcd8+T1c5W1ylgJWlPKmKw1szzGzaN/T1nlk/tfcv3Jj1a55DYzvZatTKYYM62bLtZsMVp9\n3MwzptR9krof0u0bn+FXd3932nUOR4P6xktf0y0f/F7R25curlS5jpcXpW5fuv1YjvYt2fpUpv2Z\nT8xObpfTf7uEzKHE4ihjlCP158NOP8l0zqSWyXZe5zpH82kPpdXQ0OBIvRWTVG1vb9fkaFSSFI1G\n1dbW5nJEsKv5SDKL45deR0eH2yHUBPqhu+jnqBX09dx8oydKkgYHo2pra8/4uvVa8vNMZa3llmz1\n5ttuIQqtI1dshZQdOfYESVJ/z7u26kuuM/UYdHS/M/RYYD+36rE+a5rmUNzpGL7AMevmKltImXzK\nljLGUrZnHfPk/Zprn1hl6k6oSzQYjWVoz6+MGxaNRdW2f+jvKasu63nystSy0ehQucTrSe0c81qW\nMplizLRuulizxdjxbofqTqhTLBZT24E8YkrZJ6n7Id2+CccGNBA7mkgpdP/l2j6rTDa52vOi1O1L\nt6/L0b4lW5/KtD/zibkc25XtPb1xwtAlC8HOoO16rdi73u0qLLASsNNPMp0zqWWynde5ztF82kPp\n+P1+TZs2zZG6KyapOnnyZAX2tSsqKRAIqPmkyW6HBJs4fulFIhF1dHRo0qRJqqs79o9ElBb90B30\nc9QK+nr+3gkOjXYcMSKgic3NGV+3Xkt+nqmstdySrd582y1EoXXkiq2Qstby5gK2J9MxGDtpUlH9\n3KrHMJR4DIxI/7EkFtcx6+YqW0iZfMqWMsZStmcd8+T9mmufWGW6ol2JFwIBv9KJKZYxyEDAr0nN\nkyQpUZf1PHlZatlAIKBJzZOOvp7UzjGvZSmTKcZM66aLNVuM4yaN08H4Qfn9fjWn7K9MsSbvk9T9\nkGnfJO/7Qvdfru2zymSTqz0vSt2+dPu6UPmMsEx3DDLtx0z7M5+YS7ldqfL528Vqv5DfJU7GbjeG\nfPpJpnMmtUy28zrXOZpPe6gMZU+qrlq1Shs3blRHR4cuuugijR49Wm+++WbOcg0NDYr5ht6EDJ/h\n2NBdOIfjl11dXR37pQzoh+6in6NW0NdzM0L9Q4+GL+2+sl63Xkt+nqmstdySrd582y1EoXXkiq2Q\nsoXE0h2MKBiOyTQN+ZJ+X1p11dX5jzwW1s9Tj5MVd3q5L4E/tmwhZXKXLW2MpWvPOubJ+zXXPrHK\n+IJH/i6S5LMSP6kljwyys15NfvQZR/uHVVdyn0iuP/lxhC+gsDEwrE2rHavO1LKpy7PFmGnddLFm\nizHqj0phycgzptR9krofMu2b5P2Qz/4rZPvSxZUqV3telLp96fZ1oQ4GuyVJ4xvH52zfkq1PZdqf\n+cRcyu3KJNt7ejHtlyP2fGPIp59kOmdSy2Q7r3Odo/m0h8pQ9qTq3XffXe4mAQAAAOQpGI5pxdod\nuvvymfLJyF0AFcfvM9TW3S+jrvibXhVyZ+twPKyYGcu9oovC8bAGlX5KhGrUG+7hhlhIsM5rp268\nZd2EbVRgFDf3QkXL9PUnAAAAkJfuYERt3f3qDnKDLqAShAeHEufx4nOqCkVD3OG6CoSiIZl5jLpG\nbXD6vA5FQ1qzZTXvHah4JFWBAsQ7OxXv7HQ7DAAAPMEa2TgwGCe5CgAAgJpAUhUogNnXJ7Ovz+0w\nAAAVpBa+kLNGvwXD3r6sFwAAVLbecE9B048ApURS1UPinZ2K7dlT9R+4qkYgwPECAOSNL+RgF9Mq\nAACQXuoUBYUkWUnMolgkVT3E7OtT/8c+wQeuStHfz/ECAACOsaZVYOQvAC8oVwKKRFdxesM92h9s\nr7l9WMg8sMwJjWKRVAUAAEDeuoMRRk6mYJ8AqAXlSkCR6CoON4GqDFbyO2Zyg7hKVtFJVS6XBwAA\nKK9gOMbIyRTsE+AoRhnC6woZyVmroz/hHCv5bYqkaiWr6KQql8sDAACg3AqZ65T5UVErammUod/w\ne2qkWS0ktEuR3CxkJCejPwGkU9FJVQAAAKDcMs11mm0agGqbH3Xk2BP0TjBGkhg1LRwPuzLSLFMy\ntxYS2oUkNxllCsApJFUBh8U7O5miAgCAGpBuGgBrhGo8broUlTPCMUNX37+zapLElczvM6qyjzmh\nWkZyupXMrVSMMvUO5hFFtSGpCpSYlUS1/pt9fTL7+kiuAgBQg6wRqnGzuhNeTG/gnvBgbfSxUqiE\nkZzVkvgF0mEeUVQbkqpAiVlJVOt/6vJsSLwCACoFd7xHsmqb3gBwixcTv16bO9bLesM9Jd1Pbo/s\nLFWSv5R9yO19Ugy+NKk+JFUBD2FUK5xG3wJQKpVwx/tSJX6rdRSmk9tF0h2oHkw3kL9QNFTS/eT2\nyM5SJfnz7UP5JB3d3ifF8OKXJigOSVXAg/IZ1YrKFO/sVGzPHtcSm/QtALWkVIlfJ0dhupl8dHK7\nKiHpjtrG6EvAe7IlHSt5hCqqF0lVALYw0rE4Zl+f+j/2CRKbAJCiWkeD5kLyEXCHk6MvvXyJr5dj\nw9HEIcfoWJU8QhXVi6QqAFsY6QgvcHvEL4DS8+KcnFait9rvqm7dPb7WEtqAU6zRdl5MYFbL5cdO\njjTOdtysdp06rlbisBqOUS1hFG3tIqlaAozcQy1zuv9zfiEdRvwC5VOrI0ilo4near+runX3eC8l\ntIFUfsPvuQRlLtWSwPQiJ0caZztuVrsc1+ofVWsngc4o2tpVlUnV5CRMOUYzMXIPtczp/s/5BRLr\ngLucGEHaHYyUdfQnN00CKkemEYjheJhEFuAh1T6qlgQ68lGVSdXkJExiNFN/P5eKAg4qV+KLBFvt\nqdbEupf6MtMpoNyC4VhZR3+mm7eUS94Bb+JO83CLF6dryKXYmHvDPeqKdqlxQmMJowJqR1UmVdPq\n7+dS0RpDkqA08t2P5Up8VWuCDbWnmL5c6oQs0ymUH7+j3Mcl7wDKyem5OO2qxASi0ypxuoZiYw5F\nQ/rGS1/ToDFYwqiA2lEdSdVAgA8lHmZ9cFTM/oeWYj50kiQoDfajd3lppCPKiy8XhqvEBCXvrbXL\n7zM8MTq23FMwALXOa5cSV2ICsRC94R5uHpQGN1YCSqM6kqr9/Xwo8TDrg6Pi9t+w+dAJZEZiDRjC\n7wpUkvDgsVMR5OLEVAXlmoKB+WwBpFOukbKhaIipJNIo5Y2VvDYKW6rsm2gxiryyVEdSFYCnlWJE\nJaMyAQC1qpCpCrqDEbV197s+GjXdfLYAkG6kbK2MnvQb/opOmqUeJ7dHYadLQlbyTbRqZRR5tSCp\nCsBxpRhRyahMAKgN1qjMfJKBlXyzKadHcAbDQ4nYUo9G9fsMvROMyef3l7ReoJSskXPVnpzzgmJG\nBKaOcCzl6EkvC8fDFZ0089pxKlUSslaS+iitmk2qMuoNANzltXkwvfh7wYsxeU28s7OgObtRHtZo\nSTvJQ2tUZj7JwEq+2VQpRnC6cWl9eDCmq+/fKdM0ytouYIc1cs4rSZ9qVsyIQLdHOHpN8vyvfDFQ\nfl5LFqMy1GxSlVFv8JL31NcrsK/d9cSA0wkcEkRI5rV5ML34e8GLMXmN2ddX0JzdtcatLzGs0ZKV\nmPQslp0Rt4Xi0noAbsrnJlCVPj9kOZObyfO/8sUAUBmqOqnK6BVUikD/gAY+sdj1xIDTCZxs9Xtt\n1CI8JhCgf8AzKvH9KvElRn9/WWIvR0LRC/w+I+NIUTsjbqWhUadu769aOW5AIbiL/LHyuQlUueaH\ndCr5SXIzf5U+VyxQiKpOqjJ6pXpVy4jHeGenAvvaFeAKOs+NWqx0lZj0yaq/v2r6R6W/fzndtyqh\n73r9/SprH3PgXEqXDLSbUKxU4cHSjRQNhmOu769aOW5AISrtLvJevXzcqZGrJD9zy7bv60fUqyva\nVdSxqYS5Ykud+PXqeYbyqeqkKqpXMSMqrQ+briQ2UkbbmX19QyNU8/jwkinR4OUEjRUzI8ZLK59j\n7vWkT6ml7hMvnxfp3r/KlUgsRTtO9y0n6/dyvyilck8bYScZ6MYcoLlU8s2uvIDRrYAzih0Z69Uk\nI3c2d0+2fR+Jh/WNl75W0mPjhakfUpOehSR+syVOS3mekaCtTJWZVD2SmCJRU1rl/rDp1odb68Om\nK3MVFjFCKFOiwantKCghaiWN29sV27NHZk+P+j/2ibKPGHc7ceJ0+8yzeazUfeKFfZRXAvPIOWOd\nK07HnDNhGQgUnJyuhN8hpfhCDsXx4hyglXSzq2zTDbiF0a2AMyptZGwuXkiwVYNK2o/FJNBLtZ2l\nSHoWUkchCVKvfhGC7CozqXokMcWl/aVV7vkuS530cO2S0Sqd69FKvmQ6z9ImGKyk8eHDzp6jKfs8\n9dhn6lvlmmfZCwm9fHkiUVTl55DVF7KdM6nnSjGjvIs6pv39GZPTuWLKp9/bGnGfo1+kbc/BvmS1\nx3ztcFMx0w14cZQwgNpR7hGqlZR8tKNWRvq60V9KOUKUBGntqMykqktSPww6lozwYILB65cSxzs7\nM4/0Sho96cg+tRKJR27+kdeH7TxHWxfTxyp9tGTWBE7KiN98+2e2eZYz7S9PJB0dVM4E8Hvq6xXY\nl+Y89PB8qfl+WZPvlAz5bmPqlxp2+qFTxzTXFy126shrxH0h/SLl/dip5Gq295HAvna9p77+mOWJ\nWDx2tU21v8fhqGJGCZOQBUqn2i/x7Q33aH+w3fWEpp2kXCEJWG7KVF2qbWQ4yqf2kqpFfJhJ/TDo\nWDLCwwkGr7E+DGa9KVnS6MlCR1Hlxc4I6jzXtdPHUj8YV9JoyXQKSuAUcH5bx9zs6Um7v9KN1Ct3\nAsKLN+4pJKZA/4AGPrG4uH5Z5oSUnYR9vpfUFxqH3f3m+PzRHvwCMCHl96jj+yBpypOBTyxWgykF\nDh1KrDbs+JX5aptSjDAuhWIuWyeh5z47CdlMx5rjCAzx2gi2Uo/oDEVDWrNldUWNpixkVGQl3JSp\nVpV61CmQTcUkVWN795bmQ3TKh5mCPmiV4ANyIUr9odDOCKxyJDCybl+G0aal+jCYnFhLl0CphJE8\nlZREdWx/2klWpMxlmbVMhnkvS5HsrNSbTuWKya1j7MlzNeWS+nJxfP7oHF8AeulYpO6DbAnnxHmd\nz9UNmaY8GeiX+g6XejMKes8pxQjjUijmsnUvzsOKzDIda44j4E21cjk5akcljDol8Vs9XEmqvv32\n25o/f75mzJihc845R6+99lrOMv2XLXPkA0GmD1rZgyn8A3K2D3C5EpfFjFpMt7ygS6YdGJmUPNo0\nYyw2RpvakmdizVMJSy+PDsuTJ/ZnMSOLbdxcKFcSpBT7otzJq3RftOQ7r63ThrWb41yxNZIz5Yud\nQuYArTVmX5+jl+EXI13C+Zgv10r9+6YEMv3erqQviAEAwJBqnfcVuVVC4hf5cSWpunLlSq1atUpv\nvPGG1qxZo+XLl7sRRlqlHvmY+oElXf2FjCKxm6jJK3GZjwwjk4q5zLTkyRc7lwdX4k3PCpgeInnk\nVb53Iy/b6OQjMXllfsG8ZLm5ULpzvuDj5eAcmtnO1XzeX1K3Pdd2Bg4dUsCwFWLxyeIc50q2kZzH\nfNmV8sVO8k2LEjGWYuqWIs6/fL+gc1rJ90mZeGVEZ6p8Evhp3wNy9SWXRlADAIAhjBIGKl/Zk6rv\nvvuuXnnlFX3+85+XJC1ZskRtbW3avXt3Yh3TNI8tOHas5PdL48alf/QlbYrPd/R/rjLW/9Sy6fh8\n6cumKWMGg+pfdoXMYPDYOlLrT643+THdekeWpdYf7+pSbO9exbu6hq0b7+pSvKtLZjA4tG5y+1a7\nyc/TbXu6/VhXN6w9q/5EO0kxyTTTlpVpZtyPGctm2vfJMUYi6l92hWQYuctm6h9Z9n3GfWInRrtl\n0/WTTPsxW3/p7x96DIeH95fkMpn2X2o/sbt9adY3g8FETIn20m1vpnaS90G29wQ7x+0I69zJ67jV\n1aU9z+JdXUdjs3HeHfP+YZXJdu6knJOpZeIHDhzdHmvfp74nZGo/237Md7uCofTbkWY/pn3fyrHv\ns/bHbO/pGc43ax/keh9JG2M+fTjTOZPu/MtxfqceNxlG2rbS9sfk+rL9Pk1dJ8t7Q177JNt7bGo7\n+Ry/LP0j6++bpHMn5/tIAe/lw95HMpVNOXeTz4Fh50HyvjnST4YtT20v2+/CNH0rUTbdrjakMSMD\n8hlHn6f7b62T6TFbmdR2spXJtG622HKVTVdHrnayxZhrn+RTJts+ST426dbNFmNq2WKOWyHbZ+dY\nuxVjKct4qb306/o0esRo+XL8s9ZJfcz2T5LtspnWdSrGvNozKiDGPMtax6TY9hLvIyllUo+5nfZS\nyya3M+x3UoH7pBQxunXc0pVJPQaZ9lHq8nT7YPSI0cPeC7Ltk3zO69T2cm1XuhhzbZeb51um/l/q\nYw1npc07FsAwS1VTnrZu3arPf/7zwy75P+ecc3Tbbbfpwx/+sCQpGo0qmOnDPAAAAAAAAAAUoLGx\nUYFAoOh6SH8DAAAAAAAAgA1lT6o2Nzdr//79iifNWfbnP/9ZU6ZMKXcoAAAAAAAAAGBb2ZOqJ5xw\ngmbPnq1169ZJkh5++GE1Nzdr2rRp5Q4FAAAAAAAAAGwr+5yqkvTmm2/qyiuvVFdXl8aMGaP77rtP\nZ555ZuL1eDw+bCSrJBmGIcMwUqsCAAAAAAAAgGOYpnnMjal8Pp98mW6Ia4MrSVUAAAAAAAAAqFTc\nqAoAAAAAAAAAbCCpCgAAAAAAAAA2kFQFAAAAAAAAABtIqgIAAAAAAACADSRVAQAAAAAAAMAGkqoA\nAAAAAAAAYANJVQAAAAAAAACwgaQqAAAAAAAAANhAUhUAAAAAAAAAbCCpCgAAAAAAAAA2kFQFAAAA\nAAAAABtIqgIAAAAAAACADSRVAQAAAAAAAMAGkqoAAAAAAAAAYANJVQAA2h7B5wAAIABJREFUAAAA\nAACwgaQqAAAAAAAAANhAUhUAAAAAAAAAbCCpCgAAAAAAAAA2kFQFAAAAAAAAABtIqgIAAAAAAACA\nDSRVAQAAAAAAAMAGkqoAAAAAAAAAYANJVQAAAAAAAACwgaQqAAAAAAAAANhAUhUAAAAAAAAAbCCp\nCgAAAAAAAAA2kFQFAAAAAAAAABtIqgIAAAAAAACADSRVAQAAAAAAAMAGkqoAAAAAAAAAYANJVQAA\nAAAAAACwgaQqAAAAAAAAANhAUhUAAAAAAAAAbCCpCgAAAAAAAAA2kFQFAAAAAAAAABtIqgIAAAAA\nAACADSRVAQAAAAAAAMAGkqoAAAAAAAAAYANJVQAAAAAAAACwgaQqAAAAAAAAANhAUhUAAAAAAAAA\nbCCpCgAAAAAAAAA2kFQFAAAAAAAAABtIqgIAAAAAAACADSRVAQAAAAAAAMAGkqoAAAAAAAAAYANJ\nVQAAAAAAAACwgaQqAAAAAAAAANhAUhUAAAAAAAAAbCCpCgAAAAAAAAA2kFQFAACoEa+88oouueQS\nTZ8+XXPnztX555+vxx9/PGc5n8+nQ4cOlSHCyvDd735XkUjE7TAAAADgIsM0TdPtIAAAAOCsP/7x\nj/rwhz+s+++/X5deeqkk6cCBA/r1r3+tyy+/PGtZv9+vgwcPqqmpqRyhFiUWi8nv9zvahs/nU09P\nT0XsDwAAADiDkaoAAAA14LbbbtMXvvCFREJVkk488cREQnXXrl268MILNWvWLM2ePVuPPfZYYr3k\n7+BffvllzZ8/X7NmzdK8efO0efNmSdLevXs1btw43XTTTZozZ45OP/10Pfnkk5KkgYEBfe5zn9NZ\nZ52l1tZWXXzxxWljXLhwob7yla9o7ty5Ov3007V69erEax0dHVq6dKnmzZunWbNm6Tvf+U7itVNO\nOUXf+MY3dM455+jKK688pt6bb75ZZ555pmbPnq3Zs2erra0tsS1/8Rd/oblz5+oDH/iAHn744Zzb\ncs0118gwDJ1//vmaPXu2Ojs7dfjwYX3xi1/UvHnz1NLSolWrVikajSa26Wtf+5ouuOACnXbaabrm\nmmsScR06dEhXX321Zs6cqdbWVq1YsUKSFI1G9c1vflPz5s3T7Nmz9bnPfU69vb1Zjy8AAADKzAQA\nAEDVe//7328++uijGV8/55xzzHvvvdc0TdN86623zOOPP97885//bJqmaRqGYfb29pqRSMScMmWK\n+etf/9o0TdP8/e9/b5544olmMBg0//SnP5mGYZiPPPKIaZqm+eSTT5ozZswwTdM0H3nkEfPiiy9O\ntHXw4MG0MXz4wx82Fy1aZMZiMTMUCplz5swx/+M//sM0TdO86KKLzGeffdY0TdOMRqPmxRdfbD78\n8MOmaZrm1KlTzauvvjptnQcPHjTHjh1rDgwMmKZpmv39/WY4HDZ7enrM1tZW88CBA6ZpmmZnZ6c5\nZcoUs729Peu2WPvj0KFDiedf/OIXzXXr1iWer1ixwrz99tsT2/TpT3/ajMfjZn9/v3nKKaeYL7zw\ngmmapvk3f/M35rXXXpso19nZaZqmad56663mzTffnFj+D//wD8PWAwAAgPsCbid1AQAA4K7Dhw9r\n27ZtuuqqqyRJ06dP14c+9CFt2rRJl112WWK9N954Q36/X4sWLZIkzZ8/XyeeeKK2b9+uk046SSNH\njtQnP/lJSdK5556r3bt3S5JmzZql1157TV/+8pd1wQUXDBstm+qKK66Qz+fTyJEjtWzZMj311FNa\nvHixnn76ab3zzjuJUbPBYFBvvPFGoly6EaqS1NTUpNNPP13Lli3ThRdeqI997GM66aST9PTTT2v3\n7t265JJLEnUahqE33nhDp5xySsZtsZhJo3cfffRRvfDCC/rhD38oaWhk7ogRIxKvL126VIZhqKGh\nQS0tLdq1a5fOOecc/fKXv9RLL72UWO/4449P1Hfo0KHEyNnBwUFNnTo14z4DAABA+ZFUBQAAqAEf\n+MAHtHnzZv3lX/5lXusbhmG7jfr6+sTPfr9fsVhM0tDl+a+++qp+85vf6Ne//rXWrFmjHTt2aMyY\nMXnFYZqmDMPQiy++OCxZmey4445Lu9zn8+mFF17Q5s2b9dvf/lbz5s3T+vXrZZqmzjrrLP3+978/\npszevXszbksmGzZs0PTp09O+1tDQMKwua2oAa9tSmaapn/zkJ4nkNQAAALyHOVUBAABqwJo1a3Tf\nfffpiSeeSCzr6OjQz372Mx133HGaPXu27rvvPknS22+/reeee04LFiwYVseMGTMUj8f19NNPS5I2\nb96sjo4OtbS0SNIxCULr+b59+yRJH//4x3X77bdLUmJe01Q///nPFY1G1d/frwcffFAXXnihGhsb\ntXDhQt16662J9fbv36/29vac23348GEdOHBA8+fP17e//W196EMf0rZt23Teeedpz549iW2RpB07\ndiQSnpm2RRoa/Zo8x+knP/lJ3XbbbYnEa09Pj3bt2pUztsWLF+v2229P1N3Z2Zmo75/+6Z/U398v\nServ79err76asz4AAACUD0lVAACAGnDWWWfpiSee0I9+9CNNnz5ds2bN0pIlSzR+/HhJQ8nM9evX\nq6WlRZ/97Gf1b//2bzrppJMkHR21OmLECP3iF7/Qd77zHbW0tOj666/Xhg0bNGrUqGHrWaznO3fu\n1Pz589Xa2qrZs2friiuu0FlnnZU2zjPOOCNxI6wFCxbos5/9rCTpgQce0Ntvv62ZM2fq7LPP1pIl\nS9TV1ZW23WS9vb369Kc/rVmzZmnWrFmKRqNavny5xo4dq40bN+rWW29Va2urzjzzTH3zm99UPB7P\nui2S9Hd/93datGhR4kZVd9xxR+LS/lmzZmnRokXau3dvznruuOMODQwMaObMmZo9e7ZuuOEGSdLX\nv/51ffCDH9Q555yjWbNm6dxzz9WOHTsybiMAAADKzzDTXXMEAAAAlNnChQt13XXXafHixW6HAgAA\nAGTFSFUAAAB4QiHzuAIAAABucGWk6q9+9SvdeOONisfjisViWr16ta644opyhwEAAAAAAAAAtrmS\nVD3++OP17LPP6swzz9TevXv1vve9T52dnWpsbCx3KAAAAAAAAABgS8CNRn0+nw4ePChp6OYBEyZM\nUH19feL1eDyeuEmAxTAMLgkDAAAAAAAAkBfTNJU6ntTn88nnK35GVFeSquvXr9enPvUpNTY2qqen\nR7/4xS8UCBwNJR6PKxgMuhEaAAAAAAAAgCrV2NhYkqRq2W9UFYvFdPPNN+vRRx/Vn/70Jz311FNa\ntmyZuru7yx0KAAAAAAAAANhW9qTq9u3btX//fs2fP1+SNGfOHL33ve/Vtm3byh0KAAAAAAAAANhW\n9qRqc3Oz9u/fr9dff12S9Pbbb2v37t2aMWNGuUMBAAAAAAAAANvKPqfqxIkTdc899+izn/2s/H6/\n4vG4/uVf/kXvfe97E+ukuyFVqeY7ALwmFArprbfe0mmnnaZRo0a5HQ7gCPo5agV9HbWAfo5aQV9H\nLaCfo9qlu29TurxjIVy5UdXSpUu1dOnSjK+n27hS3ZkL8BrDMBSLxWQYBn0cVYt+jlpBX0ctoJ+j\nVtDXUQvo56hFpUqqcsYAAAAAAAAAgA0kVQEAAAAAAADABpKqAAAAAAAAAGADSVUAAAAAAAAAsIGk\nKgAAAAAAAADYQFIVAAAAAAAAAGwIuB1AqfTt3at4b2/J6/WNGaPRJ5+cc71YLKabb75Z69ev14gR\nIxQIBDR37lxdcskluummm7Rt27aSxwYAAAAAAACg/KomqRrv7dXhSz5W8nqPe2JjXutdddVV6unp\n0YsvvqimpiZJ0oYNG9Td3S3DMEoeFwAAAAAAAAB3cPl/CezatUsbNmzQ2rVrEwlVSVqyZImmTZuW\neB6LxXTxxRdr7ty5mjlzppYtW6b+/n5J0jPPPKOZM2fq2muvVUtLi2bOnKmtW7cmym7cuFFz585V\nS0uLZs+erZdeekk//OEPtXLlysQ6vb29OuGE/2fv3qOkKO/8j3+6mxlohmG4iSBBRi7CbJCLMRHM\nxUWTAEcXNZjLZuMlYNB4JDGu+zNqjNmziZckmjXmrEnWALmQmMR4iygeRbMh8bIaQIwQrk7vZDBM\ndKDpnmmYnun6/QE19jR9qequ6qrufr/O4QzTU8/zfOupp6qnv/PUUyfo4MGDZdhrAAAAAAAAoDaR\nVHXApk2bNG3aNI0cOTLvdqFQSL/4xS/0v//7v3rttdc0fPhw3Xvvvf0/37Fjhz772c9qy5Ytuuaa\na3TTTTdJknbu3Klly5Zp7dq12rJli15++WXNmDFDV1xxhR599FEdOnRIkrR69WpdeOGFGjFihHs7\nC1S4WCSi6NatikUiXocCAAAAAAAqFEnVMjIMQ3fddZdOP/10zZo1S0888YS2bNnS//OpU6fqjDPO\nkCTNnz9fe/fulSQ988wzWrx4saZNmybpaHK2sbFRTU1Nuvjii7Vq1SpJ0n333adrrrmmzHsFVBZz\nqRA31mAGAAAAAAC1oWrWVPXS6aefrl27dunAgQN5Z6uuXbtWv/vd77Rx40Y1NDTo3nvv1XPPPdf/\n8yFDhvT/PxQKqbe3t2DbK1eu1JIlSzRjxgyNHTtWs2fPLm1nAAAAAAAAAOTFTFUHTJkyRUuXLtXy\n5csVTZv99tBDD/XPNpWkgwcPasyYMWpoaFAsFtOaNWss1b9w4UI99dRT2rlzpySpt7e3/5b/6dOn\na/LkyVqxYoVWrlzp3E4BAAAAAAAAyIqkqkNWrVqlWbNm6cwzz9Rpp52md7/73Xr66ac1atSo/m0u\nvfRSdXV1qaWlReedd54+9KEPWap7ypQpWr16tf7lX/5Fc+bM0bx58/oTrJL0uc99Tn19fVq6dKnj\n+wUAAAAAAABgoKq5/T/Y1KRhT65zpV4rQqGQvva1r+lrX/vacT+74IILJEnDhw/X008/nbX82Wef\nrU2bNvV//+53v3vALNdFixZp0aJFWcs+99xzuvrqqxUKhSzFCgAAAAAAAKB4VZNUbZw0yesQyu7N\nN9/UOeeco9GjR+upp57yOhwAAAAAAACgJlRNUrUWjR8/Xtu3b/c6DAAAAAAAAKCmsKYqAAAAAAAA\nANhAUhUAAAAAAAAAbCCpCgAAAAAAAAA2kFQFAAAAAAAAABuq5kFVbR0HFEskHa+3MVyniWNHFtyu\nt7dX3/jGN/TAAw9o0KBBqq+v16RJk3Trrbdqy5YteuSRR/Twww87EtOPf/xjzZ8/X6eeeqoj9QEA\nAAAAAACwrmqSqrFEUstWbXa83lXL5lra7vLLL1d3d7deeuklDR8+XJL07LPPaufOnZKkQCDgWExr\n1qzRyJEjSaoCAAAAAAAAHuD2fwfs3r1bjz76qFavXt2fUJWkc845Rx//+MclSbFYTJ/+9Kc1a9Ys\nve9971Nra2v/dt/61rc0c+ZMzZ49W5dccolisZgk6be//a1mz56t008/XbNmzdJvf/tb/ehHP9Ir\nr7yiL33pSzr99NO1fv36su4rAAAAAAAAUOtIqjpg8+bNmjp1qpqamnJu88orr+iOO+7Q1q1bde65\n5+rOO++UJD355JNas2aNXnjhBb366qsaOnSovvzlL0uSbrnlFv3whz/Upk2btHXrVp199tlavny5\nzjjjDH3nO9/Rpk2btGjRorLsIwAAAAAAAICjSKq6YO/evZo7d65mzJihZcuWSZLmz5+vk08+uf//\ne/bskSRt2LBBn/zkJ9XY2ChJ+vznP6+nn35aknTuuefqi1/8or71rW/p1VdfHTALFgAAAAAAAIA3\nSKo6YO7cudq9e7ei0agkafLkydq8ebNuvPFGHTx4UJI0ZMiQ/u1DoZB6e3uz1pW+9updd92l1atX\nq6GhQZdddpm+/e1vu7gXAAAAAAAAAKwgqeqAqVOn6oILLtDy5cv7E6uS1NXVVbDshz/8Yf3qV79S\nPB6XJP3gBz/QRz/6UUnSjh071NLSoquvvlqf//zn9eKLL0qShg8fPqAdAAAAAAAAAOUzyOsAqsWa\nNWv09a9/XWeeeabq6uo0cuRInXDCCbrhhhv0l7/8JWe5RYsW6fXXX9e8efMUCoU0a9Ys/dd//Zck\n6aabbtLOnTtVV1enhoYG3XfffZKkFStW6F//9V/1ne98R7fddhvrqgIAAAAAAABlFDAMw/A6iEyp\nVEqxWGzAa42NjQoGc0+sbes4oFgi6XgsjeE6TRw70vF6AVNXV5e2b9+ulpYWNTQ0eB1O1Ytu3ar4\n4vM07Ml1apo1y+twagbjHLWCsY5awDhHrWCsoxYwzlHtiskxWlU1M1VJfAIAAAAAAAAoB9ZUBQAA\nAAAAAAAbSKoCAAAAAAAAgA1lv/2/s7NT5557rgKBgKSj63e88cYb6ujo0IgRI8odDgAAAAAAAADY\nUvak6qhRo7R58+b+7++66y79/ve/J6EKAAAAAAAAoCJ4fvv/j370I11xxRVehwEAAAAAAAAAlnia\nVH3++ed18OBBnXfeeV6GAQAAAAAAAACWlf32/3SrVq3SpZdeqmCwcG63u7u7fx3WbDq731ZXb7eT\n4UmSGgYN1aihowtu19vbq29+85t68MEHNWjQINXX12vixIm6+eabNXPmTMfjQvVIJBIDvsJdqZTR\n/7Wrq8vjaGoH4xy1grGOWsA4R61grKMWMM5R7QzDcK3ugOFm7Xl0dXVp/PjxeuWVV3TqqacO+Fkq\nlVIsFhvw2t69e9XX15ezvvoT6vWVzTc6HufX596unr/3FNzulltu0eHDh3Xrrbdq2LBhkqSXX35Z\n0WhUH/7whwdsm0qlLCWSAThvYspQ70Uf06CHH1JbMPcfagAAAAAAQGULhUKaPHnygNcaGxsdyct5\nNlP1gQce0Jw5c45LqOYybdq0vDNV2w61ORXaAPX19ZrSMiXvNnv27NEf/vAH7dixQ01NTf2vt7S0\nSJLWrl2rtWvXauTIkdqzZ4/uvfdenXzyyfq3f/s3tbW1KZFI6LzzztMtt9wiSbr55pv1xz/+Uclk\nUo2Njfre976nqVOnSjp64G+99VY9/vjjevvtt3XDDTfoM5/5TH8cN9xwg9566y0dOXJEn/3sZ7Vi\nxQp997vf1a5du3TvvfdKkqLRqGbNmqVXX32VB4T5QCKRUGtrq5qbmxUOh70Op+r17NqtXh09t1um\nTfU6nJrBOEetYKyjFjDOUSsY66gFjHNUO8Mw8k7SLIVnSdXVq1drxYoVlrcfOnRo3ixyMO7OjLNg\nMKCGhoa82+zYsUNTp07VSSedlPXngwcP1p/+9Cdt2bKlPzm6aNEi3XzzzfrgBz+ovr4+nX/++Vq/\nfr2WLl2qW265RaNHH11y4Je//KW+/OUv68knn+yvr6mpSS+//LJ27Nih9773vfrc5z4nSVq+fLnW\nrl2rU089VYlEQvPmzdOHPvQhXX311Zo+fbr+8z//U8OHD9d///d/66KLLtKECROc6CI4JBwOFxxr\nKF3vsdmpVs5tOI9xjlrBWEctYJyjVjDWUQsY56hW2e6Gd4pnSdU//OEPXjXtur1792rp0qVKJBI6\n66yzdPbZZ+uss87qT6h2d3drw4YN6ujo6F/boaurSzt27JAkPfXUU/re976nWCymVCqlAwcODKj/\n05/+tCRp+vTpqqur09/+9jdFo1G9/vrr+tSnPtVfZzwe17Zt2/Se97xHF198sVatWqVrr71W9913\nn371q1+VqzsAAAAAAACAquLpg6qqxdy5c7V7925Fo1E1NTVp8uTJ2rx5s3784x/r0UcflaT+dVal\no1OPA4GAXnrpJdXV1Q2oq62tTStXrtSf/vQnNTc367XXXtPZZ5/d//NAIKAhQ4b0fx8MBtXb2yvD\nMDR69Ght2rQpa4wrV67UkiVLNGPGDI0dO1azZ892sgsAAAAAAACAmsHTkhwwdepUXXDBBVq+fLmi\n0Wj/67meLN7Q0KAFCxbotttu63/tzTffVHt7u6LRqOrr6zVu3DgZhtG/Dqop13PFpk+fruHDh2vN\nmjX9r+3Zs6d/luv06dM1efJkrVixQitXrix2VwEAAAAAAICaR1LVIWvWrNHMmTN15pln6rTTTtOH\nPvQhbdiwQTfccEPW7deuXavdu3frtNNO06xZs7R06VJ1dnZq5syZ+tSnPqV/+Id/0Jlnnqnm5uYB\n5TIf1mV+HwqF9Pjjj+uhhx7SnDlzNHPmTF1xxRU6fPhw/7af+9zn1NfXp6VLlzq78wAAAAAAAEAN\nCRi5pj56KNsiso2NjXkfVLWvs13xZNzxWIbVDdNJo6rjgU4rV67UuHHjdPPNN3sdCtJ0dXVp+/bt\namlpYWHwMohu3ar44vM07Ml1apo1y+twagbjHLWCsY5awDhHrWCsoxYwzlHtiskxWlU1a6pWS+LT\nDW+++abOOeccjR49Wk899ZTX4QAAAAAAAAAVrWqSqsht/Pjx2r59u9dhAAAAAAAAAFWBNVUBAAAA\nAAAAwAaSqgAAAAAAAABgA0lVAAAAAAAAALCBpCoAAAAAAAAA2EBSFQAAAAAAAABsIKkKAAAAAAAA\nADaQVAUAAAAAAAAAG0iqAgAAAAAAAIANJFUBAAAAAAAAwAaSqgAAAAAAAABgA0lVAAAAAAAAALCB\npCoAAAAAAAAA2EBSFQAAAAAAAABsIKkKAAAAAAAAADaQVAUAAAAAAAAAG0iqAgAAAAAAAIANJFUB\nAAAAAAAAwAaSqgAAAAAAAABgA0lVAAAAAAAAALCBpCoAAAAAAAAA2EBSFQAAAAAAAABsIKkKAAAA\nAAAAADaQVAUAAAAAAAAAG0iqAgAAAAAAAIANJFUBAAAAAAAAwAaSqgAAAAAAAABgA0lVAAAAAAAA\nALCBpCoAAAAAAAAA2OBJUrWnp0crV67UqaeeqtmzZ+vSSy/1IgwAAAAAAAAAsG2QF43ecMMNCgaD\n2rlzpySpo6PDizAAAAAAAAAAwLayJ1W7u7u1atUqtbe39782duzYcocBAAAAAAAAAEUp++3/e/bs\n0ahRo/SNb3xD733ve3X22Wfr2WefLXcYAAAAAAAAAFCUss9U7e3tVSQS0cyZM3X77bdry5Yt+shH\nPqJt27bphBNOyFmuu7tbgUCgjJEC5ZFIJAZ8hbtSKaP/a1dXl8fR1A7GOWoFYx21gHGOWsFYRy1g\nnKPaGYbhWt0Bw83as3j77bc1btw49fT09CdJ3/e+9+mOO+7QOeecI0lKpVKKxWIDyu3du1d9fX3l\nDBVAFZqYMtR70cc06OGH1BbkDzUAAAAAAFSrUCikyZMnD3itsbFRwWDpN++Xfabq6NGjde6552r9\n+vVavHix3njjDbW2tqqlpSVvuWnTpjFTFVUpkUiotbVVzc3NCofDXodT9Xp27VavpPr6erVMm+p1\nODWDcY5awVhHLWCco1Yw1lELGOeodoZhuDZJs+xJVUm67777tHz5ct1www0KhUL64Q9/qPHjx+ct\nM3ToUEeyyIBfhcNhNTQ0eB1G1es9Njs1GAzQ3x5gnKNWMNZRCxjnqBWMddQCxjmqVba74Z3iSVL1\nlFNO4eFUAAAAAAAAACoSUz8BAAAAAAAAwAaSqgAAAAAAAABgA0lVAAAAAAAAALCBpCoAAAAAAAAA\n2EBSFQAAAAAAAABsIKkKAAAAAAAAADaQVAUAAAAAAAAAG0iqAgAAAAAAAIANJFUBAAAAAAAAwAaS\nqgAAAAAAAABgA0lVAAAAAAAAALCBpCoAAAAAAAAA2EBSFQAAAAAAAABsIKkKAAAAAAAAADaQVAUA\nAAAAAAAAG0iqAgAAAAAAAIANJFUBAAAAAAAAwAaSqgAAAAAAAABgA0lVAAAAAAAAALCBpCoAAAAA\nAAAA2EBSFQAAAAAAAABsIKkKAAAAAAAAADaQVAUAAAAAAAAAG0iqAgAAAAAAAIANtpKq0WhU11xz\njc4//3xJ0rZt2/SLX/zClcAAAAAAAAAAwI9sJVWvvPJKjRs3Tq2trZKkU045RXfeeacbcQEAAAAA\nAACAL9lKqu7cuVNf+cpXVFdXJ0kKh8MyDMOVwAAAAAAAAADAj2wlVevr6wd8n0gkSKoCAAAAAAAA\nqCm2kqoLFizQN77xDR0+fFjPPPOMLr74Yn3sYx9zKzYAAAAAAAAA8B1bSdX/+I//UDAY1PDhw3XT\nTTfp/e9/v2655Ra3YgMAAAAAAAAA3xlka+NBg3TjjTfqxhtvdCseAAAAAFWsreOAYomkGsN1mjh2\nZNW1BwAAaoOtmapXXHGF3n777f7v33rrLV155ZWOBwUAAACgOsUSSS1btVmxRLIq2wMAALXBVlL1\nT3/6k0aPHt3//ZgxY/Tyyy87HhQAAAAAAAAA+JWtpGpvb++A7w3DUE9Pj6MBAQAAAAAAAICf2Uqq\nzps3T9dcc40ikYhaW1u1cuVKzZs3z3ajzc3Namlp0dy5c3X66afr17/+te06AAAAAAAAAMALth5U\nddddd+naa6/Ve9/7XgUCAS1ZskTf+c53bDcaDAb1q1/9SqeddprtsgAAAAAAAADgJVtJ1eHDh2vV\nqlUlN2oYhgzDKLkeAAAAAAAAACg3W0lVSXrppZe0Z8+eAeurXnrppbYbvuSSSyRJ73vf+3T77bdr\nzJgxtusAAAAAAAAAgHKzlVT9/Oc/r6eeekpz5sxRKBSSJAUCAdtJ1Y0bN+pd73qX+vr6dPPNN+uy\nyy7TunXr8pbp7u5WIBCw1Q5QCRKJxICvcFcqZfR/7erq8jia2sE4R61grKMWlDrOjVSq/2s53ovL\n3R6qB9d01ALGOaqdm3fK20qqPvPMM9q2bZuGDBlSUqPvete7JEmhUEjXXnutpk+fXrDMrl271NfX\nV1K7gJ+1trZ6HUJNmHgsqdrT06M927d7HE3tYZyjVjDWUQuKHefBxrGSpCM9PdpehvficreH6sM1\nHbWAcY5qFQqFNHnyZFfqtpVUHT9+vAYPHlxSg93d3Uomk2pqapK/iZNSAAAgAElEQVQk/fznP9fc\nuXMLlps2bRozVVGVEomEWltb1dzcrHA47HU4Va9n1271Sqqvr1fLtKleh1MzGOeoFYx11IJSx3lr\nR0ySNLi+Xs0tLU6H53l7qB5c01ELGOeodoZhuDZJ01ZS9cwzz9TFF1+sT37ykwNmqy5ZssRyHfv3\n79fSpUuVSqVkGIYmT56sn/zkJwXLDR06VMFg0E64QEUJh8NqaGjwOoyq1xs8+seZYDBAf3uAcY5a\nwVhHLSh2nAeCXce+BstynpS7PVQfrumoBYxzVKtUKqVYLOZK3baSqq+88ook6b777ut/LRAI2Eqq\nnnLKKdq0aZOdZgEAAAAAAADAN2wlVZ977jm34gAAAAAAAACAimDrfvre3l7ddddduvrqqyVJe/bs\n0bPPPutKYAAAAAAAAADgR7Zmql5zzTXq6+vTH/7wB0nS6NGj9clPfrJ/WQAAAAAAAAAAqHa2kqov\nvviitmzZorlz50qSRowYoWQy6UpgAAAAAAAAAOBHtm7/HzJkyIDv+/r6lEqlHA0IAAAAAAAAAPzM\nVlJ11qxZ+tnPfqZUKqXdu3frqquu0j/+4z+6FBoAAAAAAAAA+I+tpOrdd9+tjRs36m9/+5ve//73\nKxgM6o477nArNgAAAAAAAADwHVtrqh4+fFg/+MEP9IMf/KD/tbfeeksNDQ2OBwYAAAAAAAAAfmRr\npupHP/pRS68BAAAAAAAAQLWyNFO1p6dHhw8fVl9fn2KxmAzDkCRFo1F1dXW5GiAAAAAAAAAA+Iml\nmaq33367RowYoT//+c9qamrSiBEjNGLECJ122mn6zGc+43aMAAAAAAAAAOAblpKqt956q1KplFas\nWKFUKtX/7+DBg7rlllvcjhEAAAAAAAAAfMPWmqr33XefW3EAAAAAAAAAQEWwlVRdv369ZsyYofr6\neoVCIQWDQYVCIbdiAwAAAAAAAADfsfSgKtMXvvAF3XvvvZo/fz7JVAAAAAAAAAA1yVZSdfjw4Vq4\ncKFbsQAAAAAAABv2dbZLkk4aNcHjSACgtti6/f/888/XI4884lYsAAAAAADAhngyrngy7nUYAFBz\nbM1UveeeexSNRhUOhzV48GAZhqFAIKDOzk634gMAAAAAAAAAX7GVVN2yZYtbcQAAAAAAAABARbB1\n+/+kSZNUX1+vN954Q5MmTdKECRM0fvx4t2IDAAAAAAAAAN+xlVR98MEHNW/ePF1++eWSpNdff10X\nXnihG3EhTSwSUSwS8ToMAAAAAAAAALKZVL399tu1adMmjRw5UpI0e/ZsRUj2uS4VjSoVjXodBoAq\nwh9rAAAAAAAonq01VUOhkEaPHj3gtfr6ekcDqgRmIqJx0iSPIwGA4vCHGgAAAAAAimcrqdrY2Kj9\n+/crEAhIkjZs2KBRo0a5EpifkYwAAAAAAAAAapetpOqdd96pxYsXa+/evfrABz6gN954Q+vWrXMr\nNt+JRSJHb8VP9ipYZ6vrAAAAAAAAAFQJW5nBM844Q88995yef/55GYahs846SyNGjHArNt9JRaOK\nLz5P4Uceks2uAwAAAAAAAFAlbD2oqq2tTeFwWIsXL1ZTU5N+9rOfKRaLuRUbAAAAAAAAAPiOraTq\nBRdcoFQqpfb2dn3qU5/SH//4Ry1btsyt2AAAPhCLRPof0AcAAAAAAGwmVSVpyJAhWrduna688kr9\n4he/0M6dO92IC0CNiUUiim7dSvLOh1LRKA/oAwAAAAAgja2k6pEjR3TkyBE9/fTTWrBggVsxAahB\n5prFJO8AAAAAAIDf2Uqq/vM//7PGjRun//u//9NZZ52lN998U0OHDnUrNgAAAAAAAADwHVtJ1a98\n5St644039MILLygQCKixsVEPPvigW7EBAAAAAAAAgO8MsltgxIgR/f8fNmyYhg0b5mhAAAAAAAAA\nAOBnth9U5aTVq1crGAzqscce8zIMAAAAAAAAALDMs6RqJBLR/fffr/nz53sVAgAAAAAAAADYZjmp\n2tfXp0suucSRRg3D0BVXXKHvfe97qq+vd6ROAAAAAAAAACgHy0nVUCiknTt3OtLo3XffrQ9+8IOa\nO3euI/UBqAyxSESxSMTrMAAAAAAAAEpi60FVCxYs0IoVK3T55ZcPeEDVrFmzLNfx+uuv6ze/+Y02\nbtxop2l1d3crEAjYKuO0VMoY8P+urq6ytluu9lBeiURiwNdq1nvgoCSpa8yY435mjnO3z61yteN3\ndq4rTlyDammco7Yx1lELSh3nRirV/7Uc78Xlbg/Vo1Ku6XxeRCkqZZwDxTIMo/BGRbKVVP3lL38p\nSXr66af7XwsEAtq7d6/lOjZu3KhIJKJp06bJMAz97W9/04oVK/Tmm2/qyiuvzFlu165d6uvrsxOu\n4yYee7MyDEPJnh7t2b69rO2Wqz14o7W11esQXJdvLJs/63H53CpXO35n57ri5DWoFsY5IDHWURuK\nHefBxrGSpCM9PdpehvficreH6uP3a3r9CUeX1GN8oxR+H+dAsUKhkCZPnuxK3baSqm+88UbJDV51\n1VW66qqr+r9fsGCBvvSlL2nJkiV5y02bNs3zmao9u3arV0cTyfV19WqZNrVs7UoqW3sor0QiodbW\nVjU3NyscDnsdjqvyjWXz/Kqvd/fcKlc7fmfnuuLENaiWxjlqG2MdtaDUcd7aEZMkDa6vV3NLi9Ph\ned4eqkelXNPbDrVJkqa0TPE4ElSiShnnQLEMw3BtkqatpKok/eY3v9GOHTt00003ad++fXr77bd1\n2mmnFR2A1UTp0KFDFQxaXgLWFb3Bd2INBgNqaGgoa7vlag/eCIfDVX+M841l82dun1vlasfv7FxX\nnLwG1cI4ByTGOmpDseM8EOw69jVYlvOk3O2h+vj9mh6M83kRpfP7OAeKlUqlFIvFXKnbVlL1q1/9\nql5++WXt2bNHN910kwKBgK688ko9//zzRQfw7LPPFl0WAAB4IxaJKBWNKtjUpMZJk7wOBwAAAADK\nytbUz0cffVSPP/54/18vxo8fr3g87kpgAADAv1LRqOKLz1MqGvU6FAAAAAAoO1tJ1XA4rFAoNOA1\nN5+iBQAAAAAAAAB+Y+v2/0mTJmnjxo0KBAJKJpO67bbbNGfOHLdiAwAAAAAAAADfsZVU/e53v6vL\nLrtMr732mhoaGrRgwQKtXbvWrdgAAAAAAAAAwHdsJVVPPPFErV+/Xt3d3TIMgyfDAQAAAAAAAKg5\ntpKqkvTAAw/omWeeUSAQ0Ec+8hF94hOfcCMuAAAAAAAAwDf2dbZLkk4aNcHjSOAHtpKq119/vf7n\nf/5Hn/nMZyRJd911l1555RV985vfdCU4AAAAAAAAwA/iybjXIcBHbCVVH3vsMb366qsKh8OSpBUr\nVmj27NkkVQGHxSIRSVLjpEkeRwIAAAAAAIBMtpKqI0aM0ODBg/u/r6ur08iRIx0PCqh1qWjU6xAA\nAAAAAACQg62k6rx587Rw4UJdeumlkqSf/exnmj9/vh577DFJ0pIlS5yPEAAAAEBNa+s4oFgiqcZw\nnSaOZVIHAADwnq2k6muvvSZJWrVqVf9rr776ql599VUFAgGSqgAAAAAcF0sktWzVZq1aNtfrUAAA\nACTZTKo+99xzbsUBAAAAAAAAABUh6HUAAAAAAAAAAFBJSKoCAAAAAAAAgA0kVQEAAAAAVWtfZ7v2\ndbZ7HQYAoMoUnVSNRqP685//7GQsAAAAAAA4Kp6MK56Mex0GAKDK2EqqLlq0SAcPHlQ8Htfs2bN1\n/vnn66tf/apbsQEAAAAAAACA79hKqu7fv18jRozQE088oQsuuEC7du3Sww8/7FZsAAAAAAAAAOA7\ng+xsnEwmJUm///3vtWjRItXV1WnQIFtVADUrFolIkhonTfI4EmCgWCSiVDSqYFMT4xMAAAAAAAts\nzVSdOXOmFi9erMcff1znnHOOuru73YoLqDqpaFSpaNTrMIDjpKJRxRefx/gEAAAAAMAiW9NM16xZ\no/Xr12v27NkaOnSo2tvbdfvtt7sVGwAAAAAAAAD4jq2k6pAhQ3ThhRf2fz9hwgRNmDDB8aAAAAAA\nAAAAwK9s3f6/fv16zZgxQ/X19QqFQgoGgwqFQm7FBgAAAAAAAAC+Y2um6he+8AXde++9mj9/PslU\nAAAAAAAAADXJVlJ1+PDhWrhwoVuxAAAAAAAAAIDv2br9//zzz9cjjzziViwAAAAAAAAA4Hu2Zqre\nc889ikajCofDGjx4sAzDUCAQUGdnp1vxAQAAAAAAAICv2Eqqbtmyxa04AAAAAAAAatK+znZJ0kmj\nJngcCQCrbCVVJ02apO7u7v7k6pw5czR06FBXAgMAAAAAAKgF8WTc6xAA2GQrqfr8889r6dKlGjdu\nnCRp//79+s1vfqP58+e7EhwAAAAAAAAA+I2tpOp1112nBx98UO9///slHU2yfulLX9KLL77oSnAA\nAAAAAAAA4DdBOxsnEon+hKoknXXWWTp8+LDjQQEAAAAAAACAX9lKqg4bNkzPPPNM//cbNmxQQ0OD\n40EBAAAAAAAAgF/Zuv3/nnvu0dKlSxUKhSRJqVRKDz30kCuBAQAAAAAAAIAf2UqqnnHGGdq9e7d2\n7NghSZo+fbrq6upsN7pw4ULt379fgUBAw4cP1z333KM5c+bYrgcAAMCqWCQiSWqcNMnjSAAAAABU\nOktJ1UOHDg34/uSTT5Z0dI3VRCKh4cOH22r017/+dX+ZRx55RJdffrm2bNliqw4AAAA7UtGo1yEA\nAAAAqBKWkqojRoxQIBCQYRjH/SwQCKivr89Wo+lJ2IMHDyoYtLW0KwAAAAAAAAB4xlJSNZVKOd7w\nZZddpueee06BQEBPPPGE4/UDAAAAAACUy77OdknSSaMmeBwJgHKwtaaqJLW1tWnjxo2SpLPPPlsT\nJhR3sfjxj38sSfrpT3+q//f//p/WrVuXd/vu7m4FAoGi2nJKKmUM+H9XV1dZ2y1Xe3BHruOYSCT6\nvyb375ckGVV6zPONZfNnbp9b5WrH79KPRaE+ceIalD7OUR0q8Vwqx/spYx21oNRxbhybsGGkUpbP\nx2LKOFEW1aHY63+lXNP5vOgfh47EJElNRRwLr45jpYxzv+B8qzzZ7rp3iq2k6qOPPqrly5frAx/4\ngAKBgK699lr96Ec/0j/90z8VHcAll1yiK6+8UgcOHNDIkSNzbrdr1y7byww4beKxk8cwDCV7erRn\n+/aytluu9uCOQsextbW1fxtTtR3zfH1g/qzH5XOrXO34XfqxKNQnTl6DWltbS64D/lCJ51I5308Z\n66gFxY7zYONYSdKRnh5tt3g+FlPGibKoDvUn1EtS0cff79f0UvfPDQ1jGpQMJFVn1KnrrdpJPpVy\nLLw+jn4f537h9XGCfaFQSJMnT3albltJ1X//93/Xiy++qKlTp0qSdu/erU984hO2kqrRaFTd3d0a\nP368pKMPqhozZkzehKokTZs2zfOZqj27dqtXR9eRra+rV8u0qWVrV5Lr7ZmzJOtOPNHVdmpVruOY\nSCTU2tqq5uZmhf7aPuBn5Rpj5ZJvLJvnV329u+dWudrxu/RjUahPnLgGpY/zcDhcdD3wj0o8l8rx\nfspYRy0odZy3dhydyTW4vl7NLS2ulXGiLKpD26E2SdKUlim2ylXKNb3Y/XNT26E2feWlG/XNM+9S\nSw2dd6UcC6+OY6WMc7/w4/mG/AzDcG2Spq2kal9fX39CVZKmTp1qe73VaDSqj3/84zp8+LACgYDG\njh2rxx9/vGC5oUOHev5Aq97gO0ndYDCghoaGsrbrdnvRePxoOy5l8GtdoeMYDocHjLF821aqfH1g\n/sztc6tc7fhd+rEo1CdOXoPC4XBN93uxYpGIJKlx0iSPI3lHJZ5L5Xo/lRjrqA3FjvNAsOvY16Dl\n8sWUcaIsqkMwXtr13+/X9FL3zw1mTJX0e4ITSjkWXh9Hv49zv/D6OMG+VCqlWCzmSt22kqpjx47V\n/fffr2XLlkmSVq9erRNOOMFWgyeffLJeeuklW2UAAKhlqWjU6xAAAAAAAGlsTf38/ve/r/vvv1/h\ncFjhcFj333+/vv/977sVGwDAR2KRSP+MSQAAAFSufZ3t/U+qT39t5/4dx70OAMjO1kzVKVOm6MUX\nX1T82G3iw4YNcyUoAID/MFsSAACgOsST8ayvXf/Cdfr2/Ls9iAgAKo+lmaqPPfaYfvrTn/Z/P2zY\nMA0bNkw/+clPLK2HCgAAAAAAAADVwlJS9Vvf+pY+8pGPHPf6woULdccddzgeVCWLRSKKbt3KLbIA\nAAAAAABAlbKUVD1y5IjGjRt33Osnnniia0/QqlSpaFTxxedxmywAAAAAAECNYF3i2mMpqdrZ2Znz\nZ11dXY4FAwAAAAAAAFQac13ibGsWozpZSqpOmzZNTzzxxHGvP/nkk5oyZYrjQQEAAAAAAACAXw2y\nstHXv/51LVq0SMuXL9f8+fMlSc8//7xWr16tJ5980tUAAQAAAAAAAMBPLCVV3/Oe9+h3v/ud7rzz\nTt100039rz377LOaOXOmqwECAAAAqD1tHQckSRPHjvQ4EgAAgONZSqpK0rvf/W795Cc/cTMWAAAA\n+EQsElEqGlWwqUmNkyZ5HQ5qUCyR9DoEAACAnCytqQoAAIDakopGFV98nlLRqNehAAAAAL5DUrUE\nsUhEsUjE6zAAAAAAAABqxr7Odu3rbPc6DNQ4y7f/43jM3AAAAAAAACiveDLudQhA7SVVvVofzJzR\nyppkAADAL/j9BAAAAChOzd3+79X6YKlolJmtAADAV/j9BAAAAChOzSVVAQAAAAAAAKAUJFUBAAAA\nAAAAwIaaW1MVAIBqxhqZcFrnsJFqj3SoMVyniWNHOlZvW8cBxRJJx+sFAAAo1b7OdsWTcQ2rG6aT\nRk3wOhz4FDNVgQoQi0T6EyUAql8sElF069aiznvWyITTunqlZas2K5ZIOlpvLJF0pV4AtWVfZ7v2\ndbZ7HQZqHOOw+sSTcV3/wnWKJ+NehwIfI6kKVACSJNWHRDny8eqhigAAVJp4Mk7SA55jHAK1idv/\nHcCtlgDsIlkGAAAAAEDlYqaqA5hFCKAapEKhom85BwAAAACglpBUBQBIkozubl/ecs5SCQDgD20d\nB9TWccDrMAAANWBfZ7t27t/BWrXwNZKqAABf424AAPCHWCLJg8UAAGXBg6JQCUiqAgAAAAAAAIAN\nPKgKgC/FIhGlolEFm5p4CBwAAAAAAPAVZqoC8KVUNJp1fU/W1wQAAAAAAF4jqQqgorC+JuAvqVCI\nP3QAAAAAqDnc/g8AACwzl+ZIJXslSUZ3t1J9fR5HBQAAAADlxUxVwCXcpg6gUsQiEUW3brV0zTKX\n5jBSJFIBAAAA1C6SqoBLKvE2dRLBQG3KtYaxZC/hClSSto4D2hbpUFvHAa9DgUfaOg5w/AEAQNFI\nqvoIH1zhtUpMBANwV76EK1DJYomklq3arFgi6XUo8EgskeT4AwCAopFU9RE+uAJA9WEGuDvoVwAA\nCtvX2a6d+3doX2e716EAQNUhqQoAgIuYAe4O+hUAgMLiybiuf+E6xZNxr0OpWSS2gepV9qTqkSNH\ndNFFF2nGjBmaO3euFi5cqD179pQ7DAAAAAAAAFeR2AaqlyczVa+88kr95S9/0ebNm7VkyRJdccUV\nXoQBIA/W+AUAAAAAAMiu7EnVwYMHa9GiRf3fz5s3TxGSNoDvsMYvAAAAAABAdoO8DuCee+7RhRde\n6HUYjkuFQopu3apgU5MaJ03yOhwAAAAAAOAg1kkFapunSdXbbrtNe/bs0Q9/+MOC23Z3dysQCJTc\nZipl9H/t6uoqqmzm/01dXV39rxvd3Ypf+DENXfe4usaM6X89X5u5YrNS1gnlaseO5P79Mg7FFBje\nqLoTT/Q6HFsy+zNX/yYSif6voYxxVais09LbKeVcsVJ/rp+Z7bl1PrixX6XE4VUM2Y51+s+y9bmp\nmJjTx7ldXvdVqYqJP9f5YKUOJ9qzEkvmNuU+PqXsp5uxljLWvWDlumwyUilH+85IpVypt1Lad9pb\nhxKKH+7VsCGDNGZ42JU2zD4rdZxb7Xtzu66urpKOV66y5uuRN9+SJNf6De6y8znL7tiplGu6nd+x\n85Vx8vdkv/zO7bZDR2JZXy+mX736ndev47xQv7ndX8V8Hq2VcV9pDOP4zy9O8Syp+u1vf1uPPPKI\nNmzYoCFDhhTcfteuXerr6yu53YnHBnlPT4/2bN9eVFnDMJTs6Tnu53u2bx+wTXo75uv52swVm5Wy\nTihXO3ZMTBnqvehjGvTwQ9rd2el1OLZk9meh/m1tbe3fxmS1rFPS2ynlXLFSf66fZZ4zTp8PbuxX\nKXF4FUO2Y5153crc1lRKzK2trbbLeN1XpSom/lzng5U6nGjPSizmeDHfE8t9fErZz3LEWsxY94KV\n67J5rI/09Gi7g30XbBzrSr2V0r7Tgo1jdfXPt+u/Pt2iv7e3utaGJLW2/vXY1+Lasdr35nbbt28v\n6XjlKpv+uiTX+g3uqj+hXpLyjgsr2+Tj92t6vv0zf9aTMf6zlcm1bSkxOVGXn5n7mamYfi11nJbK\nb+O8UL+53V92zp1CZeCtUCikyZMnu1K3J0nVu+++Ww888IA2bNigxsZGS2WmTZvmyEzVnl271Sup\nvr5eLdOmFlU2EAiovu74i2fLtKkDtlFaOz27dvdvYzc2K2WdUK527CjleHktsz9z9W8ikVBra6ua\nm5sV+uvA20cKlXUzZjf6Pt9+ZLbn1vnglzHl9fmW7VhnXrcytzUVE3P6OA+H7c0E8rqvSlVM/NnO\nB6t1ONFeoVjSx4v5nlju41PsftotY1cpY90LVq7L5rEeXF+v5pYWx9pu7Yi5Um+ltO+0cuyP2caJ\nzc0ljXOrsZrbNbe0lLR/ucqar5uqYRzUorZDbZKkKS1TStomm0q5pufbP/Nn9fX1A36erUyubUuJ\nyYm6/Mzcz0zF9Gux47RUfh3nhfrN7f6yc+4UKpOps/ttSdKooaMdixe5GYbhyCTNbMqeVG1vb9f1\n11+vKVOmaMGCBTIMQ0OGDNELL7yQt9zQoUPV1damVDRa0jqlvcGjHwyCwYAaGhqKKmuWz9TQ0DBg\nm/R2zNfztZkrNitlnVCuduwo5Xh5LbM/C/VvOBw+bvxYLZtLLBKxdc6kt+NG3+fbj8z23DgfYpGI\ndOxi6tWYMo+J+voUrBvk2bjOdqxNufrcVErM4XC46GtvpV0DTMXEn+t8sFKHE+1ZiSWdF+dTKftZ\njliLGetesHJdNgWCQUf3KRDscqXeSmnfaeXYH7MN80N3sePcaqzmdg0NDSXtX66y5uumUvutreOA\nYomkGsN1mjh2ZEl1wbpgvPC13co2+fj9mp5v/8yfZb5XZyuTa9tSYnL7d4R9ne2KJ+MaVjdMJ42a\n4Fo7uZj7mamYfi11nJbKb+O8UL+53V92zp1CZTK1x/+asw44L5VKKRbLvlRHqYKu1JrHhAkTlEql\ntGvXLm3atEmbN28umFA18TRymGKRyNEEGfLinBkoFY3KSLnzFyo7McQXn+d5HAAA/2vrOKBtkQ61\ndRzwOhRYEEsktWzVZsUSSa9DAWpGPBnX9S9cp3gy7nUocMC+zvaaf/gXfVBZyp5UBZyQikZJFMIy\nkvAAgEpEkg4AUEviyXjNJ8jpg8ri2YOqAKBcSMCjUpjLQ6SSvV6H4lvZ/kBid6kTAAAAACgVM1UB\nVJxUKKTo1q3MPkXFi0UiA8Yyy0MUlu1OBZY6AQAAAFBuJFUBOMKtW+xTodBx9Rrd3SRQUPFikYh6\n33rbV2M52/kGAAAA+BVrkMJL3P4PwBFuJYWM7m6l+pi1h+rjhwenZeJ8AwAAKC8SgqVh/VF4iaQq\nLGG9OgAAKhfv4wAAv9vX2a54Mq5hdcN00qgJXodTtIAR1M79OyzvB0lBoHJV9O3/mWvRwT2sVwcA\n/uHWchuoXryPA9WvreOAtkU61NZxwOtQAEv2dbZr5/4d/TM148m4rn/hOl8mGTNjzedI32Hf7geO\nYskAOKWik6rV8gHBTA7ztGcUg+QKUHuyPaypEK4VAFDdYomklq3arFgi6XUoBZHQgOTvJGqmSooV\nhcWTcY4lHFHRSdVqwdOeUYpikivwDxJdKBeuFQAAvyChAVSmav6DiJ3ZyICJpCoA17BER2EkugAA\nTgoGDG4BR1lUc3IFQHbV/AcRZiOjGCRVAbimWpbogH3MwAUAbxzuSVXMLeBuM9cY7e3jbjA3VHNy\nBZWLZD+AciKpCtQwEl9wCzNwAaDytXUcqOgZr+Yao6mU15EAKBeS/QDKaZDXAQBwRywSKfjwMzPp\nlZ5YTYVCPDgNAAAw2xUAACAPZqqiKjDj8nipaNTyw8/SZxUa3d08OA0AAAAAACAPZqr6WCwSOZrs\nSvYqWMehyqeWbjM2x0WwqUmNkyZ5HQ6qkDlbmTEGAEBtMNegPGnUBI8jAQCgcjBT1cfMh/wwY9Cf\nvHqyPQ9/gtvM2cqMMQAAagPrUAIAYB9JVaBIfktusgQCgErj9HXLnGXNtRAAAACA26oqqUpSCbWM\np62jXLjW+otXs+ad4PR1i1nWAAAAAMqlqpKqJJVQzcwZWKlkb9FlKzHp4ieVnLxyEtdaf/HbrHkA\nAAAAqAVVlVRF+ZBcctb4wYPVs2t33oSpOQOrmDV2/Tp7q9JmPBZKXlXa/qC6MR4BAAAAwD0kVVEU\nZkY5a1DisLrPO7/mHkpWbTMeq21/UNmqZTy6/Uc8/kgIAEB2+zrbtXP/Du3rbPc6FMB39nW2c26g\ncpKqsW3birrtGUcxY4k+AFCbKv3a5/Yf8fgjIQA/aes4oG2RDrV1HPA6FEDxZFzXv3Cd4sm416EA\nvhNPxjk3oEFeB2BV/FOfVnj1j7wOo2LxYbG4PjATEY2TJjkdDlDzYpGIUtGojMGDFThyRMGmJs41\nF5Ry/Y9FIo7+QdM85hxrfzOPE3/MRi1q6zigWCKpxnCdJi4K7YwAAB0GSURBVI4dWfb2Y4mklq3a\nrFXL5pa9bQDws32d7Yon4xpWN0wnjZrgdTiApAqaqQp4Idfts04nGoBa1D9D8NAhZgr6VCoadXRZ\nEmaFVgbzONXakjSA9E5SM5ZIeh0KABsCRlA79+9Qb5/1z2gsb1BZmDkNPyKpWuH8uhZcpd9uWojT\niQZ4r9rGrBPXhlQo5GmfuHVM/HrdRPWdh06xO2bpx8pn3gLe28fvGgBgxZG+w7r+heuUMlKWy/gx\nSWcmh0n0ApWBpKqDvJi96NdZP9XygBTUjnyzkisxOeHEtcHo7vb0PHbrOuLX6yZ478jF7pilHyuf\nOVsyZT03AMCHeJAN7DKTw35K9FYTzkk4rWLWVK0EzF4Eqg+JCQAAANYzLAaJMcBfOCfhNGaqoupw\na2/tSIVCHGsAQM1r6zjAUgFwnR9vlQZQ/ayul8ssVHiBpCqqDrf2lpeXt8cb3d15j3Wl3roPVDLO\nO6D8YokkSwUAqBoBI0hyrATV9gAuq+vlxpPxiv6jj3nc7DxsDd4jqQp4oJpm0/p57T4/xwZUGnNm\neKG1wznvAABAKY70Ha7o5JjXmFVemczjZudha/AeSVXAA8ymBVBpzJnhrB0OAMiHW3ABALWCB1UB\nJTJnbwWbmtQ4aVLZ200lexWs41SGP5mzsYNjxngcCQCgGgQDhrZFOtQYrtPEsSO9DgdZMDsOfmc+\ndI3brAGUipmqFcq8fbzQbZhwX6F1Pd1ul1lj8DPzVvDk/v0aP3iw1+E4jvVDAaC8DvektGzVZsUS\nSa9DAVChuM26dlTb+rLwH5KqPmRl3Trz9nESaig3kkgohnEopkGJw16H4TjWDwWA2tTWcUBtHQe8\nDiOvSogRANzE+rJwW9mTql/84hd1yimnKBgMauvWreVuviKUMgOxmh6AVGnMZHi19z1JJAAAUOti\niaTvZ8tWQowAAFSysidVP/7xj+uPf/yjmpuby910TeABSN7xahkAoBbUyh8tAAC1g5mkcAsPCwOA\n8ij7020+8IEPSJIMwyh300BOsUhEqWhUxuDBChw54uhDpyo9CeTVg7iAdEZ3t+IXfkzDnlzndSjI\nodKvdQDgNjOBaj5gi1mkcAu3OgNAebCmKqC0Gb6HDjk+27TSb5e3MwPXL7MJS1n3lTVjgeL4+VrH\neY1qwczGysbt+AAAVJeyz1R1QiplqKurS6mUkfX7g3v3SpLqTjwxa9n0MnbbzfZ/O7Fmi81KXZnx\nZpbJ1SeZ2+fb53zb5OrrXP2YXldy/34Zh2IKDG/Mekzysbo/6d8X0weF+jOzTL5jllk2U2aMiUQi\nZ92Z+5evTStlCo2jQm1k65P0OowjR2cTDl33uLrGjMk5bqwct8zzzc5+9R44aHl/0r+XpNSxsl1j\nxhSMMVud6fuXq91s/7d7PSrETqyFxnMuVvdTkoxjT1dNH++5zrvk/v1Hy1g41sXI1zd2r1elXFuz\njXGr1yKr5042ha6Bhc63bLJtZ+e9JNt+FSqT3k6ufjNlXhPy1V8qc4ynj3VzTNt9DzTZjdFKP1rZ\nNpORSjl6rTJSKVfqrZT28zFjk4z+77u6unSo64ik48+vo9sbWcs4EYdZj/l9tnFeTL2FYkxvP1ef\nWGknV5l3fq7j2rETm9X9ytWfdurIJ7NstvpzsfN+ZvX35GI/d9jlZnuljnUn99NOO9l+TwgYAf3l\nzb+oYdBQjRo62tZ7bimfnfOVtfr7v5V2Ml9r+/v/SZJGDR1dsIyVtgq9j+YqY+czhN2Y7Maai51x\n7vaYtvIZxcrn7cz68v0eWWjbQse8mN8rC/3+5dTvpTjKzTvlKyqpanZET0+P9mzfromp7N/rrbcl\nSbs7O4+rI7OMHWZZwzCU7OnJus0gvbON1djS6831NZkRb2aZXH2SuX2+fc63Ta6+ztWP6XVNTBnq\nvehjGvTwQ1mPST5W9yezPStlsrWTqz8zy0xMGccd65zHPENmjG2trZp47GeZYyt9/3K1Z6dMrj5J\nZ3W/Mvs+vWyhc9TKccs830rdr1wx5iqTL8ZUMKj469vUGx6iN48cOa4OK+dZruPmFLvnqBlT5tdc\n17pCMec6Bq2trcdtY+XcyXXcipGvb+xer0q5tqaP5WzjPtvrds6dXApdAwudb1bHSb52UsGgDu7d\nq0HHymXbr8wyufYvX79l1pEttlJ+L8gn21i3+x6YWd5qjFb60cq2mcf6SE+PtjvYR8HGsa7UWynt\n52PGZn4GCMjQjr++rWAopFRf33HxBhvHKhAcNKCME/tlxmHWY37f2vrXY19bS6q3UIzp7Wf2iZX9\nK1TG/LkpvR07sVndr/7+e/Oto9v1BWzXkU9m2Wwx5lJ/Qn3Bbc1teo7Vn6uMnbqcOPfK0V6xY93J\n/bTTTvr35v8P9x7Wza/cqK/PvV37Ix1ZY8t1jANGQHve2qM6o05db1lL9GTWZWUb83vDMPKWy1ZH\n+ntWT0+Peo79jrE/0lGwjJW2cu2P+Xq6QEhZ9ytXO+l1ZJYthpW+z8bKOHd7TGcbu9k+l6b/PJOV\nMW1n20LHPF8dVvYz8zU74x/WhEIhTZ482ZW6KyqpGggc/cWjvr5eLdOmqmfXbvVmfJ+uZdrU4+rI\nLGOHWTYQCKi+LvsJbCR7csaaK7b0epXja31dfd4yufokffvMdrPtX65tsvV1vn5Mr8uJPi+0P1ba\nyyyTPnMoX39m65OeXbuPO9aFjrlpQIxDw5qcTMowerOOrfT9y9WenTK5+iSd1f3K7Pv0soXOUSvH\nLfN8K3W/csWYq0y+GANHDqv3oqMzcltaWo6ro9B5lu9YO6WYc7TQ2Mpk5XpiMoyUksleNTc3KxwO\nD4jRyrmT67gVI1/f2L1elXJtTR/L2cZ95uvpdRQ6d/LJd423cr5ZHSd52zlyWEPr6qX6+pz7lVkm\n3/tprn5LryNXbHaPeaFZp4lEQq2trceN9cx27XBiXNr5/SDXNWFwfb2a0655pWrtiLlSb6W0n48Z\n27GuV0+foat/vl3fv+S0rPG2dsSU7EsNKOPEfplxmPWY35/Y3HzcOC+m3kIxpref2SdW9q9QGfPn\npvR27MRmdb8y2xsceqddq3Xkk1k2W4y5tB1qkyRNaZlScJv6+npNaZmSs4yduvJtY5Wb7SUSCf09\n/neFw2GdMOwEV2JzQmY76d+b/09/j8x1/HId46TRo69svlHfPPOuAb/7WonJrMvKNumx1tXXWeq3\nzP0zy5qy1ZGrT4rZH/P1dL2pZNb9ytVOeh2ZZYthpe/TZfvdpVDdbo3pfGM31xjOZGVM29m20DHP\nV4eV/cx8zc74hzWGYaivr8+VusueVL3qqqu0bt067d+/XwsXLlRjY6N27txpq45gMKCGhgb1BgNZ\nvzc1NDQcVzazjB3p9Qcz2jJlHiYrsWX+LJvMeDPL5OqTzO3z7XO+bXL1da5+TK/LiT4vtD9W2sss\nE40fXcC9YfLkgv2ZGXdvMHDcsc5VNlP6z4xEQokLP6YhD/9mQPn0bQu1Z6dMoXEkHT+GM8vm6vv0\nsoXOUSvHLfN8K3W/csWYq0y+GAu1a+U8M8tntucUq+do6q23pDxvMLmudZL1/ZSkVOroEt7hcDjr\n2EmPNd+4LOY6kiu2bHXZvV6Vcm1NH8u59r3UcyebfOMhvZ7MGPPJNk6stJO5bba+svJen6vfzIcQ\nqq9PwbpBA8rkqr+Q9PeOfLKN9WLHrhPjstB7Y+qtozPnGidNyjmGAsGgo9eqQLDLlXorpX1T5sOL\npHdikwLHfc0WbyDYJfUZA7Z1Yr/MOMx6zO/ND93p47yYegvFmN5+Zp9Y2b9CZd75uY5rx05sVvcr\ns730dq3WkU9m2Wwx5hKMF75OmduY15FcZezU5cS553Z7ya6kAqnifv9wcj/ttJP+vfn//m3zHL9c\nxzizrJ2Y8pXJ157VtjJjNMuastVRzH7l2p9s7Ss1sN5CfTGgjoyyxbDS99lYuaZnGzf7OtsVT8Y1\nrG6YTho1oYiIs9eftW+Ve3ya7IxpK9sWOub56rCyn9nqdeIzD96RSqUUi8UKb1iEsidVv//975et\nLfOhFDyxPDvzw2atPdWdh5UA70hFozJS7vzVDrDKreuy+RDC8CMPqcJuzik7vz5krBbw4CIAQCWL\nJ+O6/oXr9O35d3sdSkUJGEHt3L/DkWQ0vBP0OgAnpEKhrB/I/PwkYj/of+K9z/rI7ac0ezkuUqGQ\nolu3KpXsda2NSn/KdTn6yIpK70egktTS+3UsElF069aC1xeuQQAANwSMoPZ1trtW/77Odu3cv0O9\nfd7+Lg/43ZG+w7r+hesUT8a9DgUlqIqkqtHdXfSHscwPLeX+EBOLRDxPHvlNNX+4Nrq7FV98nqsz\nAyu9/8rRR1ZUUj9auW5VQoIm1x/Iqo1Tx8Ivf4Dwmhfvo2bfF3Mcrf5Bs5hrUCWc5/m0dRzQtkhH\n/+3wAAB79nW2F0yYHuk77GoSx5y1mDJSrrUBAH5RFUnVUmR+aCl3IoVbbwGUysp1qxKSxKX8gayS\nlHIs0pNmfvkDhNe8eB81+95v47USzvN8Yomklq3azO3wAFCkeDLOrDcAKCMWGAMAn6nV9Y7dUk39\nWckJM+RXLevAt3UcUCyRVGO4bsCDl4BiBQOGtkU61OvSU3vdYMZs5zwwzx2v99Oc5cj6fgAAFFbz\nM1VhT67bTZ2+5dCJdkq5PRPwkl/XO05XSeeXE/1pdR1M1CYnxofTs0y9OkeZbQqnHe5JadmqzUr5\n5E7ito4DBZeoMGO2cx6Y547X+8lMRwBuMtfcdXtdXzfrB9KRVIUtuW43zfZhsJT1/uy0U6iOYj6k\nslYhkJ9fb392i9uJbq45lc2PfwiptXPUj1gjtjrFEkn+aAAcQ/IKdplr7rq9ri9/HEK51ExS1ZxF\nwgfW8qnk9f4qOXYAlceraw7vjYB7mLULoBKUkhgleQWg1tVMUtWcRUKSDEC5VPqTuFH9eG90F9eA\n2mHllnAA8CMSowBQPB5UBUfx4RGVwrzd2s2HF3HbLVDb8l0DzGuQMXiwAkeOKJXsVbBuEO+jFYrZ\nqIWZSWceYAYACBhB7dy/Q8PqhvFgPFS0mpmpivJw+kEbgMnpGV+sN1hdzPHhp5mB3FqPfPqvQYcO\nDZgt7PX7aCwSYczCFaxFCgAwHek77PraqkA5MFO1gpiJArdm1QF+RvIT+fhxfJi31ocfeUh+e7uN\nRSJHk3ckz5AhFY2yHAQAAADw/9u7v9im6v+P46+ebspXhcEWDCbsH7oNBEa7RMYyDeA/NP4uxk8R\ngxkjxLhdaPSKmXjhjRJNkIQLo4l/FkJiyNh+TpKvkqBBXGJUcIJ/QkA21vpnAX4SkN+m4Ojnd+G3\nZevaru3antPT5+Nm6en58znnvM+n67ufP0lw1rc8JJRMN8JkviCn+mU6X1qtMHt2/nBKS0KgUE1O\n+CLTbrvxRv199qw8dhcEKCAMLwAAAHKN7v95KFaSM5WZo1OdmCRfWq3YNXt2NmW6K3M48Wx3UtPu\n7q1uRpdzwH5Ff/4l88dlu4sBFBS3DS9geQyTn8FxPMbSbxd+tbsYAOAYJFXzUL4kOeMJJ31yldjL\n5xasmU4+Mo6oe4XjfPx/f3fdjwvZ5qRxWN0m1/X9TDjlRycAkKS/roZclSSGO1y59hdjYALABK5P\nquZzQs2twi1lM5HYSyYZkqgFK/EBt3BjS+1coeV09mSyvs82fnQCAAAAkIq8TKqmkggj0eBuM02G\nEB8gsQ6gENFCGwAAAJiZvEyqkgibXsjr5ctSFvAl1H2oTwDkq/DwChdPnkz5s4kW2gAAAMDMFNld\nAGSHGRtT6BpJokzjC6izXQ4E/kkU/D0uqzhz1RutWREtUQJrYhwmuw2mN/E5zOTznc/Cwyv8q+9/\n5Llyxe7iAAAAAAUlL1uqwjlINhWOfLjX4QRDplud0prVOXI1mdB0x0nUyi9eHNIycGZ4DgEAAAA4\nCUnV/6Bbd3r4kpuf0kmQzuReMxwFMiVXkwkV+qRFmf5MdOqPMpcDAceVCQAAAEB+IKn6H7QgQqbk\nQwIx18lwMzYWv1WfQ5MtQCHL9GdiruucZOuV0KVL/CgIAAAAIC0kVTHly2euWu3mQ/IxHYkSiJiK\n1s7/oLU8ZiqZRGKh/IiRq3qlUK4nAAAAgKlIqmLKl89ctdol+Qhcl8pzRwLWmcIzsduVYEsmkciP\nGJnF9QQAAAAKV8FOn+vWVpIAci9bdUm4FZxVUqLZlZXXl/NjRIST6vGJM7HD2ZwUNwAAAADyU8Em\nVc3YmELXaFkCpIukxHXZSnKasTH9X8t/65aP/52V/WdCvMRvzo5PghlpsCtumBgLAAAAcA+6/7sc\n3YQzg+s4FZO7MZ6idL37s9NiIdYzy/1CKrJR7890YqxwDPN5BAAAANiPpKrLRSe+aCWTHhKIiIXx\nFJ0r1jM7ZfzoNIaBYeiYwuHEet+pP2IAAAAAhahgu/8nYnd31myaaSsZANMrxKRbuN40N94oz5Ur\nCv09LqvY3o+Y6VqmJjMMTPQ+GDoGAAAAACDRUjUmWoIA+cVp3bpjtXCze2b4bIvUm3/84ZjWu5lo\nSUxrZNiNHiYAAACAM5FUBZBxuU5y5kPiKzwzvJPLCGBmQl6vrv50WkWeDO6THiYAAACAI5FUhe2Y\nBMp98iHJCQCZZsbGNPbIf0nG2F0UAAAAAFnGmKqIK1eJToZZAJDv6KINAAAAAIWFpCriItkJAMmh\nizYAAAAAFBZbuv+fPn1azc3NqqurU2Njo06cOGFHMQAAAAAAAAAgZbYkVdvb29XR0aGTJ09q27Zt\namtrs6MYAAAAAAAAAJCynHf/P3/+vL755hsdPHhQkvToo4/qmWee0dDQkBYtWiRJMrEmeJg7V/J6\npXnzYv+14uSHZ7KNZSkUCl1fblmpHy+8j6j1I/u1rMRljHe8dLbJxDWZSRknXosY2yS8JnGuY8bL\n6MTrmOvjUcbMlHGCKXGfYJuY68aqi5RkPRL17EzaJqfXxEher4wxk8uQ7vGyUCfEvU92xlai83T4\n8zbt9ZzumQlLJk4yWSfEe2YmlifZ41me1O5BOmWc7ppEr5vGs2N5PCr5V5EsT4zrEcXyKO11U9k2\nEzJ5vPCtnrifZPc/3bbRf2PtL7w8et1Mn1f4tTFG3ug6PYV9pXJtEl2L6Gs2sazhZclsE5ZM2WJt\nk+7x4h030b1OJNYzFV3GeDyaXLhY23jk0ezi2fLIo1AoFNkmet14y1NdJ1nZPJ4xRpbHkiUrrbJm\n8jyTOU608H2aXTxblqzI31jrT1x34j2OtW34fGKdX/Q2E9ePVe54x0u0Xax9xDu/RLGcTBnjlXXi\n8mjR+423bax9pFKmVMsaTyp1eqJ7nsp1jHeeE/cf697GqoPiiRfT0evEO49k73k618IjT9w4SSX+\nkZxY1zJm3jENHpOpPSVpYGBATz755KQu/42NjXrttde0Zs0aSdL4+LhGR0dzWSwAAAAAAAAALnfz\nzTerqGjm7Uxt6f4PAAAAAAAAAPkq50nV8vJyjYyMTGp+GwwGVVFRkeuiAAAAAAAAAEDKcp5UnT9/\nvhoaGrRnzx5JUk9Pj8rLyyPjqQIAAAAAAACAk+V8TFVJOnXqlLZs2aLff/9dJSUl6urq0tKlSyPv\nh0KhqQOeezzyeBIPRAwAAAAAAAAA0j+TUkWnPi3LkpVo4tYk2ZJUBQAAAAAAAIB8xURVAAAAAAAA\nAJACkqoAAAAAAAAAkALHJlVPnz6t5uZm1dXVqbGxUSdOnLC7SEBannvuOVVXV8uyLH333XeR5efP\nn9fDDz+s2tpa1dfXq7+/P/Len3/+qU2bNqmmpkaLFy9Wb2+vHUUHknblyhWtX79eixcvlt/v17p1\n6zQ4OCiJWIe7rFu3Tj6fT36/X6tXr9axY8ckEedwp66uLlmWpf3790sizuE+VVVVWrJkifx+vxoa\nGrRv3z5JxDrc5erVq3r22WdVW1urFStWaPPmzZKIc7jLhQsXInV5Q0OD6urqdMMNN+jixYtZjfWi\nTJ9IprS3t6ujo0Otra3q7e1VW1ubvv76a7uLBaRsw4YN6uzs1N133z1p+QsvvKCmpiZ9/PHHOnr0\nqNavX6/h4WF5vV7t2LFDs2bN0k8//aTh4WE1Njbq3nvv1bx582w6C2B67e3teuihhyRJb7zxhp56\n6ikdOnRInZ2dxDpcY9++fZozZ44kqa+vT1u2bNGxY8eIc7hOIBDQO++8o6ampsgy/neB21iWpe7u\nbi1fvnzScmIdbtLZ2SnLsnTq1ClJ0rlz5yQR53CX0tJSffvtt5HXr7/+uj7//HPNnTtXW7duzV6s\nGwc6d+6cKSkpMdeuXYssW7BggRkcHLSxVMDMVFVVmePHj0de33LLLebs2bOR142NjebTTz81xhiz\ndOlS89VXX0Xe27hxo3n33XdzV1hgho4ePWqqq6uNMcQ63Kurq8s0NDQYY4hzuEsoFDL333+/GRgY\nMGvWrDEffvihMYY4h/tE/38eRqzDLUZHR82cOXPM5cuXp7xHnMPNlixZYvbv32+MyW6sO7Kl6s8/\n/6zbbrtNlnV9dIKKigoFg0EtWrTIxpIBmXHhwgWNj4/r1ltvjSyrrKxUMBiUJAWDQVVWVsZ8D8gH\nu3btUktLC7EOV2pra9OhQ4fk8Xj00UcfEedwnZ07d+qee+6R3++PLCPO4Vatra2SpJUrV+rVV1+V\nx+Mh1uEag4ODKi0t1SuvvKJPPvlEN910k1566SX5fD7iHK71xRdf6OLFi3rkkUey/v+LY8dUBQDk\np+3bt2twcFDbt2+3uyhAVuzevVvBYFAvv/yytm3bJkkyxthcKiAzfvzxR/X29urFF1+0uyhA1vX3\n9+v48eMaGBhQWVmZ2traJFGnwz3Gx8cVCAS0bNkyHTlyRLt27dITTzyh8fFx4hyu9d5772nz5s2T\nGmpmiyOTquXl5RoZGVEoFIosCwaDqqiosLFUQOaUlpaqqKgoMp6NJA0PD0divLKyUoFAIOZ7gJPt\n2LFDfX19OnDggGbNmkWsw9VaW1v12WefSZKKi4uJc7hCf3+/AoGAampqVF1drS+//FJPP/20uru7\nqc/hOgsXLpQkeb1ePf/88+rv7+d/F7hKRUWFvF6vNm3aJEny+XyqqqrS999/z/8ucKXR0VF1d3dr\n69atkrKfe3FkUnX+/PlqaGjQnj17JEk9PT0qLy+n6z9cZcOGDXrzzTclSUeOHNFvv/2m1atXS5Ie\ne+wxvfXWW5KkM2fO6PDhw2ppabGtrEAydu7cqb179+rgwYOaPXt2ZDmxDre4dOmSRkZGIq/7+vpU\nVlam0tJS4hyu0dHRoV9//VVDQ0M6c+aMVq1apbffflsdHR3EOVxlbGxMly5dirx+//33I0NePP74\n48Q6XKGsrEz33XefDhw4IOmfmB0eHtadd95JnQ5X2rt3r3w+n2prayPLshrrmRgANhtOnjxpmpqa\nTG1trbnrrrvMDz/8YHeRgLS0t7ebhQsXmuLiYrNgwQJTU1NjjDHm7Nmz5sEHHzQ1NTVm2bJl5vDh\nw5FtRkdHzcaNG83tt99u6urqTE9Pj13FB5Lyyy+/GI/HY+644w7j9/uNz+czq1atMsYQ63CPQCBg\nVq5caerr682KFSvMAw88EJnghDiHW61duzYyURVxDjcZGhoyfr/frFixwtTX15uWlhYTCASMMcQ6\n3GVoaMisXbvWLF++3Ph8PvPBBx8YY4hzuFNzc7PZvXv3pGXZjHWPMQykAQAAAAAAAADJcmT3fwAA\nAAAAAABwKpKqAAAAAAAAAJACkqoAAAAAAAAAkAKSqgAAAAAAAACQApKqAAAAAAAAAJACkqoAAAAA\nAAAAkAKSqgAAAAAAAACQApKqAAAAAAAAAJACkqoAAAAAAAAAkAKSqgAAAAAAAACQApKqAAAAAAAA\nAJCC/wdNvU8jc3u12AAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fc7433f4e10>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, axes = plt.subplots(figsize=(15,15), facecolor='white', nrows=3, ncols=1, sharex=True)\n",
"\n",
"ax_a = axes[0]\n",
"ax_b = axes[1]\n",
"ax_c = axes[2]\n",
"\n",
"x_ticks = [i for i in range(len(dfBooks.index))]\n",
"\n",
"ax_a.bar(x_ticks[s1:f1], fv_punct[s1:f1, 0], color=STD_COLORS['1'], label = 'Clancy')\n",
"ax_a.bar(x_ticks[s2:f2], fv_punct[s2:f2, 0], color=STD_COLORS['2'], label = 'Ghost')\n",
"ax_a.bar(x_ticks[s3:f3], fv_punct[s3:f3, 0], color=STD_COLORS['3'], label = 'Greaney')\n",
"\n",
"ax_b.bar(x_ticks[s1:f1], fv_punct[s1:f1, 1], color=STD_COLORS['1'], label = 'Clancy')\n",
"ax_b.bar(x_ticks[s2:f2], fv_punct[s2:f2, 1], color=STD_COLORS['2'], label = 'Ghost')\n",
"ax_b.bar(x_ticks[s3:f3], fv_punct[s3:f3, 1], color=STD_COLORS['3'], label = 'Greaney')\n",
"\n",
"ax_c.bar(x_ticks[s1:f1], fv_punct[s1:f1, 2], color=STD_COLORS['1'], label = 'Clancy')\n",
"ax_c.bar(x_ticks[s2:f2], fv_punct[s2:f2, 2], color=STD_COLORS['2'], label = 'Ghost')\n",
"ax_c.bar(x_ticks[s3:f3], fv_punct[s3:f3, 2], color=STD_COLORS['3'], label = 'Greaney')\n",
"\n",
"titles = ['Commas per sentence', 'Semicolons per sentence', ' Colons per sentence']\n",
"axes = [ax_a, ax_b, ax_c]\n",
"legend_loc = ['upper left', 'upper left', 'upper left']\n",
"axes_grid = [True, True, True]\n",
"ax_data = zip(axes, legend_loc, axes_grid)\n",
"for axis, legend_loc, grid in ax_data:\n",
" handles, labels = axis.get_legend_handles_labels()\n",
" axis.legend(handles, labels, loc=legend_loc, frameon=False)\n",
" axis.grid(grid)\n",
" axis.set_title(titles[axes.index(axis)])\n",
" axis.set_ylabel(titles[axes.index(axis)])\n",
"\n",
"ax_a.set_axis_bgcolor('white')\n",
"ax_c.set_axis_bgcolor('white')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"However, when it comes to punctuatoin differences, things aren't so clear.\n",
"* commas per sentence are pretty similar and Tom Clancy started to be more like Mark Greaney in his most recent books\n",
"* Mark Greaney seems to prefer semicolons, although their use if extremely variable\n",
"* Tom Clancy seems to prefer colons.\n",
"\n",
"The differences between authors don't appear as clear cut from punctuation features.\n",
"\n",
"We'll use the Scikit learn KMeans class to cluster the text. Bwlow are two functions:\n",
"* the first is the actual kmeans model instantiation\n",
"* the second is function which call the kmeans model with a set of features and labels we pass in, and which returns a confusion matirx, the accuracy and the model. This was we can pass in various sets of parameters, get performance metrics and capture the model for use in predicting the author of the Ghost written text."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def PredictAuthors(fvs):\n",
" km = KMeans(n_clusters=2, init='k-means++', n_init=10, verbose=0, random_state=3425)\n",
" km.fit(fvs) \n",
" return km"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def cluster(feature_sets, names):\n",
" model = [PredictAuthors(fvs) for fvs in feature_sets]\n",
" classifications = [m.labels_ for m in model]\n",
" df = pd.DataFrame(classifications, index=names).T\n",
" if len(names) == 1:\n",
" df['score'] = df.iloc[:,0]\n",
" else:\n",
" df['score'] = df.mean(axis=1).apply(int)\n",
"\n",
" df.loc[s1:f1, 'actual'] = 0\n",
" df.loc[f1:, 'actual'] = 1\n",
" df['actual'].apply(int)\n",
" \n",
" cm = confusion_matrix(df['score'], df['actual'])\n",
" accuracy = accuracy_score(df['score'], df['actual'])\n",
" return cm, accuracy, model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To build the model, we only want to use Tom Clancy and Mark Greaney book features. We will then use the model to predict the Ghost text"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"fv_lexical_model = []\n",
"fv_lexical_model.extend(fv_lexical[:f1, :])\n",
"fv_lexical_model.extend(fv_lexical[s3:, :])\n",
"\n",
"fv_punct_model = []\n",
"fv_punct_model.extend(fv_punct[:f1, :])\n",
"fv_punct_model.extend(fv_punct[s3:, :])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, we'll just try with the lexical word and sentence features."
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.908045977011\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAFKCAYAAADIYT4fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XucHVWZ7vHf0x3IBaG5BRAl5GIQLwRBEFAwDAzHKOco\nHBDwrogQ5IyooCKMoo6ogDoHZw4GFQRxEAcY0FEhIxDBKFfDXSBBSAKIBkNsIrkA3e/8Uas5m6ab\nrurel6q9n28+m3RVrVq1Cpq3315r1SpFBGZm1lpdrW6AmZk5GJuZlYKDsZlZCTgYm5mVgIOxmVkJ\nOBibmZXAuFY3wMwsr97e3i5gizpXu7Knp6e/znUW5mBsZlWyBbCiznVuBTxe5zoLczeFmVkJOBib\nmZWAg7GZWQm4z9jMKu3NH/wWK//6VK6yW2y6Edef/7EGt2h0HIzNrNJW9q5h5ZNr8xWWGtuYMXA3\nRRuS1C3pVEn3SrpT0iJJ8yRtMsZ6z5V0t6TLRnn+MZJOGEsbGkHS9pKOGaHM6yX9qFltsgLUVexT\nUs6M29N5wKbAHhHxJICkQ4DNgSdHU6GkrYHDgY1jlOuuRsQ5ozmvCaYBc4Eh2yepOyJ+B7yrqa2y\nfKT8Ga8zY2sWSTOAQ4APDgRigIi4LCKWpjKfShnuHZIulLRx2n+qpIsl/VTSPZKulrSppB7gWmA8\n8DtJn5b0AUmX11z3QEkL0tevkLRQ0m3pGl+qqf+f09ddks6UdFfK3r8laVw69v2UyV8t6X5Jlw4c\nG+J++yWdLOlGSQ9KeoekkyTdks59cyrXLekqSTena/5Q0sRUzbeBHdJvEFek8g9J+pqkm4DzJc2W\ndFs6to+kByRtmrb/VVJZf9BYRTgYt59dgSURsWqog5LmAB8E9oqInYE1wNdqirwBeH9EvIZsIvwx\nEdELvA1YHRG7RsQZqezgDHlg+/8A/xkRu6RrfHOIMscArwd2AV4HzAA+UVNuZ+BAYEdgG7IfMMN5\nMiL2BI4Cfgg8GhG7A6cAXweIiD7gXRHxhojYiew3hH9I588F7k/3dlBNvZtHxB4R8b7atkfEr4Hv\nAhdIeifwxpq6rNnapJuivC2zRvl74McRsTptfxs4oOb4VRHx1/T1DWRBsqjrgY9I+rKkA4DeIcrs\nD5wfEc9GRD9ZcKttx+URsT51idw8Qjv+Pf19KzAJ+HHavhl4BYAkASek7PdOsh8urxvhPs4f7kBE\nnA5sSNa18c6IeHqEuqxRBrop8n5KysG4/SwCZkraLGf5wdntupqv+xh+XOFZoLtme8JzFUb8B/Am\n4D6yLPlnDWxH1JTtS9d/umZ74Lz3APsC+0TELOAbtW0ext+GO5C6dqYDTwFbj1CPNVKdM2NJ4yVd\nLum+1NU2X9L0dOzG9AN9Ueru6pf02nRsoqSLJC1J577Yb3Mv4GDcZiLiD8BlwLmprxcASf9b0lTg\nauAwSS9Jh44B5uesvjateACYlb5xxwHvrrnWK4AVEfFD4NPAHkPUdTXwfkkbpPOPKtCO4do01PaA\nTYG/RMRTKZB+sObYk0DPkGcN71zgQuAw4MICP/ys3kSBzDh3redExI4RsQvwU7L/3kTEnqk7a1fg\nC8BdEXF3OudEYF1EzATmAGcX+b5wMG5PRwJ3Ajeln973kHUBPBERVwHfB26UdAewMXByznqfy14j\n4ibgF8A9ZIN7i2vKHQrcJWkRcDFZwB/sO2RZ/MDnIeCswdcp0qYRzv0BsJGke4Gfk3WlDLgTuCf9\nu7pipDZIOg7YLCK+HBE3AGen+q0V6pwZp+6xq2p23QhsP0TRD5OCdHI4MC/VsRRYAByc+zb8dmgz\nq4re3t7JDFq17TVHfIuVvfke+tiiZyL3XPyCJ/C26unpGXbVNkk/IPut6pM1+7YD7gWmRMQTad+T\nwMyI+HPaPh1YGxFfyNM2zzM2s4orMjBXbABP0slkg8dHDzr0AeBnA4G4HtxNYWbV1qCpbZJOBA4C\n5kTEukGHPwR8b9C+ZTy/O2MqsDzv9RyMSyY9MPGb9MDCTZJe1eo2WWNIOis9XNIvaVar21NZDZja\nJumTwBHAATXTQAeO7Q90R8TVg067lGzOOpKmAbOBK8jJwbh8zgHmRcQrgTOAC1rcHmucS8imAC5t\ncTuqrf5T215G9rBQD7AgTW+7oabIkWRLDgx2JjBJ0gPAlcBxRbox3GdcIpImkz2VdgBkjzCnR22n\nR8SDrW2d1VtELITnHkix0SrS/ZBvNsWjvEiiGhHvGWb/GrJselScGZfLdsBj6Ym0AcuBKS1qj5k1\niTNjM6u2LmWfvGVLysG4XB4GXiqpqyY7nkKBEVmzjiMV6KYobzB2N0WJRMTjZE+jvQ9A0qHAw+4v\nNnsRXijIGmQucIyk+8nWdfhQi9tjDZLWbH4YeBkwX9Likc6xIbTJEprupiiZiFhMtj6utbmImNvq\nNlh5OBibWbW1yWuXHIzNrNrqPM+4VRyMzaziGrdQUDM5GJtZtTkzbpze3t5uYOag3U9QbNFxMysn\nAZsP2rekp6enb3S1uc+4kWaSLdxsZp3hVWTvTOxYZQ3GZmb5tMkTeA7GZlZt7qYwMysBD+A11AsW\nZN77ff/MqifXtKItTTf95Ztx1glzOP4bV/HgI6ta3ZymWvLLr7W6CU23bs0alj64hKnTZzJh0qRW\nN6fhIvp5Zu1Tg3eP/l1yDsYN9YJZE6ueXMPK3s4Ixlv0TKCvr4/e1Ws75p4HqMT/szSMRF9fH0id\nef+Z0c+UapNuio79L29mViZlzYzNzPJxN4WZWQm0STeFg7GZVZvnGZuZlYAzYzOz1pOEcgbZvOVa\noby92WZmHcSZsZlVXP7MuMzrGTszNrNqU8HPSNVJ4yVdLuk+SbdJmi9pxqAy+0l6VtLHavZNlHSR\npCXp3EOK3IaDsZlV2kCfcd5PTudExI4RsQvwU+B7NdfbBPgq8PNB55wIrIuImcAc4GxJm+W9oIOx\nmVVavYNxRKyPiKtqdt0IbF+z/a/AP/HC9TQOB+alOpYCC4CD896Hg7GZ2Ys7HrgCQNKhQF9E/GyI\nclOAZTXby9K+XDyAZ2aV1sipbZJOBmYAR0vaGjgFmF20jXk4GJtZpTUqGEs6ETgI2D8i1knaD9gG\nuF1ZRVsC/0vS5Ij4HLCcrDvjz6mKqcD8vNdzMDazass5S+K5snmKSZ8EjiALxKsBIuIXwEtrynwf\nuC0ivpV2XQLMBW6WNI0sgz42Z8scjM2s2uqdGUt6GfB14A/AgpQFr4uIvQYVHbwG85nAeZIeAJ4F\njouI3IvmOxibWaXVOxhHxKPkmNwQEUcO2l5Dlk2PimdTmJmVgDNjM6u0dlkoyMHYzCrNwdjMrAwa\nMJuiFRyMzazSVGDVNpU4GjsYm1mlZS/6yNtN0eDGjIFnU5iZlYAzYzOrNA/gmZmVgQfwzMxKoMii\n8c6Mzcwaw90UZmYl0C7B2LMpzMxKwJmxmVVau2TGDsZmVm2eTWFm1nrOjM3MSqBdgrEH8MzMSsCZ\nsZlVWrtkxg7GZlZ95Y2xuTkYm1mlOTM2MysBB2MzsxJol2Ds2RRmZiXgYGxmlTbw2qV8nzz1abyk\nyyXdJ+k2SfMlTU/HPpv290l6+6DzJkq6SNKSVOaQIvfhYGxm1aaCn3zOiYgdI2IX4KfAuWn/L4E5\nwHVDnHMisC4iZqYyZ0vaLO8FHYzNrNLyZ8X5+pYjYn1EXFWz60Zg+3Ts1ohYytBh/XBgXiq3FFgA\nHJz3PjyAZ2bV1vg3fRwPXJGj3BRgWc32srQvFwdjM6u0rM84f9lidetkYAZwdNF2FeVuCjOzIUg6\nETgImBMR63KcsozUnZFMBZbnvZ6DsZlVWr37jFOdnwSOAA6IiNU5m3IpMDedPw2YTb7uDcDB2Mwq\nbqCbIu9n5Pr0MuDrQA+wIE1vuyEdO0XSw8CewPckLZe0RTr1TGCSpAeAK4HjIuKJvPfhPmMzq7R6\nP4EXEY8yTKIaEacBpw1zbA1ZNj0qDsZmVmmiwABeQ1syNg7GZlZpXV2iqytfmM1brhXcZ2xmVgIt\nCcaSXiHpN5Lul3STpFe1oh1mVn31HsBrlVZlxucA8yLilcAZwAUtaoeZVVwjpra1QtODsaTJwOuB\nfwOIiMuA7QZWRTIzK8KZ8ehtBzwWEf01+5ZT4BluM7MB7ZIZV2Y2xfSXb8YWPRNa3YymmLJNz/P+\n7iRr1zzV6iY03fp1a5/3d9uL8MyBIbQiGD8MvFRSV012PIURnuE+64Q59PX1NbxxZXLqR2a3uglN\n94fF97a6CS3zyPKlrW5CU3R3dzN9eh17JRu/altTND0YR8TjkhYB7wMukHQo8HBEPPhi5x3/javo\nXd0ZmcOUbXo49SOz+eJ3r2P5n3pb3Zym+tWFn2l1E5pu/bq1PLJ8KS+fMpXxEya2ujmNFwHUL7Fq\n5KptzdSqboq5wPlpebpe4EMjnfDgI6tY2bum4Q0rk+V/6mXx8tyPtreFiZM2anUTWmb8hIkdcf8R\n/Ty9Ju/aOyNrlxeStiQYR8Ri4I2tuLaZtRdnxmZmJdAumbEHNc3MSsCZsZlVmldtMzMrgXbppnAw\nNrNK8wCemVkJZME4b2bc4MaMgYOxmVVau2TGnk1hZlYCzozNrNI8gGdmVgLt0k3hYGxm1eZV28zM\nWq9dMmMP4JlZpdX7TR+SzpL0kKR+SbNq9u8u6QZJiyTdI+lTNccmSrpI0hJJ90k6pOh9OBibmT3f\nJcCbgKWD9n8H+HJE7ArsDZwoacd07ERgXUTMBOYAZ0varMhFHYzNrNLqnRlHxMKI+CMvXMqiHxgI\nsC8B1gMDC44fDsxL5y8FFgAHF7kP9xmbWaU1sc/4SOAnkk4DtgSOiYgV6dgUYFlN2WUUfMmyM2Mz\nqzRRIDMe27ptJwGfiYjtgdcCX6npphgzB2Mzq7SBzDjvZ3TX0BbAwRHxY4CIeAi4kaxvGbJMePua\nU6YywkuWB3MwNjMb2Srgb5L+DkDSlsAewF3p+KVk7/ZE0jRgNnBFkQu4z9jMKq3ej0NLmgccCGwN\nzJe0OiJ2kHQ4cKakbmAD4JsRcXM67UzgPEkPAM8Cx0VEobcJOxibWaXVewAvIuYOs/8aYLdhjq0B\njsjXiqE5GJtZpXVJdOWMxnnLtYKDsZlVWrs8Du1gbGbV1iYLBXk2hZlZCTgzNrNK61L2yVu2rByM\nzazS/KYPM7MS8ACemVkJiPxrToxxbYqGcjA2s0prlz5jz6YwMysBZ8ZmVmkdNYAn6RYghjseEW+o\nW4vMzAoQBQbwGtqSscmbGZ/U0FaYmY1S1mecd22KBjdmDHIF47RaEQBp+bjt0nuezMxaql2mthUa\nwJO0D/AwcH3a3l3SBY1omJlZLkVeRlriaFx0NsUZZCvYrwSIiFsYZn1PMzPLr+hsinERsWTQiOTT\ndWyPmVkh7dJNUTQYr5e0EWlmhaRXA+vq3iozs5w6dXH504D/AraVdD4wB3hvvRtlZpaXyD9lrbyh\nuGAwjogrJS0B3kp2X1+JiMUNaZmZWQ4d9dDHII8CAw+BPFzf5piZdaZCwVjSvsDFwAqyzHhLSUdE\nxHUNaJuZ2YjaZaGgopnxt4BDIuI3AJL2As4BZtW7YWZmeXRqN0UMBOK0cYOkYdesMDNrtHaZ2lb0\noY9rJD03e0LSu4Gr69skM7P88j59lzeDlnSWpIck9UuaVbP/V5IelLQofY6vOTZR0kWSlki6T9Ih\nRe8j76ptj5MN2An4uKTvpkPjgb8AJxS9sJlZPahAn3HOzPgS4HRg4aD9ARwfEf85xDknAusiYqak\nqcBNkq6NiFX5Wpa/m2LPvBWamVVZRCwE0NBp9HC9CYcDR6bzl0paABwMnJf3unlXbftD3grNzJqp\nyQN4p0v6EvB74OSIeCjtnwIsqym3LO3LrejUti2BU4GdgQkD+724vJm1ShOfwHtvRDwKIOk44GfA\na8ZW5f9XdADvXOBPwDbAV8lWb/uvejXGzKyoLvTc+hQjfsYQjgcCcfr6/wHTJW2Wdi0Dtq8pPhVY\nXuw+ipkaEaeRdVRfDrwD2L9gHWZmdTMwtS3vZ3TXULekrWq2DwH+VDNAdykwNx2bRrbU8BVFrlF0\nnvHACm1PS9ocWAVsWbAOM7O6qXefsaR5wIHA1sB8SavJumZ/LmlDslkVjwNvrzntTOA8SQ8AzwLH\nRcQTRe6jaDB+UNIWwEXAjcBfgdsK1mFmVloRMXeYQ7u/yDlrgCPGct2iq7a9K335TUmLgE2Bn4+l\nAWZmY9EuT+CNZtU2ACLiV3Vsh5nZqHTU4vI1T+ANKSK2Gu6YmVkjdVpm7CfwzKyUOmrVtjI8gbfg\n4lOJUr80pX76nl7LUyse4uJ/OZ7uDSe2ujlN9eYzftXqJjTddht38dm9JnHUBb/j4dX9rW5Ow/VM\nGMelH96pbvWJ/HN0yxxBis4zNjOzBhj1AJ6ZWRl0VDeFmVlZtctrlwp1U0jaRNL/lfSTtP1qSYc1\npmlmZiMbCMZ5P2VVtM94HtlTdzPS9lLg5Ho2yMysiGxqW943fbS6tcMrGox3jIgvAM/Ac48Alvj2\nzMyqoWif8dO1G5Im4GBsZi3UkX3GwPWSTgLGS9oX+HcKLhNnZlZPosASmq1u7IsoGoxPATYA1gLf\nBG4FvlTvRpmZ5aW8C8sXmALXCkVXbXsG+Kf0MTNruS7yZ5Vlfsqt6Dvwhpw5ERFfqU9zzMyK6bSF\nggZMrvl6AvBW4Lf1a46ZWWcq2k3xidrt9Lboc+vaIjOzArL+4Pxly2pMj0NHxF8kzRi5pJlZY3Rk\nN4Wkj9ZsdgN7kL2Yz8ysJdplnnHRzHivmq+fBe4Fjq9fc8zMium4bgpJ3cBlEeGHPMysNNqlmyL3\ntLuI6AM+38C2mJl1rKJzoO+QtNfIxczMmkMFls9si8w42RX4taTfS7p54NOIhpmZ5aGCf0asTzpL\n0kOS+iXNqtl/nqT7Jd0m6deSdqs5NlHSRZKWSLpP0iFF76PoAN4ni17AzKyRGjCb4hLgdGDhoP3/\nARwVEf2SDkzlpqVjJwLrImKmpKnATZKujYhV+VqWMxhL+lFEvCsirslbsZlZM9Q7GEfEQgANWlUo\nIn5Ws3kjsK2krojoBw4HjkzllkpaABwMnJevZfm7KXbMW6GZWQf4OPCLFIgBpgDLao4vS/tyy9tN\nEUUqNTNrliKvU6rHEpqS3gscCrx5zJXVyBuMZ0l6Yoj9AiIiNq9jm8zMcuuiQDfFGK8l6XDgc8B+\nEVH79PEyYHvgz2l7KjC/SN15g/H9wNuKVGxm1gzNeuhD0mFka7nvHxGPDjp8KTAXuFnSNGA2cGyR\n+vMG4/URsWzkYmZmzaUCj0Pn6aaQNA84ENgamC9pdUTsAPwQeAz4SRrcC7LAvAo4EzhP0gNkS0Uc\nFxFD9SYMK28wLvFUaTPrZA2YTTF3mP0bvsg5a4Aj8rViaLm6UCJil7FcxMzMXtyY1jM2M2u1dlko\nyMHYzCqtCxV4IWl5o7GDsZlVmjNjM7MS6NQ3fZiZlUq7vOljrA+kmJlZHTgzNrNKc5+xmVkJ1PsJ\nvFZxMDazSnNmbGZWAl3kH/wq8yCZg7GZVVqz1zNulDL/oDAz6xjOjM2s0kT+ZSXLmxc7GJtZxXVR\n4KGPEodjB2MzqzRnxmZmJdAuU9s8gGdmVgLOjM2s0rLMOF/KW+bM2MHYzCpN5P8Vv8Sx2MHYzKqt\n2EMfjW3LWDgYm1mleTaFmVkJtEtm7NkUZmYl4MzYzCqtXVZtK3PbzMxGlHVT5P/krHOOpFsk3S7p\nt5Jmpf2TJV0pabGkOyXtU6/7cGZsZpVW7wE8SZsCPwT2joj7JO0N/BuwE3A6cENEvFXSbsDlkqZG\nRN9o2l7LwdjMKq0Bj0PPAP4SEfcBRMRCSdtJ2gV4ZzpORNwq6VFgNnBt8ZY/X9O7KSSdJekhSf0D\nqb+Z2Wh1oUKfHJYAW0jaE0DS24GNgWnAuIhYUVN2GTClPvfRfJcAbwKWtuDaZmYvKiKeBA4Fvibp\nFuDvgd8DL2nkdZveTRERCwFU5vefmFllNGLVtoi4Dtg3O0cbAo8BC4FnJW1Vkx1PBZYXae9wPJvC\nzCpOuf/kHeqTtE3N5ueBayLiQbLf7I9NZXYHtgWuq8ddVGYAr/+ZdfRHq1vRHH3PrH/e351ku407\nLz/YeiPV/N3+97/x+Pr+Utyg9Yy/lKatdQM3AEel/ScBF0paDKwH3lOPmRRQoWC85i/L6euryz1X\nxrpVf2x1E5rus3tNanUTWubIWRNb3YSm6O7urmt92cBc3rL5RMTRw+xfAbwlZzWFVCYYT9pySkdl\nxutW/ZEJm21L9wbjW92cpvrHn9zT6iY03dYbiSNnTeS8O9fy56fa/5t84/HdnDW9fvW1y5s+mh6M\nJc0DDgS2BuZLWh0RO4x0XtcGE1KfT+fo3mA83Rt2RrY04OHV/a1uQgtk+dqfn4qOuP+eZ9q/K2Y0\nWjGbYm6zr2lm7cuZsZlZCajA78wljsUOxmZWbV3KPnnLlpWDsZlVWrtkxu5JNzMrAWfGZlZposAA\nXkNbMjYOxmZWae3STeFgbGaVJuXvb/XUNjOzBnFmbGZWAlKB1y6VOBp7NoWZWQk4MzazSqv3C0lb\nxcHYzCqtSyLvWnd+As/MrEGcGZuZlUGRCFviaOxgbGaV1i5T2zybwsysBJwZm1mltcs8YwdjM6s0\nD+CZmZWBB/DMzFovy4zzRdn8M5Kbz8HYzKqtQJ9xmTNjz6YwMxtE0oaS/kXSYkl3SPpB2j9Z0pVp\n/52S9qnXNZ0Zm1mlNWgA73SgPyJ2AJC0Vdr/NeCGiHirpN2AyyVNjYi+/FUPzcHYzKqtzgN4kiYB\nRwIvG9gXESvSl4cBM9K+WyU9CswGri3QiiG5m8LMKk0F/+QwA3gCOEXSLZKuk7SfpM2BcTWBGWAZ\nMKUe9+FgbGaVJhX75DAO2B64OyJ2B44HLk77GzYE6GBsZvZ8y4E+4CKAiLgdWArsBDxT038MMDWV\nHzMHYzOrNBX8jCQiVgLXAHMAJE0jC7q/By4Bjk37dwe2Ba6rx314AM/Mqq0xT+AdC5wr6XSyLPno\niHhM0knAhZIWA+uB99RjJgU4GJtZxRUYmEulRn4KLyIeAvYbYv8K4C2FGpiTg7GZVZpXbTMzK4F2\nWbXNA3hmZiXgzNjMqq/MKW9ODsZmVmnFB/DKycHYzCqt0ABeQ1syNg7GZlZp7TKA52BsZtVW5ghb\ngGdTmJmVgDNjM6s0D+CZmZVBkXfglZiDsZlVWmPWCWo+B2Mzq7YyR9gCHIzNrNJUYHJbmeO2Z1OY\nmZWAM2Mzq7Qiy2KWOTN2MDazSvMAnplZGZQ5whbgYGxmleYBPDMzqxtnxmZWaR7AMzMrAQ/gmZmV\nQZkjbAEOxmZWaR7AMzMrAanYJ1+dmi/pdkm3SbpO0uvS/smSrpS0WNKdkvap132UNTN+wb8yEa1o\nR0t0Cbq7u+lSZ903QM+Esn5LNs7G40V3dzcbj++m55n2z482mdA91O6yJa3vjIgnASQdBJwPvA44\nHbghIt4qaTfgcklTI6JvrBcs63f+5oN3TJ445nutjonjYJPpaePZljal2S798E6tbkLLnDV95DJt\nbHNgxWhObMQA3kAgTjYFBgLQO4EZqcytkh4FZgPXFmjGkMoajM3McmnU1DZJFwB/BwTwNkmbA+Mi\novaHxjJgSoFqh9X+vxOZWZtTwU8+EfGBiJgC/CNwRs3FGsLB2Myqrcjg3ShCaURcCOybNp+RtFXN\n4anA8jHeAVDeboolwKsG7XsCOmw0y6w9iReOCy0ZS2X1JKkHmBQRj6Xtg4CVEfGEpEuAY4EvStod\n2Ba4rh7XLWUw7unp6QPua3U7zKxhRjVY1yQ9wCWSJpAlgCuA/5mOnQRcKGkxsB54Tz1mUkBJg7GZ\nWV5FBvDyiIjlwB7DHFsBvKW+V8w4GJtZpRV5Aq/MHIzNrPpyTyBuaCvGxLMpOoikpZLuTY943i3p\no3Wq9xJJ709ff1HSu0Yov7Okw0d5rY0k9Q9z7FRJ38xRR65yQ5z3fUkfK3qeNVZjJrY1nzPjzhLA\nYRFxl6QpwJ2Sro+Iu2sLSeoe7aBERJyao9guwDuAH4/iEqLU+Y01W+EpayX97nFm3HkEzw1S3A/s\nIGl2ypS/J2kRcJCkl0j6jqQb04Ip8ySNA5D0Skm/kXSXpMuBTZ6rvCZ7lLSBpDNSudsl/ULSZOCL\nwL6SFkk6O5XdXdI1km6W9DtJh9bUeUxamOV3wMdz3aT0Wkm/lnRrureTBxWZkq53r6SfSNosnTdO\n0lfTfS+SdHGa6mTWUA7GHUrSTsArgTvSrh2B8yNi14i4DPgGcH1E7BkRrwO6geNT2QuB70bETsDn\nyJ7NH8rJwExgl1TH+yLiceDzwIJ0rY+mYHcO8O6IeAPwP4BvSHqppNcCXwD2jojXAxNz3uJDwH4R\nsRuwG3CopDfUHN8bOCIiXgU8Anw17f8U8Ld037sCdwOn5bymtYAK/ikrd1N0nh9LWgusAT4UEX+Q\n9HLgwYhYWFPuIGBPSSek7QlkTx9tTLZ61QUAEXG3pNrzah0IfDoink1lVw5T7o3AdOBK6bmJSv1k\nPyx2An5Rsx7At8nmeo5kEvDttPRhP/Dy1O6b0/Gfpx8MAN8BLqu5701qMvMNyAK7lVWbdFM4GHee\nwyLiriH2/22IfYdExAO1O1IwHvztPNZvbwF3R8TeLziQZfCj8RXgcWDniAhJl5H9QBnOwD0I+IeI\nuHqU17UmK2+uW4y7KTpP3u/dK4DPSOoGkLSppBkRsRq4DfhA2v8asl/5h/JT4HhJG6ayW6b9T5I9\n5TTgt8A0Sfs/18hsxsU4sqUJ59SsBzA3Z/s3Ax5JgfiVwAGDjr8t9V8DHAX8sua+PyFpYmrHREmv\nznlNa4FGLC7fCg7GnaVIBvsJYB1wu6Q7gKuB7dOxDwBHS7oT+BLPfza/9hqnk605sCgNDJ6f9l8D\njE+DemdHxF/JujROTtPu7iHrw+2KiHvI+owXpgG8tTnb/2XgSEm3k2XJ1ww6/mvgR5LuJVsC8ZSa\nNt8C3JTpEYCeAAAA/klEQVTu+wZg5yHuzayuFOHvLzOrht7e3skMWteir3uj/ClvBN19Tw3eu1VP\nT8/jQxVvJvcZm1mljXZpzLJxN4WZWQk4MzazSmuXzNjB2MwqTTX/HFl5x8jcTWFmVgLOjM2s2grM\nHy5vXuxgbGYV1yZPQzsYm1nFeQDPzKz1iq3GJmfGZmaNUPY1J/LybAozsxJwZmxmldYmXcYOxmZW\ndUEw5DtqhyxbVg7GZlZpz657wSpsleQ+YzOzEnAwNjMrAQdjM7MScJ+xmVXJSmCrEUsVr7Pl/Nol\nM7MScDeFmVkJOBibmZWAg7GZWQk4GJuZlYCDsZlZCTgYm5mVwH8DH7/ygU3MuyMAAAAASUVORK5C\nYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fc743445748>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"cm, accuracy, model = cluster([fv_lexical_model], ['Lexical'])\n",
"pl.matshow(cm, cmap=plt.cm.Blues)\n",
"pl.title('Confusion matrix')\n",
"pl.colorbar()\n",
"pl.ylabel('True label')\n",
"pl.xlabel('Predicted label')\n",
"print(accuracy)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This gives us a pretty clean classification with an accuracy of ~91%.\n",
"\n",
"If we use this model to predict who wrote the Ghost texts we see that most of the labels are'1' which implies Mark Greaney.\n",
"\n",
"So, the Tom Clancy novels written by Mark Greaney are being classified as Mark Greaney."
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"133"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(model[0].predict(fv_lexical[s2:f2, :]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"What about it we just use the punctuation features?"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.258015267176\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAFKCAYAAADIYT4fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAH2RJREFUeJzt3XmUXWWZ7/HvryqQVBgKwiyShCEIDkwCgi3GK3JFXK3Q\nIINTK0shSrc4oLLg0ogzoNyrqxcGBYWLoogI0srQF4xMMggEGRaQACYBbDtItBhCElJ57h97F2wq\nVdTeVWd49zm/j+t0ztn7PXs/m06eeup93/1uRQRmZtZePe0OwMzMnIzNzJLgZGxmlgAnYzOzBDgZ\nm5klwMnYzCwBk9odgJlZWQMDAz3AJg0+7FP9/f1rGnzMypyMzaxONgGWNviYmwNPNviYlbmbwsws\nAU7GZmYJcDI2M0uA+4zNrNbe+pHv8tTfnyvVdpON1uOG8z/V5IjGx8nYzGrtqYHlPPX08+UaS80N\nZgLcTdGBJPVKOlXSA5LukXSXpLmSNpzgcc+TdJ+kS8f5/WMlfW4iMTSDpBmSjh2jzRsl/bRVMVkF\n6qn2SpQr4870Q2Aj4E0R8TSApEOBacDT4zmgpC2AI4ANYpzrrkbEOeP5XgtsC8wBRoxPUm9E3Akc\n1dKorBypfMXrythaRdL2wKHAR4YSMUBEXBoRi/I2n88r3D9KulDSBvn2UyX9TNIVku6XdK2kjST1\nA78FJgN3SvqCpH+WdFnhvO+WNC9/v4OkmyTNz8/x5cLx/3f+vkfSmZLuzav370qalO/7UV7JXyvp\nIUm/GNo3wvWukXSSpFslPSrpvZJOlPSH/Ltvzdv1Srpa0u35OX8sqS8/zPeAHfPfIC7P2/9J0jcl\n3QacL2m2pPn5vv0kPSxpo/zzv0tK9QeN1YSTcefZA1gYEX8baaekA4GPAPtGxK7AcuCbhSZ7Ax+O\niNeRTYQ/NiIGgIOAZyJij4g4I287vEIe+vwvwH9ExO75Oc4aoc2xwBuB3YHdgO2BzxTa7Qq8G9gJ\n2JLsB8xono6IfYCPAT8GnoiIvYCTgW8BRMQgcFRE7B0RbyD7DeFf8+/PAR7Kr+3gwnGnRcSbIuJD\nxdgj4kbgB8AFkt4HvLlwLGu1DummSDcya5Z3ABdHxDP55+8BBxT2Xx0Rf8/f30KWJKu6Afi4pK9K\nOgAYGKHN/sD5EbE6ItaQJbdiHJdFxMq8S+T2MeL4ef7nHcBU4OL88+3ADgCSBHwur37vIfvhstsY\n13H+aDsi4nRgXbKujfdFxKoxjmXNMtRNUfaVKCfjznMXMEvSxiXbD69uVxTeDzL6uMJqoLfwecqL\nB4z4JfAPwINkVfKvmxhHFNoO5udfVfg89L0PAG8D9ouIXYBvF2MexbOj7ci7drYDngO2GOM41kyu\njC1FEfEIcClwXt7XC4Ckf5I0E7gWOFzS+vmuY4FrSh6+WFY8DOwiaXLen/v+wrl2AJZGxI+BLwBv\nGuFY1wIflrRO/v2PVYhjtJhG+jxkI+CvEfFcnkg/Utj3NNA/4rdGdx5wIXA4cGGFH37WaKJCZdzu\nYEfn2RSd6WjgFOA2SS+Q/dC9Abg2Iq6W9DrgVkmDwD3AJ0se98XqNSJuk3QlcD/wZ+BmXkq6hwEf\nlLSK7K//SNPGvk9WWd6VH/d3wHeGn6dKTGN89/8C75X0AFlf+A3AjHzfPcD9ku4FHsn7jUeNQdJx\nwMYR8dX889n58f+xQtzWKFUq3oQrY/np0GZWFwMDA5sxbNW21x35XZ4aKHfTxyb9fdz/s7XuwNu8\nv7+/7au2uTI2s5qrMjCXbj+Fk7GZ1VuHdFOkG1mXym+YuDm/YeE2STu3OyZrDknfyW8uWSNpl3bH\nU1ue2mZNcg4wNyJeA5wBXNDmeKx5LiGbAriozXHUm6e2WaNJ2ozsrrSfQHYLM7CNpO3aGpg1RUTc\nFBF/JuWOzDpwMrYm2Ab4r/yOtCFLgOltisfMWsQDeGZWbz3KXmXbJsrJOC2PAVtJ6ilUx9PJqmMz\nG4lUYTZFusnY3RQJiYgnye5I+xCApMOAxyLi0bYGZpYyz6awJpkDHCvpIbJ1HT7a5nisSfI1mx8D\ntgaukbSg3THVUocM4LmbIjERsYBsfVzrcBExp90xWDrS/TFhZlZGg7sp8pUIL5P0YP60mmuGppdK\n2lvSLfm62PdL+nzhe32SLpK0MP/uKz0QYS1OxmZWb83ppjgnInaKiN2BK4Bzh7YDX42IPYC3ACdI\n2infdwKwIiJmAQcCZ1dZWtXJ2MxqrkpVPHZlnD9h5urCpluBmfn7NcBQgl0fWAksyz8fAczNj7EI\nmAccUvYq3GdsZvXW/IWCjgcuz98fDfxK0teATcmeETm0pOd0YHHhe4upcMNWksl4YGCgF5g1bPMy\nqi06bmZpEjBt2LaF/f39g+M7WoUpaxWntkk6iez5i8fkm04EvhgRF0vaFrhe0h0R8WClA48gyWRM\nlogfaHcQZtYyO5M9MzEZkk4ADgb2j4gVkjYBDomIowAi4k+SbuWl5z0uJnt6zH/nh5hJhUeJuc/Y\nzOpt6A68Uq9ylbGkzwJHAgcUnqT+N+BZSf8jb7Mp2aPG7s33/4LsPgHyqnk2L3VvjCnVytjMrJwG\nd1NI2hr4FvAIME+SyGZJ7CvpCOBMSb3AOsBZEXF7/tUzgR9Kepjs6enHRcSyEU4xIidjM6u3Bg/g\nRcQTjNJrEBHXAXuOsm85WTU9Lqkm47V+mqzTtx5K+FbGRlqxfDmLHl3IzO1mMWXq1HaH01LH//K+\ndofQcptODt43Yw2XLO7hryvTXTuhUdZbp4cv7b/N8M2lK8i1dMhjl1JNxmvNmpB6uiYZIzE4OAhS\n91xz7tlVa8Zu1GGm9gSDg4MsfwGeXdX5yXgU458p1cTZFK3UXf/SzcwSlWplbGZWjrspzMwS0CHd\nFE7GZlZvHfKkDydjM6s3V8ZmZu0nCZW/s67J0Yxfur3ZZmZdxJWxmdVc+cq4zHrG7eJkbGb1Vm7N\n+JfaJsrJ2MxqrVP6jJ2MzazWOiUZewDPzCwBrozNrNY6pTJ2MjazWnMyNjNLgWdTmJm1nytjM7ME\ndEoy9mwKM7MEuDI2s1rrlMrYydjMas3J2MwsBZ5NYWbWfqqwapsSzsZOxmZWa9mDPsp2UzQ5mAnw\nbAozswS4MjazWvMAnplZCjyAZ2aWgAqVccqdxk7GZlZr7qYwM0tApyRjz6YwM0uAK2Mzq7VOqYyd\njM2s3jybwsys/TqlMnafsZnV2lAyLvsqcbzJki6T9KCk+ZKukbT9sDZvl7Ra0qcK2/okXSRpYf7d\nQ6tch5OxmdnazomInSJid+AK4NyhHZI2BL4B/GbYd04AVkTELOBA4GxJG5c9oZOxmdVaoyvjiFgZ\nEVcXNt0KzCh8/nfgK8CyYV89ApibH2MRMA84pOx1OBmbWf2p5Gt8jgcuB5B0GDAYEb8eod10YHHh\n8+J8WykewDOzWmvmAJ6kk4DtgWMkbQGcDMyuGmMZTsZmVmvNSsaSTgAOBvaPiBWS3g5sCdyt7ECb\nAv8oabOIOAVYQtad8d/5IWYC15Q9n5OxmdVaM5KxpM8CR5Il4mcAIuJKYKtCmx8B8yPiu/mmS4A5\nwO2StiWroD9R8jKcjM3MiiRtDXwLeASYl1fBKyJi32FNY9jnM4EfSnoYWA0cFxHDB/lG5WRsZrXW\n6McuRcQTlJjcEBFHD/u8nKyaHhcnYzOrN98ObWbWfp1yO7STsZnVm5/0YWbWflmfcfm2qfIdeGZm\nCXBlbGa15j5jM7MEdEo3hZOxmdWaK2MzswSICpVxUyOZGCdjM6u1nh7R01MuzZZt1w6eTWFmloC2\nJGNJO0i6WdJDkm6TtHM74jCz+hsawCv7SlW7KuNzgLkR8RrgDOCCNsVhZjXX6McutUvLk7GkzYA3\nAj8BiIhLgW0kbdfqWMys/lwZj982wH9FxJrCtiVUeFaUmdmQTqmMazObYsXy5Wn/WGuglSuef9mf\n3WTzKcPX6+5809aNl/3Z6aau0x3XWVU7kvFjwFaSegrV8XSy6nhUix5dyODgYNODS8njSxa1O4SW\n++C27Y6gfQ7aes3YjTpAb2+DD+hV28YnIp6UdBfwIeCC/NHXj0XEo6/0vZnbzUr6P2QjrVzxPI8v\nWcSrp89k8pS+dofTUqdds6DdIbTctHWDg7Zew5VP9LBsVef/HZ+6Tg9fbOAIkW+Hnpg5wPn5Y7AH\ngI+O9YUpU6cidde06MlT+uibul67w2ippSsS/tfSZMtWqSuuf/01jb1G3w49ARGxAHhzO85tZp3F\nlbGZWQI6pTLurt/7zcwS5crYzGrNq7aZmSWgU7opnIzNrNY8gGdmloAsGZetjJsczAQ4GZtZrXVK\nZezZFGZmCXBlbGa15gE8M7MEdEo3hZOxmdWbV20zM2s/V8ZmZgnolD5jz6YwM0uAk7GZ1Vqjn4En\nabKkyyQ9KGm+pGskbZ/v20zSVZIWSLpH0n6F7/VJukjSwvy7h1a5DidjM6u1Jj0d+pyI2Ckidgeu\nAM7Nt58O3BIROwJHAxdJGnqQ1AnAioiYBRwInC1p47IndDI2s1oTFSrjEuu2RcTKiLi6sOlWYEb+\n/n3A3LzdHcATwOx83xGFfYuAecAhZa/DA3hmVmstmE1xPHC5pGnApIhYWti3mOyByuR/Lh5l35ic\njM3MRpE/p3N74BhgajPP5W4KM6u1Rg/gFY57AnAwcGBErIiIZcBqSZsXms0EluTvF/NSd8bwfWNy\nMjazWmvGAJ6kzwJHAgdExDOFXZcAn8jb7AW8Crg+3/cLsiffI2lbsr7ky8teh7spzKzWeiR6SmbZ\nMu0kbQ18C3gEmKesnF4REfsCJwIXSloArAQ+EBGD+VfPBH4o6WFgNXBcXk2X4mRsZrXW6AG8iHiC\nUXoN8sG7d46ybzlZNT0uTsZmVm8dslCQ+4zNzBLgytjMaq1H2ats21Q5GZtZrXXKqm1OxmZWa17P\n2MwsAaLcmhNDbVPlZGxmtdYpfcaeTWFmlgBXxmZWa101gCfpD0CMtj8i9m5YRGZmFYgKA3hNjWRi\nylbGJzY1CjOzccr6jMuuTdHkYCagVDKOiOuG3uePGNkmX8nezKytOmVqW6UBvPzhe48BN+Sf95J0\nQTMCMzMrpcpaxgln46qzKc4gW6PzKYCI+AOwZ6ODMjPrNlVnU0yKiIXDRiRXNTAeM7NKOqWbomoy\nXilpPfKZFZJeC6xoeFRmZiU1enH5dqmajL8G/CfwKknnAwcCH2x0UGZmZYnyU9bSTcUVk3FEXCVp\nIfAusuv6ekQsaEpkZmYldNVNH8M8AQzdBPJYY8MxM+tOlZKxpLcBPwOWklXGm0o6MiKuf8Uvmpk1\nSacsFFS1Mv4ucGhE3AwgaV/gHGCXRgdmZlZGt3ZTxFAizj/cImnUNSvMzJqtU6a2Vb3p4zpJL86e\nkPR+4NrGhmRmVl7Zu++qVNDtUHbVtifJBuwEfFrSD/Jdk4G/Ap9rTnhmZq9MFfqME87Fpbsp9mlq\nFGZmXa7sqm2PNDsQM7Px6MoBPEmbAqcCuwJThrZ7cXkza5dOuQOv6gDeecBfgC2Bb5Ct3vafjQ7K\nzKysHvTi+hRjvhJOx1WT8cyI+BqwIiIuA94L7N/4sMzMyhma2lb2laqq84yHVmhbJWka8Ddg08aG\nZGZWXlf2GQOPStoEuAi4Ffg7ML/hUZmZdZmqq7Ydlb89S9JdwEbAbxoelZlZSZ1yB954Vm0DICJ+\n18A4zMzGpasWly/cgTeiiNi8YRGZmVXQbZWx78AzsyQ1egBP0neA9wAzgN0i4p7Cvi8BRwErgScj\nYv98ex/Z1N+9gEHg5Ii4tMp11OYOvFkHnMhTA8vbHUZL7Dh9Gued8h7e9qHTWbBkWbvDaamTzvh0\nu0NouQ17VwPPsu0mfWwyOO6ew9rom9TY8lSUn6Nb8syXAKcDN73su9LxwOuB10bEoKRij8AJZFN+\nZ0maCdwm6bcR8beSoVWeZ2xm1tEi4qaI+DNr5+4TgBMjYjBvt7Sw7whgbr59ETAPOKTKeZ2MzazW\nWrGEpqQNgC2AgyXdKukWSYcXmkwHFhc+L863ldb5vxOZWUdr0WOXJuWvyRGxj6QZwO8lPRAR9477\nqMXYqjSWtKGk/yPpV/nn1w776WBm1lJDybjsazzyvt9ngJ/knxcDN5MN2EFWCc8ofGUmsKTSdVSM\naS7ZXXfb558XASdVPIaZWcNkU9vKdlNM6FQ/Bd6VnVPTgL2BoZkWvwDm5Pu2BWYDl1c5eNVkvFNE\nfAl4ASAilpP2qnRmZpVImivpMWBr4BpJC/JdJwEHSroX+B3wjYi4I993JjBV0sPAVcBxEVFpKlTV\nPuNVw4KegpOxmbVRo/uMI2LOKNuXka1UOdK+5cCR5aIYJbaK7W+QdCIwWdLbgJ9TsRQ3M2skUWEJ\nzXYH+wqqJuOTgXWA54GzgDuALzc6KDOzslR2YflOeDr0kIh4AfhK/jIza7seyleVKd9YUfUZeCPO\nnIiIrzcmHDOzarptoaAhmxXeTyGb5vH7xoVjZtadqnZTfKb4OX9a9HkNjcjMrIKsP7h821RN6Hbo\niPirpO3Hbmlm1hxd2U0h6ZOFj73Am4AnGxqRmVkFLVqboumqVsb7Ft6vBh4Ajm9cOGZm1XRdN4Wk\nXuDSiPBNHmaWjE7ppig97S5fUPnfmhiLmVnXqjoH+o+S9h27mZlZa6jC8pkpV8ZV+4z3AG7MVzF6\ndmhjROzd0KjMzEoSKr3mRPmWrVc1GX+2KVGYmY1TV82mkPTTiDgqIq5rdkBmZlV0SjIu22e8U1Oj\nMDPrcmW7KaKpUZiZjVOVxyl1whKau0ga6REiAiIipjUwJjOz0nqo0E3R1Egmpmwyfgg4qJmBmJmN\nR6fc9FE2Ga/MH01tZpYUVbgduhO6KdK9AjPral01myIidm92IGZm3WxC6xmbmbVbt/UZm5klqQdV\neCBputnYydjMas2VsZlZAjplAM/J2MxqrVOe9JHyDSlmZl3DlbGZ1Zr7jM3MEtBtd+CZmSXJlbGZ\nWQJ6KD/4lfIgmZOxmdVap6xnnPIPCjOzruHK2MxqTZRfVjLdutiVsZnVXA/Kb/wo8SqRjiV9R9Kf\nJK2RtEth+w8lPSRpvqQbJe1Z2Ncn6SJJCyU9KOnQ6tdhZlZjqvgq4RLgH4BFw7b/Etg5X1L4m3m7\nIScAKyJiFnAgcLakjatch5OxmdXa0NS2sq+xRMRNEfFnhuXuiPh1RKzJP94KvErSUA49Apibt1sE\nzAMOqXIdTsZmZtV9GriykJynA8VH0y3Ot5XmATwzq7Ws4i3XAdGImW2SPggcBrx14kd7iStjM6s1\n8dKNH2O9JpqLJR0BnAK8IyKeLOxaDMwofJ4JLKlybCdjM6u17KaP8q8JnOdw4CtkifiJYbt/AczJ\n220LzAYur3J8J2Mzq7VGz6aQNFfSY8DWwDWSFuS7fgxMBn6VT2+7qzBj4kxgqqSHgauA4yJiWZXr\ncJ+xmdVatduhx24TEXNG2b7uK3xnOXBkuShG5srYzCwBrozNrNa8apuZWQIa3U3RLk7GZlZrnbJQ\nkJOxmdVapzzpo+VdKKOtiGRmNh49qNIrVe3ozx5tRSQzs67V8m6KiLgJQCk//8TMaqNTuincZ2xm\nNaeEOx/Kq00y3u7VG7NJ/5R2h9ES07fsf9mf3WTD3tXtDqHl1usZfNmfnW5yb2N7R10Zt9h3Pncg\ng4Pd8Zd1yKkfn93uENrg2XYH0Da7rf98u0Noid7e3oYeLxuYK9s2XbVJxsd/+2oGnumOv6zTt+zn\n1I/P5rQfXM+Svwy0O5yWOvr497c7hJZbr2eQ3dZ/nruf7eO5NY1NVCmaPKmH7Rp4PFfG4yRpLvBu\nYAuyFZGeiYgdx/reo4//jacGljc9vpQs+csAC5ZUWvip9p4erE190HDPrentiuvvSzkjtlE7ZlOM\nuCKSmdl4uDI2M0uAKsymSDgXOxmbWb31KHuVbZsqJ2Mzq7VOqYxTnulhZtY1XBmbWa2JCgN4TY1k\nYpyMzazWOqWbwsnYzGpNKt/f6qltZmZN4srYzCwBUoXHLiWcjT2bwswsAa6MzazW/EBSM7ME9EhE\n6bZNDWVCnIzNrNZcGZuZpaBKhk04GzsZm1mtdcrUNs+mMDNLgCtjM6u1Tpln7GRsZrXmATwzsxR4\nAM/MrP2yyrhcli0/I7n1PIBnZvWmlx5KOtarbGUs6SBJd0qaL+keSR/Ot28m6SpJC/Lt+zXqMlwZ\nm5mt7ULgrRFxv6QZwIOSLgVOB26JiHdJ2hO4TNLMiBic6AmdjM2s1po0gLcG2Dh/3w/8FVgFvA/Y\nHiAi7pD0BDAb+G35Q4/MydjM6q05A3hHklW9zwEbAf8EbABMioilhXaLgekVIhiV+4zNrNZU8X9j\nHk/qBf4XcHBEzATeAfyYrHht2nwMJ2Mzq7Wyg3cvDuKNbTdgq4i4GbLuCOBxYBfgBUmbF9rOBJY0\n4jqcjM3MXu4xYCtJOwFI2gHYDngQuAT4RL59L+BVwPWNOKn7jM2s1ho9gBcRSyUdA/xc0iBZ0Xpc\nRDwu6UTgQkkLgJXABxoxkwKcjM2s7powgBcRFwMXj7B9KfDOCmcszcnYzGqt7MBc1hZI9C48J2Mz\nqzWv2mZmloBOWbXNsynMzBLgytjM6i/lkrckJ2Mzq7XqA3hpcjI2s1qrNIDX1EgmxsnYzGqtUwbw\nnIzNrN5SzrAVeDaFmVkCXBmbWa15AM/MLAUVBvBS5mRsZrXWnAd9tJ6TsZnVW8oZtgInYzOrNVWY\n3JZy3vZsCjOzBLgyNrNaq7IsZsqVsZOxmdWaB/DMzFKQcoatwMnYzGrNA3hmZtYwrozNrNY8gGdm\nlgAP4JmZpSDlDFuBk7GZ1VqnDOA5GZtZrbnPuLnW+m+28YZT2xFHW/Rv0Edvby/9G/SxSX/3XDdA\n36SU/7k0x+TeHnp7e5k8qYe+KpmlpqaM/P/jzr/wMSgi2h3DWgYGBnYCHmh3HGbWMjv39/c/OFaj\ngYGBzYClxW3PDE4mSndTBBv0rhy+efP+/v4nywbaLKlWxmZmpbibwswsCVWeD50uJ2Mzqzc/dqmp\nFgI7D9u2DEivg9vMqhIwbdi2hRM5WCdIMhn39/cPAmN25ptZbS0du0l3STIZm5mV1SmzAb1qm5nV\nmir+r9KxpY9KWiPpPfnnzSRdJWmBpHsk7deo63AyNrP6U8lXlUNKM4CPAbcUNn8TuCUidgSOBi6S\n1DvB6AEn464iaZGkByTNl3SfpE826LiXSPpw/v40SUeN0X5XSUeM81zrSVozyr5TJZ1V4hil2o3w\nvR9J+lTV71lzlc3DVfKxJAHnAv8CrCrsOhyYCxARdwBPALMnfBG4z7jbBHB4RNwraTpwj6QbIuK+\nYiNJvRExOK4TRJxaotnuwHuBi8dxCuFZNVagqlVvub89nwVujIj5yjulJU0DJkVEcfBxMTC9wtlH\n5cq4+wggIpYADwE7SpqdV8rnSroLOFjS+pK+L+lWSXdLmitpEoCk10i6WdK9ki4DNnzx4IXqUdI6\nks7I290t6UpJmwGnAW+TdJeks/O2e0m6TtLtku6UdFjhmMfmfXR3Ap8udZHS6yXdKOmO/NpOGtZk\nen6+ByT9StLG+fcmSfpGft13SfqZpP7x/ae2OpL0OuBQ4GutPK+TcZeS9AbgNcAf8007AedHxB4R\ncSnwbeCGiNgnInYDeoHj87YXAj+IiDcApzD6r2knAbOA3fNjfCgingT+DZiXn+uTebI7B3h/ROwN\n/E/g25K2kvR64EvAWyLijUBfyUv8E/D2iNgT2BM4TNLehf1vAY6MiJ2Bx4Fv5Ns/DzybX/cewH20\n+B+lVdOEAbz9gBnAQkl/AvYBvk/WRbFa0uaFtjOBJY24DndTdJ+LJT0PLAc+GhGPSHo18GhE3FRo\ndzCwj6TP5Z+nAC9I2gDYDbgAICLuk1T8XtG7gS9ExOq87VOjtHszsB1wlfTiRKU1ZD8s3gBcWfjV\n8HvAiSWucyrwPUm75cd6dR737fn+3+Q/GCD7h3Zp4bo3LFTm65AldktVg7spImIueb8wgKR5wFkR\n8R/5D/RPAKdJ2gt4FXB91ZBH4mTcfQ6PiHtH2P7sCNsOjYiHixvyZDz8r/NE+3AF3BcRb1lrR1bB\nj8fXgSeBXSMiJF1K9gNlNEPXIOBfI+LacZ7XWqwF04yjcJoTgQslLQBWAh8Y7/jKcO6m6D5l/+5e\nDnxxaNqOpI0kbR8RzwDzgX/Ot7+O7Ff+kVwBHC9p3bztpvn2p4FiP+zvgW0l7f9ikNmMi0nAb4ED\nC78azikZ/8bA43kifg1wwLD9B+X915BNX/p/hev+jKS+PI4+Sa8teU5rA6naq6qIeHtEXJG/XxoR\n74yIHSPiDRFxQ6Ouw8m4u1SpYD8DrADulvRH4FqyfjTIEvExku4BvszLf00rnuN0sjUH7soHBs/P\nt18HTM4H9c6OiL+TdWmclE+7u5+sD7cnIu4n6zO+KR/Ae75k/F8FjpZ0N1mVfN2w/TcCP5X0ANlo\n+MmFmP8A3JZf9y3AriNcm1lDJbm4vJnZSEZaXH6wd73yJW8EvYPPDd/qxeXNzCaq8jzjRLmbwsws\nAa6MzazWOqUydjI2s1pT4f+OLd0xMndTmJklwJWxmdVbhfnD6dbFTsZmVnPNWbSt9ZyMzazePIBn\nZtZ+1R6nJFfGZmbNMN41J1Lj2RRmZglwZWxmtdYhXcZOxmZWd0Ew4jNqR2ybKidjM6u11SvWWoWt\nltxnbGaWACdjM7MEOBmbmSXAfcZmVidPAZuP2ar6MdvOj10yM0uAuynMzBLgZGxmlgAnYzOzBDgZ\nm5klwMnYzCwBTsZmZgn4//k4SVS10A4lAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fc742c18908>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"cm, accuracy, model = cluster([fv_punct],['Punct'])\n",
"pl.matshow(cm, cmap=plt.cm.Blues)\n",
"pl.title('Confusion matrix')\n",
"pl.colorbar()\n",
"pl.ylabel('True label')\n",
"pl.xlabel('Predicted label')\n",
"print(accuracy)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We saw in the overview of the features above that the discrimination of texts based on punctuation use wasnt clear and, classification based on these is understandably bad."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"What about if we combine lexical and punctuation features?"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.670229007634\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAFKCAYAAADIYT4fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XuYHVWZ7/HvrxtJQpAmBAKKhBBEQOUqIDhoHBzPRHlG\n4YBcxCtHIcoZUWGUAw8yXlAQdQbOHAwqCIOiDjCgowIjF0GQq+E+QAKYBFAnGLAJ5ILpvOePqoZt\nZzep6t5716q9fx+ebbqqVlW9Be27V9atFBGYmVm1+qoOwMzMnIzNzJLgZGxmlgAnYzOzBDgZm5kl\nwMnYzCwB61UdgJlZUYODg33A1BZfdunAwMCaFl+zNCdjM6uTqcCSFl9zGvBki69ZmpspzMwS4GRs\nZpYAJ2MzswS4zdjMau0tHzqLpX96rlDZqRtP5obzP9HmiMbGydjMam3p4HKWPrOiWGGpvcGMg5sp\nupCkfkmnSHpA0j2S5kmaK2mjcV73XEn3Sbp0jOcfLem48cTQDpK2lnT0Osq8QdIPOhWTlaC+cp9E\nuWbcnc4DNgbeGBHPAEg6CNgEeGYsF5S0OXAo8PIY47qrEXHOWM7rgG2AOUDT+CT1R8RvgMM7GpUV\nIxWv8bpmbJ0iaVvgIOBDw4kYICIujYiFeZl/yGu4d0u6UNLL8/2nSPqhpJ9Iul/S1ZI2ljQAXAtM\nAH4j6TOSPijpsob77i/puvznV0u6UdKd+T2+0HD9f8p/7pN0hqR789r7WZLWy499N6/JXy3pIUmX\nDB9r8rxrJJ0o6RZJj0p6t6QTJN2en/uWvFy/pCsl3Zbf83uSJuWX+SbwmvxvEJfn5X8r6TRJtwLn\nS5ol6c782JslPSxp43z7XySl+kVjNeFk3H12BxZExNPNDkqaDXwI2CcidgGWA6c1FNkL+EBEvI5s\nIPzRETEIvBNYFhG7R8RX87Ija8jD2/8b+I+I2C2/xzealDkaeAOwG7ArsC3wqYZyuwD7AzsAW5B9\nwYzmmYjYG/gI8D3giYjYEzgJ+BpARAwBh0fEXhGxE9nfEP4+P38O8FD+bAc0XHeTiHhjRLy/MfaI\n+BXwbeACSe8B3tRwLeu0LmmmSDcya5e/AX4UEcvy7W8Cb284fmVE/Cn/+WayJFnWDcBHJX1J0tuB\nwSZl3gacHxGrI2INWXJrjOOyiFiVN4ncto44/i3/8w5gA+BH+fZtwKsBJAk4Lq/93kP25bLrOp7j\n/NEORMTpwPpkTRvviYjn13Eta5fhZoqin0Q5GXefecB2kqYULD+ydruy4echRu9XWA30N2xPfOGC\nEf8O/BXwIFkt+adtjCMayg7l93++YXv4vCOAtwJvjoidga83xjyKZ0c7kDftzASeAzZfx3WsnVwz\nthRFxCPApcC5eVsvAJL+p6QZwNXAIZI2zA8dDVxV8PKN1YqHgZ0lTcjbc9/bcK9XA0si4nvAZ4A3\nNrnW1cAHJL0sP/8jJeIYLaZm28M2Bv4YEc/lifRDDceeAQaanjW6c4ELgUOAC0t8+VmriRI146qD\nHZ1HU3SnI4GTgVsl/ZnsS/cG4OqIuFLS64BbJA0B9wAfL3jdF2qvEXGrpJ8D9wO/A27ixaR7MPA+\nSc+T/fo3Gzb2LbKa5bz8ur8Ezhx5nzIxrePcfwXeLekBsrbwG4Ct82P3APdLuhd4JG83HjUGSccA\nUyLiS/n22fn1/65E3NYqZWq8CdeM5bdDm1ldDA4ObsaIVdted9hZLB0sNulj6sAk7v/hWjPwpg0M\nDFS+aptrxmZWc2U65tJtp3AyNrN665JminQj61H5hImb8gkLt0raseqYrD0knZlPLlkjaeeq46kt\nD22zNjkHmBsR2wNfBS6oOB5rn4vJhgAurDiOevPQNms1SZuRzUr7PmRTmIGtJM2sNDBri4i4MSJ+\nR8oNmXXgZGxtsBXw+3xG2rDFwPSK4jGzDnEHnpnVW5+yT9GyiXIyTstjwCsk9TXUjqeT1Y7NrBmp\nxGiKdJOxmykSEhFPks1Iez+ApIOBxyLi0UoDM0uZR1NYm8wBjpb0ENm6Dh+uOB5rk3zN5seALYGr\nJM2vOqZa6pIOPDdTJCYi5pOtj2tdLiLmVB2DpcPJ2MzqrUteu+RkbGb15unQZmYpKNN5t+6acb5G\n92WSHszf43jV8MSr/F2L8/LPvflU9tfnxyZJukjSgvzcl3pV2FpcMzazemtPzficiLgSXli/+lzg\nr/N3LZLvPwj4XETcl+86HlgZEdvlL3K4VdK1o72PcqQkk/Hg4GA/sN2I3U9RbtFxM0uTgE1G7Fsw\nMDAwNLartbbNOCJWAVc27LoFOK5J0f9FlqSHHUr2YgciYmH+tvQDgfOKhJZkMiZLxA9UHYSZdcyO\nZO9MTNGxwOWNOyRtBbwFeF/D7unAoobtRZRYyiDVZGxmVkwbZ+BJOpHszeRHjTj0QeCnEfFUqQu+\nBHfgmVm9tWkGnqTjgQOA2RGxcsThDwPfGbFvES++VxFgBiWWMnAyNrN6a8MMPEmfBg4D3h4Ry0Yc\nexvQHxFXjzjtErIZtEjaBpjFiOaNl5JqM8VaVf993/9PPP3M8ipi6biZr5rCmcfN5tivX8mjjxfq\niO0a+x15eNUhdNy0SXDEq+H7D8OSYu/VrLUN1+/jK++YMXL32P+63+LRFJK2BL4GPAJcJ0lkoyT2\nyYscSfNOuTOA8yQ9DKwGjinTjJFqMl5r1MTTzyxn6WBvJOOpAxMZGhpicNmKnnnmYcueH1uHep1N\n7oehIXjueVj2fNXRVGbsI6VaP5riCV6i1SAijhhl/3Ky2vSYuJnCzCwBqdaMzcyK6ZLp0E7GZlZv\nXijIzCwBXfKmDydjM6s314zNzKonCRVMskXLVSHd1mwzsx7imrGZ1VzxmnGR9Yyr4mRsZvVWbM34\nF8smysnYzGqtW9qMnYzNrNa6JRm7A8/MLAGuGZtZrXVLzdjJ2MxqzcnYzCwFHk1hZlY914zNzBLQ\nLcnYoynMzBLgmrGZ1Vq31IydjM2s1pyMzcxS4NEUZmbVU4lV25RwNnYyNrNay170UbSZos3BjINH\nU5iZJcA1YzOrNXfgmZmloEs68NxMYWb1lteMi3yKNBpLmiDpMkkPSrpT0lWSth1RZj9JqyV9omHf\nJEkXSVqQn3tQmcdwMjazWiuaiMs0ZwDnRMQOEbEb8BPgOw332wj4CvCzEeccD6yMiO2A2cDZkqYU\nvaGTsZnVWquTcUSsiogrG3bdAmzdsP0vwBeBp0aceigwN7/GQuA64MCiz+FkbGb20o4FLgeQdDAw\nFBE/bVJuOrCoYXtRvq8Qd+CZWa21czSFpBOBbYGjJG0OnATMKhtjEU7GZlZvbRpNIel44ADgbRGx\nUtJ+wBbAXcqy+qbA30naLCJOBhaTNWf8d36JGcBVRe/nZGxmtdaOmrGkTwOHkSXiZQAR8XPgFQ1l\nvgvcGRFn5bsuBuYAt0nahqwG/bGCj+FkbGb11upkLGlL4GvAI8B1eS14ZUTsM6JojNg+AzhP0sPA\nauCYiBjZyTcqJ2MzswYR8QQFBjdExJEjtpeT1abHxMnYzGrN06HNzFKRbo4tzMnYzGrNNWMzswQ4\nGZuZJaBbkrGnQ5uZJcA1YzOrtW557ZKTsZnVW5csLu9kbGa11i1txk7GZlZvZRaNdzI2M2uPgm9T\neqFsqjyawswsAa4Zm1mtuc3YzCwB3dJM4WRsZrXmmrGZWQJEiZpxWyMZHydjM6u1vj7R11cszRYt\nVwWPpjAzS0AlyVjSqyXdJOkhSbdK2rGKOMys/oY78Ip+UlVVzfgcYG5EbA98FbigojjMrOaGO/CK\nflLV8WQsaTPgDcD3ASLiUmArSTM7HYuZ1Z9rxmO3FfD7iFjTsG8xML2CWMys5rqlZlyb0RQzXzWF\nqQMTqw6jI6ZvMfAXf/aSLSZVHUHnTZ3wl392u8nrVx1BmqpIxo8Br5DU11A7nk5WOx7VmcfNZmho\nqO3BpeSUj86qOgTroANmVB1BZ/T3t/iCXrVtbCLiSUnzgPcDF0g6GHgsIh59qfOO/fqVDC5b0ZEY\nqzZ9iwFO+egsPv/t61n8h8Gqw+moNx3yrqpD6LipE7JEfPlCWLqq6mjab/L6cHILe4g8HXp85gDn\nSzoRGAQ+vK4THn38aZYOLm97YClZ/IdB5i9+quowOmpmb3zfNrV0FfyhB57/5S3+C263TIeuZGhb\nRMyPiDdFxPYRsVdE3F9FHGZWf60eTSFpgqTLJD0o6U5JVw2P9pL0f/L9Q5LeNeK8SZIukrQgL3NQ\nmefwDDwzq7U2jaY4JyJ2iIjdgJ8A5+b7fwHMBq5vcs7xwMqI2C4vc7akKUVv6GRsZtYgIlZFxJUN\nu24Bts6P3RERC2m+5tChwNy83ELgOuDAovetzdA2M7NmOrBq27HA5QXKTQcWNWwvosT8CSdjM6u1\ndnbg5YMMtgWOKh9ZOW6mMLNaa9d0aEnHAwcAsyNiZYFTFpE3Z+RmsI75E42cjM2s1rIkW7QDr+g1\n9WngMODtEbGsYCiXkA3bRdI2wCyKNW8ATsZmVnNtGNq2JfA1YAC4Lh/ednN+7CRJjwF7A9+RtFjS\n1PzUM4ANJD0MXAEcExGFJwq4zdjMrEFEPMEoFdWIOBU4dZRjy8lq02PiZGxmtdYtM/CcjM2s1rw2\nhZlZCrxqm5lZ9VwzNjNLQLe0GXtom5lZAlwzNrNa65aasZOxmdWa24zNzBIgStSMx7puWwc4GZtZ\nrXVLzdgdeGZmCXDN2MxqzR14ZmYJ6JZmCidjM6u1Pom+glm2aLkqOBmbWa25ZmxmloIuWSjIoynM\nzBLgmrGZ1Vqfsk/RsqlyMjazWvPQNjOzBLgDz8wsAcr/KVo2VU7GZlZr3dJm7NEUZmYJcM3YzGqt\npzrwJN0OxGjHI2KvlkVkZlaCKNGB19ZIxqdozfiEtkZhZjZGWZtx0bUp2hzMOBRKxhFxzfDPkvqB\nrSJiYbuCMjMrqtVD2ySdCbwL2BrYNSLuyffvCZwFTMg/50fEGfmxScC5wJ7AEHBSRFxa5jlKdeBJ\nejPwGHDDcHCSLihzDTOzlsrbjIt8Cmbti4G/AhaO2P8t4EsRsTuwL3C8pB3yY8cDKyNiO2A2cLak\nKWUeo+xoiq8Cs4ClABFxO7BHyWuYmSUrIm6MiN+xdhPzGmA4wW4IrAKeyrcPBebm5y8ErgMOLHPf\nsqMp1ouIBSN6JJ8veQ0zs5bp4Ay8I4EfSzoV2BQ4OiKW5MemA4sayi7K9xVWtma8StJk8pEVkl4L\nrCx5DTOzlhleXL7oZxxOAD4bEVsDrwe+3NBMMW5lk/GpwH8Cr5R0PnAtcHKrgjEzK0slP2O6hzQV\nODAifgQQEb8FbiFrW4asJrx1wykzgMVl7lEqGUfEFcAHyZLyPOAtEXF1mWuYmbVS0c67MpNDmnga\neFbSX+f33BR4I3BvfvwSYE5+bBuyvrXLy9xgLDPwngCGJ4E8NobzzcySJWkusD+wOXCVpGUR8RpJ\nhwJn5MN7XwZ8IyJuy087AzhP0sPAauCYiHiq2fVHUyoZS3or8ENgCVmNf1NJh0XE9WWuY2bWKq1e\nKCgi5oyy/xpGGT0WEcuBw4pF0VzZmvFZwEERcROApH2Ac4CdxxOEmdlY9dTaFA1iOBHnGzdLGnXN\nCjOzduuWxeXLjqa4RtL7hjckvRdwB56ZVaZDHXhtV3TVtifJOuwEfFLSt/NDE4A/Ase1Jzwzs5em\nEm3GCefiws0Ue7c1CjOzHld01bZH2h2ImdlY9GQHXj7Q+RRgF2Di8H4vLm9mVSkzsy7dVFy+A+9c\n4A/AFsBXyFZv+89WB2VmVlQfJdamSDgdl03GMyLiVLJ1Oy8D3g28rfVhmZkVMzy0regnVWXHGQ+v\n0Pa8pE3I5mtv2tqQzMyK68k2Y+DRfPWii8hWLPoTcGfLozIz6zGlknFEHJ7/+A1J84CNgZ+1PCoz\ns4K6ZQbeWFZtAyAiftnCOMzMxqTMovHjXFy+rcrOwGsqIqa1LCIzsxJ6rWbsGXhmlqSe6sBLYQbe\ngl+chlR2JF49rVj+HI/Mf4BfXvhZJm0wuepwOursmx6tOoSO27BvNfAMu03fiGfXjLnlsDYm9rc2\nIYriY3TTTcXlxxmbmVkbdP/XsJl1tZ5qpjAzS1WrX7tUlVLNFJI2kvTPkn6cb79W0iHtCc3MbN2G\nk3HRT6rKthnPJZt1t22+vRA4sZUBmZmVkQ1tK/qmj6qjHV3ZZLxDRPwj8Gd44Y2oCT+emVk9lG0z\nfr5xQ9JEnIzNrEI92WYM3CDpBGCCpLcC/wZc3vKozMwKEiWW0Kw62JdQNhmfBLwMWAF8A7gD+EKr\ngzIzK0pFF5bvhrdDD4uIPwNfzD9mZpXro3itMuVZbmXfgdd05EREfLk14ZiZldPqhYIknQm8C9ga\n2DUi7sn3/xKYTjaiDOCCiDgzPzaJ7LV0ewJDwEkRcWmJxyjdgbdZw88TgXcAvy55DTOzlF0MnA7c\nOGJ/AMdGxH80Oed4stfRbSdpBnCrpGsj4umiNy3bTPGpxu38bdHnlrmGmVkrZe3BxcuuS0TcCKDm\nDcyjtXQcChyZn79Q0nXAgcB5xSIbZxNKRPyRFyeAmJl1XIdfSHq6pLsl/UDSNg37pwOLGrYX5fsK\nK9tm/PGGzX7gjcCTZa5hZtZKHRxn/L6IeAJA0jHAT4HXjeuKDcq2Ge/T8PNq4AHg2FYFY2ZWVqub\nKUYznIjzn/+fpK9JmpK3Cy8i6/D777zIDOCqMtcvnIwl9QOXRoQneZhZMjrx2qU8/02NiCX59kHA\nHxo66C4B5gC35c0Xs4CPlblH4WQcEUOSPodn3JlZF5M0F9gf2By4StIyYBfgZ5LWJxtV8STZ8Ldh\nZwDnSXqYrNXgmIh4qsx9yzZT3C1pn4i4ueR5ZmZtoRJtxkVqxhExZ5RDe77EOcuBw4pF0VzZZLw7\n8CtJ84FnGwLZazxBmJmNlVDhNSeKl+y8ssn4022JwsxsjLpl1bZCyVjSDyLi8Ii4pt0BmZmV0S3J\nuOikjx3aGoWZWY8r2kwRbY3CzGyMyrxOqRuW0NxZUrNhGgIiIjZpYUxmZoX1UaKZoq2RjE/RZPwQ\n8M52BmJmNhadmPTRCUWT8aqIWLTuYmZmnaUS06G7oZki3Scws57WU6MpImK3dgdiZtbLyk76MDNL\nSq+1GZuZJakPlXghabrZ2MnYzGrNNWMzswR0Sweek7GZ1Vqn3vTRbilPSDEz6xmuGZtZrbnN2Mws\nAb02A8/MLEmuGZuZJaCP4p1fKXeSORmbWa11y3rGKX9RmJn1DNeMzazWRPFlJdOtFzsZm1nN9VFi\n0kfC6djJ2MxqzTVjM7MEdMvQNnfgmZk1kHSmpN9KWiNp54b950l6SNKdkn4laY+GY5MkXSRpgaQH\nJR1U9r5OxmZWa1nNWAU/hS55MfBXwMIR+/8d2DF/89FpeblhxwMrI2I7YDZwtqQpZZ7DydjMak28\nOPFjXZ8iuTgiboyI340sHhE/jYg1+eYtwCslDefQQ4G5ebmFwHXAgWWew23GZlZr5SZ9tOy2nwR+\n3pCcpwOLGo4vyvcV5mRsZrXW6dEUkt4HHAy8pQWXe4GbKcys1oq3F2vc06ElHQqcDPxNRDzZcGgR\nsHXD9gxgcZlrOxmbmRUg6RDgi2SJ+IkRhy8B5uTltgFmAZeXub6TsZnVWtHOu6Kru0maK+kxYEvg\nKknz80PfAyYAP86Ht81rGDFxBrCBpIeBK4BjIuKpMs/hNmMzq7VWd+BFxJxR9q//EucsBw4rFkVz\nTsZmVmueDm1mlgBPhx6j0aYampmNRR8q9UlVFR14o001NDPrWR1vpoiIGwGU8vtPzKw2uqWZwm3G\nZlZzSrjxobjaJOOVy5en/bXWQqtWrviLP3vJhn2rqw6h4yZp6MU/e2Dk/4Sir+UoyDXjDlv46AKG\nhoaqDqOjHl+8sOoQOm73SVVHUJ0dJz5XdQgd0d/fD0xr2fWyjrmiZdNVm2Q8Y+Z2aX+ttdCqlSt4\nfPFCXjV9BhMm9lZ2uvjukbNMu98kDbHjxOd4YOVkVkR/1eG03YR+MbOF13PNeIwkzQX2BzYnm2q4\nLCJes67zJm6wAS8uHdobJkycxKQNJlcdRkc9u6Y29YPWyX+tV0R/Tzz/6pQzYoWqGE3RdKqhmdlY\nuGZsZpYAlRhNkXAudjI2s3rrU/YpWjZVTsZmVmvdUjPurR4xM7NEuWZsZrUmSnTgtTWS8XEyNrNa\n65ZmCidjM6s1qXh7q4e2mZm1iWvGZmYJkEq8dinhbOzRFGZmCXDN2MxqzS8kNTNLQJ9EFC7b1lDG\nxcnYzGrNNWMzsxSUybAJZ2MnYzOrtW4Z2ubRFGZmI0iaLel2SXdJ+rWknfP9m0m6QtJ8SfdIenOr\n7umasZnVWqvHGUvaGPgesG9EPChpX+D7wE7A6cDNEfEOSXsAl0maERHjfkGnk7GZ1VobOvC2Bf4Y\nEQ8CRMSNkraStBvwnvw4EXGHpCeAWcC1JcNei5spzKzeVPKzbguAqZL2BpD0LuDlwDbAehGxpKHs\nImB6Kx7DNWMzq7UsxxbLskVGJEfEM5IOBk6TNBm4GfgvYMNxhLlOTsZmVm8l2oyLFoyI64G3Akha\nH/g9cCOwWtK0htrxDGBx8WBH52YKM7MRJG3RsPk54JqIeBS4GPhYXmZP4JXA9a24p2vGZlZrbZqB\n94V82Fo/WTPFR/L9JwAXSpoPrAKOaMVICnAyNrO6a8MMvIg4apT9S4C/LXHHwpyMzazWVGIOXlaq\n6LJCneVkbGa15sXlzcysZVwzNrNa8xKaZmYp8BKaZmbVcweemVkCuqUDz8nYzGqtW9qMPZrCzCwB\nrhmbWf2lXOUtyMnYzGqtfAdempyMzazWSnXgtTWS8XEyNrNa65YOPCdjM6u3lDNsCR5NYWaWANeM\nzazW3IFnZpaCMu/AS5iTsZnVWpesE+RkbGY1l3KGLcHJ2MxqTSUGt6Wctz2awswsAa4Zm1mtlVkW\nM+WasZOxmdWaO/DMzFKQcoYtwcnYzGrNHXhmZtYyTsZmVmtSuU+xa2p9Sf9X0nxJd0v613z/ZpKu\nyPffI+nNrXoON1OYWa21qQPvdGBNRLwGQNK0fP9pwM0R8Q5JewCXSZoREUMlwmjKydjM6q3FDcGS\nNgCOBLYc3hcRS/IfDwG2zffdIekJYBZw7Xjv62YKM6s1lfyngG2Bp4CTJN0u6XpJ+0naBFivITED\nLAKmt+I5nIzNrNba0Ga8HrA1cF9E7AkcC/ww39+2ARmpNlOs9cARa6qIoxoR9Pf3Q0RvPTcwsT/l\nwUftMaFP9Pf3M6FfrC4znaymJjT/b5zSgy8GhoCLACLiLkkLgZ2AP0ua1lA7npGXH7dUk/EmI3f8\necVzVcRRiT5g5syZwBDPL19WdTgddcROa/2n7xHTmFl1CNXaBFiyzlJNtLoDLyKWSroGmA1cIWkb\nsqT7X8DFwMeAz0vaE3glcH25iJtLNRmbmRXSprUpPgacK+l0slryURHxe0knABdKmg+sAo5oxUgK\ncDI2s9or837oYiLit8B+TfYvAf62pTfLORmbWb35tUtttQDYccS+p4CoIBYzay2xdr/QgvFcrBsk\nmYwHBgaGgAerjsPM2mZMnXXdLMlkbGZWVLeMBnQyNrNaK7OEZsqcjM2s/orm4oR7nTwduodIWijp\nAUl3SrpP0sdbdN2LJX0g//nzkg5fR/ldJB06xntNltR0WqKkUyR9o8A1CpVrct53JX2i7HnWXir5\nSZVrxr0lgEMi4l5J04F7JN0QEfc1FpLUP9aB7BFxSoFiuwHvBn40hluIpOs31mkqm2UT/e1xzbj3\nCCAiFgMPAa+RNCuvKX9H0jzgAEkbSvqWpFsk3SVprqT1ACRtL+kmSfdKugzY6IWLN9QeJb1M0lfz\ncndJ+rmkzYDPA2+VNE/S2XnZPSVdI+k2Sb+RdHDDNY/OF/P+DfDJQg8pvV7SryTdkT/biSOKTM/v\n94CkH0uakp+3nqSv5M89T9IPJQ2M7V+1WXFOxj1K0k7A9sDd+a4dgPMjYveIuBT4OnBDROwdEbsC\n/WSrVwFcCHw7InYCTiZbz7WZE4HtgN3ya7w/Ip4EPgdcl9/r43myOwd4b0TsBfwP4OuSXiHp9cA/\nAvtGxBuASQUf8bfAfhGxB7AHcLCkvRqO7wscFhE7Ao8DX8n3/wPwbP7cuwP3AacWvKdVoA1LaFbC\nzRS950eSVgDLgQ9HxCOSXgU8GhE3NpQ7ANhb0nH59kSyFateDuwKXAAQEfdJajyv0f7AZyJidV52\n6Sjl3gTMJFuUZfj/LWvIvix2An7esErWN4ETCjznBsA3Je2aX+tVedy35cd/ln8xAHwLuLThuTdq\nqJm/jCyxW6q6pJnCybj3HBIR9zbZ/2yTfQdFxMONO/JkPPLXeby/3iJbO3bftQ5kNfix+DLwJLBL\nRISkS8m+UEYz/AwC/j4irh7jfa3D0q3rluNmit5T9Hf3cuCzkvoBJG0saduIWAbcCXww3/86sr/y\nN/MT4FhJ6+dlN833PwM0tsP+GthG0tteCDIbcbEe2etsZje8g2xOwfinAI/niXh74O0jjr8zb78G\n+Ajwi4bn/pSkSXkckyS9tuA9rQLteCFpFZyMe0uZGuyngJXAXZLuBq4me/sBZIn4KEn3AF/gL9dz\nbbzH6WRrDszLOwbPz/dfA0zIO/XOjog/kTVpnJgPu7ufrA23LyLuJ2szvjHvwFtRMP4vAUdKuous\nlnzNiOO/An4g6QGy1+ac1BDz7cCt+XPfDOzS5NnMWkoR/v0ys3oYHBzcjBHrWgz1Ty5e5Y2gf2it\nF1VMGxgYeLJZ8U5ym7GZ1VrpccaJcjOFmVkCXDM2s1rrlpqxk7GZ1Zoa/nfd0u0jczOFmVkCXDM2\ns3orMX443Xqxk7GZ1VyXzIZ2MjazmnMHnplZ9cqtxibXjM3M2iH1NSeK8mgKM7MEuGZsZrXWJU3G\nTsZmVndB0PQdtU3LpsrJ2MxqbfXKtVZhqyW3GZuZJcDJ2MwsAU7GZmYJcJuxmdXJUmDaOkuVv2bl\n/NolM7NY2mPMAAAAKElEQVQEuJnCzCwBTsZmZglwMjYzS4CTsZlZApyMzcwS4GRsZpaA/w/YE5v9\n4YzFcwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7fc7433f4ef0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"cm, accuracy, model = cluster([fv_lexical, fv_punct],['Lexical', 'Punct'])\n",
"pl.matshow(cm, cmap=plt.cm.Blues)\n",
"pl.title('Confusion matrix')\n",
"pl.colorbar()\n",
"pl.ylabel('True label')\n",
"pl.xlabel('Predicted label')\n",
"print(accuracy)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Still not as good as word/sentence based features alone.\n",
"\n",
"We could try and construct more features like n-grams etc and use them in the clustering model, but where it the fun in that.\n",
"\n",
"Instead we'll try a different tack and use n-grams and character grams "
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,\n",
" 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model[0].predict(fv_lexical[s2:f2, :])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Support vector machine with n-gram vectors"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We want to train the model on books by Clancy and Greaney, and we'll then use the model to see how it predicts books written by Greaney under the Tom Clancy brand.\n",
"\n",
"For the model we'll use a support vector machine and determine features from the books based on both word and character n-grams."
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"There are 328 chapters from Tom Clancy books and 194 chapters from Mark Greaney books\n",
"There are 133 chapters from Tom Clancy books written by Mark Greaney\n"
]
}
],
"source": [
"print('There are {0} chapters from Tom Clancy books and {1} chapters from Mark Greaney books'.\n",
" format(len(dfBooks[dfBooks.author=='Clancy']),\n",
" len(dfBooks[dfBooks.author=='Greaney'])))\n",
"\n",
"print('There are {0} chapters from Tom Clancy books written by Mark Greaney'.\n",
" format(len(dfBooks[dfBooks.author=='Ghost'])))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, we'll create an array of dicts where each dict is a chapter from a book labeled with the author who wrote it. \n",
"\n",
"We want to train the model on books written by Tom Clancy, and books Mark Greaney wrote under his own name. So, we'll exclude 'ghost' written books from the model fitting process"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"trainset = []\n",
"df_ = dfBooks.loc[(dfBooks.author != 'Ghost'), :]\n",
"for author, chapter in zip(df_.author.values, df_.chapter_text.values):\n",
" trainset.append({\"label\":author,\n",
" \"text\":chapter})"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of training instances: 522\n",
"Number of training classes: 2\n"
]
}
],
"source": [
"corpus = []\n",
"classes = []\n",
"\n",
"for item in trainset:\n",
" corpus.append( item['text'])\n",
" classes.append( item['label'])\n",
" \n",
"print(\"Number of training instances: \", len(classes))\n",
"print(\"Number of training classes: \", len(set(classes)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Scikit learn includes various vecotriser methods.\n",
"\n",
"Ultimately we'll use the Tfidf vectoriser, but to see how the vecotriser works, we can look a simple count vectorisers first.\n",
"\n",
"We'll specify two vectorisers:\n",
"* one based on bi-grams for words\n",
"* one based on 2-grams for characters.\n",
"\n",
"Once we've defined the vecotrisers, we pass the chapter text to them to generate features"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<522x2000 sparse matrix of type '<class 'numpy.int64'>'\n",
"\twith 961464 stored elements in Compressed Sparse Row format>"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"word_count = CountVectorizer( analyzer='word', ngram_range=(2,2), max_features=2000)\n",
"char_count = CountVectorizer( analyzer='char', ngram_range=(2,3), min_df=0, max_features=2000)\n",
"\n",
"word_count.fit_transform(corpus)\n",
"char_count.fit_transform(corpus)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"{'hell of': 547,\n",
" 'must have': 877,\n",
" 'and was': 97,\n",
" 'our country': 1015,\n",
" 'series of': 1109,\n",
" 'his men': 601,\n",
" 'over and': 1029,\n",
" 'the tv': 1467,\n",
" 'than he': 1175,\n",
" 'but they': 225,\n",
" 'it you': 742,\n",
" 'not in': 902,\n",
" 'one at': 983,\n",
" 'were not': 1865,\n",
" 'all three': 33,\n",
" 'for me': 378,\n",
" 'door to': 324,\n",
" 'the door': 1287,\n",
" 'piece of': 1044,\n",
" 'would take': 1951,\n",
" 'ten minutes': 1174,\n",
" 'well as': 1851,\n",
" 'she had': 1118,\n",
" 'that if': 1190,\n",
" 'the guy': 1322,\n",
" 'in it': 661,\n",
" 'comrade general': 265,\n",
" 'the eyes': 1299,\n",
" 'man in': 833,\n",
" 'of his': 932,\n",
" 'right hand': 1066,\n",
" 'down at': 326,\n",
" 'in their': 671,\n",
" 'he learned': 507,\n",
" 'the soldiers': 1437,\n",
" 'for what': 392,\n",
" 'and he': 57,\n",
" 'lots of': 820,\n",
" 'the archer': 1234,\n",
" 'he not': 516,\n",
" 'he be': 482,\n",
" 'all right': 29,\n",
" 'in front': 658,\n",
" 'at the': 159,\n",
" 'his chair': 584,\n",
" 'and other': 74,\n",
" 'do so': 305,\n",
" 'how are': 622,\n",
" 'he looked': 510,\n",
" 'as possible': 134,\n",
" 'as they': 138,\n",
" 'and her': 59,\n",
" 'to himself': 1639,\n",
" 'all this': 32,\n",
" 'to put': 1661,\n",
" 'the soviet': 1442,\n",
" 'below the': 204,\n",
" 'told the': 1694,\n",
" 'his back': 580,\n",
" 'care of': 249,\n",
" 'down to': 330,\n",
" 'think we': 1561,\n",
" 'it at': 702,\n",
" 'the president': 1402,\n",
" 'could see': 273,\n",
" 'things were': 1554,\n",
" 'the house': 1329,\n",
" 'down and': 325,\n",
" 'as she': 135,\n",
" 'her eyes': 549,\n",
" 'to what': 1686,\n",
" 'walked out': 1760,\n",
" 'worry about': 1945,\n",
" 'time the': 1606,\n",
" 'they saw': 1542,\n",
" 'way of': 1826,\n",
" 'his own': 605,\n",
" 'know the': 766,\n",
" 'to drive': 1625,\n",
" 'had he': 445,\n",
" 'and pulled': 76,\n",
" 'side of': 1128,\n",
" 'you think': 1991,\n",
" 'and no': 69,\n",
" 'us to': 1746,\n",
" 'ma am': 821,\n",
" 'his eyes': 588,\n",
" 'had done': 440,\n",
" 'this point': 1573,\n",
" 'as the': 137,\n",
" 'the cops': 1273,\n",
" 'make the': 829,\n",
" 'to understand': 1681,\n",
" 'sat down': 1093,\n",
" 'as he': 127,\n",
" 'his first': 593,\n",
" 'she was': 1123,\n",
" 'willing to': 1920,\n",
" 'to run': 1662,\n",
" 'back up': 176,\n",
" 'it would': 741,\n",
" 'to this': 1678,\n",
" 'he needed': 514,\n",
" 'and the': 85,\n",
" 'would be': 1946,\n",
" 'been in': 193,\n",
" 'he been': 483,\n",
" 'over there': 1032,\n",
" 'to stop': 1669,\n",
" 'turned and': 1710,\n",
" 'it just': 718,\n",
" 'here to': 559,\n",
" 'the people': 1394,\n",
" 'wondered if': 1940,\n",
" 'two hours': 1719,\n",
" 'see that': 1102,\n",
" 'at their': 160,\n",
" 'not even': 899,\n",
" 'in an': 650,\n",
" 'saw that': 1094,\n",
" 'and had': 54,\n",
" 'the gray': 1318,\n",
" 'all that': 30,\n",
" 'you just': 1975,\n",
" 'jack said': 745,\n",
" 'he would': 542,\n",
" 'the girl': 1315,\n",
" 'on them': 976,\n",
" 'the sea': 1426,\n",
" 'the political': 1400,\n",
" 'do something': 306,\n",
" 'said it': 1082,\n",
" 'in with': 679,\n",
" 'the night': 1376,\n",
" 'though the': 1584,\n",
" 'last time': 776,\n",
" 'they want': 1544,\n",
" 'and right': 77,\n",
" 'him to': 572,\n",
" 'two days': 1718,\n",
" 'are you': 118,\n",
" 'the weapon': 1478,\n",
" 've been': 1751,\n",
" 'we ve': 1847,\n",
" 'no way': 892,\n",
" 'to his': 1640,\n",
" 'was still': 1807,\n",
" 'not much': 904,\n",
" 'same thing': 1090,\n",
" 'minutes the': 863,\n",
" 'the white': 1481,\n",
" 'way that': 1828,\n",
" 'this place': 1572,\n",
" 'to say': 1663,\n",
" 'ready to': 1058,\n",
" 'she did': 1116,\n",
" 'when the': 1892,\n",
" 'he made': 511,\n",
" 'the men': 1359,\n",
" 'number of': 924,\n",
" 'way and': 1823,\n",
" 'was there': 1813,\n",
" 'course but': 278,\n",
" 'you re': 1982,\n",
" 'and at': 45,\n",
" 'and you': 106,\n",
" 'you want': 1994,\n",
" 'of things': 948,\n",
" 'the ship': 1432,\n",
" 'eyes and': 350,\n",
" 'told himself': 1692,\n",
" 'said as': 1079,\n",
" 'he remembered': 520,\n",
" 'they know': 1538,\n",
" 'while the': 1905,\n",
" 'the phone': 1395,\n",
" 'even though': 345,\n",
" 'this sort': 1574,\n",
" 'one the': 992,\n",
" 'don you': 321,\n",
" 'national security': 879,\n",
" 'an hour': 38,\n",
" 'in this': 673,\n",
" 'an american': 36,\n",
" 'the good': 1316,\n",
" 'all in': 26,\n",
" 'for several': 383,\n",
" 'as much': 133,\n",
" 'they could': 1528,\n",
" 'which was': 1903,\n",
" 'but for': 211,\n",
" 'did not': 290,\n",
" 'is in': 689,\n",
" 'wanted to': 1764,\n",
" 'his phone': 607,\n",
" 'can see': 244,\n",
" 'the big': 1245,\n",
" 'to know': 1645,\n",
" 'by the': 231,\n",
" 'to us': 1682,\n",
" 'twenty five': 1716,\n",
" 'they didn': 1530,\n",
" 've never': 1754,\n",
" 'it wasn': 737,\n",
" 'to have': 1634,\n",
" 'the word': 1486,\n",
" 'half of': 461,\n",
" 'to speak': 1666,\n",
" 'outside the': 1028,\n",
" 'none of': 893,\n",
" 'man with': 837,\n",
" 'turned back': 1712,\n",
" 'talking about': 1167,\n",
" 'in her': 659,\n",
" 'in place': 667,\n",
" 'and while': 103,\n",
" 'before they': 198,\n",
" 'he had': 497,\n",
" 'you in': 1974,\n",
" 'work the': 1942,\n",
" 'll get': 803,\n",
" 'five minutes': 367,\n",
" 'll have': 804,\n",
" 'the same': 1423,\n",
" 'he seen': 523,\n",
" 'in case': 654,\n",
" 'left hand': 782,\n",
" 'the pain': 1390,\n",
" 'where they': 1898,\n",
" 'tell me': 1170,\n",
" 'as though': 139,\n",
" 'come in': 261,\n",
" 'the first': 1307,\n",
" 'after the': 15,\n",
" 'and another': 43,\n",
" 'and would': 105,\n",
" 'think you': 1562,\n",
" 'and looked': 66,\n",
" 'in from': 657,\n",
" 'the lieutenant': 1345,\n",
" 'time and': 1600,\n",
" 'something that': 1151,\n",
" 'needed to': 882,\n",
" 'we will': 1850,\n",
" 'set up': 1112,\n",
" 'and when': 102,\n",
" 'had once': 453,\n",
" 'how do': 624,\n",
" 'to you': 1689,\n",
" 'back at': 168,\n",
" 'not been': 898,\n",
" 'see the': 1103,\n",
" 'watching the': 1822,\n",
" 'said we': 1087,\n",
" 'his time': 614,\n",
" 'to go': 1633,\n",
" 'of these': 946,\n",
" 'he has': 499,\n",
" 'what that': 1882,\n",
" 'the others': 1389,\n",
" 'next to': 886,\n",
" 'there wasn': 1519,\n",
" 'waiting for': 1759,\n",
" 'and all': 41,\n",
" 'and saw': 79,\n",
" 'hundred feet': 633,\n",
" 'of what': 955,\n",
" 'so we': 1142,\n",
" 'could get': 270,\n",
" 'as long': 132,\n",
" 'had learned': 448,\n",
" 'what is': 1879,\n",
" 'that all': 1180,\n",
" 'to ask': 1610,\n",
" 'hadn been': 459,\n",
" 'both men': 208,\n",
" 'did so': 291,\n",
" 'the river': 1416,\n",
" 'is the': 695,\n",
" 'me the': 845,\n",
" 'director of': 302,\n",
" 'heard the': 546,\n",
" 'call it': 232,\n",
" 'nothing to': 913,\n",
" 'don have': 316,\n",
" 'you do': 1966,\n",
" 'for him': 375,\n",
" 'himself that': 577,\n",
" 'the wrong': 1489,\n",
" 'the director': 1285,\n",
" 'the young': 1490,\n",
" 'back down': 169,\n",
" 'now he': 916,\n",
" 'his name': 603,\n",
" 'of time': 952,\n",
" 'so long': 1136,\n",
" 'the story': 1446,\n",
" 'enough for': 338,\n",
" 'we don': 1835,\n",
" 'to help': 1636,\n",
" 'the sonar': 1438,\n",
" 'not know': 903,\n",
" 'not yet': 911,\n",
" 'the chairman': 1261,\n",
" 'can do': 241,\n",
" 'the parking': 1391,\n",
" 'was no': 1793,\n",
" 'very well': 1757,\n",
" 'to leave': 1647,\n",
" 'this the': 1575,\n",
" 'too many': 1700,\n",
" 'thought of': 1590,\n",
" 'this was': 1578,\n",
" 'the thought': 1459,\n",
" 'to play': 1659,\n",
" 'of my': 936,\n",
" 'moment he': 865,\n",
" 'll be': 802,\n",
" 'way he': 1824,\n",
" 'at his': 151,\n",
" 'going on': 424,\n",
" 'the battle': 1241,\n",
" 'didn even': 295,\n",
" 'looking for': 817,\n",
" 'so far': 1133,\n",
" 'to bring': 1615,\n",
" 'pretty good': 1049,\n",
" 'it ll': 719,\n",
" 'but then': 223,\n",
" 'and down': 48,\n",
" 'and just': 65,\n",
" 'was too': 1816,\n",
" 'the right': 1415,\n",
" 'all about': 21,\n",
" 'he felt': 494,\n",
" 'maybe he': 843,\n",
" 'to pay': 1657,\n",
" 'in few': 656,\n",
" 'all he': 24,\n",
" 'chief of': 255,\n",
" 'is an': 686,\n",
" 'as good': 126,\n",
" 'there is': 1515,\n",
" 'the one': 1383,\n",
" 'of staff': 940,\n",
" 'you don': 1967,\n",
" 'as far': 125,\n",
" 'up he': 1738,\n",
" 'seconds later': 1097,\n",
" 'the base': 1240,\n",
" 'the former': 1310,\n",
" 'the hill': 1328,\n",
" 'of our': 938,\n",
" 'while he': 1904,\n",
" 'with all': 1922,\n",
" 'found the': 400,\n",
" 'how much': 629,\n",
" 'now what': 922,\n",
" 'we ll': 1842,\n",
" 'the entire': 1296,\n",
" 'could be': 268,\n",
" 'if the': 642,\n",
" 'he told': 530,\n",
" 'you might': 1979,\n",
" 'what did': 1872,\n",
" 'with her': 1924,\n",
" 'the open': 1386,\n",
" 'knew the': 760,\n",
" 'how it': 626,\n",
" 'deal with': 283,\n",
" 'was more': 1792,\n",
" 'he wanted': 536,\n",
" 'the israelis': 1333,\n",
" 'at least': 154,\n",
" 'his body': 581,\n",
" 'though he': 1582,\n",
" 'she looked': 1120,\n",
" 'was looking': 1791,\n",
" 'was already': 1769,\n",
" 'why he': 1912,\n",
" 'is it': 690,\n",
" 'leaving the': 780,\n",
" 'five years': 368,\n",
" 'it might': 721,\n",
" 'kind of': 755,\n",
" 'the answer': 1233,\n",
" 'him with': 574,\n",
" 'unable to': 1727,\n",
" 'us the': 1745,\n",
" 'to follow': 1630,\n",
" 'to stay': 1668,\n",
" 'for all': 370,\n",
" 'that what': 1219,\n",
" 'in and': 651,\n",
" 'the time': 1461,\n",
" 'looked down': 812,\n",
" 'hundred yards': 636,\n",
" 'the secret': 1428,\n",
" 'be on': 184,\n",
" 'of you': 957,\n",
" 'the money': 1366,\n",
" 'in america': 649,\n",
" 'face and': 352,\n",
" 'do it': 303,\n",
" 'again and': 16,\n",
" 'that one': 1202,\n",
" 'and made': 67,\n",
" 'he stood': 527,\n",
" 'the operation': 1387,\n",
" 'get it': 415,\n",
" 'and have': 56,\n",
" 'the back': 1238,\n",
" 'the far': 1303,\n",
" 'but not': 218,\n",
" 'the idea': 1330,\n",
" 'what if': 1878,\n",
" 'made him': 823,\n",
" 'the real': 1410,\n",
" 'thing he': 1549,\n",
" 'he can': 485,\n",
" 'that didn': 1184,\n",
" 'what it': 1880,\n",
" 'soviet union': 1157,\n",
" 'the surface': 1451,\n",
" 'the navy': 1372,\n",
" 'it they': 731,\n",
" 'matter of': 841,\n",
" 'he called': 484,\n",
" 'that of': 1201,\n",
" 'we got': 1837,\n",
" 'here and': 555,\n",
" 'contact with': 266,\n",
" 'her face': 550,\n",
" 'the body': 1248,\n",
" 'is to': 697,\n",
" 'the end': 1293,\n",
" 'his car': 583,\n",
" 'you can': 1962,\n",
" 'you for': 1968,\n",
" 'her and': 548,\n",
" 'is not': 692,\n",
" 'as it': 131,\n",
" 'get him': 414,\n",
" 'all over': 28,\n",
" 'said he': 1080,\n",
" 'on to': 978,\n",
" 'the voice': 1473,\n",
" 'to do': 1624,\n",
" 'for more': 380,\n",
" 'enough that': 339,\n",
" 'the major': 1353,\n",
" 'the stairs': 1444,\n",
" 'it into': 715,\n",
" 'the chance': 1262,\n",
" 'the streets': 1448,\n",
" 'who would': 1911,\n",
" 'something else': 1148,\n",
" 'thing to': 1551,\n",
" 'one hundred': 986,\n",
" 'around his': 121,\n",
" 'felt the': 357,\n",
" 'the process': 1405,\n",
" 'on an': 963,\n",
" 'for few': 373,\n",
" 'thought he': 1588,\n",
" 'like he': 792,\n",
" 'thank you': 1179,\n",
" 'this guy': 1566,\n",
" 'there would': 1521,\n",
" 'reason to': 1060,\n",
" 'on the': 974,\n",
" 'he used': 534,\n",
" 'toward the': 1705,\n",
" 'one in': 987,\n",
" 'the rear': 1411,\n",
" 'la rocha': 774,\n",
" 'the soviets': 1443,\n",
" 'very good': 1755,\n",
" 'for that': 385,\n",
" 'you should': 1987,\n",
" 'nothing more': 912,\n",
" 'this one': 1571,\n",
" 'to your': 1690,\n",
" 'of here': 930,\n",
" 'if he': 638,\n",
" 'knew it': 758,\n",
" 'the news': 1374,\n",
" 'him and': 560,\n",
" 'the attack': 1237,\n",
" 'the middle': 1361,\n",
" 'why the': 1914,\n",
" 'mr president': 871,\n",
" 'will not': 1918,\n",
" 'back of': 172,\n",
" 'he found': 495,\n",
" 'the information': 1331,\n",
" 'some sort': 1146,\n",
" 'close to': 257,\n",
" 'white house': 1906,\n",
" 'he reached': 518,\n",
" 'the sergeant': 1431,\n",
" 'other than': 1013,\n",
" 'off the': 961,\n",
" 'many of': 839,\n",
" 'and from': 51,\n",
" 'with him': 1925,\n",
" 'on him': 966,\n",
" 'the law': 1341,\n",
" 'the war': 1475,\n",
" 'asked he': 144,\n",
" 'we can': 1832,\n",
" 'three hundred': 1596,\n",
" 'exactly what': 346,\n",
" 'to catch': 1617,\n",
" 'and headed': 58,\n",
" 'is this': 696,\n",
" 'the game': 1313,\n",
" 'the team': 1456,\n",
" 'hit the': 620,\n",
" 'that not': 1200,\n",
" 'force base': 397,\n",
" 'it could': 706,\n",
" 'in your': 680,\n",
" 'if there': 643,\n",
" 'to call': 1616,\n",
" 'his country': 586,\n",
" 'which the': 1901,\n",
" 'he pulled': 517,\n",
" 'the point': 1398,\n",
" 'was something': 1806,\n",
" 'and took': 93,\n",
" 'as an': 124,\n",
" 'the bomb': 1249,\n",
" 'told him': 1691,\n",
" 'the van': 1471,\n",
" 'first time': 365,\n",
" 'we are': 1831,\n",
" 'of your': 958,\n",
" 'one had': 984,\n",
" 'the head': 1325,\n",
" 'knowing that': 772,\n",
" 'who the': 1908,\n",
" 'on her': 965,\n",
" 'wouldn be': 1953,\n",
" 'and if': 62,\n",
" 'the elevator': 1291,\n",
" 'took the': 1703,\n",
" 'by his': 230,\n",
" 'out the': 1024,\n",
" 'the radar': 1408,\n",
" 'he and': 480,\n",
" 'you to': 1992,\n",
" 'the truth': 1466,\n",
" 'she would': 1124,\n",
" 'the kgb': 1336,\n",
" 'be able': 177,\n",
" 'thought about': 1586,\n",
" 'came up': 239,\n",
" 'coast guard': 258,\n",
" 'as to': 140,\n",
" 'the computer': 1271,\n",
" 'same way': 1092,\n",
" 'pair of': 1034,\n",
" 'men and': 850,\n",
" 'within the': 1938,\n",
" 'to check': 1619,\n",
" 'eyes were': 351,\n",
" 'for them': 388,\n",
" 'until he': 1732,\n",
" 'return to': 1063,\n",
" 'in the': 670,\n",
" 'they ve': 1543,\n",
" 'to the': 1674,\n",
" 'looked around': 810,\n",
" 'minute later': 861,\n",
" 'you have': 1973,\n",
" 'in another': 652,\n",
" 'back the': 174,\n",
" 'didn like': 298,\n",
" 'you guys': 1971,\n",
" 'was little': 1790,\n",
" 'it from': 710,\n",
" 'they knew': 1537,\n",
" 'happened to': 464,\n",
" 'it he': 713,\n",
" 'to die': 1623,\n",
" 'the admiral': 1225,\n",
" 'asked himself': 145,\n",
" 'was to': 1815,\n",
" 'is he': 688,\n",
" 'the usual': 1470,\n",
" 'turned out': 1713,\n",
" 'the system': 1452,\n",
" 'don think': 319,\n",
" 'think it': 1557,\n",
" 'it we': 738,\n",
" 'hours of': 621,\n",
" 'knew what': 761,\n",
" 'made the': 826,\n",
" 'way to': 1830,\n",
" 'said to': 1086,\n",
" 'not sure': 907,\n",
" 'lifted his': 789,\n",
" 'the trees': 1464,\n",
" 'an old': 40,\n",
" 'he got': 496,\n",
" 'to kill': 1644,\n",
" 'rest of': 1062,\n",
" 'able to': 1,\n",
" 'was clear': 1777,\n",
" 'middle of': 856,\n",
" 'told you': 1696,\n",
" 'but it': 216,\n",
" 'did he': 288,\n",
" 'get some': 417,\n",
" 'himself the': 578,\n",
" 'could have': 271,\n",
" 'the tape': 1454,\n",
" 'could tell': 274,\n",
" 'at once': 155,\n",
" 'he left': 508,\n",
" 'one who': 997,\n",
" 'talk to': 1166,\n",
" 'of one': 937,\n",
" 'have the': 475,\n",
" 'two weeks': 1725,\n",
" 'even the': 344,\n",
" 'place to': 1046,\n",
" 'you that': 1989,\n",
" 'of people': 939,\n",
" 'up for': 1736,\n",
" 'if this': 645,\n",
" 'the most': 1369,\n",
" 'the edge': 1290,\n",
" 'we want': 1848,\n",
" 'people in': 1038,\n",
" 'had gone': 442,\n",
" 'later the': 778,\n",
" 'the party': 1392,\n",
" 'you are': 1961,\n",
" 'know about': 762,\n",
" 'we just': 1840,\n",
" 'the chief': 1264,\n",
" 'the country': 1275,\n",
" 'that were': 1218,\n",
" 'then it': 1505,\n",
" 'what else': 1874,\n",
" 'edge of': 336,\n",
" 'didn know': 297,\n",
" 'the call': 1254,\n",
" 'said the': 1085,\n",
" 'the national': 1371,\n",
" 'he kept': 505,\n",
" 'think about': 1555,\n",
" 'his hand': 595,\n",
" 'to see': 1664,\n",
" 'you say': 1985,\n",
" 'sir we': 1131,\n",
" 'it up': 735,\n",
" 'you did': 1964,\n",
" 'did it': 289,\n",
" 'his friend': 594,\n",
" 'the darkness': 1279,\n",
" 'so what': 1143,\n",
" 'had made': 449,\n",
" 'the state': 1445,\n",
" 'to think': 1677,\n",
" 'back into': 171,\n",
" 'what to': 1885,\n",
" 'of us': 954,\n",
" 'right and': 1065,\n",
" 'for you': 395,\n",
" 'time of': 1605,\n",
" 'talk about': 1165,\n",
" 'we do': 1834,\n",
" 'now it': 917,\n",
" 'what had': 1875,\n",
" 'you will': 1996,\n",
" 'the city': 1266,\n",
" 'was right': 1804,\n",
" 'there are': 1511,\n",
" 'out to': 1026,\n",
" 'tell the': 1171,\n",
" 'at sea': 157,\n",
" 'to give': 1632,\n",
" 'her husband': 552,\n",
" 'his father': 591,\n",
" 'and this': 90,\n",
" 'trying to': 1709,\n",
" 'are in': 113,\n",
" 'hard to': 465,\n",
" 'he was': 537,\n",
" 'this time': 1576,\n",
" 'the flight': 1308,\n",
" 'very much': 1756,\n",
" 'down in': 327,\n",
" 'the problem': 1404,\n",
" 'to avoid': 1611,\n",
" 'the united': 1469,\n",
" 'the americans': 1232,\n",
" 'each of': 333,\n",
" 'they ll': 1539,\n",
" 'took his': 1702,\n",
" 'keep the': 753,\n",
" 'his right': 611,\n",
" 'ready for': 1057,\n",
" 'what they': 1884,\n",
" 'they did': 1529,\n",
" 'then they': 1507,\n",
" 'opened the': 1004,\n",
" 'the cold': 1268,\n",
" 'with that': 1931,\n",
" 'like it': 793,\n",
" 'they be': 1525,\n",
" 'realized that': 1059,\n",
" 'much as': 872,\n",
" 'over to': 1033,\n",
" 'of course': 928,\n",
" 'he decided': 489,\n",
" 'it with': 740,\n",
" 'just that': 750,\n",
" 'the security': 1429,\n",
" 'to change': 1618,\n",
" 'that good': 1186,\n",
" 'year old': 1954,\n",
" 'it took': 734,\n",
" 'the line': 1348,\n",
" 'not going': 900,\n",
" 'order to': 1010,\n",
" 'one of': 990,\n",
" 'what he': 1877,\n",
" 'along with': 35,\n",
" 'that might': 1197,\n",
" 'was probably': 1803,\n",
" 'of men': 935,\n",
" 'set of': 1110,\n",
" 'place and': 1045,\n",
" 'his chest': 585,\n",
" 'it has': 712,\n",
" 'he heard': 501,\n",
" 'country and': 275,\n",
" 'man and': 830,\n",
" 'that we': 1217,\n",
" 'on his': 967,\n",
" 'what would': 1888,\n",
" 'the crowd': 1277,\n",
" 'though they': 1585,\n",
" 'that no': 1199,\n",
" 'you and': 1960,\n",
" 'up from': 1737,\n",
" 'that way': 1216,\n",
" 'for an': 371,\n",
" 'but you': 229,\n",
" 'and an': 42,\n",
" 'had the': 456,\n",
" 'how you': 632,\n",
" 'of which': 956,\n",
" 'that could': 1183,\n",
" 'and to': 92,\n",
" 'have to': 476,\n",
" 'they will': 1547,\n",
" 'it to': 732,\n",
" 'one that': 991,\n",
" 'have been': 470,\n",
" 'men had': 851,\n",
" 'time he': 1602,\n",
" 'to deal': 1622,\n",
" 'down the': 329,\n",
" 'the officer': 1381,\n",
" 'point of': 1047,\n",
" 'me that': 844,\n",
" 'yet another': 1959,\n",
" 'time for': 1601,\n",
" 'did you': 294,\n",
" 'the main': 1352,\n",
" 'secretary of': 1099,\n",
" 'you tell': 1988,\n",
" 'her head': 551,\n",
" 'no sir': 891,\n",
" 'the rest': 1414,\n",
" 'and two': 95,\n",
" 'head of': 544,\n",
" 'thirty minutes': 1564,\n",
" 'said that': 1084,\n",
" 'over his': 1030,\n",
" 'along the': 34,\n",
" 'one to': 994,\n",
" 'the marine': 1356,\n",
" 'an eye': 37,\n",
" 'away and': 164,\n",
" 'was also': 1770,\n",
" 'the fbi': 1304,\n",
" 'years ago': 1955,\n",
" 'she knew': 1119,\n",
" 'don want': 320,\n",
" 'the window': 1484,\n",
" 'that too': 1213,\n",
" 'too bad': 1697,\n",
" 'just one': 749,\n",
" 'to keep': 1643,\n",
" 'he held': 502,\n",
" 'and though': 91,\n",
" 'head and': 543,\n",
" 'would never': 1949,\n",
" 'what the': 1883,\n",
" 'see you': 1105,\n",
" 'went back': 1855,\n",
" 'the second': 1427,\n",
" 'was good': 1782,\n",
" 'members of': 849,\n",
" 'and they': 89,\n",
" 'we could': 1833,\n",
" 'the little': 1349,\n",
" 'you had': 1972,\n",
" 'as soon': 136,\n",
" 'can say': 243,\n",
" 'which they': 1902,\n",
" 'on that': 973,\n",
" 'the rules': 1420,\n",
" 'to make': 1650,\n",
" 'inside the': 681,\n",
" 'him for': 563,\n",
" 'out that': 1023,\n",
" 'four hours': 401,\n",
" 'the latter': 1340,\n",
" 'the data': 1280,\n",
" 'this way': 1579,\n",
" 'coming in': 264,\n",
" 'with one': 1929,\n",
" 'the building': 1252,\n",
" 'got the': 432,\n",
" 'of them': 945,\n",
" 'thousand feet': 1594,\n",
" 'entered the': 341,\n",
" 'thought to': 1593,\n",
" 'what she': 1881,\n",
" 'would have': 1948,\n",
" 'knew he': 756,\n",
" 'two men': 1721,\n",
" 'may be': 842,\n",
" 'the question': 1407,\n",
" 'the sound': 1440,\n",
" 'said after': 1077,\n",
" 'had already': 436,\n",
" 'for us': 391,\n",
" 'good news': 428,\n",
" 'few seconds': 361,\n",
" 'was very': 1817,\n",
" 'was almost': 1768,\n",
" 'through his': 1598,\n",
" 'so much': 1138,\n",
" 'red october': 1061,\n",
" 'enough to': 340,\n",
" 'and got': 53,\n",
" 'the four': 1311,\n",
" 'handed over': 463,\n",
" 'who were': 1910,\n",
" 'past the': 1037,\n",
" 'of it': 933,\n",
" 'about the': 5,\n",
" 'came to': 238,\n",
" 'pulled out': 1051,\n",
" 'looking at': 816,\n",
" 'called the': 233,\n",
" 'give you': 421,\n",
" 'away the': 166,\n",
" 'them in': 1497,\n",
" 'it over': 727,\n",
" 'come on': 262,\n",
" 'an instant': 39,\n",
" 'to her': 1637,\n",
" 'than one': 1176,\n",
" 'to be': 1612,\n",
" 'him out': 569,\n",
" 'was back': 1775,\n",
" 'about to': 7,\n",
" 'then we': 1508,\n",
" 'tell them': 1172,\n",
" 'this is': 1568,\n",
" 'know it': 764,\n",
" 'the two': 1468,\n",
" 'we must': 1843,\n",
" 'on their': 975,\n",
" 'not the': 909,\n",
" 'there were': 1520,\n",
" 'you could': 1963,\n",
" 'instead of': 682,\n",
" 'the ground': 1319,\n",
" 'and their': 86,\n",
" 'into his': 684,\n",
" 'was nothing': 1795,\n",
" 'like to': 797,\n",
" 'he done': 493,\n",
" 'on one': 971,\n",
" 'and so': 81,\n",
" 'will be': 1916,\n",
" 'wait for': 1758,\n",
" 'little more': 801,\n",
" 'we know': 1841,\n",
" 'the red': 1413,\n",
" 'you must': 1980,\n",
" 'for his': 376,\n",
" 'about that': 4,\n",
" 'and there': 88,\n",
" 'much of': 873,\n",
" 'the mirror': 1362,\n",
" 'they can': 1527,\n",
" 'men to': 853,\n",
" 'the front': 1312,\n",
" 'the proper': 1406,\n",
" 'come to': 263,\n",
" 'to take': 1670,\n",
" 'will you': 1919,\n",
" 'had all': 435,\n",
" 'one another': 982,\n",
" 'the torpedo': 1463,\n",
" 'who had': 1907,\n",
" 'excuse me': 348,\n",
" 'better than': 205,\n",
" 'in there': 672,\n",
" 'and with': 104,\n",
" 'secret service': 1098,\n",
" 'mary pat': 840,\n",
" 'looked over': 814,\n",
" 'their way': 1492,\n",
" 'the south': 1441,\n",
" 'the situation': 1434,\n",
" 'his life': 600,\n",
" 'up on': 1741,\n",
" 'thought it': 1589,\n",
" 'access to': 10,\n",
" 'the map': 1355,\n",
" 'here in': 557,\n",
" 'the morning': 1368,\n",
" 'they have': 1535,\n",
" 'had his': 446,\n",
" 'chance to': 252,\n",
" 'until the': 1733,\n",
" 'the bottom': 1250,\n",
" 'tried to': 1707,\n",
" 'the air': 1228,\n",
" 'that the': 1207,\n",
" 'only one': 999,\n",
" 'his seat': 612,\n",
" 'only to': 1001,\n",
" 'not as': 896,\n",
" 'to my': 1654,\n",
" 'what do': 1873,\n",
" 'are not': 114,\n",
" 'it too': 733,\n",
" 'it and': 700,\n",
" 'about this': 6,\n",
" 'and get': 52,\n",
" 'in which': 678,\n",
" 'wants to': 1765,\n",
" 'like this': 796,\n",
" 'gave him': 411,\n",
" 'men in': 852,\n",
" 'his pistol': 608,\n",
" 'how he': 625,\n",
" 'was in': 1786,\n",
" 'things that': 1552,\n",
" 'them and': 1494,\n",
" 'more to': 869,\n",
" 'he knew': 506,\n",
" 'with the': 1932,\n",
" 'think he': 1556,\n",
" 'men who': 855,\n",
" 'right to': 1070,\n",
" 'still had': 1159,\n",
" 'in two': 676,\n",
" 'meant that': 847,\n",
" 'at home': 152,\n",
" 'must be': 876,\n",
" 'despite the': 287,\n",
" 'worried about': 1944,\n",
" 'be an': 178,\n",
" 'of that': 942,\n",
" 'but the': 222,\n",
" 'himself and': 575,\n",
" 'not have': 901,\n",
" 'had never': 450,\n",
" 'from this': 408,\n",
" 'about it': 3,\n",
" 'this man': 1569,\n",
" 'the bureau': 1253,\n",
" 'the case': 1259,\n",
" 'said with': 1088,\n",
" 'all but': 23,\n",
" 'after that': 14,\n",
" 'the look': 1351,\n",
" 'on this': 977,\n",
" 'to meet': 1652,\n",
" 'the doctor': 1286,\n",
" 'much the': 874,\n",
" 'to an': 1608,\n",
" 'to figure': 1627,\n",
" 'the vehicle': 1472,\n",
" 'looked like': 813,\n",
" 'he have': 500,\n",
" ...}"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"word_count.vocabulary_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The most frequent bi-grams are"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[('of the', 16376),\n",
" ('in the', 12028),\n",
" ('on the', 9361),\n",
" ('to the', 9316),\n",
" ('it was', 7915),\n",
" ('and the', 5486),\n",
" ('at the', 5218),\n",
" ('he was', 4913),\n",
" ('to be', 4812),\n",
" ('for the', 4718)]"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"freq_dist = Counter(dict(zip(word_count.get_feature_names(), word_count.fit_transform(corpus).sum(axis=0).A1)))\n",
"freq_dist.most_common(10)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"{'onl': 1364,\n",
" 'h i': 835,\n",
" 'bri': 439,\n",
" 'ite': 999,\n",
" ' ke': 94,\n",
" 'rre': 1572,\n",
" 'g t': 795,\n",
" 'mma': 1170,\n",
" 'war': 1898,\n",
" 'fri': 775,\n",
" ' if': 84,\n",
" 'n w': 1207,\n",
" 'met': 1162,\n",
" '“i ': 1986,\n",
" 'ie': 928,\n",
" 'ann': 348,\n",
" 't p': 1721,\n",
" ' s': 143,\n",
" 'ffe': 759,\n",
" 'inu': 972,\n",
" 'an ': 338,\n",
" ', r': 227,\n",
" 'alt': 332,\n",
" 'ub': 1818,\n",
" 'ous': 1411,\n",
" 'yes': 1967,\n",
" 'spo': 1682,\n",
" 'p,': 1426,\n",
" 'ork': 1387,\n",
" ' ti': 160,\n",
" 'ry': 1595,\n",
" 'yea': 1966,\n",
" 'ott': 1403,\n",
" 'rro': 1574,\n",
" 'hel': 860,\n",
" 'goo': 822,\n",
" ' \"i': 1,\n",
" 'or': 1380,\n",
" 's.”': 1623,\n",
" 'pon': 1455,\n",
" 'un': 1838,\n",
" 'had': 846,\n",
" 'o ': 1297,\n",
" 'ord': 1384,\n",
" 'or ': 1381,\n",
" 'hoo': 882,\n",
" 'ane': 344,\n",
" 'awa': 400,\n",
" ' t': 156,\n",
" 'arl': 365,\n",
" 'rn': 1554,\n",
" 'iou': 975,\n",
" 'ep ': 684,\n",
" '?\"': 271,\n",
" 'ta': 1737,\n",
" 'o b': 1299,\n",
" 'tti': 1800,\n",
" 'jo': 1014,\n",
" 'm ': 1130,\n",
" 'sse': 1686,\n",
" 'ldi': 1073,\n",
" 'ua': 1815,\n",
" 'u w': 1813,\n",
" 'pan': 1432,\n",
" '“wh': 1991,\n",
" 'ini': 968,\n",
" 'anc': 342,\n",
" 'yth': 1976,\n",
" 'bla': 428,\n",
" 'ept': 687,\n",
" 'bec': 418,\n",
" 'gle': 817,\n",
" 'ial': 910,\n",
" 'tim': 1770,\n",
" 'em ': 664,\n",
" 'nis': 1258,\n",
" 'oom': 1371,\n",
" 'esp': 710,\n",
" 'tiv': 1773,\n",
" 'ng,': 1248,\n",
" 'ho': 877,\n",
" ', t': 229,\n",
" 'dr': 566,\n",
" 't.': 1733,\n",
" 'se ': 1636,\n",
" 'eld': 656,\n",
" 'm, ': 1138,\n",
" 'rly': 1550,\n",
" 'g a': 783,\n",
" 'ow.': 1419,\n",
" 'sto': 1695,\n",
" 'rai': 1504,\n",
" 'o w': 1315,\n",
" 'r r': 1491,\n",
" 'p t': 1425,\n",
" 'fe ': 753,\n",
" 'tic': 1767,\n",
" 'val': 1871,\n",
" 't h': 1714,\n",
" 'smi': 1671,\n",
" 'ore': 1385,\n",
" 'd r': 520,\n",
" 'wit': 1920,\n",
" 'est': 712,\n",
" 'roa': 1559,\n",
" ' e': 50,\n",
" 'ack': 299,\n",
" 'pli': 1451,\n",
" 'kno': 1041,\n",
" 'm i': 1133,\n",
" ', s': 228,\n",
" 'e, ': 603,\n",
" 't d': 1710,\n",
" '\"y': 198,\n",
" 'rp': 1570,\n",
" 'ee': 634,\n",
" 'dy ': 574,\n",
" 'sir': 1662,\n",
" 'd.': 529,\n",
" 'ck,': 476,\n",
" 'ove': 1414,\n",
" 'm o': 1134,\n",
" 'ell': 660,\n",
" 'wa': 1894,\n",
" 'et ': 714,\n",
" 'pro': 1464,\n",
" 'dy': 573,\n",
" 'bly': 431,\n",
" 'imp': 956,\n",
" 'was': 1899,\n",
" 'rge': 1536,\n",
" ' co': 40,\n",
" ' bl': 29,\n",
" 'sor': 1678,\n",
" 'le.': 1078,\n",
" 'con': 487,\n",
" 'ced': 462,\n",
" ' fa': 60,\n",
" ' th': 159,\n",
" 'r s': 1492,\n",
" 'suc': 1700,\n",
" 'tow': 1785,\n",
" 'er.': 691,\n",
" ' al': 17,\n",
" 'dl': 555,\n",
" 'ue ': 1824,\n",
" 'op ': 1376,\n",
" ' b': 25,\n",
" 'ped': 1439,\n",
" ' wh': 176,\n",
" 'ld ': 1072,\n",
" 'tan': 1743,\n",
" 'wen': 1909,\n",
" '.”': 267,\n",
" 'ren': 1529,\n",
" 'fl': 767,\n",
" 'ia ': 909,\n",
" 'ara': 359,\n",
" '“h': 1984,\n",
" 'ime': 955,\n",
" 'oug': 1407,\n",
" 'oy': 1422,\n",
" 'gre': 826,\n",
" 'ock': 1324,\n",
" '“y': 1992,\n",
" 'wer': 1910,\n",
" 'ne.': 1235,\n",
" 'orn': 1389,\n",
" 'its': 1002,\n",
" 'ion': 974,\n",
" 'n r': 1203,\n",
" 'eh': 647,\n",
" 'am ': 334,\n",
" ' im': 85,\n",
" 'r, ': 1496,\n",
" 'hor': 884,\n",
" 'fol': 771,\n",
" 'rt ': 1582,\n",
" 'nti': 1285,\n",
" 'ke ': 1031,\n",
" 'tee': 1753,\n",
" 'f,': 746,\n",
" 'lit': 1099,\n",
" \"u'\": 1814,\n",
" 'it,': 996,\n",
" 'ow': 1416,\n",
" 'rom': 1563,\n",
" 'n e': 1193,\n",
" 'kne': 1040,\n",
" 'rs.': 1578,\n",
" 'him': 870,\n",
" ' ri': 139,\n",
" ' ar': 21,\n",
" 'ecu': 627,\n",
" 'els': 661,\n",
" ' p': 125,\n",
" 'ich': 919,\n",
" '” h': 1996,\n",
" 'co': 484,\n",
" 'mom': 1173,\n",
" 'eft': 645,\n",
" 'et.': 715,\n",
" 'hy ': 900,\n",
" 'f. ': 748,\n",
" 'im.': 954,\n",
" 'da': 531,\n",
" 'ded': 542,\n",
" 'y d': 1940,\n",
" 'eck': 624,\n",
" 'sen': 1644,\n",
" \"at'\": 384,\n",
" 'y g': 1943,\n",
" 'nt ': 1280,\n",
" 'ngi': 1251,\n",
" 'air': 318,\n",
" ' “y': 190,\n",
" 'o,': 1317,\n",
" 'bil': 426,\n",
" ' so': 151,\n",
" 'l,': 1060,\n",
" 'or.': 1382,\n",
" 'ath': 389,\n",
" ', b': 214,\n",
" 'on ': 1355,\n",
" 'ot': 1398,\n",
" 'say': 1631,\n",
" 'sur': 1702,\n",
" 'pe': 1436,\n",
" 'r w': 1494,\n",
" 'ag': 310,\n",
" ' wa': 174,\n",
" 'ot ': 1399,\n",
" 'g, ': 798,\n",
" 'n t': 1205,\n",
" 'y f': 1942,\n",
" 'in': 958,\n",
" ' id': 83,\n",
" 'sho': 1653,\n",
" 'fu': 780,\n",
" 'ull': 1834,\n",
" 'bas': 412,\n",
" 'fer': 755,\n",
" '. y': 261,\n",
" 'hil': 869,\n",
" 'ili': 948,\n",
" ' sw': 155,\n",
" 'tly': 1776,\n",
" 'rvi': 1594,\n",
" 'bel': 422,\n",
" 'ry ': 1596,\n",
" 'ds': 570,\n",
" 'up': 1845,\n",
" 'ray': 1509,\n",
" '?\" ': 272,\n",
" 'ute': 1865,\n",
" 'u c': 1811,\n",
" 'nts': 1288,\n",
" 'you': 1972,\n",
" ' \"y': 4,\n",
" 'ngl': 1252,\n",
" ' ac': 12,\n",
" 'nst': 1278,\n",
" 'eci': 623,\n",
" 't,': 1730,\n",
" 'dly': 557,\n",
" 't-': 1732,\n",
" 'far': 751,\n",
" 'ok': 1337,\n",
" 'gs ': 829,\n",
" 'ran': 1507,\n",
" 'r f': 1482,\n",
" 'tol': 1779,\n",
" 'thi': 1763,\n",
" 'm t': 1135,\n",
" 'ng.': 1249,\n",
" 'ep': 683,\n",
" 'i ': 901,\n",
" 'w. ': 1893,\n",
" 'tin': 1771,\n",
" 'eas': 617,\n",
" 'me': 1152,\n",
" 'rit': 1544,\n",
" 'l d': 1049,\n",
" 'ote': 1400,\n",
" 'o t': 1314,\n",
" 'do': 561,\n",
" 'a f': 279,\n",
" 'e t': 594,\n",
" 'eg': 646,\n",
" 'try': 1792,\n",
" 'os': 1393,\n",
" 'so': 1674,\n",
" 'can': 451,\n",
" 'g p': 793,\n",
" 'ys': 1973,\n",
" 'alo': 329,\n",
" 'rio': 1542,\n",
" ' o': 115,\n",
" 'aw ': 399,\n",
" 'hir': 873,\n",
" ' lo': 101,\n",
" 'n’t': 1296,\n",
" 'raf': 1503,\n",
" 'sh ': 1649,\n",
" 'rr': 1571,\n",
" '” c': 1995,\n",
" 'tr': 1786,\n",
" 'at': 382,\n",
" 'dea': 540,\n",
" 'ia': 908,\n",
" 't y': 1727,\n",
" 'gh': 810,\n",
" 'my': 1186,\n",
" 'f m': 740,\n",
" 'e m': 588,\n",
" 'lt': 1122,\n",
" 'be ': 416,\n",
" \"n'\": 1209,\n",
" 'mal': 1145,\n",
" 'oh': 1334,\n",
" 'fro': 776,\n",
" ' be': 27,\n",
" 'ne ': 1233,\n",
" 'cra': 492,\n",
" 'new': 1242,\n",
" 'ete': 717,\n",
" 'y p': 1950,\n",
" 'lle': 1106,\n",
" 'e i': 584,\n",
" 'ppo': 1460,\n",
" 'ank': 347,\n",
" 'rk ': 1547,\n",
" 'als': 331,\n",
" ' ro': 140,\n",
" 'ice': 918,\n",
" 'ly.': 1129,\n",
" 'cu': 501,\n",
" 'onc': 1360,\n",
" 'oss': 1396,\n",
" 'xpe': 1933,\n",
" ' wo': 178,\n",
" 'ec': 620,\n",
" 'lac': 1065,\n",
" 'tta': 1798,\n",
" 'an,': 340,\n",
" 's s': 1615,\n",
" 'rta': 1583,\n",
" ', c': 215,\n",
" 'fir': 765,\n",
" 'at.': 386,\n",
" 'ce.': 461,\n",
" 'es ': 705,\n",
" 'nee': 1237,\n",
" 'y w': 1954,\n",
" 'ble': 429,\n",
" 'ce,': 460,\n",
" 'rie': 1539,\n",
" 'ure': 1850,\n",
" 'sh': 1648,\n",
" 'k a': 1018,\n",
" \"n't\": 1210,\n",
" 'om': 1348,\n",
" 'int': 971,\n",
" 'olo': 1347,\n",
" 'ou': 1404,\n",
" \"y'\": 1955,\n",
" 'way': 1901,\n",
" 'rin': 1541,\n",
" 'low': 1117,\n",
" 'ita': 998,\n",
" 'k, ': 1025,\n",
" 'ir ': 979,\n",
" '. e': 249,\n",
" 'ik': 942,\n",
" 'lie': 1093,\n",
" 'las': 1068,\n",
" 'bar': 411,\n",
" '.\"': 263,\n",
" 'io': 973,\n",
" 'uss': 1860,\n",
" 'fac': 750,\n",
" 'ndi': 1229,\n",
" 'l f': 1050,\n",
" 'elf': 658,\n",
" 'me,': 1154,\n",
" 'ud': 1822,\n",
" 'fa': 749,\n",
" 'oke': 1340,\n",
" 'owe': 1420,\n",
" 'is ': 987,\n",
" 'bea': 417,\n",
" 'ft': 777,\n",
" 's h': 1606,\n",
" 'ds ': 571,\n",
" 'oo': 1367,\n",
" 'ett': 720,\n",
" 'u a': 1810,\n",
" 'aff': 308,\n",
" 'ely': 662,\n",
" 'dro': 569,\n",
" 'l c': 1048,\n",
" 'cl': 480,\n",
" 're': 1518,\n",
" 'sam': 1627,\n",
" 'ong': 1363,\n",
" 'ves': 1878,\n",
" ' en': 54,\n",
" 'ref': 1526,\n",
" 'nit': 1259,\n",
" 'rs,': 1577,\n",
" 'n g': 1195,\n",
" 'orc': 1383,\n",
" 'l ': 1045,\n",
" 'ht.': 895,\n",
" 'y.': 1959,\n",
" 'rth': 1585,\n",
" 'med': 1157,\n",
" 'h w': 840,\n",
" 'p ': 1423,\n",
" 'il': 944,\n",
" ' ki': 95,\n",
" 'e u': 595,\n",
" ' bu': 32,\n",
" '. t': 259,\n",
" 'ere': 694,\n",
" ' cl': 39,\n",
" ', a': 213,\n",
" 'ad.': 303,\n",
" 'bet': 424,\n",
" 'sub': 1699,\n",
" '. n': 254,\n",
" 'ier': 932,\n",
" \"'t \": 211,\n",
" 'giv': 815,\n",
" 'f h': 738,\n",
" 'cti': 498,\n",
" ' st': 153,\n",
" 'eop': 682,\n",
" 'fle': 768,\n",
" 'ra': 1500,\n",
" \"'m\": 205,\n",
" 'nes': 1240,\n",
" 'oli': 1345,\n",
" 'l, ': 1061,\n",
" '. a': 245,\n",
" 'dan': 533,\n",
" \"t's\": 1729,\n",
" 'dam': 532,\n",
" 'rds': 1517,\n",
" 'n. ': 1215,\n",
" ' me': 104,\n",
" 'ron': 1564,\n",
" ' am': 18,\n",
" ' g': 67,\n",
" 'ief': 930,\n",
" 'abl': 293,\n",
" 'ba': 408,\n",
" ' sh': 147,\n",
" ' pe': 127,\n",
" 'urt': 1855,\n",
" 'a d': 278,\n",
" 'ma': 1141,\n",
" 'vin': 1882,\n",
" ' ru': 141,\n",
" 't r': 1722,\n",
" 'ad ': 302,\n",
" 'id,': 924,\n",
" 'dre': 567,\n",
" ' y': 180,\n",
" 'a ': 275,\n",
" 'ew': 724,\n",
" 'bu': 442,\n",
" 'art': 371,\n",
" '. w': 260,\n",
" 'r o': 1489,\n",
" 't e': 1711,\n",
" ' cr': 41,\n",
" ' ca': 35,\n",
" 'ari': 363,\n",
" 'lic': 1092,\n",
" '” “': 1999,\n",
" 'unc': 1840,\n",
" 'oth': 1401,\n",
" 'hop': 883,\n",
" 'bot': 435,\n",
" 'om ': 1349,\n",
" 'lf': 1089,\n",
" 'ci': 471,\n",
" ' ni': 112,\n",
" 'cc': 457,\n",
" 'ib': 913,\n",
" 'xt ': 1935,\n",
" 'id': 922,\n",
" 'rst': 1580,\n",
" 'ntr': 1287,\n",
" '. i': 252,\n",
" 'ten': 1756,\n",
" 'fr': 774,\n",
" ' su': 154,\n",
" 'l s': 1057,\n",
" ' h': 74,\n",
" 'h, ': 842,\n",
" 'rew': 1533,\n",
" 'eca': 621,\n",
" 'pre': 1462,\n",
" 'ies': 933,\n",
" 'ly ': 1127,\n",
" 'n m': 1199,\n",
" 'oun': 1409,\n",
" 'jac': 1012,\n",
" 'man': 1146,\n",
" 'ilo': 950,\n",
" 'mm': 1169,\n",
" 'aki': 322,\n",
" 'iss': 991,\n",
" ' pl': 130,\n",
" 'dde': 537,\n",
" 'eep': 639,\n",
" 'hr': 889,\n",
" ' “i': 186,\n",
" ' ba': 26,\n",
" ' gi': 70,\n",
" 'a p': 285,\n",
" 'les': 1086,\n",
" 'id.': 925,\n",
" 'ht,': 894,\n",
" 'el ': 655,\n",
" 'ale': 325,\n",
" 'uti': 1867,\n",
" 'hon': 881,\n",
" 'o s': 1313,\n",
" 'bb': 414,\n",
" 'sk': 1665,\n",
" 'es,': 706,\n",
" 'ts.': 1796,\n",
" 'wou': 1928,\n",
" 'oti': 1402,\n",
" 'y n': 1948,\n",
" 'ei': 649,\n",
" 'ob': 1322,\n",
" \"ey'\": 731,\n",
" 'eir': 652,\n",
" ' “h': 185,\n",
" ' ey': 58,\n",
" 'tio': 1772,\n",
" 'nt,': 1281,\n",
" 'n?': 1216,\n",
" 'ed,': 630,\n",
" 'ti': 1766,\n",
" 'rri': 1573,\n",
" 'usi': 1859,\n",
" 'eak': 612,\n",
" 'erc': 693,\n",
" 'ape': 354,\n",
" 'per': 1442,\n",
" 't l': 1717,\n",
" 'o d': 1301,\n",
" 'sta': 1692,\n",
" 'nn': 1264,\n",
" 'edi': 633,\n",
" 'eve': 723,\n",
" 'ft ': 778,\n",
" 'oon': 1372,\n",
" 'ar ': 358,\n",
" \"e'\": 599,\n",
" ' it': 88,\n",
" 'tak': 1741,\n",
" 'o y': 1316,\n",
" 'kin': 1038,\n",
" 'avi': 397,\n",
" 'ink': 969,\n",
" 'il ': 945,\n",
" 'sed': 1641,\n",
" 'wil': 1918,\n",
" 'on.': 1358,\n",
" 'rb': 1510,\n",
" 'm.': 1139,\n",
" ' on': 118,\n",
" 'e r': 592,\n",
" 'que': 1474,\n",
" ',”': 234,\n",
" 't n': 1719,\n",
" 'nd': 1224,\n",
" ' w': 173,\n",
" ' yo': 182,\n",
" ' ta': 157,\n",
" 'it ': 994,\n",
" ' “w': 189,\n",
" 'uck': 1821,\n",
" 'ski': 1667,\n",
" 'by ': 446,\n",
" 'cto': 499,\n",
" 'ab': 292,\n",
" '. \"': 242,\n",
" 'xt': 1934,\n",
" 'du': 572,\n",
" 'rke': 1548,\n",
" ' es': 55,\n",
" 'bus': 443,\n",
" 'y ': 1936,\n",
" 'lem': 1083,\n",
" 'a.': 291,\n",
" ' ag': 15,\n",
" 'rte': 1584,\n",
" 'rop': 1566,\n",
" 'sia': 1655,\n",
" 'a m': 283,\n",
" 'ons': 1365,\n",
" 'wn': 1922,\n",
" 'qu': 1472,\n",
" 'n u': 1206,\n",
" 'nsi': 1277,\n",
" 'ne': 1232,\n",
" 'g.': 799,\n",
" 'f s': 742,\n",
" 'h.': 843,\n",
" ' aw': 24,\n",
" 'se,': 1637,\n",
" ' ga': 68,\n",
" ', d': 216,\n",
" ' sm': 150,\n",
" 'pp': 1458,\n",
" 'n d': 1192,\n",
" 'age': 312,\n",
" 'ka': 1028,\n",
" 'ker': 1035,\n",
" 'hes': 864,\n",
" 'es': 704,\n",
" 'va': 1870,\n",
" 'e j': 585,\n",
" 'f.': 747,\n",
" 'kil': 1037,\n",
" ' tr': 162,\n",
" 'as ': 374,\n",
" 't b': 1708,\n",
" 'pri': 1463,\n",
" 'epl': 685,\n",
" 'a h': 281,\n",
" 'i w': 906,\n",
" ' an': 19,\n",
" 'let': 1087,\n",
" 'r p': 1490,\n",
" 'pen': 1440,\n",
" 'u ': 1809,\n",
" 'w, ': 1891,\n",
" 'nne': 1265,\n",
" 't k': 1716,\n",
" 'rya': 1597,\n",
" 'in,': 960,\n",
" 'par': 1433,\n",
" 'h a': 833,\n",
" 'tt': 1797,\n",
" 'poi': 1453,\n",
" 'eed': 636,\n",
" 'iz': 1009,\n",
" 'bod': 434,\n",
" 'lon': 1113,\n",
" 'r i': 1485,\n",
" ' jo': 91,\n",
" '- ': 236,\n",
" 'ow ': 1417,\n",
" 'ehi': 648,\n",
" 'tel': 1754,\n",
" 'tch': 1747,\n",
" ' wr': 179,\n",
" 'may': 1149,\n",
" 'clo': 483,\n",
" 'e c': 578,\n",
" 'ark': 364,\n",
" 'ga': 801,\n",
" 'th ': 1760,\n",
" 'ric': 1538,\n",
" ' di': 46,\n",
" 'bl': 427,\n",
" ' of': 117,\n",
" 'gro': 827,\n",
" 's a': 1599,\n",
" 'fin': 764,\n",
" '\"t': 195,\n",
" 'put': 1471,\n",
" 'his': 874,\n",
" 'urs': 1854,\n",
" '. b': 246,\n",
" 't a': 1707,\n",
" 'tri': 1789,\n",
" 'ye': 1965,\n",
" 'rou': 1568,\n",
" 'k. ': 1027,\n",
" 'do ': 562,\n",
" 'pta': 1469,\n",
" 'e h': 583,\n",
" 'abo': 294,\n",
" 'llo': 1108,\n",
" 'sn': 1672,\n",
" 'al ': 324,\n",
" 'ppe': 1459,\n",
" 'ts ': 1794,\n",
" 'e?': 608,\n",
" '\"w': 197,\n",
" 'of ': 1331,\n",
" ',\"': 232,\n",
" 'how': 888,\n",
" 'lli': 1107,\n",
" 'a s': 287,\n",
" 'ome': 1350,\n",
" 'nty': 1289,\n",
" 'esi': 709,\n",
" ' do': 47,\n",
" \"e'd\": 600,\n",
" '. “': 262,\n",
" 'ck.': 477,\n",
" \"'d\": 201,\n",
" '“th': 1989,\n",
" 'iti': 1001,\n",
" 'a b': 276,\n",
" 'wel': 1908,\n",
" 'ef': 642,\n",
" 'e b': 577,\n",
" 'act': 300,\n",
" 'p, ': 1427,\n",
" 'ive': 1006,\n",
" 'h t': 839,\n",
" 'pic': 1446,\n",
" 'cau': 456,\n",
" 'h s': 838,\n",
" 're.': 1521,\n",
" 'cre': 493,\n",
" 'ley': 1088,\n",
" 'inc': 963,\n",
" 'roc': 1561,\n",
" 'sea': 1639,\n",
" 'd p': 519,\n",
" 'a n': 284,\n",
" '\"i': 194,\n",
" 'omm': 1352,\n",
" 'dec': 541,\n",
" 'oll': 1346,\n",
" '?” ': 274,\n",
" ' ci': 38,\n",
" 'ken': 1034,\n",
" 's b': 1600,\n",
" 'ing': 967,\n",
" 'i h': 904,\n",
" 'sib': 1656,\n",
" 'l i': 1052,\n",
" 're,': 1520,\n",
" 'mer': 1160,\n",
" 'ass': 380,\n",
" 'mes': 1161,\n",
" 'w a': 1886,\n",
" 'wal': 1896,\n",
" 'mat': 1148,\n",
" 'de': 538,\n",
" 'uc': 1819,\n",
" 't s': 1723,\n",
" 'st,': 1690,\n",
" 'wo ': 1925,\n",
" \"' \": 199,\n",
" 'po': 1452,\n",
" 're ': 1519,\n",
" 'lec': 1080,\n",
" 'omi': 1351,\n",
" 'd l': 515,\n",
" 'n c': 1191,\n",
" 'ert': 701,\n",
" 'ved': 1874,\n",
" 'ret': 1532,\n",
" 'too': 1782,\n",
" 'uit': 1829,\n",
" 'ou ': 1405,\n",
" 'd u': 523,\n",
" 'au': 393,\n",
" 'ch': 466,\n",
" 'nal': 1218,\n",
" 'ash': 376,\n",
" 'hi': 866,\n",
" ' el': 52,\n",
" 'gun': 831,\n",
" 'mit': 1168,\n",
" 'y-': 1958,\n",
" 'en.': 672,\n",
" 'hte': 896,\n",
" 'wi': 1917,\n",
" 'y. ': 1960,\n",
" 'ctu': 500,\n",
" 'til': 1769,\n",
" 'pi': 1445,\n",
" 'g m': 791,\n",
" 'und': 1841,\n",
" 'tl': 1774,\n",
" 'w t': 1888,\n",
" 'lf ': 1090,\n",
" 'nd ': 1225,\n",
" 'sai': 1626,\n",
" 'ami': 336,\n",
" 'ral': 1505,\n",
" ' pa': 126,\n",
" 'oul': 1408,\n",
" 'se': 1635,\n",
" 's p': 1613,\n",
" 'nto': 1286,\n",
" 's l': 1609,\n",
" 'hn': 876,\n",
" 'tur': 1803,\n",
" 'ner': 1239,\n",
" 'col': 485,\n",
" 'rde': 1516,\n",
" 'ook': 1370,\n",
" 'de ': 539,\n",
" \" i'\": 82,\n",
" 'r t': 1493,\n",
" 'eri': 696,\n",
" 'wea': 1905,\n",
" 'now': 1271,\n",
" 'ps ': 1466,\n",
" 'ual': 1816,\n",
" 'liv': 1100,\n",
" 'bef': 420,\n",
" 'u t': 1812,\n",
" 'fe': 752,\n",
" 'ue': 1823,\n",
" ' k': 93,\n",
" 'rse': 1579,\n",
" 'fic': 762,\n",
" 'mor': 1175,\n",
" ' . ': 8,\n",
" 'ge ': 804,\n",
" 'a c': 277,\n",
" ' ai': 16,\n",
" 'cap': 452,\n",
" 'ram': 1506,\n",
" 'k o': 1021,\n",
" 'ern': 698,\n",
" ' br': 31,\n",
" 'ema': 666,\n",
" 'iv': 1005,\n",
" 'tom': 1780,\n",
" 'sp': 1680,\n",
" 'pin': 1447,\n",
" 'hip': 872,\n",
" 'ol ': 1342,\n",
" 'nf': 1244,\n",
" 'gr': 824,\n",
" 'se.': 1638,\n",
" ' mi': 105,\n",
" 'a g': 280,\n",
" 'dis': 554,\n",
" 'y,': 1956,\n",
" 'aus': 394,\n",
" 'ard': 360,\n",
" 'nly': 1263,\n",
" 'ans': 350,\n",
" ' ot': 121,\n",
" 'a l': 282,\n",
" 'ate': 388,\n",
" ' no': 113,\n",
" 'ill': 949,\n",
" 'f a': 736,\n",
" ' ju': 92,\n",
" 'iat': 912,\n",
" 'l.': 1062,\n",
" ', i': 220,\n",
" ', f': 218,\n",
" 'h m': 836,\n",
" 'por': 1456,\n",
" 'ato': 391,\n",
" 'att': 392,\n",
" 'fee': 754,\n",
" 'd, ': 527,\n",
" 'pai': 1431,\n",
" 'nta': 1283,\n",
" ' f': 59,\n",
" 'cia': 472,\n",
" 'mo': 1172,\n",
" ' se': 146,\n",
" 'nk': 1260,\n",
" '\" ': 191,\n",
" 'aft': 309,\n",
" 'six': 1664,\n",
" 'ful': 781,\n",
" 'ang': 345,\n",
" 'arm': 366,\n",
" 'yi': 1968,\n",
" \"'d \": 202,\n",
" 't?': 1736,\n",
" 'hed': 858,\n",
" 'led': 1081,\n",
" 'sup': 1701,\n",
" 'eno': 678,\n",
" 'y e': 1941,\n",
" 'whe': 1913,\n",
" 'our': 1410,\n",
" 'ic ': 916,\n",
" 'umb': 1837,\n",
" 'ght': 812,\n",
" ' ap': 20,\n",
" 'mb': 1150,\n",
" 'pr': 1461,\n",
" 'ms': 1181,\n",
" 'nor': 1268,\n",
" 'o g': 1304,\n",
" 'f w': 744,\n",
" 'rt': 1581,\n",
" 'wed': 1906,\n",
" \"dn'\": 560,\n",
" 'o p': 1311,\n",
" 'nt.': 1282,\n",
" 'ted': 1752,\n",
" 'ro': 1558,\n",
" 'gra': 825,\n",
" 'ach': 298,\n",
" 'nv': 1292,\n",
" 'go ': 820,\n",
" 'any': 352,\n",
" 'rat': 1508,\n",
" ', j': 221,\n",
" 'hol': 879,\n",
" ' fr': 65,\n",
" 'rni': 1557,\n",
" 'nt': 1279,\n",
" ' ob': 116,\n",
" ' ou': 122,\n",
" 'e v': 596,\n",
" 'pu': 1470,\n",
" '-f': 238,\n",
" 'on,': 1357,\n",
" 's,': 1619,\n",
" 'n o': 1201,\n",
" ' a': 9,\n",
" 'alr': 330,\n",
" 'ext': 728,\n",
" 'hou': 887,\n",
" 'f i': 739,\n",
" 'gu': 830,\n",
" 'n n': 1200,\n",
" ' de': 45,\n",
" 'op': 1375,\n",
" 'vis': 1883,\n",
" 'e n': 589,\n",
" 'fou': 773,\n",
" 'oe': 1328,\n",
" 'gin': 814,\n",
" 'h o': 837,\n",
" 'g ': 782,\n",
" 'ssi': 1687,\n",
" 'oa': 1321,\n",
" 'ai': 314,\n",
" \" '\": 5,\n",
" 'dar': 534,\n",
" 'ew ': 725,\n",
" 'muc': 1185,\n",
" 'my ': 1187,\n",
" 'ont': 1366,\n",
" '. p': 256,\n",
" 'ly': 1126,\n",
" 'der': 544,\n",
" 'l m': 1053,\n",
" 'f y': 745,\n",
" 't o': 1720,\n",
" 'tem': 1755,\n",
" 'wl': 1921,\n",
" 'oka': 1339,\n",
" 'qua': 1473,\n",
" 'nar': 1219,\n",
" 'lik': 1096,\n",
" 'ek': 653,\n",
" 'lis': 1098,\n",
" 'st': 1688,\n",
" 'nce': 1222,\n",
" 'top': 1783,\n",
" 'sio': 1661,\n",
" 'son': 1677,\n",
" 'sou': 1679,\n",
" 'day': 535,\n",
" 'hro': 891,\n",
" 'yin': 1969,\n",
" 'ed ': 629,\n",
" 't t': 1724,\n",
" 'ked': 1032,\n",
" '’s': 1979,\n",
" 'fo': 770,\n",
" 'ake': 321,\n",
" 'hot': 886,\n",
" 'ls': 1119,\n",
" 'hem': 861,\n",
" 'k ': 1017,\n",
" ',\" ': 233,\n",
" 'sec': 1640,\n",
" ' n': 109,\n",
" 'rve': 1593,\n",
" \"ou'\": 1406,\n",
" 'y b': 1938,\n",
" 'ki': 1036,\n",
" 'wh': 1911,\n",
" 'cas': 454,\n",
" 'jus': 1016,\n",
" 'red': 1524,\n",
" 'ng ': 1247,\n",
" 'ery': 703,\n",
" 'spe': 1681,\n",
" ...}"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"char_count.vocabulary_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The most frequent 2-grams are"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[('e ', 514532),\n",
" (' t', 495167),\n",
" ('th', 401375),\n",
" ('he', 375386),\n",
" (' th', 332571),\n",
" (' a', 307209),\n",
" ('d ', 294314),\n",
" ('t ', 289473),\n",
" ('the', 263816),\n",
" ('s ', 262057)]"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"freq_dist = Counter(dict(zip(char_count.get_feature_names(), char_count.fit_transform(corpus).sum(axis=0).A1)))\n",
"freq_dist.most_common(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"While word freqencies are ok, what we really want is term document frequencies to adjust for differences in chapter and/or book lengths.\n",
"\n",
"The [Sci-kit Learn Tfidfvectorizer](http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html) methods convert a collection of raw documents to a matrix of TF-IDF features, which is equivalent to using CountVectorizer followed by TfidfTransformer.\n",
"\n",
"* The 'analyzer' parameters analyzer specifies whether the feature should be made of word or character n-grams.\n",
"* The 'ngram_range specifies the lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used.\n",
"* The 'max_df' parameter specifies the threshold frequency below which words are ignored\n",
"* The 'max_features' (int) parameter limits the vocabulary's features to the top n features"
]
},
{
"cell_type": "code",
"execution_count": 593,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"word_vector = TfidfVectorizer( analyzer='word', ngram_range=(2,2), max_features=2000, norm='l2')\n",
"char_vector = TfidfVectorizer( analyzer='char', ngram_range=(2,3), min_df=0, max_features=2000, norm='l2')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Scikit learn also supports an easy way to combine features. "
]
},
{
"cell_type": "code",
"execution_count": 594,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"vectoriser =FeatureUnion([ (\"chars\", char_vector),\n",
" (\"words\", word_vector)\n",
" ])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next we vectorise the chapters (our corpus) using the vectoriser we defined above"
]
},
{
"cell_type": "code",
"execution_count": 595,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of freatures: 4000\n",
"The shape of the vectorised corpus matrix is (522, 4000)\n",
"The shape of the vectorised class array is (522,)\n"
]
}
],
"source": [
"matrix = vectoriser.fit_transform(corpus)\n",
"print(\"Number of freatures: \", len(vectoriser.get_feature_names()))\n",
"X = matrix.toarray()\n",
"y = np.asarray(classes)\n",
"print('The shape of the vectorised corpus matrix is {0}'.format(X.shape))\n",
"print('The shape of the vectorised class array is {0}'.format(y.shape))"
]
},
{
"cell_type": "code",
"execution_count": 596,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"In our corpus we have 655 chapters in total and 522 chapters excluding the ghost written Tom Clancy books.\n"
]
}
],
"source": [
"print('In our corpus we have {0} chapters in total and {1} chapters excluding the ghost written Tom Clancy books.'\n",
" .format(len(dfBooks.index), len(dfBooks.loc[dfBooks.author != 'Ghost', 'author'])))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So we now have a matrix contianing a row and 4,000 features in columns for each chapter\n",
"\n",
"Next we define the model we want to use. We'll use a support vector machine classifier (LinearSVC in Scikit learn speak)."
]
},
{
"cell_type": "code",
"execution_count": 597,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"model = LinearSVC(loss='hinge', dual=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Before we train the model, we'll split the feature matrix into test and train sets. The default size if 75% train, 25% test\n",
"\n",
"Then we fit the model to using the training data, and see how well it predicts the test data"
]
},
{
"cell_type": "code",
"execution_count": 598,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[85 0]\n",
" [ 0 46]]\n"
]
}
],
"source": [
"X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0) #defualt test size is 25%\n",
"y_pred = model.fit(X_train, y_train).predict(X_test)\n",
"cm = confusion_matrix(y_test, y_pred)\n",
"print(cm)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can visualise the accuracy of the prediction using a confusion matirx."
]
},
{
"cell_type": "code",
"execution_count": 600,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.text.Text at 0x7f9e0f3e5748>"
]
},
"execution_count": 600,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAVwAAAFPCAYAAAABVHYZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAHrNJREFUeJzt3XuYXVWZ5/HvryohF9CCYKJECGUiN225SfAa4+jYgM6M\nPKOkQRovjApod9NKt+bB7qZxvADT2o0zjwaVbjDeMMNg26OAghrQjmAMEGAiFQkhJOoTDFAguQCV\nd/7Yu/AkVKi1q87Zu1bV78NzSJ191ln7PSS8581aa6+tiMDMzDqvq+kAzMwmCidcM7OaOOGamdXE\nCdfMrCZOuGZmNXHCNTOryaSmAzAzS9Xf398F7N/mbrf09PTsbHOfQ3LCNbOc7A9sbnOfs4AH29zn\nkDykYGZWEydcM7OaOOGamdXEY7hmlrXXvftzbHnk8aS2+++7Nzdd8RcdjmjPnHDNLGtb+rey5dFt\naY2lzgYzDA8pjEOSuiVdIGmNpNWSVklaIum5o+z3ckl3Sbp6hO8/S9J5o4mhEyQdLOmsYdq8XNI3\n6orJKlBXtUeDXOGOT/8M7Au8IiIeBZD0NmAG8OhIOpT0fOBPgOfECPf0jIjLRvK+GrwIOBsYMj5J\n3RHxC+C0WqOyNFJ65eoK19pJ0jzgbcC7B5MtQERcHRHryzZ/XVaqd0haKuk55fELJH1T0nck3S3p\nBkn7SuoBfghMAX4h6SOS3iXpmpbzvkXSj8qfXyzpJ5JuK8/x8Zb+/7H8uUvS/5B0Z1mFf07SpPK1\nfykr8hsk3SPpfw++NsTn3SnpfEk/k7RO0lslLZb08/K9ryvbdUu6TtKt5Tm/Kmla2c0XgEPLvwl8\nu2x/n6SLJN0CXCFpoaTbytcWSPqVpH3L5/9L0lj9MrExxAl3/DkWWBsRDw/1oqQTgXcDr4qIo4Ct\nwEUtTY4H3hkRL6VYDH5WRPQDbwYei4hjI+KSsu3ule7g8z8D/i0ijinP8dkh2pwFvBw4BjgamAd8\nqKXdUcBbgMOBF1B8iezJoxHxSuC9wFeBTRExH/gY8A8AETEAnBYRx0fEyygq/T8v3382cE/52U5u\n6XdGRLwiIs5ojT0ibga+BFwp6RTg1S19Wd0yGlJwwp14/iNwVUQ8Vj7/AvCmltevi4hHyp9XUCTC\nqm4C3ifpE5LeBPQP0eaNwBUR8VRE7KRIYK1xXBMRO8rhi1uHieNb5a8rgenAVeXzW4EXA0gScF5Z\nxa6m+AI5epjPccWeXoiIi4G9KIYhTomIJ4bpyzplcEgh9dEgJ9zxZxVwiKT9EtvvXqVub/l5gD2P\n8z8FdLc8n/p0hxH/B3gN8EuKavf/djCOaGk7UJ7/iZbng+87HXg9sCAijgQ+0xrzHvx+Ty+UwzBz\ngceB5w/Tj3WSK1xrSkTcC1wNXF6OvQIg6b9K6gVuABZJ2qd86Szg+sTuW8uDXwFHSppSjq++o+Vc\nLwY2R8RXgY8ArxiirxuAd0qaXL7/vRXi2FNMQz0ftC/wu4h4vEyW72557VGgZ8h37dnlwFJgEbC0\nwhectZuoUOE2G6pXKYxPZwJ/C9wi6UmKL9abgBsi4jpJLwV+JmkAWA18ILHfp6vQiLhF0veAu4Ff\nAz/lD4n17cCfSnqC4o/4UEuuvkhRIa4q+/0xcOnu56kS0zDv/QrwVklrKMambwIOLl9bDdwt6U7g\n3nIcd48xSPogsF9EfKJ8/vmy//9cIW5rlyqVa8MVrnzXXjPLRX9//0x22y3spad+ji39aRc+7N8z\njbu/+YwrzWb19PR4tzAzs+FVmTBLG1OQ9GZJvyiXNq6W9M7y+ExJ10rqK48vqBKphxTMLG+dGVJY\nCrwuIu6WdDDwy/IKy4uBFRFxkqTjgGsk9ZbLDoflCneMKS8a+Gm5aP8WSUc0HZN1hqRLywssdko6\nsul4stWZZWE7gcGJ0B7gd8ATwCnAEoCIWAlsAhamduqEO/ZcBiyJiMOAS4ArG47HOmcZxfK59Q3H\nkbfOLAs7laJ6XU8xwfou4DnApIhoHUO+H5iT2qkT7hgiaSbF1Vdfg+JyXOAgSXMbDcw6IiJ+EhG/\npvHFSplrc8KV1A38DXByRPRSXCz0VYoh2FH9Xjnhji0HAb8pr7watIEK36BmNmpHAwdExE/h6aGD\njcCRwJOSZrW07aX4fzSJE66Z5a1L1R7DewA4QNLh8PSFPHMprpxcBpxTHp8PzAaWp4bqVQpjy+Bv\ndFdLlTuHCt+gZhOOVGGVwvAJNyI2S3o/8K3y4qAu4IMRsVHSYoorC/uAHcDpqSsUwAl3TImIByWt\nAs6g2Inq7cADEbGu4dDMxq4O7IcbEVfxh02QWo9vBk6oEN0uPKQw9pwNnCXpHop9CN7TcDzWIeWe\nvw8ALwSuL6smqyqjzWtc4Y4xEdFHsb+qjXMRcXbTMVi9nHDNLG8Z3WLHCdfM8pbRbmFOuGaWuSqX\n7LrCNTMbOVe4o9Pf398NHLLb4YeotjG1mY1NAmbsdmxtT09P8nrWXXvzGO5oHQKsaToIM6vNERRX\nco1rYzXhmpmlafOVZp3khGtmefOQgplZTTxpNmoP7X7gtWf8Iw8/urWJWGo398D9uPS8Ezn3M9ex\nbuPDTYdTq7U/uKjpEGq3fetW1q9bS+/cQ5g6fXrT4XRcxE6e3Pb47oef8f98MifcUXvGaoSHH93K\nlv6JkXD375nKwMAA/Y9tmzCfeZAa/h+iERIDAwMgTczPXxj5CqSMhhQm7O+umVndxmqFa2aWxkMK\nZmY1yWhIwQnXzPLmdbhmZjVxhWtmVg9JKDGRprbrFK9SMDOriStcM8tceoXr/XDNzEZDpOfRZvOt\nE66Z5S2nMVwnXDPLWk4J15NmZmY1cYVrZlnLqcJ1wjWzrDnhmpnVxasUzMzq0e4KV9IM4Eb+sEfv\n3sCLgFnAZOArwDxgO/DBiLg5NVYnXDPLWrsTbkQ8BBzT8p7zgNdFxCOS/hlYEREnSToOuEZSb0Qk\n3eLdqxTMzJ7dfwO+XP58CrAEICJWApuAhakducI1s6x1ctJM0quBfYHvlkMNkyJic0uT+4E5qf05\n4ZpZ1jq8SuFM4CsRsbMdKxyccM0sbx1apSBpb2ARcBwUY7uSnpI0q6XK7QU2pPbpMVwzy5rK3cKS\nHtXWhZ0K3B4RfS3HlgHnAEiaD8wGlqd26ArXzLJW3PAhdUihUtfvAb6427HFwFJJfcAO4PTUFQrg\nhGtmNqSIeO0QxzYDJ4y0TydcM8uaL+01M6uLL+01M6tJhQrXd+01MxsFDymYmdUkp4TrdbhmZjVx\nhWtmWcupwnXCNbO8eZWCmVk9XOGamdUkp4TrSTMzs5q4wjWzrOVU4Trhmln+Gp4MS+WEa2ZZc4Vr\nZlYTJ1wzs5rklHC9SsHMrCaucM0sax28xU7bOeGaWd58aa+ZWT1yGsN1wjWzvPmOD2Zm9SjGcNPb\nNsmrFMzMauIK18yy5jFcM7Oa5DSk4IRrZllzhWtmVhNRocLtaCTD86SZmWWtq0uVHikk7SXpf0rq\nk3SHpK+Ux2dKurY8vlrSgiqxusI1M3umi4GdEXEogKRZ5fGLgBURcZKk44BrJPVGxEBKp40kXEkv\nBq4Engc8Arw7ItY0EYuZ5a3dk2aSpgNnAi8cPBYRm8sfFwHzymMrJW0CFgI/TDl/U0MKlwFLIuIw\n4BKK5GtmVtngpFnqI8E84CHgY5J+Lmm5pDdImgFMakm+APcDc1JjrT3hSpoJvBz4GkBEXA0cJGlu\n3bGYWf4GK9zUR4JJwMHAXRExHzgX+GZ5fFTzbk1UuAcBv4mInS3HNlDhW8LMbFAHKtwNwADwdYCI\nuB1YD7wMeLJlPBegt2yfJJtJs7kH7sf+PVObDqMWc17Qs8uvE8m2rY83HULtdmzftsuv417EmF4e\nFRFbJN0InAhcK+lFFIn1/wHLgHOACyXNB2YDy1P7biLhPgAcIKmrpcqdwzDfEpeedyIDA0kTgePG\nBe9b2HQItbu3b+LOnW7csL7pEGrR3d3N3LltHEHszG5h5wCXS7qYotp9f0T8RtJiYKmkPmAHcHrq\nCgVoIOFGxIOSVgFnAFdKejvwQESse7b3nfuZ6+h/bGJUAHNe0MMF71vIhV9azobf9jcdTq1+vPSj\nTYdQux3bt7Fxw3oOnNPLlKnTmg6n8yIoclh7dOLS3oi4D3jDEMc3AyekR7erpoYUzgaukHQ+0A+8\nZ7g3rNv4MFv6t3Y8sLFkw2/76dvwUNNh1Gra9L2bDqExU6ZOmxCfP2InT2x9rG39+dLeYUREH/Dq\nJs5tZuOLN68xM6tJThXuWJ4sNDMbV1zhmlnWctotzAnXzLKW05CCE66ZZc2TZmZmNSkSbmqF2+Fg\nhuGEa2ZZy6nC9SoFM7OauMI1s6x50szMrCY5DSk44ZpZ3jqzW1hHOOGaWdZc4ZqZ1SSnMVyvUjAz\nq4krXDPLWk4VrhOumWXNY7hmZjURFSrchvcLc8I1s6zlVOF60szMrCaucM0sa540MzOrSU5DCk64\nZpa1LomuxEya2q5TnHDNLGuucM3M6pLR5jVepWBmVhNXuGaWtS4Vj9S2TXKFa2ZZG1wWlvpI7HO9\npDWSbpO0StIp5fGZkq6V1CdptaQFVWJ1hWtmWevQpNlOYFFE3Lnb8YuAFRFxkqTjgGsk9UbEQEqn\nTrhmljWV/6S2Te6WIRsvAuYBRMRKSZuAhcAPUzp1wjWzrHVwDHdpOQRxK7AYCGBSRGxuaXM/MCe1\nQ4/hmpk904KIOAo4FtgCXFkeH9W0mytcM8taJ/ZSiIiN5a8Dkv4JuCciHpL0lKRZLVVuL7AhNdak\nhCvp5xTl9J6COz71hGZm7SQqTJqltJGmA5Mjor889A7gtvLnbwHnABdKmg/MBpanxppa4S5O7dDM\nrE7FGG7qXgpJzZ4PXC2piyJHrwPeWb62mGJstw/YAZyeukIBEhNuRNw4+LOkbuCgiFifehIzs05p\n97KwiLiPYux2qNc2AyekR7erSpNm5SLfB4CbyufzJV357O8yM+ugKhc9ZLaXwiUUa862AETEz4Hj\n2h2Umdl4VHWVwqSIWLvbTN8TbYzHzKyS8bw94w5Je1OuWJD0EmB726MyM0s0njcg/yTwfWC2pCuA\nE4E/bXdQZmap9nQN7p7aNqlSwo2IayWtBU6iiP1TEdHXkcjMzBKM95tIbgIGL4R4oL3hmJmNX5US\nrqTXA98ENlNUuM+TdGpEJF9pYWbWTjltQF61wv0c8LaI+CmApFcBlwFHtjswM7MU43lIIQaTbflk\nhaQ97rFgZtZpOS0Lq3rhw42Snl6VIOkdwA3tDcnMLF0nbrHTKam7hT1IMUkm4C8lfal8aQrwO+C8\nzoRnZvbsVGEMt+kKN3VI4ZUdjcLMbAJI3S3s3k4HYmY2EuN20kzS84ALgKOAqYPHvQG5mTUlpyvN\nqk6aXQ78FngB8GmKXcO+3+6gzMxSdaGn91MY9tFwyq2acHsj4pPA9oi4Bngr8Mb2h2VmlmZwWVjq\no0lV1+EO7gz2hKQZwMPA89obkplZunE7hgusk7Q/8HXgZ8Aj/OHmamZm9iyq7hZ2WvnjZyWtAvYF\nvtv2qMzMEuV0pdlIdgsDICJ+3MY4zMxGZNxtQN5ypdmQImJW2yIyM6tgPFa4vtLMzMakcTdpNhau\nNFv7g4uQqq5iy9O2rY9zb98afrz0o0ybvnfT4dTq/Vfd0XQItZs5JTitFz7x/bU8uKPppfmdt89e\nXXz6j+e0rT+Rvr616f+6EyODmZmNASOeNDMzGwvG3ZCCmdlYldMtdioNKUh6rqR/kvSv5fOXSFrU\nmdDMzIY3mHBTH1VIeo+knZL+S/l8pqRrJfVJWi1pQaVYq52eJRRXl80rn68Hzq/Yh5lZ2xTLwlLv\n+FClXx0MvBdY0XL4ImBFRBwKnAl8XVJ3ap9VE+7hEfH3wJMAEbGV5if+zMzaSsVg75eBPwOeaHlp\nEUXhSUSsBDYBC1P7rTqG23piJE3FCdfMGtShMdwPAzdHxG2DE23lhl2TImJzS7v7geQ1blUT7k2S\nFgNTJL2+DOrbFfswM2sbUeFKs5Q20kuBtwGVxmdTVB1S+BgwGdgGfBZYCXy83UGZmaVS6ubj6cvH\nFgAHA2sl3Udxpe0XKYYTnpLUupVBL7AhNdaqu4U9Cfz38mFm1rgu0ivHlHYRsYRynBZA0o+Az0bE\nv0k6HjgHuFDSfGA2sDw11qr3NBtyRUJEfKpKP2Zm7VLD5jXBH0YjFgNLJfUBO4DTI2IgtaOqY7gz\nW36eCpwE/HvFPszMshERb2j5eTNwwkj7qjqk8KHW5+VdfC8f6cnNzEarGJ9Nb9ukUV3aGxG/kzRv\n+JZmZp0xHvfDBUDSB1qedgOvAB5sa0RmZhXktJdC1Qr3VS0/PwWsAc5tXzhmZtWMyyGF8nrhqyPC\nFzqY2ZiR05BC8oUP5dKHv+tgLGZm41rVK83ukPSq4ZuZmdVDFbZmbLrCrTqGeyxwc7no9/eDByPi\n+LZGZWaWSCh5B630lp1RNeF+uCNRmJmN0LhbpSDpGxFxWkTc2OmAzMyqyCnhpo7hHt7RKMzMJoDU\nIYXoaBRmZiNU5dY5udy190hJDw1xXEBExIw2xmRmlqyLCkMKHY1keKkJ9x7gzZ0MxMxsJHK68CE1\n4e6IiPs7GomZ2QiowqW9uQwp+EaRZjYmjbtVChFxTKcDMTMb70a1H66ZWdPG4xiumdmY1IUq3EQy\njzFcM7MxyRWumVlNcpo0c8I1s6zldMeHpi+8MDObMFzhmlnWPIZrZlaT8XilmZnZmOQK18ysJl2k\nT0Y1PWnlhGtmWctpP9ymE76Z2Zgj6XpJt0u6TdJySUeXx2dKulZSn6TVkhZU6dcVrpllTaRvZ1ih\nvj0lIh4FkHQycAVwNHAxsCIiTpJ0HHCNpN6IGEjp1AnXzLLWRYULHxJT7mCyLe0LDCbUU4B5ZZuV\nkjYBC4EfpvTrhGtmWetQhYukK4H/QHFPxzdLmgFMiojNLc3uB+ak9ukxXDPL2uCysNRHqoh4V0TM\nAf4GuGTwdKOJ1QnXzOxZRMRS4PXl0yclzWp5uRfYkNqXE66ZZa2oXJX4SOlPPZIOaHl+MrAlIh4C\nlgHnlMfnA7OB5amxegzXzLIm0ivHxPGAHmCZpKkU47ebgf9UvrYYWCqpD9gBnJ66QgGccM0sc9Uu\nfBi+TURsAF6xh9c2AyekR7crJ1wzy1qnVil0ghOumWWt3RVuJ3nSzMysJq5wzSxr3i3MzKwmOQ0p\nOOGaWdY8aWZmVpOc7vhQ+5CGpEsl3Sdpp6Qj6z6/mY0vXajSo9lY67cMeA2wvoFzm5k1pvYhhYj4\nCYCavteFmY0LOQ0peAzXzDKnxifDUmWTcLdv3dr811NNdmzftsuvE8nMKdF0CLXbb6/Y5dfxbvrk\n9n5OV7gdsH7dWgYGkjflGRc2bljfdAi1O6236Qiac+LsifHnu7u7u639FZNhqW2blU3C7Z17SPNf\nTzXZsX0bGzes58A5vUyZOq3pcGr1ie+vbTqE2u23V3Di7AGu+3U3Dz8x/v+MT5/cxV/NbV9/rnCf\nhaQlwFuA5wPXS3osIg4d7n1Tp09Havr7qV5Tpk5j2vS9mw6jVg/uGP8JZ08efkIT4vPvE+P/M+5J\nE6sUzq77nGY2frnCNTOriSqsUmi6tnbCNbOsdal4pLZtkhOumWUtpwp3Ys1CmZk1yBWumWVNVJg0\n62gkw3PCNbOs5TSk4IRrZlmT0sdGvSzMzGwUXOGamdVEqnCLnYl2xwczs4nKFa6ZZS2nm0i6wjWz\nrHVJlR7DkTRF0jWSfinpNknXS5pXvjZT0rWS+iStlrSgUqwj/IxmZmOCKj4SXRYRh0fEMcB3gC+X\nxy8GVpQ7HJ4JfF1S8ga/Trhmlrc2Z9yI2BER17Uc+hlwcPnzKcCSst1KYBOwMDVUj+GaWdZqWBZ2\nLvBtSTOASRGxueW1+4E5qR054ZqZ7YGk84F5wPuB6aPtzwnXzLLWqXW4kv4KOBl4Y0RsB7ZLekrS\nrJYqtxfYkNqnx3DNLGudmDST9GHgVOBNEfFYy0vLgHPKNvOB2cDy1Fhd4ZpZ3qoMzCa0lfRC4B+A\ne4EfSRKwPSJeBSwGlkrqA3YAp0dE8u2WnXDNLGtF5ZqWdUUM2yYiNrGHv/2XQwknVAhvF064Zpa3\nCmO4TV9q5jFcM7OauMI1s6zltJeCE66Z5a3Nk2ad5IRrZllThWvNilbDT5x1ihOumWXNG5Cbmdkz\nuMI1s6x50szMrC6eNDMzq4cnzczMapLTpJkTrpllLacxXK9SMDOriStcM8tf06VrIidcM8ta9Umz\n5jjhmlnWKk2adTSS4TnhmlnWcpo0c8I1s7w1nUUr8CoFM7OauMI1s6x50szMrC5V7mnWMCdcM8ta\nRnvXOOGaWeaazqIVOOGaWdZUYWFY07nZqxTMzGriCtfMslZly8WmK1wnXDPLmifNzMzq0nQWrcBj\nuGaWNVX8Z9j+pEsl3Sdpp6QjW47PlHStpD5JqyUtqBqrE66Z2a6WAa8B1u92/CJgRUQcCpwJfF1S\nd5WOPaRgZllr96RZRPyk6PcZPS8C5pVtVkraBCwEfph6fidcM8taHZNmkmYAkyJic8vh+4E5Vfpx\nwjWzvHnSzMysHu2eNBtKRDwEPCVpVsvhXmBDlX6ccM0sa1K1xygsA84pzqn5wGxgeZUOxuqQwjP+\ns0TsbCKOZkTQ3d0NERPrcwP77DXxaoDpk4vf7+mTu9gnMvr78QjtPXnI3+Mx88ElLQHeAjwfuF7S\nY+XKhMXAUkl9wA7g9IgYqNR3RLQ94NHq7+8/HFjTdBxmVpsjenp6fjlco/7+/plA68QVjw1MIZI3\nrwme071j98Ozenp6HkwNdDTGaoVrZpbEeymYmdWmyn17m+WEa2Z58y12Rm0tcMRuxx4Cxt6As5lV\nJWDGbsfWjqazXIzJhNvT0zMADDuAbmbZ2jx8k/FnTCZcM7NUo1xbWysnXDPLWpV7mjXNCdfM8pea\nbxueBZp4l/VMYJLWS1oj6TZJd0n6QJv6XSbpneXPF0o6bZj2R0n6kxGea29JQ15+J+kCSZ9N6COp\n3RDv+xdJf1H1fdZZqvhokivciSWARRFxp6Q5wGpJN0XEXa2NJHVXvWTx6RNEXJDQ7BjgrcBVIziF\naLxOsbFEVTNpg396XOFOPAKIiA3APcChkhaWFe+XJa0CTpa0j6QvSvqZpNslLZE0CUDSYZJ+KulO\nSdcAz32685YqUNJkSZeU7W6X9D1JM4ELgddLWiXp82Xb+ZJulHSrpF9IentLn2eVtzX5BfCXSR9S\n+iNJN0taWX6283drMqc83xpJ/yppv/J9kyR9uvzcqyR9U1LPyP5Tm+3KCXeCkvQy4DDgjvLQ4cAV\nEXFsRFwNfAa4KSJeGRFHA93AuWXbpcCXIuJlwN9S7Ho/lPOBQ4Bjyj7OiIgHgb8DflSe6wNlQrsM\neEdEHA/8MfAZSQdI+iPg74HXRsTLgWmJH/E+4A0RcRxwHPB2Sce3vP5a4NSIOALYCHy6PP7XwO/L\nz30scBfwycRzWgPq2J6xXTykMPFcJWkbsBV4T0TcK+lAYN3grUVKJwOvlHRe+Xwq8KSk5wBHA1cC\nRMRdklrf1+otwEci4qmy7ZY9tHs1MBe4tuW2JjspvhBeBnyvZaf9L1Ds2jSc6cAXJB1d9nVgGfet\n5evfLZM/wBeBq1s+93NbKuzJFMnbxqqMhhSccCeeRRFx5xDHfz/EsbdFxK9aD5QJd/c/sqP9Iyzg\nroh47TNeKCrxkfgU8CBwVESEpKspvjT2ZPAzCPjziLhhhOe1mjU9EVaFhxQmntQ/n98GPjp4V1JJ\n+0qaFxGPAbcB7yqPv5Tir+dD+Q5wrqS9yrbPK48/CrSOi/478CJJb3w6yGIlwySKG/Sd2LLT/tmJ\n8e8HbCyT7WHAm3Z7/c3leDLAe4EftHzuD0maVsYxTdJLEs9pDahxA/JRc8KdWKpUoh8CtgO3S7oD\nuAE4uHztXcD7Ja0GPs6uu963nuNiimvkV5WTcVeUx28EppQTaZ+PiEcohh/OL5es3U0xptoVEXdT\njOH+pJw025YY/yeAMyXdTlHt3rjb6zcD35C0huJGgB9rifnnwC3l514BHDXEZzOrbExuQG5mNpSh\nNiAf6N47vXSNoHvg8d2PegNyM7MUldfhNshDCmZmNXGFa2ZZy6nCdcI1s6yp5d/Da3bOykMKZmY1\ncYVrZnmrsL626TVZTrhmlrWMrux1wjWzzHnSzMysHtV2AZMrXDOzkRoLeySk8ioFM7PdSHpxucn+\nPZJukXREO/p1wjWzrHXonmaXAUsi4jDgEsr9n0fLCdfMMhcEO5MeKWsUym07Xw58DaC8A8pBkuaO\nNlKP4ZpZ1p7a/ozdv0brIOA3EdF6d+gNFNt4rhtNx65wzcxq4oRrZrarB4ADJLXmxzkUVe6oOOGa\nmbUoby66CjgDoLyh6AMRMarhBPAdH8wsI/39/V3A/m3udktPT0/reC2SDqW4JdT+QD/FHa7vHu2J\nnHDNzGriIQUzs5o44ZqZ1cQJ18ysJk64ZmY1ccI1M6uJE66ZWU2ccM3MauKEa2ZWEydcM7OaOOGa\nmdXECdfMrCb/H9X9TVaecwLmAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f9df5dcbe80>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"pl.matshow(cm, cmap=plt.cm.Blues)\n",
"pl.title('Confusion matrix')\n",
"pl.colorbar()\n",
"pl.ylabel('True label')\n",
"pl.xlabel('Predicted label')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This confusion matrix shows that most of the chapters of text are accurately predicted\n",
"\n",
"The actual classification accuracy is:"
]
},
{
"cell_type": "code",
"execution_count": 601,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"1.0"
]
},
"execution_count": 601,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"accuracy_score(y_test,y_pred)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can perform cross-validation as well to see ifthe predictions are consistent. In this case we'll do a ten cycle cross validation."
]
},
{
"cell_type": "code",
"execution_count": 602,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ 0.98113208 0.98113208 1. 1. 1. 1. 1.\n",
" 1. 1. 1. ]\n"
]
}
],
"source": [
"scores = cross_validation.cross_val_score(estimator=model, \n",
" X=matrix.toarray(),\n",
" y=np.asarray(classes),\n",
" cv=10)\n",
"print(scores)"
]
},
{
"cell_type": "code",
"execution_count": 603,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10-fold cross validation results: mean score = 0.996226415094 std= 0.00754716981132 , num folds = 10\n"
]
},
{
"data": {
"text/plain": [
"<matplotlib.text.Text at 0x7f9e135fc080>"
]
},
"execution_count": 603,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAFPCAYAAACYrK+sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XmYHVW57/HvrxvJgNiEScYkBMLgwCSgqBiPwzXqc45w\nmJ3lUYhyjqig8sDx4CyCw8XnPBhUEC6KIiDgVYYjiEwyiAkynEACmAHUGyabQNIBOu/9o1ZD0emm\nqzp7qNr79+HZpHfVqtpvQeftt9datUoRgZmZtVdPuwMwMzMnYzOzSnAyNjOrACdjM7MKcDI2M6sA\nJ2MzswpYr90BmJkV1d/f3wNs0uDTPtrX17emwecszcnYzOpkE2B5g8+5OfBwg89ZmrspzMwqwMnY\nzKwCnIzNzCrAfcZmVmtv+vD3ePQfTxVqu8lGG3Dd2Z9sckTj42RsZrX2aP9KHn1iVbHGUsFmuhJ4\nORDAE8AnI+LPks4C3gCsBJ4EPh0Rt6VjJgFnAnsDg8CJEXFR0etwN0UHktQr6SRJCyTdIWmepLmS\nXraO5z1T0l2SCn+DDTv+KEnHrksMzSBpmqSjxmjzGkk/a1VMVoJ6yr2KOTgido+IPYDvAuek7b8E\ndknbTwYuyB1zHDAQETOB2cDpkqYU/UBXxp3pLGAj4LUR8QSApAOBjcl+ypcm6eXAocCGMc51VyPi\njPEc1wLbAXOAEeOT1BsRfwIOb2lUVoxUuOIt2m7o702yEbAmbf91bvvNwFaSeiJiDdnfjyNSu8WS\nrgEOIPv7OCZXxh1G0vbAgcCH899QEXFRRCxObT6bKtw/SzpX0oZp+0mSfi7pV5LulnSVpI0k9QG/\nAyYAf5L0OUkfknRx7nPfnb75kLSDpBskzU+f8eXc+b+bvu6RdKqkO1P1/j1J66V9P06V/FWS7pV0\n4dC+Ea53jaQTJN0s6QFJ75F0vKQ/pmPflNr1SrpC0q3pM3+Sfq0E+D6wY/oN4pLU/i+STpZ0C3C2\npFmS5qd9+0m6T9JG6f1/SarqDxobJ0nnSFoKfAn4wAhNPgVclhIxwFRgSW7/krStECfjzrMnsCgi\nHh9pp6TZwIeBfSNiN7K+r5NzTfYBPhgRrySbCH9URPQD7wJWRMSeEXFKaju8Qh56/2/A/42IPdJn\nfGeENkcBrwH2AHYHtgc+nWu3G/BuYGdgC7IfMKN5IiJeB3wU+AnwUETsDZwIfAsgIgaBwyNin4h4\nNdlvCP+ejp8D3Juubf/ceTeOiNdGxNBfxEjnuh74IXCOpIOB1+fOZa3WnG4KIuJDETEV+A/glPw+\nSe8HDgKObNRlOBl3n7cB50fEivT++8Dbc/uviIh/pK9vIkuSZV0HfEzSVyW9Hegfoc1bgbMj4tlU\nWfxwWBwXR8Tq1CVy6xhx/CL9eRswGTg/vb8V2AFAkoBjU/V7B9kPl93HuI6zR9sREd8E1ifr2jg4\nIp4e41zWLEPdFEVfJUXEucA/DfX/SjoU+ALwtojI37m3BJiWez8dWFr0c5yMO888YGaJgYPh1e1A\n7utBRh9XeBbozb2f+NwJI35JNuJ8D1mV/GvGNt44Itd2MH3+07n3Q8e9D3gzsF9E7Ap8Ox/zKJ4c\nbUfq2pkBPEU26m7t0uDKWFKfpC1z7/cHHomIxyUdAnyFLBE/NOzQC8l+y0LSdsAs4JKil+Fk3GEi\n4n7gIuDM1NcLgKR/lTQduAo4RNJL066jgCsLnj5fVtwH7CppQurPfW/us3YAlkfET4DPAa8d4VxX\nAR+U9JJ0/EdLxDFaTCO9H7IR2V+op1Ii/XBu3xNA34hHje5M4FzgEODcMqPm1mCiRGVc6Ix9wCVp\nvON24BNkXWaQdYNNAC5NYyLzcv/vTwUmS7oPuBw4OiIeK3oZnk3RmY4g+zXqFknPkP3QvQ64KiKu\nkPRK4GZJg8AdZN9sRTxXvUbELZIuA+4G/grcyPNJ9yDg/ZKeJvv2H2na2A/IKst56by/B04b/jll\nYhrj2P8DvEfSArK+8Ot4/lfKO4C7Jd0J3J/6jUeNQdLRwJSI+Gp6f3o6/z+XiNsapUxfcIF2EbGU\nkQsIImL9FzluJXBYsUBGCM1Phzazuujv79+MYau2vfKw7/Fof7GbPjbpm8TdP1/rDrzN+/r62r5q\nmytjM6u5MgNz5QfwWsXJ2MzqrcHdFO1S3ci6VLph4sZ0w8ItknZpd0zWHJJOSzeXrJG0a7vjqa0m\nT21rFSfj6jkDmBsRO5FNND9njPZWXxeQTQFc3OY46q1JN320WnUj60KSNiO7K+2nkN3CDGwraUZb\nA7OmiIgbIuKvVLkjsw6cjK0JtgX+lrvXHbI7eArf325m9eQBPDOrtx5lr6JtK8rJuFqWAVvmluSD\nrCoufH+7WdeRSsymqG4ydjdFhaRFR+aRluuTdBCwLCIeaGtgZlXm2RTWJHOAoyTdS7auw0faHI81\nSVqzeRmwNXClpIXtjqmWOmQAz90UFRMRC8nWx7UOFxFz2h2DVYeTsZnVWxMeu9QOTsZmVm8dcju0\nk7GZ1ZwXCjIzaz9Xxs3T39/fC8wctvkxyi06bmbVJGDjYdsW9fX1DY7vbO4zbqaZwIJ2B2FmLbML\n2TMTu1ZVk7GZWTEdcgeek7GZ1Zu7KczMKsADeE211uOt3/iB7/L4EyvbEUvLzdhmCqcdO5tjvn0F\nDzz4eLvDaalFvz253SG03MDKlSx+YBHTZ8xk4uTJ7Q6n6SLW8Myqp4ZvLvxI+7U4GTfVWrMmHn9i\nJY/2d0cy3qRvIoODg/SvWNU11zxEFf7L0jQSg4ODIHXn9WfGP1OqQ7opuvb/vJlZlVS1MjYzK8bd\nFGZmFdAh3RROxmZWb55nbGZWAR1SGVe3A8XMrABJpV4FzjdB0sWS7pE0X9KVkmakfftIuknSPEl3\nS/ps7rhJks6TtCgde2CZ63AyNjNb2xkRsXNE7AH8CvjR0HbgqxGxJ/BG4DhJO6d9xwEDETETmA2c\nLmlK0Q90MjazmitTFY9dGUfE6oi4IrfpZmB6+noNMJRgXwqs5vkbVg4F5qZzLAauAQ4oehXuMzaz\neiuWY59vW94xwCXp6yOASyV9DdgUOCoilqd9U4ElueOWpG2FOBmbWa0V7Qsealvy3CcA2wNHpk3H\nA5+PiPMlbQdcK+m2iFjn5T/dTWFmtdboAbzceY8D9gdmR8SApE2AAyLifICI+AtZF8Yb0iFLgGm5\nU0wHlhb9PCdjM7NhJH0GOAx4e0SsSJsfB56U9E+pzabAa4E70/4LgTlp33bALJ7v3hiTuynMrNYa\n3U0haWvgW8D9wDXKDhqIiH0lHQqcKqkXeAnwnYi4NR16KnCWpPuAZ4GjI6LwanROxmZWa41OxhHx\nEKP0GkTE1cBeo+xbSVZNj4uTsZnVW/NnU7SEk7GZ1VozZ1O0kpOxmdVapyRjz6YwM6sAV8ZmVmud\nUhk7GZtZrTkZm5lVgWdTmJm1nyhRGVc4GzsZm1mtZQ/6KNpN0eRg1oFnU5iZVYArYzOrNQ/gmZlV\ngQfwzMwqoMw6xa6Mzcyaw90UZmYV0CnJ2LMpzMwqwJWxmdVap1TGTsZmVm+eTWFm1n6ujM3MKqBT\nkrEH8MzMKsCVsZnVWqdUxk7GZlZ/1c2xhTkZm1mtuTI2M6sAJ2MzswrolGTs2RRmZhXgytjMaq1T\nHrvkZGxm9dYht0O7m8LMam2oz7joq8D5Jki6WNI9kuZLulLS9sPavEXSs5I+mds2SdJ5khalYw8s\ncx1OxmZWb2UScfF+ijMiYueI2AP4FfCj5z9OLwO+Afxm2DHHAQMRMROYDZwuaUrRD3QyNrNaG8qx\nRV9jiYjVEXFFbtPNwLTc+/8CvgI8NuzQQ4G56RyLgWuAA4peh5OxmdmLOwa4BEDSQcBgRPx6hHZT\ngSW590vStkI8gGdmtdbMecaSTgC2B46U9HLgRGBW2RiLcDI2s1or0xVcJhdLOg7YH3hrRAxIeguw\nBXC7sqy+KfDPkjaLiC8AS8m6M/5fOsV04Mqin+dkbGa11ozKWNJngMPIEvEKgIi4DNgy1+bHwPyI\n+F7adAEwB7hV0nZkFfTHC16Gk7GZ1ZsoURkXaSNtDXwLuB+4JlXBAxGx77CmMez9qcBZku4DngWO\njojhg3yjcjI2s1rr6RE9PcWycZF2EfEQBSY3RMQRw96vJKumx8WzKczMKqAtyVjSDpJulHSvpFsk\n7dKOOMys/ho9z7hd2lUZnwHMjYidgFOAc9oUh5nVXKNvh26XlidjSZsBrwF+ChARFwHbSprR6ljM\nrP5cGY/ftsDfImJNbttSStypYmY2pFMq49rMppixzRQ26ZvY7jBaYuoWfS/4s5usWvlUu0NoudUD\nq17wZ8eL8MyBEbQjGS8DtpTUk6uOp5JVx6M67djZDA4ONj24KjnpY02567LS7l+4oN0htM2DSxe3\nO4SW6O3tZcaMBvZKlql4XRk/LyIeljQP+ABwTlp4Y1lEPPBixx3z7SvoX9EdlcPULfo46WOz+NIP\nr2Xp3/vbHU5L/f7cz7c7hJZbPbCKB5cuZpup05kwcVK7w2m+CKBxhVWzbodutXZ1U8wBzk6LcPQD\nHxnrgAcefJxH+1c2PbAqWfr3fhYuLXwDT0eYNHmDdofQNhMmTuqK649Yw9MrVzTsfJ3yQNK2JOOI\nWAi8vh2fbWadxZWxmVkFdEpl7EFNM7MKcGVsZrXW6FXb2sXJ2MxqrVO6KZyMzazWPIBnZlYBWTIu\nWhk3OZh14GRsZrXWKZWxZ1OYmVWAK2MzqzUP4JmZVUCndFM4GZtZvXnVNjOz9nNlbGZWAZ3SZ+zZ\nFGZmFeDK2MxqrVMqYydjM6s19xmbmVWAKFEZV3jdNidjM6u1TqmMPYBnZlYBTsZmVmtDA3hFXwXO\nN0HSxZLukTRf0pWStk/7NpN0uaSFku6QtF/uuEmSzpO0KB17YJnrcDI2s1ob6qYo+irojIjYOSL2\nAH4F/Cht/yZwU0TsCBwBnCepN+07DhiIiJnAbOB0SVOKfqCTsZnVWo9U6jWWiFgdEVfkNt0MTEtf\nHwzMTe1uAx4CZqV9h+b2LQauAQ4oeh0ewDOzWmvBAN4xwCWSNgbWi4jluX1LgKnp66np/Uj7xuRk\nbGb11sSFgiSdAGwPHAlMLhtaGe6mMDMbgaTjgP2B2RExEBGPAc9K2jzXbDqwNH29hOe7M4bvG5OT\nsZnVWo/KvYqQ9BngMODtEbEit+sC4OOpzd7AVsC1ad+FwJy0bzuyvuRLil6HuynMrNYavTaFpK2B\nbwH3A9coO2ggIvYFjgfOlbQQWA28LyIG06GnAmdJug94Fjg6VdOFOBmbWa01egAvIh5ilF6DNHj3\njlH2rSSrpsfFydjMak3pn6Jtq8rJ2MxqrUxfcNF27eABPDOzCnBlbGa11lWLy0v6IxCj7Y+IfRoW\nkZlZCaLEAF5TI1k3RSvj45sahZnZOGV9xsXSbJX7jAsl44i4eujrtELRtmkhDDOzturKxeXT2p3L\ngOvS+70lndOMwMzMCimzlnGFs3HZ2RSnkN3i9yhARPwR2KvRQZmZdZuysynWi4hFw0Ykn25gPGZm\npXRKN0XZZLxa0gakmRWSXgEMNDwqM7OCii4aP9S2qsom468B/w1sJelsskeLvL/RQZmZFSWKT1mr\nbioumYwj4nJJi4B3kl3X1yNiYVMiMzMroKtu+hjmIWDoJpBljQ3HzKw7lUrGkt4M/BxYTlYZbyrp\nsIi49kUPNDNrkk5ZKKhsZfw94MCIuBFA0r7AGcCujQ7MzKyIbu2miKFEnN7cJGnUNSvMzJqtU6a2\nlb3p42pJz82ekPRe4KrGhmRmVlzRu+/KVNDtUHTVtofJBuwEfErSD9OuCcAjwLHNCc/M7MWp1ING\nmxvLuijaTfG6pkZhZtbliq7adn+zAzEzG4+uHMCTtClwErAbMHFouxeXN7N26ZQ78MoO4J0J/B3Y\nAvgG2ept/93ooMzMiupBz61PMearwum4bDKeHhFfAwYi4mLgPcBbGx+WmVkxQ1Pbir6qquw846EV\n2p6WtDHwOLBpY0MyMyuuK/uMgQckbQKcB9wM/AOY3/CozMy6TNlV2w5PX35H0jxgI+A3DY/KzKyg\nTrkDbzyrtgEQEb9vYBxmZuPSVYvL5+7AG1FEbN6wiMzMSui2yth34JlZJTV6AE/SacC/ANOA3SPi\njty+LwKHA6uBhyPirWn7JLKpv3sDg8CJEXFRmeuozR14i357MlLZmXj1tGrlU9y/cAG/P/fzTJq8\nQbvDaamDz/pju0NouS0mwVG7iM9d+j/8fVW7o2m+DSf08v39t2/Y+UTxOboFC+MLgG8CN7zgWOkY\n4FXAKyJiUFK+R+A4sim/MyVNB26R9LuIeLxgaKXnGZuZdbSIuCEi/sraufs44PiIGEztluf2HQrM\nTdsXA9cAB5T5XCdjM6u1ViyhKWlD4OXA/pJulnSTpENyTaYCS3Lvl6RthY17NoWZWRW06LFL66XX\nhIh4naRpwB8kLYiIO8d91nxsZRpLepmk/y3p0vT+FcN+OpiZtdRQMi76Go/U97sC+Gl6vwS4kWzA\nDrJKeFrukOnA0lLXUTKmuWR33Q31vi8GTih5DjOzhsmmthXtplinj/oZ8M7sM7UxsA8wNNPiQmBO\n2rcdMAu4pMzJyybjnSPii8AzABGxkmqvSmdmVoqkuZKWAVsDV0pamHadAMyWdCfwe+AbEXFb2ncq\nMFnSfcDlwNER8ViZzy3bZ/z0sKAn4mRsZm3U6D7jiJgzyvbHyFaqHGnfSuCwYlGMElvJ9tdJOh6Y\nIOnNwC8oWYqbmTWSKLGEZruDfRFlk/GJwEuAVcB3gNuALzc6KDOzolR0YflOeDr0kIh4BvhKepmZ\ntV0PxavKKt9YUfYZeCPOnIiIrzcmHDOzcrptoaAhm+W+nkg2zeMPjQvHzKw7le2m+HT+fXpa9JkN\njcjMrISsP7h426pap9uhI+IRSY1bfsnMrKSu7KaQ9Inc217gtcDDDY3IzKyEFq1N0XRlK+N9c18/\nCywAjmlcOGZm5XRdN4WkXuCiiPBNHmZWGZ3STVF42l1aUPk/mxiLmVnXKjsH+s+S9h27mZlZa6jE\n8plVrozL9hnvCVyfVjF6cmhjROzT0KjMzAoSKrzmRPGWrVc2GX+mKVGYmY1TV82mkPSziDg8Iq5u\ndkBmZmV0SjIu2me8c1OjMDPrckW7KaKpUZiZjVOZxyl1whKau0oa6REiAiIiNm5gTGZmhfVQopui\nqZGsm6LJ+F7gXc0MxMxsPDrlpo+iyXh1ejS1mVmlqMTt0J3QTVHdKzCzrtZVsykiYo9mB2Jm1s3W\naT1jM7N267Y+YzOzSupBJR5IWt1s7GRsZrXmytjMrAI6ZQDPydjMaq1TnvRR5RtSzMy6hitjM6u1\nTukzdmVsZrWW3YFX7FXkDjxJp0n6i6Q1knbNbT9L0r2S5ku6XtJeuX2TJJ0naZGkeyQdWPY6nIzN\nrNaGKuOirwIuAN4ALB62/ZfALukmuJNTuyHHAQMRMROYDZwuaUqZ63AyNrNa6yn5GktE3BARf2XY\nMhAR8euIWJPe3gxsJWnolIcCc1O7xcA1wAFlrsN9xmZWa21az/hTwGW55DwVyC+mtiRtK8zJ2Mys\nBEnvBw4C3tTI87qbwsxqTSVf6/RZ0qHAF4C3RcTDuV1LgGm599OBpWXO7WRsZrXWQ/HZFOuyNoWk\nQ4CvkCXih4btvhCYk9ptB8wCLil3HWZmNdboyljSXEnLgK2BKyUtTLt+AkwALk3T2+blZkycCkyW\ndB9wOXB0RIz0qLpRuc/YzGqt0Td9RMScUbav/yLHrAQOKxbFyFwZm5lVgCtjM6u1rDIuVhpX+XZo\nJ2MzqzVR/Ff8CudiJ2Mzq7dyN300N5Z14WRsZrVWZv5whXOxk7GZ1VunVMaeTWFmVgGujM2s1oqu\nxjbUtqqcjM2s1jqlm8LJ2MxqzQN4ZmYV4GfgjdNoz5cyMxuPHlTqVVXt6M8e7flSZmZdq+XdFBFx\nA4Aa+PwTM+tendJN4T5jM6s5VbjzobjaJOOBlSur/WOtgVYPrHrBn91ki0ntjqD1Np34wj873Qaj\nrgo8Pq6MW2zxA4sYHBxsdxgt9eDSxe0OoeWO2qXCf1ua7MDtuuPae3sbe53ZwFzRttVVm2Q8fcbM\nav9Ya6DVA6t4cOlitpk6nQkTu6tU/Nyl/9PuEFpu04lZIr7oL8EjA+2Opvk2WD/40ozGnc+V8ThJ\nmgu8G3g52fOlVkTEjmMdN3HyZKQq/1xrvAkTJzFp8gbtDqOl/t59PTPPeWSgO65/wzXtjqCa2jGb\nYsTnS5mZjYcrYzOzClCJ2RQVzsVOxmZWbz3KXkXbVpWTsZnVWqdUxt01ImZmVlGujM2s1kSJAbym\nRrJunIzNrNY6pZvCydjMak0q3t/qqW1mZk3SKZWxB/DMrNaGbvoo+ip2Tr1L0p8kzZd0h6QPpu2b\nSbpc0sK0fb9GXYcrYzOztZ0LvCki7pY0DbhH0kXAN4GbIuKdkvYCLpY0PSLWeRUzJ2Mzq7UmPZB0\nDTAlfd0HPAI8DRwMbA8QEbdJegiYBfyu+KlH5mRsZrXWIxGF2xY+7WFkVe9TwEbAvwIbAutFxPJc\nuyXA1MJnfbHYGnESM7N2UcnXmOeTeoH/APaPiOnA24CfkBWvTRsDdDI2s3prdDaG3YEtI+JGyLoj\ngAeBXYFnJG2eazsdWNqAq3AyNrN6U8l/ClgGbClpZwBJOwAzgHvInm7/8bR9b2Ar4NpGXIf7jM3M\nciJiuaQjgV9IGiQrWo+OiAclHQ+cK2khsBp4XyNmUoCTsZnVnFRiNkXBhhFxPnD+CNuXA+8oHFwJ\nTsZmVmtNmtrWck7GZlZvZTJshbOxk7GZ1VpWGRfLssVnJLeek7GZ1VuJPuMqV8ae2mZmVgGujM2s\n1jyAZ2ZWBR7AMzNrvxJ31qVW1RzEczI2s1prxk0f7eABPDOzCnBlbGa15gE8M7Mq8ACemVn7eQDP\nzKwCOmUAz8nYzGqtU/qMPZvCzKwCXBmbWf1VueQtyMnYzGqt/ABeNTkZm1mtlRrAa2ok68bJ2Mxq\nrVMG8JyMzazeqpxhS/BsCjOzCnBlbGa15gE8M7MqKPMMvApzMjazWuuQdYKcjM2s5qqcYUtwMjaz\nWlOJyW1VztueTWFmVgGujM2s1sosi+nK2MysSVTyVerc0kckrZH0L+n9ZpIul7RQ0h2S9mvUdTgZ\nm1m9NSkbS5oGfBS4Kbf5ZOCmiNgROAI4T1LvOl8DTsZmVnMq+U+hc0oCfgT8G/B0btchwFyAiLgN\neAiY1YjrcDI2M1vbZ4DrI2L+0AZJGwPrRcTyXLslwNRGfKAH8Mys1ho9gCfplcCBQMP6g4twMjaz\nWmvCHXj7AdOARam7YgvgB8AXgWclbZ6rjqcDS0uEMCp3U5hZvTV4AC8i5kbE1hExIyK2A24GPhYR\nc4ELgI8DSNob2Aq4thGX4crYzGqtBXfgRe7Q44FzJS0EVgPvi4jB8Z32hZyMzazWmn3TR0S8Jff1\ncuAd4zjNmKqajNf6bxaxph1xtEcEvb29ENFd1w1sOKEhUzZrZYP1obdXbLB+sGEX/O9+6foj9o5W\n+ea4llBEtDuGtfT39+8MLGh3HGbWMrv09fXdM1aj/v7+zYD81DJWDE4gCndTBBv2rh6+efO+vr6H\niwbaLFWtjM3MCumUtSmcjM2s5saz6kT1OBmbWb35sUtNtQjYZdi2x8immJhZvQnYeNi2Retysk5Q\nyWTc19c3CIzZmW9mtbV87CbdpZLJ2MysqDIDeFXmZGxmtVbmDrwqczI2s/ormosrPOrkhYK6iKTF\nkhZImi/pLkmfaNB5L5D0wfT1lyQdPkb73SQdOs7P2kDSiPepSTpJ0ncKnKNQuxGO+7GkT5Y9zpqr\nmY9daiVXxt0lgEMi4k5JU4E7JF0XEXflG0nqHe/iJxFxUoFmewDvAc4fx0eIStc31moqm2Ur+t3j\nyrj7CCAilgL3AjtKmpUq5R9JmgfsL+mlkn4g6WZJt0uaK2k9AEk7SbpR0p2SLgZe9tzJc9WjpJdI\nOiW1u13SZZI2A74EvFnSPEmnp7Z7S7pa0q2S/iTpoNw5j0oPgPwT8KlCFym9StL1km5L13bCsCZT\n0+ctkHSppCnpuPUkfSNd9zxJP5fUN77/1GbFORl3KUmvBnYC/pw27QycHRF7RsRFwLeB6yLidRGx\nO9ALHJPangv8MCJeDXyB0Z8BdgIwE9gjneMDEfEw8J/ANemzPpGS3RnAeyNiH+B/Ad+WtKWkV5Et\n6v3GiHgNMKngJf4FeEtE7AXsBRwkaZ/c/jcCh0XELsCDwDfS9s8CT6br3hO4C/hawc+0NmjGM/Da\nwd0U3ed8SauAlcBHIuJ+SdsAD0TEDbl2+wOvk3Rsej8ReEbShsDuwDkAEXGXpPxxee8GPhcRz6a2\nj47S7vXADODy9GQFgDVkPyxeDVyWe7LC98nWlB3LZOD7knZP59omxX1r2v+b9IMBsqc4XJS77pfl\nKvOXkCV2q6oO6aZwMu4+h0TEnSNsf3KEbQdGxH35DSkZD/92XtdvbwF3RcQb19qRVfDj8XXgYWC3\niAhJF5H9QBnN0DUI+PeIuGqcn2stVt1atxx3U3Sfot+7lwCfl9QLIGkjSdtHxApgPvChtP2VZL/y\nj+RXwDGS1k9tN03bnwDy/bB/ALaT9NbngsxmXKwH/A6YLWnztGtOwfinAA+mRLwT8PZh+9+V+q8B\nPgr8Nnfdn5Y0KcUxSdIrCn6mtYFU7lVVTsbdpUwF+2lgALhd0p+Bq8ge0ghZIj5S0h3Al3nhM8Dy\nn/FNsjUH5qWBwbPT9quBCWlQ7/SI+AdZl8YJadrd3WR9uD0RcTdZn/ENaQBvVcH4vwocIel2sir5\n6mH7rwd+JmkB2aPWT8zF/EfglnTdNwG7jXBtZg1VycXlzcxGMtLi8oO9GxQveSPoHXxq+FYvLm9m\ntq5KzzOuKHdTmJlVgCtjM6u1TqmMnYzNrNaU+/fYqjtG5m4KM7MKcGVsZvVWYv5wdetiJ2Mzq7kO\nuRvaydi7KCV+AAABGUlEQVTMas4DeGZm7VduNTa5MjYza4aqrzlRlGdTmJkNI2mH9ACFeyXdImmX\nZn+mk7GZ1VqTnoF3BjA3InYCTiGt391MTsZmVnNBsKbQq8hcirS06muAnwKkJ99sK2lGM6/CfcZm\nVmvPDqy1Ctu62hb4W0Tkn0K+lGyp1Qca/WFDXBmbmVWAk7GZ2QstA7aUlM+PU8mq46ZxMjYzy0kP\nqp0HfAAgPZx2WUQ0rYsC/KQPM6uR/v7+HmCTBp/20b6+vnz/MJJ2JHtM2CZAP9mT1O9u8Oe+gJOx\nmVkFuJvCzKwCnIzNzCrAydjMrAKcjM3MKsDJ2MysApyMzcwqwMnYzKwCnIzNzCrAydjMrAKcjM3M\nKsDJ2MysAv4/hb0jvMAsx8EAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f9de16ce908>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"print( \"10-fold cross validation results:\", \"mean score = \", scores.mean(), \"std=\", scores.std(), \", num folds =\", len(scores))\n",
"\n",
"model.fit( X= matrix.toarray(), y= np.asarray(classes) )\n",
" \n",
"predicted = model.predict(matrix.toarray())\n",
"cm = confusion_matrix(classes, predicted)\n",
"pl.matshow(cm, cmap=plt.cm.Blues)\n",
"pl.title('Confusion matrix')\n",
"pl.colorbar()\n",
"pl.ylabel('True label')\n",
"pl.xlabel('Predicted label')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have the trained model which appears to accurately predict whether text is written by Tom Clancy or by Mark Greaney, we can use it to test text written by Mark Greaney under the Tom Clancy name to see if he is able to mimic Tom Clancy.\n",
"\n",
"To do this, we:\n",
"* exctract the text with the author of 'Ghost'\n",
"* transform the text using the same vecotriser we used to build the model, so that we create the same features, and then use the model to predict which author wrote the text.\n",
"\n",
"If Mark Greaney can mimic Tom Clancy, the model should predict 'Tom Clancy', if he can't the model will predict Mark Greaney"
]
},
{
"cell_type": "code",
"execution_count": 604,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"ghost_set = []\n",
"df_ = dfBooks.loc[(dfBooks.author == 'Ghost'), :]\n",
"for author, chapter in zip(df_.author.values, df_.chapter_text.values):\n",
" ghost_set.append({\"label\":author,\n",
" \"text\":chapter})"
]
},
{
"cell_type": "code",
"execution_count": 605,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"ghost_corpus = []\n",
"ghost_classes = []\n",
"\n",
"for item in ghost_set:\n",
" ghost_corpus.append( item['text'])\n",
" ghost_classes.append( item['label'])"
]
},
{
"cell_type": "code",
"execution_count": 606,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of freatures: 4000\n"
]
}
],
"source": [
"ghost_matrix = vectoriser.transform(ghost_corpus)\n",
"print(\"Number of freatures: \", len(vectoriser.get_feature_names()))\n",
"X_ghost = ghost_matrix.toarray()\n",
"y_ghost = np.asarray(ghost_classes)"
]
},
{
"cell_type": "code",
"execution_count": 607,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array(['Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Clancy', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Clancy', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Clancy', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Clancy', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Clancy',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Clancy',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney'], \n",
" dtype='<U7')"
]
},
"execution_count": 607,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ghost_predict = model.predict(X_ghost)\n",
"ghost_predict"
]
},
{
"cell_type": "code",
"execution_count": 608,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Counter({'Clancy': 6, 'Greaney': 127})"
]
},
"execution_count": 608,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Counter(ghost_predict)"
]
},
{
"cell_type": "code",
"execution_count": 609,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"For the 133 chapters written by Greaney under the Tom Clancy brand, only 6 are classified by our model as written by Clancy.\n",
"This is only 4.51%\n"
]
}
],
"source": [
"print('For the {0} chapters written by Greaney under the Tom Clancy brand, only {1} are classified by our model as written by Clancy.\\n\\\n",
"This is only {2:0.2f}%'.format(len(ghost_predict), Counter(ghost_predict)['Clancy'], 100.0*Counter(ghost_predict)['Clancy']/len(ghost_predict)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So it appears that Mark Greaney isn't able to mimic Tom Clancy very well. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As as test, to make sure we are getting the results we think we are, we can re-vectorise Mark Greaney's won books, independent of the original model vectorisation, and then see if the model accurately predicts that they are Greaney chapters"
]
},
{
"cell_type": "code",
"execution_count": 610,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"temp_set = []\n",
"df_ = dfBooks.loc[(dfBooks.author == 'Greaney'), :]\n",
"for author, chapter in zip(df_.author.values, df_.chapter_text.values):\n",
" temp_set.append({\"label\":author,\n",
" \"text\":chapter})"
]
},
{
"cell_type": "code",
"execution_count": 611,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"'Greaney'"
]
},
"execution_count": 611,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"temp_corpus = []\n",
"temp_classes = []\n",
"\n",
"for item in temp_set:\n",
" temp_corpus.append( item['text'])\n",
" temp_classes.append( item['label'])\n",
"temp_classes[0]"
]
},
{
"cell_type": "code",
"execution_count": 612,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of freatures: 4000\n"
]
}
],
"source": [
"temp_matrix = vectoriser.transform(temp_corpus)\n",
"print(\"Number of freatures: \", len(vectoriser.get_feature_names()))\n",
"X_temp = temp_matrix.toarray()\n",
"y_temp = np.asarray(temp_classes)"
]
},
{
"cell_type": "code",
"execution_count": 613,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array(['Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney', 'Greaney',\n",
" 'Greaney', 'Greaney'], \n",
" dtype='<U7')"
]
},
"execution_count": 613,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"temp_predict = model.predict(X_temp)\n",
"temp_predict"
]
},
{
"cell_type": "code",
"execution_count": 638,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Trying 1 features\n",
"Accuracy: 64.8854961832061\n",
"Trying 2 features\n",
"Accuracy: 71.7557251908397\n",
"Trying 3 features\n",
"Accuracy: 72.51908396946564\n",
"Trying 5 features\n",
"Accuracy: 91.6030534351145\n",
"Trying 10 features\n",
"Accuracy: 93.12977099236642\n",
"Trying 20 features\n",
"Accuracy: 98.47328244274809\n",
"Trying 50 features\n",
"Accuracy: 100.0\n"
]
}
],
"source": [
"accuracy_range = []\n",
"features_list = [1, 2, 3, 5, 10, 20, 50]\n",
"for features in features_list:\n",
" print('Trying {0} features'.format(features))\n",
" word_vector = TfidfVectorizer( analyzer='word', ngram_range=(2,2), max_features=features, norm='l2')\n",
" char_vector = TfidfVectorizer( analyzer='char', ngram_range=(2,3), min_df=0, max_features=features, norm='l2')\n",
"\n",
" vectoriser =FeatureUnion([ (\"chars\", char_vector),\n",
" (\"words\", word_vector)\n",
" ])\n",
"\n",
" matrix = vectoriser.fit_transform(corpus)\n",
"\n",
" X = matrix.toarray()\n",
" y = np.asarray(classes)\n",
" model = LinearSVC(loss='hinge', dual=True)\n",
" X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0) #defualt test size is 25%\n",
" y_pred = model.fit(X_train, y_train).predict(X_test)\n",
" cm = confusion_matrix(y_test, y_pred)\n",
" acc = accuracy_score(y_test, y_pred)\n",
" accuracy_range.append(acc)\n",
" print(\"Accuracy: {0}\".format(acc*100))"
]
},
{
"cell_type": "code",
"execution_count": 639,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[(0, 1),\n",
" <matplotlib.text.Text at 0x7f9de255a198>,\n",
" (0, 50),\n",
" <matplotlib.text.Text at 0x7f9e07447860>,\n",
" None]"
]
},
"execution_count": 639,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFvCAYAAABXdv/4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X90VPWd//HXnZmEyS+iBCgBEpJoCCA/c6RQqAUpVrA9\nHC0KVsoGXQw51la3bvH063ZzcGt2cbWubVnYbakorasWqtIinvX4o+ULFREFvlYMQhISASEQze8h\nk5n7/YMwZJgJ3pDJ3BvyfJzDSe5n7tx5Tz6HzCufz+fea5imaQoAAAAX5bK7AAAAgL6A0AQAAGAB\noQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwIO6h6b777lNubq5cLpf2\n79/f5X5/+tOfNHbsWBUUFOjWW29VU1NTHKsEAAAIF/fQdNttt2nHjh3Kycnpcp/m5mYtX75cW7Zs\nUXl5uTIzM/Xwww/Hr0gAAIALeOL9gl/96lclSRe75d22bdtUWFio/Px8SdI999yjb3zjG3r00UfD\n9gsGgwoGg2FthmHIMIwYVw0AAPoa0zQj8obL5ZLLdWljRnEPTVZUV1dr1KhRoe2cnBx9+umnCgaD\nYW80GAyqubnZjhIBAEAflJKScsmhiYXgAAAAFjgyNGVnZ6uqqiq0XVlZqczMzEtOhgAAAD3lyBQy\nb948vf/++zp48KAkae3atbr99tttrgoAAPRnhnmxFdm9oKSkRFu3btWJEyeUkZGhtLQ0HTx4UKWl\npRoxYoSKi4slnb3kwI9+9CMFAgGNHz9eTz/9tNLS0sKOFQgEIi5F0JO5SvSelpYWffzxx8rPz1dy\ncrLd5fQrzf6gPmn060hDm440+FXT1KbqBr+ONfnVHtf//QD6OrchuQxDbkNyuwy51fHVkFwuQx7D\nkMs43+butK8rbLvje5fkliGXS2HPdRmSx2WE9g97zY5tj6vTsdXpeJ2On+iWJqSF/6JLTU2V2+2+\npPcf99AUS8FgUI2NjWFtaWlphCYHam5u1oEDBzR27FilpKTYXc5lxzRNnWoNqLK+TVUNbaqob1NV\nfZsqG/w62dJud3lAnxcKAB0fxp7Qh/7ZD3iXTAX8bUoaMEAJHpc8xvkg4TbOBgJ3pw95T+dw0Om4\n7k77u869VigsnN3v3P7ngkTn8HCuts4hw2NccOxOAcbjuvB9dQ4l4Y+5DfW5s9NjnRMcefYcgOja\ng6aONvlD4aiyvk2V9We3m/zBLz4A0E2ezqMGnf7y7/wBfGGguPADPPpj5z7Qw0ciLgwQYa8f9thF\nPuQvCCZuo/PIxYW1R6+tcx0uC2Hh/B+GWfxheBkjNAEO1OoP6kjj2VBUUe8/O2pU36bqRr/8wT47\nONyneFznRwci/irv9KHsivIBHu0v+tAIwRcFiC5CRsDfplMnTmh45jAlewdEBIlooxVWHgsfyQgP\nKFbCAtCfEJoAG9X52lXZKRRVdoweHW+2Z0rNpegfnhdOCVw4XdA5UIT9Rf+FUwLhoxWuaB/yXU03\nXBA2XBd5LHKaJPx9uS4ILS4HBoXm5mYd8NdobF4KIxmATQhNQC8LmqaON7WroiMQnQtIVQ1t+vxM\n/KfUUhJcyh2YoJz0ROWmJyp3YKKGJQZUX/OxJoxjzRkAdIXQBMTImUBQRxrOjxpVdASjIw1+nQnE\nf0ptcJJbeR3BKGdgR0BKT9SQJHfElEtzc7MOOG9wBQAchdAEdFPDmYAqOo0Wnf3q19Emv+K93Mht\nSCPTEsJCUe7AROWkJygt8dJOqQUAREdoAqIwTVOftrR3Wmvk7zhTrU11vkDc6/G6jVAoOhuQEpSb\nnqistAQlurnEBgDEA6EJ/Zo/YKq68fxoUWWnEaRWG678OMjrDoWivPTE0LqjLyV7HLk4GQD6E0IT\n+oWmtoCqGvznL/rYcabaJ41+xXu5kSFpRGqCctM7FmN3mlpLH8CUGgA4FaEJlw3TNFXbGui4EnZb\naNSosr5Nta3xn1JLdBkalZ6g3IGJYaNG2WkJ8nqYUgOAvobQhD7n3FWxw0aNOqbX7Lgqdnqi6+xa\no04LsXPTE5WZ4pHbxZQaAFwuCE1wrFZ/sNOtQs4vxq5ubFO7DXcMGZbiOXsK/8DOASlBV3ojT+EH\nAFx+CE2wlWma+swXUEVDm6rq/Z0CUps+teGq2B6XNCotPBSdO2MtKYEpNQDozwhNiIuAaaq2zdBn\nx306fub8mqOq+jbVt8V/2Cg1wdWx+Dr8GkcjUhPkYUoNABAFoQmXzDRNNfmDOtUa0Glfu+paAzrt\nC6iutV2nfIGO7Xad9gV0urVd/uBA6XBdXGscmuxRTsdoUef1RoOjXBUbAICLITQhjGmaamwLng06\nvnadbg3odGtAdR3hp641oFOdApI/3pfAjsJtSFlpCRG3C8kZmKBUrooNAIgRQlM/cC4IneoYBTo7\n8nM+FHUORE4JQtEkeQzldJy+3/lstazUBCW4GTUCAPQuQlMfZZqmGjpGhOpa23WqU/gJD0Rn/zk1\nCEWT4XWfD0WdbhnypWQPU2oAANsQmhyoPWhqf61PJ1vaVec7F4g6TZf5zgYkO067jxWX0XFV7I6b\ny3ZeczSQq2IDAByI0OQw737aoh//3091yoYrWMdSgstQhtetQUluDfZ6NNBjymiu07V5mRo7NE3Z\nAxM0gBvNAgD6EEKTg7T4g/o/Dg5MiS5Dg5LcyvC6leH1dAQitwYleUIBKcPr0eAkt1ITXGFTac3N\nzTpw4LjGjkxSSsoAG98FAACXhtDkIG/UNMX9HmnnglDn8JPR8f3gJLcGeTvaogQhAAD6E0KTg2yr\nbIzJcQa4DQ3qHH46B6KOIHQ2EBGEAACwitDkEHWt7dp1vKXLx88FocFJnvBA1BF+MryejkBEEAIA\noDcQmhzif480KRDlqgDLx1+pomuuVApBCAAAWxGaHGJbVfSpuVvy07mqNQAADsA53w7wSaNf+2t9\nEe2Th3g1PDXBhooAAMCFCE0O8GoXo0zzc9PiXAkAAOgKoclmpmnqlShnzXkM6YZRhCYAAJyC0GSz\ng5+1qbK+LaJ9+vBkXellLRMAAE5BaLJZV9dmmp/DKBMAAE5CaLJR0DSjrmfyug3Nzkq1oSIAANAV\nQpON3j/p04mW9oj22VkpSk6gawAAcBI+mW20rbIhajtnzQEA4DyEJpv4A6ZeO9IU0X7FAJe+MjzF\nhooAAMDFEJpssuNYsxraghHtc0elKcHF7VIAAHAaQpNNOGsOAIC+hdBkg2Z/UH/5pDmifViKR5OH\nem2oCAAAfBFCkw3erGmSL2BGtM/LSZPLYGoOAAAnIjTZoKupuZs4aw4AAMciNMVZXWu7dh1viWi/\n+opE5V85wIaKAACAFYSmOPvfI02KMjOneSwABwDA0QhNcbYtym1TJC5oCQCA0xGa4uiTRr/21/oi\n2icP8Wp4aoINFQEAAKsITXEU7ea8EqNMAAD0BYSmODFNU69EOWvOY0g3jCI0AQDgdISmODn4WZsq\n69si2qcPT9aVXrcNFQEAgO4gNMUJt00BAKBvIzTFQdA0o65n8roNzc5KtaEiAADQXYSmOHjvZKtO\ntLRHtM/OSlFyAl0AAEBfwCd2HLza5W1TBsa5EgAAcKkITb3MHzD12pGmiPYrBrg0fXiyDRUBAIBL\nQWjqZTuONauhLRjRPndUmhJchg0VAQCAS2FLaDp06JBmzpypgoICTZs2TQcOHIi63+rVq3XNNddo\nypQpmjFjhnbv3h3nSnuuq7PmbuKClgAA9Cm2hKYVK1aopKRE5eXlWrlypYqKiiL22bdvn9auXat3\n331X77//vr73ve/p3nvvtaHaS9fsD+ovnzRHtA9L8WjSEK8NFQEAgEsV99BUW1urPXv2aMmSJZKk\nhQsXqqamRhUVFWH7GYah9vZ2NTaeHan5/PPPlZWVFe9ye+TNmib5AmZE+7ycNLkMpuYAAOhLPPF+\nwZqaGmVmZsrlOp/XsrOzVV1drby8vFDbxIkTdf/99ys3N1cZGRkaMGCA/vKXv8S73B5hag4AgMtH\n3EOTVVVVVfrDH/6giooKfelLX9KaNWu0aNEibd++/aLPa2lpkeGAUZzPfAHtOt4S0Z430KPhie1q\nbo68btPlrLW1NewrnIX+cT76yNnoH2cyzcjZnp4wzFgf8QvU1tYqPz9fdXV1odGmzMxM7dixI2yk\n6fHHH9fHH3+sdevWSTobhlJTU9XW1iaP52zWCwaDoem7cyoqKhQIBOL0brr2Rl2i/udEUkT7LUN8\numnwGRsqAgCgf3G73WHZQpLS0tLCZru6I+4jTUOGDFFhYaE2btyooqIibdq0SVlZWRFvKi8vTxs2\nbFBzc7NSUlL0xz/+UQUFBaHA1JX8/HxHjDQ9+VatJH9E+x2F2cpMcewAX69pbW1VVVWVcnJylJQU\nGSZhL/rH+egjZ6N/nMk0zZgOpNjy6b1u3TotW7ZMZWVlSk9P14YNGyRJpaWlGjFihIqLi3XLLbfo\n3Xff1bXXXiuv16uUlBQ9++yzX3js5OTkS06QsfJJo18f1EUGpslDvLp6aLoNFTlHUlKSUlJS7C4D\nXaB/nI8+cjb6x1mizUj1hC2hafTo0dq5c2dE+6pVq8K2H3nkET3yyCPxKitmot2cV5LmswAcAIA+\niyuCx5hpmnolyllzHkO6YRShCQCAvorQFGMHP2tTZX1bRPv04cm60uu2oSIAABALhKYY49pMAABc\nnghNMRQ0zajrmbxuQ7NGptpQEQAAiBVCUwy9d7JVJ1oiL1o5OytFyQn8qAEA6Mv4JI+hV7ucmhsY\n50oAAECsEZpixB8w9dqRpoj2Kwa4NH14sg0VAQCAWCI0xciOY81qaAtGtM8dlaYEl/1XKAcAAD1D\naIoRzpoDAODyRmiKgWZ/UH/5pDmifViKR5OGeG2oCAAAxBqhKQberGmSL2BGtM/LSZPLATcPBgAA\nPUdoigGm5gAAuPwRmnqorrVdu463RLRffUWi8q8cYENFAACgNxCaeuh/jzQpysyc5jPKBADAZYXQ\n1EPbotw2RTq7ngkAAFw+CE098EmjX/trfRHtk4d4NTw1wYaKAABAb/HYXUBf4w+YKv/sjPbVtur1\n6sgrgEtMzQEAcDkiNH2BOl+79tf6tK/Wp321rfrw9BmdibaIqYPHkG4YRWgCAOByQ2iK4nizX8/8\n7TPtPNai6kZ/t547fXiyrvS6e6kyAABgF0LTBep87brz1U90oqX9kp6/4KqBMa4IAAA4AQvBL/Dr\n//fZJQem67NSNDc7NcYVAQAAJ2CkqZNTre36w8f1lvd3GVL+FQM0eahXXx2RopnDk2Vw2xQAAC5L\nhKZOnvnws4su8k5NcGniEK8mDfFq0pAkjR/sVUoCg3UAAPQHhKYOdb52/b48cpTJkLRy6hBNHZak\n3PREbsALAEA/RWjq8NsPP5cvyijTDaNSdfuYK2yoCAAAOAlzS5I+PxPQ8+WfR31s+YRBca4GAAA4\nEaFJ0rMHPldLe+Qo05ysFOVfOcCGigAAgNP0+9DU2BbQ/3wUfZTp7omMMgEAgLP6fWj6n48+V5M/\nGNH+tREpGjPIa0NFAADAifp1aGpqC+h3BxhlAgAAX6xfh6YXDtaroS1ylGnG8GSNH8woEwAAOK/f\nhqZWf1AbP+xilIkz5gAAwAX6bWj6/cf1+vxMIKL9y8OSNHlokg0VAQAAJ+uXocnXHtQzf/ss6mOs\nZQIAANH0y9D0h48bdNoXOco0ZahX134p2YaKAACA0/W70HQmENSGv9VFfax4YkacqwEAAH1FvwtN\nLx9qUG1r5CjThMFeTRvGWiYAABBdvwpN/oCppz6IvpapeOIgGYYR54oAAEBf0a9C0x8rGvRpS3tE\n+7iMAZo5nLVMAACga/0mNPmDpn7zQfS1TMsnMMoEAAAurt+Epm2VjTraFDnKNPrKRM0emWJDRQAA\noC/pN6Hp6isSo07BMcoEAACs6DehaVyGV7/8+gj9dn6WZnWMLOWlJ+rr2ak2VwYAAPoCj90FxNs1\ng736j+uHq7zujJr9QbkYZQIAABb0u9B0TsGgAXaXAAAA+pB+Mz0HAADQE4QmAAAACwhNAAAAFhCa\nAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJbQtOhQ4c0c+ZMFRQUaNq0aTpw4EDU/WpqarRg\nwQKNGTNG48eP15o1a+JcKQAAwFm2hKYVK1aopKRE5eXlWrlypYqKiqLud8stt2jZsmX66KOP9MEH\nH2jRokVxrhQAAOCsuIem2tpa7dmzR0uWLJEkLVy4UDU1NaqoqAjb7/XXX5fX69W3v/3tUNuQIUPi\nWisAAMA5cb/3XE1NjTIzM+Vync9r2dnZqq6uVl5eXqjtww8/1ODBg/Wd73xH5eXlys3N1WOPPabc\n3NyLHr+lpUUGN+F1nNbW1rCvcBb6x/noI2ejf5zJNM2YHs+xN+xtb2/Xm2++qV27dmnMmDH6r//6\nLy1atEi7d+++6PM+/vhjBQKBOFWJ7qqqqrK7BFwE/eN89JGz0T/O4na7wwZkeiruoSkrK0vHjx9X\nMBgMjTZVV1crOzs7bL/s7GxNmTJFY8aMkSQtXbpU3/ve9xQIBOR2u7s8fn5+PiNNDtTa2qqqqirl\n5OQoKSnJ7nJwAfrH+egjZ6N/nMk0zZgOpMQ9NA0ZMkSFhYXauHGjioqKtGnTJmVlZUUkwfnz5+vB\nBx/UsWPHNHz4cG3dulVjx469aGCSpOTk5LCpPzhLUlKSUlJS7C4DXaB/nI8+cjb6x1mCwaAaGxtj\ndjxbpufWrVunZcuWqaysTOnp6dqwYYMkqbS0VCNGjFBxcbGSk5O1bt06ffOb35Qkpaen67nnnrOj\nXAAAAHtC0+jRo7Vz586I9lWrVoVtz507V++//368ygIAAOgS81gAAAAWEJoAAAAsIDQBAABYQGgC\nAACwoFuh6Tvf+U7UBdwAAACXu26Fpuuvv1733HOPCgsLtX79evl8vt6qCwAAwFG6FZqKi4u1d+9e\n/fznP9frr7+u3NxcrVy5UkeOHOmt+gAAABzhktY0FRQUaOzYsfJ4PProo4/01a9+VatXr451bQAA\nAI7RrdD09ttva8mSJZo8ebJ8Pp/efvttbdmyRR999JHWrFnTWzUCAADYrltXBC8uLtZ9992n9evX\ny+v1htpTUlL00EMPxbw4AAAAp+hWaNq/f3+Xj61YsaLHxQAAADhVt6bnbrrpJp0+fTq0ferUKX3r\nW9+KeVEAAABO063QdOzYMWVkZIS2Bw8erGPHjsW8KAAAAKfpVmgKBAJqb28Pbbe1tamtrS3mRQEA\nADhNt0LT/Pnzddttt+mtt97SW2+9pcWLF+umm27qrdoAAAAco1sLwR955BGVlZVp5cqVkqQFCxbo\nwQcf7JXCAAAAnKRboSkhIUGlpaUqLS3trXoAAAAcqVuhSZLeeecd7d27N+y+cz/4wQ9iWhQAAIDT\ndCs0lZWVadOmTaqurtasWbP02muv6etf/zqhCQAAXPa6tRD82Wef1c6dOzVy5Eht3rxZu3fvlst1\nSbevAwAA6FO6lXi8Xq+8Xq+CwaBM01RBQYEOHz7cW7UBAAA4Rrem55KSkuT3+zV58mT94z/+o0aO\nHKlAINBbtQEAADhGt0aa1q5dq7a2Nj3++ONqaGjQjh07tHHjxt6qDQAAwDEsjzQFAgFt3LhRq1ev\nVkpKin71q1/1Zl0AAACOYnmkye1268033+zNWgAAAByrW9NzN910kx555BEdO3ZMDQ0NoX8AAACX\nu24tBH/44YclST/5yU9kGIZM05RhGCwGBwAAl71uhaZgMNhbdQAAADgaV6YEAACwoFsjTS6XS4Zh\nRLQzPQcAAC533QpNjY2Noe9bW1v1zDPPEJgAAEC/0K3puZSUlNC/wYMH64c//KE2bdrUW7UBAAA4\nRo/WNH300Uc6depUrGoBAABwrG5Nz1155ZWhNU2BQECmaeoXv/hFrxQGAADgJN0KTXv37j3/RI9H\nw4YNk9vtjnlRAAAATtOt0GQYhoYOHSqv1ytJ8vl8OnbsmLKysnqlOAAAAKfo1pqmW2+9NWzbNM2I\nNgAAgMtRt0JTW1tbaJRJkpKSknTmzJmYFwUAAOA03QpNhmHo5MmToe1PP/1UpmnGvCgAAACn6daa\nph/84Af6yle+oqVLl0qSfvvb36q0tLRXCgMAAHCSboWmO++8U7m5uXrllVckSU899ZSuu+66XikM\nAADASboVmnw+n2bNmqXZs2dLkoLBoHw+X9g6JwAAgMtRt9Y0zZkzRw0NDaHtxsZGzZ07N+ZFAQAA\nOE23QlNLS4vS09ND2+np6Wpqaop5UQAAAE7TrdAUDAbDQlJDQ4Pa29tjXhQAAIDTdGtN05IlSzR3\n7lyVlJRIktatW6eioqJeKQwAAMBJuhWaHnzwQQ0bNkxbt26VYRj6/ve/r5SUlN6qDQAAwDG6FZok\nqaioSNOmTdP69ev1wAMPaOTIkbr55pt7ozYAAADHsByaWlpa9Pzzz2v9+vWqqKhQa2ur/vrXv2rM\nmDG9WR8AAIAjWFoIfvfddysrK0tbtmzRgw8+qOrqal1xxRUEJgAA0G9YGml67rnndO2112rFihW6\n8cYbZRiGDMPo7doAAAAcw9JI0/Hjx/Xd735XDz/8sEaNGqV/+qd/kt/v7+3aAAAAHMNSaEpNTdXf\n//3fa+fOnXr11Vfl8/nU1tamGTNm6D//8z97u0YAAADbdevilpI0btw4PfbYYzp69KgeeOABbd26\ntdsveujQIc2cOVMFBQWaNm2aDhw4cNH9ly1bJpfLFXYLFwAAgHjqdmg6x+PxaOHChZcUmlasWKGS\nkhKVl5dr5cqVF71A5osvvqjExETWUAEAAFtdcmi6VLW1tdqzZ4+WLFkiSVq4cKFqampUUVERse+J\nEyf0r//6r3riiSdkmma8SwUAAAiJe2iqqalRZmamXK7zL52dna3q6uqIfYuLi/Xv//7vXHUcAADY\nrttXBI+X9evXa9SoUZo1a1a3ntfS0sJUngO1traGfYWz0D/ORx85G/3jTLGepTLMOM971dbWKj8/\nX3V1daHRpszMTO3YsUN5eXmh/b773e9q+/btcrvdMk1TR44cUXZ2tl5++WVNmjRJkhQMBtXY2Bh2\n/IqKCgUCgfi9IQAA4EhutzssW0hSWlpa2GxXd8Q9NEnSnDlzVFRUpKKiIm3atEmPPvqo3nnnnYs+\nx+Vyqb6+XmlpaaG2aKHJ7XYz0uRAra2tqqqqUk5OjpKSkuwuBxegf5yPPnI2+seZTNOMGEjpSWiy\nZXpu3bp1WrZsmcrKypSenq4NGzZIkkpLSzVixAgVFxdHPMcwDEvDbMnJyZf8w0DvS0pKYo2ag9E/\nzkcfORv94yzRBld6wpbQNHr0aO3cuTOifdWqVV0+hyk3AABgJ4ZkAAAALCA0AQAAWEBoAgAAsIDQ\nBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkA\nAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACA\nBYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsI\nTQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoA\nAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAA\nWEBoAgAAsIDQBAAAYAGhCQAAwAJbQtOhQ4c0c+ZMFRQUaNq0aTpw4EDEPh988IFmzZqlcePGaeLE\niVq+fLnOnDljQ7UAAAA2haYVK1aopKRE5eXlWrlypYqKiiL28Xq9WrNmjT788EPt27dPTU1NWr16\ntQ3VAgAA2BCaamtrtWfPHi1ZskSStHDhQtXU1KiioiJsv6uvvlrjx4+XJBmGoalTp6qqqire5QIA\nAEiyITTV1NQoMzNTLtf5l87OzlZ1dXWXz2lubtavf/1r3XzzzfEoEQAAIILH7gK+iN/v1+233655\n8+ZpwYIFX7h/S0uLDMOIQ2XojtbW1rCvcBb6x/noI2ejf5zJNM2YHs8wY33EL1BbW6v8/HzV1dWF\nRpsyMzO1Y8cO5eXlhe3b3t6uRYsWaejQoVq3bl3EsYLBoBobG8PaKioqFAgEeu8NAACAPsHtdkdk\ni7S0tLDZru6I+0jTkCFDVFhYqI0bN6qoqEibNm1SVlZWxJsKBAJavHixMjIyogamruTn5zPS5ECt\nra2qqqpSTk6OkpKS7C4HF6B/nI8+cjb6x5lM04zpQIot03Pr1q3TsmXLVFZWpvT0dG3YsEGSVFpa\nqhEjRqi4uFjPP/+8XnrpJU2cOFFTpkyRYRiaOXOmfvGLX1z02MnJyZecINH7kpKSlJKSYncZ6AL9\n43z0kbPRP84SbUaqJ2wJTaNHj9bOnTsj2letWhX6/o477tAdd9wRz7IAAAC6xJAMAACABYQmAAAA\nCwhNAAAAFhCaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQ\nmgAAACwgNAEAAFhAaAIAALCA0AQAAGABoQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQB\nAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWEBoAgAA\nsIDQBAAAYAGhCQAAwAJCEwAAgAWEJgAAAAsITQAAABYQmgAAACwgNAEAAFhAaAIAALCA0AQAAGAB\noQkAAMACQhMAAIAFhCYAAAALCE0AAAAWEJoAAAAsIDQBAABYQGgCAACwgNAEAABgAaEJAADAAkIT\nAACABYQmAAAACwhNAAAAFhCaAAAALCA0AQAAWGBLaDp06JBmzpypgoICTZs2TQcOHIi635/+9CeN\nHTtWBQUAYAl5AAAJZ0lEQVQFuvXWW9XU1BTnSgEAAM6yJTStWLFCJSUlKi8v18qVK1VUVBSxT3Nz\ns5YvX64tW7aovLxcmZmZevjhh22oFgAAQPLE+wVra2u1Z88evfbaa5KkhQsX6t5771VFRYXy8vJC\n+23btk2FhYXKz8+XJN1zzz36xje+oUcffTS0j2maEccPBoO9/A5wKUzTlNvtlmma9JED0T/ORx85\nG/3jTNH6Ilp2sCruoammpkaZmZlyuc4PcmVnZ6u6ujosNFVXV2vUqFGh7ZycHH366acKBoOh50Z7\n483Nzb1YPXoiLy9PgUBAjY2NdpeCKOgf56OPnI3+6Rt6EppYCA4AAGBB3ENTVlaWjh8/HjZkVl1d\nrezs7LD9srOzVVVVFdqurKyMGKECAACIl7gnkCFDhqiwsFAbN26UJG3atElZWVlhU3OSNG/ePL3/\n/vs6ePCgJGnt2rW6/fbb410uAACAJMkwezK5d4kOHjyoZcuW6fTp00pPT9eGDRs0btw4lZaWasSI\nESouLpZ09pIDP/rRjxQIBDR+/Hg9/fTTSktLCx0nGAxGLPIyDEOGYcT1/QAAAOcxTTNiDZPL5brk\nWStbQhMAAEBfwwIhAAAACwhNAAAAFlwWocnqbVkQH/fdd59yc3Plcrm0f//+UHttba3mz5+v0aNH\na+LEidq+fbuNVfZfZ86c0S233KIxY8ZoypQpuvHGG3X48GFJ9JFT3HjjjZo8ebKmTJmiWbNmae/e\nvZLoH6d56qmn5HK5tGXLFkn0j5Pk5ORo7NixmjJligoLC/X73/9eUgz6yLwMzJkzx3zmmWdM0zTN\nTZs2mVOnTrW5ov5t+/bt5tGjR83c3Fxz3759ofa77rrLXLVqlWmaprl7925z5MiRZnt7u11l9ls+\nn8/ctm1baPuXv/ylOXv2bNM0TfPOO++kjxygvr4+9P2LL75oTpo0yTRN+sdJqqqqzBkzZpgzZsww\nX375ZdM0+R3nJLm5ueb+/fsj2nvaR30+NJ08edJMT083A4FAqG3YsGHm4cOHbawKpmmaOTk5YaEp\nNTXVPHHiRGh72rRp5uuvv25Haejk3XffNXNzc03TpI+c6KmnnjILCwtN06R/nCIYDJpz584133vv\nPXP27Nmh0ET/OMeFnz/n9LSP4n4blVizelsW2Kuurk7t7e0aOnRoqG3UqFGqrq62sSpI0pNPPqmb\nb76ZPnKYoqIivfnmmzIMQ6+88gr94yA/+9nPdN1112nKlCmhNvrHeZYuXSpJ+vKXv6x/+7d/k2EY\nPe6jy2JNE4BLU1ZWpsOHD6usrMzuUnCBp59+WtXV1frpT3+qlStXSurZPbMQG3/729+0efNmPfTQ\nQ3aXgovYvn279u3bp/fee08ZGRkqKiqS1PP/Q30+NFm9LQvsNWjQIHk8Hp08eTLUVlVVRT/Z6LHH\nHtNLL72kV199VV6vlz5yqKVLl+qtt96SJCUkJNA/Ntu+fbuOHDmi/Px85ebm6u2331ZxcbFeeOEF\n/v84yMiRIyVJbrdb999/v7Zv3x6T33F9PjRZvS0L7Hfbbbdp7dq1kqTdu3fr2LFjmjVrls1V9U8/\n+9nP9Nxzz+m1114Lu8o+fWS/+vp6HT9+PLT90ksvKSMjQ4MGDaJ/HKCkpERHjx5VRUWFKisrNX36\ndP3qV79SSUkJ/eMQLS0tqq+vD20/++yzoanURYsW9aiPLosrgl94W5annnpK11xzjd1l9VslJSXa\nunWrTpw4oYyMDKWlpengwYM6efKkli5dqsrKSg0YMEBr1qzR1772NbvL7XeOHj2qrKwsXXXVVUpL\nS5NpmvJ6vfrrX/9KHzlAdXW1brvtNvl8PhmGoaFDh+qxxx7TxIkT6R8HmjNnju6//34tWLCA/nGI\nyspKLVy4UMFgUKZpKi8vT08++aSys7N73EeXRWgCAADobX1+eg4AACAeCE0AAAAWEJoAAAAsIDQB\nAABYQGgCAACwgNAEAABgAaEJAADAAkITAACABYQmALbJycnR2LFjVVhYqMLCQhUXF1/ysZ588smw\ne0oBQKxxRXAAtsnNzdWWLVs0YcKEmBzr5Zdf1sSJE7v93GAwKJeLvyEBXBy/JQDY6sK/25qamlRc\nXKzp06dr8uTJKikpUXt7uyTpiSee0LRp01RYWKhp06Zp165dkqR/+Zd/0bFjx7R48WIVFhZq//79\nWrVqlX74wx+GjrtmzRrdddddkqSnn35ac+bM0a233qpJkyZp9+7dOnHihBYvXqzp06dr0qRJ+ud/\n/udQfffee6+uueYaTZkyRVOnTlVbW1s8fjQAHMZjdwEA+rfFixfL6/XKMAyVlpbqlVde0de+9jX9\n93//tyTp7rvv1pNPPqkHHnhAf/d3f6d/+Id/kCTt2rVLy5Yt04EDB/STn/xEv/nNb/TCCy+ERq1e\nfPHFi77uO++8o7179+rqq6+WJM2bN08PPfSQrrvuOgUCAX3rW9/S5s2bddVVV+mNN97Qhx9+KElq\nbGxUYmJib/04ADgYoQmArToHHUkqLi7W22+/rccff1yS5PP55PGc/VW1Z88elZWV6fTp0/J4PDp4\n8KDOnDmjAQMGSIoctbqYGTNmhAJTS0uLXn/9dZ08eTJ0jObmZpWXl+uGG25QIBDQXXfdpdmzZ+ub\n3/xmTN43gL6H0ATAVtGCzubNm0OB5hy/36+FCxfqz3/+swoLC9XY2KgrrrgiLDR15vF4FAgEQts+\nny/s8dTU1LAaDMPQrl27lJCQEHGsDz74QH/+85/1xhtv6Mc//rG2b9+uvLy8br9XAH0ba5oAOMrN\nN9+s1atXhwLP559/rsOHD8vn88nv9ysrK0uS9POf/zzseenp6aqvrw9tX3311Xr33XcVDAbV0tKi\nzZs3d/maKSkpuv7661VWVhZqO378uI4ePapTp06pqalJc+fOVVlZmXJyckJTdQD6F0ITANsYhhHR\n9sQTT8jr9Wry5MmaNGmS5s6dqyNHjigtLU0//elPNXXqVE2dOlVerzfsed///ve1fPny0ELwb3/7\n28rMzNS4ceO0YMECFRYWXrSW3/3udzp06JAmTJigiRMnauHChaqrq1NNTY1uuOEGTZ48WRMmTNCE\nCRM0f/78mP4cAPQNXHIAAADAAkaaAAAALCA0AQAAWEBoAgAAsIDQBAAAYAGhCQAAwAJCEwAAgAWE\nJgAAAAsITQAAABYQmgAAACwgNAEAAFjw/wHU0RvfJhRmpwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f9dffe54b70>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(figsize=(6,4), facecolor='white')\n",
"ax.plot(features_list, accuracy_range)\n",
"ax.set(xlim=[0,50],\n",
" ylim=[0,1],\n",
" xlabel='Features',\n",
" ylabel='Accuracy',\n",
" axis_bgcolor = 'white')\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And it does.\n",
"\n",
"So what this tells us is that Mark Greaney isn't able mimic Tom Clancy.\n",
"\n",
"However, fans of Tom Clancy books written by Mark Greaney seem happy anyway.\n",
"<img src=Mark%20Greaney%20ratings.png>"
]
},
{
"cell_type": "code",
"execution_count": 441,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Title</th>\n",
" <th>Date</th>\n",
" <th>Author</th>\n",
" <th>Brand author</th>\n",
" <th>Reviews</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Back Blast</td>\n",
" <td>2016</td>\n",
" <td>Mark Greaney</td>\n",
" <td>Mark Greaney</td>\n",
" <td>566</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>The Gray Man</td>\n",
" <td>2009</td>\n",
" <td>Mark Greaney</td>\n",
" <td>Mark Greaney</td>\n",
" <td>695</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Commander in Chief</td>\n",
" <td>2016</td>\n",
" <td>Mark Greaney</td>\n",
" <td>Tom Clancy</td>\n",
" <td>1358</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>On Target</td>\n",
" <td>2010</td>\n",
" <td>Mark Greaney</td>\n",
" <td>Mark Greaney</td>\n",
" <td>356</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Dead Eye</td>\n",
" <td>2013</td>\n",
" <td>Mark Greaney</td>\n",
" <td>Mark Greaney</td>\n",
" <td>436</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Title Date Author Brand author Reviews\n",
"0 Back Blast 2016 Mark Greaney Mark Greaney 566\n",
"1 The Gray Man 2009 Mark Greaney Mark Greaney 695\n",
"2 Commander in Chief 2016 Mark Greaney Tom Clancy 1358\n",
"3 On Target 2010 Mark Greaney Mark Greaney 356\n",
"4 Dead Eye 2013 Mark Greaney Mark Greaney 436"
]
},
"execution_count": 441,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv('./ratings.csv')\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 454,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x7f9df507ac50>"
]
},
"execution_count": 454,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAF5CAYAAABKlfSoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xtczvf/+PHHdZVSqUQUplSiWCySJceJJDQ0PmRO5dM+\n0uY00z6bWQuzmcPa5jCrmEO2sc3Macshh9SEbCTnwz5WWFpUSnX9/vBzfV0qunJdIs/77daNXu/X\n+/16vp/ap+fn9Xpd77dCpVKpEEIIIYQQeqOs7gCEEEIIIWo6KbiEEEIIIfRMCi4hhBBCCD2TgksI\nIYQQQs+k4BJCCCGE0DMpuIQQQggh9EwKLiGEEEIIPZOCSwghhBBCz6TgEkIIIYTQMym4hBBCCCH0\n7IkruD788EOUSiWTJ0/WaJ8xYwaNGzfG1NSUXr16cfr0aY3jhYWFhIWFYW1tjbm5OYGBgVy5ckWj\nz/Xr1wkKCsLS0hIrKytCQkLIy8vT+z0JIYQQ4tn2RBVcv/32G8uWLaNt27Ya7XPnzuWzzz5j2bJl\npKSkYGZmhq+vL0VFReo+EydO5Oeff2b9+vUkJiZy+fJlBg8erHGd4cOHk56eTkJCAj///DOJiYmE\nhoY+lnsTQgghxLNL8aS8vPrmzZu0b9+exYsX88EHH+Du7s78+fMBaNy4MW+++SaTJk0CIDc3Fxsb\nG1asWMGQIUPIzc2lQYMGxMfHM3DgQAAyMjJwdXXlwIEDeHp6kp6eTuvWrUlNTcXd3R2Abdu24e/v\nz59//omtrW313LgQQgghajzD6g7grrCwMPr3789LL73EBx98oG4/d+4cmZmZ9OzZU91mYWFBx44d\nSUpKYsiQIRw8eJDi4mKNPi1btsTOzo6kpCQ8PT05cOAAVlZW6mILwMfHB4VCQXJyMgEBAer20tJS\nSktLNeJTKBQoFAp93LoQQgghniIqlYr756uUSiVKZcULh09EwRUfH8+RI0c4ePBgmWOZmZkoFAps\nbGw02m1sbMjMzAQgKysLIyMjLCwsKuyTmZlJw4YNNY4bGBhQr149dZ+7SktLZW+XEEIIISrNzMzs\nyS64/vzzTyZOnMivv/5KrVq1qjscIYQQQgidq/ZN86mpqVy9epV27dpRq1YtatWqxe7du1m0aBFG\nRkbY2NigUqnIysrSOC8rK0u978rW1paioiJyc3Mf2Of+Ty2WlJSQnZ0t+7eEEEIIoVfVXnD5+Pjw\n+++/c+TIEdLS0khLS8PDw4MRI0aQlpaGo6Mjtra2JCQkqM/Jzc0lOTmZTp06AdC+fXsMDQ01+mRk\nZHDx4kW8vLwA8PLyIicnh8OHD6v7JCQkoFKp6Nix42O6WyGEEEI8i6p9SdHMzIxWrVqVaatfvz6u\nrq7AnUc+REVF0bx5c5o1a8a7777Lc889p97obmFhQXBwMJMnT8bKygpzc3Nef/11vL298fT0BMDF\nxQVfX1/GjRvH4sWLKSoqIjw8nGHDhpWZ4Spvc/zD1mbFw+Xn53Pq1CmcnZ0xNTWt7nCeepJP3ZOc\n6pbkU7ckn7r1KPksb6/3wz5YV+0FV3nuD3ratGnk5+cTGhpKTk4OXbp0YcuWLRgZGan7LFiwAAMD\nAwIDAyksLKRPnz58/vnnGtdZs2YNEyZMwMfHB6VSSWBgIIsWLXro+PDwTx+Ih1MoFJSUlKBQKCSX\nOiD51D3JqW5JPnVL8qlbus7nU1lw7dixo0zbzJkzmTlzZoXnGBsbEx0dTXR0dIV96taty6pVq3QR\nohBCCCFEpUmJLIQQQgihZ1JwCSGEEELomRRcQgghhBB6JgWXEEIIIYSeScElhBBCCKFnUnAJIYQQ\nQuiZFFxCCCGEEHomBZcQQgghhJ49kQ8+fdrduHCB0n/+eSxjKS0tMbe3fyxjaWPFihVMnDiR69ev\nV3coQgghRLWTgksPSv/5h5t+/o9lrDpbftaq/+jRo1m5ciWvvfYaX3zxhcaxsLAwFi9ezOjRo4mJ\niXnk2B72moPynDlzhlmzZpGQkEBWVhYNGjTAxcWFMWPG8K9//UteZyGEEOKpJL+9njEKhQI7Ozvi\n4+MpLCxUtxcWFrJ27VrsdTBbVlxcXKXzUlJSaNeuHRkZGSxevJhjx46xa9cuQkJCWLJkCceOHdP5\nmEIIIcTjIAXXM8jd3Z2mTZuyYcMGdduGDRuwt7fH3d1do++2bdvo0qULVlZWWFtb079/f86ePas+\nfuHCBZRKJd988w3du3fH1NSUNWvWlBnz6tWrdO3alWnTpnH79u1y4xo9ejQuLi7s27ePvn374uTk\nhJOTE0OHDiUxMRE3N7eHjrl37166du2Kqakp9vb2vPHGG+Tn56vHWLVqFR06dMDCwoJGjRoRFBTE\n1atX1cd3796NUqlkx44ddOjQATMzM7y9vTl16pRGrD/++CPt27fHxMSE5s2bExkZSWlpKQDBwcH0\n799fo39xcTE2NjbExsZW/A8jhBCixpKC6xmkUCgYO3asxrJhTEwMY8aMQaVSafTNy8tjypQpHDp0\niB07dmBgYMDAgQPLXDMiIoKJEyeSnp6Or6+vxrFLly7RtWtXnn/+eebOnUutWrXKnH/kyBFOnDjB\n1KlTK30f94959uxZ/Pz8eOWVV/jjjz9Yt24d+/btIzw8XH1OcXExUVFRHD16lB9//JELFy4wZsyY\nMtd+5513WLBgAampqRgaGjJ27Fj1sT179jBq1CgmTZrEiRMnWLp0KStWrGDWrFkAhISEsG3bNrKy\nstTn/PTTTxQUFDB06NBK358QQoiaQwquZ1RQUBB79+7l0qVLXLhwgf379zNixIgy/QYNGsTLL7+M\ng4MDbdq0Yfny5fz+++8cP35co9+kSZN4+eWXsbe3x8bGRt1+8uRJOnfujJ+fH1988UWF+7pOnjyJ\nQqGgRYsW6rarV69ibm6u/lqyZMkDx5wzZw4jRowgPDwcR0dHXnzxRRYuXMiKFSsoKioC7syi+fr6\n0qxZMzw9PVm4cCFbtmzRmAVTKBTMnj2bzp074+LiwvTp09m/f7/6GpGRkURERDBixAjs7e3p2bMn\nkZGR6vi8vLxo0aIFX3/9tfqacXFxvPLKK5iamlbq30cIIUTNIgXXM8ra2pp+/foRGxtLXFwc/v7+\n1KtXr0y/06dPM3z4cJycnLC0tMTBwQGFQsHFixc1+rVv377Mufn5+XTp0oXBgwczf/58rWOsX78+\naWlppKWlUbduXXXBU9GYaWlpxMXFaRRpffr0AeDcuXMApKamMmDAAOzt7bGwsKB79+4AZe7n7vIl\nQKNGjQC4cuWKepzIyEiNccaNG0dWVha3bt0C7sxy3V0+zMrKYsuWLQQHB2udAyGEEDWDfErxGTZm\nzBgmTJiAQqEo84nFu/r164eDgwPLly+ncePGlJaW0rp16zLFj5mZWZlzjY2N6dWrF5s2bWLq1KlY\nWlpWGIuzszMqlYqMjAzatm0LgFKpxNHREQBDw7I/qvePefPmTUJDQ3njjTfKLI3a2dmRn59Pnz59\n8PPzY82aNTRo0IALFy7Qp0+fMvdz77Ln3Vm5u3u0bt68SWRkJIMGDSoTU+3atQEYOXIkERERJCcn\ns3fvXhwdHenUqVOF9y+EEKJmk4LrGXa30DAwMKB3795ljmdnZ3Py5Em++uorvL29gTub0u9X0TKh\ngYEBX3/9NcOGDaNHjx5s2bKlwljc3d1xcXFh3rx5vPLKKw99pER5x9u1a8fx48dxcHAo95yjR4+S\nnZ3NnDlzaNKkCXDnk5HauvtJyrvFYHnq1avHyy+/TExMDElJSeXuExNCCPHskILrGaZUKjlx4gRQ\nfgFjZWVF/fr1WbZsGba2tly4cIGIiIgyfe+fTbqXQqFg9erVDBs2DD8/Pz799NMK+8bGxtK7d2+8\nvb2JiIjA1dWV27dvs3v3bq5du4aBgcEDx3zrrbfw8vIiPDyckJAQzMzMOHbsGL/++ivR0dHY2dlh\nZGTEp59+ymuvvcbvv/9OVFRUmeuUd+1722bMmEH//v1p2rQpgYGBKJVK0tLS+OOPP/jggw/U/YKD\ng+nXrx+lpaWMGjWqwvsWQghR80nBpQdKS0utH0j6KGM9ijp16lR4TKFQsG7dOl5//XXc3Nxo2bIl\nn376qXrf0739HsTAwID4+HgGDRrE+PHj2bFjR7lLkB07diQ1NZXZs2czYcIEMjMzMTMzo23btixc\nuFBjlqi8Md3c3Ni9ezf//e9/6dq1KyqVSv1YCbizby0uLo63336b6Oho2rVrxyeffMKAAQMeej/3\ntvXu3ZtNmzYRGRnJRx99RK1atXBxcSEkJETjHB8fHxo1aoSbmxu2trYPzJEQQoiaTaF60PTEM6q0\ntJQbN25otJmbm8tTzh9RXl4e6enpuLq6lltw1TR5eXk0adKEFStWEBAQoJfrP0v5fBwkp7ol+dQt\nyWflXM7+Hzdv39Roq1OrDo3rNdFoe5R8VqVOkBkuIXRMpVJx9epVPvnkE6ysrMo8BFUIIYT+3Lx9\nk6lJkzXa5nlp/0l5XZOCSwgdu3jxIg4ODjRt2pQVK1bIzKgQQggpuITQNXt7e/UjJIQQQgiQB58K\nIYQQQuidFFxCCCGEEHomBZcQQgghhJ5JwSWEEEIIoWdScAkhhBBC6Fm1F1xLliyhbdu2WFpaYmlp\nSadOndi6dav6+JgxY1AqlRpfffv21bhGYWEhYWFhWFtbY25uTmBgIFeuXNHoc/36dYKCgrC0tMTK\nyoqQkBDy8vIeyz2KqsvIyECpVHLy5MnqDkUIIYSosmp/LETTpk2ZO3cuzs7OqFQq4uLiCAgI4MiR\nI7i6ugLg5+dHXFyc+n12xsbGGteYOHEiW7ZsYf369VhYWBAWFsbgwYPZs2ePus/w4cPJysoiISGB\noqIiRo8eTWhoKKtWrdL5PV26cp0bBbd1ft3ymJvUomlDq0r1VSqVKBSKct8VqFAoeO+995gxY4au\nQ3ygkydPEhUVxY4dO7h27RrPPfccXl5eTJ06lbZt26pjE0IIIZ5m1V5w+fv7a3wfFRXF4sWLOXDg\ngLrgMjY2pkGDBuWen5ubS0xMDPHx8XTr1g248xJkV1dXUlJS8PT0JD09nW3btpGamoq7uzsA0dHR\n+Pv7M2/ePJ2/5+5GwW3GxhzW6TUrEjPWvdJ9MzMz1X+Pj4/nvffe4+TJk+oC7EHvVdSH/fv306dP\nH9q3b09MTAwtWrQgJyeHH374gWnTprFt27bHGo8QQgihL9W+pHiv0tJS4uPjyc/Pp1OnTur2Xbt2\nYWNjg4uLC+PHjyc7O1t9LDU1leLiYnr27Klua9myJXZ2diQlJQFw4MABrKys1MUW3HmxsEKhIDk5\n+THc2ZOhYcOG6i9LS0sUCgUNGjRQt5mamgLw66+/4uHhQe3atWnSpAkzZszQmBW7OwMVHh5O3bp1\nady4MV9//TU3b97k1VdfxcLCgpYtW7Jjx44KYyktLWX06NG88MIL7Ny5k969e9OsWTNeeOEFZs6c\nybffflvueUVFRYwZM4ZmzZphamqKq6srixcv1ugzbNgwhg0bxpw5c7C1taVhw4ZMmjRJ4x5u3brF\nlClTaNq0KbVr18bFxYXVq1ejUqmws7Pjiy++0LjmgQMHMDQ05H//+5/WeRdCCCGqfYYL4I8//sDL\ny4tbt25hbm7O999/T8uWLYE7y4mDBw/GwcGBM2fOEBERQd++fUlKSkKhUJCZmYmRkREWFhYa17Sx\nsVHP6GRmZtKwYUON4wYGBtSrV09j1udB8vPzK720pXqMTxlXlZZWaS9aYWEhQJlzL168SP/+/fn3\nv//N8uXLSU9PZ8KECRgZGTFp0iTgTrH01VdfMW3aNPbs2cOaNWsICQlhzZo1DBw4kGnTpjF//nxG\njBjB8ePHqVWrFgAFBQXqP1NSUjh9+jRRUVHlxm9gYEBeXh75+fnAnfzf/b5p06asXbuWunXrsm/f\nPt544w0aNGiAn58fAMXFxfz666/Ur1+fbdu2kZGRwahRo3Bzc2Po0KEADB06lOPHj7Nw4UJatWrF\n+fPnycnJIT8/n6CgIL766itGjRqljufLL7/kpZdeom7duk/M3r978yl0Q3KqW5JP3ZJ8Vk5padlt\nM6WlqjL/2/0o+Sxva87DPBEFl4uLC2lpafzzzz989913jBw5ksTERFxcXBgyZIi6X+vWrXFzc8PJ\nyYldu3bRo0ePxxbjqVOnKCkpqVRfpXnDh3fSkcKiItLT07U+7/Lly5SUlJQ5d+HChdjZ2fHqq69S\nXFyMs7Mzo0aNYv78+fTp0we488Pp4uJCr169KCwsJCAggE8++QRTU1PatWtHYWEhgwYNYsWKFWzZ\nsgVnZ2eNMc6fP8+ePXtQKBQolcoHxn/+/HkAzpw5Q3FxMQADBgwA7hSLL7zwAr169SI2NpZmzZoB\nd5aZLS0tGT16NLdv38bR0RFPT09++OEH2rRpw6lTp9i8eTPLly/H3t6evLw8GjRoQIMGDUhPT6dT\np058/PHH/PTTTzRv3pzCwkK+/fZb/vvf/1Yp1/p2N0dCdySnuiX51C3J54MZNTAq01b0gN+VVcmn\ngYEBjo6OWp3zRBRchoaG6sDd3d1JSUlh0aJFZZaKABwcHLC2tub06dP06NEDW1tbioqKyM3N1Zjl\nysrKUu/NsrW1LfOpxZKSErKzsyu9f8vZ2bnSM1znr9yoVD9dMDYyotn/3+umjUOHDmFgYKDeJ3fX\ntWvX6Natm0Z7QEAAixYtokGDBlhbW2NiYkLHjh01+lhZWeHt7a1uc3BwAMDc3FzdVlBQwPnz52nW\nrBmNGjUCwMnJiRYtWlQYp4GBgbrf3cLt888/Z+3atVy6dInCwkKKiorw9PRUj2NhYYG7u7tGfM2b\nN+fy5cu4urpy5MgRTExM1LNd93N1daVHjx7s27eP/v37880332BkZERoaKh6tu5JcG8+TUxMqjuc\nGkFyqluST92SfFbOpdxLZdqMjIxwcnXSaHuUfKpUqkpPwtz1RBRc9ystLVUved3vzz//5O+//1b/\nwm7fvj2GhoYkJCQwcOBA4M6jBC5evIiXlxdwZ89RTk4Ohw8fVu/jSkhIQKVS0bFjx0rFZGpqilJZ\nuS1vCuXjW3JSKJWYmZlpfd7dT3ref66BgQG1atXSaL/7g2hmZoaZmRlKpRJTU1ONPkqlkjp16qjb\nDA3v/GgZGRmVGcPExAQ3NzdUKhUXL17U2Ft3v7v7yu6OFxcXR2RkJIsWLcLDwwNzc3M++OADMjIy\nNMa+/x6MjIxQKBSYmZlRt27dcu/9XqGhoYSFhbFgwQLWrl1LUFCQ+rwnjYmJSZV+BkTFJKe6JfnU\nLcnngylvlp0cUSoVFeasKvksLS3lxg3tJleqfdP822+/zZ49e7hw4QJ//PEHERER7N69mxEjRpCX\nl8e0adNITk7mwoULJCQk8PLLL9OiRQt8fX2BO7MZwcHBTJ48mV27dpGamsrYsWPx9vbG09MTuLNk\n6evry7hx4/jtt9/Yt28f4eHhDBs2TOefUHzaubq6sn//fo22vXv3Ur9+faytrXU2jqenJ82bN+fj\njz8u9/g///xTbvv+/fvp0aMHwcHBtG3bFkdHR06fPq3V2G3atOHWrVtl7vNeAQEBKBQKPv/8c3bu\n3MnYsWO1GkMIIYS4V7UXXFeuXGHUqFG4uLjg4+NDamoq27dv56WXXsLAwICjR48SEBBAy5YtGTdu\nHB06dCAxMVFjaWfBggX069ePwMBAunfvTuPGjVm/fr3GOGvWrFGP0a9fP7p27crSpUsf9+0+8cLD\nw8nIyGDKlCmcPHmS9evXM2vWLN58802djqNUKomNjSUtLY0ePXqwdetWzp07R1paGpGRkRp79+7d\nnOjs7ExSUhI7duzg1KlTTJ8+nd9//12rsVu0aMHQoUN59dVX2bRpE+fPn2fnzp1s2LBB3adWrVqM\nGDGCt956izZt2qifCSaEEEJURbUvKS5fvrzCY7Vr19Z46nxFjI2NiY6OJjo6usI+devW1ctDTmsa\ne3t7Nm3axFtvvcUXX3xB/fr1CQ8PZ+rUqeo+5e1lq2zbvby9vTl48CCzZs0iODiY7OxsGjduTIcO\nHZg9e3a51wkPD+f3339n8ODBGBoaEhQUxLhx49i3b59W9/nVV18RERHBv//9b3JycrC3ty/z0Nfg\n4GDmz59PcHCwVtcWQggh7qdQVeWzjTVceWuz5ubmld7D9aQ+ab665eXlkZ6ejqur61Ox/+CXX34h\nICCAy5cvP5H7t562fD4NJKe6JfnULcln5ZzMymBq0mSNtnle82lh01Kj7VHyWZU6odpnuGqip6UA\nEuUrLCwkKyuLyMhIRowY8UQWW0IIIZ4u1b6HS4gnTVxcHI6OjpSUlDBr1qzqDkcIIUQNIAWXEPcJ\nDQ2luLiY/fv3V/gOTyGEEEIbUnAJIYQQQuiZFFxCCCGEEHomBZcQQgghhJ5JwSWEEEIIoWdScAkh\nhBBC6JkUXEIIIYQQeiYFl9CLFStWYGUlD4AVlTds2DCGDx9e3WEIIYReyJPm9eBy9v+4efvmYxmr\nTq06NK7XpNL9R48ezcqVK3nttdf44osvNI6FhYWxePFiRo8eTUxMzCPH9rB3KZbnzJkzzJo1i4SE\nBLKysmjQoAEuLi6MGTOGf/3rX5V+vdKz7P333+f9999HoVBQ3pu7FAoFJSUljzUmlUrF4sWLiYuL\nIz09HSMjI5ydnXn11VcJCQnB2Nj4scYjhBCPmxRcenDz9s0y73HSl3le87Xqr1AosLOzIz4+ngUL\nFqh/0RUWFrJ27Vrs7e0fOabi4uIqnZeSkkKvXr14/vnnWbx4MS1b3nnv1cGDB/n8889xc3PDzc2t\nwjENDeXHGeDNN9/kP//5j/p7Dw8PXnvtNUJCQqotpiFDhrB161ZmzpxJjx49sLa25vDhw8yfPx9n\nZ2d69+5dbbEJIcTjINMFzyB3d3eaNm3Khg0b1G0bNmzA3t4ed3d3jb7btm2jS5cuWFlZYW1tTf/+\n/Tl79qz6+IULF1AqlXzzzTd0794dU1NT1qxZU2bMq1ev0rVrV6ZNm8bt2+W/2Hv06NG4uLiwb98+\n+vbti5OTE05OTgwdOpTExER1sfWgMffu3UvXrl0xNTXF3t6eN954g/z8fPUYq1atokOHDlhYWNCo\nUSOCgoK4evWq+vju3btRKpXs2LGDDh06YGZmhre3N6dOndKI9ccff6R9+/aYmJjQvHlzIiMjKS0t\nBSA4OJj+/ftr9C8uLsbGxobY2Nhy7z07O5vhw4fz3HPPYWZmRps2bYiPj9fo891339GmTRtMTU2x\ntrZmwIAB3Lp1q8y1TE1NadiwofrLwMCAOnXqaLQB3Lp1i/Hjx9OwYUNMTEzo3r07R44cUV9n27Zt\nKJVKEhISaNu2Laampvj5+XH9+nU2btyIi4sLlpaWjB49mqKionLvC2DlypVs2LCB77//nilTptCu\nXTvs7OwICAhg9+7deHl5lXvepk2b8Pb2pm7dujRo0ICXX36ZCxcuqI9nZGSgVCr56aef6Nq1K2Zm\nZrRr147U1FSN6+zevVt9vH79+vj7+5Ofn8+XX35Jo0aN1P9ud4WHhxMeHl7h/QghRFVIwfUMUigU\njB07VmPZMCYmhjFjxpRZgsrLy2PKlCkcOnSIHTt2YGBgwMCBA8tcMyIigokTJ5Keno6vr6/GsUuX\nLtG1a1eef/555s6dS61atcqcf+TIEU6cOMHUqVMrfR/3j3n27Fn8/Px45ZVX+OOPP1i3bh379u3T\n+OVZXFxMVFQUR48e5ccff+TChQuMGTOmzLXfeecdFixYQGpqKoaGhowdO1Z9bM+ePYwaNYpJkyZx\n4sQJli5dyooVK9TvXQwJCWHbtm1kZWWpz/npp58oKChg6NCh5d7LrVu38PDwYMuWLRw7dozQ0FBG\njhzJwYMHAcjMzGT48OGEhIRw4sQJdu/ezYABAyqdq/K88cYbbN68mbVr13Lo0CGaNGmCr68vN29q\nLodHRkayfPly9u7dS0ZGBq+88grLli3ju+++Y+PGjWzcuJGlS5dWOM6aNWto06YNPj4+5R43Nzcv\nt72goIDp06dz5MgRfvnlF27fvk1gYGCZfu+88w4zZswgLS0NOzs7goKC1MeSk5Pp3bs3Hh4epKSk\nqIv5kpIShg0bRl5eHlu2bFH3v3z5Mr/99hujRo16YO6EEEJbsgbzjAoKCmL69OlcunSJ0tJS9u/f\nz7p169i5c6dGv0GDBml8v3z5cho2bMjx48dp1aqVun3SpEm8/PLLZcY5efIkvXr1YvDgwXzwwQek\np6eXG8/JkydRKBS0aNFC3Xb16lUcHR3V33/88ce89tprFY45btw4RowYoS6wHB0dWbhwId27d2fx\n4sUYGRkxevRodf9mzZqxcOFCOnbsSH5+PqampsCdgnT27Nl07twZgOnTp9OvXz+KioowMjIiMjKS\niIgIRowYAYC9vT2RkZFMmzaNd999Fy8vL1q0aMHXX3+tLiDj4uJ45ZVX1GPcr3Hjxkye/H/L0GFh\nYWzdupVvvvkGDw8P/vrrL0pKShg4cCBNmzZVx19RPh8mJyeHmJgYvvvuO3r27AncKbrt7OxYsWIF\nYWFh6lzMnTuXDh06ADBq1CgiIyO5fPkyNjY2AAQEBLBz584KZ4VOnTqFp6en1jG+8sorGt8vXboU\nOzs7zp49q/FzERERoS7m3nvvPTw8PLh48SJ2dnZ89NFHdOvWjfnz/2/p3cXFRWOM2NhY/P39AVi9\nejX29vZ4eHhoHa8QQjyIzHA9o6ytrenXrx+xsbHExcXh7+9PvXr1yvQ7ffo0w4cPx8nJCUtLSxwc\nHFAoFFy8eFGjX/v27cucm5+fT5cuXRg8eLDGL7zKql+/PmlpaaSlpVG3bt0yy1b3j5mWlkZcXBzm\n5ubqrz59+gBw7tw5AFJTUxkwYAD29vZYWFjQvXt3gDL3c+9esUaNGgFw5coV9TiRkZEa44wbN46s\nrCz1El9ISIh6+TArK4stW7YQHBxc4b2WlpbywQcf0KZNG+rXr4+5uTnbt29Xx9W2bVt69uzJ888/\nz5AhQ1gVJak7AAAgAElEQVS+fDk5OTmVT+Z9Tp06RWlpKZ06dVK3GRsb0759+zJF3L25sLGxoV69\neupi627b3dyUp7yN+5WRkZHB0KFDcXR0xMLCAldX1zI/ewqFosy/lUqlUsdz5MgRdUFZnnHjxrFp\n0yb+/vtv4M5s3KPOHAohRHmk4HqGjRkzhri4OFauXFlhMdCvXz+uX7/O8uXLSUlJISUlBZVKVab4\nMTMzK3OusbExvXr1YtOmTVy+fPmBsTg7O6NSqcjIyFC3KZVKHB0dcXR0LHdD/P1j3rx5k9DQUI4e\nPaou1I4ePcrJkydxcnIiPz+fPn36ULduXdasWcPBgwf5/vvvAcrcz73Lnnc/bXl3r8/Nmzd5//33\n1WOkpaXxxx9/cPLkSWrXrg3AyJEjOXv2LMnJyaxatQpHR0eN4uZ+H330EdHR0URERLBr1y7S0tLo\n3bu3Oi6lUsn27dvZunUrrVu3Jjo6mnbt2vHXX389MK+6cH8u7l8SVigUZfZB3atFixacOHFC63H9\n/PwoKCggNjaWgwcPkpiYWO7P3oP+rUxMTB44xosvvoizszOrVq1i//79XLhwgb59+2odqxBCPIwU\nXM+wPn36UFRURHFxcbmfEsvOzubkyZO888479OjRg5YtW6pnAu5V0eMfDAwM+Prrr2nXrh09evTQ\n2NN0P3d3d1xcXJg3b16lZkTKG7Ndu3YcP34cBwcHdaF2b8F24sQJsrOzmTNnDt7e3rRo0eKBMVWk\nXbt2ZGRklBnj3mWuevXq8fLLLxMTE8OKFSvK3Sd2r/379xMQEMCwYcNwc3PDwcGBkydPlunn5eXF\ne++9x+HDh6lVq1aZJeDKcnZ2RqlUsm/fPnXbrVu3SE1NpXXr1lW6ZkWGDx/O0aNH+eWXX8o9fuPG\njTJtly9f5vz587z33nt069aNFi1a8Pfff2v9qJE2bdqQkJDwwD7BwcHExMQQGxtL79695flxQgi9\nkILrGaZUKjlx4gTHjh0r9xeZlZUV9evXZ9myZZw5c4YdO3YwZcqUMn0fVCApFApWr15N27Zt8fPz\nK7dguys2NpaMjAy8vb356aefOH36NOnp6SxZsoRr165hYGDwwDHfeust9u/fT3h4OGlpaZw+fZof\nf/xRvbfIzs4OIyMjPv30U86dO8fGjRuJiooqc53yrn1v24wZM1i5ciWRkZEcP36cEydOsG7dOt59\n912Nc4KDg1mxYgUnTpx46CZsZ2dnfvnlF5KSkkhPTyc0NFSjGExJSWHOnDmkpqZy6dIl1q9fz99/\n/61R5Gmjbt26hISEMGnSJH799VeOHTvG2LFjUSgUjBw5skrXrMirr75KQEAAgwcP5uOPP+bQoUNc\nuHCBjRs30r17d5KSksqc06BBAywtLVmyZAlnz57ll19+4a233irT72HF+X//+192797NpEmTOHbs\nGOnp6Xz22WcaRd7IkSPJyMhg1apVOr93IYS4SwquZ1ydOnWoU6dOuccUCgXr1q0jNTUVNzc3pkyZ\nwrx588rt9yAGBgbEx8fj6urK+PHjuXbtWrn9OnbsSGpqKi4uLkyYMIHWrVvj7e3NunXrWLhwocaz\npcob083Njd27d3Pq1Cm6du1Ku3btmDlzJk2a3HkwrLW1NXFxcXz33Xe0bt2ajz76iE8++aRS93Nv\nW+/evdm0aRO//PILnp6eeHl5sXDhQpo1a6Zxjo+PD40aNaJPnz7Y2to+MEfvvPMO7dq1o0+fPrz0\n0ks0atRI49OgFhYWJCYm4u/vT8uWLZkxYwZz5szhxRdffOB1K7ofgPnz5+Pv78/w4cPp0KEDf/31\nF9u2bSt3efhRKBQK1q9fz4cffsi3335L165dcXd3Z9asWfTr149u3bqVOadWrVrEx8ezb98+nn/+\neSIiIqr0b9W6dWu2bt1KcnIyHTp0oEuXLmzbtk2jeK9Xrx4BAQFYWVmp9/wJIYSuKVRV3dFag5WW\nlpZZ5jA3N6/0U86f5CfNV6e8vDzS09NxdXXV+S/1J1FeXh5NmjRhxYoVBAQE6OX6z1I+9alz5850\n6dKFd955R3KqQ/IzqluSz8o5mZVR5uHj87zm08KmpUbbo+SzKnWCPBZCD56WAkjoh0ql4urVq3zy\nySdYWVmVeQiqeHJcv36d7du3k5KSwurVq6s7HCFEDSYFlxA6dvHiRRwcHGjatCkrVqyQ9z8+wVq1\nakVhYSELFy7E3t6evLy86g5JCFFDScElhI7Z29s/8DEJ4snxOB6rIYQQIJvmhRBCCCH0TgouIYQQ\nQgg9q/aCa8mSJbRt2xZLS0ssLS3p1KkTW7du1egzY8YMGjdujKmpKb169eL06dMaxwsLCwkLC8Pa\n2hpzc3MCAwPLvGrk+vXrBAUFYWlpiZWVFSEhIbJfQwghhBCPRbUXXE2bNmXu3LkcOnSI1NRUXnrp\nJQICAtTvc5s7dy6fffYZy5YtIyUlBTMzM3x9fTVe7zFx4kR+/vln1q9fT2JiIpcvX2bw4MEa4wwf\nPpz09HQSEhL4+eefSUxMJDQ09LHeqxBCCCGeTdW+ad7f31/j+6ioKBYvXsyBAwdwdXVl0aJFvPvu\nu/Tr1w+AlStXYmNjww8//MCQIUPIzc0lJiaG+Ph49QMUY2NjcXV1JSUlBU9PT9LT09m2bRupqam4\nu7sDEB0djb+/P/PmzXvoQymFEEIIIR5Ftc9w3au0tJT4+Hjy8/Pp1KkT586dIzMzk549e6r7WFhY\n0LFjR/XrQA4ePEhxcbFGn5YtW2JnZ6fuc+DAAaysrNTFFtx5CrhCoSA5Ofkx3Z0QQgghnlXVPsMF\n8Mcff+Dl5cWtW7cwNzfn+++/p2XLliQlJaFQKLCxsdHob2NjQ2ZmJgBZWVkYGRlhYWFRYZ/MzEwa\nNmyocdzAwIB69eqp+wghhBBC6MsTUXC5uLiQlpbGP//8w3fffcfIkSNJTEys7rA05OfnP/SdgeLB\nCgoKNP4Uj0byqXuSU92SfOqW5LNySkvLvrGwtFRV5oNyj5LPqrwV8YkouAwNDXF0dATA3d2dlJQU\nFi1axLRp01CpVGRlZWnMcmVlZamXB21tbSkqKiI3N1djlisrK0u9N8vW1rbMpxZLSkrIzs6u9P6t\nU6dOUVJS8kj3Ke44f/58dYdQo0g+dU9yqluST92SfD6YUQOjMm1FRUXqD+Pdryr5NDAwUNctlfVE\nFFz3Ky0tpbCwEAcHB2xtbUlISKBNmzYA5ObmkpycTFhYGADt27fH0NCQhIQEBg4cCEBGRgYXL17E\ny8sLAC8vL3Jycjh8+LC6UEtISEClUtGxY8dKxeTs7CwzXI+ooKCA8+fP06xZM0xMTKo7nKee5FP3\nJKe6JfnULcln5VzKvVSmzcjICCdXJ422R8mnSqXSehKm2guut99+Gz8/P+zs7Lhx4warV69m9+7d\nbN++HbjzyIeoqCiaN29Os2bNePfdd3nuuecICAgA7myiDw4OZvLkyVhZWWFubs7rr7+Ot7c3np6e\nwJ0lS19fX8aNG8fixYspKioiPDycYcOGVXqGy9TUVN6JpyMmJibypnsdknzqnuRUtySfuiX5fDDl\nzbKTI0qlosKcVSWfpaWl3LhxQ6tzqr3gunLlCqNGjeKvv/7C0tKSNm3asH37dl566SUApk2bRn5+\nPqGhoeTk5NClSxe2bNmCkdH/TRkuWLAAAwMDAgMDKSwspE+fPnz++eca46xZs4YJEybg4+ODUqkk\nMDCQRYsWPdZ7FUIIIcSzqdoLruXLlz+0z8yZM5k5c2aFx42NjYmOjiY6OrrCPnXr1mXVqlVVCVEI\nIYQQ4pHIGpkQQgghhJ5JwSWEEEIIoWdScAkhhBBC6JkUXEIIIYQQeiYFlxBCCCGEnknBJYQQQgih\nZ1JwCSGEEELomRRcQgghhBB6JgWXEEIIIYSeScElhBBCCKFnUnAJIYQQQuiZFFxCCCGEEHomBZcQ\nQgghhJ5JwSWEEEIIoWdScAkhhBBC6JkUXEIIIYQQeiYFlxBCCCGEnj1ywZWbm8sPP/xAenq6LuIR\nQgghhKhxtC64hgwZwmeffQZAQUEBHh4eDBkyhDZt2rB+/XqdByiEEEII8bTTuuBKTEykS5cuAHz/\n/feoVCpycnL49NNPiYqK0nmAQgghhBBPO60Lrn/++Yd69eoBsHXrVgYPHoypqSn+/v6cOnVK5wEK\nIYQQQjzttC64mjZtSlJSEnl5eWzdupXevXsDcP36dWrXrq3zAIUQQgghnnaG2p4wceJEgoKCqFOn\nDvb29nTv3h24s9To5uam6/iEEEII8Yy4nP0/bt6+qdFWp1YdGtdrUk0R6Y7WBdf48ePx9PTk0qVL\n9OrVC6XyziSZo6Oj7OESQgghRJXdvH2TqUmTNdrmec2vpmh0S+uC6+zZs3h4eODh4aHR7u/vr7Og\nhBBCCCFqEq0LrubNm/Pcc8/RrVs3unfvTrdu3WjevLk+YhNCCCGEqBG03jR/6dIl5syZg4mJCR99\n9BEtWrTgueeeIygoiOXLl+sjRiGEEEKIp5rWBVeTJk0ICgpi2bJlZGRkkJGRgY+PD9988w2hoaH6\niFEIIYQQ4qmmdcGVn5/P9u3befvtt+nUqRNt2rQhLS2NCRMmsGHDBq0DmDNnDp6enlhYWGBjY8PA\ngQM5efKkRp8xY8agVCo1vvr27avRp7CwkLCwMKytrTE3NycwMJArV65o9Ll+/TpBQUFYWlpiZWVF\nSEgIeXl5WscshBBCCKENrfdw1a1bFysrK4KCgpg+fTpdunTBysqqygHs2bOH8PBwPDw8KC4uJiIi\ngt69e5Oeno6JiYm6n5+fH3FxcahUKgCMjY01rjNx4kS2bNnC+vXrsbCwICwsjMGDB7Nnzx51n+HD\nh5OVlUVCQgJFRUWMHj2a0NBQVq1aVeX4hRBCCCEeRuuCq2/fvuzdu5f4+HgyMzPJzMyke/futGjR\nokoBbN68WeP7uLg4GjZsSGpqKp07d1a3Gxsb06BBg3KvkZubS0xMDPHx8XTr1g2A2NhYXF1dSUlJ\nwdPTk/T0dLZt20Zqairu7u4AREdH4+/vz7x587C1ta1S/EIIIYQQD6P1kuIPP/zAtWvX2Lp1K15e\nXmzfvp0uXbqo93Y9qpycHBQKhfr1QXft2rULGxsbXFxcGD9+PNnZ2epjqampFBcX07NnT3Vby5Yt\nsbOzIykpCYADBw5gZWWlLrYAfHx8UCgUJCcnP3LcQgghhBAV0XqG6y43NzeKi4spKiri1q1bbNu2\njXXr1rF69eoqB6NSqZg4cSKdO3emVatW6nY/Pz8GDx6Mg4MDZ86cISIigr59+5KUlIRCoSAzMxMj\nIyMsLCw0rmdjY0NmZiYAmZmZNGzYUOO4gYEB9erVU/cRQgghhNAHrQuu+fPns2vXLvbu3cuNGzdo\n27YtXbt25d///jddunR5pGDGjx/P8ePH2bdvn0b7kCFD1H9v3bo1bm5uODk5sWvXLnr06PFIY1ZW\nfn4+CoXisYxVUxUUFGj8KR6N5FP3JKe6JfnUrWchn6WlqnLbtPmAW2Wv8Sj5vLufXBtaF1xr166l\nW7du6gLL0tJS60HLM2HCBDZv3syePXto1KjRA/s6ODhgbW3N6dOn6dGjB7a2thQVFZGbm6sxy5WV\nlaXem2Vra1vmU4slJSVkZ2dXav/WqVOnKCkpqcKdifudP3++ukOoUSSfuic51S3Jp27V5HwaNTAq\n01ZUVER6errerlGVfBoYGODo6KjVOVoXXL/99pu2pzzUhAkT+PHHH9m9ezd2dnYP7f/nn3/y999/\nqwuz9u3bY2hoSEJCAgMHDgQgIyODixcv4uXlBYCXlxc5OTkcPnxYvY8rISEBlUpFx44dHzqms7Oz\nzHA9ooKCAs6fP0+zZs00PoEqqkbyqXuSU92SfOrWs5DPS7mXyrQZGRnh5Oqk82s8Sj5VKpXWkzBV\n2sO1Z88eli5dypkzZ/juu+9o0qQJX3/9NQ4ODhqfLKyM8ePHs3btWjZu3IiZmRlZWVkAWFpaUrt2\nbfLy8nj//fcZPHgwtra2nD59mrfeeosWLVrg6+sLgIWFBcHBwUyePBkrKyvMzc15/fXX8fb2xtPT\nEwAXFxd8fX0ZN24cixcvpqioiPDwcIYNG1apGS5TU1P1i7rFozExMcHMzKy6w6gxJJ+6JznVLcmn\nbtXkfCpvlp3YUCoVWt2vtteoSj5LS0u5ceOGVudoXUGsX78eX19fTExMOHz4MIWFhQD8888/zJ49\nW9vLsWTJEnJzc+nevTuNGzdWf33zzTfAnWm7o0ePEhAQQMuWLRk3bhwdOnQgMTGRWrVqqa+zYMEC\n+vXrR2BgoPpa69ev1xhrzZo1uLi44OPjQ79+/ejatStLly7VOmYhhBBCCG1oPcMVFRXFkiVLGDly\nJPHx8ep2b29voqKitA6gtLT0gcdr167N1q1bH3odY2NjoqOjiY6OrrBP3bp15SGnQgghhHjstJ7h\nysjIoGvXrmXaLS0tycnJ0UlQQgghhBA1idYF1919VPfbu3ev1jv2hRBCCCGeBVoXXOPGjeONN94g\nOTkZhULB5cuXWb16NVOnTuU///mPPmIUQgghhHiqab2Ha/r06ZSWltKzZ0/y8/Pp2rUrxsbGTJ06\nlfDwcH3EKIQQQgjxVNO64FIoFPz3v//lzTff5PTp09y8eZNWrVpRp04dfcQnhBBCCPHUq/K7FI2M\njDTedyiEEEIIIcpXqYJr0KBBxMXFYWFhwaBBgx7Yd8OGDToJTAghhBCipqhUwWVpaal+rY2u3p0o\nhBBCCPGsqFTBFRsbW+7fhRBCCCHEw2n9WIioqCjOnTunj1iEEEIIIWokrQuub7/9lubNm9OpUye+\n+OILrl27po+4hBBCCCFqDK0LrrS0NI4ePUr37t2ZN28ejRs3xt/fnzVr1pCfn6+PGIUQQgghnmpa\nF1wArVu3Zvbs2Zw9e5adO3fSrFkzJk6ciK2tra7jE0IIIYR46lWp4LqXmZkZJiYmGBkZcfv2bV3E\nJIQQQghRo1Sp4Dp37hyzZs2idevWeHh4cPjwYd5//30yMzN1HZ8QQgghxFNP6yfNv/jii/z222+0\nadOGMWPGMGzYMJo0aaKP2IQQQgghagStC66ePXsSExMjr/URQgghhKgkrQuuWbNmAVBUVMS5c+dw\ncnLC0LDKr2QUQgghhKjxtN7DVVBQQHBwMKamprRu3ZqLFy8CEB4ezocffqjzAIUQQgghHqfL2f/j\nZFaGxtfl7P890jW1LrimT59OWloau3btonbt2up2Hx8f1q1b90jBCCGEEEJUt5u3bzI1abLG183b\nNx/pmlqvBf7www+sW7eOF198Uf1Ca7jzbK4zZ848UjBCCCGEEDWR1jNcV69epWHDhmXa8/LyNAow\nIYQQQghxh9YFl4eHBz///LP6+7tF1vLly/Hy8tJdZEIIIYQQNYTWS4qzZ8/Gz8+P48ePU1xczKJF\nizh+/Dj79+9n9+7d+ohRCCGEEOKppvUMV+fOnUlLS6O4uBg3Nze2b99Ow4YNSUpKon379vqIUQgh\nhBDiqabVDFdxcTFr1qzB19eXL7/8Ul8xCSGEEELUKFrNcBkaGvLaa69x69YtfcUjhBBCCFHjaL2k\n6OnpyeHDh/URixBCCCFEjaR1wTV+/HimTJnCZ599RlJSEkePHtX40tacOXPw9PTEwsICGxsbBg4c\nyMmTJ8v0mzFjBo0bN8bU1JRevXpx+vRpjeOFhYWEhYVhbW2Nubk5gYGBXLlyRaPP9evXCQoKwtLS\nEisrK0JCQsjLy9M6ZiGEEEIIbWhdcP3rX//i3LlzvP7663h7e/PCCy/g7u6u/lNbe/bsITw8nOTk\nZH799Vdu375N7969KSgoUPeZO3cun332GcuWLSMlJQUzMzN8fX0pKipS95k4cSI///wz69evJzEx\nkcuXLzN48GCNsYYPH056ejoJCQn8/PPPJCYmEhoaqnXMQgghhBDa0PqxEOfOndNpAJs3b9b4Pi4u\njoYNG5Kamkrnzp0BWLRoEe+++y79+vUDYOXKldjY2PDDDz8wZMgQcnNziYmJIT4+nm7dugEQGxuL\nq6srKSkpeHp6kp6ezrZt20hNTVUXhtHR0fj7+zNv3jxsbW11el9CCCGEEHdpPcNlb2//wK9HlZOT\ng0KhoF69esCdAi8zM5OePXuq+1hYWNCxY0eSkpIAOHjwIMXFxRp9WrZsiZ2dnbrPgQMHsLKy0piF\n8/HxQaFQkJyc/MhxCyGEEEJUROuCS59UKhUTJ06kc+fOtGrVCoDMzEwUCgU2NjYafW1sbMjMzAQg\nKysLIyMjLCwsKuyTmZlZ5pVEBgYG1KtXT91HCCGEEEIftF5S1Kfx48dz/Phx9u3bV92hlJGfny/v\ninxEd/fl3bs/T1Sd5FP3JKe6JfnUrWchn6WlqnLbtPmAW2Wv8aB8PuwaKlXZ4w/zxBRcEyZMYPPm\nzezZs4dGjRqp221tbVGpVGRlZWnMcmVlZamXB21tbSkqKiI3N1djlisrK0u9N8vW1rbMpxZLSkrI\nzs6u1P6tU6dOUVJS8kj3KO44f/58dYdQo0g+dU9yqluST92qyfk0amBUpq2oqIj09HS9XaO8fD7s\nGgYGBjg6OlY6JnhCCq4JEybw448/snv3buzs7DSOOTg4YGtrS0JCAm3atAEgNzeX5ORkwsLCAGjf\nvj2GhoYkJCQwcOBAADIyMrh48aL6hdpeXl7k5ORw+PBhdaGWkJCASqWiY8eOD43R2dlZZrgeUUFB\nAefPn6dZs2aYmJhUdzhPPcmn7klOdUvyqVvPQj4v5V4q02ZkZISTq5POr/GgfD7sGiqVSutJmCoX\nXEVFRVy5coXS0lKN9vsLpocZP348a9euZePGjZiZmZGVlQWApaUltWvXBu488iEqKormzZvTrFkz\n3n33XZ577jkCAgKAO5vog4ODmTx5MlZWVpibm6sfW+Hp6QmAi4sLvr6+jBs3jsWLF1NUVER4eDjD\nhg2r1AyXqakpSuUTteXtqWViYoKZmVl1h1FjSD51T3KqW5JP3arJ+VTeLDuxoVQqtLpfba9RXj4f\ndo3S0lJu3LhR6ZigCgXXqVOnGDt2LPv379doV6lUKBQKrSu+JUuWoFAo6N69u0Z7bGwsI0eOBGDa\ntGnk5+cTGhpKTk4OXbp0YcuWLRgZ/d+U34IFCzAwMCAwMJDCwkL69OnD559/rnHNNWvWMGHCBHx8\nfFAqlQQGBrJo0SKt4hVCCCGE0JbWBdfo0aMxNDRk06ZNNGrU6JGX2e6fIavIzJkzmTlzZoXHjY2N\niY6OJjo6usI+devWZdWqVdqGKIQQQgjxSLQuuI4cOUJqaiouLi76iEcIIYQQosbRelNSq1atuHbt\nmj5iEUIIIYSokbSe4Zo7dy7Tpk1j9uzZuLm5UatWLY3j9z98VAghqtOlK9e5UXBbo83cpBZNG1pV\nU0RCiGeR1gWXj48PgMZrdKDqm+aFEEKfbhTcZmzMYY22mLHuFfQWQgj90Lrg2rlzpz7iEEIIIYSo\nsbQuuLp166aPOIQQQgghaqwqPfg0JyeHr776Sv2I+9atWzN27FgsLS11GpwQQgghRE2g9acUDx48\niJOTEwsWLCA7O5vs7Gzmz5+Pk5MThw4d0keMQgghhBBPNa1nuCZNmsSAAQP48ssvMTS8c3pxcTEh\nISFMnDiRxMREnQcphBBCCPE007rgOnjwoEaxBWBoaMi0adPw8PDQaXBCCCGEEDWB1kuKFhYWXLx4\nsUz7pUuXMDc310lQQgghhBA1idYF19ChQwkODmbdunVcunSJS5cuER8fT0hICMOGDdNHjEIIIYQQ\nTzWtlxTnzZuHQqFg5MiRFBcXA1CrVi3+85//8OGHH+o8QCGEEEKIp53WBZeRkRGLFi1izpw5nDlz\nBgAnJydMTU11HpwQQgghRE2g9ZLiypUrSU9Px9TUFDc3N9zc3DA1NeXWrVusXLlSHzEKIYQQQjzV\ntC64Ro8ejaenJ+vXr9do/+effxgzZozOAhNCCCGEqCm0LrgA3n//fV599VVmzpyp43CEEEIIIWqe\nKhVcI0aMYMeOHSxdupTAwEAKCgp0HZcQQgghRI2hdcGlUCgAePHFF0lOTub06dN06tSJ8+fP6zo2\nIYQQQogaQeuCS6VSqf9uZ2fH/v37adasGb169dJpYEIIIYQQNYXWBdd7771HnTp11N+bmpry/fff\nM2nSJLp27arT4IQQQgghagKtn8P13nvvldv+/vvvP3IwQgghhBA1kdYF113Hjx/n4sWLFBUVqdsU\nCgX9+/fXSWBCCCGEEDWF1gXX2bNnGThwIL///jsKhUK9p+vuZvqSkhLdRiiEEEII8ZTTeg/XG2+8\ngYODA1euXMHU1JRjx46RmJiIh4cHu3bt0kOIQgghhBBPN61nuJKSktixYwfW1tYolUqUSiWdO3dm\nzpw5vP766xw+fFgfcQohhBBCPLW0nuEqKSnB3NwcAGtray5fvgyAvb09GRkZuo1OCCGEEKIG0HqG\n6/nnnyctLQ0HBwc6duzIRx99hJGREcuWLcPR0VEfMQohhBBCPNW0nuF65513KC0tBSAyMpJz587R\npUsXNm/ezKefflqlIPbs2cOAAQNo0qQJSqWSjRs3ahwfM2aMevny7lffvn01+hQWFhIWFoa1tTXm\n5uYEBgZy5coVjT7Xr18nKCgIS0tLrKysCAkJIS8vr0oxCyGEEEJUltYzXL6+vuq/N2/enBMnTpCd\nnY2VlZX6k4raysvL44UXXiA4OJhBgwaV28fPz4+4uDj1pyKNjY01jk+cOJEtW7awfv16LCwsCAsL\nY/DgwezZs0fdZ/jw4WRlZZGQkEBRURGjR48mNDSUVatWVSluIYQQQojKqPJzuO5Vr169Rzq/T58+\n9OnTB9B8ddC9jI2NadCgQbnHcnNziYmJIT4+nm7dugEQGxuLq6srKSkpeHp6kp6ezrZt20hNTcXd\n3fLoDRAAACAASURBVB2A6Oho/P39mTdvHra2to90D0IIIYQQFdG64Lp16xbR0dHs3LmTK1euqJcX\n7zp06JDOgrvXrl27sLGxwcrKipdeeomoqCh1oZeamkpxcTE9e/ZU92/ZsiV2dnYkJSXh6enJgQMH\nsLKyUhdbAD4+PigUCpKTkwkICNBL3EIIIYQQWhdcwcHBbN++ncDAQDw9Pau8jKgNPz8/Bg8ejIOD\nA2fOnCEiIoK+ffuSlJSEQqEgMzMTIyMjLCwsNM6zsbEhMzMTgMzMTBo2bKhx3MDAgHr16qn7PEh+\nfv5judearKCgQONP8Wgkn5Wjuu//FN5tK2//puRUtySfuvUs5LO0tOwqV2mpSqv91gqVgkluU8q0\n3X+NB+XzYXFUtBr3IFoXXJs2bWLz5s14e3trPVhVDRkyRP331q1b4+bmhpOTE7t27aJHjx6PJYZT\np07JU/R15Pz589UdQo0i+XwwpXnDMm2FRUWkp6dXeI7kVLckn7pVk/Np1MCoTFvRQ/57vZ+xrREL\nfv9Eo22Wx5wKr1FePh8Wh4HB/2vv3uOirvL/gb8+nwFG7nIf8QYWCnZRw0DSUpPEsrySm2lpXjLv\nrq7a7n5NbHuUupYaam5ueGtLazO0THsY5SKJuJiX2sggJDWZQVPkKiPM+f3hz6lxBmF0PnNhXs/H\nw0fNmTPn8z5vD/LmfC6orH4yg9UFV9u2bY3P4XKU6OhohIaGoqioCP3794dGo4Fer0dFRYXJLpdO\npzNem6XRaMzuWmxoaMDFixebdf1WTEwMd7huU21tLUpKShAVFQVvb29Hh+PymM/mKSmrNGtTe3kh\nKi7OrJ05tS3m07bcIZ9nKs6YtXl5eeGOuDuaPcap8mKzNkmSEHfD1/zN8tlUHEIIqzdhrC64Xn/9\ndSxcuBDr169Hx44drf24TZw9exa//vor2rRpAwCIj4+Hh4cHsrKyMHz4cADAyZMncfr0aSQlJQEA\nkpKSUF5ejqNHjxqv48rKyoIQAomJiU0e08fHB7Js9VM0yAJvb2/4+vo6OowWg/m8OUk2PxUhyfJN\nc8ac2hbzaVstOZ9ylfnGhixL1s233HJzY2NYymdTcRgMBlRWmv8wdzNWF1w9e/bElStX0KlTJ/j4\n+MDT09Pk/YsXL1o7JKqrq1FUVGQ8J1pcXIzjx48jODgYwcHBWLJkCUaOHAmNRoOioiIsXLgQnTt3\nNj6iIiAgABMnTsTcuXMRFBQEf39/zJo1C71790ZCQgIAIDY2FikpKZg8eTLeeust6PV6zJw5E6NH\nj+YdikRERKQoqwuu0aNH45dffsGrr76KiIgIm5xmy8/PR//+/SFJEiRJwrx51y52GzduHNatW4cT\nJ05gy5YtKC8vR2RkJFJSUvDyyy+bFHsrV66ESqVCamoq6urqMGjQIKxdu9bkOO+99x5mzJiB5ORk\nyLKM1NRUrF69+rbjJyIiIroZqwuugwcPIjc3F926dbNZEH379jV7vMTv7d27t8kx1Go10tPTkZ6e\n3mif1q1b8yGnREREZHdWX5QUGxvbom9JJSIiIrI1qwuupUuXYt68edi/fz9+/fVXVFRUmPwhIiIi\nIlNWn1K8/it4fv9Ud+DaLZKSJPFZVUREREQ3sLrg+uqrr5SIg4iIiKjFsrrguv7LoS357rvvbisY\nIqKW6kzZJVTWXjVp8/f2RPvwIAdFRET2ZHXBdaPKykq8//77+Oc//4kjR47wlCIRkQWVtVcxIeOo\nSVvGhB4OioaI7O2WH52enZ2NcePGoU2bNlixYgUefvhhHDp0yJaxEREREbUIVu1wabVabNq0Ce+8\n8w4qKiowatQo1NXVITMzE127dlUqRiIiIiKX1uwdrieeeAJdunTBiRMnsGrVKpw7d+6mDxklIiIi\nomuavcO1Z88ezJo1C1OnTkVMTIySMRERERG1KM3e4crJyUFlZSXi4+ORmJiINWvW4MKFC0rGRkRE\nRNQiNLvg6tWrFzZs2IDS0lJMmTIF27ZtQ2RkJAwGA/bt24fKykol4yQiIiJyWVbfpejr64sJEyYg\nJycH3377LebNm4elS5ciPDwcQ4YMUSJGIiIiIpd2y4+FAIAuXbpg+fLlOHv2LN5//31bxURERETU\notxWwXWdSqXCsGHDsGvXLlsMR0RERNSi2KTgIiIiIqLGseAiIiIiUhgLLiIiIiKFseAiIiIiUhgL\nLiIiIiKFWfXLq4mIyL2dKbuEytqrZu3+3p5oHx7kgIiIXAMLLiIiarbK2quYkHHUrD1jQg8HREPk\nOnhKkYiIiEhh3OEiIiKi23bu4i+oulpl0ubn6YfI4LYOisi5sOAiIiKi21Z1tQp/yp1r0rYi6Q0H\nReN8eEqRiIiISGEsuIiIiIgUxoKLiIiISGFOUXAdOHAAQ4YMQdu2bSHLMnbt2mXW56WXXkJkZCR8\nfHzwyCOPoKioyOT9uro6TJ8+HaGhofD390dqairKyspM+ly6dAljxoxBYGAggoKCMGnSJFRXVys6\nNyIiIiKnKLiqq6vRvXt3rFu3DpIkmb2/bNkyrFmzBm+//TYOHz4MX19fpKSkQK/XG/vMmTMHu3fv\nxkcffYTs7GycO3cOI0eONBnn6aefRkFBAbKysrB7925kZ2djypQpis+PiIiI3JtT3KU4aNAgDBo0\nCAAghDB7f/Xq1Vi0aBEef/xxAMCWLVsQERGBzMxMjBo1ChUVFcjIyMC2bdvQt29fAMDGjRsRFxeH\nw4cPIyEhAQUFBfj8889x5MgR9Ohx7QF96enpGDx4MFasWAGNRmOn2RLdnKUnefMp3kRErs0pCq6b\nOXXqFLRaLQYMGGBsCwgIQGJiInJzczFq1Cjk5+ejvr7epE+XLl3QoUMH5ObmIiEhAYcOHUJQUJCx\n2AKA5ORkSJKEvLw8DB061K7zImqMpSd5u+pTvFk8EhFd4/QFl1arhSRJiIiIMGmPiIiAVqsFAOh0\nOnh5eSEgIKDRPlqtFuHh4Sbvq1QqBAcHG/vcTE1NjcXTndR8tbW1Jv8ly4TBYLHtxusNXSGfFdV1\nmLjpuEnbO+O72fXayebmE1A2p9bE4cwszeN6uyuuUVfi7Pk0GMzPUBkMwqo1bosxGmPN+mwqDktn\n45ri9AWXsygsLERDQ4Ojw2gRSkpKHB2CU5P9w83a6vR6FBQUWOzvzPm0di7OEoMSOXWGXNiCpXkA\nrrtGXZGz5tMrzMusTW/lGrfFGGqN+RhCCKvWZ1NxqFQqdOrUqdkxAS5QcGk0GgghoNPpTHa5dDqd\n8fSgRqOBXq9HRUWFyS6XTqczXpul0WjM7lpsaGjAxYsXm3X9VkxMDHe4blNtbS1KSkoQFRUFb29v\nR4fjtErKKs3a1F5eiIqLM2lzhXw2dy7OEoOSOXWGXNiCpXkArrtGXYmz5/NMxRmzNi8vL9wRd4dd\nxzhVXmzWJkkS4qxYn03FIYSwehPG6Quu6OhoaDQaZGVl4d577wUAVFRUIC8vD9OnTwcAxMfHw8PD\nA1lZWRg+fDgA4OTJkzh9+jSSkpIAAElJSSgvL8fRo0eNhVpWVhaEEEhMTGwyDh8fH8iyU9zU6fK8\nvb3h6+vr6DCcliSbb51Lstxozpw5n9bOxVliUCKnzpALW7A0j2vtrrlGXZGz5lOuMt+UkGXJqlht\nMQbKLTdbsz6bisNgMKCy0vIPH41xioKruroaRUVFxnOixcXFOH78OIKDg9G+fXvMmTMHr7zyCu68\n805ERUVh0aJFaNeunfFC94CAAEycOBFz585FUFAQ/P39MWvWLPTu3RsJCQkAgNjYWKSkpGDy5Ml4\n6623oNfrMXPmTIwePZp3KBIREZGinKLgys/PR//+/SFJEiRJwrx58wAA48aNQ0ZGBhYsWICamhpM\nmTIF5eXlePDBB7Fnzx54ef12jnXlypVQqVRITU1FXV0dBg0ahLVr15oc57333sOMGTOQnJwMWZaR\nmpqK1atX23WuRERE5H6couDq27cvDI3c+XJdWloa0tLSGn1frVYjPT0d6enpjfZp3bo13n333VsN\nk4iIiOiW8KIkIiIiIoWx4CIiIiJSmFOcUiQiIvvg0/+JHIMFlwvjP5xEZK2W9Kuj6Df8fuD8WHC5\nMP7DSUREAL8fuAJew0VERESkMBZcRERERApjwUVERESkMBZcRERERApjwUVERESkMBZcRERERApj\nwUVERESkMBZcRERERApjwUVERESkMBZcRERERApjwUVERESkMBZcRERERApjwUVERESkMA9HB0BE\nROQOKn/+GYbLl03a5MBA+Hfs6KCIyJ5YcBEREdmB4fJlVD062KTNb89uB0VD9sZTikREREQKY8FF\nREREpDAWXEREREQKY8FFREREpDAWXEREREQKY8FFREREpDAWXEREREQKc4mCa8mSJZBl2eRP165d\nTfq89NJLiIyMhI+PDx555BEUFRWZvF9XV4fp06cjNDQU/v7+SE1NRVlZmT2nQURERG7KJQouALj7\n7ruh0+mg1Wqh1WqRk5NjfG/ZsmVYs2YN3n77bRw+fBi+vr5ISUmBXq839pkzZw52796Njz76CNnZ\n2Th37hxGjhzpiKkQERGRm3GZJ817eHggLCzM4nurV6/GokWL8PjjjwMAtmzZgoiICGRmZmLUqFGo\nqKhARkYGtm3bhr59+wIANm7ciLi4OBw+fBgJCQl2mwcRERG5H5fZ4SosLETbtm1xxx13YOzYsThz\n5gwA4NSpU9BqtRgwYICxb0BAABITE5GbmwsAyM/PR319vUmfLl26oEOHDsY+REREREpxiR2uXr16\nYdOmTejSpQtKS0uRlpaGhx56CN999x20Wi0kSUJERITJZyIiIqDVagEAOp0OXl5eCAgIaLQPkbOQ\nJYG0oZ3N2oiIyHW5RMGVkpJi/P+7774bCQkJ6NixIz744APExsbaJYaamhpIkmSXYzWXMBgstlVX\nVzsgmqbV1taa/Jcsu6JvQNrOH03a1j9zj9nfqyvk0xnWqDUxKJlTZ8iFLeKw9PnGxnCFNWpPBoP5\nD04Gg2h27m+WT2dYX7c7P1uN0Rhr1mdTcQhh/Q/BLlFw3SgwMBCdO3dGUVER+vXrByEEdDqdyS6X\nTqdDjx49AAAajQZ6vR4VFRUmu1w6nQ4ajaZZxywsLERDQ4NtJ3KbZP9ws7Y6vR4FBQUOiKb5SkpK\nHB2CU1MFRpq1CYFG/16dOZ/OsEZvJQYlcuoMubBFHJY+39QYzrxG7am9hW/ier0eP1m5Bizl0xnW\nl1eYl1mb3soYbDGGWmM+hhDCqvXZVBwqlQqdOnVqdkyAixZcVVVVKCoqwrhx4xAdHQ2NRoOsrCzc\ne++9AICKigrk5eVh+vTpAID4+Hh4eHggKysLw4cPBwCcPHkSp0+fRlJSUrOOGRMT43Q7XCVllWZt\nai8vRMXFOSCaptXW1qKkpARRUVHw9vZ2dDhOq7D0slmbJAFxN/y9ukI+nWGNWhODkjl1hlzYIg5L\nn29sDFdYo/akLyxC/Q1tXl5eiIu5s1mfv1k+nWF9nak4Y9bm5eWFO+LusOsYp8qLzdokSbLq39Cm\n4hBCWL0J4xIF1/z58/HEE0+gY8eO+OWXX7B48WJ4enriqaeeAnDtkQ+vvPIK7rzzTkRFRWHRokVo\n164dhg4dCuDaRfQTJ07E3LlzERQUBH9/f8yaNQu9e/du9h2KPj4+kGXnusdAks23WCVZhq+vrwOi\naT5vb2+nj9GxKiy0SY3mzJnz6Qxr9FZiUCKnzpALW8Rh6fNNjeHMa9Se6mXzH9plufGv7cZYyqcz\nrC+56vbn11BuvgvYYBDWzaPccrM167OpuRgMBlRWWv7hozEuUXCdPXsWTz/9NH799VeEhYWhT58+\nOHToEEJCQgAACxYsQE1NDaZMmYLy8nI8+OCD2LNnD7y8ftsSXLlyJVQqFVJTU1FXV4dBgwZh7dq1\njpoSERER3cBg4dooS22uyCUKrvfff7/JPmlpaUhLS2v0fbVajfT0dKSnp9swMiIiIqKmuUTBRURE\nRC1H5c8/w3DZwvWqweZliXNdPX3rWHARERGRXRkuX0bVo4PN2w/tNW9rIacUnesqcCIiIqIWiAUX\nERERkcJ4SpGIyEWcKbuEytqrJm3+3p5oHx7koIiIqLlYcBERuYjK2quYkHHUpC1jQg8HRUNE1mDB\nRURE5CLaqNXXnlj/u4eoyoGBAPgkf2fHgouIiMhFeNReQc3wESZtfnt2A4EsuG5FowVsK9sfiwUX\nERERuaVGC9hWapsfi3cpEhERESmMBRcRERGRwlhwERERESmMBRcRERGRwlhwERERESmMBRcRERGR\nwlhwERERESmMBRcRERGRwlhwERERESmMBRcRERGRwlhwERERESmMBRcRERGRwlhwERERESmMBRcR\nERGRwlhwERERESmMBRcRERGRwlhwERERESmMBRcRERGRwlhwERERESnM7QqutWvXIjo6Gt7e3ujV\nqxf++9//OjokIiIiauHcquDavn075s2bhyVLluDo0aPo1q0bUlJScOHCBUeHRkRERC2YWxVcK1eu\nxJQpU/Dss88iNjYW69evh4+PDzIyMhwdGhEREbVgHo4OwF6uXr2KI0eO4C9/+YuxTZIkJCcnIzc3\n16SvEMLs8waDQfEYrSVLQKC3h1mbM8YKXMurSqWCEMJpY3QGzf17dYV8OsMatSYGJXNqi1w4wxiW\nPt/YGK6wRu1KloGgILO25uZGCAGoVBbHcIavNQkS/D39zdosxmApFwBkSTYbQ5aanyMAkGFhDJiP\ncbN8NjWXxv79uBlJNNWjhSgtLUXbtm2Rm5uLxMREY/vChQuRnZ1tUnTV19ejurraEWESERGRC/L1\n9YWHR+P7WG51SpGIiIjIEdym4AoNDYVKpYJOpzNp1+l00Gg0DoqKiIiI3IHbFFyenp6Ij49HVlaW\nsU0IgaysLDzwwAMOjIyIiIhaOre5aB4A5s6di/HjxyM+Ph4JCQlYuXIlampqMH78eJN+sizD19fX\npE2SJEiSZMdoiYiIyBkJIcwukpflm+9huVXBNWrUKFy4cAEvvfQSdDodunfvjs8//xxhYWEm/WRZ\nbjJxRERERM3lNncpEhERETkKt3GIiIiIFMaCi4iIiEhhLb7gOnDgAIYMGYK2bdtClmXs2rXL5P2y\nsjKMHz8ebdu2ha+vLx577DEUFRWZ9NHpdHjmmWfQpk0b+Pn5IT4+Hjt27DDpExUVZbz2S5ZlqFQq\nLF++XPH52Zst8llcXIwRI0YgPDwcgYGBeOqpp1BWVmbS59KlSxgzZgwCAwMRFBSESZMmtciH0dor\nn+6yPl977TUkJCQgICAAERERGD58OH788Uezfi+99BIiIyPh4+ODRx55xCyndXV1mD59OkJDQ+Hv\n74/U1FS3XKP2zKc7rFFb5XPDhg3o378/AgMDIcsyKioqzMbg+vyNLfJpi/XZ4guu6upqdO/eHevW\nrbN4l+HQoUNRUlKCTz75BMeOHUOHDh2QnJyM2tpaY59nnnkGhYWF+PTTT/Hdd99hxIgRGDVqFI4f\nP27sI0kSXnnlFeh0Omi1WpSWlmLmzJl2maM93W4+a2pqMHDgQMiyjP379+PgwYOoq6vDE088YTLO\n008/jYKCAmRlZWH37t3Izs7GlClT7DJHe7JXPt1lfR44cAAzZ85EXl4evvjiC1y9ehUDBw40+Xpe\ntmwZ1qxZg7fffhuHDx+Gr68vUlJSoNfrjX3mzJmD3bt346OPPkJ2djbOnTuHkSNHmhzLHdaoPfPp\nDmvUVvmsra3Fo48+ir/+9a+N3j3P9XmNrfJpk/Up3IgkSWLnzp3G1z/++KOQJEkUFBQY2wwGgwgP\nDxfvvPOOsc3Pz0+8++67JmOFhISY9ImKihKrV69WMHrncyv5/Pzzz4WHh4eoqqoy9rl8+bKQZVlk\nZWUJIYT4/vvvhSRJ4ptvvjH22bt3r1CpVKK0tFTpaTmMUvkUwj3XpxBCnD9/XkiSJA4cOGBsa9Om\njXjjjTeMry9fvixatWoltm/fbnzt5eUlduzYYezzww8/CEmSRF5enhDCfdeoUvkUwj3X6K3k8/f2\n798vZFkWly9fNmkvKCjg+vz/bJFPIWyzPlv8DtfN1NXVQZIkqNVqY9v11zk5Oca23r17Y/v27bh0\n6RKEENi2bRvq6urQr18/k/GWLl2K0NBQ3HfffVixYgUaGhrsNRWn0Jx86vV6SJIELy8vYx+1Wg1Z\nlo19Dh06hKCgIPTo0cPYJzk5GZIkIS8vz06zcTxb5fM6d1yf5eXlkCQJwcHBAIBTp05Bq9ViwIAB\nxj4BAQFITEw0/j7V/Px81NfXm/Tp0qULOnToYOzjrmtUqXxe525r9Fby2Ry5ublcn7BdPq+73fXp\n1gVXbGws2rdvjz//+c8oLy+HXq/HsmXLcPbsWZSWlhr7bd++HXq9HiEhIVCr1Zg6dSo+/vhjdOrU\nydhn9uzZ2LZtG/bv348XXngBr776KhYuXOiIaTlMc/LZq1cv+Pr6YsGCBaitrUV1dTX+9Kc/wWAw\nGPtotVqEh4ebjK1SqRAcHAytVmv3eTmKrfIJuOf6FEJgzpw56NOnD7p27Qrg2tqSJAkREREmfSMi\nIoxrS6fTwcvLCwEBAY32ccc1qmQ+Afdbo7eaz+bg+rRtPgHbrE+3evDpjTw8PPDxxx9j4sSJCA4O\nhoeHB5KTk/HYY4+ZPEH2//7v/3D58mV8+eWXCAkJQWZmJp588knk5OTgrrvuAnDtGoXr7r77bnh5\neWHKlCl47bXX4Onpafe5OUJz8hkaGooPP/wQU6dOxZtvvgmVSoXRo0ejR48efNjsDWyZT3dcn9Om\nTcP333+Pr7/+2tGhtAhK59Pd1ijXp225wvp0++9wPXr0wDfffIPLly+jtLQUn332GS5cuGDcvSou\nLsbatWuRkZGBfv364Z577sGiRYvQs2dPrF27ttFxExISUF9fj5KSEjvNxDk0lU/g2tZ2YWEhzp8/\njwsXLmDz5s345ZdfjH00Go3ZHUwNDQ24ePGi2/2icVvk05KWvj5nzJiBzz77DPv370ebNm2M7RqN\nBkKIm/4Se41GA71eb3an0o193GmNKp1PS1ryGr2dfDYH1+c1tsqnJbeyPt2+4LrO398fISEhKCws\nRH5+PoYNGwbg2l1gkiRBpVKZ9FepVDAYDI2Od/ToUciybLat6y4ay+fvBQcHIyAgAF9++SXOnz+P\nIUOGAACSkpJQXl6Oo0ePGvtmZWVBCIHExES7zcGZ3E4+LWnJ63PGjBnYuXMnvvrqK3To0MHkvejo\naGg0GpNfYl9RUYG8vDzjL7GPj4+Hh4eHSZ+TJ0/i9OnTSEpKAuBea9Qe+bSkpa7R281nc3B9XmOr\nfFpyS+vzti65dwFVVVXi2LFj4ujRo0KSJLFy5Upx7Ngxcfr0aSGEEB9++KHYv3+/KC4uFpmZmSIq\nKko8+eSTxs9fvXpVxMTEiL59+4rDhw+Ln376SaxYsUKoVCqxd+9eIYQQubm5YtWqVeL48eOiuLhY\nvPvuuyI8PFw899xzDpmzkm43n0IIsXHjRnHo0CHx008/ia1bt4qQkBAxf/58kz6PPvqoiI+PF4cP\nHxY5OTmic+fOYuzYsXabp73YI5/utD6nTp0qWrduLbKzs4VWqzX+qa2tNfZZtmyZCA4OFrt27RIn\nTpwQQ4cOFXfeeaeoq6szGScqKkp89dVXIj8/XzzwwAOiT58+JsdyhzVqr3y6yxq1VT61Wq04duyY\n2LBhg/GuvGPHjomLFy8a+3B9XmOLfNpqfbb4gmv//v1CkiQhy7LJn+uJevPNN0X79u2FWq0WUVFR\nYvHixeLq1asmYxQVFYnU1FSh0WiEn5+f6N69u/jXv/5lfP+bb74RvXr1EkFBQcLHx0fcddddYtmy\nZUKv19t1rvZgi3y++OKLQqPRCLVaLbp06SJWrVpldpxLly6JMWPGiICAANG6dWsxadIkUV1dbZc5\n2pM98ulO69NSLmVZFps3bzbpt3jxYtGmTRvh7e0tBg4cKAoLC03ev3LlipgxY4YICQkRfn5+IjU1\nVeh0OpM+7rBG7ZVPd1mjtspnWlqaxbF+Pw7X529uN5+2Wp/85dVERERECuM1XEREREQKY8FFRERE\npDAWXEREREQKY8FFREREpDAWXEREREQKY8FFREREpDAWXEREREQKY8FFREREpDAWXEREREQKY8FF\nRC7jueeew4gRI27ap3///pg7d67xdXR0NN58881mjW9NX2s0J24iatlYcBGRXTz33HOQZRkqlQpq\ntRoxMTH429/+BoPBoOhx8/Pz8fzzzyt6DCKipng4OgAich+PPvooNm3ahCtXrmDPnj2YNm0a1Go1\nFixYoNgxQ0JCFBvb1dXX18PDg98GiOyBO1xEZDdqtRphYWFo3749nn/+eSQnJ2Pnzp0AgLS0NPTo\n0cOk/+rVqxEdHW02zssvv4zw8HAEBgZi6tSpqK+vb/SYN54mTEtLQ8eOHdGqVSu0a9cOc+bMMelf\nXV2NiRMnIiAgAB07dsSGDRtM3j979iz+8Ic/ICgoCCEhIRg2bBh+/vln4/sGgwFz585FUFAQwsLC\nsHDhQgghGo2vpqYGgYGB2LFjh0l7ZmYm/Pz8UF1d3azj5ufnY+DAgQgLC0Pr1q3Rr18/HD161GRM\nWZaxfv16DB06FP7+/nj11VcbjYuIbIsFFxE5TKtWraDX6wEAkiRBkiSzPje2ffHFF/jhhx/wn//8\nB9u2bcOOHTuwZMmSZh3v3//+N1atWoUNGzagqKgImZmZuOeee0z6vPHGG7j//vtx7NgxTJs2DVOn\nTkVhYSGAaztCKSkpCAwMxNdff42DBw/C398fgwYNMhZ9K1aswJYtW7Bp0ybk5OTg4sWL+PjjjxuN\nycfHB0899RQ2btxo0r5p0yaMGjUKvr6+zTpuZWUlxo8fj4MHDyIvLw+dO3fGY489ZizYrluyIZbC\nGgAABOZJREFUZAlGjBiBb7/9FhMmTGhW3ojIBgQRkR2MHz9eDB8+3Ph63759olWrVmLhwoVCCCHS\n0tJEjx49TD6zatUqER0dbTJGaGiouHLlirFt/fr1IiAgwPi6X79+4o9//KPxdVRUlFi9erUQQog3\n3nhDxMbGivr6eosxRkVFiXHjxpm0RUREiH/84x9CCCG2bt0q4uLiTN6vq6sTPj4+Yt++fUIIISIj\nI8Xrr79ufL++vl60b9/eZO43Onz4sPD09BRarVYIIURZWZnw9PQUBw4caPZxb9TQ0CACAgLE7t27\njW2SJIl58+Y1GgcRKYc7XERkN5988gn8/f3RqlUrDB48GKNHj8bixYutGqNbt25Qq9XG10lJSaiq\nqsKZM2ea/OyTTz6JmpoaREdH4/nnn0dmZiYaGhpM+ty446XRaFBWVgYAOHHiBAoLC+Hv72/8ExIS\ngrq6Ovz000+oqKhAaWkpEhISjJ9XqVTo2bPnTeO6//770bVrV2zevBkAsHXrVkRFRaFPnz7NOi4A\nlJWVYfLkyejcuTNat26NwMBAVFdX4/Tp0ybHio+PbzJPRGR7vFqSiOzm4Ycfxvr16+Hp6YnIyEjI\n8m8/88mybHat09WrV216/Hbt2uHHH3/EF198gX379mH69On4+9//juzsbKhUKgCAp6enyWckSTLe\nSVlVVYWePXvivffeM4s1LCzsptdqNWXSpElYt24dFixYgE2bNpmc7mvquADw7LPP4tKlS0hPT0eH\nDh2gVqvRq1cv4ynb63x9fW85RiK6dSy4iMhufH19LV4ED1wrHLRarUnbjRd9A8Dx48dRV1dn3OXK\nzc2Fn58f2rdv36wY1Go1Bg8ejMGDB2PatGmIjY3Ft99+i+7duzf52fvuuw8ffPABwsLC4OfnZ7FP\nmzZtkJeXZ9ydamhowJEjR5rcWRo7diwWLlyI9PR0FBQU4Nlnn7XquAcPHsRbb72FlJQUAMCZM2dw\n4cKFJudERPbBU4pE5BT69euH8+fPY/ny5SguLsbatWuxd+9es356vR4TJ05EQUEBPvvsM6SlpWHm\nzJnNOsbmzZuRkZGB//3vfzh16hS2bt0KHx8fdOzYsVmfHzNmDEJDQzF06FDk5OSgpKQE+/fvx+zZ\ns3Hu3DkAwOzZs7F06VLs3LkTJ0+exLRp01BeXt7k2K1bt8bw4cMxf/58pKSkIDIy0qrjxsTEYOvW\nrfjhhx+Ql5eHsWPHwsfHp1nzIiLlseAiIqcQGxuLdevWYd26dejevTvy8/Mxf/58s34DBgxATEwM\nHnroIYwePRrDhg0zuQ7sxrsaf/+6devW2LBhA/r06YNu3brhyy+/xKeffoqgoCCLn72xzdvbG9nZ\n2ejQoQNGjhyJrl27YvLkyairq0NAQAAAYN68eXjmmWcwfvx4PPDAAwgICGj2U+YnTpwIvV5vdvdg\nc46bkZGBS5cuIT4+HuPGjcPs2bMRHh7e6FyIyL4kcTsXHRARkc1s3boV8+bNw7lz5/hAUqIWhl/R\nREQOVltbi3PnzmHZsmV44YUXWGwRtUA8pUhE5GDLly9HXFwcIiMj8eKLLzo6HCJSAE8pEhERESmM\nO1xERERECmPBRURERKQwFlxERERECmPBRURERKQwFlxERERECmPBRURERKQwFlxERERECmPBRURE\nRKSw/wfcXYwmCmv6rQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f9e07d69c18>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(figsize=(6,4), facecolor='white')\n",
"\n",
"df_ = df[df['Brand author'] == 'Mark Greaney']\n",
"ax.bar([x for x in df_.Date], df_.Reviews, color=STD_COLORS['1'], width=0.3, label = 'Mark Greaney')\n",
"\n",
"df_ = df[(df['Brand author'] == 'Tom Clancy') & (df['Author'] == 'Tom Clancy')]\n",
"ax.bar([x+0.33 for x in df_.Date], df_.Reviews, color=STD_COLORS['2'], width=0.3, label = 'Tom Clancy')\n",
"\n",
"df_ = df[(df['Brand author'] == 'Tom Clancy') & (df['Author'] != 'Tom Clancy')]\n",
"ax.bar([x+0.33 for x in df_.Date], df_.Reviews, color=STD_COLORS['3'], width=0.3, label = 'Mark Greaney as Tom Clancy')\n",
"\n",
"ax.set(xlim=[1985, 2016],\n",
" xlabel = 'Published year',\n",
" ylabel = 'Amazon reviews', \n",
" axis_bgcolor='white');\n",
"ax.legend(loc=\"upper left\", frameon=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Top features"
]
},
{
"cell_type": "code",
"execution_count": 640,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"word_vector = TfidfVectorizer( analyzer='word', ngram_range=(2,2), max_features=10, norm='l2')\n",
"char_vector = TfidfVectorizer( analyzer='char', ngram_range=(2,3), min_df=0, max_features=10, norm='l2')\n",
"\n",
"W = word_vector.fit_transform(corpus)\n",
"C = char_vector.fit_transform(corpus)"
]
},
{
"cell_type": "code",
"execution_count": 666,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>3</th>\n",
" <th>4</th>\n",
" <th>5</th>\n",
" <th>6</th>\n",
" <th>7</th>\n",
" <th>8</th>\n",
" <th>9</th>\n",
" <th>...</th>\n",
" <th>13</th>\n",
" <th>14</th>\n",
" <th>15</th>\n",
" <th>16</th>\n",
" <th>17</th>\n",
" <th>18</th>\n",
" <th>19</th>\n",
" <th>author</th>\n",
" <th>title</th>\n",
" <th>chapter</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.256175</td>\n",
" <td>0.126626</td>\n",
" <td>0.278174</td>\n",
" <td>0.164055</td>\n",
" <td>0.304013</td>\n",
" <td>0.241084</td>\n",
" <td>0.606864</td>\n",
" <td>0.340429</td>\n",
" <td>0.154746</td>\n",
" <td>0.394181</td>\n",
" <td>...</td>\n",
" <td>0.273267</td>\n",
" <td>0.451733</td>\n",
" <td>0.317862</td>\n",
" <td>0.278427</td>\n",
" <td>0.205424</td>\n",
" <td>0.342532</td>\n",
" <td>0.243378</td>\n",
" <td>Clancy</td>\n",
" <td>The Hunt for Red October</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.070314</td>\n",
" <td>0.162195</td>\n",
" <td>0.285049</td>\n",
" <td>0.140092</td>\n",
" <td>0.389408</td>\n",
" <td>0.285049</td>\n",
" <td>0.617290</td>\n",
" <td>0.298352</td>\n",
" <td>0.173437</td>\n",
" <td>0.367203</td>\n",
" <td>...</td>\n",
" <td>0.274962</td>\n",
" <td>0.451541</td>\n",
" <td>0.316757</td>\n",
" <td>0.239309</td>\n",
" <td>0.228035</td>\n",
" <td>0.327755</td>\n",
" <td>0.239034</td>\n",
" <td>Clancy</td>\n",
" <td>The Hunt for Red October</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.236902</td>\n",
" <td>0.179093</td>\n",
" <td>0.155356</td>\n",
" <td>0.277644</td>\n",
" <td>0.381339</td>\n",
" <td>0.225972</td>\n",
" <td>0.720442</td>\n",
" <td>0.177389</td>\n",
" <td>0.147313</td>\n",
" <td>0.204680</td>\n",
" <td>...</td>\n",
" <td>0.295998</td>\n",
" <td>0.442149</td>\n",
" <td>0.322033</td>\n",
" <td>0.298231</td>\n",
" <td>0.211084</td>\n",
" <td>0.340057</td>\n",
" <td>0.235517</td>\n",
" <td>Clancy</td>\n",
" <td>The Hunt for Red October</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.149937</td>\n",
" <td>0.296453</td>\n",
" <td>0.121567</td>\n",
" <td>0.209111</td>\n",
" <td>0.366339</td>\n",
" <td>0.243134</td>\n",
" <td>0.614274</td>\n",
" <td>0.411085</td>\n",
" <td>0.221901</td>\n",
" <td>0.205542</td>\n",
" <td>...</td>\n",
" <td>0.251296</td>\n",
" <td>0.448230</td>\n",
" <td>0.299277</td>\n",
" <td>0.260463</td>\n",
" <td>0.250260</td>\n",
" <td>0.346912</td>\n",
" <td>0.214016</td>\n",
" <td>Clancy</td>\n",
" <td>The Hunt for Red October</td>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.220454</td>\n",
" <td>0.160586</td>\n",
" <td>0.152870</td>\n",
" <td>0.115585</td>\n",
" <td>0.464924</td>\n",
" <td>0.317500</td>\n",
" <td>0.622487</td>\n",
" <td>0.340839</td>\n",
" <td>0.147186</td>\n",
" <td>0.215865</td>\n",
" <td>...</td>\n",
" <td>0.250328</td>\n",
" <td>0.438147</td>\n",
" <td>0.300455</td>\n",
" <td>0.270469</td>\n",
" <td>0.262784</td>\n",
" <td>0.345113</td>\n",
" <td>0.228759</td>\n",
" <td>Clancy</td>\n",
" <td>The Hunt for Red October</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 23 columns</p>\n",
"</div>"
],
"text/plain": [
" 0 1 2 3 4 5 6 \\\n",
"0 0.256175 0.126626 0.278174 0.164055 0.304013 0.241084 0.606864 \n",
"1 0.070314 0.162195 0.285049 0.140092 0.389408 0.285049 0.617290 \n",
"2 0.236902 0.179093 0.155356 0.277644 0.381339 0.225972 0.720442 \n",
"3 0.149937 0.296453 0.121567 0.209111 0.366339 0.243134 0.614274 \n",
"4 0.220454 0.160586 0.152870 0.115585 0.464924 0.317500 0.622487 \n",
"\n",
" 7 8 9 ... 13 14 15 \\\n",
"0 0.340429 0.154746 0.394181 ... 0.273267 0.451733 0.317862 \n",
"1 0.298352 0.173437 0.367203 ... 0.274962 0.451541 0.316757 \n",
"2 0.177389 0.147313 0.204680 ... 0.295998 0.442149 0.322033 \n",
"3 0.411085 0.221901 0.205542 ... 0.251296 0.448230 0.299277 \n",
"4 0.340839 0.147186 0.215865 ... 0.250328 0.438147 0.300455 \n",
"\n",
" 16 17 18 19 author title \\\n",
"0 0.278427 0.205424 0.342532 0.243378 Clancy The Hunt for Red October \n",
"1 0.239309 0.228035 0.327755 0.239034 Clancy The Hunt for Red October \n",
"2 0.298231 0.211084 0.340057 0.235517 Clancy The Hunt for Red October \n",
"3 0.260463 0.250260 0.346912 0.214016 Clancy The Hunt for Red October \n",
"4 0.270469 0.262784 0.345113 0.228759 Clancy The Hunt for Red October \n",
"\n",
" chapter \n",
"0 0.0 \n",
"1 1.0 \n",
"2 2.0 \n",
"3 3.0 \n",
"4 4.0 \n",
"\n",
"[5 rows x 23 columns]"
]
},
"execution_count": 666,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"T = W.toarray()\n",
"T = np.hstack((W.toarray(), C.toarray()))\n",
"dfTfidf = pd.DataFrame(T)\n",
"dfTfidf['author'] = dfBooks.loc[dfBooks.author != 'Ghost', 'author'].values\n",
"dfTfidf['title'] = dfBooks.loc[dfBooks.author != 'Ghost', 'title'].values\n",
"dfTfidf['chapter'] = dfBooks.loc[dfBooks.author != 'Ghost', 'chapter_num'].values\n",
"dfTfidf.head()"
]
},
{
"cell_type": "code",
"execution_count": 655,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def freq_plot(df, gram, title):\n",
" fig, ax = plt.subplots(figsize=(6,4), facecolor='white')\n",
"\n",
" df_ = df[df.author == 'Clancy']\n",
" ax.bar(df_.index, df_[gram], color='r', label='Clancy')\n",
"# df_ = df[df.author == 'Ghost']\n",
"# ax.bar(df_.index, df_[gram], color='b', label='Ghost')\n",
" df_ = df[df.author == 'Greaney']\n",
" ax.bar(df_.index, df_[gram], color='g', label='Greaney')\n",
" ax.set(axis_bgcolor='white',\n",
" xlabel = 'Chapter',\n",
" ylabel = 'Tfidf norm. freq',\n",
" title = title )\n",
" ax.legend(loc=\"upper right\", frameon=False)"
]
},
{
"cell_type": "code",
"execution_count": 656,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAF5CAYAAABDflTSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xt8FNXdP/DP7GYDuaMYNHIL4WaQQFguidKHi5eKllL7\nBK+AwaoJolRri7++aivgy1Kp5VFEa3weC1GgigUttra1atEKVNCAiBrRQDBRIomQG7sJSXbO74/s\nDLOzs5vd7H3zeb9eviRzOfM9Z2Y335w5c0YSQggQERERUdCYIh0AERERUbxhgkVEREQUZEywiIiI\niIKMCRYRERFRkDHBIiIiIgoyJlhEREREQcYEi4iIiCjImGARERERBRkTLCIiIqIgY4JF5AeHw4FV\nq1YhNzcXEyZMgNVqxZIlS9DS0oJ33nkHkyZNCurxvvzySzzzzDNBK2/v3r2YMGECJk+ejDfeeCNo\n5caiZ555Brm5ubBarWhsbHRZt2PHDuzbt0/9OVjndvbs2Xj11VcN191xxx145513Aj5GqKxatQrP\nPfccnnvuOaxatQoAcPDgQWzdurVX5Xlri572q6mpwa233op///vfvTo2UTgwwSLyw49+9CPs378f\ne/fuxUcffYT9+/fjyiuvxKlTpwAAkiQF9XjV1dUoKyvr1b4Oh8Nt2XPPPYcFCxagoqICV155ZY/b\nx7N169ahvLwc+/fvxznnnOOy7s9//jP+85//uCwL9rnV+7//+z/MnDkzoDKEEAjl28+UNlD+f+DA\nAbz44oshO563GIiiHRMsIh8dOXIE27dvR3l5OdLT09XlRUVFyM7OBgB0dnbirrvuQn5+PvLy8rB/\n/34A3cnLnDlzMG3aNOTl5WHhwoVoa2sD0N07kpeXh+LiYuTl5WHq1Kn46KOPAAB33nknPv/8c1it\nVlx77bUAgKqqKsydOxcFBQXIz8/H73//ezUWk8mElStXYtq0afjFL37hEv+aNWuwdetWrF+/Hlar\nFc3NzRgxYgR+/vOfo6CgAIsXLwYAbN68GYWFhZgyZQpmzZqlxtLV1YWlS5dizJgxKCwsxM9+9jPM\nnj1brYO2h+eTTz7BiBEj1J//+c9/4r/+678wdepUFBYW4u2333apu1GbAcBrr72GadOmIT8/H1ar\nFe+//z7Wrl2L0tJSdZvm5mZkZmaiqanJ7Zx98MEHmD59OiZOnIjCwkI1abruuutw9OhRLF68GNdf\nf73LPn//+9/x6quv4ne/+x2sVis2bNjg9dx6q5+RN998E9OmTcOYMWPws5/9TF3urUfnm2++wVVX\nXYXx48djzpw5uOmmm/DQQw8B6O5Zmj9/PubMmYO8vDx88803WL58OQoKCmC1WjFr1ix88cUXalkm\nkwmrV69GYWEhcnJysGPHDjzyyCOYOnUqxo4d67FXKC0tDUlJSUhOTkZqaioaGhqwYsUKvP3227Ba\nrVi6dCkA4PXXX8fkyZORn5+P2bNno7Ky0u+2OHHiBG644QYUFhZi4sSJePDBB9V15557LsxmMwYM\nGIDExESPZRNFnCAin7z00ksiPz/f4/q3335bWCwW8f777wshhCgrKxNXXXWVuv7UqVPqv++8806x\nZs0adT+TySR27typHueiiy5S102aNEndz+FwiClTpojDhw8LIYSw2+1iwoQJ4oMPPhBCCCFJknj4\n4Yc9xrh48WKxbt069efs7Gxxxx13qD/v3r1bXHPNNaKjo0MIIcS7774rLr74YiGEEE8++aS44oor\nRFdXl+js7BSzZ88Ws2fPNozz448/FiNGjBBCCHH06FFxySWXiNbWViGEEFVVVSIrK0t0dHR4bbPD\nhw+LQYMGic8//1wIIURXV5doaWkRTU1N4vzzzxfNzc1CCCEee+wxcfvtt7vVtaOjQwwbNky88cYb\nQgghdu3aJS644AJhs9nUun/00Uc+tZO3OL3VT2/WrFniiiuuEA6HQ9jtdjFlyhTxwgsvqOt27Nhh\nGM91110nVq5cKYQQ4ptvvhEXXHCBWLVqlRBCiJUrV4rBgweLhoYGdftvv/1W/feLL74o5syZo/4s\nSZJYv369EEKIt956S6Smpornn39eCCHEn/70JzF16lTDGIyUl5eLH/7wh+rP9fX1YuDAgeKTTz4R\nQgixZcsWMW7cOMN9vbXFVVddJf79738LIbrP+5w5c8S2bdt8josoGiREOsEjiiejRo3ClClTAACX\nXHIJ1q5dC6D71s3atWvxt7/9DV1dXWhpacGll16q7pednY1Zs2YB6O5dKSkpwVdffeVW/uHDh/HJ\nJ5/gxhtvVG8FnT59Gp9++ikmT54MALj11lv9ilnpuQK6xx599NFHKCgoUMtvamrCmTNn8K9//Qu3\n3HILzGYzgO7bpUrvjjf/+Mc/cOTIEcyYMUMtMyEhATU1NQA8t9mbb76Jq6++GqNHjwYAmM1mpKWl\nAQDmz5+PDRs24N5778XTTz+Nl156ybCtzGYzrrjiCgDA9OnTcf755+PDDz9U2174cTvNU5ze6jdy\n5Ei3cm655RaYTCYkJSVh4cKFePPNN3HjjTd6PfZbb72lHu/888/H3LlzXdZfc801OO+889SfX3/9\ndTz55JNobW2FLMtuY8yUXrspU6bAbrfjhhtuAABMmzYNVVVVPreJnjLGb9y4cQCAm2++GXfddReO\nHz+OCy+80G17o7aYN28e3nrrLdTX16vtabPZcPjw4V7HRRQJTLCIfGS1WvHFF1+gsbHRbcyOon//\n/uq/zWYzurq6AABbtmzB22+/jXfffRcpKSlYv349du7c6fFYkiQZjjURQmDgwIEut6f0+6WmpvpT\nLZfthRAoLi7Gww8/3ON+2vgSEhJcxnC1t7e7lHnllVdi8+bNbmV89dVXHtvMm2XLlmHevHm46KKL\nMGjQIEycOLHHffQx+8tTnN7q15uYmpubMWvWLEiShBEjRmD79u097qM9h7W1tVi2bBkqKiqQnZ2N\nQ4cOuYztkiRJrYuSLCu32nxt/1CRJAlCCEiShL1798JisUQsFqJAcQwWkY9GjhyJoqIi3HbbbWhu\nblaXv/zyyzh27JjXfZuamnDeeechJSUFra2tKC8vd1l/7Ngx9Qmybdu24YILLsDgwYORnp7ucqyx\nY8ciPT3dZf8jR46o44/86ZExMm/ePGzevBm1tbVqeRUVFQCAK664Aps3b0ZXVxc6OjqwceNGdb+c\nnBx8+eWXOHnyJABg06ZN6rqrrroKb775Jg4dOqQue//993uM5aqrrsLrr7+Ozz//HADUnj+gux1y\ncnJQUlKCZcuWGe4/duxYyLKMt956CwCwZ88enDhxAvn5+T0eW9/uPcXpT/2UNmxra8Mf//hHt4cN\nMjIycODAAezfv19Nri6//HK1vU+cOIG//vWvHstvbm5GYmIiLrjgAgghsH79epf1+mukp5+90bdT\nYWEhDh06hE8//RQA8OKLL2LIkCGGvVeAcVukpKRg9uzZWL16tbpdXV0dvv76a5/jIooGTLCI/LBh\nwwZMmDABBQUFyMvLw8UXX4w33ngD5557rtf9brnlFthsNuTm5uJ73/seZsyY4bJ+3LhxKC8vx4QJ\nE7BmzRq88MILAIAJEybg4osvRl5eHq699lqYzWb85S9/wcsvv4z8/HyMHz8et99+uzpgvqceGv16\n/c/f+c538Nvf/hY//OEPMWnSJIwfP159DP+OO+7AqFGjMG7cOMyYMcNlUHtWVhbuv/9+TJ06FZde\neikGDhyorhs5ciT++Mc/orS0FJMmTcLFF1+MdevWeY1T2W/jxo1YsGAB8vPzUVhYqCZbSjwOhwNF\nRUWG+1ssFrz88st48MEHkZ+fj/vuuw/bt29HcnJyj221aNEibN26FZMnT+7xNqg/9ZMkCbm5uerA\n+5kzZ6q367zF8/jjj2PXrl0YP348Fi1ahMLCQgwYMMBw2/Hjx+PGG2/EuHHjUFBQoD6AoY3Bn5+9\nufzyy3HmzBnk5+dj6dKlOO+887BlyxYsWrQI+fn5eOaZZ/CnP/3JcF9vbbFlyxZUVVUhLy8PEyZM\nQFFRkfqkLlGskESgf/ISUUDeeecd/OQnP/F42y9avfbaa1i7di3+9a9/ReT4y5YtwwUXXIAHHngg\nIscPp/b2dlgsFpjNZpw6dQqFhYXYsmULpk6dGunQiMgDjsEiophSV1eHyy67DAMHDsTrr78e6XDC\n4osvvsAtt9wCIQQ6Oztx9913M7kiinIR6cGqqqpCcXExvv32WwwYMADl5eXIzc31uP3ixYvx/PPP\no6mpSZ1/yGQyIS8vDyaTCZIkYf369Zg+fXq4qkBERETkUUR6sEpLS7FkyRIsWrQI27dvR3Fxsctr\nKbReeeUVJCYmGo4T2LVrl/rYNhEREVG0CHsPVkNDA0aPHo1Tp07BZOoeY5+VlYXdu3cjJyfHZdsT\nJ07g+9//Pnbu3Im0tDS3Hiztz0ZkWYYsyy7LPD3+TkRERH2LMHi9lMlkUvOTQIS9B6u2thZZWVku\nwQ8bNgw1NTVuCVZJSQkeffRRpKSkuJUjSRJmz54NWZZx+eWX46GHHlKfDlLIsgybzRaaihAREVHc\nSUlJCUqCFbXTNPzhD3/A8OHDPb789Msvv0RFRQX27NmD+vp6LF++PMwREhERERkLe4I1dOhQ1NXV\nudy6q6mpwbBhw1y227lzJ3bs2IGcnBz1pbETJkzAwYMHAQBDhgwBACQlJWHp0qXYtWtXmGpARERE\n5F3YbxFmZmbCarVi06ZNKC4uxrZt2zB06FC324P6106YTCYcOnRIHYvVr18/JCUlQZZlbN261WXS\nQyIiIqJIisg0DZ9//jkWL16MkydPIiMjA+Xl5Rg3bhxWrFiBwYMHo6SkxG0fs9mMxsZGpKen4733\n3kNpaSlMJhO6urpgtVqxbt06t5mNHQ4HTp8+7bIsWPdWqZvdbscXX3yB0aNHu42Bo8CwbUOHbRs6\nbNvQYdsGn9FY7dTUVPU9nYGIyDQNY8aMwZ49e9yWr1q1yuM+2hfJFhYWqrcKvTF6WjBYTwdQN0mS\n4HA4IEkS2zXI2Lahw7YNHbZt6LBtwyNYMw3wDBERUZ9WXV+N6vrqgLfxZzuKf0ywiIioT2tsb0Rj\ne2PA2/izHcU/JlhEREREQcYEi4iIiCjImGARERERBRkTLCIiIqIgi8g0DUREROQ7e3U15JMnMaKj\nA3JlJWxBmqZBOuccJDvfluKNw+HAww8/jBdffBEWiwUJCQmYNm0arr76aqxcuRIHDhwISjzxhAkW\nERFRlBONjUibOjXo5doqKgAfEqwf/ehHaGpqwt69e5Geng4A2L59O06dOhW0eaPiDW8REhERkUdH\njhzB9u3bUV5eriZXAFBUVOTymjuHw4E5c+Zg2rRpyMvLw8KFC9HW1gYAeOedd5CXl4e77roL+fn5\nyMvLw/79+9V9X3vtNUybNg35+fmwWq14//33sXbtWpSWlqrbNDc3IzMzE01NTWGodeCYYBEREZFH\n+/fvx+jRo3HOOed43c5sNuOFF17Avn37cOjQIaSnp2P9+vXq+sOHD+PWW2/Fhx9+iLvvvhu/+MUv\nAHS/Pu9HP/oRtmzZgg8//BDvv/8+LrroItx+++3YsWMHWlpaAAAbN27Etdde6/ZavGjFBIuIiIgC\nJoTA2rVrYbVaMWHCBPztb3/Dhx9+qK4fNWoUpkyZAgC45JJLcPToUQDAm2++iauvvhqjR48G0J2o\npaWlISMjA/Pnz8eGDRsAAE8//TTuvvvuMNeq9zgGi4iIiDyyWq344osv0NjY6LUXa8uWLXj77bfx\n7rvvIiUlBevXr8fOnTvV9f3791f/bTab0dXV1eOxly1bhnnz5uGiiy7CoEGDMHHixMAqE0bswSIi\nIiKPRo4ciaKiItx2221obm5Wl7/88stqLxQANDU14bzzzkNKSgpaW1tRXl7uU/lXXXUVXn/9dXz+\n+ecAgK6uLvW24NixY5GTk4OSkhIsW7YseJUKAyZYRERE5NWGDRswYcIEFBQUIC8vDxdffDHeeOMN\nnHvuueo2t9xyC2w2G3Jzc/G9730PM2bM8KnskSNHYuPGjViwYAHy8/NRWFioJlsAcMcdd8DhcKCo\nqCjo9Qol3iIkIiKKctI556D1/ffR0dGBxMREmII4D5YvzGYzVq5ciZUrV7qt+8EPfgAASE9Pxxtv\nvGG4/8yZM12eGrz44otder/mzJmDOXPmGO67c+dOLF26FGaz2adYowUTLCIioiiXPGIEbIMGobqy\nErm5uUhJSYl0SCFXV1eHyy67DAMHDsTrr78e6XD8xgSLiIiIok5WVhYqKysjHUavcQwWERERUZAx\nwSIiIiIKMiZYREREREHGBIuIwspeXQ17dXWkwyAiCikOcieisBKNjd3/GDEisoEQxZDq+mqctJ9E\nR3oHKhsqYToZnP6Rc/qfgxGDev4sdnV14de//jVefPFFJCQkIDExEcOHD8fKlSsxYcKEoMQSb5hg\nERERRbnG9kZMfW5q0MutuLUCI9BzgrV48WLY7Xbs3bsX6enpAIB//etfOHz4sFuCJcty0ObpimVs\nASIiIvKoqqoKO3bswMaNG9XkCgAuu+wyXHfddXjuuedw2WWXYf78+Zg4cSLef/99nDhxAjfccAMK\nCwsxceJEPPjgg+p+y5cvR0FBAaxWK2bNmoUvvvhCXWcymfCb3/wGBQUFGDlypMvrdqqqqjB37lwU\nFBQgPz8fv//97wEAa9euRWlpqbpdc3MzMjMz0dTUFMJW6Rl7sIiIiMijAwcOYNSoUcjIyPC4zb59\n+/Dhhx9i1KhRALpnZn/ggQfwX//1X3A4HJg7dy62b9+OoqIi/PznP8ejjz4KANi6dSt+/OMf4+9/\n/7taVlJSEvbu3YvDhw9j6tSpuOWWWwAAN910E7Zs2YIxY8agra0NhYWFKCgowO23346xY8fi0Ucf\nRXp6OjZu3Ihrr70WAwYMCGGr9CwiCVZVVRWKi4vx7bffYsCAASgvL0dubq7H7RcvXoznn38eTU1N\nava8d+9elJaWor29HUOGDMGmTZuQlZUVrioQERH1SUePHkVRURHa2tpw6aWXYubMmbj00kvV5Mpu\nt+Ott95CfX09hBAAAJvNhsOHDwMAXn/9dTz55JNobW2FLMtoVMZlOt18880Aul/0bLFY8M0336C5\nuRmffPIJbrzxRrXM06dP49NPP8XkyZMxf/58bNiwAffeey+efvppvPTSS+FqDo8ikmCVlpZiyZIl\nWLRoEbZv347i4mLs27fPcNtXXnkFiYmJkCRJXSaEwMKFC/GHP/wBM2bMwNq1a3HPPfdERYMSERHF\nk0mTJqGqqgrNzc3IyMhATk4ODhw4gOeeew47duwAAKSmpqrbCyEgSRL27t0Li8XiUlZtbS2WLVuG\niooKZGdn49ChQ5g5c6a6XpIk9O/fX/3ZZDKhq6sLQggMHDjQ5X2GWsuWLcO8efNw0UUXYdCgQZg4\ncWIwm6BXwj4Gq6GhARUVFViwYAEAoKioCLW1tS4vfVScOHECv/nNb/DYY4+pGSsAVFRUwGKxqG/q\nLi0txV/+8hd0dHSEpxJERER9xKhRo/CDH/wAt912G5qbm9XlNpvNcPuUlBTMnj0bq1evVpfV1dXh\n66+/RnNzMxITE3HBBRdACIH169e77Kv9Xa81duxYpKenu4zJOnLkiNr7NXbsWOTk5KCkpATLli3r\nbVWDKuwJVm1tLbKyslyeMBg2bBhqamrcti0pKcGjjz7q9lLLmpoaDB8+XP05NTUVGRkZOH78eOgC\nJyIi6qPKy8sxfvx4FBQUIC8vDzNmzMBbb72F//f//p/h9lu2bEFVVRXy8vIwYcIEFBUV4dSpUxg/\nfjxuvPFGjBs3DgUFBcjOznbZT3u3Svuz2WzGX//6V7z88svIz8/H+PHjcfvtt6O9vV3d9o477oDD\n4UBRUVFwK99LUTvI/Q9/+AOGDx/u0nXojaesV89ut7udQOq9trY2l/9T8MRr28qyDMDzX7/hEK9t\nGw1isW19uSZ9vW5DdX2nWdKw75Z96OzshMViCdrvsTRLms+xLl++HMuXL3dbPn78eMyfP9+lnKSk\nJJSVlblta7PZ8PDDD+Phhx9Wl91zzz3qvi0tLep2AFDtnJTYZrNh0KBBeOGFFwzLBIB//vOfbklX\nT3zNHXpDEqEs3UBDQwNGjx6NU6dOqb1YWVlZ2L17N3JyctTtFi5ciHfffRdmsxlCCHz55ZcYNmwY\nduzYgc7OTixatEh9y/bp06eRmZmpdj0qZFlGa2ury/GPHj0Kh8MRhpoSkZERzlv51ZrPKlEkdaR3\nX5OJLZ6vSV+28Wc7Cp5vv/0Wd955JzIyMrB+/XokJSX5vK/ZbHbJPQAgLS0tKPN4hb0HKzMzE1ar\nFZs2bUJxcTG2bduGoUOHulVw8+bNLj+bTCYcOnQIaWlpEEKgq6sL77zzDmbOnImysjJ8//vfd0mu\nPBk9ejR7sIKora0Nx44dQ3Z2tl8XNfUsXttWdv5h5O3J4VCL17aNBrHYtpUNPV+Tvmzjz3a9EYtt\nGy4ff/xxr/YTQoSs0yUitwjLysqwePFirF69GhkZGeqgtRUrVmDw4MEoKSlx20eSJLUrT5IkbN68\nGSUlJThz5gwuvPBCbNq0yadjJycnc4bZEEhKSnIbK0fBEW9ta3N+/qKhTvHWttEkltpWee2Mt3h9\n2caf7QIRS20b7YzudAVLRBKsMWPGYM+ePW7LV61a5XEffYZZUFCAgwcPBj02IiIiokCxK4eIiIgo\nyJhgkd/s1dWwO5/sICIiIndMsMhvorERQvdqAyIiIjqLCRYRERFRkDHBIiIiIgoyJlhEREREQcYE\ni4iIiCjImGARERERBRkTLCIiIqIgY4JFREREFGRMsIiIiIiCjAkWERERUZAxwSIiIiIKMiZYRERE\nREHGBIuIiIgoyJhgEREREQUZE6wA2aurYa+ujnQYREREFEWYYAVINDZCNDZGOgwiIiKKIkywiIiI\niIKMCRYRERFRkDHBigCO26Jg4bXUd1XXV6O6nuee7UDRiglWBHDcFgULr6W+q7G9EY3tPPdsB4pW\nTLAoILIsRzoEopBg7yARBYIJFgVECBHpEIhCgr2DRBQIJlhEREREQcYEK4p1dHREOgQiIiLqhYgk\nWFVVVZg+fTrGjh2LgoICVFZWum1z7NgxTJkyBVarFXl5ebjhhhvQ3NysrjeZTJg4cSImTZoEq9WK\n3bt3h7MKYdHZ2RnpEIiIiKgXIpJglZaWYsmSJTh8+DDuv/9+FBcXu20zePBg7N69G/v378ehQ4eQ\nlZWFlStXquslScKuXbtw4MAB7N+/H9OnTw9jDagv4WBnIiLyV9gTrIaGBlRUVGDBggUAgKKiItTW\n1uLo0aMu21ksFvTr1w8A4HA4YLPZIEmSul4IwQHWFBYc7ExERP5KCPcBa2trkZWVBZPpbG43bNgw\n1NTUICcnx2Xbzs5OTJs2DTU1NZgwYQJeffVVdZ0kSZg9ezZkWcbll1+Ohx56CMnJyT0e3263uyRq\ngVKmKbDZbEHfR0kso402fofDAQBoa2uLZEgh1ZtzHAxKm3pr20jFFohoiDke2jZa4/OlbYMpGO3g\nSxm+HieU5yXcbdsXhLKjRhJh7gbav38/FixY4DLuqqCgAGvWrMGsWbMM9+nq6sKyZcuQk5OD5cuX\nAwC++uorDBkyBG1tbSgtLUVaWhqeeuopl/1kWUZra6vLsqNHj6pJQTCMcA5Er05MDPo+WVlZqKur\n631wIaKNP1pjDKbenONwiebYPImVmKM9zo707vgSW6IzvnAJRjv4Uoavx+F5iS1ms9mtcyctLc2l\nE6i3wp5gNTQ0YPTo0Th16pRagaysLOzevdutklp79+5FSUkJDh486LbuvffeQ2lpqds6owTLbDYH\ntwfLmSiacnODvo/D4YDZbO59cCGijb+jowNHjhxBdnY2kpKSIhxZaPTmHAdDW1sbjh075rVtIxVb\nIKIh5nho28qG7vhyM6MrPl/aNpiC0Q6+lOHrcUJ5XsLdtn2BEMKt0yVYCVbYbxFmZmbCarVi06ZN\nKC4uxrZt2zB06FC35KqmpgaZmZlISkqCEAJ/+tOfMGHCBABAU1MT+vXrh6SkJMiyjK1bt2LSpEk+\nHT85OTkoDaewOctKSUkJ+j42m82vcsNFG79yYSYlJUVlrMHQm3McTN7aNtKx9UY0xRzLbWs6Gd3x\nhes7IRjt4EsZvh4nHOclnr9vw82oIyZYwp5gAUBZWRkWL16M1atXIyMjA+Xl5QCAFStWYPDgwSgp\nKcFHH32EBx54AJIkQZZlWK1WPPHEEwCAzz77DKWlpTCZTOjq6oLVasW6desiURUiIiIiNxFJsMaM\nGYM9e/a4LV+1apX677lz52Lu3LmG+xcWFhreKiQiIiKKBpzJnYiIiCjImGARERERBRkTLCKKO3yP\nJxFFGhMsIoo7ffU9ntX11aiu52udiKIBEywiojjR2N6Ixna+1okoGjDBIiIiIgoyJlhEREREQcYE\ni4iIiCjImGARERERBRkTLCIiIqIgY4JFRHHNXl0NezWnLiCi8GKCRURxTTQ2QjRy6gIiCi8mWEQU\nFOwpIiI6KyHSARCRKzVJGTSo522iiNpLNGJEZAMJMaXtk+O8nkQUGPZgEUUZX25p8bZX5LDticgX\nTLCCQDabo7JHgaivs1dXQ/TR9xL6K5rfY8iXd1MsYoLVA5/Gldjt/Is2TnAcUXwRjY0QshzpMGJC\nNL/HsK++vDsQ0Zww9xVMsHrA2wF9C883EcWDaE6Y+womWETU57HnkoiCjQkWEfV57LkkomBjgkVE\nREQUZEywiIiIiIKMCRYRERFRkDHBIoozHLBNRBR5TLCI4ky0D9gWQkQ6BKKg4SSo5ElEEqyqqipM\nnz4dY8eORUFBASorK922OXbsGKZMmQKr1Yq8vDzccMMNaG5uVtfv3bsX+fn5uOiii3DFFVegrq4u\nnFUgol6K1wSLPYd9EydBJU8ikmCVlpZiyZIlOHz4MO6//34UFxe7bTN48GDs3r0b+/fvx6FDh5CV\nlYWVK1eua2yqAAAgAElEQVQC6P6CXrhwIZ544gl89tlnuPrqq3HPPfeEuRbRj1/4ROET7T2HRBRe\nYU+wGhoaUFFRgQULFgAAioqKUFtbi6NHj7psZ7FY0K9fPwCAw+GAzWaDJEkAgIqKClgsFsyYMQNA\nd8L2l7/8hV21OuH+wmdCR0ThVF1fjc4u9iBRdAp7glVbW4usrCyYTGcPPWzYMNTU1Lht29nZiUmT\nJmHQoEGoqqrCqlWrAAA1NTUYPny4ul1qaioyMjJw/Pjx0FcgikRbQsm/4IkoEP6+P6+xvRGy6Pld\nk3wvH0VCQqQD8MZiseDAgQPo6urCsmXLUFZWhuXLlxtu6+u4DrvdrvaE+UJ2vijWZrN5Xi8EZFn2\nuI2/ZSqUnjtv673d//f1OP7SlutwOAAAbW1t6Bei44WTUZuFqh17iuFMWxuA7rb1tI0ikvH25rj+\nfF56Q/nsePp8tuna1p/z7u/yUAn2tRqs+PVt64+T9pMAgEG2QS7LPX0XyrIMgZ6/fz2Vqy0H8F53\nT9voYwvldeBP20bqeyDWhHJMqCTCPOK0oaEBo0ePxqlTp9RerKysLOzevRs5OTke99u7dy9KSkpw\n8OBBfPDBB1i0aJE6OP706dPIzMxEc3MzEhMT1X1kWUZra6tLOUePHlWTAl+McPYSVWvK1a+3CIFO\nSfK4jb9lKrKysrwO3u9pva/H8Ze2XG0MwTpeamoqTp8+HViQvWRUh1C1oz8xeNpGEcl4/T3uaFlG\nV1dXSONTrktfP5/+nHd/l4dKR3r38RJbEr0uC6S8cPMUg6fvuo70DgiTgCRLXuPuqW6+1N3X2KKh\nHaMpjmhnNpvdco+0tDSXu2y9FfYECwAuu+wyFBcXo7i4GNu2bcNvf/tb7Nu3z2WbmpoaZGZmIikp\nCUIILF++HCdOnMCmTZsghMCYMWPw7LPPYubMmfjd736Hffv24aWXXnIpwyjBMpvN/vVgOZM4U26u\n5/UdHUBiosdt/C1T4XA4YDabe73e1+P4S1tuR0cHjhw5guzsbPQ7diwox+upXqFk1GahaseeYjiT\nnY1jx44hOzsbSUlJhtsoAo1Xdt5eN114Ya9i9ue44WhP5Rry9Plsa2tzaVt/zru/y0OlsqH7eLmZ\nuV6XBVJeb+jbNhgxePpOqGyoRIejA4nmRK9x91Q3X+rua2zBakcj/rRtKOOIJ0IIt06XYCVYEblF\nWFZWhsWLF2P16tXIyMhAeXk5AGDFihUYPHgwSkpK8NFHH+GBBx6AJEmQZRlWqxVPPPEEAECSJGze\nvBklJSU4c+YMLrzwQmzatMmnYycnJ/vVcDbntikpKR7Xy5IEk8nkcRt/y1S3s9m8btPjeh+P4y9t\nucqFmZSUBATpeD3VK5SM2ixU7dhTDMoXaFJSktuxbbprONB4bc4/RAKpo6/HbQX8+rz0KhbnNdTT\n51NpW3/Ou7/LQ8V00v14Rst6U54yXmnEoBG9js/ouvUnBi1P3wmmkyZIjp6/f5VyLRaLy12Ono7b\nm9gCOQe+8qVtwxFHPDDqiAmWiCRYY8aMwZ49e9yWK4PYAWDu3LmYO3euxzIKCgpw8ODBkMRH0UN5\nKjF5RO+/6InIP43t3Q+rjEB8fe46OzsNEyyiUOBM7hTV+GQiEdFZlgEWHG/pW0/Mx6qofoowHmh7\nYDhHFBERBcIm29B5hnN/xQL2YIWYtgeGvTHRiROkUrDIZjOvJSICwASLiIkv9YphYm6381oiIgBM\nsIiIeoWJORF5wwSLiIIq2l7hREQUCX4Ncr/11lu9TtK5YcOGgAMiotjGR+GJiPzswerXrx/ee+89\n5OTkYOTIkdi3bx/69euHyZMnY/LkyaGKkYiIiCim+NWD9emnn+K9995Deno6AGDZsmWYO3cunn76\n6ZAER0RERBSL/OrBamhoUJMrAEhPT0dDQ0PQgyIiIlIcbzmuvr6HKFb41YM1ceJELF68GLfddhsA\nYOPGjZg4cWJIAos2fGULEVFkNJ9phslkirtX91B886sH69lnn0VmZibuvfde3HvvvcjMzMSzzz4b\nqtiiSl95JJuTblKkBOvpQ3t1NRx2e1DKCoXq+mr2xhD1AX71YKWmpuLRRx8NVSwUBdQkkj11FGbB\nevpQNDYC/fr5vL29uhqisxOSxRLYcYXwabt4fZEyEbnyqwertrYWc+fORX5+PgDgww8/xGOPPRaS\nwKKB8sVLRMEXLb2lorERQpYDL0eXYLGniqhv8yvBKi0txY033qh+kYwfPz6u574K1hdvvOKEkhSI\neL/t3tjeqPZWUTcmndSX+JVg1dfXY+HChTCZundLSEhAQoJfdxmpB/bqarR++mlU/GXfk0727kUF\nvmA48sL1x0as/1HDpJP6Er8SrISEBJdu8MbGRp/HHZBvRGMj0NwcdX/ZR8vtHDLAFwxHXLj+2OAf\nNb1nhhn2M9H78APFH78SrOuuuw6lpaVoaWnBs88+iyuvvBK33357qGKjKBLvt3PIHZNqiif2Tjs6\nZSaoFD5+3d/76U9/ihdeeAHNzc345z//ifvuuw8333xzqGIjogjiE6VERL3nc4LlcDjwi1/8AmvW\nrMFNN90UypiiBm9/EhERUW/4fIvQbDZj586doYwl6jDBIop+sT7wm4jik19jsK655hr8+te/xvHj\nx9HS0qL+R6SIhSfaOLYovnDgNxFFI7/GYD300EMAgF/96leQJAlCCEiSBIfDEZLgKDakpqae/cFu\nh3A4onrcDscWERFRqPnUg/XJJ58AAGRZVv9zOBzq/6lvS0tLi3QIREREUcWnBGvRokUAgO985zsh\nDYbiE2/JdWM7EBH1HT7dImxvb8fWrVtx/PhxvPrqq27r582bF/TA+pKOjo6gvOQ2WvGWXDe2AxFR\n3+FTgvXII4+grKwMDQ0Nbi93liTJ7wSrqqoKxcXF+PbbbzFgwACUl5cjNzfXZZuPP/4Yd911Fxoa\nGpCQkIBp06bhqaeeQr9+/QAAJpMJeXl5MJlMkCQJ69evx/Tp0/2KI1p0dnYiMTEx6l4urfS2JDMh\nICIi8otPCda8efMwb9483HPPPVi3bl3ABy0tLcWSJUuwaNEibN++HcXFxdi3b5/LNv3798dTTz2F\n8ePHQwiBm266CWvWrMGDDz4IoDux27VrV1yN/4m2l0uzxyU2KQ+fEFHg+HJq6i2/pmkIRnLV0NCA\niooKLFiwAABQVFSE2tpaHD161GW7UaNGYfz48QC6k6mpU6fi2LFj6nohBOep0uEYn7PC1RbR2Ob6\nz0WgMXKeKerL+IJq6i2/pmkIhtraWmRlZcFkOpvbDRs2DDU1NcjJyTHcx2az4dlnn8UjjzyiLpMk\nCbNnz4Ysy7j88svx0EMPITk5ucfj2+12//66FwKyplfJZrO5rJZlWd1Gv05d79xP1vVOKds7HI6z\n652/HGVZhnAu98ShWy+fPNld7qBBbsf2lVG8nv4tHA71KdK2tjb089AW/sahrVdv6gC4t4WnOup/\nNjqetxiMjiMfPw4AMF14odfjeozdud2ZtjYA3W3raRsAHttcrZ+XtvAWm7Ksvb3dp7mmtNeFr3XU\nHlN/PfvK7XMgyxBCuHym9O3Tpmlbf69bo8+xw+GABLiU09P+gdbV32u1Jz19DnzV5sN166lcj+sF\n3M6Psr2A5+9f/XbKdeFPXJ6+txVG15+nsgKltKmnemiFMo54EsqOGkmEuRto//79WLBgASorK9Vl\nBQUFWLNmDWbNmuW2fWdnJ/77v/8bo0aNchn/9dVXX2HIkCFoa2tDaWkp0tLS8NRTT7nsK8syWltb\nXZYdPXrU56klRssypM5OdGoSsmrdYPQRHR2wCIFOSXJbp6xX9huh6wlQts/KykJdXZ1aFgB0ShLa\nhw9HXV2dx/iU/YyOZfSzL4zi9fTv9uHD1f208evbwt84tPXqTR162s9bOxnt509Z3rb3tS6+bKe9\nlvRtPlqW0dXV5dd14K0ePV2H/m6vxKfQfw4AYIjFAgD4qofELjU1FWlpaW6fA9PQoThy4kSPn09l\ne3+uW6PPcVZWFlK//lr9vqhOTERHevd2iS2u+3ta7gttGxmVE0jZ2n0DKcfXY/izXj5HRpejy7At\nhUlAkiWvsSrbDUsfhhM1J/yKS1mn0G+j/x4OVdv5W36o44gXZrPZrXMnLS3NpROot8KeYDU0NGD0\n6NE4deqUWoGsrCzs3r3brZJdXV24/vrrMWjQIJSVlXks87333kNpaSkOHjzostwowTKbzT73YMmV\nlUBHB6D5gjXpBuNrt9GvU9c795M1SaW2LIfDAbPZfLYsAEhMhBgzBmaz2WN8yn5GxzL62RdG8brE\nnpEBnDwJJCRAjBkDh8MBu92Ofv36od+xY4Zt4W8c2nr1pg497eetnYz286csb9v7WhdluzPZ2Th2\n7Biys7ORlJRkuA0AtzbvzXXgrR49XYf+bq//HCAjo3u/88/3+7wrfyzpPwdyVhYSBgzw+Plsa2tT\n29bf69boc+xwOCB9/rlLOZUN3dvlZrru72m5L7SfDaNyAilbu28g5WjbVn/d9lSuxzarrwQk47bs\ncHQg0ZzoNVZlu+HpwzEgeYDPx9WuU+i30X8PB9J2PWlra8Pnpz6HxWLBuEHjvG4byjjiiRDCrdMl\nWAlWwLcI9+/fD6vV6vP2mZmZsFqt2LRpE4qLi7Ft2zYMHTrULblyOBy44YYbMHDgQLfkqqmpCf36\n9UNSUhJkWcbWrVsxadIkn46fnJzsc8O1AoAkuWyfkpLiso3NZILs3Ea/Tlmv7GfTHVfZ3mazqetl\nZ/JnMpkAs9mlTP1Tfcp+Rscy+tkXRvG6xN7aClkINT5FUlIS4KEt/I1DW6/e1EG/n1u7eWkn5d9S\nfb26j7cYjNZ52t7XuijbKb+ckpKSPJYFwK3NWwGXn305rrd66K/DnsroaXslvrMLnH8EXXhhjzEb\nfQaM4haShJSUFJyWJAgvn8/eXLdGn2ObzQYZUL8vUlJSYDppvL+n5b7QfjaMygmkbO2+gZSjMLpu\neyrX43oJhufQdNIEyeH5/Oq3k5zXhc/H1axTuF0Puu/hYLRdTzzVQyscccQDo46YYAk4RfvVr37l\n9z5lZWV45plnMHbsWPz2t79FeXk5AGDFihX43//9XwDA1q1b8ec//xkffPABJk2aBKvVimXLlgEA\nPvvsMxQWFmLSpEmYOHEiTp06hccffzzQqoSdv4OPRWPj2Sf7yGe9aTe2dXTy97zwQZjYxgcsKJYF\n3IP12muv+b3PmDFjsGfPHrflq1atUv9988034+abbzbcv7Cw0O12YCxSf1F4GXxMRLFFfeF5z3dV\nqQfKHIHRRpm6YcQgTmFDngV+k5GCwtNfavwLjvqyaJwGo0d2O3s/4xynbiBf+JVg/fvf/8a0adNw\n7rnnIj09HWlpaUhPTw9VbH2Kp8fgfXk8nihe8VYtEcUqv24R3nHHHfj1r3+NadOm+fRUEcUu5bU9\nkvNxeaJ4JB8/Dol/xBBRCPiVYKWnp2P+/PmhioWiiPLaHmVCi2C+fiXeX25N/pNTU2ECwn87sLk5\nql5PFWwcK0QUOX7dIiwqKsKmTZtielxQW01NpEOIScF8Gou3PUlPpKZ2/z+MtwRTncfsDdlsjqoX\ns3vCsUJEkeNXgpWbm4ulS5ciKSkJZrMZJpMp5m4ViqamSIdApIrlP1aCIZKJiv5F8erTf76w2+O6\n54uIAudXgvWTn/wEO3bsQGNjI1paWtDa2oqWlpZQxRZT/Ppypqgjm81o/fTTsP+yD1ZvntH1FxNP\n4EVTohKnT/+lWnrfU0dEvedXgjVo0CBcdtllSE9PR0pKivofIW6/nHsjWpJN2eAWkDJ4332FPbbH\n4xhcf3wC76xouSYjgQlWdKqur1bHyFF88ivBmjdvHp588knU19ejpaVF/Y/IRZCSTY/JkI+EQYKl\nDN6n0JDNZjjs9kiH4Y5/AFGU4fi4+OfXU4S//OUvAQA//vGPIUmS+mSZ/kWJRMGgf5Ixnqi9KfE2\ni7/dDsTA4G8iolDzK8GS+Zc/UVBE+2uSOA8aEVFgfL5F6HA4MG7cuFDGQhRWMTEIPEKi4Vaqv08Y\nxtr57OtPkBLFO58TLLPZjMzMTNijcXxFDIqVeXTimWhshKOlhechWvn5hGGsDernfHBE8c2vW4Sj\nRo3C9OnTcd1117lM0vfjH/846IHFK9lshtTeDpw5AwHE5fiimGK3IxhTqHJ2eiIi0vJ7DFZ+fj6+\n+OILdVmwXp/SZwTpFzpFl87OzqAkWBz7ROQZX/0TGLZfePmVYG3cuDFUcVCQcXxH6ISytypan5xU\nxjYlj4i+L2b5+HHYE/z6KgurcPVu9oXPvDKtwQgEdh321R7nYLUf+cavebC6urrw6KOP4rvf/S6+\n+93vYu3atejq6gpVbCETa4Nhe6Ovje8I5y+XWGxbo0lX/RHV45uam6M3NoTveonF6zJS2FYUDn79\n2XfffffhyJEjWLp0KSRJwrPPPosvv/wSTzzxRKjiCwn1yzgK/xonz7z91RmsW3TxymjS1XjXm6S7\nN4loX+g5IiL/+ZVgvf322/jwww9hMnV3fH3ve9+D1WoNSWCRFq1fmsorP6LxVk2oxUMS1Zdf2eIr\n9UGQAPWml6I3iWg09obE+ytY4r1+FB/8SrCEEJBlWU2whBAQIj6HbEfjlyaA7kHyDgd732KVcv5i\nXEjHsOgeBAn09mYwResfXnrx/goWf+pXXV+Nzq4o/T73kZJQDkqJzomJyZhfCdacOXPw3e9+F4sX\nLwYAPP/887j66qtDEVefIaem+jcQzt/yY6DHK5oHUJOxcPYmRtPtzaj9w4s8amxvhCxi+y0kSkLp\nLcHy5wlBPk0YHn4lWGvWrMEzzzyDV199FQAwf/58lJSUhCSwviLkvzxioMeLY+KoL+jtbS3+MiRf\n+POEIJ8mDA+/EiyTyYQ777wTd955Z6jiISKnaHn3p3z8OCTN3Fz26mo4UlOBlJQIRxZbenvbjr8M\nPYvXISoUH/xKsJqamvDMM8/gyJEjLtMzbNiwIeiBEUVapAekh+KXR69uxzY3u8zNJRobgX79gh5b\nOEVL8ko98zbujQkWRTO/Eqz58+cjMzMTl1xyCcxmc6hiol6IhxnAo27yvwAHpNurq+Foa4M5KSkq\nxpd1dHRE9HZsND09yV/MsSOWxr0pA+otCbH7PUzB41eCVVdXhzfffDPgg1ZVVaG4uBjffvstBgwY\ngPLycuTm5rps8/HHH+Ouu+5CQ0MDEhISMG3aNDz11FPo5/zLee/evSgtLUV7ezuGDBmCTZs2ISsr\nK+DYYlW0zgDuj3iYhkFLNDZ2v3OyvT0qxpcF+osq0B69aJ4MVCvqEn2KGfEwoJ6Cx68H2EaOHImm\npqaAD1paWoolS5bg8OHDuP/++1FcXOy2Tf/+/fHUU0/h008/xcGDB3H69GmsWbMGQPdfnwsXLsQT\nTzyBzz77DFdffTXuueeegOMiIi/s9phJkgIRSz0mRBS9/OrBSk5OhtVqxZw5c9C/f391+f/8z//4\nXEZDQwMqKirwxhtvAACKiopw99134+jRo8jJyVG3GzVqlPpvSZIwdepUfPLJJwCAiooKWCwWzJgx\nA0B3wvbLX/6y1395cpqA6KPc8iQiIopFfiVYubm5brfy/FVbW4usrCx1slIAGDZsGGpqalwSLC2b\nzYZnn31W7cGqqanB8OHD1fWpqanIyMjA8ePHkZ2d7XdMnCYg+ii3PImIiGKRXwnWihUrQhWHR52d\nnbjxxhsxZ84czJs3z+N2vg5alYWA5PzFbbPZupfpfgYAh8PRPZ7JOXu9QruNuq/z2LIsG6937qfd\nVhu3wzmQWtKVpQywdonTGY/NZoPD4fC6TtIt86l9tEmNbl91nXO5cDjU2Nva2tDPQ1vo21cbt3a9\ncC7Xxq4tS7+flrJOPn5cKRRCiLPtDtdzoK2LxzbwcO7d2l0Tu7c2dDu2bj91X+c22rb1GKOmDobn\nSt1EnG1XeLiOYXyt6Y+hlOfps2C0Th+TvlyX+Aw+I96uJclbfT20j9K2QghImuMp++mvG4XRtal8\nTvXHUkLSl6cty5fPpTYOo2tPWyejpyM9nQ9vxzGqu6+U69XbdeupXKM6AQCEhyc/BSDg/TtOlmUI\nnL3OjL5LvMWlP66+ffTnpKd4fDnm8Zbu77EL0y902VZpU4+fP3j/vWZUl74ulA+8SCLMj9M0NDRg\n9OjROHXqlNqLlZWVhd27d7v1YHV1deH666/HoEGDUFZWpi7/4IMPsGjRIlRWVgIATp8+jczMTDQ3\nN7vcIpRlGa2tra5lfvYZ4PzQVju3HeF8DLhas29WVhZSv/4aUmcnOqWzQ8erdbcgR3R0wOJswk5J\nMlyv7KfdVuEYNgx2Zzv0//JLl7Lanb10dXV1LsdSjpOVleV1nVKeUVyejNA8Eq3dd7Qsq1NzKMvb\nNb2IdXV1HttC377auLXr24cPR11dnUvs2rL0+2kp67Txm4YOxZETJwzPgXJO9edDOZ62ngqj+PWx\ne2tD/bH1+yn7atvXU331x9C2k/ZcadvCbjIh9euv0dXV5fU61ceRkJAAyXm7VoldaVt9GRYh4Bg2\nzG2d9hgJCQku1xJw9nOgPe8KbXlG15JSJ0/11cau3Q+A2/GUOLTXkv57wdPnVH+sw+d17zM8pfs8\ndqS7TjegLO+Jsl9ii+tnQLtcie1L25du+w8dMBQnatzPh7fj6MsOlp7KNaoTAHzd/jW6HF1u2yeY\nE9ApOiHJktcyhan7fA1LH4YTNSfcvku0x7UM6H4CsLOp02WdQt8++nMiTMJrPL60hX6dL+dGXwc7\n7BCycNnOqC59ndlsdss90tLSXO6y9ZZfPVjBkJmZCavVik2bNqG4uBjbtm3D0KFD3SrocDhwww03\nYODAgS7JFQBMnjwZXV1deOeddzBz5kyUlZXh+9//vk/jryyJiZCcCZZyu1N2Jmra258OhwOSyQRI\nkku5+lukcmUl4PwiTkxMNF7v3E+7rcJkMiEtLQ0AICUmupRlcS4fMGCAy7GU4zgcDq/rlPKM4vJE\niReAy75yZeXZdnAut6SlweFwwG63Izs7G4nHjhm2hb59tXFr11vS0jBgwAA4jh/vbnvnX1tG9dVT\n1mnjl02ms+2uOwfauuhp11lSUiC1tQEJCYbx62PvqQ1djq3bT93XuY0pORkAkJ2djaSkJJcY5cpK\nCIulOzZdO7mcK01bpKWlQTKZerxO9XEAAJyJlfKzbDJh7NixLl9Cyj4mZ7vradtF3/7K50D7GVBo\nyzO6lpQ6eaqvNnZlv46ODtjtdlgsFjUp0sahvZbcvhc8fE71x1JCUsqrbNBcF5rlPVH2038GtMuV\n2BI73b8DTZLx+fB2HH3Z/mhra8OxY8cMr1tP5SrvuDWqEwCYOkxINBt8vwt0JzNevuMqGyrR4XBe\nZ8620H+XeKu7/rzpt9Gfkw6Hb9+53trYUwzZ2dn4/NTnsFgsbvvp6yAcwi0Oo7r0ddq7SMHmU4L1\nySef4OKLLw7aQcvKyrB48WKsXr0aGRkZKC8vB9B9C3Lw4MEoKSnB1q1b8ec//xkTJkzApEmTIEkS\npk+fjvXr10OSJGzevBklJSU4c+YMLrzwQmzatMmnY5skqfuLEECKcyZqm+5nwNkNDACS5PJLJEU3\ne7XNZIKs/FVvMhmuV/bTbquQJOnsnGK6suBcro1TdsaTkpICm83mdR10y3x5CMCm/YUpSUB6OlJS\nUtCqxORcro0PQPcXqYe20LevNm6XY5rN3cdqbu6+1aIrS7+fS9w2G6T6ekgOhzoXmJAktd3dzkF6\nOkynT7udD7XtnfWU7Hb3+ujaXRu7URuq8WvOh0qzn7Kvso1yXSQlJRlfd87Y9O2kPVcK4bzOZOc6\nqb4ewNkHO9zOkSYOWZZdjqGUp7/elX0kZ7vrKcfQvjBeaX/1c+DhM+LtWlLq5Km++vYBzv7iliRJ\nXa+NQ3/dqHXQfK7U9nCeJ/2xzl4a3eWZTrrGaNade0+U/fSfAe1yJTajv7o9nQ9vx9GX3RtG162n\ncm02G+pt9XDIDlgSLC516q6E+zkGuq8lCe7Xov6YkuPsdWb0XeKt7vrzpt9Gf04kh3E8+lceeWtj\nTzEoCaskSai31Xssz1McRnXp64zudAWLTwnWokWLsH//fnznO9/Brl27Aj7omDFjsGfPHrflq1at\nUv9988034+abb/ZYRkFBAQ4ePBhwLH1Jb+aZiqYX7XqizPTsaS4wIUT3L1LtstRU4PTpMEXo/anI\nSDzFGssPdsTCC8zJf/E+h1SwXnmkJJp8hVL08ynBam9vx9atW1FXV6e+6FnL2+BzolDrad4iowQr\nFLxNwuntqUhfkh1OJaIRAy8wp8BV11cjNSEVyf2SIx1KVDFJgY8NovDwKcF65JFHUFZWhvr6ejz2\n2GMu6yRJYoIVYZwzKjqEchLOWO5x0pJTU4GWlkiHQTGgsb0R/ZJD985L/S07omDzKcGaN28e5s2b\nh3vuuQfr1q0LdUwRpfZCDBoU2UD8EKtzRinv6pMi9A7FUDxAK5vNkNrbY/qdkP7wt2dNpKZCiuEE\nSz5+3GVQPMWuQG+xmWFGdX01BqXEzu8KCi+/+hrjPbkCnMlKH3gdSDQQjY1Ac3PEkkNPCZYcyLgz\nu73X9YnFnsg+93nx83pNtUT/GEbqHXunXU3SiIz41INlMpm8jmEJ1SOOFBuSWlog2+1+ZesdBtMj\nRItQD4D31MvlqSdS6TXpK71i8STeEizeViPynU8JVmtrK4QQePzxx9HW1oY777wTQPd0C/p5TmKF\ntyeRZLMZwm53exqNjJlbWwGTCTB4jNqTaH+hbkjn37XbIQDfry9nr0ksXY+9fS8oRTc+uUbkO58S\nLGWujFdeeQUVFRXq8ocffhiTJ0/GAw88EJroQsnbk0h2O+AlAeAvj/gX5hccxJ3eTAlCRBRP/BqD\n1RFTZ/sAACAASURBVNrainrnBIUAUF9fH7IJuqJZtPe+UHjE4pipQMlmc1DqHKxyqPeq66vVW35G\nfLm92VMZkRTNsVHf4Nercn76059i4sSJuOaaawAA//jHP7By5cpQxEVeKLc3o/1Jx3js6dOOHfM0\nsWlcc97ejJpy4lx1fTU6uzphSQj++Luebvf5kmBF8y1DDkCnSPMrwSotLcX06dOxc+dOAMB9990X\n1FfokI+U25tRnmAZ3SayV1fDkZoKc3LvJw+M5KSbvem9lFNTYQrjrPEUP+J9dnPyjj1wsc3vlz2P\nHz8e48ePD0UsYRfQ4/h+iuan5sJJNDYC/QKbPDDWJt0M92t5tJQnFnu9f4ATg3IGegoWM8xo72pH\n/4T+aO9qD0mvXrRhL1xs8ynBuummm/DCCy+oL13W279/f9ADC4dwvmeP47YoGLy9jsd4B/9uxenL\nD3Ri0GhLhtX6DRwY2UAiLJS3HkPF3ml3+T9RtPMpwfrZz34GAHj88cdDGgzFH2UgeKzP4RQt495C\nPalnPE8aKpvNkOrru69FHxMs2WxG66efwpyUFFe9cLz1SBR6PiVYd999N/7zn//glVdeYZJFfgnW\nQHB/brFqb4sF7dZsiMe9BXorry9SxvP5fG35O/+Ycx8AEO3tUdMLR0SxwacEq6mpCSdOnMDOnTvV\nSUe10tPTQxIceSanpvo3x0aM8+sWq+a2WMzcmuVTdX4Lxng+ihzOCu+ZEMLr21MoNviUYF1//fUY\nMWIEzpw5g4yMDACAJEnqRcBX5YSft/Fj8TqgXj5+HPYEv5/LICIvIjWdSjRP8RBpTLDig0+dIKtW\nrYLdbkdhYSFkWYYsy3A4HOr/Y1k8JiMx02vjr+bmuB4jRLFHNpvhsPd+0HU0fP/E7fcFUYT5lGDd\ndNNNAIDdu3eHNJhI6CtfLvbq6oB+EUSreK0XxYgeXqsFAMdbjnucz6g33z/RMkO58iQiERnz6X7L\nZ599Fuo4KMTidbxKvNYrnKKhFyVQykMC0fi0avOZZpj8eBF6TyIxN5JRQscnEYm88+lTz3vB3dRH\n9YnCZIjFAnR1AQjd+/viohfXboeQ+cs+VBrbG4Oa2MVj71c81okC41MP1kcffYRzzz3XbbkyEO/U\nqVNBDywqxcgraih+WGy27n9IUu+mGSCKQvHY+xWPdaLA+JRgjR07Fn/7299CHUvc009v4Qvlybl4\nmuSQ4l+wn/i0V1fD0dYGKR562yhmmWGOivFv/ojUU6LkY4LVr18/DB8+PNSxxL3eJFhoboYwmTjJ\nIcUW5boNEtHYCJw5o84VxolZKRLsnXY4EFtPznd2djLBihCfvgF7lRj0Ufbqao7TilP+vBw8VOOl\nyIljrogoyvmUYB04cCDUccQN0dioztWkvIevL/InGYkVfr0cXJcA8I8UiqR4eFKUKNZwWuwQCtZ7\n+GKRX8lIH+BvghWPCSpFTl+6TRRrY6QofkXkdXZVVVWYPn06xo4di4KCAlRWVrptY7PZMGfOHGRm\nZho+wWgymTBx4kRMmjQJVqs1LidB7Q3+Yo4PTFCJeifYU0qES7RMIEvBE5EerNLSUixZsgSLFi3C\n9u3bUVxcjH379rlsY7FY8POf/xznnnsuZs2a5VaGJEnYtWsX0tLSwhR1bOAvZqLA8J2XFAl8N2P8\nCXsPVkNDAyoqKrBgwQIAQFFREWpra3H06FGX7RITEzFr1iz15dJ6QoiIjGthDxFR9ArKwwV85yUF\nCce+9W1h/zOttrYWWVlZLq+OGDZsGGpqapCTk+NzOZIkYfbs2ZBlGZdffjkeeughJCcn97ifLAQk\nWQacCZrD4ej+Gd23JWXNOgkAhOhepvw7JQXC4YDNOQGksr36bydtWbIsQzgcanlaSgwA1LiUspR9\nZFl2KU+7n6fl2vKUuIQQatwe20f7ZJazHVzqqmkT4XDA4XDA5CzbKA5tDK1ffAF0dLit09ZXjU/T\nTvq20LexUXkuMRi0ofb86nlap21bw/OrO35P5XnbTwgBWfsidV176Jcpy43OlVFbaNtQ+xnQBdFj\nW3j77Hg6Vz2WZ9QWvratzQahq69ROynnUQgBSXfNuMSuuT6Nrk2X2HXbd4csAKH7XDlpryVPZFmG\ngFCP73A43MpS9jdap41PexxtuS7fI3A9V27Xk+aY+tgUbW1tLv/X10eNy6Be2mXazzZE9/ZuZQm4\nxWDYBjj7OdC3o1Hdte1qFLP239r2U46jrZfypgRP5Rr+7OGaUdpU/Ux42N/o/Bq1TU+/D/qCUHbU\nxGw/+JdffokhQ4agra0NpaWlWL58OZ566qke9xMmE0R7OyTnBWpvbUV/518Z1ZWVGNHRAYty8coy\nJCHQ6Vxv0exTV1cHAOr2ANTt9GV1dnSgvbUVqc7ytJTyAKC/rixln66uLnRWVSGps1PdXxuHNgaj\n8pS4TLJsON5Na4SmDkp9KysrMdoZh7JciQ8AUnH2dSv6OFxiaGhQyxRffw2zpj5KeXV1dRitayd9\nW+jb2KQ7lr5tlf08nV89T+u0battdyU+/fF7Ks/bfrIsw263oz/cvwC016N+ebXBuTJqC20bZmVl\nqZ8BLW/t5Mtnx9O56qk8o7bo8rNttfU1bHfnC8I7OzvdrhkYtJ+2bX05VmdHBzo6ADlZ7o7f0QW9\nVs215ElHegeESaCjowOVznOl7xVRPtNG64DuGFo131n6cpV1Hekdankd6R2Qk89+XyjrtMfUx6Z3\n7Ngxw/oojOqlXabE0NraqiZbLmV1dCDBnAAhXGPQx6ocCwBkIbu1o3Iso397iln7b237KcfR1ktp\nd0/lGv0sn2N8zRw7dgw4x/X1Vkb7G51fo7bp6fdBX2A2m/3q3PFH2BOsoUOHoq6uDrIsq71YNTU1\nGDZsmF/lDBkyBACQlJSEpUuXorS01Kf9JGdyBUmCyWRCWloaJOfTNbm5uZArK4GODphMpu74JOns\n0zfO5WlpaRgwYAAAqNsDcHlKR1tWYmIiLGlpkJzlaSnlAeiOQ1OWsk9iYiISOzu7/zp27q+NQxuD\nWt6JE93Hk2U1LtlkQm5urtf2kbUfOGd9lbpo20GJT/kr3GKxdL+zUheHUid9G5psNpf6KOWp9dG0\nkyUlBQkWC0zOtlCMzcgATp6ErDuWvm2VNvR0fvU8rdOeq3S7HTh5Um1fi8HxeyrP234mkwnJycmQ\n4f4uUG1b6pcbnSujtlDk5uZ2974YPWHmpZ18+ewYfR5kX8ozaIsEP9tWW1+jdjclJ8Nut3dft5pf\nVm6xaz6Pah19OFZiYiISEwGT5CzP7N6+yrWkfJcYqWyoRIejQz2+w+FAYqdrWcpn2mgd0B2D9jtL\nX66yrrKhUi2vsqESJuns94WyTntMfWyKtrY2HDt2DNnZ2UhKSnKrj8KoXtplSgxpaWkwdZggyQaf\nAwFIsuQSgz5W5VhKW+jbUTmW0b89xaz9t7b9lONo66W0u6dyjX6urK80vGays7NxtPno2e9bT/sb\nnF+jtunp90FfoL0zEWxhT7AyMzNhtVqxadMmFBcXY9u2bRg6dKjHDNJorFVTUxP69euHpKQkyLKM\nrVu3YtKkSb4FIEnql6AkSTCbzYAz0UtJSYHNZIIsSWd/qTkTMQDqcrPZjJSUFABQtwdwdjuzGVJ9\nPUzOdSaTCTCbISvHdwnHGUN3Aa5lOffRHl+/nzZm7XK5uflsAmOxdCeWkqTGrae8TsGmuXWr1Dcl\nJQWtujiU+AB0vx/PuUwfB7RtoClTPRdQqt5dnnIs7TrJbldfeOzSxqdOqe/D1B5L30ZKG3o6v3qe\n1rmcq9ZWyJpEHQbH76k8X64L+ewC1/0At2MpddSfK6O2UKSkpHTfJjCYdd1bO/ny2XE7jskE4UN5\n+nrpry39Om/lGbWtyWRSz6Ok+T7QlqdvP5PJBIvFgjM+Hqs7UVPKP1ueGWa0d7XDkmBRY/D0mQQA\n00kTJId09vq12VzaVbu/0TptfMp21fXVcMgOSJDUtkhJSYHp5NlzaTppcvm+UNZpj6mPTS8pKclt\nubYco3pplykxmM1mQAIkuJ9HWZbVeniKVTmW0hb6djSqu7ZdjWLW/lvbfspxtPXSl+PTzxIMz2VS\nUhLQfPYz4Wl/7bnRnnuj89jXybKs9iYHW0RuEZaVlWHx4sVYvXo1MjIyUF5eDgBYsWIFBg8ejJKS\nEgDAxIkT8e2336K1tRXDhg3D7Nmz8dxzz+Gzzz5DaWkpTCYTurq6YLVasW7duoDjCtrEoMpLoaOF\n8yXB3sTcPDk+1IkoWGSzGe3NzQHPaWfvtAclnkDwpcR9D6d/iIyIJFhjxozBnj173JavWrXK5eeD\nBw8a7l9YWOhxXSCUiUEjQT5+nC+yDbG+PLM+BchuB3jtUIyKxXnB4kFEJholA83NfLdaiEUygTbC\nKT8oHhk9/UbUFzHB6mM4L0v04KSwFI/43k2ibkyw+phO3uYgoihhhtlwfFB1fTU6u/hdRbGtzydY\n8vHjvRqXw54gIu+CMqs6xTV7p91wfBAH4hvj7dfY0ucTrN6OfQp1T5BsNsNhj8wTR/zF2DcF/bzb\n7UEb8xbPt534kt/oEe09Z/H8OYhHTLCiVYifWrJXV8Ne7eFLPYi/GKMFk0YfRPF5D/cvlnBeL43t\njXzKK0qw54yCKWZflRPtZLMZUnt7pMPwSHmZrdpHNmhQYOVZLBBRXN94mjdLTk2F6fTpwMsxm7uT\n7ADPfVyKo+uFiCKDCVaoxMAXtDLjvGSxBPxLVrLZzs7STSElUlOBICRY6oS4TLD6BN6GJAovJlh9\nmTMJ7Ckt4oD+2KD2SBEZ4G1IovBighUGstkMYbcH/JqNSOHUDjEi2l7RFOWSWlrUd1wSEQUbE6xw\niKLXbMjHj///9u4/OIry/gP4e3eTK5KQCBZKgASChhAhITkrUZliaP2BU5zSwQ5U0BDrEEpptX/I\ndNrOIEzLlM4XZtC24vSHobTDtOIvdKQz1FGG1gqWyI9qDEJCgk1aKEJI7kg2d/t8/7jsZm9v73K5\n7P1+v2aY4fbZfZ7PfnZz+WR37zl4c3jYiZTeXkDTbL/wm8Ymn5PoErHAyjo9PRA239JOqUmW5UAR\nQBRB+8V25OfEXtTo0xPk5uQ6Es+ECRMc6SfROA0COYm/adMcv8A4s8kshikKV/qvYFCL/X1gLNMT\nhJuNPR1YY2eBRU7iu3eaS7UvMI43zmeVevhwffylchETbjb2dJDOsVPq4y1CSi9pMP1FKkjoPGxe\nL/wAJBa+ceMd9MIPP6bkcUoNonTBAovIISl1eyHKQlT/hKuSoPEodgoUeAeS8/VZlNo4lU5qYoFF\n5JBEFliOjZVCn3ClyLyD3jE9Z5XpUvUWajzpt455ZTM18RksojSUUlfLiFKA9TsdU/FnxOln6eye\nIUv1L6zOJryClYVS/XsSY6F1dfEZoAyQir8UKb7idetTCAEpijnOFCjo9/U7NkWFlbmg0p+lK0Vp\nXMYCov9EaH4u5yqLNxZYMUrrCTsz8XmZnp6s+jSl01KlsEmVOJJNVVW4XK5kh5EQyb716R2M73Nt\nqfopRRZY8cdbhLHq6YG4kpo/OESjxcImtWTC11N1XetK+HNRChTeHqOUwQKLaIw0RYHfy093EZk/\nzdYz0BPXqzd2V2C8g96obo91XetiIUZxxwKLaKz4STxKA0KIuF/hSeSVN3OBNdr96hnoiXnm+mTh\nLb30wwKLYsKrNkSpzVp0CCGivsIzVte0a/BpvriPo0vUfiUTC6z0wwKLDKOarM7hqzYs2Iiclcyi\no1ftzfiCh2gkSSmwzp49i0WLFqG8vBy1tbVoaWkJWcfj8WDp0qWYPHkyJk2aFNJ+9OhRVFdXY+7c\nubjnnnvQ3d2diNAzWlIfrOVtNqKopdrD3Kn6XYmplifKLkkpsBobG7F+/Xq0trZi06ZNqK+vD1kn\nNzcXP/jBD/DWW2+FtAkhsGbNGjzzzDP4+OOP8cADD+CJJ55IROhERGM21rmfUu2WWKp+aXKq5Ymy\nS8ILrEuXLuH48eNYvXo1AGDFihW4cOEC2tragtZzuVyoq6tDYWFhSB/Hjx9Hbm4uFi9eDCBQsL3+\n+uv8PqYx0rq6IHgViSjukj33UyzsnukiovASXmBduHABRUVFkOXhoUtKStDZ2Rl1H52dnZg5c6bx\nOj8/H4WFhejq6nI01qzDyTqJKAzr1aB0LbD4hzglSppORR4q6h92IQL/hraRhpZpemExQpsQAn6/\nHxIQso31tTU+yabN3J9dm904Qdtpmv3yCP1Zl2uaBhFhm3D7K4SA5vcPV+kR4rPmMNxYHo8npK9I\nsUdqiyUX0fQHwDbvTscXKbfhxgp3Do50HM39RXus7M6/cP15PJ7AeZbgYxXufPfHkNvRjKVpGgKp\nEYAYzqlA6M+I3mac+wD8fv9wzizbmJdZc6uZ/kDS1zHOWxE8vjkXep/W/vSY7Ma09qdAgaffg1w5\nVw9geF3TeNb4rPtlzlWk2PXcWpcb44TZpr+/P2wu9OXmuK0xm+PT82c9Vvr25uNr3kZfH0DIOHpu\nzdvpsevvP9Z82Y2j92ltM/dnPjbZKp5/KCS8wCouLkZ3dzc0TTOuYnV2dqKkpCTqPkpKSnD+/Hnj\ndV9fH65du4Zp06aNuK0wFViapgGaBkkIDA79VZM7QpumafD29iJf0+Dz+YK2sfZhZu7Pulzvz64N\nNuOYtxunqrbLI/VnXT6oquiPsE24/dU0DV6vF/kIPUmt8VlzGC4XFy5cQNEoYo/UFksuoukPgG3e\nnY4vUm7DjTWoqsjJyRn1cTT3F+2xsjv/wvXX3tKCUlWFnOBjZdefb9w4XI8ht6MZa1BVoaqANl6D\npmnw+QM5F7LpnBEaent7jSsq5g/7FBUVobu7G2qBGrKNqg4vU1UVLS0tUAtUaOO1oKsz+jr6OHrR\nZKaqqhGDkEVIf3pM5jj0dbSJwf31qX0YGDeAwf7AbUSB4f6M8QpC47Pul74PQhYRY9eEZrtcjzFH\nybHdJlIu9G3McVtjNsen5896rPTti4qKQo6JAgVnu89C1QLLz3afDWyjDZ8H2sThc8aIfXzgPQEY\n/kCSOQa7Y2/XZu7P7gNm2UZRFMyePTsufSe8wJo8eTLcbjf27t2L+vp67N+/H8XFxWF3UAz9FW12\n2223wefz4fDhw7j77ruxe/duPPjgg1F9d5ckScYXgMqyHCjyJGl426ETMVybLMuYMGECJFkO2cb6\n2szcn3W53p9dm2wzTtB2Lpf98gj9WZe7XC7kRtgm3P7Ksozx48cbebXdbig+aw7D5WLatGmQ+vqi\njj1SWyy5iKY/ALZ5dzq+SLkNN5aR51EeR3N/0R4ru/MvXH8VFRXQWlqgJfhY2fWnTJwYU25HM5bL\n5YLLBcjS0M+wEsip6jedM1JgO9dgoK2iosJo8/v9uPHGG9FyqSVkG5fLZSzTc9tyqcVo0+nr6OPI\nqgxJC/3Z12NQ/WpIf3pM5jiMdS62hPQnS0PnbT8gQTLW1bVcMhVbYfZL3wfVr0aMXc+tdbkeIwRs\nt4mUC30bl8uFwumB5397BnqCYjbHp+fPeqz0/fb7/cbx1be57r8OV44LLgSWDyJQLOmv9dzq54xd\nbnNzcyFJUlAM1nH0OKxt5v7MxyZbma8MOi0ptwh3796NtWvXYtu2bSgsLERTUxMAYPPmzZg+fTrW\nrVsHAFiwYAH+97//obe3FyUlJViyZAn27NkDSZLwhz/8AevWrcPAwACmTZuGvXv3Rje4JBlvgsab\nqyQZV9O0EdokSYKiKNCAkG2sr4OHHe7Pulzvz64tXL/6dpBl2+WR+rP7BYEI24TbX71NDK8cNj5r\nDmPNhd0vvkT3B8A2707HFym34caSZTlwpWWUx9Hc32iOlTUP4frLy8uDR5YhUuTYx5Lb0YwVKMaG\ntpGGcyr5Q39G9La8vDyjzePxIC8vD/JlOWQbWR5epudWviwbbca6/uCfU0iBosdMlmUjBskvhfSn\nx2SOQ1/Hrr+gnxHJtK4+3uXQ+Kz7Zc5VpNj13FqX6zFqmhY+vjC50LeRZRm9g73GcnPM5vj0/FmP\nlXHOezy2x8S8zErPrXUdc26t+TKfR9ZxrG3m/szHJltpWuCqZjwkpcCaM2cO3n333ZDlW7ZsCXp9\n8uTJsH3U1tZGbCciIoonzq5OkXAmdyIiohiwwKJIWGBR3HBeLaLMw6KCKDossCh+OK8WUcZhgTV6\n/Mqe7MQCKw1oisIrQURpjL9gs1u4r+zheZHZWGClA6+XV4IorXnb27P6jwR+J152ifbLr3leZLaM\nmcmdiFKXuHKFfyQ4JJFfURNNkUChvINe+OHHlLwpyQ6FkogF1hBNUSD194+5n3T9fi4iSj69oIn0\nizmR7zFX+q8kbCyiTMNbhDqHbsOxwCKiWF3pv8KixgHp9iA+n8XKTCywiIgorHT85Z8OBZb5j3E+\ni5WZWGARUVzxU7Dpjb/848Pubkc8C8N0LJTTHZ/BIqL48nrBG+eUyVTLF57HKp4FlnfQCyBQaPX7\nxv68MY2MV7CIiJKk61oXrypkgMEkXqFVoMA74I16fV6RTBwWWBS1sdzq4W0iolA9Az0hv+zGehWD\nt4JSRyIKaO+gF4Maj3cqYoFF0RvLJy05WSpRVMZaYKXSFYpoJ9zMVHYFNGUPFlhEWYZXEylRvINe\nTjtBWYsPuRNlGz50TkQUd7yCRUSUAtovtvPZKaIMwgKLiCgFXOm/EtPzOizMiFITCyyiUdK6uvgM\nE6WMWAszO9n+UHq64ydIUwufwSIarZ4efiJyCL97M7N4B73ww2+8Dnd8nZpYk5ylTyZKqYFXsIgo\nZiywnJGqVx7CHd9kTqxJlC54BYsCH9v3eiElOxCiLJXMKw+cTZ4oPngFiwCvF+BfpERZiZNhEsUH\nCywiIiIih7HAIiIiInIYCywiIiIihyWlwDp79iwWLVqE8vJy1NbWoqWlxXa9N954AxUVFSgvL8dD\nDz2Evr4+o02WZSxYsAA1NTVwu934+9//nqjwiYgoC6TqpzspPSSlwGpsbMT69evR2tqKTZs2ob6+\nPmQdj8eDxx9/HAcOHEBrayuKioqwdetWo12SJPztb3/DBx98gObmZixatCiRu0BERDFIp6LFO+jl\nBwAoZgkvsC5duoTjx49j9erVAIAVK1bgwoULaGtrC1rv4MGDcLvdKCsrAwBs2LAB+/btM9qFEJyD\nh4gozbBooWyR8HmwLly4gKKiIsjycG1XUlKCzs5OzJ4921jW2dmJmTNnGq9nzZqF7u5uaJoGWZYh\nSRKWLFkCTdPwla98BVu3bsX48eNHDkCIwD8EijRJXxay2nCbps/aPVTU+f1+SEDQcti8Dtefdbne\nn11bpPj8fj8kTQtqH0t/scSn+f3DVbolDqfHyrb+YsltuHNwNLFbz/dUyEUq5HY0Y2mahsCPpgAE\nIGDfn12b3p/H44GmaUHt1m30YyUQOFbW9c392Y2laVrIcqPPEeKL2BYICkIKxOTxeIy+w+VCb7Pu\nU6SxYs3tSLkwxxCUk3Dx2eybXW5HahNCBHIlTD+H1tgt+bJ7bR7H7/eHPS/045LN4nmhJq0mGpWk\n4akwOzo6MGPGDFy/fh2NjY146qmn8Mtf/nLEPoSpwNI0DdA0SOF+UQ21DQ59LUTu0Ens7e1FvqbB\n5/MZywFgUFWRk5MzYn/W5Xp/dm2R4vP29mKcqhrjj7W/WOLzer3IR+hJGo+xsq2/WHIb7hwcTezW\n8z0VcpEKuR3NWIOqClUFtPFa4JebXX/Cvk0TGnp7e9Hd3Q21QIWQRdht9K+sEbKAJjSoavD65v7s\nxhonj4N30Bu0XO8zXOyR+tNEILfAUPEgAv3pz9la98e8nR67dZ8ijRVrbu3aVFVFjpIDIYJjMOck\nXHz6OuZ9M/dnZZd3Pb6WlhZoEzX4/L7gtvHDudVn0tfHC3fsVVVFb29v2PMi3PPP2URRlKCLO05K\neIFVXFwcdCUKCFytKikpCVqvpKQEhw4dMl63t7cHXfmaMWMGAOCGG27Ahg0b0NjYGNX4kiQZhZos\ny4H+TIWbztzmcrkCC1UVsixjwoQJkGQ5aDmA4dcj9Gddrvdn1xYpvgkTJkByuYzxx9pfLPHpVw2l\nBIyVbf3Fkttw5+BoYree76mQi1TI7WjGcrlccLkAWQpsI2k2/YVpk6VAfzfeeCNaLrVA9atht9GP\nlepXIUuB9yTz+ub+ZDV0rIk3TES/vz9oud7nSPHZ9SdLQ7ntByRIgBTor6KiAgBC9se8nSvXBVVT\nQ/Yp0lix5tauP5fLBQhA0qSgGABgUt4k9A32QfXbxwcArsHg3Jv7s7LLux5fRUUFWi62wKW4wuY2\nNzcXkiQZ44U79i6XCxMmTAiJzTxWtgu66uqwhBdYkydPhtvtxt69e1FfX4/9+/ejuLg4pIJcunQp\nNm7ciDNnzmDOnDl47rnnsGrVKgDA1atX8bnPfQ433HADNE3Dn/70J9TU1EQXgCQZb4LGm6vNm6m5\nTS/qtKHiTFEUaEDQcgy91jRtxP6sy/X+7NoixacoCiDLxvhj7S+W+BRFGb7wbInD6bGyrb9Ychvu\nHBxN7NbzPZbYw8WXKv3F+7wNFGND20hDxYZdfzZten+5ubmBIsEvhd1GP1aSP3CsrOub+ws3lnW5\n0ecI8UVsA4x2WZaRl5cX6PtyaHzWsaz7NJrYR2qL1J/+s2ONAQAKPlcAr98LyR8mvqHtzftm7m80\n8eXl5QHS8HEIiX3o/+bxwh17WZahKErY80I/LtlM04avQjotKbcId+/ejbVr12Lbtm0oLCxEU1MT\nAGDz5s2YPn061q1bh/z8fPzmN7/B1772Nfj9fsyfPx979uwBAHz88cdobGyELMvw+Xxwu93YtWtX\nMnaFiCgu+IXKROktKQXWnDlz8O6774Ys37JlS9DrZcuWYdmyZSHr3XHHHTh58mTc4iMiIiIa40lT\nqQAADSBJREFUC87k7iAtPz/ZIRAREVEKYIHlIMECi5LMiSJfUxQI3p5Kuq5rXWkzISc5R1VDPwRA\n6YkFFlEGcaTI93ohLHPwUOL1DPRwQs4sxGfvMgcLLCIiohTjxFcKKVDgHfA6FBGNVlpNNEpERJRq\n4nE71zs4usLIbkJT76AXg9pgXGcrp/B4BYuIiGgEkYqUVLidGyk+FljJwQKLiIhoBCxSaLRYYBER\nERE5jM9gERFRXLVfbE92CEQJxwJrDDRFgdTfn+wwiIhS2pX+K8kOYVQUKOj38b2dxoYF1lh4veBd\neSKizDLaT/AR2eEzWEREREQOY4FFRERE5DAWWEREFDdOzEhOlI74DBYREcUNn2eibMUrWEREREQO\nY4FFRERE5DAWWEREREQOY4FFRERE5DAWWEREREQOY4FFRERE5DAWWEREREQOY4FFRERE5DAWWERE\nREQOY4FFRERE5LCkFFhnz57FokWLUF5ejtraWrS0tNiu98Ybb6CiogLl5eV46KGH0NfXZ7QdPXoU\n1dXVmDt3Lu655x50d3cnKnwiIiKiiJJSYDU2NmL9+vVobW3Fpk2bUF9fH7KOx+PB448/jgMHDqC1\ntRVFRUXYunUrAEAIgTVr1uCZZ57Bxx9/jAceeABPPPFEoneDiIiIyFbCv+z50qVLOH78OA4dOgQA\nWLFiBTZu3Ii2tjbMnj3bWO/gwYNwu90oKysDAGzYsAH33Xcffv7zn+P48ePIzc3F4sWLAQQKth//\n+MdQVRUul8voQwgRMr5QlOH/A4CiAJoWup6pTciysa0Y6lfYbBdtf9blsfYnhABkOWSfEhqfEICi\nBGKRpPiOlW39Mbfx6y/OuRWyDHmoW0VSoEmh/UVqE0KEbTMvlyXZWKa/1v8fS3/mPmONT28TEJAw\nnFtrrOHisK43mtijaQvXnyzJkCRpxP6ijS/a/kaKz3w89Da9b3MuY8mFZnOeZxu7HNjVDrGQhFM9\nRam5uRmrV68Oui1YW1uL7du3o66uzli2c+dOfPLJJ3juuecAANevX0dBQQEGBgbw6quv4te//jUO\nHjxorD916lS89957mDVrlrHM5/PB4/HEfZ+IiIgoM+Tl5SEnZ+zXnzLmIfcE14lEREREYSW8wCou\nLkZ3d3fQZbnOzk6UlJQErVdSUoLz588br9vb21FUVARZlkPa+vr6cO3aNUybNi3e4RMRERGNKOEF\n1uTJk+F2u7F3714AwP79+1FcXBz0/BUALF26FB988AHOnDkDAHjuueewatUqAMBtt90Gn8+Hw4cP\nAwB2796NBx98MOj5KyIiIqJkSfgzWABw5swZrF27FpcvX0ZhYSGamppw6623YvPmzZg+fTrWrVsH\nIDBNw1NPPQW/34/58+djz549mDBhAoDANA3r1q3DwMAApk2bhr1792L69OlB42iaFvIAmyRJkEwP\ntRIREVF2EkKEPGIkyzJkeezXn5JSYBERERFlsox5yJ2IiIgoVWR8gRXtrPEU6oknnkBpaSlkWcap\nU6eM5ZcuXcIDDzyAOXPmoKqqCkeOHDHarl+/jocffhhlZWWYO3cuXnrppWSEnvIGBgbw9a9/HXPn\nzkVNTQ3uv/9+nDt3DgDz64T7778f1dXVqKmpwd13340TJ04AYG6d8sILL0CWZRw4cAAA8+qUWbNm\noaKiAjU1NXC73XjxxRcBML9OUFUV3/3udzFnzhwsWLAAjz76KIA451ZkuC9/+cvi97//vRBCiP37\n94vbb789yRGljyNHjoh///vforS0VJw8edJY/thjj4ktW7YIIYR4//33xYwZM4TP5xNCCLF161bR\n0NAghBCivb1dTJkyRXz22WeJDz7F9ff3i4MHDxqvf/GLX4i6ujohhBANDQ3M7xj19PQY/3/llVfE\nggULhBDMrRPOnz8v7rrrLnHXXXeJ1157TQjB9wSnlJaWilOnToUsZ37H7sknnxTf+973jNf//e9/\nhRDxzW1GF1gXL14UhYWFwu/3G8umTp0qzp07l8So0s+sWbOCCqz8/Hzj5BRCiNraWvHWW28JIYSY\nN2+eOHr0qNG2cuVK8dvf/jZxwaapf/7zn6K0tFQIwfw67YUXXhBut1sIwdyOlaZp4p577hHNzc2i\nrq7OKLCYV2dY32t1zO/YeDweUVBQIHp7e0Pa4pnbhH9VTiJduHDBmDtLV1JSgs7OzpBpISg6n332\nGXw+H6ZMmWIsmzlzJjo7OwEE5jSbOXOmbRuFt2vXLixfvpz5dVB9fT3efvttSJKEN998k7l1wM6d\nO/GlL30JNTU1xjLm1VmPPPIIAGDhwoX42c9+BkmSmN8xOnfuHCZNmoSf/vSn+Otf/4rx48dj8+bN\nqK6ujmtuM/4ZLKJUt23bNpw7dw7btm1LdigZZc+ePejs7MRPfvITbNq0CQC/8WEsPvzwQ7z00kv4\n0Y9+lOxQMtaRI0dw8uRJNDc346abbkJ9fT0Anrdj5fP50NHRgfnz5+P999/Hrl27sGrVKvh8vrjm\nNqMLrGhnjafoTZo0CTk5Obh48aKx7Pz580ZOZ86ciY6ODts2CvV///d/ePXVV/GXv/wF48aNY37j\n4JFHHsE777wDAMjNzWVuY3TkyBF0dHSgrKwMpaWleO+997Bu3Tr8+c9/5jnrkBkzZgAAFEXBk08+\niSNHjvA9wQElJSVQFAUPP/wwAKC6uhqzZs3C6dOn4/ueEOs9zXSxZMkS0dTUJIQQ4sUXX+RD7jGw\nPhfQ0NAgnn76aSGEEMeOHQt6KPDpp582Hgpsa2sTX/jCF8Tly5cTH3Qa2LFjh7jtttvE1atXg5Yz\nv2Nz9epV0dXVZbx+5ZVXRHFxsRCCuXVSXV2dOHDggBCCeXWCx+MJei/YsWOHuPvuu4UQzK8T7r//\nfvHmm28KIQJ5mjx5sujq6oprbjO+wGptbRV33nmnmDNnjrj99tvFv/71r2SHlDYaGxvFjBkzRG5u\nrpg6daooKysTQgQ+fXHfffeJsrIyMX/+fHH48GFjG4/HI1auXCluvvlmUV5eLvbv35+s8FPap59+\nKiRJErfccouoqakR1dXV4o477hBCML9j1dHRIRYuXCiqqqrEggULxL333mv8gcDcOmfJkiXGQ+7M\n69i1tbWJmpoasWDBAlFVVSWWL18uOjo6hBDMrxPa2trEkiVLRGVlpaiurhavvPKKECK+ueVM7kRE\nREQOy+hnsIiIiIiSgQUWERERkcNYYBERERE5jAUWERERkcNYYBERERE5jAUWERERkcNYYBERERE5\njAUWERERkcNYYBFRyvP7/diyZQsqKipQVVUFt9uN9evX47XXXkNNTY2jY3V0dOD55593tE8iyj4s\nsIgo5T322GNobm7G0aNHcerUKTQ3N+Pee+/FZ599BkmSHB2rvb0du3fvjmlbv9/vaCxElL5YYBFR\nSjt37hxeeuklNDU1oaCgwFi+YsUKzJ49G4ODg/jOd76D6upqVFZWorm5GUCg2Fm6dCkWLlyIyspK\nrFmzBtevXwcAHD58GJWVlaivr0dlZSVuv/12nDp1CgDw7W9/G2fOnIHb7cby5csBAGfPnsWyZctQ\nW1uL6upq/OpXvzLikGUZTz/9NBYuXIgf/vCHiUoLEaU4FlhElNKam5tRVlaGiRMn2ra3traioaEB\nJ06cwMaNG40iR1EU7Nu3D8eOHcPp06dRUFCAZ5991tjuo48+QkNDA06fPo1NmzZh5cqVAIDdu3ej\nvLwczc3NePXVV6FpGr75zW9i586dOHr0KP7xj3/g+eefx/Hjx42+cnNzcezYMWzfvj2OmSCidMIC\ni4jS2i233IIvfvGLAIA777wTbW1tAAAhBHbs2AG3242qqiq8+eabOHHihLHdrFmzUFdXBwD4xje+\ngf/85z/49NNPQ/pvbW3Fhx9+iFWrVqGmpgZ33XUX+vr68NFHHxnrNDQ0xHEPiSgd5SQ7ACKiSNxu\nNz755BNcuXLF9irWuHHjjP8rigKfzwcA+OMf/4h33nkHR44cQV5eHp599lm8/fbbYceRJMn2eS4h\nBG666Sbj1qPddvn5+aPdLSLKcLyCRUQp7eabb8aKFSvwrW99Cz09Pcbyl19+2bhaZefq1av4/Oc/\nj7y8PPT29qKpqSmo/fz58zh8+DAAYP/+/Zg6dSqmT5+OgoKCoHHKy8tRUFAQtP25c+dw9epVAIEC\njIjIigUWEaW83/3ud6iqqkJtbS0qKysxb948HDp0CJMmTQq7zaOPPgqPx4OKigp89atfxeLFi4Pa\nb731VjQ1NaGqqgrbt2/Hvn37AABVVVWYN28eKisrsXz5ciiKgtdffx0vv/wyqqurMX/+fDz++OPG\nA/NOf4qRiDKDJPjnFxFlmcOHD+P73/9+2Nt+RERjxStYRERERA7jFSwiIiIih/EKFhEREZHDWGAR\nEREROYwFFhEREZHDWGAREREROYwFFhEREZHDWGAREREROYwFFhEREZHDWGAREREROYwFFhEREZHD\n/h9ZYeqBHAcJ7wAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f9e0c3493c8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"freq_plot(dfTfidf, 0, 'Chapter frequency of the bi-gram \"to be\"')"
]
},
{
"cell_type": "code",
"execution_count": 668,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAF5CAYAAAC/a38YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xt8FNXdP/DP7CQBckUoKREJhKtBEpIIBKVVoLZgy0P1\nFbQoavAGao36aOXpT1sRL9RL0VpsxadWQtUqFbTYqrVC1VKsSImI1TxcA0lNJBHCJuwm7Gbn/P5I\nZtzL7GYvs7uzu5/36+VLsjNz5jtnZne/e86ZM5IQQoCIiIiIQmKJdwBEREREiYhJFBEREVEYmEQR\nERERhYFJFBEREVEYmEQRERERhYFJFBEREVEYmEQRERERhYFJFBEREVEYmEQRERERhYFJFFEfl8uF\nlStXori4GKWlpaioqMANN9yAjo4OvPfeeygvLzd0f0eOHMHTTz9tWHk7duxAaWkpzj77bLz99tuG\nlZuInn76aRQXF6OiogLt7e0eyzZv3owPP/xQ+9uoczt79my89tprusuuv/56vPfeexHvI1pWrlyJ\n9evXY/369Vi5ciUA4E9/+hPuuOMOAMZfq5HERWQmTKKI+lxzzTWoq6vDjh07sGfPHtTV1eHb3/42\njh8/DgCQJMnQ/TU0NGDt2rVhbetyuXxeW79+PRYvXoxdu3bh29/+dr/rJ7MnnngCtbW1qKurw2mn\nneax7I9//CP++c9/erxm9Ln19pvf/Abnn39+RGUIIRDNp3SpdaD+/7/+67+wevVqAJFdq0bHRWQm\nTKKIABw8eBCbNm1CbW0tcnNztderqqowevRoAIDT6cQPf/hDlJWVoaSkBHV1dQB6E5R58+Zh+vTp\nKCkpwRVXXIGuri4Ava0cJSUlqK6uRklJCaZNm4Y9e/YAAG688Ubs27cPFRUVuOiiiwAABw4cwPz5\n81FZWYmysjL8+te/1mKxWCy49957MX36dNx1110e8T/88MPYsGED1qxZg4qKClitVhQVFeHHP/4x\nKisrsWTJEgDA888/jxkzZmDq1KmYNWuWFktPTw9uuukmTJgwATNmzMCPfvQjzJ49WzsG95aaTz/9\nFEVFRdrff/3rX/HNb34T06ZNw4wZM/Duu+96HLtenQHA66+/junTp6OsrAwVFRXYuXMnVq9ejWXL\nlmnrWK1WDBs2DCdOnPA5Z//6178wc+ZMTJkyBTNmzNASo0suuQSHDh3CkiVLcOmll3ps8+abb+K1\n117Dz3/+c1RUVODZZ58NeG4DHZ+eLVu2YPr06ZgwYQJ+9KMfaa8HaqX64osvMHfuXEyePBnz5s3D\nZZddhvvuuw9Ab0vMwoULMW/ePJSUlOCLL77AnXfeicrKSlRUVGDWrFnYv3+/VpbFYsGqVaswY8YM\njBkzBps3b8ZDDz2EadOmYeLEifj73/+uG0NOTg4GDRqEzMxMZGdnA+hNyi+++GIA+tequ5kzZ+KD\nDz4AACxfvhxnnHGGtmzs2LH4z3/+g6NHj2LOnDmYNm0aSkpKcMstt2jr7NixA1OnTkVFRQVKS0u1\nVi+9uIhMRRCR+MMf/iDKysr8Ln/33XdFenq62LlzpxBCiLVr14q5c+dqy48fP679+8YbbxQPP/yw\ntp3FYhHvvPOOtp8zzzxTW1ZeXq5t53K5xNSpU8XevXuFEELY7XZRWloq/vWvfwkhhJAkSTzwwAN+\nY1yyZIl44okntL9Hjx4trr/+eu3v7du3i+9+97vC4XAIIYTYtm2bOOuss4QQQjz55JPiggsuED09\nPcLpdIrZs2eL2bNn68b573//WxQVFQkhhDh06JA455xzRGdnpxBCiAMHDoiCggLhcDgC1tnevXtF\nfn6+2LdvnxBCiJ6eHtHR0SFOnDghvv71rwur1SqEEOLxxx8X1113nc+xOhwOUVhYKN5++20hhBD/\n+Mc/xPDhw4XNZtOOfc+ePUHVU6A4Ax2ft1mzZokLLrhAuFwuYbfbxdSpU8WLL76oLdu8ebNuPJdc\ncom49957hRBCfPHFF2L48OFi5cqVQggh7r33XjFixAjR1tamrf/ll19q/37ppZfEvHnztL8lSRJr\n1qwRQgixdetWkZ2dLX73u98JIYR4+eWXxbRp03Rj0FNbWysuvvhirY7crwFv99xzj7j//vuFEEJM\nnTpVzJgxQ9TX14uDBw+KiRMnCiGE6O7u1s6Py+US8+fPFxs2bBBCCPH9739fvPTSS1p5J06cCDpO\nonhiSxRRkMaNG4epU6cCAM455xwcOnQIQG83y+rVq7Vf0W+88QZ2796tbTd69GjMmjULQG8ryRdf\nfIH//Oc/PuXv3bsXn376KRYtWoTy8nKce+65OHnyJD777DNtnauvvjqkmNUWKKB3LNCePXtQWVmJ\n8vJy1NTU4MSJEzh16hT+9re/4aqrroIsy0hLS8M111wTVPl/+ctfcPDgQZx33nkoLy/HwoULkZaW\nhsbGxoB1tmXLFlx44YUYP348AECWZeTk5CAvLw8LFy7UWoieeuop3Hzzzbp1JcsyLrjgAgC9LSFf\n//rXPepdhND15S/O/o7P21VXXQWLxYJBgwbhiiuuwJYtW/rd99atW7X6/vrXv4758+d7LP/ud7+L\nr33ta9rfb731Fs4991yUlJTgvvvuw8cff+yxvtr6NnXqVNjtdvzgBz8AAEyfPh0HDhwIpjpCdsEF\nF2DLli04duwY0tLScOmll+Ltt9/Gli1b8K1vfQsAoCgKli9fjrKyMpSXl2PXrl3a+Zo9ezbuv/9+\n3H///di+fTvy8vKiEieR0dLiHQCRGVRUVGD//v1ob2/3GUOjGjhwoPZvWZbR09MDAHjhhRfw7rvv\nYtu2bcjKysKaNWvwzjvv+N2XJEm64zuEEBg6dKhHV5L3dqF2abivL4RAdXU1HnjggX63c48vLS3N\nY0xVd3e3R5nf/va38fzzz/uU8Z///MdvnQVSU1ODBQsW4Mwzz0R+fj6mTJnS7zbeMYfKX5yBji+c\nmKxWK2bNmgVJklBUVIRNmzb1u437OWxqakJNTQ127dqF0aNH45NPPvEYayVJknYssiwDADIyMnyO\ny2jnnHMOPvnkE2zevBnf+ta3cMEFF+AnP/kJBgwYgEWLFgEAHnvsMbS1tWHnzp1IT0/HHXfcoV1L\nt956Ky666CJs2bIFd911FyZPnoxf/epXUYmVyEhsiSJC77iNqqoqXHvttbBardrrr7zyCg4fPhxw\n2xMnTuBrX/sasrKy0NnZidraWo/lhw8f1u7M2rhxI4YPH44RI0YgNzfXY18TJ05Ebm6ux/YHDx7U\nxgOF0rKiZ8GCBXj++efR1NSklbdr1y4AvS0Jzz//PHp6euBwOLBu3TptuzFjxuDIkSM4duwYAOC5\n557Tls2dOxdbtmzBJ598or22c+fOfmOZO3cu3nrrLezbtw9A75isjo4OAL31MGbMGCxduhQ1NTW6\n20+cOBGKomDr1q0AgPfffx9Hjx5FWVlZv/v2rvf+4gzl+NQ67Orqwu9//3ufAf55eXn46KOPUFdX\npyVQ3/rWt7T6Pnr0KP785z/7Ld9qtSIjIwPDhw+HEAJr1qzxWO59jfT3d7D6q7O0tDTMmDED999/\nPy644AKUlJTgs88+w3vvvYc5c+YAANrb2zF8+HCkp6fjiy++wMsvv6xtv2/fPowaNQrXXnst7rrr\nLuzYsSOsOIlijUkUUZ9nn30WpaWlqKysRElJCc466yy8/fbbGDJkSMDtrrrqKthsNhQXF+N73/se\nzjvvPI/lkyZNQm1tLUpLS/Hwww/jxRdfBACUlpbirLPOQklJCS666CLIsow//elPeOWVV1BWVobJ\nkyfjuuuu0wap99fS4r3c++9vfOMbeOSRR3DxxRejvLwckydPxoYNGwD03oI/btw4TJo0Seu6UhUU\nFGD58uWYNm0azj33XAwdOlRbNnbsWPz+97/HsmXLUF5ejrPOOgtPPPFEwDjV7datW4fFixejrKwM\nM2bM0BIqNR6Xy4Wqqird7dPT0/HKK6/gnnvuQVlZGW6//XZs2rQJmZmZ/dbVlVdeiQ0bNuDss8/W\nug0DxRns8UmShOLiYm2w+/nnn691rQWK5xe/+AX+8Y9/YPLkybjyyisxY8YMDB48WHfdyZMnY9Gi\nRZg0aRIqKyu1mx7cYwjl72Cp12ppaanuwHKgNxFva2vDzJkzAfR2H44aNUo7lltvvRUffPCBdqOF\ne4L55JNPYvLkyaioqMBPf/pTPPbYY2HFSRRrkoj05y0R+fXee+/hv//7v/120ZnV66+/jtWrV+Nv\nf/tbXPZfU1OD4cOH4+67747L/mOpu7sb6enpkGUZx48fx4wZM/DCCy9g2rRp8Q6NiPrBMVFEZBot\nLS2YM2cOhg4dirfeeive4cTE/v37cdVVV0EIAafTiZtvvpkJFFGCiEtL1IEDB1BdXY0vv/wSgwcP\nRm1tLYqLiz3WOXLkCMaOHYvS0lIIISBJEjZt2uQxPw0RERFRvMSlJWrZsmW44YYbcOWVV2LTpk2o\nrq72eAyDKjc3N+G6QYiIiCg1xLwlqq2tDePHj8fx48dhsfSOay8oKMD27dsxZswYbb0jR46grKzM\n57lX7hRFgaIoHq/5u32ciIiIUovQeVySxWLR8o9IxbwlqqmpCQUFBR4HUFhYiMbGRo8kCgDsdjum\nTZsGIQS+//3v4yc/+YlHgqQoCmw2W8xiJyIiosSWlZVlWBJl2ikOTj/9dHz++efYuXMntmzZgm3b\ntmkPwyQiIiKKt5gnUSNHjkRLS4tHN1xjYyMKCws91ktPT9cedTB48GBcc8012LZtW0xjJSIiIvIn\n5knUsGHDUFFRoc16vHHjRowcOdKnK6+trU17RMGpU6fwyiuveEwASERERBRPcZniYN++fViyZAmO\nHTuGvLw81NbWYtKkSVixYgVGjBiBpUuX4tVXX8U999yDtLQ09PT0YM6cOfj5z3+O9PR0rRyXy4WT\nJ096lG1kXyf1jkvbv38/xo8fr80GTcZg3UYP6zZ6WLfRw7o1nt7Y6ezsbO3ZkpGKyxQHEyZMwPvv\nv+/z+sqVK7V/X3zxxbj44osDlqN3F56Ro+6pt45dLhckSWK9Gox1Gz2s2+hh3UYP6zY2jLyDn2eJ\niIiIKAxMooiIiIjCwCSKiIiIKAxMooiIiIjCwCSKiIjirqG1AQ2tDfEOgygkTKKIiCju2rvb0d7t\n/1mpRGYUlykOiIiIyJPS3IwihwNKfT1sBk5xIJ12GjKLivpdz+Vy4YEHHsBLL72E9PR0pKWlYfr0\n6bjwwgtx77334qOPPjIspmTBJIqIiMgMrFYMnTnT8GJtu3YBQSRR11xzDU6cOIEdO3YgNzcXALBp\n0yYcP37c0LmVkgm784iIiFLcwYMHsWnTJtTW1moJFABUVVV5PJbN5XJh3rx5mD59OkpKSnDFFVeg\nq6sLAPDee++hpKQEP/zhD1FWVoaSkhLU1dVp277++uuYPn06ysrKUFFRgZ07d2L16tVYtmyZto7V\nasWwYcNw4sSJGBx15JhEERERpbi6ujqMHz8ep512WsD1ZFnGiy++iA8//BCffPIJcnNzsWbNGm35\n3r17cfXVV2P37t24+eabcddddwHofdzbNddcgxdeeAG7d+/Gzp07ceaZZ+K6667D5s2b0dHRAQBY\nt24dLrroIgwePDh6B2sgJlFEREQUFCEEVq9ejYqKCpSWluKNN97A7t27teXjxo3D1KlTAQDnnHMO\nDh06BADYsmULLrzwQowfPx5AbzKWk5ODvLw8LFy4EM8++ywA4KmnnsLNN98c46MKH8dEERERpbiK\nigrs378f7e3tAVujXnjhBbz77rvYtm0bsrKysGbNGrzzzjva8oEDB2r/lmUZPT09/e67pqYGCxYs\nwJlnnon8/HxMmTIlsoOJIbZEERERpbixY8eiqqoK1157LaxWq/b6K6+8orUmAcCJEyfwta99DVlZ\nWejs7ERtbW1Q5c+dOxdvvfUW9u3bBwDo6enRuvAmTpyIMWPGYOnSpaipqTHuoGKASVSIHA5HvEMg\nIkpKMmROuBlHzz77LEpLS1FZWYmSkhKcddZZePvttzFkyBBtnauuugo2mw3FxcX43ve+h/POOy+o\nsseOHYt169Zh8eLFKCsrw4wZM7SECgCuv/56uFwuVFVVGX5c0SQJIUS8gwiXoijo7Oz0eC0nJwcW\nA+fX8Gaz2ZCVlRW18s3GZrOhvr4excXFKXXcscC6jR7WbfREq27rGutwynkKA9IHoKKwwrByE0nn\n/v1wtLUhIyPD0O+xYOeJiqeamhoMHz4cd999t6HlRjtP4JgoIiIiE7CcfjoarNaUSv5bWlowZ84c\nDB06FG+99Va8wwkZkygiIiKKi4KCAtTX18c7jLBxTBQRERFRGJhEERERuWlobeAAdwoKkygiIiI3\n7d3taO9uj3cYlACYRBERERGFgQPLiYiITKC5oxmOXAfq2+phOWZcG8dpA09DUX7/Uxz09PTgwQcf\nxEsvvYS0tDRkZGRg1KhRuPfee1FaWmpYPMmESRQREZEJWE9ZMfPFmYaXu+vqXShC/0nUkiVLYLfb\nsWPHDuTm5gIA/va3v2Hv3r0+SZSiKFGdkzFRsAaIiBIMBz6T0Q4cOIDNmzdj3bp1WgIFAHPmzMEl\nl1yC9evXY86cOVi4cCGmTJmCnTt34ujRo/jBD36AGTNmYMqUKbjnnnu07e68805UVlaioqICs2bN\nwv79+7VlFosFP/vZz1BZWYmxY8d6PDrmwIEDmD9/PiorK1FWVoZf//rXAIDVq1dj2bJl2npWqxXD\nhg3DiRMnolgr/WNLFBFRglEHPQfTukAUjI8++gjjxo1DXl6e33U+/PBD7N69G+PGjQMAzJs3D3ff\nfTe++c1vwuVyYf78+di0aROqqqrw4x//GI8++igAYMOGDbjlllvw5ptvamUNGjQIO3bswN69ezFt\n2jRcddVVAIDLLrsML7zwAiZMmICuri7MmDEDlZWVuO666zBx4kQ8+uijyM3Nxbp163DRRRdh8ODB\nUayV/jGJIiIiIg+HDh1CVVUVurq6cO655+L888/HueeeqyVQdrsdW7duRWtrK9Snx9lsNuzduxcA\n8NZbb+HJJ59EZ2cnFEVBe7vn3Y6XX345gN6HD6enp+OLL76A1WrFp59+ikWLFmllnjx5Ep999hnO\nPvtsLFy4EM8++yxuu+02PPXUU/jDH/4Qq+rwi0kUERFRiisvL8eBAwdgtVqRl5eHMWPG4KOPPsL6\n9euxefNmAEB2dra2vhACkiRhx44dSE9P9yirqakJNTU12LVrF0aPHo1PPvkE559/vrZckiQMHDhQ\n+9tisaCnpwdCCAwdOhR1dXW6MdbU1GDBggU488wzkZ+fjylTphhZBWHhmCgiIqIUN27cOHz/+9/H\ntddeC6vVqr1us9l018/KysLs2bOxatUq7bWWlhZ8/vnnsFqtyMjIwPDhwyGEwJo1azy2VVuZvE2c\nOBG5ubkeY6QOHjyotWJNnDgRY8aMwdKlS1FTUxPuoRqKSRQRERGhtrYWkydPRmVlJUpKSnDeeedh\n69at+J//+R/d9V944QUcOHAAJSUlKC0tRVVVFY4fP47Jkydj0aJFmDRpEiorKzF69GiP7SRJ0v1b\nlmX8+c9/xiuvvIKysjJMnjwZ1113Hbq7u7V1r7/+erhcLlRVVRl78GGShL+UMAEoioLOzk6P13Jy\ncqJ626XNZkuZp2sDvcdbX1+fUk8VjxXWbfQke93WNfZ2d1QUVsR839Gq27rGOpxynsKA9AFxOS7v\nWIDY1+/+lv1o62xDRkaGod9jwc4TlQhqamowfPhw3H333UGtH+08gWOiiIiITOD03NNh/dyatMl/\nJFpaWjBnzhwMHToUb731VrzD0TCJIvLD3tA7D09mUXL8giMiSlQFBQWor6+Pdxg+OCaKyA/R3g7R\nzoeQEhGRPiZRRERERGFgEkVEREQUBiZRRERERGFgEkVEREQUBiZRRERERGHgFAdERAmiobUh3iEQ\nkRsmUURECaK9m1NuEJkJu/OIiIiIwsAkioiIiCgMTKKIiIiIwsAkioiIiCgMTKKIiIiIwsAkioiI\niCgMTKKIiIiIwsAkioiIiCgMTKKIiIiIwsAkioiIiCgMTKKIiIiIwsAkioiIiCgMTKKIiIgSWENr\nAxpaG+IdRkqKSxJ14MABzJw5ExMnTkRlZSXq6+sDrr9kyRJYLBZ0dHTEKEIiIqLE0N7djvbu9niH\nkZLikkQtW7YMN9xwA/bu3Yvly5ejurra77qvvvoqMjIyIElSDCMkIiIiCizmSVRbWxt27dqFxYsX\nAwCqqqrQ1NSEQ4cO+ax79OhR/OxnP8Pjjz8OIUSsQyUiIj+aO5rZhUQpL+ZJVFNTEwoKCmCxfLXr\nwsJCNDY2+qy7dOlSPProo8jKyopliERE1A/rKSu7kCjlpcU7AH9++9vfYtSoUTj//PND2s5ut0e1\n68/lcsFms0WtfLPp6ury+H8qURQFAKJ2vlO5bqMtWetWvSZV8fgsUutUCAFFUQyLQVEUCBhbZiSx\nALGv33Cv23jFmwii3YsliRj3k7W1tWH8+PE4fvy41hpVUFCA7du3Y8yYMdp6V1xxBbZt2wZZliGE\nwJEjR1BYWIjNmzdjypQpAHovnM7OTo/yDx06BJfLFbX4CwoK0NLSErXyyTyKHA4AQENGRpwjIerl\nyHV4/J3REb9rU43FqBgcuQ4Ii4CkSHE9LjUWIL71G4pEizeWZFn2yC0AICcnx6M3LBIxT6IAYM6c\nOaiurkZ1dTU2btyIRx55BB9++GHAbSwWC6xWK3JycrTX9JIoWZaj3hIly3LUyjebrq4uHD58GKNH\nj8agQYPiHU5MKX13jVqKi6NSfirXbbQla93Wt3neyVw8LDrXZiBq3YqhApIkGRZDfVs9HC4HMuSM\nuByXdyxA7Os33Os2XvEmAiGET8OKkUlUXLrz1q5diyVLlmDVqlXIy8tDbW0tAGDFihUYMWIEli5d\n6rONJElBNctlZmYaVjl6bDZbSo7RGjRoUModt63vOor2cadi3cZKstWt5ZjnZ1s8j02SJFgsFsNi\nsByzQHIZW2YksQDxq99Qr9t4x2tmeo0tRopLEjVhwgS8//77Pq+vXLnS7zbR7KIjIiIiChVnLCci\nIiIKA5MoIiIiojAwiSIiIiIKA5MoIiIiojAwiSIiIiIKA5MoIiIiojAwiSIiIiIKA5MoIiIiojAw\niSIiIiIKA5MoIiJKSg2tDWhobYh3GJTEmEQREVFSau9uR3t3e7zDoCTGJIqIiIgoDEyiiIiIiMLA\nJIqIiIgoDEyiiIgo6TkcjniHQEmISRQRUZLg3Wj+OZ3OeIdASYhJFBFRkuDdaESxxSSKiIiIKAxM\nooiIiIjCwCSKiIiIKAxMooiIiIjCwCSKiIiIKAxMooiIiIjCwCSKiIiIKAxMooiIiIjCwCSKiIiI\nKAxMooiIiIjCwCSKiIiIKAxMokhjb2iAvYEPLyUiIgoGkyjSiPZ2iHY+vJSIjNPQ2oCGVv44o+TE\nJIqIiKKmvbsd7d38cUbJiUkUERERURiYRBERmQi7v4gSB5Mo8svhcMQ7BKKUE+/uLyZxvWTIrAfq\nF5Mo8svpdMY7BCKKsXgncWZhd9pZD9QvJlFEREREYWASRUREKYFDFMhoTKKIiCglcIgCGY1JFBER\nEVEYmEQRERERhYFJFBERpSxO6UCRYBJFFCN8wDOR+XBKB4oEkyiiGEm0BzzzTiYiosCYRBGRLt7J\nREQUGJMoIjIUuy2JKFWkxTsAMh/tCzA/P76BUELSuiyLiuIbCBFRlLElinwk2tgds2KLDBFRcgup\nJerqq6+GJEl+lz/77LMRB0SULNgiQ0SU3EJqiRowYAA++OADjBkzBmPHjsWHH36IAQMG4Oyzz8bZ\nZ58drRiJCGzZIiIym5Baoj777DN88MEHyM3NBQDU1NRg/vz5eOqpp6ISHBF9hS1bvhwOBzIyMuId\nBhGlqJBaotra2rQECgByc3PR1tZmeFBEqUBRlHiHkPCMmIaBLXzJg3ObUayF1BI1ZcoULFmyBNde\ney0AYN26dZgyZUpUAiNKdkKIeIdAYAtfMnE6nWyZpJgKqSXqmWeewbBhw3Dbbbfhtttuw7Bhw/DM\nM89EKzYKA39VExERxUZILVHZ2dl49NFHI97pgQMHUF1djS+//BKDBw9GbW0tiouLPdY5fPgwFi5c\nCEVR4HQ6MWnSJPzv//4v8vLyIt5/MuOvaiIygvpQ3qJ8fpYQ+RNSS1RTUxPmz5+PsrIyAMDu3bvx\n+OOPh7zTZcuW4YYbbsDevXuxfPlyVFdX+6wzYsQIbN++HXV1dfjkk09QUFCAe++9N+R9ERFR6Phg\nXqL+hZRELVu2DIsWLdLGckyePDnkuaHa2tqwa9cuLF68GABQVVWFpqYmHDp0yGO99PR0DBgwAADg\ncrlgs9kCzlFFREREFEshdee1trbiiiuuwOrVq3s3TktDWlpoT45pampCQUEBLJav8rfCwkI0NjZi\nzJgxHus6nU5Mnz4djY2NKC0txWuvvdZv+Xa7ParJlprQmZV6x1c4MXrfLSZcLu1ul66ursiDSzCR\n1KXe9t5/u1wuAMHXbaTxhCrcaz2WcfqLUa3TYOo21vXan0DxeL9Hvdcx4lj624dap0IIKIrS776C\njUlRFAgEV6Y/3teD+77V91swdWZELOEI5bp1Z7Zr2EyifQNPSBlQWlqaR0Dt7e1RDTA9PR0fffQR\nenp6UFNTg7Vr1+LOO+8MuM3+/fu1N0s0FBQUoKWlJWrlR6qoL+lpqK8Pe1tVd2endqyHDx+OOLZE\nE0ld6m3v/XdBQQGA4Os20nhCFe61Hss4+4sxmLqNdb32x5HbG0+9TjzqMpX3OoG2DXX//vahUqeX\n6G9fwcbkyHVAWAQcDkfY8XtfD+77Vt9v3teLXnxGxBKJUD9vjTjvyUqWZZ8GGiNJIoQsaPXq1di7\ndy+2bt2K//f//h/Wrl2LJUuW4Oabbw56h21tbRg/fjyOHz+utUYVFBRg+/btAQ90x44dWLp0KT7+\n+GPtNUUbM5wBAAAgAElEQVRR0NnZ6bGeLMtRb4mSZTlq5UdK6XsTWbwG6oeyrUpMmACHw4HDhw9j\n9OjRGDRokCExJopQ6lJpbu5d9/TT/W7v/bfD4cDBgweDrttIzm04wr3WYxmnvxi7urqCvm5jXa/9\nqW/rjad4mG886jKV9zqBtg11//72odatGCogSVK/+wo2pvq2ejhcDmTIGWHH7309uO9b/XHtfb3o\nxWdELOEI5bp1Z8R5T1ZCCJ+GlZycHI/esEiE1BJ1xx134MUXX4TVasVf//pX3H777bj88stD2uGw\nYcNQUVGB5557DtXV1di4cSNGjhzpk0A1NjZi2LBhGDRoEIQQePnll1FaWtpv+ZmZmYZVjh6bzYas\nrKyolR8pW9+xhxOjzbveZFl7Iw8aNMjUxx0NodSlrS+Zd1/Xe3vvv9U3drB1G8m5DUe413os4+wv\nxmDqNtb12h/LMf/xqMtU3usE2jbU/fvbh0qSJFgsln73FWxMlmMWSK7gyvTH+3pw37fa1RVMnRkR\nSyRC/bw14rwnK73GFiMFnUS5XC7cddddePjhh3HZZZdFtFO1BWvVqlXIy8tDbW0tAGDFihUYMWIE\nli5dij179uDuu++GJElQFAUVFRX45S9/GVT56jxJmbzNn2KAsyRTKuNUCJTKgk6iZFnGO++8Y8hO\nJ0yYgPfff9/n9ZUrV2r/nj9/PubPnx9W+ZwriWLJiEePECUqdRqEIvDzllJPSP1e3/3ud/Hggw+i\nubkZHR0d2n9kTpy9PDxsWeofry1PDa0NWouMWSVCjESJJqQxUffddx8A4Kc//SkkSYIQvQMLo3k3\nHIWPLXLh4fO3+sdry1MitMbEO0Z2+1EyCqol6tNPPwXQO0BL/c/lcmn/JyIi8zFTq2qqz4AebEtg\n+uB0NHc0xyAiMkJQSdSVV14JAPjGN74R1WCIiMg4HK9nHsEmkTbFBuspawwiIiME1Z3X3d2NDRs2\noLm5WXfW8AULFhgeWDLiXYNE/eP7hJIduzaTR1BJ1EMPPYS1a9eira3N54HDkiQxiQoSx5GYF7+4\nzSNZ3icOh4Nj60hXvMenkXGCSqIWLFiABQsW4NZbb8UTTzwR7ZiIYi6UL24mXBQM3qBAlPxCmuKA\nCRRRb8KlJV2U8sw0eJuIU1nEVvSej0JElAI4eJvMJNXvgow1JlExEs6vVX/b8JcvpRJe72R2bP1J\nXUyiYiScX6v+tuEvX0olvN4p3vpLktj6k7oiTqLq6uqMiMPUwnnEBR+LQUSUHPwlSWwlpYiTqJ/+\n9KdGxGFq4QwkToTBx0z0iIjCx1ZSijiJev31142IgwykyHJQyVEsEz0mbJSM2BJBlNo4JioZ2e2m\nawVLhJY5olCxJYIotYWURP3973/H9OnTMWTIEOTm5iInJwe5ubnRis3UzN6yosgyBD/giShFNLQ2\nwH7Krv2bd8tRLAQ1Y7nq+uuvx4MPPojp06dDluVoxZQQTP9oCrsdAoAU7ziIiGKgvbsdAzIHaP8m\nioWQkqjc3FwsXLgwWrEQEQWN45GIKN5C6s6rqqrCc889xw8vIoo7jkeiVMYuS3MIKYkqLi7GTTfd\nhEGDBkGWZVgslpTv1iMiosSSDAkIJ/g0h5CSqP/+7//G5s2b0d7ejo6ODnR2dqKjoyNasVEYhBDx\nDsEwZh+8T0SJiQkIGSWkMVH5+fmYM2dOtGIhAyRTEmX6wfsB2BsaIJxOSOnp8Q6FiIiiJKSWqAUL\nFuDJJ59Ea2srOjo6tP8o/thqYy6ivR1CUYJaV2lu5rkjIkpAIbVE/eQnPwEA3HLLLZAkCUIISJIE\nl8sVleDIP+8v3VSfyFKtj8wEbLWC1QphsSRkixsll4bWBjh7nEhPYwuqHnUcVVE+36vUK6QkSgny\nlzVFX6onTd4SuetPj8PhQEZGRtjbJ3RSSXHT3t0ORfBz3h91HFUR+L6iXkF357lcLkyaNCmasRBR\nn3Bv31e7dfmYHSKi6Au6JUqWZQwbNgx2ux2ZmZnRjCnpcF4tihUmTkREsRNSd964ceMwc+ZMXHLJ\nJcjOztZev+WWWwwPLJlwUkAyq0i7DYniheOTyAxCHhNVVlaG/fv3a69JUnI+nS2YMSWKLMPe0GD6\ncSepMj4mUc6HmTidTiZRFLLs7GycxMm4xsDxSWQGISVR69ati1YcphPUQGW7HcLlMvVgZkWWIbW2\n9s5XFMM4AyVuUWv9SIDzQRRvRrTg5OTk4KQzvkkUkRmElET19PTg8ccfx9tvvw0AmDt3Lm699Vak\npYVUTEJQp29IeHY7BIBoH4l30hQoCWXrB3lLlW7FQAlMrB5DoteCk+iPQCGKl5Cyn9tvvx0HDx7E\nTTfdBEmS8Mwzz+DIkSP45S9/Ga344iZpkqgYSbYpBlTsIgzMqK7iVEmsA3VBxfMxJMn4CBQZMrp7\nujnnFUVVSEnUu+++i927d8Ni6Z0Z4Xvf+x4qKiqiEhh5SpVxTabDLsKAkjV5psQgQ0ZDa4Nuy57d\naY9DRJRqQnrsixDCY8JNIURSPast1kKZ+oDz/hARebI77UnZikaJI6SWqHnz5uE73/kOlixZAgD4\n3e9+hwsvvDAacaWEVOnCoMSVKmOViOKFUzUktpCSqIcffhhPP/00XnvtNQDAwoULsXTp0qgElqqS\nrduOD9ZNbEz0zS1eX8AdSgd6lB5kWDyvDSYEoeNUDYktpCTKYrHgxhtvxI033hiteFJeso0xYRck\nUWQCJSbt3e3ITs/2eT3aOh2dUOD7jD0mBJRqQkqiTpw4gaeffhoHDx5ET0+P9vqzzz5reGBERNR/\nYhKPJIrip6G1AV2OLjh7nLzz0ARCSqIWLlyIYcOG4ZxzzoEsy9GKiSgkZnk2YTymQ0i27l+KH3VK\nAH/UFrH8rPxYhUQ62rvbccp5Kt5hUJ+QkqiWlhZs2bIlWrEQhcU0zyaMw3QIydb9S/HT35QAaotY\nOElUdno2ZzinpBTSFAdjx47FiRMnohVLVNkbGjjImYgoDtjlSMkqpJaozMxMVFRUYN68eRg4cKD2\n+mOPPWZ4YEaLxS/2aN8OrnYXIZ/N6URERPEWUhJVXFyM4uLiaMWS8KJ+O7jaXWTSJCoVH5Fib2iA\nKzsbHCFIqciIR6twLjJKZCElUStWrIhWHJQMUvARKaK9HRgwIN5hEMWFEY9W4VxklMhCGhNF0ROr\nMVscG0YUHepz3IgodTCJMolYPRuPz+Ajig4+x40o9QSVRH366afRjoOIiPrBB74TmUtQSdSVV14J\nAPjGN74R1WAoNSjNzexSJMNF2lVtlklbA2ESldjY5Zt8ghpY3t3djQ0bNqClpUV7+LC7BQsWGB5Y\nslPv6kJWVrxDiT2rFcJiicl0E5zR25yicV4incZEnbSVg5xJjxF3ItqddrjgCmtb3sVoTkElUQ89\n9BDWrl2L1tZWPP744x7LJElK6CQq2l+y/n7d8q6u6FLv+OGM3uZk1vOSqHeKJdIXbKAHKkdSprMn\nsicX9BeXEXciRiJRr81kF1QStWDBAixYsAC33nornnjiiWjHFFPR/jAP5ZEkiixD6u6GlM6HSlL/\n7A0NEE4nrxeK6AvWiAQkFP09UDncMhWhRFwGYGxcoUiE7mTyFdLdecmWQJmO3Q6hRPZBECptFvQU\nkiwfVqK9PebXCyUfIxKQWGpobUjKcUWmeQYohSSoliiLxQJJkvwud7nC6+ONhXgmCIosQ9jtkDMz\n4xaDP2orBk6dSrkJMtksTpS42rvb+Sw+Mo2gkqjOzk4IIfCLX/wCXV1duPHGGwEAa9euxaBBg0Le\n6YEDB1BdXY0vv/wSgwcPRm1trc/jZP7973/jhz/8Idra2pCWlobp06fjV7/6FQaEOI4oFnMiaYma\n9+NY7HbApL8u2IqRWJKp6y6ZjoWMEWrrcHZ6Nk46T0YpGqLgBdWdl5WVhezsbLz66qt48MEHccYZ\nZ+CMM87AAw88gFdeeSXknS5btgw33HAD9u7di+XLl6O6utpnnYEDB+JXv/oVPvvsM3z88cc4efIk\nHn744ZD3FQucwJKiLdKkN9Yz1QfqJmYCT97YlUWJKqQxUZ2dnWhtbdX+bm1tRWdnZ0g7bGtrw65d\nu7B48WIAQFVVFZqamnDo0CGP9caNG4fJkycD6L0DcNq0aTh8+HBI+yKKlkjGkhmR0GjdsUGKeaJv\ntxu6Pz6uiEJh9vm0go0vWcd/JZOQkqg77rgDU6ZMwbXXXotrr70W5eXluPPOO0PaYVNTEwoKCmCx\nfLXrwsJCNDY2+t3GZrPhmWeewUUXXRTSvvqTLAOMU1nczmEESYIRCU2qteb4qzNO3Go+RkwoGWny\nEChJidXdiIGOIdgkqr27PaJHCfE7LvqCGhOlWrZsGWbOnIl33nkHAHD77bfjrLPOikpgKqfTiUWL\nFmHevHlBzUdld7vDzWazQfH6orHZbNq/XS4XJLd1vSmK4lGGzWaDy+X66jUhPMoXfcvUbSEEhBDa\nwHvJKy4hhM/67vt16ZSnKAqEW9y6dN6g3sfivp7usr7jUd+EXV1d/vfnFZ9eWSr349Grc58yoX9u\nVB5167Z/j/ME3/PuXWZ/59h9fe9zL9R/ex+/17bedaLGLnT24R2jv/K969Lf9e6vLvXqwjs+3boK\n8L7yV2+Blvtc625l+nufulwuSFYrXABs+fke26nXa3/Xrfv+hJ/jDUStI0VRIOD/mLz35bde3OjW\nh/BdT/2M0bve9epVr3wBz88M93W9t9fqVABC8v0M6XZ1w6k4kW/L/6p8r89K7xjd41AUBcfsxwBA\nK8M7NrU8df3ecMRXn6kC2jG5fyYAwDH7MbiEC7Ii+/2O8D6f7nWkd471zqv3MXjEK3w/d11un7fq\ncfj7XPKOxX09721Svas02q2Skohxu2dbWxvGjx+P48ePa61RBQUF2L59O8aMGeOxbk9PDy699FLk\n5+dj7dq1PmUpiuLTnXjo0CEU9r3JGzIyUOSViTe43ZVVUFCAgUeO+LwOAOMVBT09PR5lNGRkoKCg\nAC0tLShyOJAuBJxudy12jxqFlpYWANCWuwoLYe87Tvd9FTkcsIwciYNHj3qsDwBOSfLYl/typySh\ne9QorSxvaWlpkHTeNGqZ7vXhvT/vunI/Hndn9A0I/o/bftzjU8tKGzQI6O5Gj9sl1pCR4VG3gbjX\nuz8FBQUAeuvWff/u58m7DPd61duX3jl239773FtGjoTS1ORz/N7b+qvfYGLUq1/v86e3D+/XvetS\nry6869Z7ufv7xns/erF601vufa27l+nvfVpQUIDszz/XfZ+GQt2ue9Qo3eMNRK2jI7YjEBYBSZGQ\n0eF7TCpHbu++1HX0lqnUddy3UU5T0OPq8Vhv5OCRsDgtaGlp8SnfPYZA5QuL59eApEi667nH4RRO\nj/UzOjK0stzrwZHrwMjBI9F0okl3/wUFBehQOnDi1AkoUHT37V1PannqvgBAWAQKcwtxtPGoR3xq\nLP7OlV69eB+Hex3pnWO989ozuAeKovjUc15GHuxOO9LldFh6LLApvYnXqKxRPmW5/9t9X96x9LdN\nKpNl2Se3yMnJ8egNi0RQSdRll12GF198EeXl5bpTHdTV1YW00zlz5qC6uhrV1dXYuHEjHnnkEXz4\n4Yce67hcLlx66aUYMmQIfvOb3+iWo5dEybIM8X//BwCwFBdDqa/3WG5xuwvQ5XJB2rfP53UA2nbu\nZViKi3u3OXoUOHas99e42we2mDABsix/tb3DAWXUKEg5OQDgsS+lvh5KQQHSBg/2WB8AkJGh7cu7\nPGRkQEyYoJWlS68Jt69Mj/rw2p93XYkJE+BwOHD48GGMHj1auxPTvT486qsvPq0st/JV3vUZSDDr\naS1R+/Z57F+tO70y3OvVe1+YOBFCiK+2dStT71gBQCkogKWl5avX8vI8rg91W+/67Rk7FgcPHsQE\nISBJUsAY+6tff/vwft27LvXqwrtuvZe7v280eXm95Z9+ut9683cs3nF4x+rvfer9uvt2XV1dPtet\nP+p2YsIE3eMNRK2jfcf3weFyIEPOQPEw32NS1bf17ktdR2+ZSl3HfZv61nrA6yO4IKsAOQNyIMuy\nT/nuMQQq3+HySiTkDN31AGB09mgcsh5Cj+jRYlGPWy3LvR7q2+pRkFWAFpvnl7l7jPuO7YNDcfjd\nt3c9qeWp+wIAh8uBUbmjMDhzMOpb6z3KKx5W7Pdc6dWL93G415HeOdY7r+q58q7nUbmj0HKyBQ7F\n4XGsE4b0ft7uO74P6enpmJQ/yaNc9315x+Jxjehsk8rce4NURiZRQXXn/ehHPwIA/OIXvzBkp2vX\nrsWSJUuwatUq5OXloba2FgCwYsUKjBgxAkuXLsWGDRvwxz/+EaWlpVryNnPmTKxZsyZg2ZmZmejq\nq5z09HQ4vSoqy+1ZdTabDehbnuX1DLtO9M6PlZWVBZvbOjabDejshCIEIEmeJ0KWtXJsFgsUSYIk\nSV9dxO7lWCwQkuSzPtz3a7P5LLdYLIAsa2V5UxQF0El0vY8FgMf+pNZWSC6X523nsqx9AQ0aNMgj\nFp+6dItP3Y97+aqsrCyPuvXm/hge9/34ezyP1nzuvf++utON1a1e3eNXy1HX9z4mvWMFANH3b+01\nr+vDu96+qt7e60LS24dXjP3Vr799BDpn/urCu271tvG5/vp+zASqN3/H4h2Hd6z+3qc2mw0K9N+n\nKvfr1h+tzvrOR3/re2zbV0cWiwWSy/8xqSzH9M+D+zKVuo7HNhJ8PvzVz5isrCyf8t1jCFS+5PL8\nzLBYLBB9yb339oMGDQKsACRAguc1qJblXg+WYxbtGtfbv81m8ynLex3velLLU/cFAJJL+ipendj8\nnSu9evE+Dvc60jvHuudVgm899MWoxud+rLLb5616HO7luu/LOxb39fS2SWV6jS1GCiqJuvnmm/HP\nf/4Tr776qiGJ1IQJE/D+++/7vL5y5Urt35dffjkuv/zyiPYTqC84FQfcBZqfRx2o7H9K1djw9xie\ncB7Pk4rnOFmodz/ywdHxoyZR3vyNdyRKRUElUSdOnMDRo0fxzjvvaBNvusvNzY1KcNFk9sF20UgA\nYpUomSV5Mfs5pgDs9ohn0j8jPR1KczMwfryBgVGgESBmn1qAyGhBJVGXXnopioqKcOrUKeT1jX2Q\nJEn7pWLmx74kqkROAGLVAmiWZM0o/rosQ+Gv9cDIfSSKdJvNtE8MSFZMoijVBDWyauXKlbDb7Zgx\nYwYURYGiKHC5XNr/k1UqPpw32oxMDhM50dRjyPxR/XyJcXZ9IiLjBJVEXXbZZQCA7du3RzUY0zF4\n1uVkFers2UbsL5jkVmluDikuJZsPNU01sb52VeG0oiZby2s8NHc06060GeoDjTmTOKmCSqL+r2/K\nAEpdgWaGjvXs2UG3plitIcUlmESlnHjN/B5OK2qytbzGg/WUFYrwPd+hJlGRziROySOoJCrQGAtK\nEVYrW+WIiIjcBDWwfM+ePRgyZIjP6+og1uPHjxsemJEUWYbU3Q0xcCBvmyZTYNehccw4drGhtQHZ\nadkpP0cPUbILKomaOHEi3njjjWjHEj12e++ThsK4bVpNwPTmViIKF7sODaS+r4PgcDiQEeJjYcLR\n3t2OAZkDglrXjGNrstOz0XGqI95hkJvmjmak2UJ63C3FQFBnZMCAARjV91wps+tqbPQ7oWRY+hIw\ndmj6Mtuv/0SUnZ0NnDwZ7zCSlkhP92h9djqdMUmiQmHGsTVMoszHespq2KNKyDhBnZFEmvtDnDgR\nl4Gi0RSvO4j6E8nt8oG6YIzunjFjd48qp++5irHm7w7HYO98TBSSzcaxfJTQZMimbK2kXkG1RH30\n0UfRjoMC8HcHUUJ3NQbqWg2heybifaUoLbHIz9d/PcIJP6MllSYLpeQQaQJkd9rhQvLOx5jo2DaY\nyOx207a6JVLrJRkrmuc+mNZPf/Mp2Rsa4LLboxEWkV+cDiG5MYnSwUntIsckiuLF33xKor2938fA\nBJoPjRJXQ2sD7KeYQJPxmETp4KR2FGuKLJty3BsQ3XFSRpVtWP0l0HxoMmTd2bfNpKG1IeQYo3Fc\n7d3tcCrmritKTEyiEhRbevyLZrdN1Ab5m7lr1qDn7Xm38CqyDKW11ZikRaf+3O9kMuvNGZGwO+26\ns2+bSXt3e8gxJsJxEamYRCWoZEuijOxCDabbJpKyzZrsmJ1PC2+UE0f3JIrnjYiigUlUggk003U0\nZsFWYvTFwy7U6Eq2pDvZmeW2drPEQWRWTKISTKCZrqMxC7YQondCSEpoZk+iOKDbk91pN8UdXWaJ\nIxKJMHaMEheTKC+8M8+X+4SQiTy2xHsQsxknljTzxKBRZfCA7kAtqGY878konEHl0cAxVhRNSZdE\niZ6eiLZnt1JgiTy2xHuAtFEDpg1lt4ccUzIlXkYl6YFa3oI970y2IhPOoHKiRJN8SVTfF7wiy5xY\nz4vZu3TCpTQ3J2zrmCHCSLzMykxJuimTbCIylaRLojR2e1AT6wmnM6l+yQeSrEkUrFbTfPFSckmV\nzwYiCk/yJlHBUL98I/glb+ZJEqMtaZOyFNRf11W8kom4j1FMoFa+uNcVxRzvnoy/1E6ijGDiSRKj\njUlUcGL15dbffgIl/P12XcUpmeAYxeAlY101tDYwSQggGe6eTHRMokwoVcdzJfKdf4E4nc6YHFu/\nX6JhJPzJOt4sUbrpzHKHW7wk+8N7vadfiNW8fGQcJlFmFMR4rniLxsSeoQwqTrREUz22cLp/45pc\nGjzeLB5dTrp1niDddKHc4dbc0ZzSCVci8p5+wV/rfnY65+ozq5RMovw9Wy2az1xLNurEnnEbE5YA\niaauMFqDzHTHmircrty4dDnFsMs9nmNUrKescZ1SIBXHZDV3NOOz/3wW9eSVSZR5pWQS5e/ZatF8\n5lrSiuEXVKJ0waQCjofT5z1GJdTEIpG/LKORIJv9OrOesmrJKwd5p6aUTKLiIdHGlpipu0z7IkqQ\nLhhvoZ57JTs7Jo9BMcs57q9rONHeO+5CTSyikUQlcguR2ZModxzknZqYRMVKos1lFOfuMvduwoS/\n6yjAuR/U0QF4zbIvsrO1x6BEdTxUiOc4Wi2B/T7zMdHeOyZjpvcPn2NHySblkqhIxvAk8i86Mwr4\npZwiU0fInZ1AgOM01XioKLcEpvKca6mCz7GLHnYnxkfKJVGRfDkH+kUXjbvVkl6Cds+FIpmvC8OT\nHhMlznotgPwRZRx+4RuP3YnxkXpJVJS4d0mYfb4j/uIPTSTdWP12VSUyEyU9RtNrAYx1t1gyd33x\nC99YemPHmPTHBpMog9kbGqC0tpr7y8VkX37BTC0R1wGmKdBiRvGllzCx64uCpff5aKaxcMmMSZTB\nTDWGJUEEM7VEtJKoUFqZ+MvOHJJxqgsmTESJKS3eAURbIt0iGy9KdjYsJ0/GO4z4sNvhAiAF8ast\n2X/ZKbIMqbsbUnp6wHWE3Q4pyDLVZCezqMiACNVC7RAuF5Cfb1yZwe46GscTZc0dzUizhf9Rz/FL\nRP4lfUsUk6j+JfW4nWCYrHvTaEG3oAVTDyFOi9Dvg40TTCIej/WUNaLxRxy/RORf0idRZBwOSE88\n9oYGdFutMdsfuzwp2STSNZ3MNyOYFZMoCl6St9gkI73xZtFMhuPd5RnuLOyRzN7OB/8mt3hf06Hg\n2LrYYxJFAIzr9jTLo0SSlSHzTkUpGTbFuQ93pv0IZuj3fvAvWwP0hfoZk8jPEaTUwSSKABg4dizO\nj4tJdqYev5Yi576/uwPZGqCPSRQlIyZRSYBjlSgSiTTmI1486ojzhhFRHyZRySCBxyoxAfQvVnWT\nSGM+4oV1lBo4nQOFKunniSKTs9sRj0kozP5oHgAR140675MZJHJrl5KdzV+bJhSN6WvsTjtccBle\nLiUvfjZQUgm29SYlZpY3UQtlIrfkmHocWgozOoninIIUDrZExVmyPb7CaKHOkO2v9cZ7Nm5+YBIl\nDrWLrSg/ejPF8zOBwsGWqDhLxBmQY8qoO768WmX4gUmRSNTn9yXq9Avt3e2cNZ1MiUkUEVGoEvQO\nvWhNvyBDhv0U54ej1MMkKsYS9RcsUah452XqsDvtcCqhnWveCUfJgGOiYk19Aj0lPDPd/WZKfePT\ngh7PFoKQx8q5YVeuOah3wuVn5cc7FKKwsSWKPLD1IAQmuvst5UQwVo5JFBEZhUkUeWJiQJR0EnVA\nOZHZsTuPiCjJ2Z0c9E0UDXFpiTpw4ABmzpyJiRMnorKyEvX19T7r2Gw2zJs3D8OGDcOQIUPiEGXs\nmL0LbVBHB9DTE3E5CictJBMx6/uO3Y1EiSMuSdSyZctwww03YO/evVi+fDmqq6t91klPT8ePf/xj\nbN26NQ4RxpjJu9Dkzk7AgPg48zOZiknfd0yiQpOsXZUNrQ0+x5Wsx5rIYp5EtbW1YdeuXVi8eDEA\noKqqCk1NTTh06JDHehkZGZg1axby8vJiHSIlMUWW4bKza6M/ifysO0ot0Zr7Kpb05tlq7273Oa5k\nONZkE/MkqqmpCQUFBbBYvtp1YWEhGhsbYx0KpaII7upSmptN0f0TiwQnkZ91Z0YNrQ0RzYnEySzN\nIxqtQe7zbLl/N5L5Jd/AciF6/0Nvs7ikvuazmucypa9ZXwgBl8vls52iKNr8TpKi+JSpbee1TK88\n930pOmW5b2ez2TzW8Rdff8er7jOYunB/XXG5vsq0vY7LqLrV9hWgLtRt3I8j3LoIdLyuvnPsXe+K\nogBWq+4cX+6xe9dzNOq2u7vb5zpTr08Jvue6v/K8r1uPa91P7HrnVz0ngd47gO/7x1987scUq7r1\nV38unfe+dlwCEDpPbBRCoNnaDHQA1lNWj2Xqe1srB1/tS688m9MGh8sBCLf3E7zi69tOURStbJef\n+NzXcd+/e+zu22l1opbZGwCEJHS30YvRXxz+YlS3cd+3+r70V54Qove4ApTnfkx65bnHrsbnXkc2\nZ0B7yIYAABNSSURBVG+9yYrssx/3evWOXS0zUOwulwsWyaJ9pvRXf+o+9eJw/yxLZdHuHo95EjVy\n5Ei0tLRAURQt425sbERhYaEh5Qu3JEpRFEBRIPlLKtyWOft+3VsUBfbOTmR7bed0ONDd2QkAGOhw\nIF3vA//zzyE7nR7bKTrlue+rR6cs9+1aWlpQ5LaOXnn+jsmd0+FAWlpaUHXhEYPdjmz4XohG1q26\nTaC6UMtTy0rv+5AJpy4CHm/fOfau9/7qT43dPb5+9xVm3do7O32uQfX6zFYU9PTdBNBfDP7Kc7/W\ng6lb73PivS/38gDf94+/+NyPyfvcR6tu4af+7DrvfTU+7UvYuzyhoL2rHT0u35syOvve2wDgyHVA\nWIS2TaDyFEXRynPfptMtDofDod2sU1BQoFue+zru+/fel7qd2vqZOzAX9r7ucNH7za27jbp+f8fl\ncDg8Yg90vABQX18PR64DSqZ+eYpQUF9fD+U0/+W5H5Neee6xq/E5HL515HA4kCaneezHvV6V076K\nfVDGIHT3dPcmZn7qQhGKVrdqS3Aw14W/ODrdPstSmSzLGDNmTNTKj3kSNWzYMFRUVOC5555DdXU1\nNm7ciJEjR/o9SNH36zZYkiRBknrnMbZYLL2JmuQ7r7H3soyMDACAYrEgJycHktd2GRkZSM/J6d1H\nRgbg1aVisVhgsdl6Ezi37Sw65bnvK02nLPftBg8eDKW+XltHrzx/x+RO3WcwdeH+emZmZt9mwe8r\n1LpVtwlUF2p52nE4HGHXRaDjzek7x9713l/9qbG7x9ffvsKt25ycHJ9rUL0+JYsl6Bj8ledxrQdR\nt97nxHtf7uUBvu8ff/G5H5P3uQ+0XaTXrd5+cnJygKNHe2Ppa11Q47M4LJAUnfKkvvLkDJ9l6nsb\nAOrb6ntbmdy2CaY8921y3OLIyMhAcXExgN5WI7343Ndx37/3vtTt1Do5bdBpyEzLBLoBCZLHdPTu\n26jr93dcGRkZHrH3V3/FxcWob6v3W55FsvSu01rvtzz3Y9Irzz12Nb4MZ4ZPHWVkZAACHvvJGpiF\nzJxMnJ57Oupb67XYu1xd6K0uKWDsmZm9dZueng5JkoK6LvTiUOMGoF1nqcq9JTka4tKdt3btWixZ\nsgSrVq1CXl4eamtrAQArVqzAiBEjsHTpUgDAlClT8OWXX6KzsxOFhYWYPXs21q9fH7hwSdI+ILUP\nUJ0PTO9laquYkCTIsgzFazuLxQLIsvoHFK8y/e1L0isvPR1SdzckSYJFpyz37bKysmBzW0e3vH5i\nUONXFCWouvCOQXz1QlD7CrVu1W0C1YVanlqW0pcsh1MX/R0vAJ9676/+1Njd4wtmX+HUrSzLPteg\nen0qQNAx+CvP/VoPpm69z4n3vjzeO70veMTuLz73Y/I+94G2i/S61duPLMtQrFaPH0nacfV9OeqW\nJ31VngwZ3T3dSE9L197bAGA5ZoHkkjy2CaY8921ktzgsFotWts1m0y0v3ZKOVlsrivKLPPbvvS91\nO22fbu8R73Ldt9GLUS8Oi8XiEXug4wV635eWYxa/5UmS1HvsAcpzPya98txjV+OzWHzrSP1McN+P\n+igbNQbveghUF+51myFnoLunW1sn0HWhF4dWr311lsoURdFa5aIhLknUhAkT8P777/u8vnLlSo+/\nP/7441iFFFt9zxQjotRhpgkv1S/7IhTFOxTSYXPadBMmMh/eBkBEUcVpJShVcV6n5Jd8d+cRkblE\nMK0ERVcizQcmQ45omoh4MFPrI0UHkygiohSVSPOBqV2QRGbCJIrIi9LcDHsa3xpEZqMOzicyC46J\nIvJmtUK0t8c7irCZ9cG6RJEy02NPstP5LFBiEkWUcPp9/IxJH6xLvfjlmxx4HglgEpUylGy+4ZOG\n1ZoSSZL3XX3J0sLGL1+i5MEkKkUIJlExkSxf9KGI2jF739XHFraEwVv7KVVw9CyRkVJxItVUPGYK\niLf2U6pgSxQREZFBEnE+Kwofkygioijy17WVSBNdUvDsTjvau2N3dy/H2MUXkygTU5qbYW/gLxqi\nWDJ6jJe/2/ITaaLLeOL4qsCYRMUXx0SZmdUKYUmdPFcIjqyJB6W5GRK/0L+SBGO81O6k/Kz8OEcS\nOY6vIjNLnW9oMj0mUXGSIlMmpJL27vaYdikRpSomURR1qXjbPxERJT9251H0JUH3CBERkTe2RBEF\ngTO+k1lwoDWReTCJIgoCZ3wnszDyIbzNHc1MyKKAd8ylDiZRREQpynrKalhCFg6zJxvhxmf24yLj\nMIkiIqK4MHuyYfb4KP6YRBERERGFgUlUnHFupOTA8xgcpbmZ010QRZkMGfZTnKQ0FphExRm/fJMD\nz2OQOLEnUdTZnXY4Ff5YiQUmUURJgFMwEBHFHpMooiTAKRiIejkcjniHQCmESRQlFD5ChogCcfLz\ngWKIj32hxMJHyBARkUmwJYqIiFJSQ2sDZ2yniLAliogoDpo7mpFm40dwPLV3t8d1xnZKfHwHExHF\ngfWUFRYLOwOIEhnfwURERERhYBIVIs64TERERACTqNBxxmUiIiICkygiIiKisDCJIiIiIgoDkygi\noiQiQw5q7qPsdD4qiChSTKKIiJKI3WkPau4jJlFEkWMSRUQeFFmGy26PdxhERKbHJIqIPNntAKfx\noBQVbHcoEcAkioiIUpC/ZCnY7lAigI99ISKiFGR3ssuaIseWKCIiIqIwMIkiIkpCMmTYT7G1hSia\nmEQRESUhu9MOp8IB0kTRxCSKiIiIKAxMooiIiIjCwCSKiIiIKAxMooiIiIjCwCSKiIiIKAxMooiI\niIjCwCSKiIiIKAxMooiIiIjCwCSKiIiIKAxxSaIOHDiAmTNnYuLEiaisrER9fb3uen/+859RXFyM\niRMnYuHChTh58mSMIyUiIiLSF5ckatmyZbjhhhuwd+9eLF++HNXV1T7r2Gw2XHfddXjttdewd+9e\nFBQU4L777otDtERERES+0mK9w7a2NuzatQtvv/02AKCqqgo333wzDh06hDFjxmjrvfnmm6ioqMD4\n8eMBADfddBO+853v4JFHHtHWEUL4lC9k+at/A4AsA4riu57XMmGxaK8LIXrLcdtOWCyAzuv97ctf\necHGJyTJ47giLS/U2CFEbxxCAH2xRFKekbFHszy9emfdmqe8/vYVi7pVPxNkSYYi+ZYHwO8y0bed\n1BebLMn9bhNMeXrLwinPe5lF+ur3trovAQEJkt9t4hV7NMqzSBaPcxRJecHEbmTdKjrXeirRO369\n3CFckjCytCDU1dVh8eLFHl14lZWVePjhhzFr1izttcceewz79+/HU089BQDo6upCbm4uTp06BUtf\nwtPT0wObzRbL8ImIiCiBZWVlIS3NmDYkDiwnIiIiCkPMk6iRI0eipaXFo4mtsbERhYWFHusVFhbi\n8OHD2t8NDQ0oKCjQWqGIiIiI4inmGcmwYcNQUVGB5557DgCwceNGjBw50mM8FADMmzcPH330Efbt\n2wcAeOqpp7Bo0aJYh0tERESkK+ZjogBg3759WLJkCY4dO4a8vDzU1tZi0qRJWLFiBUaMGIGlS5cC\n6J3i4M4774TL5cLkyZOxfv165OTkaOUoiuIzaEySJG2wJhEREaUuIYTPQHKLxWJYr1ZckigiIiKi\nRMcBRkRERERhSIokKtgZ0MnXrbfeiqKiIlgsFuzZs0d7va2tDRdeeCEmTJiA0tJSbNu2TVvW1dWF\nyy+/HOPHj8eZZ56JTZs2xSN00zt16hQuvvhinHnmmSgvL8fcuXNx8OBBAKxfI8ydOxdlZWUoLy/H\n+eefj927dwNg3Rpl3bp1sFgseO211wCwXo0yevRoFBcXo7y8HBUVFXj55ZcBsH4j5XA4UFNTgwkT\nJmDKlCm46qqrAMSgXkUSmDNnjvjd734nhBBi48aNYtq0aXGOKHFs27ZNfP7556KoqEh8/PHH2uvX\nXHONWLlypRBCiJ07d4ozzjhD9PT0CCGEuO+++8TVV18thBCioaFB5Ofni+PHj8c+eJPr7u4Wb775\npvb3k08+KWbNmiWEEOLqq69m/UbIarVq/3711VfFlClThBCsWyMcPnxYnHvuueLcc88VmzdvFkLw\nM8EoRUVFYs+ePT6vs34jc9ttt4lbbrlF+/vo0aNCiOjXa8InUa2trSIvL0+4XC7tteHDh4uDBw/G\nMarEM3r0aI8kKjs7W7sIhRCisrJSbN26VQghxFlnnSV27NihLfvBD34gfvvb38Yu2AT1r3/9SxQV\nFQkhWL9GW7dunaioqBBCsG4jpSiKuOCCC0RdXZ2YNWuWlkSxXo3h/VmrYv2Gz2azidzcXNHZ2emz\nLNr1GvPHvhitqanJZ/6owsJCNDY2+kybQME5fvw4enp6kJ+fr702atQoNDY2Auid12vUqFG6y8i/\nJ554AhdddBHr10DV1dV45513IEkS3njjDdatAR577DF885vfRHl5ufYa69VYV155JQBg+vTpeOih\nhyBJEus3AgcPHsSQIUPw4IMPYsuWLcjMzMSKFStQVlYW9XpNijFRRGa3atUqHDx4EKtWrYp3KEll\n/fr1aGxsxAMPPIDly5cDMPa5WKnm008/xaZNm3D33XfHO5SktW3bNnz88ceoq6vD0KFDUV1dDYDX\nbSR6enpw5MgRTJ48GTt37sQTTzyBRYsWoaenJ+r1mvBJVLAzoFPwhgwZgrS0NLS2tmqvHT58WKvT\nUaNG4ciRI7rLyNfPf/5z/PGPf8Rf/vIXDBw4kPUbBVdeeSXeffddAEB6ejrrNkzbtm3DkSNHMH78\neBQVFeGDDz7A0qVL8Yc//IHXrEHOOOMMAIAsy7jtttuwbds2fiZEqLCwELIs4/LLLwcAlJWVYfTo\n0fjkk0+i/3kQTv+j2cyePVvU1tYKIYR4+eWXObA8DN799Ff///buHrSpNY7j+C/tLQiVgG9YUEFs\na63tOT0ntql10HaoFXQIFNFBlKqgxcnVKYJLh0yC1EWyiCC1RYUuDm1w8oUgRYWojQZKcbFGNDpo\n+N+hcKBXHe5pvH253890cp48eZ7zH8IvT56TDAxYMpk0M7PHjx8v2IyXTCaDzXj5fN42b95sHz58\n+O8nvQKkUinbs2ePFYvFBeep7+IUi0WbnZ0NHo+Njdm2bdvMjNpWUnd3t927d8/MqGsllEqlBe8F\nqVTKDhw4YGbUd7H6+vpsfHzczOZrtGnTJpudnf3jdV0VISqXy1lXV5ft3LnTOjo67Pnz50s9pRXj\n3LlztnXrVqupqbG6ujprbGw0s/k7Gw4ePGiNjY3W2tpqmUwm6FMqlezYsWNWX19vTU1NNjIyslTT\nX9ZmZmYsEolYQ0OD+b5vnufZ3r17zYz6LlahULB4PG6u61pbW5v19vYGHwKobeX09PQEG8up6+Ll\n83nzfd/a2trMdV1LJBJWKBTMjPouVj6ft56eHnMcxzzPs7GxMTP783XlF8sBAABCWPF7ogAAAJYC\nIQoAACAEQhQAAEAIhCgAAIAQCFEAAAAhEKIAAABCIEQBAACEQIgCAAAIgRAFYFkol8u6fPmympub\n5bquYrGYzp8/r7t378r3/YqOVSgUdP369Yq+JoD/H0IUgGXh9OnTymazevTokaamppTNZtXb26u5\nuTlFIpGKjvX27VsNDw+H6lsulys6FwArFyEKwJKbnp7WnTt3lE6nFY1Gg/P9/f3asWOHvn//rgsX\nLsjzPDmOo2w2K2k+0Bw6dEjxeFyO4+jEiRP69u2bJCmTychxHJ06dUqO46ijo0NTU1OSpMHBQb16\n9UqxWEyJREKS9ObNGx05ckSdnZ3yPE/Xrl0L5lFVVaVkMql4PK5Lly79V2UBsNxV6L//ACC027dv\nm+d5v2ybnJy0mpoae/LkiZmZDQ8PW19fX9A+NzcXHA8ODtrQ0FDQr6qqyiYmJoIxdu3aFbT5vh/0\nK5fL1t7ebrlczszMvn79aq7r2tOnT83MLBKJ2JUrVyp0tQBWC1aiACx7DQ0Nam9vlyR1dXUpn89L\nksxMqVRKsVhMrutqfHxcz549C/pt375d3d3dkqSjR4/q/fv3mpmZ+en1c7mcXrx4oePHj8v3fe3b\nt09fvnzRy5cvg+cMDAz8wSsEsBL9tdQTAIBYLKbXr1/r48ePWrdu3U/ta9asCY6rq6v148cPSdLN\nmzc1OTmphw8fqra2VlevXtXExMRvx4lEIr/cX2Vm2rBhQ/A14a/6rV279t9eFoBVjpUoAEuuvr5e\n/f39OnPmjD59+hScHx0dDVadfqVYLGrjxo2qra3V58+flU6nF7S/e/dOmUxGkjQyMqK6ujpt2bJF\n0Wh0wThNTU2KRqML+k9PT6tYLEqaD1kA8E+EKADLwo0bN+S6rjo7O+U4jlpaWvTgwQOtX7/+t31O\nnjypUqmk5uZmHT58WPv371/Qvnv3bqXTabmuq6GhId26dUuS5LquWlpa5DiOEomEqqurdf/+fY2O\njsrzPLW2turs2bPBJvVK3x0IYHWIGB+xAKxCmUxGFy9e/O1XdACwWKxEAQAAhMBKFAAAQAisRAEA\nAIRAiAIAAAiBEAUAABACIQoAACAEQhQAAEAIhCgAAIAQCFEAAAAhEKIAAABCIEQBAACE8DeCfcVO\n/M/FmAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f9df5275940>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"freq_plot(dfTfidf, 1, 'Chapter frequency of the bi-gram \"it was\"')"
]
},
{
"cell_type": "code",
"execution_count": 669,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAF5CAYAAAC/a38YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xt4FNX9P/D37CYBckUwSIpE7iGQ6woJSqtAtaDyUHyC\nFUUJKAJeUGurvz7abwEfpVJLqcVW/H4thCJVFLBQL7VigVJtEQmIVRpICCSWYCLkxm4gyc75/RF2\n2PvuzM7uzibv1/PwkMyZOefM2dndT845c0YSQggQERERkSqmaFeAiIiIKBYxiCIiIiLSgEEUERER\nkQYMooiIiIg0YBBFREREpAGDKCIiIiINGEQRERERacAgioiIiEgDBlFEREREGjCIIgqC3W7H8uXL\nkZ2djby8PFgsFixevBgtLS3Ys2cPCgsLdS3v5MmTePnll3XLb9++fcjLy8PVV1+NDz74QLd8Y9HL\nL7+M7OxsWCwWNDY2uqRt374dn3zyifK7Xq/t5MmTsWPHDq9p9913H/bs2RNyGeGyfPlybNiwARs2\nbMDy5csBAJ999hk2b97ssp/JZEJLS4vq/IcOHQqgq41qampCrzBRBDGIIgrCPffcg/Lycuzbtw+H\nDx9GeXk5brzxRpw9exYAIEmSruVVV1dj7dq1mo612+0e2zZs2IA5c+bgwIEDuPHGGwPu35298MIL\nKCsrQ3l5OS677DKXtD/96U/45z//6bJN79fW3f/93//h+uuvDykPIQTC+QQvRxs4/j948CBef/11\nr/tozZsoFjGIIgqgqqoKW7duRVlZGVJTU5XtJSUlGDJkCACgo6MDDz74IAoKCpCbm4vy8nIAXQHK\ntGnTUFRUhNzcXNx1111oa2sD0NXLkZubi9LSUuTm5mL8+PE4fPgwAOD+++/H0aNHYbFYMHPmTABA\nZWUlpk+fjuLiYhQUFOB3v/udUheTyYRly5ahqKgITz75pEv9V65cic2bN2PNmjWwWCxobm7G0KFD\n8ZOf/ATFxcWYN28eAODVV1/FhAkTMG7cOEyaNEmpS2dnJx544AGMGjUKEyZMwI9//GNMnjxZOQfn\nnpovvvhC6VkAgL/+9a/4zne+g/Hjx2PChAnYvXu3y7l7azMAeOedd1BUVISCggJYLBbs378fq1at\nwqJFi5R9mpubkZ6ejqamJo/X7NNPP8XEiRORn5+PCRMmKIHRbbfdhuPHj2PevHn4wQ9+4HLMe++9\nhx07duCXv/wlLBYL1q1b5/e19Xd+3uzcuRNFRUUYNWoUfvzjHyvb/fVSnT59GlOnTkVOTg6mTZuG\nO+64A08//TSArh6iWbNmYdq0acjNzcXp06fx+OOPo7i4GBaLBZMmTcKxY8eUvEwmE1asWIEJEyZg\n2LBh2L59O5577jmMHz8eWVlZ+Pvf/+61DikpKejTpw8SExORnJyMhoYGLF26FLt374bFYsEDDzwA\noCuQ++1vf4vi4mIMHz4cZWVlSh7+rt309HQAQP/+/WE2m322H5EhCSLy64033hAFBQU+03fv3i3i\n4+PF/v37hRBCrF27VkydOlVJP3v2rPLz/fffL1auXKkcZzKZxK5du5RyRo8eraQVFhYqx9ntdjFu\n3DhRUVEhhBDCZrOJvLw88emnnwohhJAkSTzzzDM+6zhv3jzxwgsvKL8PGTJE3HfffcrvH330kbj5\n5ptFe3u7EEKIvXv3irFjxwohhHjxxRfFDTfcIDo7O0VHR4eYPHmymDx5std6/vvf/xZDhw4VQghx\n/Phxcc0114jW1lYhhBCVlZUiIyNDtLe3+22ziooKMWDAAHH06FEhhBCdnZ2ipaVFNDU1iSuuuEI0\nNzcLIYRYvXq1WLBggce5tre3i8zMTPHBBx8IIYT4xz/+IQYOHCisVqty7ocPHw6qnfzV09/5uZs0\naZK44YYbhN1uFzabTYwbN0689tprStr27du91ue2224Ty5YtE0IIcfr0aTFw4ECxfPlyIYQQy5Yt\nE4MGDRINDQ3K/t98843y8+uvvy6mTZum/C5JklizZo0QQogPP/xQJCcniz/84Q9CCCHefPNNMX78\neK918KasrEzceuutLtskSRKrV68WQgjxn//8R6SkpAi73R7w2iWKZXHRDuKIuoMRI0Zg3LhxAIBr\nrrkGq1atAtD11/mqVavw7rvvorOzEy0tLbj22muV44YMGYJJkyYB6OolWbhwIb766iuP/CsqKvDF\nF19g9uzZyrDNuXPn8OWXX+Lqq68GAMyfP19VnR09UEDXXKDDhw+juLhYyb+pqQkXLlzA3/72N8yd\nO1fpJbjnnnuUXhp//vKXv6CqqgrXXXedkmdcXJwy78VXm+3cuRM33XQTRo4cCQAwm81ISUkBAMya\nNQvr1q3Do48+ipdeeglvvPGG17Yym8244YYbAAATJ07EFVdcgUOHDiltL1QMffmqp7/zGz58uEc+\nc+fOhclkQp8+fXDXXXdh586dmD17tt+yP/zwQ6W8K664AtOnT3dJv/nmm3H55Zcrv7///vt48cUX\n0draClmWPeZ8OXrfxo0bB5vNhttvvx0AUFRUhMrKyqDbxJc777wTAJCVlYX4+HicPn0azc3NAa9d\noljFIIooAIvFgmPHjqGxsdFjDo1D7969lZ/NZjM6OzsBAJs2bcLu3buxd+9eJCUlYc2aNdi1a5fP\nsiRJ8jpHRAiB/v37uwwluR+XnJys5rRc9hdCoLS0FM8880zA45zrFxcX5zKn6vz58y553njjjXj1\n1Vc98vjqq698tpk/S5YswYwZMzB69GgMGDAA+fn5AY9xr7Navurp7/y01Km5uRmTJk2CJEkYOnQo\ntm7dGvAY59ewtrYWS5YswYEDBzBkyBB8/vnnLnOtJElSzsURECckJHicl1bO+QNdw4ednZ0Br12i\nWMY5UUQBDB8+HCUlJbj33nvR3NysbN+2bRtOnDjh99impiZcfvnlSEpKQmtrq8s8EQA4ceKEcmfW\nli1bMHDgQAwaNAipqakuZWVlZSE1NdXl+KqqKmU+kJqeFW9mzJiBV199FbW1tUp+Bw4cAADccMMN\nePXVV9HZ2Yn29nasX79eOW7YsGE4efIkzpw5AwDYuHGjkjZ16lTs3LkTn3/+ubJt//79AesydepU\nvP/++zh69CgAKD14QFc7DBs2DAsXLsSSJUu8Hp+VlQVZlvHhhx8CAD7++GN8/fXXKCgoCFi2e7sH\nqqea83O0YVtbG/74xz96TPBPS0vDwYMHUV5ergRQ3/3ud5X2/vrrr/H222/7zL+5uRkJCQkYOHAg\nhBBYs2aNS7r7NRLod3+8tZOv431du+69ZESxiEEUURDWrVuHvLw8FBcXIzc3F2PHjsUHH3yAfv36\n+T1u7ty5sFqtyM7Oxi233ILrrrvOJX3MmDEoKytDXl4eVq5ciddeew0AkJeXh7FjxyI3NxczZ86E\n2WzGn//8Z2zbtg0FBQXIycnBggULlEnqgXpa3NPdf//2t7+NX/ziF7j11ltRWFiInJwc5Rb2++67\nDyNGjMCYMWNw3XXXuUwkz8jIwBNPPIHx48fj2muvRf/+/ZW04cOH449//CMWLVqEwsJCjB07Fi+8\n8ILfejqOW79+PebMmYOCggJMmDBBCagc9bHb7SgpKfF6fHx8PLZt24af/exnKCgowGOPPYatW7ci\nMTExYFvdfffd2Lx5M66++uqAQ5Zqzk+SJGRnZyuT3a+//nplaM1ffX7961/jH//4B3JycnD33Xdj\nwoQJ6Nu3r9d9c3JyMHv2bIwZMwbFxcXKTQ/OdVDzuz/f/e53ceHCBRQUFCgTy33lZzab8fbbb3tc\nu869lkSxShKh/glLRJrs2bMHP/zhD2NumOOdd97BqlWr8Le//S0q5S9ZsgQDBw7EU089FZXyI+n8\n+fOIj4+H2WzG2bNnMWHCBGzatAnjx4+PdtWICJwTRUQxoq6uDlOmTEH//v3x/vvvR7s6EXHs2DHM\nnTsXQgh0dHTgoYceYgBFZCBR6YmqrKxEaWkpvvnmG/Tt2xdlZWXIzs522efkyZMYPnw48vLyIISA\nJEnYunWryxo0RERERNESlZ6oRYsWYfHixbj77ruxdetWlJaWujxqwSE1NTXmhjqIiIioZ4h4T1RD\nQwNGjhyJs2fPwmTqmteekZGBjz76CMOGDVP2O3nyJAoKCvzewSHLMmRZdtnm6xZxIiIi6lmEl0ci\nmUwmJf4IVcR7ompra5GRkeFyApmZmaipqXEJogDAZrNh/PjxEELg+9//Pn7605+6BEiyLMNqtUas\n7kRERBTbkpKSdAuiDLvEwbe+9S3897//xf79+7Fz507s3btXWbmXiIiIKNoiHkQNHjwYdXV1LsNw\nNTU1yMzMdNkvPj5eeZxB3759cc8992Dv3r0RrSsRERGRLxEPotLT02GxWJSVjbds2YLBgwd7DOU1\nNDQojyG4cOECtm3b5rLIHxEREVE0RWWJg6NHj2LevHk4c+YM0tLSUFZWhjFjxmDp0qUYNGgQFi5c\niLfeegs/+9nPEBcXh87OTkyZMgW//OUvER8fr+Rjt9tx7tw5l7z1HOukrnlpx44dw8iRI5UVn0kf\nbNvwYduGD9s2fNi2+vM2dzo5OVl5fmSoorLEwahRo/Dxxx97bF++fLny86233opbb73Vbz7e7sLT\nc9Y9dbWx3W6HJElsV52xbcOHbRs+bNvwYdtGhp538PNVIiIiItKAQRQRERGRBgyiiIiIiDRgEEVE\nRESkAYMoIiIiIg0YRBERERFpEJUlDoiIiMiVfOoUhra3Qz5yBFYdlziQLrsMiUOHBtzPbrfjmWee\nweuvv474+HjExcWhqKgIN910E5YtW4aDBw/qVqfugkEUERGRETQ3o//Eibpnaz1wAAgiiLrnnnvQ\n1NSEffv2ITU1FQCwdetWnD17Vte1lboTDucRERH1cFVVVdi6dSvKysqUAAoASkpKXB7LZrfbMW3a\nNBQVFSE3Nxd33XUX2traAAB79uxBbm4uHnzwQRQUFCA3Nxfl5eXKse+88w6KiopQUFAAi8WC/fv3\nY9WqVVi0aJGyT3NzM9LT09HU1BSBsw4dgygiIqIerry8HCNHjsRll13mdz+z2YzXXnsNn3zyCT7/\n/HOkpqZizZo1SnpFRQXmz5+PQ4cO4aGHHsKTTz4JoOtxb/fccw82bdqEQ4cOYf/+/Rg9ejQWLFiA\n7du3o6WlBQCwfv16zJw5E3379g3fyeqIQRQREREFRQiBVatWwWKxIC8vD++++y4OHTqkpI8YMQLj\nxo0DAFxzzTU4fvw4AGDnzp246aabMHLkSABdwVhKSgrS0tIwa9YsrFu3DgDw0ksv4aGHHorwWWnH\nOVFEREQ9nMViwbFjx9DY2Oi3N2rTpk3YvXs39u7di6SkJKxZswa7du1S0nv37q38bDab0dnZGbDs\nJUuWYMaMGRg9ejQGDBiA/Pz80E4mgtgTRURE1MMNHz4cJSUluPfee9Hc3Kxs37Ztm9KbBABNTU24\n/PLLkZSUhNbWVpSVlQWV/9SpU/H+++/j6NGjAIDOzk5lCC8rKwvDhg3DwoULsWTJEv1OKgIYRBER\nERHWrVuHvLw8FBcXIzc3F2PHjsUHH3yAfv36KfvMnTsXVqsV2dnZuOWWW3DdddcFlffw4cOxfv16\nzJkzBwUFBZgwYYISUAHAfffdB7vdjpKSEt3PK5wkIYSIdiW0kmUZra2tLttSUlJg0nF9jZ7OarXi\nyJEjyM7ORlJSUrSr062wbcOHbRs+bNvwaT12DO0NDUhISND1eyzYdaKiacmSJRg4cCCeeuopXfMN\nd5zAOVFEREQGYPrWt1Dd3NyjAtS6ujpMmTIF/fv3x/vvvx/t6qjGICpEtupqADB8lE9ERGQ0GRkZ\nOHLkSLSroRnHvVSyVVcrgRMAiMZGiMbGKNaIiAJxf98SEemBQZQf3j54GTQRxR6937cMyogIYBDl\nFwOmnotfkvrpjm3JzwYiAhhEEXml9kuyvb09jLWJbQw4iKi74sRyFfT4ouRE9O6po6MDCQkJ0a4G\nBYnvQzKiUy2n0J7ajiMNR2A6o18fx2W9L8PQAYGv9c7OTjz77LN4/fXXERcXh4SEBFx11VVYtmwZ\n8vLydKtPd8IgSoWOjo6Q81D+IueHN3VzRh7C4/uQjKj5QjMmvjZR93wPzD+AoQh8rc+bNw82mw37\n9u1DamoqAOBvf/sbKioqPIIoWZa5JiM4nEdEYdLdhvEcc7ts1dUQOvxBRWQklZWV2L59O9avX68E\nUAAwZcoU3HbbbdiwYQOmTJmCWbNmIT8/H/v378fXX3+N22+/HRMmTEB+fj5+9rOfKcc9/vjjKC4u\nhsViwaRJk3Ds2DElzWQy4ec//zmKi4sxfPhwl0fHVFZWYvr06SguLkZBQQF+97vfAQBWrVqFRYsW\nKfs1NzcjPT0dTU1NYWyVwNgTFQHt7e0c6iGKcc4BoZBlSFGsi1FU13f1NroPFfnaHmlGqUcsOHjw\nIEaMGIG0tDSf+3zyySc4dOgQRowYAQCYNm0annrqKXznO9+B3W7H9OnTsXXrVpSUlOAnP/kJnn/+\neQDA5s2b8fDDD+O9995T8urTpw/27duHiooKjB8/HnPnzgUA3HHHHdi0aRNGjRqFtrY2TJgwAcXF\nxViwYAGysrLw/PPPIzU1FevXr8fMmTPRt2/fMLZKYD06iArXvAiPZREGDIiZIIpzRdRRXusBA6Jb\nEYOSzWZI589Dio8HwOuru2k83xVYug8VuW+P1h+SvupHgR0/fhwlJSVoa2vDtddei+uvvx7XXnut\nEkDZbDZ8+OGHqK+vh+PpcVarFRUVFQCA999/Hy+++CJaW1shyzIa3Xql77zzTgBdDx+Oj4/H6dOn\n0dzcjC+++AKzZ89W8jx37hy+/PJLXH311Zg1axbWrVuHRx99FC+99BLeeOONSDWHTz06iArXvAiP\nIQwNX7DR+tAJtU2i8SUZzZ4+pb16QBBlq66Gva0N5j59vL6+Xl97mw0CUHpt9HzPReN1dwSFpA5v\nvDC+wsJCVFZWorm5GWlpaRg2bBgOHjyIDRs2YPv27QCA5ORkZX8hBCRJwr59+xB/8Y8kh9raWixZ\nsgQHDhzAkCFD8Pnnn+P6669X0iVJQu/evZXfTSYTOjs7IYRA//79UV5e7rWOS5YswYwZMzB69GgM\nGDAA+fn5ejaBJpwT5SSc69mozVvNJHYjrcMjGhthj/B8ET0m/BtFNF/LQGWLxkagudnnPCd/c6Bk\npw9f2WxWynGeZ9T65Zdhe4/oxmaDkOXIl0uGVF1frQwZxroRI0bg+9//Pu699140Nzcr261Wq9f9\nk5KSMHnyZKxYsULZVldXh//+979obm5GQkICBg4cCCEE1qxZ43Kso5fJXVZWFlJTU13mSFVVVSm9\nWFlZWRg2bBgWLlyIJUuWaD1VXfX4IMr5Az2YibC+Xnxv+TpPPnXO27lMPRhtAq9w+sLszkKZYOxr\nuYxovpbhLFskJ186Z5tNKcdRZqAAzZ2tuhp2m035OdyBJ9cBi11mmHUNdByBU3t7OxrPNypDht1B\nWVkZcnJyUFxcjNzcXFx33XX48MMP8f/+3//zuv+mTZtQWVmJ3Nxc5OXloaSkBGfPnkVOTg5mz56N\nMWPGoLi4GEOGDHE5TpIkr7+bzWa8/fbb2LZtGwoKCpCTk4MFCxbgvFPv73333Qe73Y6SkhJ9T16j\nHjec5zHkYLNB2O1+hxec5704ujADF+Q2jOF8XIAybdXVsCcnAzo/xbs7TXA3wtwa0dioeYJxd+o9\nC5a/cw72jxNl/8ZGoFevSz8Dug3Le7u2esrr1R0nYts6bLDDrtu8KEfQNKBD/yH8tF5p+OiOj5CQ\nkKDr8gGX9b4sqP3i4uKwbNkyLFu2zCOtuLgYpaWlLtsuv/xybNy40Wteq1evxurVq5Xfn3zySeVn\nu93usm99fb3y89ChQ7Fjxw6fddy1axceeOABmM1mv+cSKT0qiLJVV0Our++a5KriAzfQvBfnniV7\nWxskLx+4wQRfjjknUmur8gWhp+40L8HI6/y494roHeiFIxh29KpJTnMbfJUju/U0Ktet2/FqqA2i\nwsFxvr6uLSPUMdw4EVsbtcGnr/2/lfotNP+3GdnZ2UgK8Ed0dwx4/amrq8OUKVPQv39/vP/++9Gu\njqJHBVG+eg5CHl5z9CwBwIULUPNR61yuXF8PyLLf431+sV08By1f2JHsoepOvWEOcnKyy7i485CU\ne8Chh3AEw473hnC6jnyV4z5cKxobletey1CunJwMtLR0/RzCdRwKW3U1OpOTkZCe7pHmGMrTM4jq\nju+Dnkxt8KlHsNrTAt6MjAwcOXIk2tXw0GPmRPmdv+I0R0PvL71A+TnPCQlmwqrPYQWnc1BL61CF\nlnki/soy0gR5NbwFDo45cUaZHxb0axXCdQRcagtf7zdvgYhLG6ksP9C8NPnUKY9ryltbiMZGwEc+\n4RjK6ynDg0TdXY8JooINUkL50gv4BeGD+yT0YBhhomugLwJfQZHaSdVGOFd3ASeVh3gXl9pzDrR/\npL+0fb3ftPTm+Ds3f+/rK+PjgTNnPK4pBjAUCUb83CL9dfsgyl/vht5zHDTn5+ML19+b0NsXQTiG\njkLhKygK5kvM+XULdv/WL79UfZu8VsEG5Vqp/aKPZG9iIHo/FiWYc/M2JB9vtQI9bDmC7nTLfaxj\nsN4zdMsgyvkL2N9t22qCHtlsVm6pjpQLJ0+qCggiNXQUiWE3Nbfby6dOdc0na25WdZu8L+eqqnrM\ns9HC8UEf7gDTK5sN9pYWl+sy1LubHIF5pN/3oYjWLfeRCt7UlFNdX42Ozp7xPqbo6ZZBlPsXsJbh\nMo9jbTZlzoS3v3rD0gukQ0AQDt4CHK2Blbfj/PVkuO/f3t7e1U46fmmHIwjQO/B0X6RSzy96b9d3\nOB66G2ye3uY1ec/QdT5VqEGUY+0qX3Ol9F7vLZYku33ehSt4c+8p9VeOe4DVeL4Rsuh+PZHsbTSW\nbhdEtdXUKD+7LO7n9KWo6sPP21Cbl8mvWnqBjDRm7l4XtV/6Whdq9BbwyvX1PoMY9/317EkJ5+uh\n90KW7otU+vqi18Tb9R2GwDKYPJUgWUXbRex9FeIk/FiWkpKi/GyGOWw9Pmre37G+8GWw122sn2d3\n0+2WOBBNTcoSBh0dHd6H7Gw22Pv0iWi9vInEmHmwi1K6386u5plwvtYYUluHrp1tQS8R4b60gDPH\nLeRqyg526QBfPSjO6yWpIZ86BVtcnC639Z+rqoLJZAqYl6OuIj3d76KuvgJpf7foBzNMHswz6BzL\nDqhdzDSU99W5qioghPWu1OguyxzYOmJnuDMagl3PiXOoYlO3C6Lc+fpAF8nJkC6uTaNVOIY49K6D\nt4UDAz1I1sFfkAJc+vL3tv7WhZMnlcUX9VoY03GuondvSOfP++39cwREassO5q9Bn3eeOa2XpEpz\nM4TJ5LWOzkGg88r5fuvmlld7e7tHoOaoK/r29ZqP47UXjY1dAY/bNeYv4AxqrmEQwbLzquSAa0Cn\n5/vO+T0kGhsBjavQq9WdFr8Nl1MtpxBnVf81Fe75UGaYYbsQXPCox3pO3SXg7o663XBeJEVlAq0O\ndQj0nLKg1zjyN8yicp5SoOClvb390rmGcfmAcPw1GMxEdV9DzM7DgFqHBDs6OlxeK/fA21sg7rF2\nkwHucgtmTTV/N4A42lg+dcrzuZZu+YUyjzJa1AQORppX4+/92HyhGS3nW1B/rl7VEFag+VBqz99j\nukOHDR1y5K4P988lX0OoRnpde4pu3xNlJN6GMCL1KAlHb0RrR0fg4SYVQ2paeBu+ChS86BncaO0B\n0DqJOKjeDedV78PMPWiQz541RJCkhcf7x+kGEA+ONpblwM88DPN7wJtQH+OhZiK1kVa7DvR+DMdw\nodrzN1qvoa82MdLr2lOwJyqSvPxFH6kgytEbodedbGrvRnTpaVExUdhWXa3rnWfu+QWaQB/schmR\n5N6T4ov7ufns7dJwDQZ9x1yYqa270dZSc+45cEwYNtINJ0bi3vti5F4XvV7D6vpqfPnVl0EPHVLk\nMYjSKNTu/nCtO+V484ZjLSeXgMLPo068H6z+TibHnXp63nnm/niPQIGRUQInF0EGwh511/NusuZm\nj3WZ9BTqfEPZ7W5cZc6T03VrhCUKvN1p5a3XNZSAobsEZbYOG2QhwwwzquurDXeXmqNegH49543n\nG9F8oRkdckfQ14BzPSj8OJznRVAfOqF29/sbdggg0JwelwnVOgqYZ4ht4m1oJpz9dN7uKvRHCAFJ\nCv+UY28T+pVJ9ZddpjysN+rCOAQZ6nxDl2vJ13UUwSHUUIUyTGO0oahQ2TpssEPf102PiduOeoVr\nKC3YgDHc9SBX3TaIks1mCJtN0102Rr/VNNj6OeZghXK7tizLuDI+HvKpUyF3Wwa62y/cQ5vuvRve\n7ir0R68gylZdDXtyMsyJid7L8dLL56irv7tKHcG1vx6WYJYWcCk3QsPN0aK2PWJVqPOturtgA81g\nJu9X11cjOS4Zib28v7/d93UI9phQ6kb667ZBVCg9PUYV6MsXuDRpu+uArr/ARQgBpRCi6xlkHR1A\nqCtAhzCUIp86pXr9JY/yDXA3paMezrfu60UJrv31sKjs3evuQVQ0JpBHQ0+fcOwY4go1iAxm8n7j\n+Ub0SvT9/nYeSXDuXfJ3jF51I/1xTlSMsFVXBzc/yNuk7RADSpPJBBEfr+8t3xefdRZ0njo/2iUY\njrk0Rpg7400s3oavlZHPVe85R6daThlyTotjTo4sy2iRW3Cq5VS0qxQ0W4fNMPOnjD7SQep0356o\nEOnR86Enb70oeiz26ejdkpqaLvVguTGZTJCsVghJ8ujNCmk45GIvQLhmGTnPefLXVkqQ5L6IpaOX\nQse5M7ou0NpDelEAhP1aCYXec46aLzTDZDIF7DXSY4iuur4abe1t6JPQJ2A+jiCkf+/+aG1vhclu\nCvh8QkcdByQFfvKBGsnxyTjXcU7XPLWI1DzJSJdFwWMQ5UsUej7UCnV4SjabIdXXdw0tOVbNVivA\nF3k055ywLNDDAAAgAElEQVQ4z3lybyuXYMZmgx1dw43+hkr1rFMgLsOyZGiOVbUDBSF6z0vSY4iu\n8XwjLnRcwHn5vOp84k3xON/p/73tqGM4gqjW9lZIkhTWXrtAE871DmxkP58NvsriaubRxeG8niwS\nK1EbZLVrdx7BTIhDnsGu3eQ3D+chK5UP3fWVV7iW0nAvpydrvtAc1FCRv1vyQ50UrMeQoto6WDus\nqufg6Lm2k2O+ntalDvwtBeCoZ6hDb/7a1Nuq41rmIHZ0dHBSeRQxiCJVwvGlGe4vej35PH89ei59\nBJya2tyRV7hvsDBokBwLTrWcUr743CcFq13rx/3LXkuw4l4HveZ6OT9nzkhrO/mbJ6VXPf1N9nas\ne+UuWcOCsJxUHj0cLyBFUENv4ZiHE+Yvel0ft6Pz+ScnJwPnvM/tUOqt5aHGMczfddidliRovtDs\n9wvWDjtQH3x+zte0HkN9es31CuY5c1yC4ZKUlJSg91XzIGQKj6j0RFVWVmLixInIyspCcXExjhw5\n4nf/efPmwWQyocUoiwx2V921VyGKj9sJxO8HZnd9PQLxd94x2CZah7DMMAd88K5zj5VRrmktjNRD\n5c7IK75H+kHI5CkqQdSiRYuwePFiVFRU4IknnkBpaanPfd966y0kJCT06LsSvN3R5W8OTk+fpxJL\nw4PUvVXXVwcMhJwlx18aynF+zImv+S5GunXfIdj5OYGCy0gEL2aYAz6bLhaWJIjlADrWRTyIamho\nwIEDBzBnzhwAQElJCWpra3H8+HGPfb/++mv8/Oc/x+rVq3v0ReL1ji5/c3Bi8K91XV0cHjT6NePv\nThzqHtTOVXEOohx8zZ0xKsc5+wv+HPv5CwAjEbzYOmzKs+limdE/67qziAdRtbW1yMjIcFlfJDMz\nEzU1NR77Lly4EM8//zySkpIiWUXqJoz+wWL0+pE6et55pifnCezB0OsBtlqDv+r66oC9Qw6BAjWi\ncDPsxPLf//73uOqqq3D99derOk4WApIsA0J0rasBAF6+rNzTHL0CQgjY7Xavx6nJz3l7KPkpvRUX\n99G7foHqLtvtlyJtp/RotEU087MnJkI6dy6ktnV+LR1tq+zTg9s2lq9bWZYB0fX/GdsZAMAA6wCX\ndAHh0utotVpht9sBAZc0ga7rwrHdnSzLsFqtykrhznl7y89RVvP5ZtiFHWbZDKvVeqnejvODgBlm\ntHW2QUDA2mFFh9yB/r37K/s7H2N3LDwrACEJl3Sr1arUy70NHWmOejnnJ9tlQOrafsZ2Bu32dqT1\nSvPZFo52snZ01c8sm13O2VsdnNuvvbPdJd1RP+d9403xsJ63ond8b6/5Ourg/Pq5f484v0aO/J23\nO7er4xgAaGtrU9Kcrwvnstzbwnmbc3k9Xbj/WI14EDV48GDU1dVBlmWlN6qmpgaZmZku++3atQt7\n9+7F22+/rTRCXl4etm/fjvz8fJ/5d7S3A3Y74h1fWrLs8gXl4J7WcXH83STLsLW2ItnLcWryc94e\nSn6dnZ0AgHinYE/P+gWsu82GZHheiNFoi2jmZ09KgqmlJaS2dVxjjmvTdnHeVkdHh/L6xkJbGCG/\ngGVF6LrtaG+HLMeh096pbHO+UaY9tR3CJFzm9xw5cgQZGRldX5DiUpowCchCVra7a29vx5EjR9Ce\neikvR96tra0e+TnKki/r2m6GGZV1lV31RgeELJQ8zrWf8yirtbUVdXV1LucCQLluRdc3t9f6CZNb\nGwrZpe7OPzvq3mnvdDneX1u4p7mfc2ffTo8gKpj6OZ/rBdMFXOh9AR3nu3q66urqXI511MHx2ju/\nznKijNbWVrS3X3r9HflnZGQo253rLide+kw4ceKEUg/ntnAuy1dbOPKsra3FOR93/vYkZrMZw4YN\nC1v+EQ+i0tPTYbFYsHHjRpSWlmLLli0YPHiwx0m++uqrLr+bTCZ8/vnnAW//jE9IgGS3A+3tMJku\nPpbAy6R09zTHrbyyyYSUlBRIXo5Tk5/z9lDyU24xdgR5OtcvUN0TL67g7T6xPxptEWv5uafFJyVB\namsDLv4BkZiYCHH6NOJNJsCpZ8AIdTd6foHKitR1m5CQAJMJSDBfWgogOztb+flIwxG0211XlM7O\nzobdboep3QRJlpS0dns7TFJXHSTZs34JCQnIzs7GkQanL/uLeaekpCj5JfVOQltnG+JMcV371x+B\nJEtos7chIa6rLGEXLuV6KyslJQV9+/Z1OZfk+OSutj0PSJBcnsPjXD/3PE2SyaXuzj876p5gdj3e\nX1u4pzm3b1ZWFiq+qfCYcxhM/ZzP1VEHx3dO3759XY511MHx2ju/zo7jEjoSlO2O/O12u7Ldue4m\nqeu6tdlsGDJkCPr06ePRFs5l+WoLR57f6vctmM2Xeuh6KucevnCIynDe2rVrMW/ePKxYsQJpaWko\nKysDACxduhSDBg3CwoULPY6RJCm4brm4OEjt7V3PeXN84Hn5wHRPc/SKCUmC2WyG7OU4Nfk5bw8l\nP0e95Iu/h5qflrqLSxt0yc8obRvu/NzTJMcdgxevTbPZDNHa2hVAsW1j8rrtCrpk5REo8XHxLnM4\nTWdMkOySyxzQpKSkrqEWqSsQcaRJ9oufWRe3uzOZTEhKSoLpjAlmmHG+87xyvNlsVo6zddhc9nfO\nz7ks55+9lfW19WvEmS89zsZ0xoTUXqmXvpjd6ulcP/c8JUlS0gCg3loPu2xHfFy8Unf34/21hXua\nc/t2vSaex5lMJpw+dxp22e6R5qifsq9THRzn635ujjo4t6PjOnAcZzJdev0d+VutVmU7AI9jAKBP\nnz5KG0mQvJblqy0c52o2mzmfGF09ya2trWHLPypB1KhRo/Dxxx97bF++fLnPY4KOJNvaevadaUQU\ncY7ApTuVF+yDkNVyrH8V6TsOk+OT0djm+25JxzPo1D5CxRHQAq6vS7AT+n29llyFPDbwsS9ERDHM\n27IIRszTEZyEY8mGYO7SC3ROjiUV1AYvvs7H34r01H0Y9u48IqJY55iC4OitiI+L172McAVRLRf0\nfUJEoOAklKUV9OiZO9VyCnFW71+J/tLCQe2yFBQ9DKKIiMLEEURFergvFinPC4wSx/Cl2rRw1YW9\nWLGBQRQREfmkpndI7aNawtGLFgvCvXaR48HEnFgefgyiiIi6qUBBTTBf5mqezXfyzElVw1BGC6Kc\nJ4mHU7iDKD6YOHI4sZyIKIrC+egSf8+fS45P1v3LPNaHofxNeucjZsgbBlFERDpS+wy9aD1g2Gi9\nQICxA5VYexA0oH54ldRjEEVEpKPG841oPN/ILzANYjFQMTJ/PZGkDwZRREQaycnee3PMMKP5XHOE\naxNYNHt6wj0PiCgaGEQREWkkfARRRpjY67hDy1k0e3oYRFF3xCCKiChCQllQUi0jBHLUJZKvO0UW\ngygiogixddhULRngjvOsYlOorzsZF4MoIqIICuWuOCNPFDbi3X5GU11f7THESrGNQRQRUQSFEmxE\n+plqjonoejzgl7ru3OQQa/fCFcuJiGJEpBezdDzzj8/+I/KOPVFEREREGjCIIiIiItKAQRQRkU6M\n/NgSin28voyHc6KIiHTCuUMUTry+jIc9UURERAbRIregU+6MdjUoSAyiiIiIDKK1vZUPYY4hDKKI\niGIA12GKbZzP1D0xiCIiigEMomJbNB/+TOHDIIqIiIhIAwZRRERERBowiCIiIiLSgEEUERERkQYM\nooiIiIg0YBBFREREpAGDKCIi6ha4DARFGoMoIiLqFhhEUaQxiCIiIiLSgEEUERERkQYMooiIiIg0\nYBBFREREpAGDKCIiIiINGEQRERERacAgioiIiEgDBlFEREREGjCIIiIiItKAQZTByWYzREdHtKtB\nREREbuKiXQEKwGaDiHYdiIiIyAN7ooiIiIg0YBBFREREpAGDKCIiIiINGEQRERERacAgioiIiEgD\nVXfnzZ8/H5Ik+Uxft25dyBUiIiIiigWqeqJ69eqFf/3rXxg2bBiGDx+OTz75BL169cLVV1+Nq6++\nOlx1JCIiIjIcVT1RX375Jf71r38hNTUVALBkyRJMnz4dL730UlgqR0RERGRUqnqiGhoalAAKAFJT\nU9HQ0KB7pYiIiIiMTlVPVH5+PubNm4d7770XALB+/Xrk5+eHpWJERERERqaqJ+qVV15Beno6Hn30\nUTz66KNIT0/HK6+8Eq66ERERERmWqp6o5ORkPP/88yEXWllZidLSUnzzzTfo27cvysrKkJ2d7bLP\niRMnMGvWLMiyjI6ODowZMwb/+7//i7S0tJDLJyIiIgqVqp6o2tpaTJ8+HQUFBQCAQ4cOYfXq1aoL\nXbRoERYvXoyKigo88cQTKC0t9dhn0KBB+Oijj1BeXo7PP/8cGRkZWLZsmeqyiIiIiMJBVRC1aNEi\nzJ49G0IIAEBOTo7qtaEaGhpw4MABzJkzBwBQUlKC2tpaHD9+3GW/+Ph49OrVCwBgt9thtVr9rlFF\nREREFEmqhvPq6+tx1113YdWqVV0Hx8UhLk5VFqitrUVGRgZMpkvxW2ZmJmpqajBs2DCXfTs6OlBU\nVISamhrk5eVhx44dgQsQousfACEEJMc2j91c02RZVrbb7Xavx6nJz3m7kfMLVJZst1+KtJ3SjVB3\no+cXqCy2rfb8ApUVybaFAAS85+ctzZGfr7Ro5xdUWUBXuiQCHhPLbdEd2tZqtXoc05MIL+91PamK\ngOLi4lwq1NjYGNYKxsfH4+DBg+js7MSSJUuwdu1aPP74436PEU5BlCzLgCxD8lJH97SO9nYAgEmW\nYWttRbKX49Tk57zdyPkFLMtmQzI8L0Qj1N3o+QUsi22rOb+AZUWwbWVZ9vo5KAvvabKQ0dra6jMt\n2vkFKstmswG4+KUtAh8Ty23RHdq2rq7O45iexGw2e3TQ6ElVEHXbbbdh0aJFaGlpwSuvvIK1a9di\nwYIFqgocPHgw6urqIMuy0htVU1ODzMxM35WMi8O8efOwcOHCgEGUJEnKsJ/JZOoqw8swoHtaQkIC\nAEA2mZCSkgLJy3Fq8nPebuT8ApWVmJgIAB5DqUaou9HzC1QW21Z7foHKinTbSrKX/CTvaSapKz9T\nu/e0aOcXqKzExETgPCBBAqTAx8RyW3SHtu3bt6/HMT2JSw9fGKgKon70ox/htddeQ3NzM/7617/i\nsccew5133qmqwPT0dFgsFmzcuBGlpaXYsmULBg8e7BEp1tTUID09HX369IEQAm+++Sby8vICFyBJ\nyged8gHq5QPTPc0R0AlJgtlshuzlODX5OW83cn7BlCUubTBU3Y2eXzBlsW27QdtKF7/0vOXnJc2R\nn6+0aOcXVFmAR7oR6m70/IIqC9C1bZOSkjyO6UlkuatHLlyCDqLsdjuefPJJrFy5EnfccUdIha5d\nuxbz5s3DihUrkJaWhrKyMgDA0qVLMWjQICxcuBCHDx/GU089BUmSIMsyLBYLfvOb34RULhEREZFe\ngg6izGYzdu3apUuho0aNwscff+yxffny5crP06dPx/Tp03Upj4iIiEhvqpY4uPnmm/Hss8/i1KlT\naGlpUf4RERER9TSq5kQ9/fTTAID/+Z//gSRJXbcES1JYJ20RERERGVFQPVFffPEFgEu388qyDLvd\nrvxPRERE1NMEFUTdfffdAIBvf/vbYa0MERERUawIajjv/Pnz2Lx5M06dOuV11fAZM2boXjEiIiIi\nIwsqiHruueewdu1aNDQ0eDxwWJIkBlFERETU4wQVRM2YMQMzZszAI488ghdeeCHcdSIiIiIyPFVL\nHDCAIiIiIuqiKogiIiIioi4MooiIiIg0YBBFREREpEHIQVR5ebke9SAiIiKKKSEHUf/zP/+jRz2I\niIiIYkrIQdQ777yjRz2IiIiIYgrnRBERERFpoCqI+vvf/46ioiL069cPqampSElJQWpqarjqRkRE\nRGRYQa1Y7nDffffh2WefRVFREcxmc7jqRERERGR4qoKo1NRUzJo1K1x1ISIiIooZqobzSkpKsHHj\nRrS3t4erPkREREQxQVUQlZ2djQceeAB9+vSB2WyGyWTisB4RERH1SKqG8374wx9i+/btGDduHIMn\nIiIi6tFUBVEDBgzAlClTwlUXIiIiopihajhvxowZePHFF1FfX4+WlhblHxEREVFPo6on6qc//SkA\n4OGHH4YkSRBCQJIk2O32sFSOiIiIyKhUBVGyLIerHkREREQxJejhPLvdjjFjxoSzLkREREQxI+gg\nymw2Iz09HTabLZz1ISIiIooJqobzRowYgYkTJ+K2225DcnKysv3hhx/WvWJERERERqZ6TlRBQQGO\nHTumbJMkSfdKERERERmdqiBq/fr14aoHERERUUxRFUR1dnZi9erV+OCDDwAAU6dOxSOPPIK4OFXZ\nEBEREcU8VdHPY489hqqqKjzwwAOQJAmvvPIKTp48id/85jfhqh8RERGRIakKonbv3o1Dhw7BZOq6\nqe+WW26BxWIJS8WIiIiIjEzVY1+EEC4LbgohIITQvVJERERERqeqJ2ratGn43ve+h3nz5gEA/vCH\nP+Cmm24KR72IiIiIDE1VELVy5Uq8/PLL2LFjBwBg1qxZWLhwYVgqRkRERGRkqoIok8mE+++/H/ff\nf3+46kNEREQUE1QFUU1NTXj55ZdRVVWFzs5OZfu6det0rxgRERGRkakKombNmoX09HRcc801MJvN\n4aoTERERkeGpCqLq6uqwc+fOcNWFiIiIKGaoWuJg+PDhaGpqClddiIiIiGKGqp6oxMREWCwWTJs2\nDb1791a2/+pXv9K9YkRERERGpiqIys7ORnZ2drjqQkRERBQzVAVRS5cuDVc9iIiIiGKKqjlRRERE\nRNSFQRQRERGRBkEFUV988UW460FEREQUU4IKou6++24AwLe//e2wVoaIiIgoVgQ1sfz8+fPYvHkz\n6urqlIcPO5sxY4buFSMiIiIysqCCqOeeew5r165FfX09Vq9e7ZImSRKDKCIiIupxggqiZsyYgRkz\nZuCRRx7BCy+8EO46ERERERmeqrvzGEARERERdQmqJ8pkMkGSJJ/pdrtdtwoRERERxYKggqjW1lYI\nIfDrX/8abW1tuP/++wEAa9euRZ8+fVQXWllZidLSUnzzzTfo27cvysrKPB4n8+9//xsPPvggGhoa\nEBcXh6KiIvz2t79Fr169VJdHREREpLeghvOSkpKQnJyMt956C88++yyuvPJKXHnllXjmmWewbds2\n1YUuWrQIixcvRkVFBZ544gmUlpZ67NO7d2/89re/xZdffonPPvsM586dw8qVK1WXRURERBQOquZE\ntba2or6+Xvm9vr4era2tqgpsaGjAgQMHMGfOHABASUkJamtrcfz4cZf9RowYgZycHABddwCOHz8e\nJ06cUFUWERERUbioegDxj370I+Tn5+Pmm28GAPzlL3/BsmXLVBVYW1uLjIwMmEyX4rfMzEzU1NRg\n2LBhXo+xWq145ZVX2BNFREREhqEqiFq0aBEmTpyIXbt2AQAee+wxjB07NiwVc+jo6MDs2bMxbdq0\n4NajEqLrHwAhBCTHNo/dXNNkWVa22+12r8epyc95u5HzC1SWbLdf6q50SjdC3Y2eX6Cy2Lba8wtU\nViTbFgIQ8J6ftzRHfr7Sop1fUGUBXemSCHhMLLdFd2hbq9XqcUxPIry81/WkKogCgJycHGWYTYvB\ngwejrq4OsiwrvVE1NTXIzMz02LezsxO33347Bg0a5LHIpy/CKYiSZRmQZUheGtE9raO9HQBgkmXY\nWluR7OU4Nfk5bzdyfgHLstmQDM8L0Qh1N3p+Acti22rOL2BZEWxbWZa9flDLwnuaLGS0trb6TIt2\nfoHKstlsAC5+aYvAx8RyW3SHtq2rq/M4picxm80+R7n0EFQQdccdd+C1115DYWGh16UOysvLgy4w\nPT0dFosFGzduRGlpKbZs2YLBgwd7nKTdbsftt9+O/v37Y+3atUHnL0mSUkeTydQVqHmps3taQkIC\nAEA2mZCSkgLJy3Fq8nPebuT8ApWVmJgIAB6vuxHqbvT8ApXFttWeX6CyIt22kuwlP8l7mknqys/U\n7j0t2vkFKisxMRE4D0iQACnwMbHcFt2hbfv27etxTE/i0sMXBkEFUT/+8Y8BAL/+9a91KXTt2rWY\nN28eVqxYgbS0NJSVlQEAli5dikGDBmHhwoXYvHkz/vSnPyEvL08J3iZOnIg1a9b4z1ySlA865QPU\nyweme5qjV0xIEsxmM2Qvx6nJz3m7kfMLpixxaYOh6m70/IIpi23bDdpWuvil5y0/L2mO/HylRTu/\noMoCPNKNUHej5xdUWYCubZuUlORxTE8iy7LqG+DUCCqIeuihh/DPf/4Tb731li6B1KhRo/Dxxx97\nbF++fLny85133ok777wz5LKIiIiIwiGoIKqpqQlff/01du3apSy86Sw1NTUslSMiIiIyqqCCqB/8\n4AcYOnQoLly4gLS0NABdXYVCCEiSxMe+EBERUY8T1GKby5cvh81mw4QJE5S7Uex2u/I/ERERUU8T\nVBB1xx13AAA++uijsFaGiIiIKFYEFUT95z//CXc9iIiIiGJKUEGUt7WhiIiIiHqyoCaWHz58GP36\n9fPY7phYfvbsWd0rRkRERGRkQQVRWVlZePfdd8NdFyIiIqKYEVQQ1atXL1x11VXhrgsRERFRzAhq\nTlS4n4JMREREFGuCCqIOHjwY7noQERERxZSggigiIiIicsUgioiIiEgDBlFEREREGjCIIiIiItKA\nQRQRERGRBgyiiIiIiDRgEEVERESkAYMoIiIiIg0YRBERERFpwCCKiIiISAMGUUREREQaMIgiIiIi\n0oBBFBEREZEGDKKIiIiINGAQRURERKQBgygiIiIiDRhEEREREWnAIIqIiIhIAwZRRERERBowiCIi\nIiLSgEEUERERkQYMooiIiIg0YBBFREREpAGDKCIiIiINGEQRERERacAgioiIiEgDBlFEREREGjCI\nIiIiItKAQRQRERGRBgyiiIiIiDRgEEVERESkAYMoIiIiIg0YRBERERFpwCCKiIiISAMGUUREREQa\nMIgiIiIi0oBBFBEREZEGDKKIiIiINGAQRURERKQBgygiIiIiDRhEEREREWnAIIqIiIhIg6gEUZWV\nlZg4cSKysrJQXFyMI0eOeOxjtVoxbdo0pKeno1+/flGoJREREZFvUQmiFi1ahMWLF6OiogJPPPEE\nSktLPfaJj4/HT37yE3z44YdRqCERERGRfxEPohoaGnDgwAHMmTMHAFBSUoLa2locP37cZb+EhARM\nmjQJaWlpka4iERERUUARD6Jqa2uRkZEBk+lS0ZmZmaipqYl0VYiIiIg0i4t2BXQnRNc/AEIISI5t\nHru5psmyrGy32+1ej1OTn/N2I+cXqCzZbr8UaTulG6HuRs8vUFlsW+35BSorkm0LAQh4z89bmiM/\nX2nRzi+osoCudEkEPCaW26I7tK3VavU4picRXt7reop4EDV48GDU1dVBlmWlN6qmpgaZmZm65C+c\ngihZlgFZhuSlEd3TOtrbAQAmWYattRXJXo5Tk5/zdiPnF7Asmw3J8LwQjVB3o+cXsCy2reb8ApYV\nwbaVZdnrB7UsvKfJQkZra6vPtGjnF6gsm80G4OKXtgh8TCy3RXdo27q6Oo9jehKz2Yxhw4aFLf+I\nB1Hp6emwWCzYuHEjSktLsWXLFgwePNjnSQohVEWSkiRBkiQAgMlk6grULv7uzD0tISEBACCbTEhJ\nSYHk5Tg1+TlvN3J+gcpKTEwEAKVNjVR3o+cXqCy2rfb8ApUV6baVZC/5Sd7TTFJXfqZ272nRzi9Q\nWYmJicB5QIIESIGPieW26A5t27dvX49jehKXHr4wiMpw3tq1azFv3jysWLECaWlpKCsrAwAsXboU\ngwYNwsKFCwEA+fn5+Oabb9Da2orMzExMnjwZGzZs8J+5JCkfdMoHqJcPTPc0R6+YkCSYzWbIXo5T\nk5/zdiPnF0xZ4tIGQ9Xd6PkFUxbbthu0rXTxS89bfl7SHPn5Sot2fkGVBXikG6HuRs8vqLIAXds2\nKSnJ45ieRJa7euTCJSpB1KhRo/Dxxx97bF++fLnL75999lmkqkRERESkClcsJyIiItKAQRQRERGR\nBgyiiIiIiDRgEEVERESkAYMoIiIiIg0YRBERERFpwCCKiIiISAMGUUREREQaMIgiIiIi0oBBFBER\nEZEGDKKIiIiINGAQRURERKQBgygiIiIiDRhEEREREWnAIIqIiIhIAwZRRERERBowiCIiIiLSgEEU\nERERkQYMooiIiIg0YBBFREREpAGDKCIiIiINGEQRERERacAgioiIiEgDBlFEREREGjCIIiIiItKA\nQRQRERGRBgyiiIiIiDRgEEVERESkAYMoIiIiIg0YRBERERFpwCCKiIiISAMGUUREREQaMIgiIiIi\n0oBBFBEREZEGDKKIiIiINGAQRURERKQBgygiIiIiDRhEEREREWnAIIqIiIhIAwZRRERERBowiCIi\nIiLSgEEUERERkQYMooiIiIg0YBBFREREpAGDKCIiIiINGEQRERERacAgioiIiEgDBlFEREREGjCI\nIiIiItKAQRQRERGRBgyiiIiIiDRgEEVERESkAYMoIiIiIg2iEkRVVlZi4sSJyMrKQnFxMY4cOeJ1\nv7fffhvZ2dnIysrCrFmzcO7cuQjXlIiIiMi7qARRixYtwuLFi1FRUYEnnngCpaWlHvtYrVYsWLAA\nO3bsQEVFBTIyMvD0009HobZEREREnuIiXWBDQwMOHDiADz74AABQUlKChx56CMePH8ewYcOU/d57\n7z1YLBaMHDkSAPDAAw/ge9/7Hn7xi18o+wghPPIXZvOlnwHAbAZk2XM/tzRhMinbhRBd+bgdpyY/\n5+1Gzi9QWRACMJu72lqSDFV3o+cXqCy2rfb8ApUVybY1S2bIkmd+8JMmhPCZZoT8gilLQECCFNQx\nkZiRqSsAAAniSURBVKy70fMLpiw921b2cq33JN7O31vsoJUk9MwtCOXl5ZgzZ47LEF5xcTFWrlyJ\nSZMmKdt+9atf4dixY3jppZcAAG1tbUhNTcWFCxdguhjwdHZ2wmq1RrL6REREFMOSkpIQF6dPHxIn\nlhMRERFpEPEgavDgwairq3PpYqupqUFmZqbLfpmZmThx4oTye3V1NTIyMpReKCIiIqJoinhEkp6e\nDovFgo0bNwIAtmzZgsGDB7vMhwKAadOm4eDBgzh69CgA4KWXXsLs2bMjXV0iIiIiryI+JwoAjh49\ninnz5uHMmTNIS0tDWVkZxowZg6VLl2LQoEFYuHAhgK4lDh5//HHY7Xbk5ORgw4YNSElJUfKRZdlj\n0pgkSZAk1wl5RERE1PMIITwmkptMJt1GtaISRBERERHFOk4wIiIiItKgWwRRwa6ATp4eeeQRDB06\nFCaTCYcPH1a2NzQ04KabbsKoUaOQl5eHvXv3KmltbW248847MXLkSIwePRpbt26NRtUN78KFC7j1\n1lsxevRoFBYWYurUqaiqqgLA9tXD1KlTUVBQgMLCQlx//fU4dOgQALatXtavXw+TyYQdO3YAYLvq\nZciQIcjOzkZhYSEsFgvefPNNAGzfULW3t2PJkiUYNWoU8vPzMXfuXAARaFfRDUyZMkX84Q9/EEII\nsWXLFjF+/Pgo1yh27N27V/z3v/8VQ4cOFZ999pmy/Z577hHLly8XQgixf/9+ceWVV4rOzk4hhBBP\nP/20mD9/vhBCiOrqajFgwABx9uzZyFfe4M6fPy/ee+895fcXX3xRTJo0SQghxPz589m+IWpublZ+\nfuutt0R+fr4Qgm2rhxMnTohrr71WXHvttWL79u1CCH4m6GXo0KHi8OHDHtvZvqF59NFHxcMPP6z8\n/vXXXwshwt+uMR9E1dfXi7S0NGG325VtAwcOFFVVVVGsVewZMmSISxCVnJysXIRCCFFcXCw+/PBD\nIYQQY8eOFfv27VPSbr/9dvH73/8+cpWNUZ9++qkYOnSoEILtq7f169cLi8UihGDbhkqWZXHDDTeI\n8vJyMWnSJCWIYrvqw/2z1oHtq53VahWpqamitbXVIy3c7Rrxx77orba21mP9qMzMTNTU1Hgsm0DB\nOXv2LDo7OzFgwABl21VXXYWamhoAXet6XXXVVV7TyLcXXngBM2fOZPvqqLS0FLt27YIkSXj33XfZ\ntjr41a9+he985zsoLCxUtrFd9XX33XcDAIqKivDcc89BkiS2bwiqqqrQr18/PPvss9i5cycSExOx\ndOlSFBQUhL1du8WcKCKjW7FiBaqqqrBixYpoV6Vb2bBhA2pqavDMM8/giSeeAKDvc7F6mi+++AJb\nt27FU089Fe2qdFt79+7FZ599hvLycvTv3x+lpaUAeN2GorOzEydPnkROTg7279+PF154AbNnz0Zn\nZ2fY2zXmg6hgV0Cn4PXr1w9xcXGor69Xtp04cUJp06uuugonT570mkaefvnLX+JPf/oT/vKXv6B3\n795s3zC4++67sXv3bgBAfHw821ajvXv34uTJkxg5ciSGDh2Kf/3rX1i4cCHeeOMNXrM6ufLKKwEA\nZrMZjz76KPbu3cvPhBBlZmbCbDbjzjvvBAAUFBRgyJAh+Pzzz8P/eaBl/NFoJk+eLMrKyoQQQrz5\n5pucWK6B+zj9/PnzxbJly4QQQnzyyScuk/GWLVumTMY7fvy4uOKKK8SZM2ciX+kYsGrVKnH11VeL\npqYml+1s39A0NTWJU6dOKb+/9dZbYvDgwUIItq2eJk2aJHbs2CGEYLvqwWq1unwWrFq1Slx//fVC\nCLZvqKZOnSreffddIURXG6Wnp4tTp06FvV27RRBVUVEhrrnmGjFq1Cgxfvx48e9//zvaVYoZixYt\nEldeeaWIj48XAwcOFCNHjhRCdN3Z8L3vfU+MHDlS5OTkiD179ijHWK1Wcfvtt4vhw4eLrKwssWXL\nlmhV39C++uorIUmSGDFihCgsLBQFBQViwoQJQgi2b6hOnjwpioqKRF5ensjPzxc33nij8kcA21Y/\nkydPViaWs11Dd/z4cVFYWCjy8/NFXl6emDlzpjh58qQQgu0bquPHj4vJkyeL3NxcUVBQIN566y0h\nRPjblSuWExEREWkQ83OiiIiIiKKBQRQRERGRBgyiiIiIiDRgEEVERESkAYMoIiIiIg0YRBERERFp\nwCCKiIiISAMGUUREREQaMIgiIkOw2+1Yvnw5srOzkZeXB4vFgsWLF2P79u0oLCzUtayTJ0/i5Zdf\n1jVPIup5GEQRkSHcc889KC8vx759+3D48GGUl5fjxhtvxNmzZyFJkq5lVVdXY+3atZqOtdvtutaF\niGIXgygiirqqqips3boVZWVlSE1NVbaXlJRg2LBh6OjowIMPPoiCggLk5uaivLwcQFdAM23aNBQV\nFSE3Nxd33XUX2traAAB79uxBbm4uSktLkZubi/Hjx+Pw4cMAgPvvvx9Hjx6FxWLBzJkzAQCVlZWY\nPn06iouLUVBQgN/97ndKPUwmE5YtW4aioiI8+eSTkWoWIjI6nZ79R0Sk2RtvvCEKCgq8pu3evVvE\nx8eL/fv3CyGEWLt2rZg6daqSfvbsWeXn+++/X6xcuVI5zmQyiV27dilljB49WkkrLCxUjrPb7WLc\nuHGioqJCCCGEzWYTeXl54tNPPxVCCCFJknjmmWd0Olsi6i7YE0VEhjdixAiMGzcOAHDNNdfg+PHj\nAAAhBFatWgWLxYK8vDy8++67OHTokHLckCFDMGnSJADAbbfdhtOnT+Orr77yyL+iogJffPEFZs+e\njcLCQlx77bU4d+4cvvzyS2Wf+fPnh/EMiSgWxUW7AkREFosFx44dQ2NjIy677DKP9N69eys/m81m\ndHZ2AgA2bdqE3bt3Y+/evUhKSsKaNWuwa9cun+VIkuR1fpUQAv3791eGCb0dl5ycrPa0iKibY08U\nEUXd8OHDUVJSgnvvvRfNzc3K9m3btim9Tt40NTXh8ssvR1JSElpbW1FWVuaSfuLECezZswcAsGXL\nFgwcOBCDBg1CamqqSzlZWVlITU11Ob6qqgpNTU0AuoIsIiJ3DKKIyBDWrVuHvLw8FBcXIzc3F2PH\njsUHH3yAfv36+Txm7ty5sFqtyM7Oxi233ILrrrvOJX3MmDEoKytDXl4eVq5ciddeew0AkJeXh7Fj\nxyI3NxczZ86E2WzGn//8Z2zbtg0FBQXIycnBggULlEnqet8dSETdgyT4JxYRdUN79uzBD3/4Q59D\ndEREoWJPFBEREZEG7IkiIiIi0oA9UUREREQaMIgiIiIi0oBBFBEREZEGDKKIiIiINGAQRURERKQB\ngygiIiIiDRhEEREREWnAIIqIiIhIAwZRRERERBr8fwdlhHhZMfZNAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f9df52759b0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"freq_plot(dfTfidf, 11, 'Chapter frequency of the bi-gram \"the\"')"
]
},
{
"cell_type": "code",
"execution_count": 670,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAF5CAYAAABDflTSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xt4FNX9P/D37GYDuQsYNELCVUKQ3JZLomkFFL+CpdQ+\nwYqCBhUJUqjWil8f/bVcHutX2vpFpdbYL4+EolVasPXW1qpVW6VFDYhWQyAQSGwiRCAXdkk22Tm/\nPzYz7GV2s5vM7s4m79fz+EjmzJz5zNnJzidnzpyRhBACRERERKQbU7QDICIiIhpomGARERER6YwJ\nFhEREZHOmGARERER6YwJFhEREZHOmGARERER6YwJFhEREZHOmGARERER6YwJFhEREZHOmGAR6czp\ndGLDhg3IyclBXl4erFYrVq5ciba2Nrz33nsoLCzUdX/Hjx/HM888o1t9e/fuRV5eHqZNm4Y333xT\nt3pj0TPPPIOcnBxYrVacOXPGo+zll1/Ghx9+qP6s12c7Z84cvPLKK5pld955J957771+7yNcNmzY\ngO3bt2P79u3YsGEDAODAgQPYuXOnx3omkwltbW2adcyZMwf19fW47bbb8Pe//z3sMROFCxMsIp3d\nfvvt2LdvH/bu3YtPP/0U+/btwzXXXIPTp08DACRJ0nV/dXV1qKio6NO2TqfTZ9n27duxZMkSVFVV\n4Zprrul1/YHsiSeeQGVlJfbt24dhw4Z5lP3xj3/EP//5T49len+23v7v//4Ps2bN6lcdQgiE8w1p\nShso/9+/fz9efPFFzXUCbU8U65hgEenoyJEj2L17NyorK5GamqouLy0txdixYwEAXV1d+P73v4+C\nggLk5uZi3759AFzJy7x58zBz5kzk5uZi6dKlOHfuHABX70hubi7KysqQm5uLGTNm4NNPPwUA3HXX\nXTh06BCsViuuv/56AEBtbS0WLFiAoqIiFBQU4Fe/+pUai8lkwvr16zFz5kw8+OCDHvFv2rQJO3fu\nxJYtW2C1WtHa2opx48bhgQceQFFREZYtWwYAeO6551BcXIzp06dj9uzZaizd3d1YtWoVJk2ahOLi\nYtx3332YM2eOegzuPTyff/45xo0bp/7817/+Fd/85jcxY8YMFBcX49133/U4dq02A4DXX38dM2fO\nREFBAaxWKz766CM89thjKC8vV9dpbW1Feno6WlpafD6zjz/+GCUlJcjPz0dxcbGaNN1www04evQo\nli1bhu9973se2/z5z3/GK6+8gl/84hewWq149tlnA362gY5Py1tvvYWZM2di0qRJuO+++9TlgXq3\nvvrqK1x77bWYOnUq5s2bh5tuugkbN24E4OpZWrRoEebNm4fc3Fx89dVXWLt2LYqKimC1WjF79mwc\nPnxYrctkMuGRRx5BcXExxo8fj5dffhmPPvooZsyYgezsbL89SykpKUhISEBiYiKSk5PR3NyMdevW\n4d1334XVasWqVasAuJK8p556CkVFRZgwYQIqKyvVOoYPHw6z2YwLLrgA8fHxftuIyPAEEenmd7/7\nnSgoKPBb/u677wqLxSI++ugjIYQQFRUV4tprr1XLT58+rf77rrvuEps2bVK3M5lM4p133lH3M3ny\nZLWssLBQ3c7pdIrp06eLmpoaIYQQdrtd5OXliY8//lgIIYQkSeLhhx/2G+OyZcvEE088of48duxY\nceedd6o/f/DBB+K6664TDodDCCHEP/7xD3HZZZcJIYT45S9/KebOnSu6u7tFV1eXmDNnjpgzZ45m\nnP/+97/FuHHjhBBCHD16VFx++eWivb1dCCFEbW2tyMjIEA6HI2Cb1dTUiJEjR4pDhw4JIYTo7u4W\nbW1toqWlRVx00UWitbVVCCHE5s2bxfLly32O1eFwiKysLPHmm28KIYR4//33xcUXXyxsNpt67J9+\n+mlQ7RQozkDH52327Nli7ty5wul0CrvdLqZPny5eeOEFtezll1/WjOeGG24Q69evF0II8dVXX4mL\nL75YbNiwQQghxPr168WoUaNEc3Ozuv7XX3+t/vvFF18U8+bNU3+WJEls2bJFCCHE22+/LZKTk8Vv\nfvMbIYQQv//978WMGTM0Y9BSWVkpvvvd73oskyRJbN68WQghxMGDB0VKSopwOp1B10kUC9iDRRRh\nEydOxPTp0wEAl19+OY4ePQrA9Vf9Y489BqvViry8PPzpT3/CJ598om43duxYzJ49G4Crd+Wrr77C\nl19+6VN/TU0NPv/8cyxevBiFhYW44oorcPbsWXzxxRfqOrfddltIMSs9V4Br7NGnn36KoqIiFBYW\nYs2aNWhpaUFnZyf+9re/4dZbb4XZbEZcXBxuv/32oOr/y1/+giNHjuDKK69EYWEhFi1ahLi4ONTX\n1wdss7feegvz58/HpZdeCgAwm81ISUlBWloaFi1apPYsPf3001i9erVmW5nNZsydOxcAUFJSgosu\nusij3UUIt9P8xdnb8Xm79dZbYTKZkJCQgKVLl+Ktt97qdd9vv/222t4XXXQRFixY4FF+3XXX4cIL\nL1R/fuONN3DFFVcgNzcXGzduxIEDBzzWV3rtpk+fDrvdjhtvvBEAMHPmTNTW1gbTHAHdfPPNAIDs\n7GxYLBZ89dVX/a6TyEjioh0A0UBitVpx+PBhnDlzxmfMjmLo0KHqv81mM7q7uwEAzz//PN599138\n4x//QFJSErZs2YJ33nnH774kSdIcryKEwIgRIzxuT3lvl5ycHMpheawvhEBZWRkefvjhXrdzjy8u\nLs5jDFdHR4dHnddccw2ee+45nzq+/PJLv20WyJo1a7Bw4UJMnjwZI0eORH5+fq/beMccKn9xBjq+\nvsTU2tqK2bNnQ5IkjBs3Drt37+51G/fPsKGhAWvWrEFVVRXGjh2Lzz77zGNslyRJ6rGYzWYAUG/X\nBdv+vR2Pe1uZTKZ+10lkNOzBItLRhAkTUFpaijvuuAOtra3q8pdeegnHjh0LuG1LSwsuvPBCJCUl\nob293WNcCgAcO3ZMfYJs165duPjiizFq1CikpqZ67Cs7Oxupqake2x85ckQdfxRKj4yWhQsX4rnn\nnkNDQ4NaX1VVFQBg7ty5eO6559Dd3Q2Hw4Ft27ap240fPx7Hjx/HqVOnAAA7duxQy6699lq89dZb\n+Oyzz9RlH330Ua+xXHvttXjjjTdw6NAhAK4xYMrTadnZ2Rg/fjxWrFiBNWvWaG6fnZ0NWZbx9ttv\nAwD27NmDEydOoKCgoNd9e7d7b3GGcnxKG547dw6//e1vfR42SEtLw/79+7Fv3z41ubr66qvV9j5x\n4gRee+01v/W3trYiPj4eF198MYQQ2LJli0e59znS28+BaLVTf89BoljABItIZ88++yzy8vJQVFSE\n3NxcXHbZZXjzzTcxfPjwgNvdeuutsNlsyMnJwbe+9S1ceeWVHuVTpkxBZWUl8vLysGnTJrzwwgsA\ngLy8PFx22WXIzc3F9ddfD7PZjFdffRUvvfQSCgoKMHXqVCxfvlwdMN9bD413uffP3/jGN/Czn/0M\n3/3ud1FYWIipU6eqj+HfeeedmDhxIqZMmaLeDlNkZGTg/vvvx4wZM3DFFVdgxIgRatmECRPw29/+\nFuXl5SgsLMRll12GJ554ImCcynbbtm3DkiVLUFBQgOLiYjXZUuJxOp0oLS3V3N5iseCll17CT37y\nExQUFODee+/F7t27kZiY2Gtb3XLLLdi5cyemTZum3ooMFGewxydJEnJyctSB97NmzVJv1wWK5/HH\nH8f777+PqVOn4pZbbkFxcTEuuOACzXWnTp2KxYsXY8qUKSgqKlIfwHCPIZSfA7n66qvR2dmJgoIC\ndZB7f+ojihWS4J8SRIb33nvv4Yc//KHf235G9frrr+Oxxx7D3/72t6jsf82aNbj44ovx0EMPRWX/\nkdTR0QGLxQKz2YzTp0+juLgYzz//PGbMmBHt0IgGJY7BIqIBp6mpCVdddRVGjBiBN954I9rhRMTh\nw4dx6623QgiBrq4urF69mskVURRFpQertrYWZWVl+Prrr3HBBRegsrISOTk5HuscO3YMixYtgizL\n6OrqwpQpU/DrX/8aaWlpAFyDInNzc2EymSBJErZs2YKSkpJIHwoRERGRj6gkWFdffTWWLVuGW265\nBbt378amTZs8XjkBuCbsk2UZQ4YMAQDcc889kCQJmzdvBuB6kqWlpQUpKSmRDp+IiIgooIjfImxu\nbkZVVZX6jrPS0lKsXr0aR48exfjx49X1LBaL+m+n0wmbzeaRTIkgXvcgyzJkWfZY5u/RdiIiIhpc\ntHIJk8kEk6n/zwBGPMFqaGhARkaGR/BZWVmor6/3SLAAVy/WzJkzUV9fj7y8PI9XREiShDlz5kCW\nZVx99dXYuHGj+uSPQpZl2Gy28B4QERERDRhJSUm6JFiGnqbBYrFg//79OHHiBCZPnuzxQtvjx4+j\nqqoKe/bswcmTJ7F27dooRkpERER0XsQTrMzMTDQ1NXncuquvr0dWVpbfbeLi4rBs2TKPWZBHjx4N\nAEhISMCqVavw/vvvhy9oIiIiohBEPMFKT0+H1WpVZ3HetWsXMjMzfW4P1tfXqxMjCiHw+9//Hnl5\neQBcM14rZbIsY+fOnR4TGhIRERFFU1SeIjx06BCWLVuGU6dOIS0tDZWVlZgyZQrWrVuHUaNGYcWK\nFXjttdfw0EMPQZIkyLIMq9WKzZs3Y9iwYfjXv/6F8vJy9f1VVqsVTzzxhM+sxU6nE2fPnvVYpte9\nVXKx2+04fPgwLr30Up8xcNQ/bNvwYduGD9s2fNi2+tMaq52cnKy+g7M/ojLR6KRJk7Bnzx6f5Rs2\nbFD/vWDBAp+3wSuKi4t93vyuRetpQb2eDiAXSZLgdDohSRLbVWds2/Bh24YP2zZ82LaRoddMA/yE\niIiIiHTGBIuIiIhIZ0ywiIiIiHTGBIuIiIhIZ0ywiIiIiHTGBIuIiIhIZ1GZpoGIiIiCZ6+rg3zq\nFMY5HJCrq2HTaZoGadgwJI4b1+t6TqcTDz/8MF588UVYLBbExcVh5syZmD9/PtavX4/9+/frEs9A\nwgSLiIjI4MSZM0iZMUP3em1VVUAQCdbtt9+OlpYW7N27F6mpqQCA3bt34/Tp07rNGzXQ8BYhERER\n+XXkyBHs3r0blZWVanIFAKWlpR6vuXM6nZg3bx5mzpyJ3NxcLF26VH2t3XvvvYfc3Fx8//vfR0FB\nAXJzc7Fv3z5129dffx0zZ85EQUEBrFYrPvroIzz22GMoLy9X12ltbUV6ejpaWloicNT9xwSLiIiI\n/Nq3bx8uvfRSDBs2LOB6ZrMZL7zwAj788EN89tlnSE1NxZYtW9Tympoa3Hbbbfjkk0+wevVqPPjg\ngwBcr8+7/fbb8fzzz+OTTz7BRx99hMmTJ2P58uV4+eWX0dbWBgDYtm0brr/+ep/X4hkVEywiIiLq\nNyEEHnvsMVitVuTl5eFPf/oTPvnkE7V84sSJmD59OgDg8ssvx9GjRwEAb731FubPn49LL70UgCtR\nS0lJQVpaGhYtWoRnn30WAPD0009j9erVET6qvuMYLCIiIvLLarXi8OHDOHPmTMBerOeffx7vvvsu\n/vGPfyApKQlbtmzBO++8o5YPHTpU/bfZbEZ3d3ev+16zZg0WLlyIyZMnY+TIkcjPz+/fwUQQe7CI\niIjIrwkTJqC0tBR33HEHWltb1eUvvfSS2gsFAC0tLbjwwguRlJSE9vZ2VFZWBlX/tddeizfeeAOH\nDh0CAHR3d6u3BbOzszF+/HisWLECa9as0e+gIoAJFhEREQX07LPPIi8vD0VFRcjNzcVll12GN998\nE8OHD1fXufXWW2Gz2ZCTk4NvfetbuPLKK4Oqe8KECdi2bRuWLFmCgoICFBcXq8kWANx5551wOp0o\nLS3V/bjCSRJCiGgHES6yLKO9vd1jWUpKCkw6zR9CgM1mQ3V1NXJycpCUlBTtcAYUtm34sG3Dh20b\nHva6OjhPnYLD4UB8fLxu17Fg58GKpjVr1uDiiy/GQw89pHvd4cwTOAaLiIjI4BLHjYNt5EjUDaLk\ntampCVdddRVGjBiBN954I9rhhIwJFhERERlORkYGqqurox1Gn/FeGREREZHOmGARkaE5HI5oh0BE\nFDImWERkaF1dXdEOgYgoZEywiIgoaupO1qHuZF20wyDSHQe5E4WZ8lg1ebLXuS6qRn9EnMLrTMcZ\nAMA48DwIpO5kHU7ZT8GR6kB1czVMp/TpHxk2dBjGjey97bu7u/HTn/4UL774IuLi4hAfH48xY8Zg\n/fr1yMvL0yWWgYYJFlGYdXV1McHSIM64LqwY4AkWE2zSw5mOM5ixfYbu9VbdVhVUcrts2TLY7Xbs\n3bsXqampAIC//e1vqKmp8UmwZFnmfJPgLUIiorDiGDKKdbW1tXj55Zexbds2NbkCgKuuugo33HAD\ntm/fjquuugqLFi1Cfn4+PvroI5w4cQI33ngjiouLkZ+fj5/85CfqdmvXrkVRURGsVitmz56Nw4cP\nq2Umkwn/8z//g6KiIkyYMMHjdTu1tbVYsGABioqKUFBQgF/96lcAgMceewzl5eXqeq2trUhPT0dL\nS0sYW6V37MEiIl3wlh/RwLR//35MnDgRaWlpftf58MMP8cknn2DixIkAgHnz5uGhhx7CN7/5TTid\nTixYsAC7d+9GaWkpHnjgAfz85z8HAOzcuRM/+MEP8Oc//1mtKyEhAXv37kVNTQ1mzJiBW2+9FQBw\n00034fnnn8ekSZNw7tw5FBcXo6ioCMuXL0d2djZ+/vOfIzU1Fdu2bcP111+PCy64IIyt0jsmWESk\ni8Fyy49osDt69ChKS0tx7tw5XHHFFZg1axauuOIKNbmy2+14++23cfLkSShv47PZbKipqQEAvPHG\nG/jlL3+J9vZ2yLKMM8p3R4+bb74ZgOtFzxaLBV999RVaW1vx+eefY/HixWqdZ8+exRdffIFp06Zh\n0aJFePbZZ3HPPffg6aefxu9+97tINYdfTLCIKOLsdXUQXV2QLJZoh0JEvSgsLERtbS1aW1uRlpaG\n8ePHY//+/di+fTtefvllAEBycrK6vhACkiRh7969sHj9jjc0NGDNmjWoqqrC2LFj8dlnn2HWrFlq\nuSRJGDp0qPqzyWRCd3c3hBAYMWIE9u3bpxnjmjVrsHDhQkyePBkjR45Efn6+nk3QJxyDNcDZ6+rU\nWzdERiHOnIGQ5V7Xs9fVwWm3RyAiffD3jQaiiRMn4jvf+Q7uuOMOtLa2qsttNpvm+klJSZgzZw4e\neeQRdVlTUxP+85//oLW1FfHx8bj44oshhMCWLVs8tlV6p7xlZ2cjNTXVY0zWkSNH1N6v7OxsjB8/\nHitWrMCaNWv6eqi6YoI1wIkzZ87futEJLyIUqdnVxZkzQAwNEg/H7xuREVRWVmLq1KkoKipCbm4u\nrrzySrz99tv47//+b831n3/+edTW1iI3Nxd5eXkoLS3F6dOnMXXqVCxevBhTpkxBUVERxo4d67Gd\nJEmaP5vNZrz22mt46aWXUFBQgKlTp2L58uXo6OhQ173zzjvhdDpRWlqq78H3EW8RUsg41obCNfUE\nB8qHlzKhZzDzHpGxDBs6DB+VfaRO+6HXNAjDhg4Lar24uDisX78e69ev9ykrKipCWVmZx7ILL7wQ\nO3bs0Kxr8+bN2Lx5s/rzgw8+qP7b6XR6rHvy5En13+PGjcMrr7ziN8Z33nkHq1atgtlsDngskcIE\nK4Bg5q8ZKBcEI8zVY4QYKLoGQvIum82w19UZ8juBk3rGrnEjx2GkbSSqq6uRk5ODpKSkaIdkGE1N\nTbjqqqswYsQIvPHGG9EOR8UEK4Bg/kofCBcEoP89EnJjI+xxcSFfVNwTVE7IOfD05w8QZSB8zLHb\nIZxOXb8T2PNE5F9GRgaqq6ujHYYPjsEifbS29mnsyUAfsxJrg7T11p/PN9iB8NGmx3i03t7Hd6bj\njNr7RATwHY6xgAkWRU3M9lCEwHuQNh8QiIxIDcK319Whw+2pqr4KJYHS+8IayxfqSH3ORsSk2/iY\nYOlAGXNhZEa7sNvr6iCfPBkTPRR6iqUeu0icM8H+7oR6IfX3ehq9jykaTznqfWGN5Qs1X0NERhaV\nBKu2thYlJSXIzs5GUVGR5r3TY8eOYfr06bBarcjNzcWNN97oMf/G3r17UVBQgMmTJ2Pu3LloamoK\ne9x+v5ztdsNfNI12YY+V2z+BGC1p1VtEzpkgf3f0upAGc0zBfq6DoQeWghPLvYAUPlFJsMrLy7Fy\n5UrU1NTg/vvv93m8EwBGjRqFDz74APv27cNnn32GjIwM9fFQIQSWLl2KJ598EgcPHsT8+fNx9913\nhzVmtcfFQEmKN6Nf8KMdXzh6L/p6PiixDLZbHIGOVykLpUe4t/brS/t6f67+zhvvPxIG22dJ58Vy\nLyCFT8QTrObmZlRVVWHJkiUAgNLSUjQ0NODo0aMe61ksFgwZMgSAa14Mm82mTjhWVVUFi8WCK6+8\nEoArYXv11VfD+gWnR4+L+xd1OJINvXscjJSQxNr+e2s7JZZYucWh17kQ6HjVshB6hHtrPz3aN5jz\nxuFwxMxnOdDUnazDF19+wR4kMpyIJ1gNDQ3IyMjwmCQtKysL9fX1Put2dXWhsLAQI0eORG1tLTZs\n2AAAqK+vx5gxY9T1kpOTkZaWhsbGxvAfQD+4f1FHO9kIhjhzBs4+XjT8JbvhGK8WamIdiZ60WPh8\ntSht4337S4/jicYTlXJjo8cfNe7H5P7utFB518XkKjyC+d0+03EGrZ2tAXuQeAuPosHQ82BZLBbs\n378f3d3dWLNmDSoqKrB27VrNdf29v8ib3W73mYrfH6XnDABkWQaEgCzLHu9f8l4uyzLw1VcAANMl\nl3iu19MDpq7n9m89ZuV1r9N7mcLfu6Pcj9V9WzkpSXO5Ute5c+cAuNrfvW2cTqfPRUeWZaCj43zS\n1vOZKdtpxeC9vclkgtyTSCvtq7Uv723c48apU674R470u69gaLW3dxngahuP88iNcDrRfvgwAM/z\nBYDatsr/I0HuaRsAgNMJYTb7nK+uIu3zRVgsaD98WD0Wj/P81CmI+Pjz9Wl8/pLb7xMAQAgIIfye\nG70ub22FE67PWj51Sj2mznPnkJKSotm23sfq83Njo+sc6lmuxAfAI/5AbdXbPgOV97ZuqPvpT31a\nvM/bxjbX7+slqZdorh9o/4F+t5VyWZYhoP3drPzun7K7zuuRtv79zvujdxv64962kdrnQBds7tAX\nkghn7Rqam5tx6aWX4vTp0+rJn5GRgQ8++ADjx4/3u93evXuxYsUKHDhwAB9//DFuueUWdXD82bNn\nkZ6err5EUiHLMtrb2z3qOXr0qM9U/O5G97z5+8uuLmRkZKiD58c5HLAIgS5JQp3bPryXZ2RkYOjx\n4wDgsZ738nE9f5kp2/gbpJ+cnIyzZ8/6jdede53eyxTuZVrH6r5snMMBU2YmTthsagyjLRYk2O3o\nFkJzP8oyrWNybysAsPSceu5tF+hhBaVca1/t7e2a7eT9Gfpri77Qam/vMgAwZWbiyIkTmjF0jBmj\neb64c/9Mws09PvfzOtTPV1lvnMOBuIQEnDOZYLHZYMrMROfp00iw213JCDw//+T//AdSVxdEYiLQ\n0QFJluHMyoI4exYOh8OnDfx99kp8l8oyYLGo+/f+XdU637yPVetni9vXpjMrC/ae77Khx4/DIgRE\nYiLOmUw+3yP+OFJd+4hv0z4H3Mt7WzfU/fSnvr7uM9jy3r4bU1JScNx2HMIkIMmSRx3u20b7GAfK\nPgcis9nsk3ukpKTo0ukR8QQLAK666iqUlZWhrKwMu3btws9+9jN8+OGHHuvU19cjPT0dCQkJEEJg\n7dq1OHHiBHbs2AEhBCZNmoStW7di1qxZ+MUvfoEPP/wQv/vd7zzq0EqwzGZzwB4suSdpM+XkwOl0\nqu80kqurAYcDiI+HKSdH7UVBayvgcEAkJUFKTIS46CJIhw6pdSicTqfHcr/70eid0Xqvklavl3ud\n3ssUWmXuMbgvk6urIWdkQEpJcZW5/+Xe0w7nzp3DsWPHMEkISJKk1q8Vt3sbAnD9G1Dr8nes7m3o\nE2NjI+S0NEhDh56P0U/7BWqLUKg9aRrt7X6swmKBdO4c5MxMmJRbY62t6nLExUFMmqR5vgDw27bh\n5NFG7ue717H29vkq63l/5nJGBkxNTec/e8Dj85cOHfIsAyCPGePaBr5tpPyx5B2Lx7nifc7Fx6Nz\n7Fh0dnZiyJAhSEhI0GwDj2Pw/tktRnnMGEgpKcCJE5DceraCPa8BoLrZtY+cdO3P2L28t3VD3U9/\n6tOinLdjx45FQkJCSMfmLVDbKZ/9odOH4HA6EG+O96jDfVu9j9FbuOtXuLftsbPHIrLPgc69B1qh\nV4IVlVuEFRUVWLZsGR555BGkpaWhsrISALBu3TqMGjUKK1aswKeffoqHHnoIkiRBlmVYrVY8+eST\nAFxv137uueewYsUKdHZ24pJLLvH7UklviYmJARvO1lOW1HNrTHnfk81kgixJMJlMrjIlcetZLtnt\nQEKC6xfarQ5l/Id55Eh1uXTyJCSnE5LF4rufnnrVn93KPOLUWO4eu/cyhVaZewwey0wmCEmC2WxW\nj1kWAnBrB4XktcxffEobyrIM9CS6apv2bOPvnYSaMba3QyQlecTor/0CtUUotOLwWcdkgtyTVEmS\nBJP7+dKz3GQyAV7nixbvtg0n9zbyON+9YrTZbLBYLB6fk/fviPcyABCSBEmSINz+yHH//GVAPS8U\nktd54hFvz+0RreVJSUlo76lPvU3c8++EhAR0dnYiISGh198jm9fvs+R0esQv9fyOyK2trtuefs7r\nQEynAp8D7uW9rRvqfvpTXyBK24ZybN6UttN6VZDy2ZtMJkhO398R93YP1zGqL14OU/3+JCQkwGSP\n7D4HKq2OGL1EJcGaNGkS9uzZ47NcGcQOAAsWLMCCBQv81lFUVIQDBw6EJb6+El6DZpWpHSSLBXAb\n76M8kRjcSDBjUgera4xjstfVwZmcDIfXBThYkXwnYbDvyovll3rrFbv7AwrO5GQgMVH9nNwHfcu9\nDB737jQ2panwAAAgAElEQVQPdC5prRfscQT78IN7+/S2jVHmbzPDjLqTdYPm3YR9eUl1Y1sj4mxx\nYW0jvj+VAuFM7j3CNm2CAb6MwyLAo/TK7Nadx49rtmlvF2CP3YT5ib9gn46L1acCgf7F7vFZ9Xzm\nWrOXu5/r3n9o9MpuD+5p1RAn9A32yT739omVpwHtXXbOu9SL3p4s1JuS9PKJRVIwweoRqQuobDZ7\nPN4dzF/Z0Z6gs8/8vAA60AXYvT20Jnfl7Nnh4d7u7ueoSE6OyASaISdl/eT9NCfFpsa2RnR1G+P7\nQEl6OekoKQZtghW1pMVu9+jVCuYv5r4mf7GSjLjfeurynntJlj3Ko90r2NdkIwrPkoTE4zwM8RyN\nlfPMXSQ/j8a2RvZohElrZytkEd7vA/ZIUV8N2gSrr0lLb7e35MbGsF9sgp2wMdRkRLlQ9mcy0D5d\nbHu79eOnXO8Le29Jt5yc7Du3V5BtZfQEC+h7ewZznnn33PZHOP446u1z7M/vRKRvVZG+2CNFfTVo\nEyx3/i4s7rNAK3q9ldHa6nOxkc1mOO123S6yWmNg9KpXyHLIY11GWyxAd7dnHW7C1Vvova9ACWIw\nyUNvSbfmZx+hF337Oyatdu1re4e1d9CrV6yvZLO5T+8E1UrwEtrazk+34vU5+rR3DLzQ3QhC6eE1\nUs9QMLH0JV6lPYx0rBQ5TLAQ4MLiZwxRyOx2oKur1wTLPQmIpXFXFpvt/Nw/GvQa39Zb72CgBDHa\ntxb7zd8xaY1xC6K9Y+n88tDXRE1jO3N7u2seO3/rnznj+8qgGOiJdBfpC3soDwkYqWcomFj6Eq/S\nHkY6VoocQ78qJxKMNH7EffoG9QLZ8+i6xzikXuL1N49UrJAbG2GP0zg1NXoHA1H+ejx75Ihmj5/W\nX9vuUwHY6+rgPHcOZq+JKKMl1GkKAlHPryCmJhjIhMUC0dHhv9wrMY+1BKsv0xsYTai9YgAGzfQV\nZGyDsgfLY86e06cDXrS1bs0ov/B6jivpld0OZ1ub6/ZIL0lGrDxq7pdOPYdKO/jrvdJsJ7eeInHm\njH69mAj+fPHbuxSG21T2ujp0+OvF6YdwJ216vTRcstnUc0O5le++D6P88RVrLBdY1HcQ9le4esXC\n0btnhtnnqca6k3WGedKRImtQJlgec/b09hepxkVN/YXv57gS9y/0oC5IOo1j0VswrxQw4sVKueXY\nl4t1nwfzB/H5BXOLL9D5EmwvizKeKRzj+cKe5Pf8wRHMwx6h1OnRFgb9fYsFNtmG1k79E/dAtJKb\nQMJx287eZfd5qvFMx5mwP+moheO+om9QJljBiMhtE7cvdKP3OvlrD613ImrqbzIajnmSlFuOIfYM\nyY2Nmj2JoZ4z/Tkm7/PFvddLK8HS3FeYE4iw3353+/0JZUxZWM6lIEXzojfQbwVrJTexSo/PSiuB\nZNIVWYMuwTpXXx/UKz36m/Do0WMT6oznwe6vLwOctdpDTk6O2JiUSE9EGfALzs9YsFDPGeWY9GjD\nYJ+A9Jso93F6kYA9aRF8sCCUByn6ei71JTHzbp9oDnb2d37G2riyaItEkhKuP7g52D6yBt0gd9HS\n4vFKD6mtLTw7stvR36+tUC4E3u83DJRw6TWOxzs+2WyGFGDAcCwJ9QvOewb6UJIVIYT6QuNgyY2N\nkLq6XO+5DMA9FofDga6uLnT/5z++8YX4AIGi8/hxSAbrfVXehWlOTNS13r58X4SzZ1qv9xH25fzr\njb9ebffEpKu7C5a4wOevEakJykkgOS455l62PNjeYxlNg64Ha7Bw7z3orTct2IlLe6Vxy8mIY6+0\n9DdOrRnow6onIept/Jh7LL0N+vcnYO9WHxOzcArXPHFGE8n3EYbaa2OSTLCYLD7buL9KJtZv553p\nOIMuOfbOM77HMnKYYLlRLrLeTxMZVdD36d0SH61tlAtSoFsFfZ6h3mADhf0mUm5xRnOMTsgiMQGm\nWxJlxIQ5Em9PGOz6cmvJ1mXjhZwGNSZY7pSLrPfTRFEU6OLhb1wU4H9cRaBbFu7b+FxIDdZT0ecL\nfRAJX6THe/nTnxcS6zWNgQ+DJcwAgu7No/5Rbi15M/rAaa1pEvScOmGgPzxAfccEy4A8kocQE5tA\nA6fde2bce+t669ExJKPHpwN/SXKgL3S1bDC+2mUwHnM/hZIc+Lu1FGrvVqjTKfSX1u1If7co+5Is\nGfEJcM69ZQxMsIwoTMmDR8+MW2/dQExUervNG1O3Ab0E+kI34pd9JBnxFmYg0e79iMb5YrTpFNyT\nESP//oRyrgyEMW4DARMsGph6uc1rlNuApDMd/mCI5LQFRr6gh0Nf21avz0RJUtzrc09GGtsadbnd\n6e92an8MtnNlIBh0CZbo7o52CBQGRhjoLDc2cgzQAMB5ocLHu22DvV2o12eiPknrp77WzlZdBuZr\n3U4NR9JFxjb4EqwBeDvMSC+sjhojDMLX8b2Fsc4ICW+0NaaZYe80/tPIeuhr8hDK7UIzzPjiyy90\nTVK0EjzlWNwH7ydb+t/j3Z/pEepO1mmeS0zajG3QJVhG1Z8LUiRnzA4Xo71odyAkCFFtQyMkvFHW\n6rR7zJOk18BjI/awuScP/Xn6NdATifYuu249TO51eid4yrG4D973TrCiMVBfa84tzmllbEywjGKw\nX5CM9qLdPn4e0U4MPUS7DcmDXgOPg02wovUkWX8SwFh5lYt3YmbEpJeijwkWkZ50TmqSORif+miw\nPkkWjdtmoSZYwTwRGM75xXhrMTKYYPUR/2IhRThn/k9JSQlLvRSb+jOtQ2Nboy49WtGeWqI3Rrlt\nlmxJ9tvmwTwRGM7ePKO00UDHBKuPmGCRykAz/9PA1pdH9ZXxQ62drbr0aHG6gOAkW5J1a3OKTUyw\niAzCXlfXr2kegulJGwiD98k/rd6l/jwBF63eqkC3x5SnCQM9odnfp/4iPYhdD0bvWRyMmGARGYQ4\nc6bXaR4CJlHB9KQN9ocpBjild0mvAe7R6q0KdHtMeZpQ66k6RX8TLKPNNh8M9iwaDxMsol4Y7clA\n3o4cGMLZ4xDLA9xjsfeor4z+omzqHyZYgwxvEfVBBKc7MFQyR2HFHgdtsdh71FexMi0F9Q0TrMGG\nt4iMzSuZS2hrA/h6Jxrg9JgpPdb4u40bqGcz1ElczTDjP1//J+TYSB9x0Q6AiPwzt7cDsgxIUrRD\noTBobGtEnI1fw4MxwfJ3GzdQz6bW0+vKnFYjk0b6lNm77JDA745oYQ8WEVGUtHa2oq2jbdCMOYp1\nRhwfxjmtjIsJFlGM47it2OP+8t7+jjmKxkDpwTolwEAaHzYYew0jjQkWUazjOwdjjr+X9/a1rkj3\nYERigL4Z5oBzXZG2YKfoYIIVfkywiIhiQLAJR7Re8qw3e5ddtyQ0loX6ecbyFB0DDUdXEhHFAK2E\nwwwzOro7YImzqMt4gY1Nym1e78Hq/DxjV1R6sGpra1FSUoLs7GwUFRWhurraZ51///vfmDVrFqZM\nmYK8vDwsX74cnZ2darnJZEJ+fj4KCwthtVrxwQcfRPIQiIiiLhxjgjj5ZXRwTqyBJyoJVnl5OVau\nXImamhrcf//9KCsr81ln6NCheOqpp/DFF1/gwIEDOHv2LDZt2qSWS5KE999/H/v378e+fftQUlIS\nyUMwBLmxsV/vriPj4EB1MopwXOiVqQSIBpOIJ1jNzc2oqqrCkiVLAAClpaVoaGjA0aNHPdabOHEi\npk6dCsCVTM2YMQPHjh1Ty4UQmnOCDCqtrb2+u45iBAeq0wA2EKYSiMb1xojTQlDwIj4Gq6GhARkZ\nGTCZzud2WVlZqK+vx/jx4zW3sdls2Lp1Kx599FF1mSRJmDNnDmRZxtVXX42NGzciMTGx9wCEcP0H\n1y+MpCzzWe18mTp7bk9S53Q6NbcLtj7v5f2pzz02PeoLNT7Z6TyfpbuVR6MtBlJ9sizDybYNW32R\nPG8hzv+eCpz/PlHKBFzbyLIMm83ms1+lTED4bONebrPZ4HQ61XXdY7DZbOp27vtxOp1qfMoyJT6l\nPpvNptapnJdKuXtsSplSrnncGrErMR5uOgxHt8MndiVG7+38tUWgdleOx18bei93/6yELDRjCCU+\nrc9JWabsS2k/WZbR4ezw3ReAL1u+9Ggr92Pz9/k3tjV6bKOeF4NcOBNnww9y7+rqwuLFizFv3jx8\n5zvfUZcfP34co0ePxrlz51BeXo61a9fiqaee6rU+4ZZgybIMyDIkjQZ2L+vqmfPF0pNs2dvbkayx\nXbD1eS/vT33dPa9RsbgdUyTjs9vtSIbvSRqNthhI9XU5HOhg24atvkict0IAspAhyzK6na7fU2ES\n6hxScqKrTInB4XBojkcFAEeqA8Ik1Pq841a2zcjIgMPhWleNT8iorq6GPMy1nft+MjIy1PiUZY5U\nV3xKfU1NTer+HQ4H2tvbAQBNTU0esbmXAa7EQjlWpTzOHKd5QZOFjOb2Zo+4leXt7e2ax+yvLdzL\nLGYLOro71Fja29vR1NSktoV3G3rH5++z6mt8Wp+Tskxpd6UNtT5Hu931FOkp2ymPMvdjUz4P9+2U\n+rWWD3Zms9lv505/RTzByszMdJ3gsqz2YtXX1yMrK8tn3e7ubtx4440YNWoUNm/e7FE2evRoAEBC\nQgJWrVqF8vLyoPYvSRKknteOmEwmVwwaryFxL4uPj3ctdDhgMpmQkpICSWO7YOvzXt6f+txj06O+\nUONTeg0lA7TFQKovPj4eJrZt2OqLxHkrSYBJ6vk9Nbt+Tx1Oh/o7q5RJsmub+Ph45OTk+OwXAKqb\nq+FwOny2USjbOp1OxHfFw+E8PxGoSTIhJycH1SerIckSkoYmITElEZekXuLqJXW44lP2Xd3suugq\n9V1wwQXq/uPj45GSkgIASE1NxVdnv8Kpc6cgC1ktczqdQAcg4fx3p3rcAj6xKzHGx3vGrSxPSUmB\nyeF7zP7awr3snPMcIJ2PJSUlxXU8PW3h3Ybe8fn7rPoan9bnpCxT2l1pX63PUTlvLRaLxxOlHsfW\n81m5b6fUr7V8sHPvGdRbxBOs9PR0WK1W7NixA2VlZdi1axcyMzN9Mkin04kbb7wRI0aMQEVFhUdZ\nS0sLhgwZgoSEBMiyjJ07d6KwsDC4ACRJ/RJUv1w1vkzdy5REUO5JzsxmM2SN7YKtz3t5v+qzWCB1\ndEC4HVMk4zObzec7oz0uLlFoiwFUn8lkYtuGsb6Itq0EWEyunhQJ579PlDLlXXEmkwlJSUk++wUA\n0ykTJKfks41a3rOtzWZzXdSdnseUlJSkbmfvssMJp7o+pPPb152sg1N2whJngcXimvohKSlJ3b9y\nXirau9p7bp36lin1AoDklJA6JBVtnW2a78aTer5n3eN2b1utY/bXFv7KlPjc28K7DWVZ9tkm0L5C\njc/9c5IkSW03pY0BqG2o9TkqZcq2WsemfFbu2wVaPtjJsuzR86qnqDxFWFFRgWeeeQbZ2dn42c9+\nhsrKSgDAunXr8Otf/xoAsHPnTvzxj3/Exx9/rE7FsGbNGgDAwYMHUVxcjMLCQuTn5+P06dN4/PHH\no3Eo0cfB0USGFyuvWHGfc0nv2do5c7inQGN/GtsaObh9AIjKGKxJkyZhz549Pss3bNig/vvmm2/G\nzTffrLl9cXExDhw4ELb4iIiIoqW1s1XXhHygzO4fa/iqHCIiA+PFkfqLs8FHBxMsIiIDi8TFkROB\nGuMWphFiIP0wwSIiMhhleoBIGQgTgfaXEZKbcMUw6CfljhLDz4NFRDTYdHV14T8t/4l2GKQzpafQ\n+4XO4cYEKzqYYBERGVBfepT8PX3W1x6xxrZGxNn6fpkww4yO7o7eVxwklCkyIp1gUXQwwSIiGiD8\nPX3W1ykXWjtbPV5rFogZZtg77RgSN0RdZu+y92m/4RTp2680eHEMFhERBfViYSWJ0mLvsnvMLm5U\nes/vReQPe7CIiCio3qZYSaKMLFCSSgMLe7CIiIgiJBxJqvL0IedMMxYmWEREERTMrbhoc+9liYV4\nBzslweKEosbCW4RERBFkxIHf3tx7WWIh3nDhU5DUH+zBIiIykEg85caZ24MTKy/pJmNigkVEZCCR\neMqNM7cThR8TLCKiQai/T7P5m9SUiFyYYBERDUL9fZrN36SmROTCBIuIyID4/jii2MYEi4jIgJhg\nEcU2JlhEBiQnJ0c7BCIyoGR+N8QMJlhEBiT4JUpEGlJSUqIdAgWJCRYRkQFwbiqigSWkmdxvu+02\nSJLkt/zZZ5/td0BERIORMmN6clwyEockRjkaIuqvkHqwhgwZgn/9618YP348JkyYgA8//BBDhgzB\ntGnTMG3atHDFSEQ0KITjRcBkfHxJ88AUUg/WF198gX/9619ITU0FAKxZswYLFizA008/HZbgiIiI\nBjIzzDh59iTnFBuAQurBam5uVpMrAEhNTUVzc7PuQRERkeviO1h6NgbrtBR83+HAFVIPVn5+PpYt\nW4Y77rgDALBt2zbk5+eHJTAiosFOGZc1GIQ7wVJeDcTxbRQpIfVgbd26Fenp6bjnnntwzz33ID09\nHVu3bg1XbEREFAQ+gdg7jm+jSAupBys5ORk///nPwxULERH1gb3LDiec0Q6DiNyE1IPV0NCABQsW\noKCgAADwySefYPPmzWEJjIiIiChWhZRglZeXY/Hixeq98qlTp3LuKyIiIiIvISVYJ0+exNKlS2Ey\nuTaLi4tDXFxIdxmJiIiIBryQEqy4uDiPJz3OnDkzaB+tJSIiIvInpATrhhtuQHl5Odra2rB161Zc\nc801WL58ebhiIyIiIopJId3f+9GPfoQXXngBra2t+Otf/4p7770XN998c7hiIyIiIopJQSdYTqcT\nDz74IDZt2oSbbropnDERERERxbSgbxGazWa888474YyFiIj6KNmSHO0QiMhNSGOwrrvuOvz0pz9F\nY2Mj2tra1P9CVVtbi5KSEmRnZ6OoqAjV1dU+6/z73//GrFmzMGXKFOTl5WH58uXo7OxUy/fu3YuC\nggJMnjwZc+fORVNTU8hxEBENFEywiIwlpARr48aN+PGPf4zRo0dj2LBhuOCCCzBs2LCQd1peXo6V\nK1eipqYG999/P8rKynzWGTp0KJ566il88cUXOHDgAM6ePYtNmzYBcL2zaunSpXjyySdx8OBBzJ8/\nH3fffXfIcRARERGFQ1AJ1ueffw4AkGVZ/c/pdKr/D0VzczOqqqqwZMkSAEBpaSkaGhpw9OhRj/Um\nTpyIqVOnAgAkScKMGTNw7NgxAEBVVRUsFguuvPJKAK6E7dVXX4XD4QgpFiIiIqJwCGqQ+y233IJ9\n+/bhG9/4Bt5///1+7bChoQEZGRnqZKUAkJWVhfr6eowfP15zG5vNhq1bt6o9WPX19RgzZoxanpyc\njLS0NDQ2NmLs2LGBAxDC9R9cPWGSssxntfNlsiyr2woh4HQ6NbcLtj7v5bFcn+x0ns/S3cpjIXaj\n18e2DV99kWxbCEBAuz6tMqU+f2VGr0/9o1sAQvJsW6PHbvT6lLYVQniUK2WyLAcdhxACNpvNJ7bB\nJpxzeQaVYHV0dGDnzp1obGzEK6+84lO+cOFC3QNTdHV1YfHixZg3b17A/QTbSMItwZJlGZBlSBrb\nupd19fSMWXqSLXt7O5I1tgu2Pu/lsVyf3W5HMnzbPxZiN3p9bNvw1ReJthUCkIWrx1/r+8lfmSxk\ntLe3+y0zen12u911/K6rekzFbvT6lLbt6uqCMAmf7RwOh8fy3valNf55sDGbzX47d/orqATr0Ucf\nRUVFBZqbm31e7ixJUkgJVmZmJpqamiDLstqLVV9fj6ysLJ91u7u7ceONN2LUqFEe+83KylJvFwLA\n2bNn0dbWhksuuaTX/UuSBEmSAAAmk8kVQ8/P7tzL4uPjXQsdDphMJqSkpEDS2C7Y+ryXx3J9iYmJ\nAKC2aSzFbvT62Lbhqy8SbStJgElybSPJGvX5KTNJrvpMDu0yo9eXmJgIdAASJEDqvT4jxW70+hIT\nE2G322GxWNAld/lsF98VD4fT4bOdv33l5OT4xDbYePS66iyoBGvhwoVYuHAh7r77bjzxxBP92mF6\nejqsVit27NiBsrIy7Nq1C5mZmT4ZpNPpxI033ogRI0agoqLCo2zatGno7u7Ge++9h1mzZqGiogLf\n/va3zydCgUiS+iWofrlqfJm6lymJoNyTnJnNZsga2wVbn/fyWK7PbDaf/yPV4+Ji/NiNXh/bNnz1\nRbRtpZ5kQ6s+jTKlPn9lRq/PbDb3/OBZHguxG70+pW0lSfJpW7PZ7EqknMHFIUkSkpKSfGIbbGTZ\n1fsXDiHN5N7f5EpRUVGBZcuW4ZFHHkFaWhoqKysBAOvWrcOoUaOwYsUK7Ny5E3/84x+Rl5eHwsJC\nSJKEkpISbNmyBZIk4bnnnsOKFSvQ2dmJSy65BDt27NAlNiIioljT2NaIru6u3lekiAkpwdLLpEmT\nsGfPHp/lGzZsUP998803B3wNT1FREQ4cOBCW+IiIiGJJa2crZCFHOwxyE9I8WERERETUOyZYRERE\nRDrrd4K1b98+PeIgIiIiGjD6nWD9+Mc/1iMOIiIiogGj3wnW66+/rkccRERERAMGx2ARERER6Syk\nBOvvf/87Zs6cieHDhyM1NRUpKSlITU0NV2xERETkpk1uQ7fcHe0wKAghzYN155134qc//Slmzpx5\nfrZeIiIiioh2RztkyJozxJOxhJRgpaamYtGiReGKhYiIiGhACOkWYWlpKXbs2AGHw9H7ykRERESD\nVEgJVk5ODlatWoWEhAT1xZK8VUhERETkKaRbhD/84Q/x8ssvY/r06UysiIiIiPwIKcEaOXIkrrrq\nqnDFQkRERDQghHSLcOHChfjlL3+JkydPoq2tTf2PiIiIiM4LqQfr//2//wcA+MEPfgBJkiCEgCRJ\ncDqdYQmOiIiIKBaFlGDJshyuOIiIiIgGjKBvETqdTkyZMiWcsRARERENCEEnWGazGenp6bDb7eGM\nh4iIiCjmhXSLcOLEiSgpKcENN9yA5ORkdfkPfvAD3QMjIiIiilUhj8EqKCjA4cOH1WWSxPchERER\nEbkLKcHatm1buOIgIiIiGjBCSrC6u7uxefNmvPnmmwCAa6+9FnfffTfi4kKqhoiIiGhACykzuvfe\ne3HkyBGsWrUKkiRh69atOH78OJ588slwxUdEREQUc0JKsN5991188sknMJlcDx9+61vfgtVqDUtg\nRERERLEqpFflCCE8JhsVQkAIoXtQRERERLEspB6sefPm4b/+67+wbNkyAMBvfvMbzJ8/PxxxERER\nEcWskBKsTZs24ZlnnsErr7wCAFi0aBFWrFgRlsCIiIiIYlVICZbJZMJdd92Fu+66K1zxEBEREcW8\nkBKslpYWPPPMMzhy5Ai6u7vV5c8++6zugRERERHFqpASrEWLFiE9PR2XX345zGZzuGIiIiIiimkh\nJVhNTU146623whULERER0YAQ0jQNEyZMQEtLS7hiISIiIhoQQurBSkxMhNVqxbx58zB06FB1+f/+\n7//qHhgRERFRrAopwcrJyUFOTk64YiEiIiIaEEJKsNatWxeuOIiIiIgGjJDGYOmltrYWJSUlyM7O\nRlFREaqrq33WsdlsmDdvHtLT0zF8+HCfcpPJhPz8fBQWFsJqteKDDz6IROhEREREvQqpB0sv5eXl\nWLlyJW655Rbs3r0bZWVl+PDDDz3WsVgseOCBBzB8+HDMnj3bpw5JkvD+++8jJSUlQlETERERBSeo\nHqzPP/9ctx02NzejqqoKS5YsAQCUlpaioaEBR48e9VgvPj4es2fPRlpammY9fNE0ERERGVVQCdYt\nt9wCAPjGN77R7x02NDQgIyMDJtP5XWdlZaG+vj6keiRJwpw5c1BYWIj77rsPdru937ERERER6SGo\nW4QdHR3YuXMnmpqa1Bc9u1u4cKHugfXm+PHjGD16NM6dO4fy8nKsXbsWTz31VO8bCuH6D65eMElZ\n5rPa+TJZltVthRBwOp2a2wVbn/fyWK5PdjrPZ+lu5bEQu9HrY9uGr75Iti0EIKBdn1aZUp+/MqPX\n53Q6e34AhOTZtkaP3ej16d22NpvNZ/3BJpx3woJKsB599FFUVFTg5MmT2Lx5s0eZJEkhJViZmZlo\namqCLMtqL1Z9fT2ysrJCCBsYPXo0ACAhIQGrVq1CeXl5UNsJtwRLlmVAliFpNLB7WZfDAQCw9CRb\n9vZ2JGtsF2x93stjuT673Y5k+J6ksRC70etj24avvki0rRCALGTIsqz5Je6vTBYy2tvb/ZYZvT7l\nboJwXdVjKnaj16d322o9YDbYmM1mjB8/Pix1B5VgLVy4EAsXLsTdd9+NJ554ol87TE9Ph9VqxY4d\nO1BWVoZdu3YhMzPT7wFqjbVqaWnBkCFDkJCQAFmWsXPnThQWFga1f0mSIEkSANeTiCaTCej52Z17\nWXx8vGuhwwGTyYSUlBRIGtsFW5/38liuLzExEQDUNo2l2I1eH9s2fPVFom0lCTBJrm0kWaM+P2Um\nyVWfyaFdZvT6EhMTgQ5AggRIvddnpNiNXp/ebct5Lb16BnUW0lOE/U2uFBUVFVi2bBkeeeQRpKWl\nobKyEoBrnq1Ro0ZhxYoVAID8/Hx8/fXXaG9vR1ZWFubMmYPt27fj4MGDKC8vh8lkQnd3N6xWa/Cx\nSZL6Jah+uWp8mbqXKT1tck9yZjabIWtsF2x93stjuT6z2Xz+DymPi4vxYzd6fWzb8NUX0baVei6I\nWvVplCn1+Sszen1ms7nnB8/yWIjd6PXp3bZJSUk+6w82suzqNQyHoBIsk8nk85eeu1Czv0mTJmHP\nnj0+yzds2ODx84EDBzS3Ly4u9ltGREREFG1BJVjt7e0QQuDxxx/HuXPncNdddwFw9UQlJCSENUAi\nIiKiWBNUgqV0I/7hD39AVVWVuvzhhx/GtGnT8NBDD4UnOiIiIqIYFNKrctrb23Hy5En155MnT4bt\n3mT2OsIAABbPSURBVCURERFRrAppkPuPfvQj5Ofn47rrrgMA/OUvf8H69evDERcRERFRzAopwSov\nL0dJSQneeecdAMC9996Lyy67LCyBEREREcWqkF/2PHXqVEydOjUcsRARERENCEElWDfddBNeeOEF\nFBYWak7XsG/fPt0DIyIiIopVQSVY9913HwDg8ccfD2swRERERANBUAnW6tWr8c9//hN/+MMfmGQR\nERER9SKoBKulpQUnTpzAO++8o0466i41NTUswRERERHFoqASrO9973sYN24cOjs7kZaWBsD1HiMh\nBCRJCtuLEomIiIhiUVATjW7YsAF2ux3FxcWQZRmyLMPpdKr/JyIiIqLzgkqwbrrpJgDABx98ENZg\niIiIiAaCoBKsgwcPhjsOIiIiogEjqARLa+4rIiIiItIW1CD3Tz/9FMOHD/dZrgxyP336tO6BERER\nEcWqoBKs7Oxs/OlPfwp3LEREREQDQlAJ1pAhQzBmzJhwx0JEREQ0IAQ1Bst7YlEiIiIi8i+oBGv/\n/v3hjoOIiIhowAgqwSIiIiKi4DHBIiIiItIZEywiIiIinTHBIiIiItIZEywiIiIinTHBIiIiItIZ\nEywiIiIinTHBIiIiItIZEywiIiIinTHBIiIiItIZEywiIiIinTHBIiIiItIZEywiIiIinTHBIiIi\nItIZEywiIiIinUUlwaqtrUVJSQmys7NRVFSE6upqn3VsNhvmzZuH9PR0DB8+3Kd87969KCgowOTJ\nkzF37lw0NTVFInQiIiKiXkUlwSovL8fKlStRU1OD+++/H2VlZT7rWCwWPPDAA3j77bd9yoQQWLp0\nKZ588kkcPHgQ8+fPx9133x2J0ImIiIh6FfEEq7m5GVVVVViyZAkAoLS0FA0NDTh69KjHevHx8Zg9\nezbS0tJ86qiqqoLFYsGVV14JwJWwvfrqq3A4HOE/ACIiIqJeRDzBamhoQEZGBkym87vOyspCfX19\n0HXU19djzJgx6s/JyclIS0tDY2OjrrESERER9UVctAPQixAi2BVd//VsIynLNOpTymRZVrcVQsDp\ndGpuF2x93stjuT7Z6TyfpbuVx0LsRq+PbRu++iLZthCAgHZ9WmVKff7KjF6f0+ns+QEQkmfbGj12\no9end9vabDaf9QeboHOHPoh4gpWZmYmmpibIsqz2YtXX1yMrKyvoOrKysnDs2DH157Nnz6KtrQ2X\nXHJJr9sKtwRLlmVAliFpNLB7WVfPrUdLT7Jlb29HssZ2wdbnvTyW67Pb7UiG70kaC7EbvT62bfjq\ni0TbCgHIQoYsy5pf4v7KZCGjvb3db5nR67Pb7a7jd13VYyp2o9end9tqPWA22JjNZowfPz4sdUc8\nwUpPT4fVasWOHTtQVlaGXbt2ITMz0+8BCiF8Toxp06ahu7sb7733HmbNmoWKigp8+9vfRnx8fK/7\nlyQJkiQBAEwmkyvJ6/nZnXuZWq/DAZPJhJSUFEga2wVbn/fyWK4vMTERANQ2jaXYjV4f2zZ89UWi\nbSUJMEmubSRZoz4/ZSbJVZ/JoV1m9PoSExOBDkCCBEi912ek2I1en95tm5OT47P+YOPRM6izqNwi\nrKiowLJly/DII48gLS0NlZWVAIB169Zh1KhRWLFiBQAgPz8fX3/9Ndrb25GVlYU5c+Zg+/btkCQJ\nzz33HFasWIHOzk5ccskl2LFjR3A7lyT1S1D9ctX4MnUvU3ra5J7kzGw2Q9bYLtj6vJfHcn1ms/n8\nH1IeFxfjx270+ti24asvom0r9VwQterTKFPq81dm9PrMZnPPD57lsRC70evTu22TkpJ81h9sZNnV\naxgOUUmwJk2ahD179vgs37Bhg8fPBw4c8FtHUVFRwHIiIiKiaOFM7kREREQ6Y4JFREREpDMmWERE\nREQ6Y4JFREREpDMmWEREREQ6Y4JFREREpDMmWEREREQ6Y4JFREREpDMmWEREREQ6Y4JFREREpDMm\nWEREREQ6Y4JFREREpDMmWEREREQ6Y4JFREREpDMmWEREREQ6Y4JFREREpDMmWEREREQ6Y4JFRERE\npDMmWEREREQ6Y4JFREREpDMmWEREREQ6Y4JFREREpDMmWEREREQ6Y4JFREREpDMmWEREREQ6Y4JF\nREREpDMmWEREREQ6Y4JFREREpDMmWEREREQ6Y4JFREREpDMmWEREREQ6Y4JFREREpDMmWEREREQ6\nY4JFREREpDMmWEREREQ6Y4JFREREpLOoJFi1tbUoKSlBdnY2ioqKUF1drbnea6+9hpycHGRnZ2PR\nokU4e/asWmYymZCfn4/CwkJYrVZ88MEHkQqfiIiIKKCoJFjl5eVYuXIlampqcP/996OsrMxnHZvN\nhuXLl+OVV15BTU0NMjIysHHjRrVckiS8//772L9/P/bt24eSkpJIHgIRERGRXxFPsJqbm1FVVYUl\nS5YAAEpLS9HQ0ICjR496rPfnP/8ZVqsVl156KQBg1apVeOGFF9RyIQSEEJELnIiIiChIcZHeYUND\nAzIyMmAync/tsrKyUF9fj/Hjx6vL6uvrMWbMGPXnsWPHoqmpCbIsw2QyQZIkzJkzB7Is4+qrr8bG\njRuRmJjYewBCuP6DK0mTlGU+q50vk2VZ3VYIAafTqbldsPV5L4/l+mSn83yW7lYeC7EbvT62bfjq\ni2TbQgAC2vVplSn1+Sszen1Op7PnB0BInm1r9NiNXp/ebWuz2XzWH2zC2VET8QSrPyRJUv99/Phx\njB49GufOnUN5eTnWrl2Lp556qtc6hFuCJcsyIMuQNBrYvazL4QAAWHqSLXt7O5I1tgu2Pu/lsVyf\n3W5HMnxP0liI3ej1sW3DV18k2lYIQBYyZFnW/BL3VyYLGe3t7X7LjF6f3W53Hb/rqh5TsRu9Pr3b\n1t/458HEbDZ7dO7oKeIJVmZmpkdPFODqrcrKyvJYLysrC2+++ab6c11dnUfP1+jRowEACQkJWLVq\nFcrLy4PavyRJaqJmMplc9bklbgr3svj4eNdChwMmkwkpKSmQNLYLtj7v5bFcn9JrKMVg7Eavj20b\nvvoi0baSBJgk1zaSrFGfnzKT5KrP5NAuM3p9iYmJQAcgQQKk3uszUuxGr0/vts3JyfFZf7Dx6BnU\nWcQTrPT0dFitVuzYsQNlZWXYtWsXMjMzfTLIefPmYfXq1Th06BAmTZqEp59+GosXLwYAtLS0YMiQ\nIUhISIAsy9i5cycKCwuDC0CS1C9B9ctV48vUvUxJ6uSe5MxsNkPW2C7Y+ryXx3J9ZrP5/B9SHhcX\n48du9PrYtuGrL6JtK/VcELXq0yhT6vNXZvT6zGZzzw+e5bEQu9Hr07ttk5KSfNYfbGTZ1WsYDlG5\nRVhRUYFly5bhkUceQVpaGiorKwEA69atw6hRo7BixQokJydj69at+M53vgOn04mpU6di+/btAICD\nBw+ivLwcJpMJ3d3dsFqteOKJJ6JxKEREREQ+opJgTZo0CXv27PFZvmHDBo+fFyxYgAULFvisV1xc\njAMHDoQtPiIiIqL+4EzuRERERDpjgkVERESkMyZYRERERDpjgkVERESkMyZYRERERDpjgkVERESk\nMyZYRERERDpjgkVERESkMyZYRERERDpjgkVERESkMyZYRERERDpjgkVERESkMyZYRERERDpjgkVE\nRESkMyZYRERERDpjgkVERESkMyZYRERERDpjgkVERESkMyZYRERERDpjgkVERESkMyZYRERERDpj\ngkVERESkMyZYRERERDpjgkVERESkMyZYRERERDpjgkVERESkMyZYRERERDpjgkVERESkMyZYRERE\nRDpjgkVERESkMyZYRERERDpjgkVERESkMyZYRERERDpjgkVERESkMyZYRERERDqLSoJVW1uLkpIS\nZGdno6ioCNXV1Zrrvfbaa8jJyUF2djYWLVqEs2fPqmV79+5FQUEBJk+ejLlz56KpqSlS4RMREREF\nFJUEq7y8HCtXrkRNTQ3uv/9+lJWV+axjs9mwfPlyvPLKK6ipqUFGRgY2btwIABBCYOnSpXjyySdx\n8OBBzJ8/H3fffXekD4OIiIhIU1ykd9jc3Iyqqiq8+eabAIDS0lKsXr36/7d3v7FNlXscwL+nZYY4\nLHEITvavBboxtnZtcZssETojDAMmM8RsojCLZv5XfCEv1IRhlDjjlhCMjBilSAyJbGxgspmogaYv\nZEPq2IRkw3brRFQMcwjNHHb73Re7nHvLhpfLTreufD9v1j7POc95+k1z8uvp0zMEAgEsWLBA3a6l\npQUOhwNmsxkA8Pzzz2PVqlV47733cOLECSQkJGD58uUARgu2N998E1euXMFtt92mjiEiY44vev1/\nHgOAXg+MjIzd7r/6RKdT95V/jyvj7Hej413bPq3HEwH0+tGsFWV6zT3Wx2O20RtvErLVK1f/6jGi\njB3vn/pE5Lp9sT7e1T6BQIES0Rfrc4/18bTOdmSc9/mtZrwMxqsdboYiWo10g3w+Hx5//PGIrwUL\nCwtRXV0Np9OpttXW1uLMmTPYtWsXAGBwcBAGgwFDQ0NoamrCRx99hJaWFnX75ORkHDt2DEajUW0L\nh8MIhUJRf01EREQUHxITEzFjxsSvP8XNIvdJrhOJiIiIrmvSC6y0tDT88ssvEZfl+vr6kJ6eHrFd\neno6ent71ec9PT245557oNPpxvRdvnwZf/75J+bPnx/t6RMRERH9T5NeYM2dOxcOhwP79u0DANTX\n1yMtLS1i/RUArF69Gt9//z26u7sBALt27UJ5eTkAYOnSpQiHw/B4PACAuro6PPzwwxHrr4iIiIim\nyqSvwQKA7u5uPPnkk7hw4QJmz54Nt9uNJUuWYOvWrUhJSUFlZSWA0ds0vPbaaxgeHkZubi727t2L\nO+64A8DobRoqKysxNDSE+fPnY9++fUhJSYk4zsjIyJgFbIqiQFEiFwcSERHRrUdExiwx0ul00Okm\nfv1pSgosIiIiongWN4vciYiIiGJF3BdYN3rXeBrrlVdegclkgk6nQ0dHh9r++++/46GHHkJmZias\nViu8Xq/aNzg4iPXr18NsNmPx4sVoaGiYiqnHvKGhITzyyCNYvHgx7HY7SkpK4Pf7ATBfLZSUlMBm\ns8Fut2PFihVob28HwGy1smfPHuh0Ohw+fBgAc9WK0WhEdnY27HY7HA4HDhw4AID5auHKlSt46aWX\nkJmZiby8PGzcuBFAlLOVOPfAAw/Ip59+KiIi9fX1kp+fP8Uzmj68Xq/8/PPPYjKZ5OTJk2r7pk2b\nZNu2bSIicvz4cUlNTZVwOCwiIm+99Za4XC4REenp6ZF58+ZJf3//5E8+xv3111/S0tKiPv/ggw/E\n6XSKiIjL5WK+E3Tx4kX1cWNjo+Tl5YkIs9VCb2+vFBUVSVFRkRw6dEhEeE7Qislkko6OjjHtzHfi\nNm/eLC+//LL6/LfffhOR6GYb1wXW+fPnZfbs2TI8PKy2JScni9/vn8JZTT9GozGiwJo1a5b65hQR\nKSwslG+++UZERHJycqS1tVXtKysrk48//njyJjtNfffdd2IymUSE+Wptz5494nA4RITZTtTIyIg8\n+OCD4vP5xOl0qgUWc9XGtefaq5jvxIRCITEYDHLp0qUxfdHMdtL/Vc5k+umnn9R7Z12Vnp6Ovr6+\nMbeFoBvT39+PcDiMefPmqW0ZGRno6+sDMHpPs4yMjHH76Pp27NiB0tJS5quhiooKHDlyBIqioLm5\nmdlqoLa2Fvfffz/sdrvaxly1tWHDBgBAQUEB3n33XSiKwnwnyO/3IykpCe+88w6+/vpr3H777di6\ndStsNltUs437NVhEsW779u3w+/3Yvn37VE8lruzduxd9fX14++23sWXLFgD8jw8TcerUKTQ0NOCN\nN96Y6qnELa/Xi5MnT8Ln82HOnDmoqKgAwPftRIXDYQSDQeTm5uL48ePYsWMHysvLEQ6Ho5ptXBdY\nN3rXeLpxSUlJmDFjBs6fP6+29fb2qplmZGQgGAyO20djvf/++2hqasKXX36JmTNnMt8o2LBhA44e\nPQoASEhIYLY3yev1IhgMwmw2w2Qy4dixY6isrMTnn3/O96xGUlNTAQB6vR6bN2+G1+vlOUED6enp\n0Ov1WL9+PQDAZrPBaDSis7MzuueEm/1Oc7ooLi4Wt9stIiIHDhzgIvebcO26AJfLJVVVVSIi0tbW\nFrEosKqqSl0UGAgE5O6775YLFy5M/qSngZqaGlm6dKkMDAxEtDPfiRkYGJBz586pzxsbGyUtLU1E\nmK2WnE6nHD58WESYqxZCoVDEuaCmpkZWrFghIsxXCyUlJdLc3CwioznNnTtXzp07F9Vs477A6urq\nkmXLlklmZqbk5+fLDz/8MNVTmjaeeeYZSU1NlYSEBElOThaz2Swio7++WLVqlZjNZsnNzRWPx6Pu\nEwqFpKysTBYuXChZWVlSX18/VdOPaWfPnhVFUWTRokVit9vFZrPJfffdJyLMd6KCwaAUFBSI1WqV\nvLw8WblypfoBgdlqp7i4WF3kzlwnLhAIiN1ul7y8PLFarVJaWirBYFBEmK8WAoGAFBcXi8ViEZvN\nJo2NjSIS3Wx5J3ciIiIijcX1GiwiIiKiqcACi4iIiEhjLLCIiIiINMYCi4iIiEhjLLCIiIiINMYC\ni4iIiEhjLLCIiIiINMYCi4iIiEhjLLCIKOYNDw9j27ZtyM7OhtVqhcPhwLPPPotDhw7Bbrdreqxg\nMIjdu3drOiYR3XpYYBFRzNu0aRN8Ph9aW1vR0dEBn8+HlStXor+/H4qiaHqsnp4e1NXV3dS+w8PD\nms6FiKYvFlhEFNP8fj8aGhrgdrthMBjU9nXr1mHBggX4+++/8cILL8Bms8FiscDn8wEYLXZWr16N\ngoICWCwWPPHEExgcHAQAeDweWCwWVFRUwGKxID8/Hx0dHQCA5557Dt3d3XA4HCgtLQUA/Pjjj1i7\ndi0KCwths9nw4YcfqvPQ6XSoqqpCQUEBXn/99cmKhYhiHAssIoppPp8PZrMZd95557j9XV1dcLlc\naG9vx4svvqgWOXq9Hvv370dbWxs6OzthMBiwc+dOdb/Tp0/D5XKhs7MTW7ZsQVlZGQCgrq4OWVlZ\n8Pl8aGpqwsjICB577DHU1taitbUV3377LXbv3o0TJ06oYyUkJKCtrQ3V1dVRTIKIphMWWEQ0rS1a\ntAj33nsvAGDZsmUIBAIAABFBTU0NHA4HrFYrmpub0d7eru5nNBrhdDoBAI8++ih+/fVXnD17dsz4\nXV1dOHXqFMrLy2G321FUVITLly/j9OnT6jYulyuKr5CIpqMZUz0BIqJ/4nA4cObMGfzxxx/jXsWa\nOXOm+liv1yMcDgMAPvvsMxw9ehRerxeJiYnYuXMnjhw5ct3jKIoy7nouEcGcOXPUrx7H22/WrFn/\n78siojjHK1hEFNMWLlyIdevW4amnnsLFixfV9oMHD6pXq8YzMDCAu+66C4mJibh06RLcbndEf29v\nLzweDwCgvr4eycnJSElJgcFgiDhOVlYWDAZDxP5+vx8DAwMARgswIqJrscAiopj3ySefwGq1orCw\nEBaLBTk5Ofjqq6+QlJR03X02btyIUCiE7OxsrFmzBsuXL4/oX7JkCdxuN6xWK6qrq7F//34AgNVq\nRU5ODiwWC0pLS6HX6/HFF1/g4MGDsNlsyM3NxdNPP60umNf6V4xEFB8U4ccvIrrFeDwevPrqq9f9\n2o+IaKJ4BYuIiIhIY7yCRURERKQxXsEiIiIi0hgLLCIiIiKNscAiIiIi0hgLLCIiIiKNscAiIiIi\n0hgLLCIiIiKNscAiIiIi0hgLLCIiIiKNscAiIiIi0ti/ALGsMgVbdDG2AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f9dea534390>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"freq_plot(dfTfidf, 12, 'Chapter frequency of the bi-gram \"th\"')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
This file has been truncated, but you can view the full file.
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Can a ghost writer mimic another author?\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In fiction literature, it is not uncommon for authors to write under more than one name or to write as another author. Some examples of this are:\n",
"* 'Tom Clancy' books written by Tom Clancy as well as other authors including Mark Greaner, Grant Blackwood etc\n",
"\n",
"| | |\n",
"|-|-|\n",
"|<img src=http://www.tomclancy.com/books/true-faith-and-allegiance-hc300.jpg width='100px'>|<img src=http://www.tomclancy.com/books/tom-clancy-duty-and-honor-hc300.jpg width='100px'>|\n",
"\n",
"* 'Clive Cussler' books written by Clive Cussler as well as other authors including Boyd Morrison, Justin Scott etc\n",
"\n",
"| | |\n",
"|-|-|\n",
"|<img src=http://clive-cussler-books.com/wp-content/uploads/2016/05/053116_Emperors-Revenge-Oregon-Files-Clive-Cussler-Novels_199x300.jpg width='100px'>|<img src=http://clive-cussler-books.com/wp-content/uploads/2016/05/030116_The-Gangster-Isaac-Bell-Clive-Cussler-Adventure-Novels_199x300.jpg width='100px'>|\n",
"\n",
"* J.K Rowling writting under the pseudonym Robert Galbraith\n",
"\n",
"| | |\n",
"|-|-|\n",
"|<img src=http://vignette3.wikia.nocookie.net/harrypotter/images/7/7b/Harry01english.jpg/revision/latest?cb=20150208225304 width='100px'>|<img src=https://static.independent.co.uk/s3fs-public/styles/story_medium/public/thumbnails/image/2013/07/14/22/9-calling.jpg width='112px'>|\n",
"\n",
"* Stephen King writing under the pseudonym Richard Bachman\n",
"\n",
"| | |\n",
"|-|-|\n",
"|<img src=https://images-na.ssl-images-amazon.com/images/I/513H0tH7t-L._SX301_BO1,204,203,200_.jpg width='100px'>|<img src=https://room435.files.wordpress.com/2011/03/2running-man.jpg width='100px'>|\n",
"\n",
"\n",
"This notebook contains the code use to test whether an author writing under another autors name (e.g. Mark Greaney writing as Tom Clancy) can write in the style of another author, or if they retain their own language style."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Autorship attribution is the task of identifying the autor of a document. Authors typically have their own unique writing style and their works can often be characterised by identifying elements or features of these styles. There are numerous features which can be used to help classify a text including [1](http://www.icsd.aegean.gr/lecturers/stamatatos/papers/survey.pdf):\n",
"\n",
"* lexical features (e.g. average word length, sentence length, vocabulary richness, word frequencies, common errors\n",
"* character features (e.g. character types, character n-grams etc)\n",
"* Syntactic features (e.g. parts-of-speech, sentence structure etc)\n",
"* Semantic features (e.g. function words, synonym use etc)\n",
"\n",
"A well known example of authorship attribution is that of determining the authorship of the federalist papers [a collection of 85 articles and essays written (under the pseudonym Publius) by Alexander Hamilton, James Madison, and John Jay promoting the ratification of the United States Constitution](https://en.wikipedia.org/wiki/The_Federalist_Papers).\n",
"\n",
"More recently authorship attribution is often used to identify who wrote blog posts or social media comments, and whether one person is writing
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment