Last active
October 8, 2021 15:37
-
-
Save rabernat/0135a7b03b46705da7877147a3736aa8 to your computer and use it in GitHub Desktop.
Exploration of map_overlap stuff in the context of xgcm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"id": "946cee33-5838-469f-9323-d7cfa867990d", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import xarray as xr\n", | |
"import dask.array as dsa\n", | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"id": "611807f3-abd7-4049-ae4f-256c6d82ead3", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(30, 20)" | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"Ny, Nx = (30, 20)\n", | |
"data_in = np.random.rand(Ny, Nx)\n", | |
"data_in.shape" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"id": "9e074262-e780-4604-b41e-8e394ffc849b", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(30, 21)" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# dummy pad function\n", | |
"# works lazily with dask input\n", | |
"\n", | |
"def pad(a_in):\n", | |
" pad_width = (a_in.ndim - 1) * ((0, 0),) + ((1, 0),)\n", | |
" return np.pad(a_in, pad_width, mode='wrap')\n", | |
" \n", | |
"pad(data_in).shape" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"id": "821defdc-b013-44fa-b31e-4b5d88e9d9e1", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Calling diff on array of shape (30, 21)\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"(30, 20)" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"def diff(a_in):\n", | |
" print(f\"Calling diff on array of shape {a_in.shape}\")\n", | |
" return a_in[..., 1:] - a_in[..., :-1]\n", | |
"\n", | |
"expected_result = diff(pad(data_in))\n", | |
"expected_result.shape" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "fc13b6bd-582b-4311-88bc-a893664bdb7e", | |
"metadata": {}, | |
"source": [ | |
"## Case 1: All Numpy Data\n", | |
"\n", | |
"Note I'm using _function composition_ here. I think this is an important concept.\n", | |
"Whenever possible, we want to compose the boundary handling with the actual operation." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"id": "430e3477-b337-489b-9f2e-21a81e3d97d5", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Calling diff on array of shape (30, 21)\n" | |
] | |
} | |
], | |
"source": [ | |
"da_in = xr.DataArray(data_in, dims=('y', 'x'))\n", | |
"\n", | |
"da_out = xr.apply_ufunc(\n", | |
" lambda a_in: diff(pad(a_in)),\n", | |
" da_in,\n", | |
" input_core_dims=['x'],\n", | |
" output_core_dims=['x'],\n", | |
" vectorize=False\n", | |
")\n", | |
"\n", | |
"np.testing.assert_equal(da_out.values, expected_result)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "63c2f0c9-3b00-4519-8ea4-daf0db15fce9", | |
"metadata": {}, | |
"source": [ | |
"## Case 2: Chunked in the y dimension" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"id": "22462996-55dd-4782-91b8-04b5ba6170c7", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 4.69 kiB </td> <td> 1.56 kiB </td></tr>\n", | |
" <tr><th> Shape </th><td> (30, 20) </td> <td> (10, 20) </td></tr>\n", | |
" <tr><th> Count </th><td> 3 Tasks </td><td> 3 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"130\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"80\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"40\" x2=\"80\" y2=\"40\" />\n", | |
" <line x1=\"0\" y1=\"80\" x2=\"80\" y2=\"80\" />\n", | |
" <line x1=\"0\" y1=\"120\" x2=\"80\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"80\" y1=\"0\" x2=\"80\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 80.0,0.0 80.0,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"40.000000\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n", | |
" <text x=\"100.000000\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,100.000000,60.000000)\">30</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table>" | |
], | |
"text/plain": [ | |
"dask.array<xarray-<this-array>, shape=(30, 20), dtype=float64, chunksize=(10, 20), chunktype=numpy.ndarray>" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"da_chunk_y = da_in.chunk({'y': 10})\n", | |
"da_chunk_y.data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"id": "a28c8434-1762-4001-aa08-423499afa5c2", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 4.69 kiB </td> <td> 1.56 kiB </td></tr>\n", | |
" <tr><th> Shape </th><td> (30, 20) </td> <td> (10, 20) </td></tr>\n", | |
" <tr><th> Count </th><td> 12 Tasks </td><td> 3 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"130\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"80\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"40\" x2=\"80\" y2=\"40\" />\n", | |
" <line x1=\"0\" y1=\"80\" x2=\"80\" y2=\"80\" />\n", | |
" <line x1=\"0\" y1=\"120\" x2=\"80\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"80\" y1=\"0\" x2=\"80\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 80.0,0.0 80.0,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"40.000000\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n", | |
" <text x=\"100.000000\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,100.000000,60.000000)\">30</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table>" | |
], | |
"text/plain": [ | |
"dask.array<transpose, shape=(30, 20), dtype=float64, chunksize=(10, 20), chunktype=numpy.ndarray>" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"da_out_chunk_y = xr.apply_ufunc(\n", | |
" lambda a_in: diff(pad(a_in)),\n", | |
" da_chunk_y,\n", | |
" dask=\"parallelized\",\n", | |
" input_core_dims=['x'],\n", | |
" output_core_dims=['x'],\n", | |
" output_dtypes=[da_in.dtype]\n", | |
")\n", | |
"da_out_chunk_y.data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"id": "e19ca4af-fd84-4f77-8fe2-a0ad06bca416", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGhCAYAAAC3eRkzAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeVhTd/Y/8PfNQsIiO7gLitaFRVu1rVhlUVpbO+6OVsW2OnbRqdPqTDsdZ8bW7r+x23TRzrQzVUBErFptBS2CImqn7oAriOC+gKwRCEnO7w+/0NIAQsi9NyHn9Tx5nja5+ZwTcrznc2/uIhARgTHGGBORQu4EGGOMdXzcbBhjjImOmw1jjDHRqaQMVlBQgEOHDkkZ0u5oNBpMnDhR7jRshl6vx5YtW+ROw+ZFRkbC399f7jRsxp49e3D9+nW507BpQUFBGDp0qHQBSUKrVq0iAPxo4eHl5SXlV2LziouLZf9O7OGRlpYm91dlU6Kjo2X/Tmz98cwzz0j6nUi+G83LywtExI8mHqtWrZL667AbaWlpsn8/tvgoLi6W+6uxWc8884zs34+tPqKjoyX/Pvg3G8YYY6LjZsMYY0x03GwYY4yJjpsNY4wx0XGzYYwxJjpuNowxxkTHzYYxxpjouNkwxhgTHTcbxhhjouNmwxhjTHTcbBhjjImOmw1jjDHRcbNhjDEmOrtpNnV1dbjnnnswd+5cs9eysrIQExMDDw8PdOrUCREREdi5c6fVYrd2/KysLAiCgB07dlgtNrNcczVTVFSETz/9FI888gg0Gg0EQUBqaqpVY3PN2K+m6kan0yEhIQETJkxAYGAgNBoNunXrhhkzZuDo0aNWi92h64YktGrVKovv1/Lxxx+TSqWivLy8Rs+npqaSUqk0u1eDIAi0YcOGdufc1vFjYmIoNDSUjEZjm2O15+/TUdXfz8aS+7U0VzOdO3c2+z5TUlKslbKkNdOev09HFh0dbfH9Wpqqm2XLljV7Xxi1Wm2V+pGybtrz97GUXWzZ6PV6vPXWW5g0aRL69u3b6Plnn30WRqMRS5Yswc2bN1FaWoo33ngDRISFCxeiqqqqXXHbOv4f//hH5OTkIDk52eK4rP2aqxkACAwMxKJFi5CamooFCxZYPS7XjP1qrm46deqEOXPmYNu2bSgoKMDt27dx9OhRxMTEoK6uDosWLWp33A5fN1J2Nktn7omJiQSAtm7d2uj577//ngDQ6NGjzd4zZcoUAkDx8fEW52vJ+AaDgbp27UqRkZFtjsdbNuYsnbk3VzO/tmjRIqtu2UhdM7xl0zRLZ+6trZt6Op2OvLy8CAAVFxe3OV49qeuGt2yasXbtWjg7O2PcuHGNns/MzAQAzJ492+w9c+bMAXDnXuSWsmR8pVKJiRMnYvfu3bhw4YLFsVn7NFczYuOasW9trRsXFxf06tULKpUKrq6uFsd1hLqx+WZjMBiwd+9e3HfffVCr1Y1ey8/PBwCEhISYvS8sLKzRMpawdPwHH3wQAJCenm5xbGa5lmpGbFwz9suSujlz5gxycnIwYcIEaLVai2M7Qt3YfLM5efIkqqqqMHjwYLPXKioqAADe3t5mr9U/V15ebnFsS8cfMmQIAODAgQMWx2aWa6lmxMY1Y7/aWjc6nQ6zZs2Ch4cH3n///XbFdoS6UcmdwN1cvXoVAODr62v2GhE1+76WXmstS8f38/MD8HPuTFot1YzYuGbsV1vqRqfTYeLEiTh9+jRSUlIQGBjYrtiOUDc232zKysoA3Dka5Nc8PDwAALdu3TJ7rbS0tNEylrB0fHd3dwA/586k1VLNiI1rxn61tm5KS0sxfvx4ZGdnY/v27Rg9enS7YztC3dj8bjRPT08AP29m/lL9oYm5ublmr2VnZzdaxhKWjl+/uevl5WVxbGa5lmpGbFwz9qs1dXP16lVEREQgJycHKSkpiIiIsEpsR6gbm282Xbt2BQAUFxebvVY/o0hISDB7LT4+vtEylrB0/Ppc63Nn0mqpZsTGNWO/7lY3586dw8iRI1FUVIQdO3Zg1KhRVovtCHVj881m0KBBcHNzw7Fjx8xeGzt2LHr16oXMzEwsXboUxcXFKC8vx5tvvolNmzbB19cXkyZNsji2pePX51p/pAiTVks1IzauGfvVUt3k5ubioYceQmlpKX744QeEh4dbNbZD1I2UJ/VYetLiuHHjSKvVUk1NjdlrKSkpzV7iISkpyWz5kSNHEgA6evRoq2K3dXwioueee44AUGFhYZs+J5/Uac7SkxZbqpnZs2c3e+kRAJScnNxoeVuuGT6ps2mWnrTYXN3Mnz+/xZppqj5suW74pM5mxMbGoqamBtu3bzd7bdy4cdi9ezfGjBmDTp06wdXVFaNGjUJqaip++9vfmi1vMpkAACpV646NaOv4RqMR3377LUaPHo2AgIA2flJmLS3VTFtxzTgOrhsRSdnZLJ2519bWkp+fH02ePLld8Y1GI3l6elJwcDCZTKZ2jdWcHTt2EABKTExs83t5y8acpTN3R6kZ3rJpmqUzd0epG96yaYaTkxOWLVuGrVu3Ii8vz+JxcnNzUVZWhj//+c8QBMGKGf5s5cqVCAkJwfTp00UZn7UO1wyzBNeNeOyi2QDAwoUL0adPH6xYscLiMbKyshAQEICZM2daMbOf7du3Dz/88ANWrlwJpVIpSgzWelwzzBJcN+Kw+ZM666nVapw9e7ZdYyxcuBALFy60UkbmRo4caZUrFzDr4JphluC6EYfdbNkwxhizX9xsGGOMiY6bDWOMMdFxs2GMMSY6bjaMMcZEx82GMcaY6LjZMMYYEx03G8YYY6LjZsMYY0x03GwYY4yJjpsNY4wx0XGzYYwxJjpuNowxxkTn8M3m8uXLcqfA7AzXDGurmzdvoq6uTu40ZCX5LQb0ej02bNggddgmlZSUYMOGDXj++eflTgUAcPjwYblTsFl79uxBSUmJ3GkAAN59910sXboUarVa7lRQVVUldwo2q6CgwGbWNdu3b0eXLl1w3333yZ0KAODGjRvo27evpDElbzY6nQ4zZsyQOmyLdu/eLXcKDby8vOROwSa98cYbcqfQyJw5c+ROgd1FWloa0tLS5E7DZoWHh0saTyB7uwOPFYWGhiI3NxcbN27E1KlT5U6H2YF33nkHf/nLXzB9+nSbmTUz23bu3Dn069cPGo0GxcXFcHV1lTslWTjsbzZnzpxBbm4uBEFAfHy83OkwOxEXFwcA2Lp1K+/CYq2SmJgIpVKJ2tpabNu2Te50ZOOwzWbdunVQq9UgInz//fcoKyuTOyVm406dOoVTp04BAOrq6rBlyxaZM2L2YO3atTAYDFAoFA49sXXYZhMXF9dwdIjJZOIVB7ur+Pj4hoMCeIuYtcaxY8eQl5cHADAajdixY4fNHOgiNYdsNgcPHsT58+cbPVe/e4Sx5sTHxzdMUIxGI9LS0nDjxg2Zs2K2LDExsdFRi0SEzZs3y5iRfByy2fy6AIxGI3bv3o3r16/LmBWzZQcOHMCFCxcaPScIAjZt2iRTRszWEVGjCUr9c2vXrpUxK/k4XLMxmUxmBQAACoWCjy5izUpMTISTk1Oj50wmk8OuONjdZWVl4cqVK42eM5lMyMrKcsgTgx2u2ezevRs3b940e95oNPKKgzXJaDRi3bp10Ov1jZ43mUz48ccfUVhYKE9izKY1NUEBAKVS6ZATW4drNvVHof0aEeHQoUPIz8+XIStmy3bt2tXsj7oqlQrJyckSZ8RsncFgwPr1680mKMCdycuaNWtkyEpeDtVs9Ho9kpOTm71GkVqtdsgZB2vZunXrmpyhAncOgXbEFQdr2c6dO1FaWtrka0SE48eP4+zZsxJnJS+HajapqamorKxs9vW6ujr897//lTAjZutqamrwzTffNDlDrXfixAmcPHlSwqyYrWtuD0o9JycnrF+/XsKM5OdQzSYhIQEqVcuXg8vPz0dOTo5EGTFbt337duh0uhaXUavVSEpKkigjZutqamqwefPmFq/yrNfrHW6L2GGaTVVVFbZt2waTyQSNRgONRgMnJyc4OTk1/L9GowFw54c9xoCfa+GXNaJWqxvVDR9cwn5p69atuH37NtRqdbPrGpVKhYKCAhw9elTudCUj+VWf5VJSUoLly5c3eu5///sfduzYgb///e+Nnu/WrZuUqTEbNmrUKAwbNqzh/2/fvo0VK1bgd7/7ndkl2isqKuDu7i51iszGeHh44N1332303JdffgkfHx9Mnjy50fMGg0HK1GTl0Fd9Xr16NZYtW+awl49gbVdSUgJfX1+kpaVhzJgxcqfD7MTYsWPRt29frF69Wu5UZOMwu9EYY4zJh5sNY4wx0XGzYYwxJjpuNowxxkTHzYYxxpjouNkwxhgTHTcbxhhjouNmwxhjTHTcbBhjjImOmw1jjDHRcbNhjDEmOm42jDHGRMfNhjHGmOi42TDGGBMdNxvGGGOi42bDGGNMdNxsGGOMiY6bDWOMMdFxs2GMMSY6bjaMMcZEx82GMcaY6LjZMMYYEx03G8YYY6LjZsMYY0x03GwYY4yJjpsNY4wx0XGzYYwxJjpuNowxxkTHzYYxxpjouNkwxhgTHTcbxhhjolNJGaygoACHDh2SMmSLsrOzoVarsWHDBrlTaaDRaDBx4kS507AZer0eW7ZskTuNBlVVVXB1dUVWVhZKSkrkTqdBZGQk/P395U7DZuzZswfXr1+XO40G5eXluHTpkk2ta4KCgjB06FDpApKEVq1aRQD40cLDy8tLyq/E5hUXF8v+ndjDIy0tTe6vyqZER0fL/p3Y+uOZZ56R9DuRfDeal5cXiIgfTTxWrVol9ddhN9LS0mT/fmzxUVxcLPdXY7OeeeYZ2b8fW31ER0dL/n3wbzaMMcZEx82GMcaY6LjZMMYYEx03G8YYY6LjZsMYY0x03GwYY4yJjpsNY4wx0XGzYYwxJjpuNowxxkTHzYYxxpjouNkwxhgTHTcbxhhjouNmwxhjTHR202zq6upwzz33YO7cuWavZWVlISYmBh4eHujUqRMiIiKwc+dOq8Vu7fhZWVkQBAE7duywWmxmueZqpqioCJ9++ikeeeQRaDQaCIKA1NRUq8bmmrFfTdWNTqdDQkICJkyYgMDAQGg0GnTr1g0zZszA0aNHrRa7Q9cNSWjVqlUW36/l448/JpVKRXl5eY2eT01NJaVSaXavBkEQaMOGDe3Oua3jx8TEUGhoKBmNxjbHas/fp6Oqv5+NJfdraa5mOnfubPZ9pqSkWCtlSWumPX+fjiw6Otri+7U0VTfLli1r9r4warXaKvUjZd205+9jKbvYstHr9XjrrbcwadIk9O3bt9Hzzz77LIxGI5YsWYKbN2+itLQUb7zxBogICxcuRFVVVbvitnX8P/7xj8jJyUFycrLFcVn7NVczABAYGIhFixYhNTUVCxYssHpcrhn71VzddOrUCXPmzMG2bdtQUFCA27dv4+jRo4iJiUFdXR0WLVrU7rgdvm6k7GyWztwTExMJAG3durXR899//z0BoNGjR5u9Z8qUKQSA4uPjLc7XkvENBgN17dqVIiMj2xyPt2zMWTpzb65mfm3RokVW3bKRumZ4y6Zpls7cW1s39XQ6HXl5eREAKi4ubnO8elLXDW/ZNGPt2rVwdnbGuHHjGj2fmZkJAJg9e7bZe+bMmQPgzr3ILWXJ+EqlEhMnTsTu3btx4cIFi2Oz9mmuZsTGNWPf2lo3Li4u6NWrF1QqFVxdXS2O6wh1Y/PNxmAwYO/evbjvvvugVqsbvZafnw8ACAkJMXtfWFhYo2UsYen4Dz74IAAgPT3d4tjMci3VjNi4ZuyXJXVz5swZ5OTkYMKECdBqtRbHdoS6sflmc/LkSVRVVWHw4MFmr1VUVAAAvL29zV6rf668vNzi2JaOP2TIEADAgQMHLI7NLNdSzYiNa8Z+tbVudDodZs2aBQ8PD7z//vvtiu0IdaOSO4G7uXr1KgDA19fX7DUiavZ9Lb3WWpaO7+fnB+Dn3Jm0WqoZsXHN2K+21I1Op8PEiRNx+vRppKSkIDAwsF2xHaFubL7ZlJWVAbhzNMiveXh4AABu3bpl9lppaWmjZSxh6fju7u4Afs6dSaulmhEb14z9am3dlJaWYvz48cjOzsb27dsxevTodsd2hLqx+d1onp6eAH7ezPyl+kMTc3NzzV7Lzs5utIwlLB2/fnPXy8vL4tjMci3VjNi4ZuxXa+rm6tWriIiIQE5ODlJSUhAREWGV2I5QNzbfbLp27QoAKC4uNnutfkaRkJBg9lp8fHyjZSxh6fj1udbnzqTVUs2IjWvGft2tbs6dO4eRI0eiqKgIO3bswKhRo6wW2xHqxuabzaBBg+Dm5oZjx46ZvTZ27Fj06tULmZmZWLp0KYqLi1FeXo4333wTmzZtgq+vLyZNmmRxbEvHr8+1/kgRJq2WakZsXDP2q6W6yc3NxUMPPYTS0lL88MMPCA8Pt2psh6gbKU/qsfSkxXHjxpFWq6Wamhqz11JSUpq9xENSUpLZ8iNHjiQAdPTo0VbFbuv4RETPPfccAaDCwsI2fU4+qdOcpScttlQzs2fPbvbSIwAoOTm50fK2XDN8UmfTLD1psbm6mT9/fos101R92HLd8EmdzYiNjUVNTQ22b99u9tq4ceOwe/dujBkzBp06dYKrqytGjRqF1NRU/Pa3vzVb3mQyAQBUqtYdG9HW8Y1GI7799luMHj0aAQEBbfykzFpaqpm24ppxHFw3IpKys1k6c6+trSU/Pz+aPHlyu+IbjUby9PSk4OBgMplM7RqrOTt27CAAlJiY2Ob38paNOUtn7o5SM7xl0zRLZ+6OUje8ZdMMJycnLFu2DFu3bkVeXp7F4+Tm5qKsrAx//vOfIQiCFTP82cqVKxESEoLp06eLMj5rHa4ZZgmuG/HYRbMBgIULF6JPnz5YsWKFxWNkZWUhICAAM2fOtGJmP9u3bx9++OEHrFy5EkqlUpQYrPW4ZpgluG7EYfMnddZTq9U4e/Zsu8ZYuHAhFi5caKWMzI0cOdIqVy5g1sE1wyzBdSMOu9myYYwxZr+42TDGGBMdNxvGGGOi42bDGGNMdNxsGGOMiY6bDWOMMdFxs2GMMSY6bjaMMcZEx82GMcaY6LjZMMYYEx03G8YYY6LjZsMYY0x03GwYY4yJzuGbTV1dndwpMDvDNcPaimtGhlsM6PV6bNiwQeqwTaqtrUVKSgomTZokdyoAgMOHD8udgs3as2cPSkpK5E4DAJCYmIgnnnhC7jQAAFVVVXKnYLMKCgpsZl3z448/omvXrjZz++YbN26gb9++ksaUvNnodDrMmDFD6rAtSkxMlDuFBl5eXnKnYJPeeOMNuVNoZMuWLXKnwO4iLS0NaWlpcqdhs8LDwyWNJ5C93YHHisaPH4/t27fjxx9/xAMPPCB3OswOxMXFYe7cuVi6dClWrlwpdzrMDlRUVMDPzw/e3t64cuWKaLeJtnUO+5tNaWkpdu7cCUEQbGrLhtm2hIQEAEB8fDxMJpPM2TB7sGnTJtTV1eHatWvYt2+f3OnIxmGbTXJyMkwmE4gIa9euhcFgkDslZuOKi4sbdstcv34dmZmZMmfE7MHatWuhUCigVqsdemLrsM0mLi6u4b9LS0uxe/du+ZJhduGXPzar1WqsW7dOxmyYPbhx4wb27NkDo9GIuro6rFu3zmGPTHPIZnPlyhXs37+/YTcIrzhYa8TFxaH+J866ujqsX78eer1e5qyYLVu/fj0Uip9Xs2VlZdi1a5eMGcnHIZvNrwugrq4OSUlJqKmpkTErZssuXryI//3vf41+p6mqqsLOnTtlzIrZurVr18JoNDb8vyNPbB2y2fy6AACguroaKSkpMmXEbF1iYiKUSmWj55RKZcMBA4z9WlFREY4cOYJfHvBbV1eHjRs3orq6WsbM5OFwzSY/Px/Hjx/Hr4/45hUHa0lTExSDwYDNmzfziZWsSfHx8VCpzE9lrKmpwXfffSdDRvJyuGaTkJAAtVpt9rzBYMDWrVtRXl4uQ1bMlp0+fRonTpwwm6AAd2aq27ZtkyErZuvi4uKaPBhAqVQiPj5ehozk5XDNJj4+vtmjQYxGI7799luJM2K2rrkJCgAIgtDoyEbGACA7Oxtnzpxp8jWDwYCUlBSUlZVJnJW8HKrZHDlyBPn5+S0uwysO9mvNzVCBOxOUnTt32sx125htSExMbHaCAgAmkwmbNm2SMCP5OVSzSUxMhJOTU7Ovm0wmZGRk4Pr16xJmxWzZTz/9hKKiorsu980330iQDbMHRNTiHpR6jjaxdZhmYzKZEBcXd9fzIoxGIzZu3ChRVszWrV+//q7XsjKZTFi7dq1EGTFbd+DAAVy6dKnFZYxGIzIzM3Ht2jWJspKf5Fd9lsupU6fQtWtX+Pn5NTxXWVmJ0tJS9OrVq+E5QRBw8uRJOVJkNigvLw/BwcEN/28ymXDhwgV06dIFWq224fmamhqUl5fDw8NDjjSZDTl06BDCwsIanZN17do1qNVq+Pj4NDynVCpx4MABTJ48WY40JefQV31evXo1li1bxvvbWauVlJTA19cXaWlpGDNmjNzpMDsxduxY9O3bF6tXr5Y7Fdk4zG40xhhj8uFmwxhjTHTcbBhjjImOmw1jjDHRcbNhjDEmOm42jDHGRMfNhjHGmOi42TDGGBMdNxvGGGOi42bDGGNMdNxsGGOMiY6bDWOMMdFxs2GMMSY6bjaMMcZEx82GMcaY6LjZMMYYEx03G8YYY6LjZsMYY0x03GwYY4yJjpsNY4wx0XGzYYwxJjpuNowxxkTHzYYxxpjouNkwxhgTHTcbxhhjouNmwxhjTHTcbBhjjImOmw1jjDHRcbNhjDEmOm42jDHGRMfNhjHGmOhUcicgths3bqCwsBCXL19GSUkJiouLUVZWBgDYv38/dDodXnzxRWi1Wmg0Gvj4+MDb2xv+/v4ICAhAYGAgNBqNzJ+CSUmn06GwsBCFhYUoKSlpeBgMBpSUlAAAPv74Y/zwww8QBAE+Pj4Nj549eyIwMBBeXl4yfwomJYPBgIsXL6KoqAhXr17FrVu3UFJSgtu3b6Ourg6nT5/GlStX8Kc//QlKpRJubm7w8fGBr68vunbtit69e6Nr165QKDru/F8gIpI7CWswGo04cuQI9u3bh+zsbGRnZ+PUqVO4fft2wzLu7u7w8/ODp6cnAMDFxQV6vR4qlQo1NTWora1tWLHo9XoAgCAI6NGjB0JDQxEWFoahQ4ciIiICfn5+snxOZl0XLlzA7t27cezYMWRnZyMnJwc3btxoeF2r1cLX1xc+Pj5QqVRwcXFBbW0ttFotdDodiKhhEqPT6Rre5+npiUGDBiEsLAxDhgzBqFGjMGjQIDk+IrOyyspKZGZm4tChQ8jOzsbx48dRVFQEg8EAAFAqlQ2TDxcXF6jVaigUCigUCtTW1sJkMqGysrJhXVPPyckJ/fr1Q1hYGMLCwvDggw9ixIgRHWaya7fNhoiQm5uL9PR0pKenIzMzE2VlZfD19cWQIUMQGhqK4OBg9O7dG4GBgejZsyfUanWrxy8tLcX58+dRWFiIvLw8ZGdnIzc3FydPnoTRaERISAiio6MRFRWFiIiIhgbGbNu1a9eQkZGB9PR0ZGRk4Ny5c9BqtQgJCUFYWBhCQkLQt2/fhrpxc3Nr9dg1NTUoKipCYWEhCgoKkJOTg5ycHGRnZ6OiogJdunRBVFQUoqKiEB0djaCgIBE/KbOW6upq7N+/v6FmDh48CKPRiKCgIAwePBihoaHo378/AgMDERgYiC5durR6bJPJhCtXrqCwsBDnz5/HqVOnkJOTg+PHj+PixYtwdnZGeHh4Q80MHz4cKpV97pCyu2Zz9OhRrF27FuvXr8e1a9fg7e2NiIiIhi8jODhY1Pj1s5r6wjt+/DgEQcCoUaMwd+5cTJs2DZ06dRI1B9Y2N27cwLp16xAfH4/Dhw9DrVbj/vvvb5gsjBgxAlqtVrT49Vvd9TWTlZUFnU6HoKAgzJkzB7Gxsdx4bIxer8f27duxdu1abN++HbW1tejXr19DzURFRcHf31/UHIqKihomRunp6bh8+TLc3d0xefJkzJ07F5GRkfa1243swKVLl+j//b//RyEhIQSA+vXrR6+//jodPnyYjEajrLkVFxdTcnIyTZs2jTQaDbm4uNCsWbMoJSWFDAaDrLk5surqakpKSqLx48eTSqUid3d3mjdvHqWkpFBVVZWsudXW1tLevXtpyZIl1LVrVxIEgUaOHEmrV6+mW7duyZqbo/vxxx9p0aJF5OPjQwqFgsaMGUNfffUVXbx4Ue7U6PTp0/Txxx/T8OHDCQD17NmTXn31VTp58qTcqbWKTTebw4cP09SpU0mpVJKXlxc999xztG/fPrnTatatW7do9erVNHLkSBIEgXr06EEffvgh6XQ6uVNzGDdv3qS//vWv5OXlRUqlkh599FFat24d3b59W+7UmmQwGCglJYVmzZpFLi4upNFo6JlnnqFz587JnZrDMBgMlJCQ0DCZHTRoEL3zzjs20WCac/LkSXr11VepV69eBIBGjx5NKSkpcqfVIptsNllZWfToo48SABo6dCglJSVRTU2N3Gm1SX5+Pi1ZsoRcXV3Jz8+P3nrrLSorK5M7rQ7r8uXLDX9vX19fevPNN+nq1atyp9UmFRUV9MUXX1BQUBCpVCqKjY2lEydOyJ1Wh1VbW0v//ve/G/7es2fPpoMHD8qdVpsYjUZKS0trWF8OGzaMNm3aJPsen6bYVLPJzMykiIgIAkAPPfSQzXfq1rh58yYtW7aMPDw8yNPTk/72t79RZWWl3Gl1GFeuXKHnnnuONBoNde/enT744APZd5O1V11dHcXHx1NwcDApFAqaOnWq3ewqsQd1dXX06aefUs+ePcnJyYkWLFhA+fn5cqfVbocPH6YpU6aQQqGg4OBgSkpKkjulRmyi2Vy7do1iY2NJEAQaO3Ys7dmzR+6UrK6srIzefPNN8vb2pu7du9OGDRvkTsmuGQwG+vjjj8nDw4MCAgJo9erVdrf1ezdGo5G++eYbGjJkCKnVanr55ZftvpHKbe/evRQWFkZarZb+8Ic/2PSuMkudOHGCZs+eTQqFgqKjoyLFfpoAACAASURBVOnUqVNyp0REMjcbo9FIa9asIR8fH+revTutWbNGznQkcevWLVq8eDEpFAqKioriGasFDh06RPfffz+p1WpavHhxh99SrP934uvrS926dXOIfyfWVlJS0ujfna2sgMV0+PBhm/p3IluzOXbsGA0bNozUajW98sorDjdj27dvHw0ePJg0Gg0tX76c6urq5E7J5pWXl9OCBQtIoVDQ2LFj6fTp03KnJKnr16/Tk08+SYIg0GOPPUYXLlyQOyW78OWXX5K3tzf16NGDkpOT5U5HUgaDgT755BPy9PSkwMBA2r59u2y5yNJsPv/8c9JqtTRq1CiHntnX1dXRRx99RK6urhQeHk5FRUVyp2Szjhw5Qn379qXOnTtTYmKi3OnIKjMzkwYNGkQ+Pj60bds2udOxWeXl5TRjxgxSKBS0dOlS2Wf2crp69SrNmjWLBEGgP/7xj6TX6yXPQdJmU1FRQTNnziRBEOiVV17h81D+z+nTpyksLIw8PDwcbubVGmvWrCFnZ2eKjIyky5cvy52OTaiurqbFixeTIAi0ePFiqq2tlTslm1I/OfHz86PU1FS507EZa9euJTc3Nxo+fLjkh9dL1mwOHz7MX34LeOVhrry8nCcnd1G/8hg2bBifm/N/eHLSsl9ObqU8UEmSZrNx40bSaDQ0ZswYuzv3QWpr164lV1dXioyMdOjzcgoLC2nAgAHUpUsX2rVrl9zp2LSTJ09SSEgI+fr60o8//ih3OrKpq6ujefPmkVKppNdee40nJy3Q6XQ0b948EgSB3n77bUliit5sVq9eTUqlkhYtWmSTJxrZouPHj1PXrl1pyJAhDtmcc3NzqXv37hQWFsYz01aqqqqi8ePHk6ura4c4P62tbt++TRMnTiQXFxf+HasNPvnkE1IoFLR48WLR18+iNpt3332XANArr7wiZpgO6fz589S/f38KDAykM2fOyJ2OZP73v/+Rr68vPfjgg1RcXCx3OnbFYDDQ7373O1KpVPTVV1/JnY5kSktLadSoUeTl5UV79+6VOx27s2nTJtJqtTRlyhSqrq4WLY4ozcZoNNKiRYtIqVTS6tWrxQjhEG7cuEHDhg2jzp070+HDh+VOR3Tbtm0jFxcXmjhxos1ey8zWmUwm+tOf/kSCIND7778vdzqiu3z5MoWGhlKPHj0oNzdX7nTsVlpaGnXq1IliYmJEO2pPlGazaNEi0mg0tHHjRjGGdyiVlZUUExND3t7eHfof044dO8jJyYnmzZvH5xxZwcqVK0kQBPr444/lTkU0xcXFNHDgQOrfvz+fNmAFhw8fJn9/f4qOjhblahxWbzavvfYaKRQKvhyLFd2+fZtGjx5N3bp1o/Pnz8udjtX99NNP5ObmRrNmzeLf9azovffeI0EQ6Ouvv5Y7FavT6XQUHh5OPXr04JNbrSg7O5u8vLxo4sSJVj/AwqrNZvXq1QSA/vnPf1pzWEZ3DgMeMmQI9e3bl65fvy53OlaTl5dHnTt3prFjx/Lh3iJYunQpqdXqDnXQgF6vp0cffZR8fX0d4rIzUtu9ezdptVp69tlnrTqu1ZrNli1bSKlU0ooVK6w1JPuVy5cvU2BgIA0fPrxDnA1d/3nuv//+DvF5bJHJZKKnnnqKXFxcaP/+/XKn024d7fPYqm+//ZZUKhW99tprVhvTKs3m0KFDpNVqadGiRdYYjrXgzJkz5OfnR1OmTCGTySR3Oharrq6me++9lwYOHMhHnYlMr9fTuHHjyN/f3+4PJV++fDk5OTnRzp075U6lw1u9ejUJgkDr1q2zynjtbjaVlZXUv39/ioyM5JOoJLJnzx5SKpV2/ePv888/T506dXKow7rlVFlZSQMGDKCIiAi7/XeakZFBSqWSPv/8c7lTcRiLFy8mNzc3q+yubHezmTVrFnXu3JmuXLnS7mRY661YsYLUajUdOHBA7lTaLDk5mQBQQkKC3Kk4lOzsbHJ2dqa//e1vcqfSZtevX6euXbvS9OnT5U7Foej1ehoxYgSFhoa2+3SEdjWbzz//nBQKBW/SysBoNNLDDz9Mffr0savL2uTn55OHhwfvcpXJqlWr7O7frNFopJiYGAoKCrKrWu8oioqKyNvbm55//vl2jWNxszl27BhptVpavnx5uxJglrt+/Tp169aNpk2bJncqrVJbW0tDhw6l++67r8PdVdOezJw5kzp37kzXrl2TO5VWeeONN0ij0TjEic226ptvviFBENp1SotFzcZgMNCwYcNo9OjRdrv/t6NIT08nQRDom2++kTuVu3r77bfJxcWF8vLy5E7FoVVUVFDv3r3piSeekDuVuzp58iQ5OTnRRx99JHcqDu/5558nPz8/unXrlkXvt6jZfPrpp+Tk5OTQNz6zJU8++ST17NnTpg8fLioqIldXV3rnnXfkToURUWpqKgGgtLQ0uVNpUXR0NA0dOpQntTagvLycunXrZvHutDY3m2vXrpGXlxe9+uqrFgVk1ldcXEw+Pj42fcHTCRMm0D333MO7z2zIxIkTqV+/fjb7ncTFxZFCoXDo2ybYmvj4eFIoFBYdmNTmZhMbG0s9e/akqqqqNgdj4vnss89IpVLR8ePH5U7FzPbt2wkA35fGxtRvbb711ltyp2KmvbNoJh5Ltzbb1GwyMzNJEATavHlzm4Iw8dX/jhYZGSl3Ko1UV1dTYGAgzZo1S+5UWBPqf0crLCyUO5VGFi9eTP7+/hb/PsDEc+LECVKr1W0+36lNzSYiIoLGjh3bpgBMOvv27bO5/fCffvopOTs783lYNqq2tpZ69+5t9etgtcfFixfJycmJvvjiC7lTYc148cUXqVu3bm26/02rm82BAwcIAGVmZlqUHJPGmDFjKCoqSu40iOjOCWEBAQH0wgsvyJ0Ka8Hq1atJo9HQpUuX5E6FiIj+8Ic/UI8ePfjCrDbs6tWr5OzsTKtWrWr1e1rdbB599FEaMWKERYkx6aSnpxMAysrKkjsV+s9//kNqtdrmdtGwxmpra6lXr1700ksvyZ0KFRcXk5ubG1853g48//zz1KtXL9Lr9a1avlXN5ujRoyQIAqWmprYrOSaNhx56iMaPHy9rDgaDgfr370/z58+XNQ/WOh9++CG5uLjIfvuKV199lfz9/Umn08maB7u7oqIicnJyavX9klrVbKZOnUpDhw5tV2JMOtu3bydBEOjIkSOy5bB+/XpSKpV09uxZ2XJgrafT6cjf31/WUxpKS0vJw8ODz8WyI08//TT179+/VTc9VOAurly5gi1btuDll1++26LMRjz66KMICwvDZ599JlsOn332GSZPnox+/frJlgNrPRcXF7zwwgv497//Db1eL0sO8fHxMJlMWLhwoSzxWdu9/PLLOHv2LNLS0u667F2bTXx8PNzd3TFx4kSrJMek8eSTTyI5ORm3b9+WPHZhYSGysrIwb948yWMzyz399NMoLS1FSkqKLPHXrl2LqVOnwt3dXZb4rO0GDBiABx98EHFxcXddtlXNZubMmdBoNFZJjklj9uzZqK6uxrZt2ySPvWbNGvj5+SEmJkby2Mxy3bt3R0RERKtWHNZ29uxZHDx4ELGxsZLHZu0TGxuLTZs2obKyssXlWmw2R44cQU5ODheAHfL390dMTIwsK45169Zhzpw5UKlUksdm7RMbG4tt27ahpKRE0rhff/11Q7Nj9mXmzJkwGo3YtGlTi8u12Gzi4uLQt29fPPjgg1ZNjkkjNjYWO3bswLVr1ySLuW/fPpw9e5YnKHZq2rRpcHJyQnJysmQxTSYT4uPj8eSTT0KpVEoWl1mHl5cXxo8ff9eJbbPNhoiwfv16xMbGQhAEqyfIxDdx4kS4urpKuuJITExEaGgohgwZIllMZj1ubm6YMGECEhMTJYuZlZWFixcvYs6cOZLFZNYVGxuLjIwMXL16tdllmm02OTk5uHbtGh5//HFRkmPic3Z2RnR0dKuOFLGWtLQ0rhk7N378eOzfv/+u++CtJS0tDUFBQRg4cKAk8Zj1Pfzww1Cr1UhPT292mWabTXp6Ory9vXmGaueioqKwZ88eGI1G0WNduXIFZ86cQVRUlOixmHjGjBkDo9GIffv2SRIvPT0d0dHRksRi4nBxccH999+PjIyMZpdpttlkZGQgMjISCsVdD1hjNiw6Ohrl5eU4cuSI6LF27doFJycnhIeHix6Liadz584YOHBgiysOa9HpdDh48CBPUDqAu+1FabKTGI1GZGZmcgF0AIMGDUKXLl1a3Ly1loyMDIwYMQKurq6ix2Liio6OlqRm9u7di7q6Ol7XdABRUVEoKirC+fPnm3y9yWZz5MgRlJWV8aZtByAIAqKioiSZpWZkZPBKo4OIiorC0aNHUVpaKmqcjIwMDBw4EF26dBE1DhNf/USzuUlKk81m//798PX15R/sOoiIiAjs378fRCRajMuXL6OwsBCjR48WLQaTTkREBIxGI3788UdR4+zbt49rpoNwcnLCAw880OxvfU02m2PHjuHee+/lQ547iMGDB6OysrLZzVtrOH78OADwASUdhI+PD3r27Ins7GzRYhARcnJycO+994oWg0lryJAhzdZMk80mOzsboaGhoibFpBMaGgqFQiHqiuP48ePo2bMnvLy8RIvBpBUaGoqcnBzRxi8oKEBFRQXCwsJEi8GkFRoaipMnTzZ59KtZsyEinDlzBoMGDRI9sUOHDkEQBLz22muix2pJamoqBEHARx991O6xvv76awiCgI0bN1ohM+twdXVFz549cfr0adFicM1YzhZrBrhzcMmpU6dEG//MmTMAIPrueq4Z6QwaNAjV1dUoLCw0e82s2dy8eRM6nQ69e/eWIjcmkd69ezdZANZy/vx59OnTR7TxmfSkqBkfHx94eHiIFoNJq75vtKrZ1O/X52bTsfTu3VvU32wKCwsRGBgo2vhMer1798atW7dQXl4uyvhcMx2Pn58f3NzcWtdsLl++DEEQ0L17dylyYxLp1asXLl26JMrYRIQrV66gR48eoozP5NGzZ08AEK1uLl++3BCDdRw9e/ZssmbMmk1xcTE8PDzg5OQkSWJNyczMxOzZs9G3b19oNBr4+fnhN7/5jdkhdb/cB5qRkYHw8PCG3yfefffdhuU++eQT9O/fH1qtFgMGDGjxwpS7du1CeHg4XFxc4O/vjwULFuDmzZtmy5WVleH3v/89unbtCmdnZwwbNgzfffdduz+TWHx8fES7bHxZWRkMBgP8/PxEGb81uGasz9fXFwBEq5vi4mKumQ5WM8CdummyZn59n+i3336bgoKCrH2r6iYdPHiQANDy5csbnrt69SoBaPKhUqloz549DcumpKQQAJoxYwapVCqz5T/44AN6+eWXzZ5XKBR09OhRs3GmT59OSqXSbPkBAwZQZWVlw/LV1dU0ZMgQs+UEQaAZM2YQAEpOTrboM4ll3bp1pFKpyGQyWX3svLw8AkBHjhyx+ti/xjUjXc3o9XoSBIE2bdokyvj33nsv/fnPfxZl7F/impGuZoiIJk2aRE888YTZ82ZbNpWVlbL+YCcIAmJiYrBt2zZcvHgRer0e169fx4YNG6DRaBrNJOolJSXh97//PQoLC1FVVYWNGzdCrVbj9ddfx6pVq/Dll1/ixo0bKCkpwdKlS2EymfDhhx+ajZOcnIzY2Fjk5eWhqqoKmZmZCA0NxenTp/Hee+81LPfJJ5/g2LFj6N+/P9LS0lBZWYmCggI8//zzSEpKsspnsjZPT08YDAZRbhNdUVEBALLdzpdrRhxqtRouLi6i/WYj57qGa0Y8np6eDeuERn7dfZYsWUIjRoyQpAM2NeMgIjp06BBNnz6dunXrZjaT6NGjR8Ny9TOFcePGmY09depUAkDvv/9+o+cNBgN5eHjQsGHDzMa5//77zWb+586dI7VaTQMGDGh47oEHHiBBECg3N9cs7pgxY8xmHG35TGJJS0sjAFRSUmL1sffv308A6OLFi1Yf+9e4ZqSrGSIib29vWr16tShj9+zZ0+xvLQauGWlr5tlnn6WxY8eaPW92397a2lpZf6/Zv38/oqKioNfrm3y9urra7LmmbiUbEBAAAGaXwlAqlejevTuuX79u9p6HH37Y7KoJffr0wT333IOzZ882PJefn4/u3bsjODjYbIxx48Zh165d7f5M1qbRaADc+X6trf5zyVU3XDPicXJyEqVmAHnXNVwz4nFyckJNTY3Z82a70Uwmk6y3FXj33Xeh1+uxfPly5Ofno7q6GiaTCUSE/v37N/kerVZr9lz9l9ncayaTybqJt8CSz2Rt9bfbNRgMVh+7/mxhueqGa0Y8KpVKtHshmUwm2W4DzTUjHqVS2borCKjVatTV1UmSVFMKCgrQuXNnvPbaawgKCoJWq4UgCDh37hzy8vJEjb1z506zi1UWFBTg7NmzCAoKaniub9++uHz5Mk6cOGE2Rmpqqtlzcn6mevWznab+UbRX/exUrrrhmhFPbW1tw1axtanV6mZn4WLjmhGPXq9vsmbMmo1Go5GtAIA754PcuHEDn376KcrLy1FeXo7t27fjscceE32W8NNPP2H+/PnIz8+HTqdDVlYWJk+ejLq6OkybNq1hualTp4KIMHXqVKSnp6Oqqgrnz5/HokWLzDZt5f5M9ep3hYix4qhvNnLVDdeMeMRsNnKua7hmxNNczZg1G2dnZ1GOWGqtZ599FkSEF154AZ6envD09MT48ePh6uqKkJAQUWNPmzYNa9euRb9+/eDm5oZRo0YhOzsbAwYMwCuvvNKw3AsvvIAhQ4bgzJkzGDNmDDp16oQ+ffpg1apVmDFjhk19pnr136kYWzYuLi6NYkiNa0Y8NTU1cHZ2FmVsFxcXrpkOWDPV1dVN1oxZsxHz5L/WmDhxIhISEhAWFgZnZ2d07doVzz77LHbt2iXaDKveyJEjkZKSgvvvvx/Ozs7w9fXF/PnzkZmZCTc3t4bltFotMjIysHDhQnTu3BlarRb33nsvNm/ejHHjxtnUZ6pXXFwMd3d3UX6Q9fHxASDeyX93wzUjjvLycuj1+oaTO63N29sbt27dEmXsu+GaEU9xcXGTNSPQr3YeJiQk4Omnn0ZtbS3fz6YDee+99/DFF1+goKDA6mPX76PdsmULJk6caPXxmTwKCgoQFBSEQ4cOYejQoVYff9KkSXB1dUVCQoLVx2byGTp0KGJiYszO6zHbsvHz80NdXZ3ot4Nl0rpx44ZolwZxcnKCh4dHk4d5MvtV/32KtWXj7+/PNdMB3bhxo8maMWs29ceNFxUViZ8Vk8z58+dFvcJuQECAqJejZ9IrLCyESqUS7aK8vXr14prpYPR6Pa5cudLkXQOabDaCIIh6OXomvfPnz4t624jAwEBecXQw58+fR69evaBSmZ37bRWBgYG4cOGCaOfxMOkVFRXBZDI1ObE1azZarRY9evSQ9LhsJi4iwrlz50S9uVlQUFCjs5+Z/cvLyxO1Zvr27Yu6ujrei9KB1PeNpuqmyVO+xb73OJPW+fPnUVlZKeq93lu69zizTzk5OaLXjEKhQHZ2tmgxmLSys7PRs2dPeHl5mb3WZLMJCwvjAuhAcnJyIAgCBg0aJFqMsLAwVFdX8xZxB2E0GnHy5EmEhoaKFsPV1RW9e/fmdU0HkpOT02zNNNls7rvvPpw6darpy0Qzu3Pw4EH069dP1FsABAcHQ6PR4KeffhItBpNObm4uqqurce+994oa57777uOa6UAOHjzYbM002WwiIiJgNBqxd+9eURNj0khPT0dUVJSoMbRaLUaMGIGMjAxR4zBp7Nq1Cz4+PqJu2QBAZGQkMjMzZb0eI7OOy5cvIy8vr9l1TZPNxt/fHyEhIbzi6AAqKytx6NAh0ZsNAERFRTV5zSZmfzIyMhAVFSX6lbyjo6NRWVmJw4cPixqHiS8tLQ0ajQbh4eFNvt5sJUVFRSE9PV20xJg0MjMzYTAYEBkZKXqs6OhoXLx4EefOnRM9FhOPwWBAZmamJBOUAQMGoHv37jyx7QAyMjIQHh7e7LX0Wmw2x48fR3FxsWjJMfFlZGQgJCQEnTt3Fj3W/fffD1dXV56k2LlDhw6hoqIC0dHRksSLjIzkZtMB7N69u8UJSrPNJjIyEoIgYPfu3WLkxSSya9cuSWaowJ3L1jz00ENIS0uTJB4Tx65du9CtWzcMGDBAknjR0dHIysqS7E6SzPrOnj2LoqKiFicozTYbT09PjBo1CklJSaIkx8R3+vRpHDt2DBMmTJAs5oQJE/D999+jqqpKspjMupKSkvCb3/xGsniPPfYY6urqsHXrVsliMutKSkpC586d8cADDzS7TIu//sXGxmLr1q2y3nKAWS4uLg7du3eX5PeaejNnzoTBYMCmTZski8ms5+jRo8jJycHcuXMli9mlSxfExMQgPj5espjMuhISEjBr1qwWL23UYrOZNm0aVCoVNm7caPXkmLiICOvWrUNsbKyk93n39vbGY489hri4OMliMuuJi4tDUFAQRowYIWnc2NhYpKam4tq1a5LGZe134MABnDlzBrGxsS0u12KzcXd3x8SJE3nFYYd2796NwsJCzJ49W/LYsbGxSE9Px8WLFyWPzSxnMBiQmJiI2NhYye9lNXnyZLi6umL9+vWSxmXtFxcXh0GDBt31BOC7HkQfGxuLffv28UUW7UxcXByGDh0q6e1g640fPx7e3t5Yt26d5LGZ5X744Qdcv34dc+bMkTy2VqvF1KlTeWJrZ/R6PTZs2IAnn3zyrsvetdk8/PDD6NGjB1avXm2V5Jj4bt68iQ0bNuCpp56SJb6TkxOeeOIJfPHFFzAYDLLkwNrus88+w6hRoxAUFCRL/KeffhpHjhzBgQMHZInP2i4xMREVFRWt24NCrfDBBx+Qq6sr3bhxozWLM5n95S9/IR8fH6qsrJQth6KiIlKr1bRmzRrZcmCtd/ToURIEgb7//ntZ8xg5ciQ9/vjjsubAWsdgMFD//v3p6aefbtXyrWo2Op2O/P39admyZe1KjomvrKyMPD096e2335Y7FXryySdpwIABZDQa5U6F3cXUqVNpyJAhZDKZZM3ju+++IwB06NAhWfNgd5eYmEhKpZJOnz7dquVb1WyIiN566y1yd3en0tJSi5Nj4luxYgV5eHjYxPd0+vRpUigUlJycLHcqrAUnT54khUJB33zzjdypEBHR0KFDafr06XKnwVpgMpkoLCyMnnjiiVa/p9XNpry8nDw9Pemtt96yKDkmvqqqKvLz86Ply5fLnUqD6dOn0+DBg2WfMbPmzZkzhwYOHGgzW6DJycmkUCgoNzdX7lRYM7Zs2UKCIFB2dnar39PqZkNE9Le//Y28vb3p5s2bbU6OiW/58uXUqVMnKikpkTuVBseOHSOFQkHr16+XOxXWhOPHj5NKpaKEhAS5U2lgNBpp0KBBNHXqVLlTYU2oq6ujsLAwmjx5cpve16ZmU1FRQd27d6f58+e3KQgTX35+Pmm1Wlq5cqXcqZiZP38+denShcrKyuROhf2CyWSiiIgIGj58uM1s1dTbuXMnAaDvvvtO7lTYr3zwwQek0Wha/VtNvTY1GyKipKQkEgSB9u3b19a3MhGNHz+egoODSa/Xy52KmZKSEvL19aUlS5bInQr7hf/85z+kVCrpyJEjcqfSpOnTp1NQUBBVV1fLnQr7P1evXiUPDw/6+9//3ub3trnZEBE9+uijFBoaapMrNke0adMmEgSBMjIy5E6lWf/6179IpVLRsWPH5E6FEdGtW7fI39+fFi9eLHcqzbpy5Qq5u7vTa6+9Jncq7P/MnDmTAgICSKfTtfm9FjWbvLw80mq19OGHH1rydmZFOp2OAgMDae7cuXKn0iKj0UgjRoygkSNH8sECNuC5556jzp0728RRiy35xz/+QRqNhs6cOSN3Kg5vz549JAgCbdu2zaL3W9RsiIj+/ve/k6urK504ccLSIZgV/O53vyNvb2+6du2a3Knc1ZEjR0itVtM//vEPuVNxaCkpKaRQKGzqoIDm1P8YHR4ezntSZHTr1i0KDAxs80EBv2Rxs6mrq6ORI0dScHCwRZtUrP3Wr19PgiDQpk2b5E6l1d577z1SqVSUlZUldyoO6erVq9SlSxeaMWOG3Km0Wm5uLrm4uNArr7widyoOyWQy0eTJk6l79+7tOhLZ4mZDRHThwgXy8fGhefPmtWcYZoGzZ8+Su7s7vfTSS3Kn0iYmk4kmTJhAPXv2pOLiYrnTcSgGg4Gio6OpX79+VF5eLnc6bfKf//yHBEGgLVu2yJ2Kw/nwww9JqVTSrl272jVOu5oN0Z3LSwiCwNfAklB1dTXde++9NHz4cKqtrZU7nTYrKSmhgIAAGj9+PP9+I6G//OUvpNVq6ejRo3KnYpG5c+eSl5cXFRYWyp2Kw/jpp5/IycnJKpe/anezISJasmQJubq60vHjx60xHGuByWSip556ijw9PamgoEDudCy2d+9eUqlU9M4778idikPYunUrKRQK+te//iV3KharqqqigQMHUnh4OB8OLYHr169TYGAgPfzww1Y5D8sqzUav11NkZCR169aNzp8/b40hWTP++te/kkql6hAnu3300UckCAKtXbtW7lQ6tAMHDpCLi0uHOBn7xIkT5OXlRZMnTyaDwSB3Oh1WRUUFDRs2jIKCguj69etWGdMqzYbozrXT7rvvPgoKCrKLI6Ps0apVq0gQBPryyy/lTsVqXn75ZVKr1bJf2r6jOnv2LPn7+9Pjjz9OdXV1cqdjFQcOHCBXV1dasGCB3Kl0SHq9nh555BHy8/Oz6iHnVms2REQ3btyge+65h4YNG0YVFRXWHNrhbd68mZRKpU3cOsCaTCYTzZs3j5ydnfkINSu7dOkSBQQE0AMPPEBVVVVyp2NV27ZtI5VKRX/729/kTqVDMZlMNHfuXOrUqRMdPnzYqmNbtdkQ3Tnhs3PnzhQTE0O3b9+29vAOaefOnaTRaGz6bO/2waGGPAAAF2lJREFUqKuro8cff5x8fHwoJydH7nQ6hBs3blBwcDAFBwfb1IVZrenLL78kQRDo448/ljuVDsFkMtELL7xATk5OlJaWZvXxrd5siIgOHz5MXl5eNGrUKJs/Q9nWbdiwgTQaDc2ZM8fmLpZoTTqdjkaPHk3e3t583b12On/+PN1zzz3Up08funjxotzpiOq9994jQRDo9ddflzsVu1ZXV0dPPfUUqdVq2rBhgygxRGk2RHd+yOvZsycFBwd3+IIXy6effkoKhYJ+//vfd+hGU6+mpoamTZtGWq3WZm7kZW9yc3OpR48eFBISQpcuXZI7HUn897//JZVKRQsXLnSIfyfWptPpaPz48eTi4iLqgUeiNRsiosuXL1NoaCgFBAS0+XLUju7dd98lQRBs6kZoUjAYDLRgwQJSKpX073//W+507MqBAwfIx8eHIiIiHO52Dlu2bCFnZ2eaNGkSHxbdBrdu3aKHHnqIvLy8RP/NVNRmQ0RUXFxMDzzwAPn5+dHu3bvFDmf3bt++TU899RSpVCr66quv5E5HFiaTiV599dWG3SM8W727+Ph40mq1NHXqVKqpqZE7HVlkZGSQh4cHRUZGWu1w3Y7s9OnTNHDgQOrVqxedOnVK9HiiNxuiOydjTZkyhZRKJb3xxhu88mjG6dOnKSwsjDw9PTvEeTTt9dlnn5GTkxPFxMTwyqMZt2/fpgULFpAgCPTSSy85/Lknx44do969e1O3bt1s+pYbcktISKBOnTrR8OHDJdvdKkmzqffFF1+QRqOhqKgounLlipShbd7GjRvJw8ODhg4dSvn5+XKnYzMOHTpEQUFB5O/vTzt37pQ7HZty5swZGjx4MLm7u1NSUpLc6diM8vJymjFjBimVSlq+fLnDN+Bfqq6upsWLFxMAeuaZZyS93JWkzYaI6ODBg9SnTx/q2rVruy/s1hFUVVU1zExffPFFu7zWmdhKS0sbtoxXrFjRYU5ObI+4uDhyc3OjBx54gK/a0Yx//vOfpNFoaOzYsXT16lW505HdyZMnKSwsjLy8vGjz5s2Sx5e82RARlZWV0bRp00gQBHryyScddhfJpk2bqFevXuTt7c1Xs22F+pXH4MGDHfbw6LNnz9IjjzxCgiDQkiVLeHJyF/Vbxh4eHvTPf/7TIbdydDodLVu2jDQajayTE1maTb2tW7dSQEAAeXp60kcffeQwhXDu3DkaP348AaDp06fz5X3aIC8vj8aNG0eCIFBsbKzDTFRu375Ny5cvJ61WS2FhYXy1hTao/9tpNBoaMmQI7d+/X+6UJLN161bq3bs3eXh4yL6OlbXZEN3ZjVR/faxhw4Z16EKorKxsWGGEhITQnj175E7JbiUlJVH37t3J29ubVq9e3WHv4mgymWjz5s3Uu3dvcnd3pw8//JB3I1ro1KlTNGbMGFIoFLRgwYIOPck7c+YMPf744yQIAs2ePdsmdiPK3mzqnThxgiIjIwkAjR07tkMdSVJaWkorVqwgHx8f6tSpE61cubLDrhylVFFRQUuXLiW1Wk2BgYH0+eefd5jDfo1GI23cuJGGDBlCgiDQzJkz6fLly3Kn1SEkJiZSt27dyNnZmV544QW6cOGC3ClZTU5ODs2aNYuUSiUNGjTIptajNtNs6u3du5cef/xxAkAjR46krVu32u0Ntm7evEnLly8nLy8v6tSpE73yyit8d0oRFBUV0eLFi8nZ2Zn8/f1p+fLldncnynpGo5E2bNhAgwYNIoVCQY8//jgdPHhQ7rQ6nNraWlqzZg317duX1Go1xcbG2vWJ58ePH6fY2FhSKpUUEhJCa9assbktYJtrNvX27dtHjz32GAmCQIMHD6YPP/zQLjZ7jUYjZWRk0Lx588jV1ZX8/Pzo7bffttuVnz25cuUKLV26lNzc3MjX15defPFFOnLkiNxptcq5c+fo9ddfp969e5NKpaLY2Fg6efKk3Gl1eLW1tfTVV19R3759SaVS0aRJk2jz5s12ceBFZWUlff311xQdHU0AaNiwYbR582abnZzbbLOpd+TIEZo/fz55eHiQSqWi8ePH0/r1623uitKnTp2iZcuWUa9evQgADR06lD755BPS6XRyp+Zwbt68SW+88Qb169ePAFBISAi99957NnetsNLSUvriiy/ooYceIkEQqEuXLvTSSy/RuXPn5E7N4RgMBkpMTKSxY8eSQqEgb29vWrhwoc39hmwwGCg1NZXmzJlDrq6upNFoaMqUKZSamip3anclEBHBDlRXV+Pbb79FXFwcdu7cCVdXV0RHRzc8Bg0aJGk+lZWVyMzMREZGBnbt2oVjx46hR48emDNnDmJjYyXPhzXtwIEDiIuLQ1JSEsrKyjBixAiMGTMGUVFRGDFiBDQajWS5GI1GHDlyBBkZGUhPT8eePXsgCAImTZqEOXPm4OGHH4ZKpZIsH9a0S5cuISEhAXFxcThx4gT69OmDmJgYREdHIyoqCn5+fpLmc+HCBaSnpyM9PR0//PADrl27hhEjRiA2NhYzZsyAt7e3pPlYym6azS9du3YNGzduxM6dO5GZmYny8nJ06dIF0dHRGD16NIYMGYLg4GC4ubnddaxbt27d9csiIhQWFiInJwc//fQTMjIy8NNPP8FoNCI4OBjR0dGYMGECoqKioFAorPUxmRXV1tZi+/bt+P7775GRkYGCggI4OzsjPDwcUVFRGD58OEJCQtCtW7e7jtWamqlfLicnB8eOHUNGRgb27NmDsrIydO7cGVFRUXjkkUcwZcoUuLu7W+MjMhEcPnwYmzZtQnp6Og4dOgSj0YiQkBBER0cjPDwcoaGh6Nev310nCeXl5XBzc4NSqWxxOb1ej5MnTyInJwd79+5FRkYG8vPzodVqER4ejjFjxmD69Ono16+fNT+mJOyy2fyS0WjE4cOHG2aLBw4cQGVlJQRBQEBAAHr37o3AwED06tULPj4+DQ+lUomamhrExcVhwYIFAACdToeSkhKUlJTgypUrKCoqQmFhIfLz8xvG7NevHyIjIxtmOf7+/jL/BZglioqKkJ6ejoyMDGRkZODSpUsA/n979xrTVvnHAfxb2nKVQbeyMWYYDOKMgJolJuoEFMbfJUu2aeJcdtEXxmnglZdEI77yssRkxpgYxTcmY9zG4uaYDHBoxkQnugUGbO4CFIhjTmBchMFG2+f/grRbV1rhwHPOKf1+EhJ3Ts/z/Lr9PN/nHHoBli1bhpSUFCQnJyMxMRErVqyA1WrFsmXLEB4ejpCQEHzyySd455134HQ6MTU15e6Z/v5+9Pb2wmazobOzE9euXXOPmZmZ6b4KT0tL0/Kpk0L//vsvGhoa3Oea9vZ22O12hIWFITU1FcnJyUhOTkZ8fDysViusVqt7IVFfX4/7778fDz74IIDphcjAwAAGBwdx9epVdHd3w2azoaurC3a7HaGhoXjsscfwzDPPICcnB0888QTCw8O1fPrzFvBhcy8hBGw2G1pbW3Hx4kXYbDZ0d3fjr7/+cp8U7Ha7z+Ojo6OxdOlSxMfHIzExEcnJyUhJSUFGRgbS09MRHR2t4rMhtQwODqK1tRXnz59HV1cXbDYbent70d/fj8HBQdy8edPnsWFhYe5FTGJiIpKSkpCcnIy0tDRkZGRg1apVKj4TUsutW7dw/vx5tLW1oaOjwx0Y169fx8DAAIaHh30eazAY3D0THx/vDqq1a9ciPT0da9euXXS3VBdd2MzG6OgoHA4HcnJy0NLSgoqKCvzvf/9DVFQUQkNDtS6PdGhiYgKTk5P48ssv8f7772Pbtm0oKiqC2Wye1e1aCj4OhwOjo6P4+++/kZaWhsjISHR0dCAsLAyxsbEwGAxal6iqoPwFw5IlSzA6Oopz587BYDDg6NGjsFgsDBryKSIiAhaLBYcPHwYAfP/994iIiGDQkE9GoxEWiwXHjx9HSEgIbt68iaamJlgslqALGiBIwwYAysrKYDKZIITAkSNHMD4+rnVJpHOdnZ1obm4GMH2lU11drXFFFAj2798Pp9MJo9GI0tJSrcvRTNCGTXFxMaampgBM33s9duyYxhWR3rkWKMD0qrWkpETjikjvLl26hLa2NgghYLfbUVVVhbGxMa3L0kRQhs2ff/6Jixcvuv8cEhLCEwf9pwMHDrgXKHa7HdXV1RgZGdG4KtKz8vJymM1m95+npqbw3XffaViRdoIybEpKSjwawOFwoK6uDoODgxpWRXrW0tKCK1eueGxzOp04cuSIRhVRILj7Dgow/Sq0YF3YBm3Y3N0AANy/uyGayb0rVJcDBw5oUA0FgjNnzsBms3lsczgcqK+vxz///KNRVdoJurA5ffo0ent7vbYLIVBcXKxBRaR3QogZFygOhwMnT57E9evXNaqM9MzXAsVgMLhf1RhMgi5sysvLZ3yJs9PpRGNjI65evapBVaRnjY2N6Ovrm3FfSEgIKisrVa6I9M7pdM64QHHtC8aFbVCFjcPhQFlZGW7fvj3jfqPRyBMHefG1QAGmeyoYTxzkX0NDg89bZU6nE7/99ht6enpUrkpbQRU2P/74o98XATgcDuzfv1/Fikjv7HY7KioqfC5QhBA4e/as1715Cm5lZWUz3kJzMZlMQbewDaqwKSsr8/spAUIInDt3DpcvX1axKtKzEydOYGhoyO9jTCYTKioqVKqI9G5qagqVlZUz3kK7+zHBtrANmrCZnJzEt99+C7vdDrPZ7P4xmUwe/w2AJw5yKy8vh8Fg8NkzZrMZdrudt9LIrba2FqOjozAajR49c3ffGI1GnD9/3uP9fovd4vpYUT96e3uxY8cOj20XLlzAH3/8gZdfftlje6B/lDctnOXLl7u/ggKYXrQUFxdj06ZNXp/mPDw8jNjYWLVLJJ0ZGxvDnj17PLZVV1djyZIlyMzM9Nh+9epV99cOLHZB+anPLkVFRSgsLOSbOWnWBgcHYbVaUV9fj9zcXK3LoQCxYcMGpKamoqioSOtSNBM0t9GIiEg7DBsiIpKOYUNERNIxbIiISDqGDRERScewISIi6Rg2REQkHcOGiIikY9gQEZF0DBsiIpKOYUNERNIxbIiISDqGDRERScewISIi6Rg2REQkHcOGiIikY9gQEZF0DBsiIpKOYUNERNIxbIiISDqGDRERScewISIi6Rg2REQkHcOGiIikY9gQEZF0DBsiIpKOYUNERNIxbIiISDqGDRERScewISIi6Rg2REQknUnNyZqbm1FTU6PmlH6dPXsWALB3716NK7kjIiICb7zxhtZl6MbExAQ+++wzrctwm5iYQEREBA4ePIimpiaty3HbuXMnVq9erXUZulFWVobu7m6ty3Dr6+vD5OSkrs4169atw8aNG1WbzyCEEGpNVlRUhIKCAiQnJ6s1ZUAZHR2F3W7HjRs3tC5FNwYHB2G1WpGQkICIiAity9Edp9MJm82G+vp65Obmal2ObuTm5uLMmTOIi4vTuhRd6uvrw+7du/H111+rNqeqVzYAEBMTg46ODrWnDQhFRUV47733tC5Dl4qLi3kynYErjMnb9u3bVT2ZBhIt/l/i72yIiEg6hg0REUnHsCEiIukYNkREJB3DhoiIpGPYEBGRdAwbIiKSjmFDRETSMWyIiEg6hg0REUnHsCEiIukYNkREJB3DhoiIpAuYsJmamsIDDzyAl156yWtfY2Mj8vLyEBMTg+joaGRnZ+OHH35YsLlnO35jYyMMBgPq6uoWbG5SzlfP9PT04IsvvsCzzz6LsLAwGAwG1NbWLujc7JnANVPfjI+Po7S0FJs3b0ZSUhLCwsKQkJCAF198Ec3NzQs296LuG6Gir776SlgsFkXHfv7558JkMokrV654bK+trRVGo1EA8PgxGAyisrJy3jXPdfy8vDyRkZEhHA7HnOeaz9/PYjUwMCAAiPr6+jkf66tnVqxY4fXvWVNTs1Alq9oz8/n7WcxycnLEnj17FB07U98UFhZ6/Xu6fsxm84L0j5p9M5+/H6UC4srm9u3b+Pjjj7F161akpqZ6bH/ttdfgcDjw5ptvor+/H0NDQ/jwww8hhEB+fj7GxsbmNe9cx3/77bfR1taGQ4cOKZ6X5s9XzwBAUlISCgoKUFtbi1dffXXB52XPBC5ffRMdHY1du3bh2LFj6Orqws2bN9Hc3Iy8vDxMTU2hoKBg3vMu+r5RM9mUrtzLy8sFAFFVVeWxvbq6WgAQWVlZXsc8//zzAoAoKSlRXK+S8e12u1i5cqV4+umn5zwfr2y8KV25++qZexUUFCzolY3aPcMrm5kpXbnPtm9cxsfHhcViEQDEwMDAnOdzUbtveGXjQ3FxMSIiIry+L/vUqVMApr9//V67du0CADQ0NCieV8n4RqMRW7ZswcmTJ9Hb26t4bpofXz0jG3smsM21byIjI5GYmAiTyYSoqCjF8wZD3+g+bOx2O37++WesW7cOZrPZY5/r66XT09O9jnv44Yc9HqOE0vEff/xxAMBPP/2keG5Szl/PyMaeCVxK+ubSpUtoa2vD5s2bER4ernjuYOgb3YfNhQsXMDY2hkceecRr3+joKABg6dKlXvtc20ZGRhTPrXT8Rx99FABw+vRpxXOTcv56Rjb2TOCaa9+Mj49jx44diImJwaeffjqvuYOhb0xaF/Bfrl27BgCwWq1e+4QQPo/zt2+2lI4fFxcH4E7tpC5/PSMbeyZwzaVvxsfHsWXLFly8eBE1NTVISkqa19zB0De6D5vh4WEA068GuVdMTAwA4MaNG177hoaGPB6jhNLxlyxZAuBO7aQufz0jG3smcM22b4aGhrBp0ya0trbi+PHjyMrKmvfcwdA3ur+NFhsbC+DOZebdXC9NbG9v99rX2trq8RgllI7vuty1WCyK5ybl/PWMbOyZwDWbvrl27Rqys7PR1taGmpoaZGdnL8jcwdA3ug+blStXAgAGBga89rlWFKWlpV77SkpKPB6jhNLxXbW6aid1+esZ2dgzgeu/+qazsxPr169HT08P6urqkJmZuWBzB0Pf6D5sHnroIdx3331oaWnx2rdhwwYkJibi1KlTeOuttzAwMICRkRF89NFHOHz4MKxWK7Zu3ap4bqXju2p1vVKE1OWvZ2RjzwQuf33T3t6Op556CkNDQzhx4gSefPLJBZ07KPpGzTf1KH3T4saNG0V4eLiYnJz02ldTU+PzIx4OHjzo9fj169cLAKK5uXlWc891fCGEeP311wUA0d3dPafnyTd1elP6pkV/PbNz506fHz0CQBw6dMjj8XruGb6pc2ZK37Toq29eeeUVvz0zU3/ouW/4pk4fdu/ejcnJSRw/ftxr38aNG3Hy5Enk5uYiOjoaUVFRyMzMRG1tLbZt2+b1eKfTCQAwmWb32oi5ju9wOHD06FFkZWVh9erVc3ymtFD89cxcsWeCB/tGIjWTTenK/datWyIuLk4899xz85rf4XCI2NhYkZaWJpxO57zG8qWurk4AEOXl5XM+llc23pSu3IOlZ3hlMzOlK/dg6Rte2fgQGhqKwsJCVFVV4cqVK4rHaW9vx/DwMN59910YDIYFrPCOffv2IT09HS+88IKU8Wl22DOkBPtGnoAIGwDIz8/HmjVr8MEHHygeo7GxEatXr8b27dsXsLI7fvnlF5w4cQL79u2D0WiUMgfNHnuGlGDfyKH7N3W6mM1mXL58eV5j5OfnIz8/f4Eq8rZ+/foF+eQCWhjsGVKCfSNHwFzZEBFR4GLYEBGRdAwbIiKSjmFDRETSMWyIiEg6hg0REUnHsCEiIukYNkREJB3DhoiIpGPYEBGRdAwbIiKSjmFDRETSMWyIiEg6hg0REUmn+lcMTE5OYu/evWpPGxB+//13rUvQrbKyMjQ1NWldhu5MTExoXYJuNTc381zjQ09PD1JTU1WdU9WwiYmJQUJCAr755hs1pw0oa9as0boEXTEajUhJSUFDQwMaGhq0LkeXUlJSEBkZqXUZurJq1Sr8+uuvPNf4sXz5clXnM4hA+wYeIiIKOPydDRERScewISIi6Rg2REQknQnAJ1oXQUREi9v/AVAJxXEMcwa1AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<IPython.core.display.Image object>" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"da_out_chunk_y.data.visualize(optimize_graph=True)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"id": "7aff77e2-141a-485e-98d9-73389263c29a", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Calling diff on array of shape (10, 21)\n", | |
"Calling diff on array of shape (10, 21)\n", | |
"Calling diff on array of shape (10, 21)\n" | |
] | |
} | |
], | |
"source": [ | |
"np.testing.assert_equal(da_out_chunk_y.values, expected_result)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "7fdc82f0-0a50-4b66-9689-4c4d5e4c770d", | |
"metadata": {}, | |
"source": [ | |
"Note that this exact same `apply_ufunc` works just as well with numpy data, subsuming case 1." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"id": "e08095b8-9b21-4e9b-8e6e-484801901c9d", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Calling diff on array of shape (30, 21)\n" | |
] | |
} | |
], | |
"source": [ | |
"da_out = xr.apply_ufunc(\n", | |
" lambda a_in: diff(pad(a_in)),\n", | |
" da_in,\n", | |
" dask=\"parallelized\",\n", | |
" input_core_dims=['x'],\n", | |
" output_core_dims=['x'],\n", | |
" output_dtypes=[da_in.dtype]\n", | |
")\n", | |
"\n", | |
"np.testing.assert_equal(da_out.values, expected_result)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "2b43de31-8f32-439d-94ab-03856a0fc2d1", | |
"metadata": {}, | |
"source": [ | |
"## Case 3: Chunked in the x dimension\n", | |
"\n", | |
"This is harder because we have to apply the boundary condition separately." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"id": "daa1efef-3470-498d-b380-4be4cee49afe", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 4.69 kiB </td> <td> 1.17 kiB </td></tr>\n", | |
" <tr><th> Shape </th><td> (30, 20) </td> <td> (30, 5) </td></tr>\n", | |
" <tr><th> Count </th><td> 4 Tasks </td><td> 4 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"130\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"80\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"120\" x2=\"80\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"120\" />\n", | |
" <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"120\" />\n", | |
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"120\" />\n", | |
" <line x1=\"80\" y1=\"0\" x2=\"80\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 80.0,0.0 80.0,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"40.000000\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n", | |
" <text x=\"100.000000\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,100.000000,60.000000)\">30</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table>" | |
], | |
"text/plain": [ | |
"dask.array<xarray-<this-array>, shape=(30, 20), dtype=float64, chunksize=(30, 5), chunktype=numpy.ndarray>" | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"da_chunk_x = da_in.chunk({'x': 5})\n", | |
"da_chunk_x.data" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "c99e193f-1e90-4834-877a-2d4b0e86ea25", | |
"metadata": {}, | |
"source": [ | |
"It's important that we define our own padding function, rather than rely on `map_overlap`, because we will eventually have to implement global boundary conditions not supported by dask.array." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"id": "5835baca-faee-4d3f-ae7a-89cedfc7b781", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 4.92 kiB </td> <td> 1.17 kiB </td></tr>\n", | |
" <tr><th> Shape </th><td> (30, 21) </td> <td> (30, 5) </td></tr>\n", | |
" <tr><th> Count </th><td> 10 Tasks </td><td> 5 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"134\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"84\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"120\" x2=\"84\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"120\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"120\" />\n", | |
" <line x1=\"44\" y1=\"0\" x2=\"44\" y2=\"120\" />\n", | |
" <line x1=\"64\" y1=\"0\" x2=\"64\" y2=\"120\" />\n", | |
" <line x1=\"84\" y1=\"0\" x2=\"84\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 84.0,0.0 84.0,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"42.000000\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >21</text>\n", | |
" <text x=\"104.000000\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,104.000000,60.000000)\">30</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table>" | |
], | |
"text/plain": [ | |
"dask.array<concatenate, shape=(30, 21), dtype=float64, chunksize=(30, 5), chunktype=numpy.ndarray>" | |
] | |
}, | |
"execution_count": 12, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data_padded = pad(da_chunk_x.data)\n", | |
"data_padded" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "55369224-d7e1-4502-9c5c-00aca8a8a4fa", | |
"metadata": {}, | |
"source": [ | |
"Now we have a lonely lengh-1 chunk. This is not good.\n", | |
"We probably want to merge it back with its parent before calling map-blocks." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"id": "828d82a9-9fa1-4769-9f2c-8d3e50b8542e", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 4.92 kiB </td> <td> 1.41 kiB </td></tr>\n", | |
" <tr><th> Shape </th><td> (30, 21) </td> <td> (30, 6) </td></tr>\n", | |
" <tr><th> Count </th><td> 14 Tasks </td><td> 4 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"134\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"84\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"120\" x2=\"84\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"120\" />\n", | |
" <line x1=\"44\" y1=\"0\" x2=\"44\" y2=\"120\" />\n", | |
" <line x1=\"64\" y1=\"0\" x2=\"64\" y2=\"120\" />\n", | |
" <line x1=\"84\" y1=\"0\" x2=\"84\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 84.0,0.0 84.0,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"42.000000\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >21</text>\n", | |
" <text x=\"104.000000\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,104.000000,60.000000)\">30</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table>" | |
], | |
"text/plain": [ | |
"dask.array<rechunk-merge, shape=(30, 21), dtype=float64, chunksize=(30, 6), chunktype=numpy.ndarray>" | |
] | |
}, | |
"execution_count": 13, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# TODO: think about how to generalize this\n", | |
"data_padded_rechunked = data_padded.rechunk((-1, (6, 5, 5, 5)))\n", | |
"data_padded_rechunked" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"id": "b2eca6c7-63b6-46b0-812d-573f5934459b", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"((30,), (6, 5, 5, 5))" | |
] | |
}, | |
"execution_count": 14, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data_padded_rechunked.chunks" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"id": "a2627279-c485-4ad2-9546-868ab19566bd", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAOjCAIAAADcXyz5AAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd1xT5+I/8OeQhCEg2y2CdctQ0RYBQasMR1trFa2zihNvWxXtuG1tHV232m2to7UyXFgVFA1DBQRxFmQoYBUQnAQQ2SQkvz/yvfnlIoUASZ6ck8/7j/sqJ4fnfPLcYz6ck5MTRiaTEQAAALYxoB0AAACgI1BgAADASigwAABgJT7tAABalZaWVlxcTDuFRvTt23fs2LG0UwBoD4OLOECvzJo16+jRo7RTaMTMmTMjIyNppwDQHpxCBL0zc+ZMGefMnDmT9rwCaBsKDAAAWAkFBgAArIQCAwAAVkKBAQAAK6HAAACAlVBgAADASigwAABgJRQYAACwEgoMAABYCQUGAACshAIDAABWQoEBAAArocAAAICVUGAA/0gsFg8aNGjhwoXKC1NSUnx9fS0sLMzNzX18fOLi4jo2eOvjpKSkMAwTGxvb8fQAXIcCA/hHO3fuLCgo2Lhxo2JJbGzs+PHjExISnj17Vl1dnZycHBAQ0IFv4WpzHC8vL19f3w0bNkilUvU8GQDOQYEBtKyxsfHzzz+fPn36gAEDFEtWrFjR1NS0bt260tLSioqKLVu2yGSy4ODg6urqdo2syjjr16/PysrCd1QC/BMUGEDLjh079uTJE+XzhwkJCUVFRd7e3tu3b7e1tbW0tPz4449nzJghEomioqJUH1nFcSZOnNizZ89ff/1Vnc8KgENQYAAtCw0NNTExCQgIUCxJTk4mhMybN095tfnz5xNCkpKSVB9ZxXF4PN5rr72WmJh47969jjwBAK5DgQG0QCKRXLhwYdSoUQKBQLHw77//JoQ4OTkpr+ni4qJ4SEWqj+Pu7k4IOXfuXHvzA+gDFBhAC27evFldXe3q6qq88NmzZ4QQa2tr5YXyHysrK1UfXPVxRowYQQhJS0trV3gAPYECA2jBw4cPCSG2trbKC2Uy2fNrtriwdaqPY2dnpwgDAM2gwABa8PTpU0KIubm58kILCwtCSHl5ufLCiooKxUMqUn2crl27KsIAQDMoMIAWWFpakv+e61OQX0+fnZ2tvDAzM1PxkIpUH0d+RtHKyqo92QH0BQoMoAU9e/YkhIhEIuWF3t7ehJCIiAjlheHh4YqHVKT6OPIA8jAA0AwKDKAFw4YNMzMzy8jIUF44adIke3v75OTkkJAQkUhUWVm5devWY8eO2draTp8+XfXBVR9HHkB+LSIANIMCA2gBn8/38vJKT09vaGhQLDQ0NNy1axePx/v222/t7OwsLS0/+eQThmF27NhhZmamWM3Ly4thmGblp0zFcQghly5dIoRMmDBBA08RgPVQYAAtW7BgQX19/enTp5UXBgQEJCYmTpw40dzc3NTUdNy4cUKhMDAwUHkd+d0L+Xx+K4OrMk5TU1NUVJS3t3e/fv3U97QAuIPpwEXAAOw1a9YsQogqNxhsbGzs06ePl5fXsWPHVB9fKpXa2Nj07t07KyuLYZiOByUkLi7O39//4MGDc+bMaXNl1Z8XAGfgCAygZYaGhh999FF0dPTt27dV/63s7OynT59+8MEHnWwvQsi2bducnJzkzQQAz0OBAfyj4ODg/v37b968WfVfSUlJ6devnyrHTK1LTU2Nj4/ftm0bj8fr5FAAXNXaaXoAPScQCPLz89v1K8HBwcHBwZ3ftKenJ07vA7QOR2AAAMBKKDAAAGAlFBgAALASCgwAAFgJBQYAAKyEAgMAAFZCgQEAACuhwAAAgJVQYAAAwEooMAAAYCUUGAAAsBIKDAAAWAkFBgAArIQCA9CUhoaGhoYG2ikAOAtfpwJ6p6Sk5MiRI1rY0JUrVxiGGTNmjBa2VVJS0qdPHy1sCEB3oMBA71y6dGn27Nm0U6jfzJkzaUcA0CoGX5oHoAlVVVV2dnYymay0tLRr16604wBwEN4DA9CIqKgosVgskUiio6NpZwHgJhQYgEaEhYUxDMMwTHh4OO0sANyEU4gA6ldaWtqzZ8+mpiZCCI/He/DgQbdu3WiHAuAaHIEBqF9kZKTivxmG+fPPPymGAeAqFBiA+oWGhirObTQ1NYWGhtLNA8BJOIUIoGbFxcX9+vVT/pfFMMzdu3cdHBzohQLgIByBAajZgQMHeDye8hI+n6+dj04D6BUcgQGo2fDhw2/dutXsX9awYcNycnJoRQLgJByBAahTbm7uzZs3n/+78ObNmygwAPVCgQGoU0REhEAgeH65QCA4fPiw9vMAcBhOIQKok4ODQ1FRUYsP9e3bt6ioiGEYLUcC4CocgQGozZUrV4qKing8nuA5PB6vuLj46tWrtDMCcAfuRg+gNqWlpcuXL1f8mJCQQAiZNGmS8goUYgFwFE4hAmhKYGAgIQQX0ANoCE4hAgAAK6HAAACAlVBgAADASigwAABgJRQYAACwEgoMAABYCQUGAACshAIDAABWQoEBAAArocAAAICVUGAAAMBKKDAAAGAlFBgAALASCgwAAFgJBQYAAKyEAgMAAFZCgQEAACuhwAAAgJVQYAAAwEooMAAAYCUUGAAAsBIKDAAAWAkFBgAArIQCAwAAVkKBAQAAK6HAAACAlVBgAADASigwAABgJRQYAACwEgoMAABYCQUGAACsxKcdAICzLCwsaEcA4DJGJpPRzgDAJs+ePSssLCwsLCwoKCgpKSn7XxKJpKamprGxsdlvGRoampqa8vl8GyW2trZ9+vRxcHBwdHR0cHAwNzen8YQA2AoFBtCaioqKzMzMrKyszMzMzMzM27dvl5eXyx/q3r17nz597OzsFG1kY2PD5/PNzc35fD4hxNLSkhDy9OlTQohYLK6urpZIJCKRSNF2paWlJSUljx8/lg9oY2MzYMAAV1dXZ2dnFxcXFxcX+QgA0CIUGMD/aGpqysrKSklJSUtLS01NLSoqIoRYW1u7uLg4OzsPHjxYfsDk6OhoYmKili3W1tbKj+cKCwtzc3PlZVlRUUEIcXBw8PDw8PDw8PLycnJy4vF4atkiADegwAAIIeTmzZtCoTAuLu7ixYtVVVUWFhby5nBzc3N2du7Tp4+W85SUlGRlZV27di0tLe3ixYuVlZVdu3b18PDw8/ObPHnykCFDtJwHQAehwEB/1dfXx8XFnT59WigUFhUV2djY+Pr6+vj4eHl5DRs2zMBAV67RlUqlOTk5KSkpSUlJ8fHx5eXlDg4OAQEBU6ZM8fPzMzIyoh0QgA4UGOidhoaGuLi4yMjIqKio6urqkSNHTpo0adKkST4+PgKBgHa6NjQ1NWVkZCQkJJw8eTItLc3Y2Hjq1KkLFizw9/c3NDSknQ5Aq1BgoEdSU1P37t174sSJZ8+eeXh4BAYGvvHGG7169aKdq4Pu379/9OjRI0eOpKWlWVpavv7660uXLh07diztXABaggID7isrKwsLC9uzZ8/NmzdHjRq1YMGCmTNnav9tLc0pLi6OjIwMCwvLyMhwcnJaunTpggULrK2taecC0CwUGHBZRkbGt99+GxkZaWho+Oabby5btszNzY12KA26evXqnj17Dh06JBaLZ8+evXbtWldXV9qhADQFBQYcJJPJhELh9u3bz5496+zs/M4778yZM8fMzIx2Li2prq4+dOjQDz/8kJ2d7evrGxIS4ufnxzAM7VwAaqYr11kBqIVUKo2IiHBycpo6dSqPx4uNjb1x48bSpUv1p70IIWZmZkuXLs3MzBQKhTKZLCAgwNXV9dChQ1KplHY0AHVCgQFHyGSyyMhIZ2fnRYsWubm53bhxIzY2Vp+PPBiG8ff3j4+PT09Pd3Z2njdvnqur67Fjx3DSBTgDBQZcEB0dPXLkyDlz5ri4uOTk5ISGhjo7O9MOpStGjBgRERGRlZU1dOjQWbNmubm5xcTE0A4FoAYoMGC3zMzMiRMnTp8+/YUXXrhx48bBgwcHDx5MO5QuGjZs2JEjR9LT0+3t7V955RU/P7+cnBzaoQA6BQUGbFVeXv7uu++6ublVVlYmJyf/+eefTk5OtEPpOhcXlxMnTly6dKmqqsrFxWXhwoVPnjyhHQqgg1BgwD4ymWznzp0vvPBCZGTk3r17r1y54uXlRTsUm7z44oupqam7d++Oj48fOnTonj178MYYsBEKDFgmLy/Px8fnnXfeWb58eX5+/qJFi3TnpoUsYmBgEBQUlJeX99Zbb61atWrChAm3b9+mHQqgffAvH1hDIpF8/fXXI0aMePbs2cWLF7/++mu9ujheE7p27bp9+/br16/X1NS4uLh89tlnz38VJ4DOwgeZgR1yc3PnzZt369atTZs2rV27Vv6NkaAuYrF427ZtmzdvdnJyioiIGDRoEO1EAG3DERiwwK+//urm5sbn82/cuLFhwwa0l9oJBIIPP/wwIyODEDJq1Kg9e/bQTgTQNhQY6LTS0tLXXntt9erVS5cuvXDhwsCBA2kn4rLBgwenpaWtX79+1apVr7/+ukgkop0IoDU4hQi669q1a2+88QYhJCwszNvbm3YcPZKWljZ//vyGhoajR4+6u7vTjgPQMhyBgY765ZdfPD09XVxcbty4gfbSsrFjx169etXFxWX8+PG7du2iHQegZSgw0Dn19fVBQUH/+te/1q5dGxUVZWlpSTuRPrK2to6Jidm0aVNwcPCCBQtqa2tpJwJoDqcQQbc8fPjwlVdeuXv3bnh4+JQpU2jHAXLy5MmFCxcOGjQoOjq6e/futOMA/H8oMNAhOTk5U6dONTIyiomJGTBgAO048H/y8/OnTp0qkUhOnz49dOhQ2nEA/g9OIYKuOHfunJeXV69evVJSUtBeOmXQoEGXL1+2t7f39PQ8f/487TgA/wcFBjohLCwsICBg8uTJ58+ft7Ozox0HmrO2to6NjfX19Q0ICDhw4ADtOACEoMBAF/z6669vvfXW2rVrIyIijIyMaMeBlhkbGx86dOjtt99esGDB7t27accBILijAVC2Y8eOt99++7333vvqq69oZ4E2MAyzbds2Ozu7lStXVlVVhYSE0E4Eeg0FBjR9/fXXH3744fbt29euXUs7C6jq/fffNzMze/vtt0tLS/FnB1CEAgNqNm/evGnTpl27di1btox2Fmif1atX8/n84ODgLl26bNy4kXYc0FMoMKDjhx9++Oyzz3bu3In2YqkVK1YYGhoGBQWZmJhs2LCBdhzQRygwoOD3339fu3btf/7znxUrVtDOAh23ePHiqqqqNWvWmJubr1y5knYc0DsoMNC20NDQZcuWbd26df369bSzQGe98847T58+Xb16ddeuXefOnUs7DugXFBhoVXx8/NKlS997771///vftLOAemzcuLGqqmrx4sU9evR4+eWXaccBPYJbSYH23Lx509PT09/f/+DBgwzD0I4DaiOTyRYuXBgdHZ2SkuLs7Ew7DugLFBhoycOHD93d3fv16xcfH49PK3NPY2NjQEBAQUFBWlpajx49aMcBvYACA22ora0dN25cbW1tamqqtbU17TigEWVlZWPHjrWwsEhOTjYxMaEdB7gPt5ICbVi+fHlhYWFMTAzai8NsbGxiYmLu3LmzatUq2llAL6DAQON+/PHHgwcPhoeH9+/fn3YW0KyBAwcePnw4PDx8586dtLMA96HAQLPS0tI2bNiwZcuWyZMn084C2uDr6/vxxx+/++67KSkptLMAx+E9MNCgx48fjxw58sUXXzx+/DguO9QfUqn01VdfzcjISE9Px5fjgOagwEBTZDLZ1KlT8/Ly/vrrLwsLC9pxQKsqKipGjhzp6uoaFRVFOwtwFk4hgqb8/PPP8fHx4eHhaC89ZGVlFR4eHhMT8+uvv9LOApyFIzDQiJs3b44ePfq999777LPPaGcBaj7++OPt27dfvXrVycmJdhbgIBQYqF9DQ8OLL75oamqanJzM5+N2ZfpLLBZ7eXmJxeLLly8LBALacYBrcAoR1O/LL7+8c+dOeHg42kvPCQSC8PDwvLy8r7/+mnYW4CAUGKhZbm7uV199tXXrVnzqCwghAwcO/PTTT7du3Xrz5k3aWYBrcAoR1EkqlXp7ezc2NqalpfF4PNpxQCdIJBJ3d3dDQ8OUlBQDA/zRDGqDnQnU6aeffrp8+fKuXbvQXqDA5/N/++23a9eu7d69m3YW4BQcgYHaPHr0aNCgQe++++6WLVtoZwGd8/777+/evTs/Px8fbQZ1QYGB2ixZsiQ+Pj43N9fU1JR2FtA51dXVgwcPfvXVV3GbRFAXnEIE9UhPT9+/f/8333yD9oIWmZmZffHFF3v27Llx4wbtLMAROAID9fDx8RGLxampqbjnIfwTmUzm7u5uamp67tw52lmAC3AEBmpw9OjRlJSUH3/8Ee0FrWAY5vvvv09MTDxx4gTtLMAFOAKDzmpqanJ2dh45cmRERATtLMACs2bNysvLy8jIwCX10EnYgaCzDhw4kJ+f/8knn9AOAuywadOmnJycyMhI2kGA9XAEBp3S1NQ0fPjwsWPH7tu3j3YWYI158+Zdu3YtJycHNxuDzsARGHTKH3/8cffuXRx+Qbt89tlnd+/ePXjwIO0gwG44AoOOa2pqGjJkyIQJE3CHBWivxYsXX7p0KScnB++EQYdh14GOi4qKunPnzrp162gHAfb54IMP8vPzT506RTsIsBiOwKDjPD09u3Xrdvz4cdpBgJWmTZtWVVWVlJREOwiwFY7AoIOuXr168eLFkJAQ2kGArUJCQpKTky9fvkw7CLAVjsCggwIDAwsLC69cuUI7CLDY6NGjBwwYcOjQIdpBgJVwBAYd8fDhwxMnTqxZs4Z2EGC3d99999ixY48fP6YdBFgJBQYdsW/fvq5du86YMYN2EGC3WbNmmZmZhYaG0g4CrIQCg3aTyWT79u1buHChsbEx7SzAbsbGxvPmzdu1axfey4AOQIFBuyUkJPz9999BQUG0gwAXLF++/M6dO8nJybSDAPvgIg5otzlz5pSUlKSkpNAOAhzh7u4+cODAsLAw2kGAZXAEBu1TW1t76tSpRYsW0Q4C3LFgwYITJ07U1dXRDgIsgwKD9omOjm5oaJg+fTrtIMAdgYGB9fX1p0+fph0EWAanEKF9ZsyYUVtbKxQKaQcBTpk4caKtre3hw4dpBwE2wREYtENVVZVQKJw1axbtIMA1gYGBp06dqq6uph0E2AQFBu0QExMjkUhef/112kGAa2bMmNHY2HjmzBnaQYBNUGDQDjExMV5eXtbW1rSDANfY2dmNHTsWb4NBu6DAQFVSqTQuLi4gIIB2EOCmgIAAoVCId+VBdSgwUNX169efPHkyefJk2kGAmwICAh49enTjxg3aQYA1UGCgKqFQ2KdPHycnJ9pBgJtGjhzZs2dPvA0GqkOBgapiY2P9/f0ZhqEdBLiJYRg/P7/Y2FjaQYA1UGCgkoaGhmvXrk2YMIF2EOCy8ePHX7p0qaGhgXYQYAcUGKjkypUrDQ0Nnp6etIMAl3l6ejY0NPz111+0gwA7oMBAJampqb169XJwcKAdBLhs4MCBPXr0SE1NpR0E2AEFBipJTU3F4RdogYeHBwoMVIQCA5VcunTJw8ODdgrgPk9Pz4sXL9JOAeyAAoO23bt3TyQSjR49mnYQ4D43N7cnT57cv3+fdhBgARQYtC0zM5NhGHwCDLTAxcWFEJKZmUk7CLAACgzalpmZaW9vb2lpSTsIcJ+VlVWfPn2ysrJoBwEWQIFB27KysuR/FwNogbOzMwoMVIECg7ZlZWU5OzvTTgH6wsXFBacQQRUoMGiDVCr9+++/Bw8eTDsI6IshQ4bcvn0bt6WHNqHAoA0PHz5saGhwdHSkHQT0hYODQ11d3ePHj2kHAV2HAoM2FBQUEEJQYKA18hu+FBYWUs4BOg8FBm0oLCw0NDTs1asX7SCgL/r06SMQCOR/OQG0AgUGbSgsLLS3tzcwwK4CWsLn8/v06YMjMGgTXpWgDSUlJX379qWdAvSLvb19cXEx7RSg61Bg0AaRSGRnZ0c7BegXW1vbsrIy2ilA16HAoA0ikcjW1pZ2io4TCoUMw3z//fcc2xa32draikQi2ilA16HAoA1lZWU2Nja0U4B+sbGxwREYtAkFBm1AgYH2ocBAFSgwaENFRYW1tTXtFKBfbGxsysvLaacAXYcCg9bIZLL6+vouXbpoZ3OK95CSkpJ8fHzMzc3lX0Imk8l+//13Dw8Pc3NzExMTV1fXHTt2KN9qSCaT/fHHH97e3paWlubm5mPGjNmzZ49EIlEe/NKlS+PHjzc1NbWxsVm0aJHy6+PevXsZhjl69Kjy+vKFJ06caJatlXGel5WV1a9fvx49ely+fLnNZ33+/HkPDw9TU9O+fft+9dVX8kd/+umnwYMHGxsbDxkyJDIyUvkXW5+Wf5rMioqK4ODgHj16mJiYjB49+tSpU3/88Uezp9/mhGuaiYlJXV2d1jYHbCUD+GfyF5Ho6GjtbO7MmTOEkFmzZvH5fPn+OXLkSKlUOm/evOd33WXLlsl/SyqVzp49+/kV4uPjFWPOnTvXyMhI+VFvb2/Fdvfs2UMIiYyMVA4jX3j8+HHlbK2PI1/nu+++k/8YExNjbm7u5ORUWFjY5rOePXu24lnLffvtt++9957yEgMDg/T0dMWzbn1aWpzMurq6ESNGKK/PMIx89hRPv82RtUD+d0NjY6PWtghshAKD1lRWVhJChEKhdjYnf80lhCxZsiQvL08ikchkstDQUEKIs7Pz6dOny8rKqqurk5KSXF1dCSEXL16UyWR79+4lhNjY2Pz666/37t2rrq6+evXq0qVLExMTlcdcuXLl7du3a2trU1JS7O3tCSEZGRny7apeYK2Po1xgP/zwA4/Hmzx58rNnz1R81mvWrCksLKyurj569KhAILCwsDA3N9+7d++TJ0/KyspCQkIIIQsXLpT/VpvT0uJk/uc//yGEDB48+OzZs1VVVQUFBW+//bZ8NcXTb3NkLTh9+jQhpKqqSjubA5ZCgUFrSktLCSHnzp3Tzubkr7nu7u5SqVSxcMKECTwe78GDB8pr5uTkEELef/99mUw2btw48t/jrX8a08/PT3nhzz//TAjZv3+//EfVC6z1ceTrfPPNN6tWrSKE/Otf/5LXhirPOiAgQHnhG2+8QQjZvn27YolEIrGwsBg9erSK09LiZL744osMw2RnZyv/lq+vr/LTb3NkLTh79iwhRCQSaWdzwFL/c8oCoJmGhgZCiKGhoTY3OmnSJIZhFD/m5OQ0NTXJ7wYi32vl/0EIuXfvHiEkNzfXyspq0qRJrYw5fvx45R/79+9PCKmqqmpvNlXG2bJly7Nnzz788MMvvvhCeXmzj4Tb2Ngof9TJx8dHeeV+/foRQry9vRVLeDxe7969Ffdob3Na5JpN5p07d3r37j18+HDlbfn7+8fHxyt+VHFkjZLvco2NjdrZHLAULuIAndPsqn2pVEoIaWpqampqUhxMyB9S/QXOxMRE+Uf5a7piHPmdHuUbUmjxIoLWx5GbNm2atbX177//fuPGDRXjEUKMjY2fH/n5hYqQKk7L8x+BUO4zuWb51TLhnSQP2ez/EYBmUGDQGvkfwmKxmGKGIUOGdOnS5enTp8+fQJBfODdkyJCKigr5SaeO6datG/nvF8conDt3rmOjjRkzJjk5mcfj+fj4pKSkKJbb2toqh+/knSbanJYWvfDCCyUlJTdv3lReqHz41eGR1Ut+6N+svwGaQYFBa3ThTE5QUFBtbe2kSZNOnTpVWlra2NhYVFQUExPzxhtvyEtr0aJFhJA333xzz549JSUlNTU1169fX758eVJSkoqbGDZsGCHk+++/T0xMrKurKywsDAkJUVxA3wHDhw9PTU21s7Pz8/OTX4+gdm1OS4veeOMNmUw2c+bMxMTEmpqaoqKitWvXxsXFdX5k9ZLvclo+dw2sg/fAoDXyS8blfw7TsmjRoqSkpD/++OOVV15p9tCyZcsIIYsXLxYKhUePHl2+fLnyo4GBgSpuon///jNmzDh27NiECRPkS/h8/oIFC8LCwjoc28HBISUlJSAgYPr06X/88cfcuXM7PFSL2pyWFr399tsRERGZmZmKZ8owzKxZsyIjIwUCQWdGVi/5LtfsEwsAzeAIDFqjC0dgDMPs27fv8OHDkyZNsrKyMjQ07N+///Tp048fPy6/cMPAwODIkSO7d+92d3c3NTXt2rXriy++uHfv3mYXXLTut99+W7JkiY2NjbGx8dixYxMSEpQvoOiY7t27JyYmuru7z58/f8eOHZ0crZk2p6VFJiYm58+fX7FiRbdu3YyNjd3c3KKjo+UHoFZWVp0ZWb0aGxsZhlF0KkCLGJkWP10PbGRkZPT777+3+MlW4ACpVDp69OiMjIzS0lLduellWFjY8uXLcTMOaB2OwKAN1tbWuCsdl4SEhISHhxcVFdXW1mZkZAQGBqanp48fP1532ovgFtKgGrwHBm3AfcE5Ji8v79tvv1VeYmZm1mwJdSgwUAWOwKANzT5vC2z33XffvfXWWwMGDDAyMrKzs5s5c2ZaWlqzGyRSJxKJUGDQJhyBQRvw3bgcM3DgwH379tFO0Qa2fw84aAeOwKANOIUI2ldeXo5voYM2ocCgDb169SouLqadAvTLvXv3evfuTTsF6DoUGLTB0dGxqKgIH7cArZFKpcXFxY6OjrSDgK5DgUEbHBwc6uvrHz16RDsI6IsHDx40NDSgwKBNKDBog4ODAyGksLCQcg7QG/K7Kst3PIBWoMCgDX369BEIBM3u1A6gOQUFBUZGRj179qQdBHQdCgzawOPxHB0d8/LyaAcBfZGfn9+/f3/5l7QBtAK7CLTNxcUlKyuLdgrQF5mZma6urrRTAAugwKBtzs7OmZmZtFOAvsjMzHR2dqadAlgABQZtc3FxuXv3blVVFe0gwH3Pnj27d++ei4sL7SDAAigwaJuLi4tMJsvJyaEdBLgvKytLJpPhCAxUgQKDtjk6OlpYWPz111+0gwD3paenW1lZ2dvb0w4CLIACg7YxDOPu7p+a0IoAACAASURBVJ6amko7CHBfSkqKh4cHwzC0gwALoMBAJZ6enigw0ILU1FRPT0/aKYAdUGCgEk9Pz6KiopKSEtpBgMsKCwtLSkpQYKAiFBio5KWXXuLz+RcvXqQdBLgsNTVVIBCMHj2adhBgBxQYqMTU1HTkyJFJSUm0gwCXJScnjx49ukuXLrSDADugwEBVfn5+Z86coZ0CuCw2NtbPz492CmANFBioKiAgoKCgID8/n3YQ4KacnJyioqLJkyfTDgKsgQIDVY0dO9ba2hoHYaAhQqHQ2toab4CB6lBgoCoejzdx4kShUEg7CHCTUCj09/fn8Xi0gwBroMCgHaZMmZKYmIibIoLaVVZWXrhwAecPoV1QYNAOr732mlQqjY6Oph0EuOb48eMymWzatGm0gwCbMDKZjHYGYJOpU6fy+fyoqCjaQYBTpkyZIhAIsF9Bu+AIDNonMDAwNja2srKSdhDgjoqKirNnz86ePZt2EGAZFBi0z2uvvUYIwV/KoEZ//vmngYEBzh9Ce+EUIrTb9OnTa2tr4+LiaAcBjpgwYYKNjc3Ro0dpBwGWwREYtNuSJUsSEhLu3LlDOwhwwZ07d5KSkoKCgmgHAfZBgUG7TZkypVevXvv27aMdBLhg9+7dvXv3xh2koANQYNBufD7/rbfe+u2338RiMe0swG4SiSQsLCwoKAifX4YOQIFBRwQFBT158iQmJoZ2EGC36Ojox48fL168mHYQYCVcxAEdNGXKlPr6+nPnztEOAiw2fvx4MzOzU6dO0Q4CrIQjMOigdevWnT9//sqVK7SDAFtdvXo1KSlp/fr1tIMAW+EIDDpu1KhRQ4cOjYiIoB0EWCkwMPDu3bvXrl2jHQTYCkdg0HFr1649cuTIvXv3aAcB9ikoKDh+/DgOv6AzUGDQcXPmzOnRo8d3331HOwiwz/bt23v37j1z5kzaQYDFUGDQcQKBYP369bt27Xrw4AHtLMAmxcXFe/fufe+99/h8Pu0swGJ4Dww6pb6+fuDAga+//vqPP/5IOwuwxooVK4RCYX5+vpGREe0swGI4AoNOMTY2/ve//71r167CwkLaWYAdioqK/vjjj40bN6K9oJNwBAadJRaLBw8e7Ofn9+uvv9LOAiywePHiCxcu3Lp1SyAQ0M4C7IYjMOgsgUDwySef/P7777du3aKdBXRdVlZWWFjYp59+ivaCzsMRGKiBVCp96aWXLC0t4+PjaWcBnebn51dWVnb16lUDA/z1DJ2FfQjUwMDA4Pvvvz979izujgitOHbsWEJCwg8//ID2ArXAERiozaxZszIyMrKzs/HmPDyvsbHRycnpxRdfDA8Pp50FOAJ/B4Ha/Oc//ykpKcH19NCib7755v79+19++SXtIMAdKDBQG0dHx3//+9+fffbZ3bt3aWcB3ZKfn79169ZPPvmkb9++tLMAd+AUIqhTY2Ojm5ubnZ3d2bNnGYahHQd0gkwm8/X1LS0tvXbtGi4+BDXCERiok6Gh4W+//ZacnLx//37aWUBX7N27NzEx8bfffkN7gXrhCAzUb82aNWFhYTk5OT169KCdBSh78ODB8OHDg4KCtm3bRjsLcA0KDNSvurra1dV18ODBMTExOJGoz2Qymb+/f2FhYUZGRpcuXWjHAa7BKURQPzMzs0OHDiUkJPz888+0swBN33777fnz58PCwtBeoAkoMNCIMWPGfPTRRxs2bMjMzKSdBejIzs7++OOPN23a9NJLL9HOAtyEU4igKRKJxMfHp7q6+vLly8bGxrTjgFbV1taOGTPG1tb23LlzPB6PdhzgJhyBgabw+fzw8PB79+4FBwfTzgLatmLFikePHoWFhaG9QHNQYKBBjo6OYWFh+/fv37VrF+0soD0//fTTgQMHwsPD7e3taWcBLkOBgWZNmzbt448/fvvtt1NTU2lnAW1IS0tbv379pk2bJk+eTDsLcBzeAwONk0ql06ZNy8rKunbtWvfu3WnHAQ16+PDh6NGj3dzcTpw4gVvOg6ahwEAbKioqXnzxRRsbm3PnzuGKaq6qqanx8fGpqqq6fPmypaUl7TjAffgTCbTByspKKBTevXt39uzZTU1NtOOA+kml0vnz5xcWFp48eRLtBdqBAgMteeGFF+TfZ7hhwwbaWUD91qxZIxQKo6OjBw0aRDsL6AsUGGiPl5fXH3/88f333//www+0s4A6bd++fceOHWFhYR4eHrSzgB7h0w4A+mX27NnFxcVr1641NzdfsmQJ7TigBnv27NmwYcO33347c+ZM2llAv6DAQNvWr1//7NmzZcuWmZiYvPnmm7TjQKf8+eefq1at+uyzz9asWUM7C+gdFBhQsHnz5vr6+gULFggEAvzZzl7R0dFvvvnmv/71r40bN9LOAvoIBQZ0fP3115WVlfPnzzc0NHz11Vdpx4F2i46ODgwMDAoK+u6772hnAT2FiziADoZhdu7cuXDhwpkzZx4+fJh2HGifQ4cOzZw586233tqxYwe+8g1owREYUGNgYLBr1y5zc/N58+ZVV1cHBQXRTgQqCQsLW7JkycqVK3/88Ue0F1CEAgOaGIbZvn17ly5dli1bVlNT884779BOBG349ttv169f/+mnn3766ae0s4C+Q4EBfVu2bOnateuaNWuKioq++eYb3ENPNzU1Na1bt+6nn37avn372rVraccBwL0QQWccPXp04cKF/v7+ERERuF+irqmtrZ07d65QKNy3bx8+/AA6AgUGOuTChQvTp08fOHBgdHR0t27daMeB//P48eNXXnmloKAgKioK99oA3YFzNaBDxo0bd/HiRZFINHr06CtXrtCOA4QQcunSpdGjRz99+jQtLQ3tBToFBQa6ZfDgwVeuXBk+fLi3tzdumUjd7t27fXx8XFxcLl++PGDAANpxAP4HCgx0jrW19enTpzdt2rRu3bqFCxfW1dXRTqSP6uvrly1btnLlyrVr1548edLKyop2IoDm8B4Y6K6YmJgFCxb06tXrwIEDLi4utOPokZs3b86bN+/u3bv79++fPn067TgALcMRGOiuqVOnXr161dzc3N3d/ZdffsEfW1ogk8l+/PFHNzc3U1PTjIwMtBfoMhQY6LQXXnjhwoUL69evf+edd1599dUnT57QTsRljx49mjJlSkhIyIcffpiUlOTo6Eg7EUBrUGCg6/h8/ubNm1NTU3Nzc4cMGbJ7924cimlCZGSks7PzrVu3zp8/v3HjRh6PRzsRQBtQYMAOL7300l9//TV37txVq1ZNmTKlsLCQdiLuuHv3rq+v75w5c958882srCwvLy/aiQBUggID1jA3N//555+Tk5OLioqcnJy+++47iURCOxS7icXib775xtnZ+dGjR6mpqT/++KO5uTntUACqQoEBy3h6eqanp8vfp3F1dY2NjaWdiK1Onz7t7Oy8cePGDz744Pr16+7u7rQTAbQPCgzYx8jIaNOmTbdv33ZzcwsICPD19c3JyaEdik3y8/NfeeWVqVOnDhw4MCcn55NPPjE0NKQdCqDdUGDAVn379g0NDU1ISHj8+PGoUaPefvvtBw8e0A6l60pKSoKDg52cnEpKSs6fP3/y5Mn+/fvTDgXQQSgwYLeJEyemp6f/9NNPJ06cGDBgwLp163CpfYsePXq0Zs2agQMHxsTE7Ny589q1a+PHj6cdCqBTcCcO4IiGhoZdu3Z9+eWXVVVVq1evXrNmTc+ePWmH0gn379//7rvvdu7caWlp+e9//3vZsmU4YQjcgAIDTqmtrf3ll1+2b99eXl4+d+7ckJAQJycn2qGoyczM3L59+6FDh2xsbDZs2LBy5UoTExPaoQDUBqcQgVO6dOmyfv36wsLCX3755cqVKy4uLpMnTxYKhVKplHY07ZFKpWfOnAkICBgxYsT169d//fXXgoKCtWvXor2AY1BgwEFGRkZBQUHZ2dknT55saGiYMmVK//79N2/eXFJSQjuaZhUXF2/atMnR0XHq1KkSiSQmJiYrK2vx4sVGRka0owGoH04hAvfl5eXt3bt3//795eXlAQEBCxYsmDZtmqmpKe1calNdXX3y5MmwsLC4uDhbW9tFixYFBQUNGjSIdi4AzUKBgb5obGyMior6/fffExISDA0Np02bFhgYOGXKFPaeWKutrT19+vThw4djYmIkEomvr29QUNArr7wiEAhoRwPQBhQY6B2RSPTnn38ePnw4OTnZxMRk0qRJAQEBkydPlkqlDg4OtNO1QX4TSKFQKBQKExIS6uvrJ0yYEBgYOGPGDBsbG9rpALQKBQb669GjR8ePHz99+vT58+dramq6dOmycuXK8ePHe3h46FoZiESiixcvJiYm7ty5s76+3szM7OWXX54yZcrrr7/erVs32ukA6ECBAZCGhoY33njjzJkzw4YNk9+VasiQIZ6enp6enqNGjRo6dKj2T8o1Njbm5ub+9ddfKSkpqampeXl5DMM4OTllZ2dPmTLlzz//xGe5AFBgACQ+Pt7f318mkz19+lQqlV68eDE1NTUlJeXatWt1dXUCgWDo0KFOTk4uLi5DhgxxcHBwdHTs2rWrGgNUVlYWFhYWFBTk5eVlZmZmZWXl5uaKxWITE5MxY8Z4eXl5eHh4enoSQqysrBiGOXXq1JQpU9QYAICNUGCg78rLy4cMGSISiWQyWUFBgfLbYGKxODc3NysrKzMzMzMzMzs7u7i4WP6QtbW1g4ODvb29jY2Nra2tra2tjY2NjY1Nly5dCCEWFhYGBgZ8Pp8QIpFIpFJpZWUlIaS2trasrKysrKy0tFQkEpWVlRUXFxcUFFRUVMiHtbe3lzeli4uLs7Pz4MGDlQ/+CgsLHR0dGYaxtbXNzc21trbW1iQB6CIUGOi7wMDAEydOiMViQsj169dHjRrVysp1dXXyQ6XCwsLCwsKSkpKysjKRSCQSicrLy6urq9vcnJmZmbzq7OzsbGxsevfuLT+kk/+vsbFxK797/fr10aNHE0IEAsHkyZOjoqLa91QBuIVPOwAATREREZGRkYofy8vLW1/fxMRk6NChQ4cObfHRhoaG2tpaQkhlZaVUKm1sbCSEGBoaGhgYWFhYEEJMTU07896VIp5YLI6Ojj5w4MDcuXM7PBoA26HAQH/dv38/ODiYYf7vPATDMG0WWOuMjIzk97ywsrJST8T/VV5erpx2xYoVXl5e9vb2mtgWgO7DraRAT8lksiVLltTX1yvOovP5/E4WmKaVl5fL31cjhMhksoaGhkWLFuFdANBbKDDQUz///HNCQoL8LJ+cgYGB4mIK3VRRUWFg8P//zYrF4uTk5B07dlCMBEARCgz00Z07d957773nb1Gv+wXWbIlUKl2/fn1eXh6VPAB0ocBA70gkktmzZzc1NTVb3tTUpPunEFuMHRgYKL+KEkCvoMBA73z++ecZGRnPv+JLJBKRSEQlkopEIpFEImm2UCKR5OTkfPnll1QiAVCEAgP9cu3atS1btjx/HCNXWlqq5Tzt8k/92tTUtHnz5mvXrmk5DwBdKDDQL3fu3Bk3bpz89hbPf81jWVkZjVCqej6e/FNlAoHAy8vrzp07NEIBUIM7cYA+qq2tTUpKOnPmzJ49e+rr63k8HsMwEomkW7dujx8/pp3uH3Xv3v3Jkyc8Hk8mk0mlUiMjo+XLl0+ePNnHx0d+CysAvYICA/11/vz5l19+OTU1NTc3VygUxsbGisVi+a00dFOXLl0EAoG/v39AQMCwYcPGjh17/vz58ePH084FQAfuxAH6Ky4ubuDAgR4eHh4eHkuWLJFKpdevX5fJZAzD0I7WAplMlpSU5Obmpvgo2IABA+Li4lBgoLfwHhjor7i4OD8/P8WPBgYGY8aM0c32IoQwDDNmzBjlDzL7+fnFxcVRjARAFwoM9JRIJMrIyPD19aUdpON8fX3T09OfPHlCOwgAHSgw0FNxcXEGBgasPv82ceJEHo939uxZ2kEA6ECBgZ6Ki4vz8PCQf8sJS5mbm7u7u+MsIugtFBjoqbNnz7L6/KGcr69vXFwcriUG/YQCA32UlZVVUlKifAUHS/n5+T148CAnJ4d2EAAKUGCgj+Li4qysrNzc3GgH6azRo0fb2NjgLCLoJxQY6KP4+Hg/Pz8ej0c7SGfxeLyJEyfGx8fTDgJAAQoM9E59ff2FCxc48AaYnK+vb1JSUl1dHe0gANqGAgO9k5ycXFtby5kCCwgIqKurS0lJoR0EQNtQYKB34uPjhw4dam9vTzuIevTp02fIkCE4iwh6CAUGeqfZHaQ4APeUAv2EAgP98ujRo6ysLO4VWGZm5sOHD2kHAdAqFBjol9jYWIFA4O3tTTuIOo0fP97Q0BBnEUHfoMBAv8THx3t5eZmZmdEOok6mpqYeHh4oMNA3KDDQIzKZjBt3kHqer69vfHw87ikFegUFBnokIyPj0aNH/v7+tIOon7+//+PHj2/cuEE7CID2oMBAj8TFxdna2rq6utIOon4jR47s1q0brkUEvYICAz0SFxfn7++v/KXGnMEwzKRJk1BgoFc4+C8ZoEW1tbWpqamcfANMztfX98KFCzU1NbSDAGgJCgz0RWJiYmNjI4cLLCAgQCwWJycn0w4CoCUoMNAX8fHxzs7OvXr1oh1EU3r06OHk5ISL6UF/oMBAX8TGxnLsBhzP8/Pzi42NpZ0CQEtQYKAXSkpKbt26xeHzh3K+vr43b94sLi6mHQRAG1BgoBdiY2ONjY3HjRtHO4hm+fj4mJiY4Cwi6AkUGOiF+Ph4b29vExMT2kE0y9jY2MvLCwUGegIFBtwnlUrPnTvH+TfA5Pz8/OLj46VSKe0gABqHAgPuu3btWmlpqf4UWFlZ2fXr12kHAdA4FBhwX1xcnPwSc9pBtMHZ2blnz564JQfoAxQYcF98fLy/vz/DMLSDaAPDMPI709MOAqBxKDDguKqqqrS0ND05fyjn5+d38eLFZ8+e0Q4CoFkoMOC48+fPSySSSZMm0Q6iPf7+/k1NTUlJSbSDAGgWCgw4Li4uTv5VI7SDaI/8K2PwNhhwHgoMOC4uLk6vzh/K+fn5ocCA81BgwGWFhYW3b9/WzwLLz88vKCigHQRAgxiZTEY7A3DZqlWrTp06RWvrEomkqqrK0tJSE5cgTps2befOnZ0cREPzI5PJnj59am5uzufz1T64itQyPwCtoLZzg54QiUTW1tYLFy6kHUTNQkNDRSJR58fB/AB0GAoMNG7QoEEhISG0U6jZpUuX1DUU5gegY/AeGAAAsBIKDAAAWAkFBgAArIQCAwAAVkKBAQAAK6HAAACAlVBgAADASigwAABgJRQYAACwEgoMAABYCQUGAACshAIDAABWQoEBAAArocBAh4jF4kGDBjX7bpGUlBRfX18LCwtzc3MfH58Of9Fw6+OkpKQwDBMbG9vx9JqnufkpKir6+eef/f39jYyMGIYRCoXNVmDF/IDekQFo0syZM2fOnKniyj/88AOfz799+7ZiiVAo5PF4ynsswzBHjhxpbwxVxvH19XV2dm5qalJlwHY9L3WNo7n56d69u/IgZ86ceX4dKvMD0AocgYGuaGxs/Pzzz6dPnz5gwADFkhUrVjQ1Na1bt660tLSiomLLli0ymSw4OLi6urpdI6syzvr167OysiIjI9X8xNREc/NDCHFwcFi9erVQKFy2bNk/raPj8wP6iHKBAtep/pf4wYMHCSHR0dGKJTExMYQQb29v5dVmzJhBCAkPD1c9g4rjSCSSnj17jh8/XpUxtX8Eprn5UbZ69WryD0dgVOYHoBU4AgNdERoaamJiEhAQoFiSnJxMCJk3b57yavPnzyeEJCUlqT6yiuPweLzXXnstMTHx3r17HXkCGqa5+VGRjs8P6CEUGOgEiURy4cKFUaNGCQQCxcK///6bEOLk5KS8pouLi+IhFak+jru7OyHk3Llz7c2vaRqdH9Xp7PyAfkKBgU64efNmdXW1q6ur8sJnz54RQqytrZUXyn+srKxUfXDVxxkxYgQhJC0trV3htUCj86M6nZ0f0E8oMNAJDx8+JITY2toqL5TJZM+v2eLC1qk+jp2dnSKMTtHo/KhOZ+cH9BMKDHTC06dPCSHm5ubKCy0sLAgh5eXlygsrKioUD6lI9XG6du2qCKNTNDo/qtPZ+QH9hAIDnWBpaUn+e05MQX69eHZ2tvLCzMxMxUMqUn0c+Zk3Kyur9mTXBo3Oj+p0dn5AP6HAQCf07NmTECISiZQXent7E0IiIiKUF4aHhyseUpHq48gDyMPoFI3Oj+p0dn5AP6HAQCcMGzbMzMwsIyNDeeGkSZPs7e2Tk5NDQkJEIlFlZeXWrVuPHTtma2s7ffp01QdXfRx5APm1djpFo/OjOp2dH9BTND+EBnpA9Q+0BgQEGBsb19fXKy88c+bM87dKOnz4sPI6np6ehJD09PRWBldlHJlMtnLlSkJIYWGhGp+XusbR6Pw0+zCZQmRkpPJq2p8fgFbgCAx0xYIFC+rr60+fPq28MCAgIDExceLEiebm5qampuPGjRMKhYGBgcrrSKVSQgifz29lcFXGaWpqioqK8vb27tevn/qeltpodH5UoePzA3qIkWnyoluAWbNmEUJUuYFeY2Njnz59vLy8jh07pvr4UqnUxsamd+/eWVlZDMN0PCghcXFx/v7+Bw8enDNnTpsrq/681DWOfs4PQCtwBAa6wtDQ8KOPPoqOjr59+7bqv5Wdnf306dMPPvigk6/OhJBt27Y5OTnJX3l1EOYHoBkUGOiQ4ODg/v37b968WfVfSUlJ6devnyrHBK1LTU2Nj4/ftm1bs7eUdArmB0BZZ0+LA6iRQCDIz89v168EBwcHBwd3ftOenp66fzod8wOgDEdgAADASigwAABgJRQYAACwEgoMAABYCQUGAACshAIDAABWQoEBAAArocAAAICVUGAAAMBKKDAAAGAlFBgAALASCgwAAFgJBQYAAKyEAgPuuHLlytWrV2mn0F2YH+AYfJ0KaFxMTEzfvn21sKGnT58SQiwtLbWwrbKysqlTp6plKMwPQMegwECzFi1a5O7uroUNyWSyzz77jBDy7rvvdv7bh1UxePDgzg+C+QHoMAZfUgfccO7cuYkTJxJCzp49+/LLL9OOo3MwP8A9eA8MOCIiIkIgEAgEggMHDtDOooswP8A9OAIDLmhsbLS1ta2qqiKEmJubl5aWGhkZ0Q6lQzA/wEk4AgMuOH36dHV1tfy/q6urhUIh3Ty6BvMDnIQCAy6IiIjg8//viiQejxcREUE3j67B/AAn4RQisF5NTY2trW19fb1iiZGRkUgkMjMzo5hKd2B+gKtwBAasd/z48cbGRuUlYrE4KiqKVh5dg/kBrkKBAeuFh4c3+2ATwzBhYWG08ugazA9wFU4hAruJRKIePXo0NTU1W87j8R48eNCtWzcqqXQH5gc4DEdgwG6RkZEtLmcY5tixY1oOo4MwP8BhKDBgt7CwsBbPIkil0tDQUO3n0TWYH+AwnEIEFisuLu7Xr98/7cMMwxQVFWnnPrm6CfMD3IYjMGCxkydPmpubm/2XoaGhoaGh4kdzc/OTJ0/SzkgT5ge4DUdgwB2BgYGEkCNHjtAOoqMwP8AxOAIDAABWQoEBAAArocAAAICVUGAAAMBKKDAAAGAlFBgAALASCgwAAFgJBQYAAKyEAgMAAFZCgQEAACuhwAAAgJVQYAAAwEooMAAAYCUUGAAAsBIKDAAAWAkFBgAArIQCAwAAVkKBAQAAK6HAAACAlVBgAADASigwAABgJRQYAACwEgoMAABYCQUGAACshAIDAABWQoEBAAArocAAAICVUGAAAMBKKDAAAGAlFBgAALASCgwAAFgJBQYAAKzEyGQyxQ+nTp1atWoVxTQaVVxcTDuCPlq1atWpU6e0s62GhgZCiJGRkXY2N23atJ07d3ZyEMxPB/Tt21cTw+qCnTt3Tps2rZOD6M/88JUfq62tLSkp2bZtm9ZTadaNGzfCwsJop9BTIpHI2tp64cKFtIOoWWhoqEgk6vw4mJ8OKCkpWbBggaurq4bGp2X9+vW1tbWdH0d/5of//EohISHayqMlR44cQYFRNGjQIO7tVJcuXVLXUJifDpg2bVpgYKBGN6F969evV9dQejI/eA8MAABYCQUGAACshAIDAABWQoEBAAArocAAAICVUGAAAMBKKDAAAGAlFBgAALASCgwAAFgJBQYAAKyEAgMAAFZCgQEAACuhwAAAgJU6XmBisXjQoEHNvgYiJSXF19fXwsLC3Nzcx8cnLi6uAyNfuHBh6dKlQ4cONTExsba29vX1bfaFSSkpKQzDxMbGdjg86CbN7VRtjsOKnQrz016am7GioqKff/7Z39/fyMiIYRihUNhsBVbMmIbmp6amJiIi4tVXX3VwcDAyMurVq9fs2bPT09ObbUUN8yNTcvjw4WZLWvHDDz/w+fzbt28rlgiFQh6Ppzw4wzBHjhxRcUC527dvt5hz+/btyqv5+vo6Ozs3NTWpMma7nheo18yZM2fOnKniyhraqVQcp107Vbuel7rG0cP5aREh5PDhw6qsqbkZ6969u/IgZ86ceX6dds2YrD3PS13jaGh+Pvroo+dfwwUCQbNZ6vz8dLDAGhoaunXrpryDNjQ09OvXjxCybt260tLSioqKLVu2EEJsbW2rqqpUzCeTye7cuePv7x8REZGfn19XV1dQUPDee+8RQoyMjCorKxWryXv70KFDqoyJAqNI9Rcyze1UKo7Trp1K+wWmn/PTIhVfoDU3YzKZ7KWXXlq9erVQKFy2bNk/FVi7Zkym9QLT3Px89dVX8+fPP3ny5N27d2tra9PT0319fQkh/fv3V16t8/PTwQI7ePAgISQ6OlqxJCYmhhDi7e2tvNqMGTMIIeHh4Srm+yc+Pj6EkEuXLimWSCSSnj17jh8/XpVfR4FRpPoLmeZ2KhXHaddOpf0C08/5aZGKL9DaeZlavXr1PxVYu2ZMpvUC0+bLeE1NnLUNNgAAIABJREFUjZWVFSFEJBIpFnZ+fjr4HlhoaKiJiUlAQIBiSXJyMiFk3rx5yqvNnz+fEJKUlNSxrSgIBAJCSLdu3RRLeDzea6+9lpiYeO/evU4ODjpCczuViuPo+E6F+WkvLb9MPU/HZ0yb89OlSxd7e3s+n29qaqpY2Pn56UiBSSSSCxcujBo1St4rcn///TchxMnJSXlNFxcXxUMdIJVK79+/v3Xr1oSEhICAAEdHR+VH3d3dCSHnzp3r2OCgUzS6U6k+js7uVJif9tLay1TrdHbGtDw/eXl5WVlZr776qrGxsfLyTs5PRwrs5s2b1dXVrq6uygufPXtGCLG2tlZeKP+xsrKyvZvIzc1lGIbH4/Xp0+fzzz8PDg6OjIxsts6IESMIIWlpae0dHHSQRncq1cfR2Z0K89NeWniZUoXOzpg256empmbu3LkWFhbbt29v9lAn56cjBfbw4UNCiK2trfJC+QnKZlpc2F719fVpaWmZmZnNltvZ2SnCANtpdKdSfRyd3akwP+2l5Zepf6KzM6a1+ampqXnttddyc3NPnDjh4ODQ7NFOzk9HCuzp06eEEHNzc+WFFhYWhJDy8nLlhRUVFYqH2mXIkCHyt/ju37+/Z8+eO3fuTJo0qaCgQHmdrl27KsIA22l0p1J9HJ3dqTA/7aWFlylV6OyMaWd+KioqfH19L126dPr0aW9v7+dX6OT8dKTALC0tyX8PNhUGDBhACMnOzlZeKD9skj/UATwer1evXkuXLv3888/r6uqanUWUH9LKr2wBttPoTqX6ODq7U2F+2ktrL1Ot09kZ08L8PHz40MfHJysr68yZM/IryZ/XyfnpSIH17NmTECISiZQXyts1IiJCeWF4eLjioc5oaGggz821PIA8DLCdRncq1cfR2Z0K89Ne2n+ZapHOzpim5+fOnTuenp5FRUWxsbHjxo37p9U6OT8dKbBhw4aZmZllZGQoL5w0aZK9vX1ycnJISIhIJKqsrNy6deuxY8dsbW2nT5+u+uBffPHF+++/f/Xq1bKysvr6+oKCgh9//HHjxo2EkGazIA8gv4gF2E6jO5Xq4+jsToX5aS+NzpjqdHbGNDo/2dnZXl5eFRUV8fHxHh4erazZ2flR/lCY6h/4DQgIMDY2rq+vV1545syZ5+9B0uxzZ56enoSQ9PT0fxo5JCSkxZzz5s1rtubKlSsJIYWFhW2mxQeZKVL9A62a26lUHEfWnp1K+x9k1s/5aRFR7YO6Gp2xZh+WUoiMjFReTfUZU/15qWsczc1PUFBQi5Pz/G91cn46+EHmBQsW1NfXnz59WnlhQEBAYmLixIkTzc3NTU1Nx40bJxQKAwMDldeRSqWEED6f/08jf/LJJzt27PDx8enWrZtAIOjevfvkyZMPHjwYFhamvFpTU1NUVJS3t7f8xifAAZrbqVQcR8d3KsxPe2l0xlSh4zPGhflRbrN23QvRzs7u9ddfV2VlhaamJktLy+HDh0ul0nb94vPkN9E6ePCgKivjCIyidt3rj0U7FZV7Ierh/LSIqHyvPxbNmIzGvRDZPj8dPAIzNDT86KOPoqOj/+nm8S3Kzs5++vTpBx98wDBMx7arsG3bNicnp1mzZnVyHNAd2Klah/lpL8xY6zgwPx3/PrDg4OD+/ftv3rxZ9V9JSUnp16/fnDlzOrxRudTU1Pj4+G3btjU7Vwtsh52qdZif9sKMtY7t89Pxk5gCgSA/P79dvxIcHBwcHNzhLSp4enrKNPnheaAFO1XrMD/thRlrHdvnp+NHYAAAABShwAAAgJVQYAAAwEooMAAAYCUUGAAAsBIKDAAAWAkFBgAArIQCAwAAVkKBAQAAK6HAAACAlVBgAADASigwAABgJRQYAACwEs0C++uvvyhuHbjn4cOHDx8+pJ0COAUvU62jOz8tfJ1K3759tbDhpqam8vJyOzs7LWyrrq5OC1uBfxITE6Odnaq6upoQYmZmpoVtlZWVTZ06VS1DaW1+tEmN89Oi4ODgkJAQzY2v8OTJExsbG13+Tq8W6cn8/E+BjRgxYtu2bdrZcGJi4qlTpxYtWmRlZaWdLQIVixYtcnd31862vvvuO0LImjVrtLO5wYMHd34Qbc6PlqllflqktZepioqKzz//3M3Nbfz48drZ4ogRIzo/iB7Nj4wSJycnQsiXX35JKwBwzN9//y3/jvP8/HzaWYAjvvjiC0KIs7Mz7SA6ivr80HkPLC8vLzs7mxASGhpKJQBwz8GDB/l8vkAgOHz4MO0swBFhYWGEkKysrLy8PNpZdBH1+aFTYAcOHBAIBISQW7duyZsMoJNCQ0PFYrFYLN63bx/tLMAFt27dunXrFiHE0NDw4MGDtOPoHF2YHzoFFhYWJhaLCSGGhoaHDh2ikgG4JCMj4/bt2/L/vnv37o0bN+jmAQ4IDw+X/53d2NiIv4qepwvzQ6HArl27VlBQIP/vxsbG/fv3y2Qy7ccALjl48KD83xIhRCAQ4O9l6Lzw8HD539mEkHv37l2/fp1uHl2jC/NDocCUX2sIISUlJVeuXNF+DOAMmUym/G9JLBbv379fKpXSTQWsdunSpXv37il+xF9FzejI/Gi7wKRSqfJrDcH5Zei0lJSUBw8eKC959OjRxYsXaeUBDjh48KChoaHiR7FYHBoa2tTURDGSTtGR+dF2gSUlJT158kR5SWNjY2hoqEQi0XIS4Ixm/5YI/l6GzmlqaoqIiGhsbFReWFpaeuHCBVqRdIruzI+2C0xx/aGyioqKxMRELScBbpBIJIcOHWr2b0ksFkdERCgf6AOo7ty5c2VlZc0WCgSCAwcOUMmja3RnfrRaYGKx+MiRI8+/rGDPgA6Li4urqKh4fnllZWVCQoL28wAHHDhwoNkxPSFELBY//6eSftKd+dFqgQmFwmfPnj2/XCwWHz58uL6+XpthgBtaPKYn+KsIOqqhoeHo0aMtvhBXV1fHxcVpP5JO0an50WqBHThwgM9v4fbBhJDa2tozZ85oMwxwQF1d3bFjx1o8VSgWi//880/cxxna6/Tp0/K7Qj+Px+NFRERoOY+u0an50V6B1dTUREVFtXKxBt51h/Y6efJkKxVVV1d38uRJbeYBDmjlhUgikURFRdXU1Ggzj67RqflhtPYh4srKyqtXryp+TEpK2rp1a3x8vGKJsbGxl5eXdsIAN+Tn5yt/GGXLli2EkE8++USxxN7eftCgQRSSAWulpKQov53h6+v78ccf+/j4KJaMGTPGwsKCRjSdoFPzo70Ca+bIkSOzZ8/GPThAjQIDAwkhR44coR0EuINhmMOHD8t3LXge3fmh+Y3MAAAAHYYCAwAAVkKBAQAAK6HAAACAlVBgAADASigwAABgJRQYAACwEgoMAABYCQUGAACshAIDAABWQoEBAAArocAAAICVUGAAAMBKKDAAAGAlFBgAALASCgwAAFgJBQYAAKyEAgMAAFZCgQEAACuhwAAAgJVQYAAAwEooMAAAYCUUGAAAsBIKDAAAWAkFBgAArIQCAwAAVkKBAQAAK6HAAACAlVBgAADASigwAABgJRQYAACwEp92AIDWSCSS+/fvP3r0qOy/RCKR/D8qKioIIY2NjTU1NYSQmpqa8vJyQsjQoUNNTU0JIWZmZgKBgBBiZWVla2tr87969uzZq1cvPh//BADYCv96QVdUVVXl5OTcvn27oKCg8L+Ki4slEol8BWNjY0X9dOvWrX///oQQQ0NDeV116dLFyMiIENLQ0FBbW0sIqampaWxsJIQ8ffo0NzdX0X8NDQ3yAQUCQZ8+fRwcHBwdHR0cHBwcHAYNGjR8+HAzMzMaEwAA7YMCAzqkUunff/+dmZmZmZmZlZWVmZlZUFAgk8mMjIzs7e0dHR0HDhzo6+sr75VevXrZ2Nioq1eqq6vLysoePHgg70h5X164cKGoqKixsZFhmP79+7u4uDg7Ozs7O7u6ur7wwgsGBjjZDqBzUGCgPdXV1VeuXElNTb148eLFixefPXvG4/EGDBjg4uKyePFieWE4OjoyDPP/2LvzuJj2/w/gn2lPpUWKUpKuQqXI0q401EW2FkvCTUWWbrJeoktZLpE9spO02NNCJa22q51WrbKVCm2aaX5/zPfXd74hM83ymeX9/OM+Hvd0nPPqw5zXnDOfOYetMaSlpaWlpYcOHWpsbEy7vKurq7KysrtQIyIiAgMDyWSyrKysiYmJsbGxmZnZhAkTqCd8AADsoMAAe7W0tCQlJSUlJWVkZOTm5pJIJA0NDVNT0z179kycOHHUqFGSkpK4M/6HkJCQpqampqbm7NmzqUva2toKCwufPHmSmZl59uzZ7du3i4iIGBgYmJiY2NjYWFtbQ5kBgBEUGGCLwsLC+Pj4uLi49PT0zs5OQ0NDMzOzTZs2mZqaqqio4E5HL0lJSSMjIyMjo1WrViGE3rx5k56enpmZmZaWdvToUTExMQsLC1tbWzs7u5EjR+IOC4DAgQIDLEMmk1NTUyMjI2NjY6urqwcMGDB16tTQ0NBp06YpKSnhTscCqqqqzs7Ozs7OCKH3798nJCTExcXt3r3b19d36NCh06dPd3R0tLCwgA/MAOAMKDDArK6uroyMjIiIiOvXr797987AwGDp0qV2dnbjx48XFhbGnY5dlJWVXV1dXV1dyWTy06dP4+Libt++feLEicGDBzs4ODg5OZmYmECTAcBWUGCg77Kzsy9evBgdHf3mzRtdXV0vLy8nJydtbW3cuThKWFjY2NjY2Nh4586dRUVFkZGRERERR48eHTJkiKOj45IlS8aMGYM7IwD8Cd4hAoZ9/vz51KlT48ePHzt2bHx8/PLlywsLC/Pz8/38/AStvXrQ0dHZvn07dTSWLVsWExNjYGAwYcKE0NDQL1++4E4HAL+BAgMM+Pfffz09PVVVVb29vYcNG/bgwYNXr175+/uPGjUKdzTuoquru3PnzpKSkufPnxsaGvr4+CgpKTk5OSUmJuKOBgD/gAIDv9bZ2RkWFjZ27FgjI6PHjx/v2bPn3bt3kZGRNjY27P7OFq8bN27cqVOnampq/vnnn6KiIiKRaGRkFB4e3n17EQBAn0GBgd40NzcfOHBg+PDhS5cu1dbWfvz4cW5u7urVq+Xk5HBH4yXy8vJr1qzJy8vLysrS0tJydXUdPnz4wYMHP3/+jDsaADwMCgz8WE1Nja+vr7q6+s6dOx0cHMrKysLDwydOnIg7F2+bNGnStWvXSktL586d6+/vr66uvmHDhtraWty5AOBJUGCgpw8fPmzevHnEiBFXr1718fGprKw8ePDg0KFDcefiHxoaGocOHaqtrf37778jIiKGDx/u6elZV1eHOxcAPAYKDPzXhw8f1q1bp6GhcfXq1eDg4KqqKn9/fwUFBdy5+FP//v29vb3LysqCg4Pv3bunpaW1fv36jx8/4s4FAM+AAgMIIdTQ0LBlyxZNTc1r167t3bu3tLTU09NTTEwMdy7+JyYmtnLlyrKysj179ly5ckVTU/Ovv/6iPtgMANA7KDBB19nZefr0aR0dndDQUD8/v7KysrVr11IfrAU4RkJCwtvb+/Xr1wEBAefPn9fS0tq3bx/1YWYAgJ+BAhNosbGx+vr63t7e7u7ulZWVmzZt6tevH+5Qgqtfv37e3t4lJSWenp47duwwMDCIj4/HHQoA7gUFJqBKSkpmzpw5ffp0LS2twsLC3bt3w2OIuYSMjMyePXtKS0uNjIzs7OyIRGJBQQHuUABwIygwgdPa2rp+/XpdXd3a2tqUlJS7d+9qamriDgV6UlNTu3TpUnJy8ocPH8aOHbtx48bW1lbcoQDgLlBgguXBgwd6enpnz549evTo8+fPLS0tcScCvbGysnrx4sXhw4dPnz6tr6+flJSEOxEAXAQKTFA0NTV5enpOmzZt1KhR+fn5np6efPysE34iLCy8cuXKoqIiQ0NDGxsbJyen+vp63KEA4ApQYAIhMjJSR0cnJibm+vXrd+/eHTJkCO5EgDGDBg2KioqKjo5OT0/X09OLiorCnQgA/KDA+Nznz58XL148f/78qVOn5uXlzZkzB3ci0Hfz5s179eqVk5PT/PnzHR0d4etiQMBBgfGzrKwsQ0PDBw8exMTEXLp0acCAAbgTAWbJysoePnw4ISEhMzPT0NDw0aNHuBMBgA0UGH8ikUj+/v7m5uYjRozIycn5/fffcScCrGRjY5Obm2toaGhtbe3t7Q1feQaCCQqMD5WWlpqYmBw4cODEiRNxcXGDBg3CnQiwnqKi4q1bt44fP37mzBlzc/Py8nLciQDgNCgwfnP79m0jI6Ourq5///3Xw8MDdxzAXitWrHj+/HlnZ6eRkdHdu3dxxwGAo6DA+AeFQtm3b9/cuXNnzZqVlpamra2NOxHghJEjR2ZlZTk6Os6aNWvz5s1kMhl3IgA4RAR3AMAaDQ0NixYtSklJCQkJcXd3xx0HcJS4uPjp06fNzMxWrFiRm5sbFhYGD8EBggDOwPjBixcvjIyMXr16lZ6eDu0lsFxdXR8+fFhQUGBkZJSTk4M7DgBsBwXG827evGlubj58+PB///3XyMgIdxyA08SJE//9918NDQ0zM7M7d+7gjgMAe0GB8bbDhw87ODgsWLAgLi5OUVERdxyAn5KS0oMHD1xdXefOnXvkyBHccQBgI/gMjFeRyWQfH59jx45t377d398fdxzARYSFhU+cOKGtre3j41NeXn7o0CEhIXirCvgQFBhPamlpWbhwYUJCQlhY2IIFC3DHAdzI29t7yJAhixcvrq6uDgsLg0eVAv4DBcZ7Ghoa7OzsKisrHz58aGxsjDsO4F7z5s1TVlaePXu2tbV1bGwsTE0EfAYuLPCYd+/eTZ48+ePHj5mZmdBe4JfMzMwyMzPfvn1rZWX1/v173HEAYCUoMF5SXV1taWn57du31NRULS0t3HEAbxgxYkRaWlpbW5ulpWVNTQ3uOACwDBQYz6isrLSyshIWFn748KGamhruOICXqKurp6WliYuLm5ubl5WV4Y4DAGtAgfGGly9fmpqaKigopKWlqaio4I4DeI+ysnJSUpKioqKlpeWrV69wxwGABaDAeEBJScmUKVOGDRuWmJgIz/QCfaaoqJiUlKShoWFtbV1aWoo7DgDMggLjdjU1NdOmTRs6dGhcXJysrCzuOIC3ycrKxsXFqaurW1tbV1ZW4o4DAFOgwLja+/fviURi//79Y2NjZWRkcMcB/KB///4JCQlKSkpEIrGurg53HAD6DgqMe9XX11tbW1MolISEBPgGD2AhOTm5+Ph4UVFRa2trmFsPeBcUGJdqamoiEokdHR3JycnwSGXAcgMHDrx///63b9+mT5/++fNn3HEA6AsoMG707du3efPmffz4MTExUVVVFXccwJ+GDBmSmJj49u1bBweHzs5O3HEAYBgUGNehUCgeHh7Pnj2LiYnR0NDAHQfwM01NzZiYmKysrBUrVuDOAgDDoMC4zt9//33lypWwsDADAwPcWQD/MzQ0jIyMvHTpUmBgIO4sADAGCoy7XLt2befOnUeOHJk5cybuLEBQ2NnZnThxws/P7/Lly7izAMAAuBs9F3n48OGSJUs2btzo5eWFOwsQLO7u7sXFxe7u7kOHDrWwsMAdBwC6wBkYt6iqqnJycpo1a9bu3btxZwGC6J9//vn9998dHR3hhr+AV0CBcYX29nYHB4fBgwefP38eHp4LsBASErp06dLAgQMdHBw6OjpwxwHg1+BYyRVWr15dXFwcGRkpJSWFOwsQXNLS0jdu3CguLl67di3uLAD8GhQYfqdOnTp37tyFCxd0dHRwZwGCbsSIEZcuXQoNDT179izuLAD8AhQYZk+fPvX29vbz85s7dy7uLAAghJC9vf3mzZtXr1797Nkz3FkA6A0UGE5NTU1OTk5WVlY7duzAnQWA/9q1a5e5ubmzszPcZQpwMygwnFatWtXW1nbhwgWYuAG4irCwcFhYWFtb25o1a3BnAeCn4LiJzeXLl8PDw8+dO6esrIw7CwA9DRw48Pz589R/pbizAPBjUGB4VFRUrF692tvbe/r06bizAPBjtra2q1atWrlyZVVVFe4sAPwAFBgGXV1dy5YtU1NTg+8sAy63f//+oUOHuri4kMlk3FkA6AkKDIPdu3c/efLk2rVrkpKSuLMA0BsJCYlLly49e/Zs//79uLMA0BMUGKe9fPkyICAgICBAV1cXdxYAfm3MmDE7d+78+++/i4uLcWcB4H9AgXFUV1eXp6envr7+n3/+iTsLAPRat27d6NGjPTw8KBQK7iwA/BcUGEedOHHi8ePHp06dEhYWxp0FAHqJiIicPXs2Kyvr9OnTuLMA8F9QYJxTXV39119/bdq0ydDQEHcWABgzZswYHx+fjRs31tbW4s4CwH9AgXHOmjVrBg8evG3bNtxBAOgLf39/JSWlFStW4A4CwH9AgXHI9evX7969GxoaKiEhgTsLAH0hKSl56tSp2NjYO3fu4M4CAEJQYJzR0dGxefNmFxcXeNYt4GnW1tbOzs4+Pj7wwDDADaDAOCEoKKiuri4gIAB3EACYtX///vfv3x85cgR3EACgwNjv/fv3+/bt27Jli7q6Ou4sADBryJAhvr6+u3btevv2Le4sQNBBgbHdpk2bZGVl161bhzsIAKyxefNmeXn57du34w4CBB0UGHu9ePHi8uXLQUFB/fr1w50FANaQlJTcvXv3uXPnnj9/jjsLEGhQYOy1YcMGExMTBwcH3EEAYKWFCxdOmDBh69atuIMAgQYFxkZpaWnJyckBAQEEAgF3FgBYiUAgBAYG3r9//9GjR7izAMEFBcZG27ZtIxKJlpaWuIMAwHrW1tZWVlbwxXyAkQjuAHwrPj4+NTU1KysLdxAA2GXXrl1mZmZJSUlTpkzBnQUIIjgDYxd/f//p06dPmjQJdxAA2MXU1HTq1Kl+fn64gwABBWdgbHHnzp2nT58+efIEdxAA2CswMHDChAlxcXF2dna4swCBA2dgbBEYGDhr1qzx48fjDgIAexkZGU2fPh3uMgOwgAJjvdTU1KdPn27cuBF3EAA4YePGjZmZmZmZmbiDAIEDBcZ6QUFBpqamxsbGuIMAwAnm5uaTJk0KCgrCHQQIHCgwFispKYmJifH19cUdBADOWbdu3a1bt8rKynAHAYIFCozFDh48qKGhYW9vjzsIAJwzd+7cYcOGBQcH4w4CBAsUGCt9/Pjx0qVL69evFxYWxp0FAM4RFhb29vY+f/58fX097ixAgECBsVJoaGi/fv2WLFmCOwgAnPbHH39ISEicOXMGdxAgQKDAWIZCoZw7d27JkiVw43kggKSkpFxcXEJDQykUCu4sQFBAgbFMYmJieXm5m5sb7iAA4OHu7v769euUlBTcQYCggAJjmdDQUDMzs1GjRuEOAgAeurq6kyZNCg0NxR0ECAooMNaor6+/c+eOu7s77iAA4OTu7n79+vWPHz/iDgIEAhQYa5w/f15CQgIeXAkEnLOzs4SERFhYGO4gQCBAgbHGuXPnXFxcYPoGEHBSUlILFiw4e/Ys7iBAIECBsUB2dnZRUZGrqyvuIADgt3jx4oKCgoKCAtxBAP+DAmOBiIgIdXV1uPc8AAghExMTdXX1iIgI3EEA/4MCY4Ho6Oj58+cTCATcQQDAj0AgzJs3LzIyEncQwP+gwJj17Nmz8vJyJycn3EEA4BZOTk4lJSU5OTm4gwA+BwXGrMjISE1NzbFjx+IOAgC3mDhxooaGBpyEAXaDAmMKhUKB64cA9EAgEBwdHSMiIuC2UoCtoMCYkpOTU1lZOXfuXNxBAOAu8+bNe/36NcxFBGwFBcaUuLi4QYMGwfVDAHoYP368kpJSfHw87iCAn0GBMSUuLs7W1hauHwLQg5CQEJFIhAIDbAUF1nfNzc1Pnjyxs7PDHQQAbmRra5uenv7lyxfcQQDfggLru/v373d1ddnY2OAOAgA3srW1JZFIycnJuIMAvgUF1nfx8fGTJk1SUFDAHQQAbqSoqDhu3Di4igjYBwqs7xISEmxtbXGnAIB72dnZQYEB9oEC66Py8vI3b95YW1vjDgIA97KysqqsrKypqcEdBPAnKLA+ysjIEBcXhwn0APRi4sSJYmJi6enpuIMA/gQF1kcZGRlGRkYSEhK4gwDAvSQlJQ0MDDIyMnAHAfwJCqyPMjMzTU1NcacAgNuZmZlBgQE2gQLri6amppcvX0KBAfBLpqam+fn5zc3NuIMAPgQF1hdZWVkUCsXY2Bh3EAC4nampKZlMfvLkCe4ggA9BgfXFkydPtLS0Bg4ciDsIANxOWVl5+PDhWVlZuIMAPgQF1hc5OTmGhoa4UwDAGwwMDPLz83GnAHwICqwv8vPz9fT0cKcAgDfo6enl5eXhTgH4kAjt/zQ0NBQVFXFmx8XFxQghTk5PYtWciy9fvlRUVOjr67NkawDwPT09vfLy8paWFikpKZZskMPTGouLizm2Rx0dnQEDBjC5EQEaHwqNiIgIzoTAgsIi1L+q169fs2qDAPC30tJShNCTJ09YtUHcxxI2oj7GGsbnZ3qMj8j3a9TW1nI+FlvFxMSsWLGCVVvLy8uTkZHR0NBg1QYB4G+amprS0tJ5eXkTJkxg1TZDQkJmzJjBqq1xiSFDhrBqUwIyPj8oMFVVVY6E4Rx5eXkWbo36ARg8xBIAOgkJCY0aNYq18zjk5eX570jFQgIyPjCJg2FFRUWjRo3CnQIAXjJ69OhXr17hTgH4DRQYwyoqKjQ1NXGnAICXDBs2rKKiAncKwG+gwBhDIpFqa2vhAzAAGDJs2LDq6uquri7cQQBfgQJjTG1tbWdn57Bhw3AHAYCXaGhofPv2ra6uDncQwFegwBhTWVmJEIIzMAAYQn3PB1cRAWtBgTGmoqJCUlJSWVkZdxAAeImKioqEhAT1/R8ArAIFxpiqqioNDQ2YQw8AQwgEgpqaGpyBAdaCAmNMbW2tmpoETUG+AAAgAElEQVQa7hQA8J6hQ4fy300SAF5QYIz5+PEjPEUFgD5QVFSsr6/HnQLwFSgwxjQ0NCgqKuJOAQDvUVRUbGhowJ0C8BUoMMbU19czf69oAATQgAED4AwMsBYUGGMaGhqgwADogwEDBsAZGGCtvhdYZ2fniBEjXF1daRemp6cTiURZWVkZGRlLS8v79+/3YctpaWnLly8fOXKkpKSkgoICkUiMiYnpsRcCgZCQkNDn8H3T1dXV2NjIx5cQnz9/TiAQ/P39cQcBfIh6CZHDD/tg32Gqqqrq2LFj06ZNExcXJxAI8fHxPVbAdZhiCJvGp6WlJSwszN7eXkNDQ1xcXEVFxdnZOTs7u8deWDA+tM9WoT4PjM5Hzhw+fFhERKS0tLR7SXx8vLCwMO3GCQRCZGQkQ0+yoT466HtBQUG0qxGJRD09PTKZTM82Gfq9ekG9AJKUlMT8prBLS0tDCO3atYt24bNnzxBCO3bs6GUdQAvjEPHc3w71ONjY2Mj8phDdz81i02GKQqH0+DJoXFzc9+swdJiiMPJ7sWo7bBqfrVu3fn8MFxUV7TFKzI9PH8/Avn37FhgYOHv2bC0tre4lnp6eZDJ53bp1Hz9+bGxspL60vLy8vn79Sv+WhYSEpk2bFhYWVlJS0tbWVlFRsXHjRoTQX3/99fnz5+7V1q9fn5+fHxUV1bf8fdPc3IwQkpWV5eROOcnIyIhCocAZGGAH6lONmpqaOLZH9h2mEEIaGhqrVq2Kj493d3f/2TpYDlP0Y9/4yMjIuLi43L179/Xr162trdnZ2UQisbOzc9WqVbSrsWB8aNuM/jOV8PBwhNCdO3e6l9y7dw8hZGFhQbva3LlzEUJXrlyhs2B/xtLSEiH0+PHj7iUkEmnw4MGTJ0+m54+z6gzs5cuXCKGCggLmN4UdPe/fee49PufBGRj9cnNzEULFxcXMbwrRd4bBmcMU9aD8wzMwhg5TFI6fgXHyMN7S0kJ9B1NfX9+9kPnx6eMZ2KVLlyQlJW1tbbuXpKamIoQWLVpEu5qLiwtC6NGjR33bSzdRUVGEkJKSUvcSYWHhWbNmpaSkVFdXM7lx+nV0dCCExMTEOLbHn2lsbPTy8ho0aJCkpKSRkVFMTMyFCxcIBEJ0dHT3OhQK5dy5cyYmJjIyMpKSkmPGjDl+/Dj1H0FAQIC5uTlCyM/Pj/D/0P9+BvazdXrfMkIoPj6eQCAEBwc/fPjQxMRESkpKTU1t79691J8ePXpUW1tbQkJCR0eHnndeFArlwoULFhYWcnJyMjIy48ePDw0NJZFI1J+2tbX9/fffI0eOlJCQkJWVnTJlCu0l9e4kjx8/njx5spSU1IABA5YsWfLp0yf6d5Gamrpo0SItLS1xcfGBAwfOnDkzIyOD+iPmh6j3YOzYNUbi4uLo/19EnMHhw9T3sBym6MfJ8enXr5+6urqIiIiUlFT3QhaMD22b0Xmm0tnZKS0tbWpqSrtw3rx5CKGMjAzahWVlZQghKysrOgu2BzKZXFtbu2vXLoSQra1tj59euHABIXT+/PlfbodVZ2BPnjxBCFVWVjK/KWa0tbUZGBjQ/iUSCARnZ2eEUFRUFHWdrq6uHv8Kqdzd3SkUCnVIv/+XQPsZ2M/W6X3LFAolLi4OIeTs7Cwi8j/P+z548CD1anA3ISGh7OzsXn7Trq4u6u/Vw4MHDygUSkdHh6mpaY8fEQiEkydP0iZZuHAh9dDZjfYNZu+7ePv27fc/EhERefToEfND1HswNu0ao9evXyOEnj17xvymEB1nGBw7TPVyBkZh5DBF4ewZGMfGh6qoqEhISGju3Lk9ljM5Pn0pMOqlAC8vL9qFRCIRIfTq1SvahdR3lGPHjqUnHC3ah7dKSEh4eXl9+fKlxzo5OTkIIQ8Pj19ujVUFRr1oU1dXx/ymmPHPP/8ghLS1tZOSkr58+VJRUbFmzRrqWHUX2KVLlxBCenp6sbGxDQ0NX79+ffTo0ZgxYxBCmZmZFCYmcfxyy9SjM0Lozz//rKys/Pr1a3R0tKioKHVS05kzZz58+NDQ0ODr64sQcnV17eU3PXPmDEJowIABISEh1dXVX79+ffbs2fLly1NSUigUSlBQEEJIXV397t27zc3N1dXV/v7+QkJCEhISb9++pU2yYsWK0tLS1tbW9PR0dXV1hFBOTg49u3j37h2RSLx7925NTc23b9/ev38fGRkpJSVlZ2fHkiHqJRibdo3RmzdvEELp6enMb4qeAzQHDlNUvRcY/YcpCmcLjGPjQ6FQvn79OnbsWHl5+YqKih4/YnJ8+lJg1Amj27dvp11oY2Pz/W9O/doHkwWGEDI0NOzxpoDy/6+HmTNn/nJrrCqwxMREhBB1KjBGEyZMIBAIPT6Ko/7L6y4wKysrYWHhHl1bWFiIENq0aROFiQL75ZapR+ceZ8zUd3a0U0lJJJKsrCx12sjPUK+SUU+Gvjdp0iSEUFZWFu1CDw8PhNCpU6e6k0ydOpV2hWPHjiGELl68SM8uKBTK8+fPHR0dVVRUaE8ohwwZQv0pM0PUezA27Rqjjx8/IoSSk5OZ3xQ9B2gOHKaoei8w+g9TFM4WGMfG5+vXr1OmTOnXrx/14kEPTI7P/1zkoRN1HpGMjAztQurcvB4X8RsbG1Gfpu3p6OhQKBQymfz+/fvY2FhfX18bG5vCwkLaJ0n2798fcXxSE+KCz8DKy8tVVVVHjx5Nu3DatGkPHjzo/t/CwkIymUy973D33z31v0xejqdzy9R5N92GDh2KELKwsOheIiwsrKqq+v79e4RQfX097R0mu2/ZUFRUJC8vT31Rfa+srGzAgAHUGus2Y8aM06dPUy96UE2ePJl2BU1NTYTQly9fqP/b+y4yMzOtrKyof++02trafrg+FZ1D1Hswtu4aCw5/BsaBwxQ9OH+YohNnxqexsXH69Ol5eXmxsbG0L/9uTI5PXyZxyMnJIYRoJ7UjhKgTMQsKCmgX5uXldf+oD4SFhVVUVJYvXx4YGNjW1tbjM3/qpHbqzBbOoH6w3+NLElh8/zwXyv9+Sk99djuZTCaTyV1dXd3HMvT/NdxndG5ZQkLi+8DfL2TyGfP0PNdGUlLy+z9CoW9Sw969e799+7Zjx46ysrK2tjbq76utrd37n6JziHoPxtZdY0E9j+zs7OTM7jh2mOod5w9TdOLA+Lx9+9bS0jI/Pz8uLq7HO9puTI5PXwps8ODBCKEetzWjtmtYWBjtwitXrqD/fd/dN9R3bT3GmhqAGoYzqJMhu+en4TJ8+PDa2lrqnP5utKdfCCEdHZ1+/fo1NTV9fxpOnakoJCSEfvW7/HCdX265DxQVFWm30/1PS0dHp7GxMSkp6Yd/SktLq76+/unTp7QLY2NjESMvtt538fr1a2VlZX9//+HDh0tISBAIhPLyctrv2rNviDDumk2o1cWxCxicP0z9EOcPU3Ri9/iUl5ebmppWVVUlJCRQL9T/EJPj05cCGzVqlLS0NPXDt242Njbq6uqpqam+vr719fXNzc0BAQE3btxQVFScPXs2/RvfvXv3pk2bnj171tDQ0N7eXlFRceTIke3btyOEeowCNUCPK0hsRX3tYX8nO2/ePAqF4uDgkJKS0tLSUlVV5ePj0+N2L25ubq2trTY2NjExMR8/fvz27VtVVdW9e/fmzZtHPVgrKCgghNLS0nq5Pd0P1/nlllloyZIlCKEFCxaEhobW1ta2tLT8+++/Hh4e1Bm9jo6OCCFnZ+fY2NjPnz9TJ6yePn1aXFzc3t6eJbtQV1f/8OHDsWPHmpubm5ubY2Njf//9d9qzRvYNEcZdswn1bWiPiZfsw9bDFP04f5iiE1vHp6CgwMzMrLGx8cGDByYmJr2syez40L5Ho3+yg62trYSERHt7O+3CuLi47+9B0uMzN+q8514mT1Mnp31v0aJFPdZcsWIFom9SO5/NQmxtbdXX1+8xztSj+a1bt6jrdHV1LV269IcjSf20mUQiqaqq9viX0GMSxw/X+eWWqTMUDh06RJuZ+tean59Pu3D06NGqqqq9/KZkMtnBweH7HXVPo//ha6PHNPoeSagLjx49Ss8ubt261WO5oaGhrq7ugAEDWD5EPYKxadcYUZ9m+f1srD5A9E12YN9hikKh/PDrCohmIhUV/Ycp+n8vVm2HfePj5ub2w8H5/k8xOT59/CLz4sWL29vbqZdrutna2qakpEyZMkVGRkZKSsrc3Dw+Pt7JyYl2HepbyB7fEKLl5+d3/PhxS0tLJSUlUVFRZWVlOzu78PDwy5cv065GJpNv375tYWFBnR3AGZz/JuYPSUpKPnz40NPTU0lJSUJCYty4cXfu3Bk1ahSiuZRMIBDOnz8fERFhY2MjLy8vJiamqak5e/bsmzdvUicsCAsLR0dHm5mZ0X6vsIcfrvPLLbOQkJBQZGTk6dOnJ02aJCUl1b9//wkTJpw5c4Y6/UFMTCwxMXHHjh3a2tpiYmIyMjJWVlZxcXHUlwRLdjFr1qywsDB9fX1JScnBgwd7enomJSXRnkOwb4gw7ppNOHwGhth5mKITlsMU/fhhfGjbjP4zlY6OjoEDB86ZM4eelbuRyWQ5ObnRo0d3f7zcZ9QbLoSHh9OzMqvOwKhnuyy5Fw5rkclkQ0NDAoFAe5sWALgK9bsxPc7C+wbRd4bBW4cpCsfPwPhgfPp4BiYmJrZ169Y7d+787ObxP1RQUNDU1LR582Z6Jo/17sCBA7q6utTrZhxDffOI/TMwhJCvr++VK1eqqqpaW1tzcnKcnJyys7MnT54MzyoDXIvzd2ITzMMU/fhgfPr+PDAvLy9NTc2dO3fS/0fS09OHDh06f/78Pu+UKiMj48GDBwcOHODwjHbqLPD29nZO7vSHiouLFy9erKGhISUlZWhoeP36dWlp6YMHD+LOBcBPUQusx1cp2E0AD1MM4fXx6ftFTFFR0ZKSEob+iJeXl5eXV5/32I16/y7mt8Mo6idMPb7lh8WhQ4cGDhyYnp5eU1PTv39/S0vLHTt26Orq4s4FwE9RZ0tSJ09yjAAephjC6+PD7KdwAqV///5iYmI9vjmBxW+//Xb+/HncKQBgQH19vbi4uLS0NO4ggH/0/RKiACIQCPLy8r18cQoA8DMNDQ3wGS1gLSgwxigqKkKBAdAHDQ0NioqKuFMAvgIFxpju+8wCABhSX18PZ2CAtaDAGKOoqAgFBkAf1NfXwxkYYC0oMMYoKipSH2sEAGAInIEBloMCY8yQIUOwP1cJAF5UVVVFfeo0AKwCBcaYYcOGVVdXM/kUKwAEDZlMrq2t1dDQwB0E8BUoMMZoaGh8+/atrq4OdxAAeElNTU1nZyftE9UBYB4UGGOor8CKigrcQQDgJZWVlQghOAMDrAUFxhgVFRUJCQnqqxEAQKeKigpJSUllZWXcQQBfgQJjDIFAUFNTgzMwABhSWVmpoaHB/P3LAaAFBcYwTU3N169f404BAC95/fo1fAAGWI6LCoxXbtE0evTogoIC3CkA4CX5+fk8+rQE7r+jPF54x+cHd6PPyMjgfA6E0PHjx21tbYcPH87yLRcXF7Nwa3p6eidOnCCRSMw/URsAQUAikYqKitavX8/CbRYXF3PmSHX9+vW5c+fy3MVPQRkf2sczR0RE4AnBEUw+/brbv//+ixB69eoVqzYIAH/Lz89HCOXk5LBqg7iPJWwUEREB49OLHuPzP+cQM2fOrK2txZVs8eLFDx8+9PLy+uuvv3BloMfo0aNFRETy8vJ0dHRwZwGAB+Tn54uIiLDw9cKxw9STJ0/mzZu3bNmyXbt2cWaPLHngp+CMz/8UmKSkpKqqKmdyfO/r168IoZMnTzo7O1tYWOCK8Uvi4uK//fZbfn6+k5MT7iwA8ID8/HwdHR1xcXFWbZBjh6nExESE0O3bt0NDQ5l58j2HCc74cN0kDiEhoYULF37+/Bl3nN7o6+tTr4oAAH4pLy9PX18fdwqGkUika9euIYQ+ffqUlJSEOw7X4Ybx4aICa2pqQgiRyeQPHz6sXbsWd5zejBkz5sWLF7hTAMAbcnJyeLHAEhISGhsbEUKioqJhYWG443AdbhgfLiow6iVEhFBnZ+fFixejoqLw5umFsbFxTU1NTU0N7iAAcLvKyso3b96YmJjgDsKwq1evioqKIoQ6Ozujo6Pb2tpwJ+Iu3DA+3FJgbW1t37596/5fISEhDw+Pd+/eYYzUi4kTJ4qJieH6vgEAPCQ9PV1MTMzIyAh3EMa0trbevHmzs7OT+r9tbW1xcXF4I3EVLhkfbikw6qlot66urpaWFhcXF+6cEiopKTlmzJjMzEzcQQDgdhkZGePGjZOUlMQdhDF3795tb2/v/l9hYeErV65gzMNtuGR8uLTAEEKdnZ3JycmnT5/GkueXTE1N4QwMgF/KyMgwMzPDnYJhYWFhtNPqSCRSTExMc3MzxkhchUvGh1sKjDqDowcKhfLnn3+WlJRwPs8vmZqa5ubmfvnyBXcQALhXc3NzYWGhqakp7iCMaWxsjI+PJ5FItAvJZPKtW7dwReIq3DM+3FJg35+BUZHJZCcnp+4rrdzDxMSETCY/ffoUdxAAuFdmZiaFQjE2NsYdhDHXr1///qnrBALh8uXLWPJwG+4ZH24psKamJiGhH4Tp7OzMzc3du3cv5yP1TkVF5bfffoNvhwDQi+Tk5JEjRyopKeEOwpjLly9//+k7mUxOSUl5//49lkhchXvGh1sKrLGx8ft744qJiSGEpKWlCwsLOzo6cOTqja2tLUxMAqAXcXFxtra2uFMw5u3bt+np6d+fYSCECAQCN3+9hzO4any4qMCoIyIqKkogEAgEgpaW1qZNm9LT0xsbG69du8bC+9Cwiq2tbW5ubl1dHe4gAHCj2trawsJCniuwiIiIHx6dEUJkMhmuInLV+HDLA0EaGxtJJNLAgQNnzJgxbdq04OBgbW3tnTt34s7VGysrKwkJifv37y9duhR3FgC4TmxsrJSUlLm5Oe4gjImLi5ORkem+RNbe3i4mJtb9AUdpaembN28w3jMWO64aHwKXfNEqNTVVQUGh+5F3+/btCwoKevfu3Q8/GOMetra2srKy/P0YGgD6Zs6cOSQS6e7du7iDMIVAIERERMCdu38G7/hwSz1YWFjQPrB1+vTpHz9+fPbsGcZI9LC1tX3w4EGP6aQAgM7OzocPH/Lc9UPAW7ilwHrQ1dXV0NC4d+8e7iC/YGdn19jYCLfkAKCHtLS05uZmKDDAVlxaYAih33//nfsLTFtbe/To0TAxCYAeIiMjDQwMhg8fjjsI4GfcW2DTp0/Pzs5+8+YN7iC/4OTkFB0dTSaTcQcBgFuQyeSbN2/C50aA3bi3wKytrSUlJbn/i1bOzs7v3r1LS0vDHQQAbpGcnPzhwwdHR0fcQQCf494Ck5CQsLa25omriGPGjImMjMQdBABuERkZaWRkpKWlhTsI4HPcW2AIoenTpz948IAL78HRA/UqIsxFBAAh1NnZCdcPAWdwe4G1trY+evQId5BfcHJy+vjxY0pKCu4gAOCXlJT06dMnuH4IOICrC0xNTU1PT4/7ryJqaWlNmDDh4sWLuIMAgN/FixeNjY01NDRwBwH8j6sLDCFkb29/+/ZtLrldSC/c3Nyio6M/ffqEOwgAODU0NNy6dWv58uW4gwCBwO0FNmvWrKqqqpycHNxBfmHhwoWioqJhYWG4gwCA06VLl0RFReH6IeAMbi+wcePGqamp3b59G3eQX5CWlnZycgoNDcUdBACczp49u2jRImlpadxBgEDg9gIjEAjUq4i4g/yau7t7fn7+kydPcAcBAI/MzMzCwkK4fgg4htsLDCE0a9asnJyciooK3EF+YeLEiQYGBnASBgRWaGiovr7+uHHjcAcBgoIHCmzy5Mny8vI8cRLm5uZ27do1mMoBBFBDQ0NkZKSnpyfuIECA8ECBiYqK2tnZ8USBLVu2TEJC4uTJk7iDAMBpx48fFxcXd3V1xR0ECBAeKDCE0KxZs9LS0urr63EH+QUpKSl3d/cjR460t7fjzgIA53R0dJw8edLLywumbwBO4o0C+/3330VFRbn/G80IoTVr1jQ1NV29ehV3EAA45+LFi42NjatWrcIdBAgW3igwaWnpyZMn88RVRBUVlQULFuzfv7+rqwt3FgA4gUKhBAcHu7i4DB48GHcWIFh4o8AQQrNmzUpISGhtbcUd5NfWr19fXFwcHx+POwgAnHD37t2ioiIfHx/cQYDA4ZkCs7e3b2trS0xMxB3k13R1dYlE4r59+3AHAYAT9u3bZ2dnN3r0aNxBgMDhmQJTUVExNjaOjo7GHYQuO3bsSE1NTUpKwh0EAPaKj4/PzMz08/PDHQQIIp4pMISQg4PD7du3eWKCn4mJybRp07Zs2cL9tyEGgBn+/v4zZsyYNGkS7iBAEPFSgTk6On758oVXTmsCAwOfP38eFxeHOwgA7HL79u2nT59u374ddxAgoHipwIYMGTJx4sSoqCjcQegybty4mTNn+vn5wUkY4EsUCsXf33/u3Lnjx4/HnQUIKF4qMPT/VxG/ffuGOwhdAgICcnJyeGL2PwCMio6OzsvLg9MvgBGPFZiTk1NzczOvXEXU09ObN2/etm3bSCQS7iwAsFJnZ+f27dudnZ319fVxZwGCi8cKTE1Nbfz48bwyFxEhtHfv3rKyspCQENxBAGClY8eOVVRU7Ny5E3cQINB4rMAQQg4ODjdv3uSVq4iamppr167dvn17Q0MD7iwAsManT58CAgLWr1+vpaWFOwsQaLxXYI6Ojk1NTQ8fPsQdhF5+fn4SEhJ///037iAAsMbWrVtFRUU3btyIOwgQdLxXYBoaGmPHjuWhq4gyMjI7d+48efJkQUEB7iwAMKuwsPDMmTP//PNP//79cWcBgo73Cgwh5OjoePPmTR6aGfHHH38YGBj8+eefuIMAwCwfHx99fX0XFxfcQQDgzQJzcnJqaGjgoauIQkJCQUFBycnJvPIlNgB+6OrVq0lJSceOHRMS4slDB+AzPPmvcNiwYWPHjo2MjMQdhAEWFhZ//PHH2rVrGxsbcWcBoC8aGhp8fHw8PDyMjY1xZwEAIR4tMITQ/Pnzr1+/3tHRgTsIA4KCgoSFhTds2IA7CAB9sW7dOmFh4T179uAOAsB/8GqBLVq0qLm5mbfuNCgrK3vo0KFz587xxENhAKD18OHDy5cvHz9+XE5ODncWAP6DVwtMRUXF3Nz86tWruIMwxtHRcfbs2R4eHi0tLbizAECv1tZWd3f3efPmzZkzB3cWAP6LVwsMIbRo0aK7d+82NzfjDsKYo0ePfvr0yd/fH3cQAOi1bdu2hoaGI0eO4A4CwP/g4QJzcHCgUCi3bt3CHYQxqqqqQUFBBw8eTElJwZ0FgF9LSko6fPjwoUOHBg8ejDsLAP+DhwtMXl7e1taW564iIoTc3NwcHBxcXFw+ffqEOwsAvWlsbPzjjz9mz569dOlS3FkA6ImHCwwhtHDhwqSkpHfv3uEOwrCQkBAhISF3d3fcQQDozYoVK8hk8unTp3EHAeAHeLvA7O3tpaWleesLYVTy8vKXL1++devWhQsXcGcB4MdCQ0Ojo6MvXbo0YMAA3FkA+AHeLjAJCYnZs2fz4lVEhJClpaWPj8/q1atLSkpwZwGgp/Lycl9f340bN1pbW+POAsCP8XaBIYQWLlz45MkTHu2AwMDAESNGLFiwoK2tDXcWAP6rtbV13rx5I0aMgKcoAG7G8wU2ZcqUQYMGXbt2DXeQvhAXF79x40ZVVZWHhwfuLAD816pVq6qrqyMjI8XExHBnAeCneL7AhIWFnZ2dr1y5gjtIH2loaISHh4eHh588eRJ3FgAQQujIkSOXLl0KCwvT1NTEnQWA3vB8gSGEFi5cWFpa+uzZM9xB+ohIJG7bts3b2zs9PR13FiDosrKyNmzYsHPnTjs7O9xZAPgFfiiwCRMmjBw5kqen823fvn3q1KmOjo51dXW4swDB9f79e0dHx2nTpm3ZsgV3FgB+jR8KDCG0dOnSsLAw3p0KISQkdPnyZSkpKWdn5/b2dtxxgCBqa2ubM2dOv379Ll++DI/7AjyBT/6ZLlmypKWl5c6dO7iD9J28vPzt27cLCgqWLVtGoVBwxwGCpaury9XVtaio6Pbt27KysrjjAEAXPikwZWVlW1vb8+fP4w7ClNGjR9+6devmzZvbtm3DnQUIlk2bNt2+fTsqKmrkyJG4swBALz4pMITQsmXLHjx4UF1djTsIUywtLc+fP79nzx6YlAg45syZM0FBQWfOnJkyZQruLAAwgH8KbMaMGQMGDLh8+TLuIMxasGCBn5/f2rVr79+/jzsL4H9xcXErV6709/d3dXXFnQUAxvBPgYmJiS1cuPDs2bN88AGSv7//ggULHB0defe7AYAnPH782MnJycXFxc/PD3cWABjGPwWGEHJzc6uoqEhLS8MdhFkEAuHMmTOmpqZ2dnb5+fm44wD+lJub+/vvv1taWp4+fZpAIOCOAwDD+KrA9PT0xo4dy+tTOajExMSuX7+up6dnY2Pz6tUr3HEAvyktLbW1tTU0NIyKihIVFcUdB4C+4KsCQwgtW7YsKirqy5cvuIOwgKSkZExMzIgRI6ZOnVpRUYE7DuAf1dXVRCJx6NCht27dkpSUxB0HgD7itwJbuHAhiUSKiorCHYQ1pKSkYmJilJSUiEQi3KQDsERdXZ2VlZWsrGxsbKyMjAzuOAD0Hb8VmIKCgr29PX9cRaSSlZWNi4sTFRW1srKqqanBHQfwturq6smTJ4uLiycmJiooKOCOAwBT+K3AEEJ//PFHRkYGjz4h7IeUlJRSUlIkJCTMzMxKS0txxwG8qqKiwsrKSlRUNDExceDAgbjjAMAsPiwwIpGopqZ2+vRp3EFYSVlZOSUlZfDgwRYWFjAvEfTBq1evzM3N5eXlHz16pKKigjsOACzAhwUmLCzs7u5+7iPMsdsAABszSURBVNy51tZW3FlYSV5ePjExcdSoUZaWlk+fPsUdB/CSFy9eWFhYaGpqJicnKyoq4o4DAGvwYYEhhJYvX97S0sI3Uzm6SUtL37lzx8jIaNq0afDwMECn1NRUa2trIyOj+Pj4/v37444DAMvwZ4ENGjRozpw5fHk7QSkpqbt371pZWRGJxIiICNxxALe7evXq1KlTiUTi7du3+/XrhzsOAKzEnwWGEFq5cuWTJ0/+/fdf3EFYT1xc/Pr165s2bVqwYIG/vz/uOIB7HT58ePHixZ6enhEREWJiYrjjAMBifFtglpaWurq6ISEhuIOwBYFA8Pf3DwkJCQwMdHNz6+zsxJ0IcBcSibRy5UpfX9/Dhw8fPnwYHlAJ+BI//7P29PS8evVqY2Mj7iDs4uHhcf369YiIiJkzZ37+/Bl3HMAtmpub7ezsrly5cuvWrdWrV+OOAwC78HOBLVmyRFhYmA8esNILe3v7lJSU3NzciRMnFhUV4Y4D8CssLJwwYUJhYeGjR49mzJiBOw4AbMTPBSYjI7NgwYKTJ0/ywQNWemFkZPT8+XN5efnx48fz38RLwJDbt2+bmpoOHDjw+fPnY8eOxR0HAPbi5wJDCHl5eRUVFaWkpOAOwl6qqqqpqamrVq1ydnb29vaGj8QEEJlM3rx585w5c5ydnZOTk+GrykAQ8HmBjRkzxtjYmC/n0/cgIiKyd+/eS5cunTlzhkgkvn//HnciwDn19fW2traHDx8+c+bMqVOnYMIhEBB8XmAIoZUrV968efPNmze4g3CCi4tLRkZGTU3NmDFj4uLicMcBnJCUlGRgYFBSUpKamvrHH3/gjgMA5/B/gTk5OSkoKJw7dw53EA4xMDB49uyZubn5jBkzNmzY8O3bN9yJALt0dHT4+voSiURTU9OcnJzx48fjTgQAR/F/gYmLiy9duvTUqVOCcyhXUFCIioo6f/58SEjIuHHj4Oa/fOnVq1fGxsahoaEhISERERHy8vK4EwHAafxfYAihtWvXfvz48dq1a7iDcJSrq2t2draUlNSkSZNCQkL4eyqmQKFQKCdOnBg3bpy4uHh2draHhwfuRADgIRAFpqqq6ujoeODAAUE7iGtpaaWnp69bt2716tU2NjZlZWW4EwFmlZaWTpkyZe3atevXr09LSxs+fDjuRABgIxAFhhDauHFjQUFBYmIi7iCcJiIismvXrufPnzc3N+vr6/v7+wvOpVQ+QyKRDh8+bGhoWF9fn5mZuXPnThEREdyhAMBJUApMX1/fysoqKCgIdxA8DAwMHj9+vGPHjn379o0fP/7Zs2e4EwHG5OTkGBsbb968ef369c+fP58wYQLuRADgJygFhhDy9fVNSEjIzc3FHQQPERGRTZs25eTkyMnJmZiY+Pr6Njc34w4Ffq2pqcnHx8fIyEhaWjovL8/f3x++5gUAlQAVmJ2d3ejRow8fPow7CE7a2topKSnHjx+/ePHiiBEjQkNDu7q6cIcCP0Ymk0+dOjVixIgrV66EhIQkJyf/9ttvuEMBwEUEqMAIBIKPj09YWNjbt29xZ8GJQCB4eHiUlpYuW7Zs9erVRkZGjx49wh0K9JSSkjJu3Lg1a9bMmTPn1atXy5cvJxAIuEMBwF0EqMAQQi4uLgoKCseOHcMdBD95efm9e/fm5OQoKSlNnjzZycnp9evXuEMBhBAqLy93cHCwsrJSVVXNy8s7deqUoqIi7lAAcCPBKjBxcXEvL6+TJ09+/foVdxauMHLkyPj4+JiYmLy8PB0dnRUrVtTU1OAOJbiqq6s9PDxGjhxZWFgYGxt77949HR0d3KEA4F6CVWAIoVWrVn379u3ChQu4g3CR6dOnv3z5MiwsLDExUUtLy9PTs66uDncowfLhw4fNmzdra2snJCQcO3YsPz/fzs4OdygAuJ3AFZiCgsKSJUsOHjxIJpNxZ+EiQkJCjo6OL1++DA4OvnfvnpaW1vr169+/fw93BGa3d+/erVu3TkND4+rVq8HBwWVlZR4eHvAFLwDoIXAFhhDy9fWtrq6+desW7iBcR0xMbOXKla9fvw4ODr569eqQIUOWLFny8uVL3Ln4U1lZmbe3t6am5pUrV3bs2FFcXOzp6SkqKoo7FwA8QxALTFNT097efv/+/biDcCkxMTEPD4/AwEAymdze3q6rq0skEu/evYs7F/9IT093cnLS0dG5d+/enj17KisrN23aJCkpiTsXADxGEAsMIbRt27anT58+ePAAdxAudfXq1eXLl1MolCVLlty4caO9vd3e3n7ChAlXr15tb2/HnY5Xtbe3h4WFjR8/3tzc/N27dzdu3CgpKfH29u7Xrx/uaADwJAEtsLFjx06dOtXf3x93EG4UHR29ePFiCoUiJiampqY2e/bstLS0rKysoUOHLlmyRFVV9c8//ywsLMQdk5cUFBR4e3urqqouW7Zs2LBhT548SU1Ntbe3FxIS0BcgACwhuK+fHTt2ZGZmpqam4g7CXa5fv+7s7EyhUCgUColEGjJkCHX5pEmToqKiampqNm7ceO/ePV1dXSMjo9OnT8MXEnrR3t4eFRVFJBL19PRiY2PXrFlTXl4eGRkJdzIEgCUEt8CMjY0nT568a9cu3EG4yI0bN7rbCyHU1dWlqqpKu8KgQYM2bdpUWlr6/PnzcePG+fj4KCkpzZw589KlSy0tLZhSc52Ojo67d++6uroqKSktXrxYXl7+wYMHJSUl/v7+ampquNMBwD8Et8AQQtu2bUtMTMzIyMAdhCvExsbOnz+/q6uL9qlpPQqs27hx406dOlVdXb1///7Pnz8vW7ZMVVXV1dX13r17Avu4FmpvLV68WElJafbs2dXV1Xv37q2rq4uMjLSxsYEbQQHAcgRBe8ZjDyYmJvLy8vfu3cMdBLO4uLhZs2aRyeQe9/ZtbW2lZ3ZcXV1dVFRUZGRkVlaWnJycra2tnZ3dtGnTlJSU2BaZW7x//z4hISEuLi4+Pr65udnExMTZ2dnBwWHw4MG4owEWIBAIERERTk5OuINwKbzjI+gFFh8fb2dnl5WVNWnSJNxZsImPj7e3t/++vWRkZD5//szQpqqrq6Ojo2NjY9PS0kgk0tixY6llNnHiRGFhYZamxolMJmdlZcXHx8fHx7948UJMTMzc3Hz69Onz5s2Di4R8Bgqsd1BgmFlaWoqLi9+/fx93EDwSEhJmzpz5fXshhLS1tYuKivq22a9fvyYnJ8fHx8fFxVVWVlIfQmZiYmJmZjZ+/HhenDje2tr69OnT9PT0zMzMzMzM5uZmTU1NW1tbW1tba2trKSkp3AEBW0CB9Q7v+MAda9COHTumTJny6NEjS0tL3Fk4jXruRSKRfvg+Rl1dvc9blpaWtre3t7e3RwgVFRVRP2sMCQnZtm2bqKjo2LFjTU1NJ06cqKen99tvv3HnnZNIJFJJSUl+fv6TJ08yMzNfvHjR2dmppqZmbm4eGBhIJBJHjBiBOyMAAo0bDxwcZm1tbWVltW3btrS0NNxZOC07O1tSUrK1tZVEIvX4kYiIyNChQ1myFx0dHR0dndWrVyOEqqurqScxSUlJR44cIZFIEhISo0aN0tPT09PT09fXHzFixJAhQzh/vZFEIr1586a4uDgvLy8/Pz8/P//ly5cdHR0iIiK6urpmZmbe3t5mZmZwhRAA7gGXEBFCKDMz09TU9MGDBzY2NrizcNrXr1/Pnj27Z8+ejx8/dk+gRwiJi4tv2bJlx44d7Nt1R0dHYWFhfn5+QUFBbm5ufn7+u3fvEEKioqJqamoaGhrDhg3T0NDQ0NBQUVFRVFQcMGDAgAEDJCQk+rzH9vb2hoaG+vr6hoaGurq6ysrKiooK6n9ra2s7OzsRQoMHD6ZWKbVTR40aJS4uzqpfGfAcuITYO/gMjCvY2to2NzdnZWXhDoLHt2/fHB0ds7Ky6uvrCQRCV1eXiIjIyZMnly9fzskY9fX1JSUllZWV3dVSWVlZXV1NOzVfSkqKWmYKCgoIITExMernT9LS0tQ74XZ2dlK/Xt3S0kL9g58+faKWFu2X1cTExNTV1WlrctiwYb/99hs8PRLQggLrHXwGxhUCAgImTJhw48aNuXPn4s6CwadPn+7fvx8cHCwjIxMQEPDq1SsSiaSiosLhGIqKioqKiiYmJrQLKRRKQ0ND95lTt6ampq6uru66evv2LfVCqIiIiIyMDEJIWVlZVFRUSEhITk6OevbWfRpHBd/NAoCnQYH9h5GR0fz58zds2DBjxgwxMTHccTht//79cnJyS5YskZCQWLBgQUxMzJ49e7rvI4UXgUCgFpu2tjbuLAAALiLQd+LoYffu3W/evDl16hTuIJz26dOn0NDQDRs2UD9eIhAIM2fOzMzM1NPTwx0NAAB+CgrsvzQ0NNasWbNz587m5mbcWTjqyJEjoqKi7u7uPZbDFTYAADeDAvsfW7dupVAoe/fuxR2Ec1paWo4fP7527Vrq50YAAMAroMD+h5yc3NatW4ODg6uqqnBn4ZCQkJC2trZVq1bhDgIAAIyBAutp1apVqqqqW7ZswR2EEzo6Og4dOrRixQqYOw4A4DlQYD2JiYkdPHgwPDz84cOHuLOw3cWLF+vr6318fHAHAQAAhkGB/YC9vf2MGTNWr15NvTUDvyKTyQcOHFiyZMnPHvoFAADcDArsx4KDg1+/fn306FHcQdgoMjLy9evX69evxx0EAAD6Agrsx4YPH75hwwZ/f/+6ujrcWdhl//79Tk5Ov/32G+4gAADQF1BgP7VlyxZFRcWNGzfiDsIW9+7dy87O3rBhA+4gAADQR1BgPyUpKXno0KGrV6+mpKTgzsJ6e/funTFjhqGhIe4gAADQR3AvxN7MmjVrxowZnp6eubm5zDzFg9ukpqamp6enp6fjDgIAAH0HZ2C/EBIS8v79+4CAANxBWGnPnj0WFhampqa4gwAAQN9Bgf2CiopKQEDAvn37srOzcWdhjdzc3ISEBAH5pjYAgI9Bgf2al5fXpEmTPD09yWQy7iwsEBgYqK+vP23aNNxBAACAKVBgvyYkJHTmzJm8vDw++FpYeXn5jRs3tm7dCneaBwDwOigwumhra2/evNnPz6+yshJ3Fqbs3r1bQ0NDMJ86DQDgM1Bg9NqyZcvQoUPd3NwoFAruLH1UW1t75cqVv/76S1hYGHcWAABgFhQYvcTFxS9fvpyWlnbixAncWfrowIEDSkpKLi4uuIMAAAALQIExwNDQcPPmzRs3biwtLcWdhWENDQ1nz55dv369mJgY7iwAAMACUGCM2b59+6hRo5YsWcJzMxKDg4PFxcXd3NxwBwEAANaAAmOMiIjIxYsXs7Ozg4ODcWdhwJcvX44fP/7nn39KS0vjzgIAAKwBBcawUaNG+fn5bdu27dWrV7iz0OvkyZMkEmnVqlW4gwAAAMtAgfXFxo0bx4wZ4+Li0tHRgTvLr3V0dBw+fHjlypXy8vK4swAAAMtAgfWFiIhIWFhYWVnZX3/9hTvLr507d66hocHb2xt3EAAAYCUosD4aPnz40aNHDx06FBMTgztLb8hk8sGDB//44w8VFRXcWQAAgJWgwPrO1dV14cKFbm5u7969w53lp8LDwysqKtatW4c7CAAAsBgUGFNCQkJkZWWXLl3KnbfnoFAo+/btW7BggZaWFu4sAADAYlBgTJGWlg4LC0tOTubOWfV37twpLCzctGkT7iAAAMB6UGDMGj9+vL+//5YtW7jwgWH//POPvb29rq4u7iAAAMB6IrgD8IPNmzcnJyc7OTm9ePFCRkYGd5z/SE5OzszMzMjIwB0EAADYAs7AWEBISOjixYtNTU0+Pj64s/zXnj17rK2tTUxMcAcBAAC2gDMw1lBVVb148eKMGTOmTJmyYMEC3HFQdnZ2UlLS/fv3cQcBAAB2gTMwlvn9999Xrlzp5eXFDQ+9DAgIMDAwmDJlCu4gAADALlBgrHTgwIEhQ4a4uLiQSCSMMYqKim7duuXn50cgEDDGAAAAtoICYyVJScnw8PDs7Gy8M9f37t07YsSIWbNmYcwAAADsBgXGYrq6umfOnDl06FBkZCSWADU1NeHh4Vu2bBESgr9cAAA/g0kcrLdgwYKMjAw3NzddXd1Ro0ZxeO///POPsrLy/PnzObxfAADgMHiTzhaHDh0aM2bM3LlzP3/+zMn9fvjw4ezZsxs3bhQTE+PkfgEAgPOgwNhCVFT02rVrnz598vDw4OR+g4ODZWRk3NzcOLlTAADAAgqMXYYMGRIREREdHX348GHO7PHz588nT578888/JSUlObNHAADACAqMjaysrHbt2rV+/fq0tDQO7O748eNdXV0rV67kwL4AAAA7KDD22rx5s729vZOTU11dHVt31N7efvTo0dWrV8vJybF1RwAAwCWgwNiLQCBcuHBBTk7O0dGxs7OTfTs6c+ZMY2PjmjVr2LcLAADgKlBgbCcjIxMZGZmTk/PXX3+xaRednZ1BQUHLly8fNGgQm3YBAADchsCdjxLmftnZ2WfPnqV//eLi4tzc3Hnz5gkLC7M8zJcvX+Lj421tbVn1MJdjx46xZDsAsMPq1as5tq87d+4YGRmpqKhwZndubm6GhoZMbkRwxgcKrI8iIyOdnZ3Nzc3p/yMUCoX7b05YX1//6tUr+FcBuBmBQBg5cqSioiLuICyWlpYWERHh5OTE5HYEZ3zgThxMSU1NxR2BxajFjDsFAL/g7+/P/IGe27DwDa6AjA98BgYAAIAnQYEBAADgSVBgAAAAeBIUGAAAAJ4EBQYAAIAnQYEBAADgSVBgAAAAeBIUGAAAAJ4EBQYAAIAnQYEBAADgSVBgAAAAeBIUGAAAAJ4EBQYAAIAnQYFxQmdn54gRI1xdXWkXpqenE4lEWVlZGRkZS0vL+/fv92HLaWlpy5cvHzlypKSkpIKCApFIjImJ6bEXAoGQkJDA1C8AAG9i30uvqqrq2LFj06ZNExcXJxAI8fHxPVbgiZcem8anpaUlLCzM3t5eQ0NDXFxcRUXF2dk5Ozu7x15YMD4U0CcRERH0j97hw4dFRERKS0u7l8THx/d4siWBQIiMjGQoQ2lp6Q//ToOCgmhXIxKJenp6ZDKZnm0y9HsBgAVCKCIigp412fTSo1AoysrKtBuJi4v7fh2GXnoURn4vVm2HTeOzdevW749LoqKiPUaJ+fGBQ1Uf0X+g7+joUFJScnBwoF0ydOhQhNC6des+fvzY2Ni4a9cuhJCiouKXL1/oz1BeXj5t2rSwsLCSkpK2traKioqNGzcihMTFxZubm7tXo77HuXbtGmt/LwBwofMAzb6XHoVCmThx4qpVq+Lj493d3X9WYAy99CgcLzD2jc/evXtdXFzu3r37+vXr1tbW7OxsIpGIENLU1KRdjfnxgUNVH9F/oA8PD0cI3blzp3vJvXv3EEIWFha0q82dOxchdOXKFSaDWVpaIoQeP37cvYREIg0ePHjy5Mn0/HEoMMD96DxAc+alt2rVqp8VGEMvPQrHC4yTh6aWlhZ5eXmEUH19ffdC5scHPgNju0uXLklKStra2nYvoT7HedGiRbSrubi4IIQePXrE5O5ERUURQkpKSt1LhIWFZ82alZKSUl1dzeTGAeAhHH7pfY/LX3qcHJ9+/fqpq6uLiIhISUl1L2R+fKDA2ItEIqWlpY0dO5baK1RlZWUIIV1dXdo19fX1u3/UB11dXW/evAkICEhMTLS1tR02bBjtTydNmoQQSk5O7tvGAeA5HHvp9Y5rX3ocHp/i4uL8/Hx7e3sJCQna5UyODxQYe718+fLr169jxoyhXfj582eEkIKCAu1C6v82NzczuouioiICgSAsLDxkyJDAwEAvL6+oqKge6xgYGCCEsrKyGN04ADyKAy89enDtS4+T49PS0rJw4UJZWdmgoKAeP2JyfKDA2Ovt27cIIUVFRdqF1Iu5PfxwIaPa29uzsrLy8vJ6LB84cGB3GAAEAYdfej/DtS89jo1PS0vLrFmzioqKbt26paGh0eOnTI4PFBh7NTU1IYRkZGRoF8rKyiKEPn36RLuwsbGx+0cM0dHRoX4c+ubNm9DQ0PLychsbm4qKCtp1+vfv3x0GAEHAgZcePbj2pceZ8WlsbCQSiY8fP46NjbWwsPh+BSbHBwqMveTk5ND/n5h309LSQggVFBTQLqSeNlF/1AfCwsIqKirLly8PDAxsa2vrcRWRevpPnQUEgCDg2Euvd1z70uPA+Lx9+9bS0jI/Pz8uLo46O/p7TI4PFBh7DR48GCFUX19Pu5D6TiQsLIx24ZUrV7p/xIyOjg703b9LagBqGAAEAedfej/EtS89do9PeXm5qalpVVVVQkKCubn5z1ZjcnygwNhr1KhR0tLSOTk5tAttbGzU1dVTU1N9fX3r6+ubm5sDAgJu3LihqKg4e/Zs+je+e/fuTZs2PXv2rKGhob29vaKi4siRI9u3b0cI9fgXQw1AnfADgCBg60uPflz70mPr+BQUFJiZmTU2Nj548MDExKSXNZkdH2a+mybI6P/Cr62trYSERHt7O+3CuLi47+/X0uM7eqampgih7Ozsn23Z19f3h3+nixYt6rHmihUrEEKVlZUs/L0AwAXR90Vd9r30KBRKjy9LdYuKiqJdjf6XHv2/F6u2w77xcXNz+1nj9PhTTI4PnIGx3eLFi9vb22NjY2kX2trapqSkTJkyRUZGRkpKytzcPD4+3snJiXadrq4uhJCIiMjPtuzn53f8+HFLS0slJSVRUVFlZWU7O7vw8PDLly/TrkYmk2/fvm1hYUG9SQwAAoJ9Lz06cflLjx/Gh57eA99j6F6IAwcOnDNnDkPbJ5PJcnJyo0eP7urq6lPA/6LecCw8PJyeleEMDHA/RPe9/njopUfBcS9EXh8fOANjOzExsa1bt965c+f/2rtj24SBKAzAcsEIrpGo2QDdGEjMcPIA1NSewYvQIVgAUSGGcEWb9ElwSExiP/i+/u6ennT65bN0d+vy+C+dTqe2bdfrdVEUPQuo63o+ny+Xy57zQCy2Xrcn6I8A+w8559lsttls7h+y3++n0+lqteq59OFw2G63dV1/ONeGV2DrdYven76HmNxjMpmcz+cfDck555z7L71YLN7+8qIBGDNbr1v0/vgCAyAkAQZASAIMgJAEGAAhCTAAQhJgAIQkwAAISYABEJIAAyAkAQZASAIMgJAEGAAhCTAAQhJgAITkOZVeqqoauoQHu1wuQ5cA32uaZrfbDV3FeL1IfwTYL5VlmVI6Ho9DF/J4KaWhS4AuKaXr9fp8uy+lVJblQ+Z5kf4U439yDQA+8w8MgJAEGAAhCTAAQnoHVlDc7vcbWQMAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<IPython.core.display.Image object>" | |
] | |
}, | |
"execution_count": 15, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data_padded_rechunked.visualize(optimize_graph=True)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "2f3bb361-8e81-4fd3-97a1-0e2601ec4580", | |
"metadata": {}, | |
"source": [ | |
"This is the best graph we can hope for at this stage.\n", | |
"\n", | |
"Now we can map overlap." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"id": "8dbcec2d-bb3a-4cef-a4f9-da3c8e98ba0a", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 4.92 kiB </td> <td> 1.41 kiB </td></tr>\n", | |
" <tr><th> Shape </th><td> (30, 21) </td> <td> (30, 6) </td></tr>\n", | |
" <tr><th> Count </th><td> 32 Tasks </td><td> 4 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"134\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"84\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"120\" x2=\"84\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"120\" />\n", | |
" <line x1=\"44\" y1=\"0\" x2=\"44\" y2=\"120\" />\n", | |
" <line x1=\"64\" y1=\"0\" x2=\"64\" y2=\"120\" />\n", | |
" <line x1=\"84\" y1=\"0\" x2=\"84\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 84.0,0.0 84.0,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"42.000000\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >21</text>\n", | |
" <text x=\"104.000000\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,104.000000,60.000000)\">30</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table>" | |
], | |
"text/plain": [ | |
"dask.array<diff, shape=(30, 21), dtype=float64, chunksize=(30, 6), chunktype=numpy.ndarray>" | |
] | |
}, | |
"execution_count": 16, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data_diffed = dsa.map_overlap(\n", | |
" diff,\n", | |
" data_padded_rechunked,\n", | |
" depth={1: (1, 0)},\n", | |
" boundary='none',\n", | |
" trim=False,\n", | |
" meta=np.array([], dtype=data_padded_rechunked.dtype),\n", | |
")\n", | |
"data_diffed" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "3ba65378-eaba-493f-b1ff-7cfae4035e41", | |
"metadata": {}, | |
"source": [ | |
"Here dask _thinks_ that the output shape is `(30, 21)`. But if we compute it, we see that we get the right shape `(30, 20)`:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"id": "ea135105-2531-486a-bb71-709ca6ff49b7", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Calling diff on array of shape (30, 6)\n", | |
"Calling diff on array of shape (30, 6)\n", | |
"Calling diff on array of shape (30, 6)\n", | |
"Calling diff on array of shape (30, 6)\n" | |
] | |
} | |
], | |
"source": [ | |
"np.testing.assert_equal(data_diffed.compute(), expected_result)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "48551aa9-a709-41b9-8b5e-5f6b26d21a1e", | |
"metadata": {}, | |
"source": [ | |
"The logging tells us that each mapped operation is a getting an array of the same size.\n", | |
"However, for the first block, the \"extra\" part is not an overlap region but explicitly part of the array.\n", | |
"\n", | |
"To get around this, we need to manually specify the chunks in map_overlap" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"id": "70d7a042-7f86-4165-a85e-bb0f60d01058", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"((30,), (6, 5, 5, 5))" | |
] | |
}, | |
"execution_count": 18, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data_padded_rechunked.chunks" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"id": "cb98bf4b-c2b5-4b9d-b899-1e65cc471f30", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 4.69 kiB </td> <td> 1.17 kiB </td></tr>\n", | |
" <tr><th> Shape </th><td> (30, 20) </td> <td> (30, 5) </td></tr>\n", | |
" <tr><th> Count </th><td> 32 Tasks </td><td> 4 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"130\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"80\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"120\" x2=\"80\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"120\" />\n", | |
" <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"120\" />\n", | |
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"120\" />\n", | |
" <line x1=\"80\" y1=\"0\" x2=\"80\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 80.0,0.0 80.0,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"40.000000\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n", | |
" <text x=\"100.000000\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,100.000000,60.000000)\">30</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table>" | |
], | |
"text/plain": [ | |
"dask.array<diff, shape=(30, 20), dtype=float64, chunksize=(30, 5), chunktype=numpy.ndarray>" | |
] | |
}, | |
"execution_count": 19, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"orig_chunks = data_padded_rechunked.chunks\n", | |
"core_dim_chunks = orig_chunks[-1]\n", | |
"true_core_dim_chunks = ((core_dim_chunks[0]-1,) + core_dim_chunks[1:],)\n", | |
"true_chunks = orig_chunks[:-1] + true_core_dim_chunks\n", | |
"\n", | |
"data_diffed = dsa.map_overlap(\n", | |
" diff,\n", | |
" data_padded_rechunked,\n", | |
" depth={1: (1, 0)},\n", | |
" boundary='none',\n", | |
" trim=False,\n", | |
" meta=np.array([], dtype=data_padded_rechunked.dtype),\n", | |
" chunks=true_chunks\n", | |
")\n", | |
"data_diffed" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"id": "52fc5e24-1581-498c-8693-5b4dec18f1d5", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMUAAAcDCAYAAABW94ZVAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeVxVZeLH8e9lFZUkl8wWxTXNpWK0KTcyJUXHtBqXKdNmUpuwibI002yZwmambLGaLJ2cFCRRcUsBdwXFSrPAKRUMMRVTECVQ9vv7wx9MDGqKcJ97OZ/368Wrl+fcc56vms957veee6/NbrfbBQAAAAAAAFjH626mEwAAAAAAAACORikGAAAAAAAAy6EUAwAAAAAAgOV4mA4AAICV7N27V0lJSaZjODVfX18FBwebjgEAAJxYbm6u1qxZYzqG07vnnnvk5+dnOobTohQDAMCBoqOjNW3aNNMxnFrr1q2VmppqOgYAAHBix44d04gRI0zHcHq7du1SQECA6RhOi7dPAgDgYK1bt5bdbufnPD9hYWGm/3oAAIAL2bVrl/H1izP+pKSkmP6rcQmUYgAAAAAAALAcSjEAAAAAAABYDqUYAAAAAAAALIdSDAAAAAAAAJZDKQYAAAAAAADLoRQDAAAAAACA5VCKAQAAAAAAwHIoxQAAAAAAAGA5lGIAAAAAAACwHEoxAAAAAAAAWA6lGAAAAAAAACyHUgwAAAAAAACWQykGAAAAAAAAy6EUAwDARRQVFaldu3YaPXp0pX0JCQkKCgpSgwYN5Ovrq8DAQK1du7Zaxk1PT9f777+v/v37y9vbWzabTbGxsed9bEJCgmw2m+Li4qplbAAAgOpmak0VHx+vsWPHqkOHDvLx8VHDhg0VFBSkzz///Lw5WFPVPA/TAQAAwKX58MMPlZaWpjVr1lTYHhcXp0GDBqmkpKR829atWxUfH69FixZp2LBhVzTub3/7W/3000+X9NiePXsqKChIkyZNUlBQkNzceP0NAAA4FxNrqtTUVPXu3bvCtvz8fK1fv17r16/XzJkzNXHixPJ9rKkcgz9VAABcQGFhocLCwjR06FC1adOmwvbHHntMJSUlmjhxok6cOKHs7Gy9+uqrstvtCgkJUW5u7hWN7e/vrwkTJig2Nlbjxo371cc/++yzSk5O1uLFi69oXAAAgOpmak3l5uam/v37KyIiQvv379fZs2eVlpamyZMnS5KmTp2qnJycCsewpqp5lGIAALiA6OhoHT9+vNJt/uvXr1d6erp69+6tmTNnqnHjxvLz89MLL7yg+++/X5mZmVqxYsUVjb1jx47yt096eXn96uP79u2rZs2aafbs2Vc0LgAAQHUztaZq1aqVYmNj9eCDD6pt27aqU6eO/P399fe//12BgYEqKCjQ999/X+EY1lQ1j1IMAAAXMH/+fPn4+GjAgAEVtm/dulWS9NBDD1U6ZtSoUZKkLVu21HzAX3B3d9eQIUO0efNmHTp0yKFjAwAAXIwzrqk8PT0lSddcc02F7aypah6lGAAATq64uFjx8fEKCAgoXzSVSU1NlSR16tSp0nFdunSp8BhHuuOOOyRJGzdudPjYAAAA5+NMa6rS0lIdOXJEr732mtavX68BAwaoZcuWlR7HmqpmUYoBAODkvvvuO+Xm5uqWW26ptK/ssycaNmxYaV/ZttOnT9dswPO49dZbJUmJiYkOHxsAAOB8nGFNtXfvXtlsNrm7u+uGG25QWFiYQkJCLvi5YaypahalGAAATi4jI0OS1Lhx40r77Hb7BY+72L6a1qRJE0n/zQ4AAGCaM66p8vPzlZiYqKSkpPPuZ01VsyjFAABwcqdOnZIk+fr6VtrXoEEDSdLJkycr7cvOzq7wGEe66qqrJP03OwAAgGnOsKZq37697Ha7iouLdeTIEc2ZM0cHDhxQv379lJaWVunxrKlqFqUYAABOzs/PT5IqfU23pPKvEt+zZ0+lfWWvOP7y68YdpeztBVdffbXDxwYAADgfZ1pTubu767rrrtPYsWMVFhams2fPnvctlKypahalGAAATq5Zs2aSpMzMzEr7evfuLUmKiIiotC88PLzCYxypLGtZdgAAANOcdU1VUFAg6fxlHWuqmkUpBgCAk7v55ptVv359ffPNN5X29evXT82bN9fWrVv1zDPPKDMzU6dPn9Zrr72m6OhoNW7cWEOHDnV45rKsZd+YBAAAYJrJNdWMGTP03HPP6auvvlJWVpby8/OVlpamWbNm6cUXX5Qk9erVq9JxrKlqFqUYAABOzsPDQz179tTu3bvLX0ks4+XlpY8++kju7u5666231KRJE/n5+Wn69Omy2Wz64IMPVL9+/QrH9OzZUzab7bwLwvMZNWqUbDZb+fkkKTg4uHzbkiVLKh2zY8cOSVKfPn2q8lsGAACodibXVCdPntQ//vEP3X777WrcuLF8fHzUqlUrhYaG6syZM3rooYfUv3//SsexpqpZlGIAALiAhx9+WPn5+VqzZk2lfQMGDNDmzZvVt29f+fr6ql69eurVq5diY2M1fPjwSo8vLS2VdG5hWBNKSkq0YsUK9e7dWy1atKiRMQAAAKrC1Jpq+vTp+uCDDxQYGKhrrrlGnp6eatq0qYKDgxUZGakFCxZUOoY1Vc2rmdUwAACoVr///e/11FNPacGCBbrvvvsq7e/Zs6fWr1//q+cpLS3V999/r44dO6pjx46XNHZ4eHj5Z2lcig0bNigjI0NvvfXWJR8DAADgCKbWVA0aNFBISIhCQkIuOStrqprHnWIAALgALy8vTZs2TStXrlRKSkqVz7Nnzx6dOnVKU6ZMkc1mq8aE//Xmm2+qU6dOGjZsWI2cHwAAoKpYU+GXKMUAAHARISEhatWqlf76179W+RwJCQlq0aKFRo4cWY3J/mvbtm1at26d3nzzTbm7u9fIGAAAAFeCNRXK8PZJAABchKenp/bv339F57jc2/YvV48ePWS322vs/AAAAFeKNRXKcKcYAAAAAAAALIdSDAAAAAAAAJZDKQYAAAAAAADLoRQDAAAAAACA5VCKAQAAAAAAwHIoxQAAAAAAAGA5lGIAAAAAAACwHEoxAAAAAAAAWA6lGAAAAAAAACyHUgwAAAAAAACWQykGAAAAAAAAy6EUAwAAAAAAgOVQigEAAAAAAMByKMUAALC4I0eOmI4AAADg8lhTuR4P0wEAALCa3NxcRUVFmY4hSTp06JA2b96s0aNHm44iSUpOTjYdAQAAuJB169YpNTXVdAxJ0owZM/T888/LZrOZjqKffvrJdASXQCkGAICD/fTTTxoxYoTpGBWsXr3adIRyrVu3Nh0BAAC4iClTppiOUMHIkSNNR8BlsNntdrvpEAAAwPHsdruaN2+uw4cPa+PGjerTp4/pSAAAAC5p8uTJeuONN/TYY49p9uzZpuPg0rzOZ4oBAGBRO3bs0OHDh+Xm5qaFCxeajgMAAOCS7Ha7FixYIEn67LPPVFRUZDgRLhWlGAAAFrVw4UJ5eXmptLRUixYtUkFBgelIAAAALic+Pl7Hjh2TJJ0+fVrr1q0znAiXilIMAAALKikp0cKFC1VYWCjp3If/x8XFGU4FAADgeiIjI+Xl5SVJ8vT0VEREhOFEuFSUYgAAWNCGDRt08uTJ8l+7u7uzgAMAALhMxcXFWrRoUfkLjUVFRYqOjlZeXp7hZLgUlGIAAFjQwoUL5enpWf7r4uJirVixQrm5uQZTAQAAuJa1a9cqOzu7wraCggJ9/vnnhhLhclCKAQBgMfn5+VqyZEmlD4EtKirSihUrDKUCAABwPf/7QqN07g788PBwQ4lwOSjFAACwmNWrV+vMmTOVtttstvJvTgIAAMDFnTlzRtHR0ZVeaCwuLlZsbGyFj6qAc6IUAwDAYiIiIuTu7l5pe0lJidavX6/jx48bSAUAAOBaVq1apfz8/PPus9vtio6OdnAiXC5KMQAALCQnJ0erV69WcXHxeffbbDYWcAAAAJfgQi80SudKsfnz5zs4ES4XpRgAABYSHR19wUJMkkpLS1nAAQAA/IpTp04pNjb2guuq0tJSJSQk6MiRIw5OhstBKQYAgIUsWLBANpvtgvtLS0u1Y8cOpaenOzAVAACAa1myZIlKS0sv+hh3d3ctXrzYQYlQFZRiAABYxPHjx7VlyxZJkre3t7y9veXl5SUvL68Kv7bb7YqKijKcFgAAwHktXLhQpaWl5Wsob29veXp6Vvh1aWkp30Lp5DxMBwAAAI6RnZ2tsLCwCts2bdqknTt3atKkSRW2+/v7OzAZAACA6ygtLdXAgQPVv3//8m1ZWVl644039Je//EXXX399hccXFhbKy8vL0TFxCWx2u91uOgQAADBjxowZmjdvnlJSUkxHAQAAcFmpqalq27atdu3apYCAANNxcGle5+2TAAAAAAAAsBxKMQAAAAAAAFgOpRgAAAAAAAAsh1IMAAAAAAAAlkMpBgAAAAAAAMuhFAMAAAAAAIDlUIoBAAAAAADAcijFAAAAAAAAYDmUYgAAAAAAALAcSjEAAAAAAABYDqUYAAAAAAAALIdSDAAAAAAAAJZDKQYAAAAAAADLoRQDAAAAAACA5VCKAQAAAAAAwHIoxQAAAAAAAGA5lGIAAAAAAACwHEoxAAAAAAAAWA6lGAAAAAAAACyHUgwAAAAAAACWQykGAAAAAAAAy6EUAwAAAAAAgOVQigEAAAAAAMByKMUAAAAAAABgOZRiAAAAAAAAsBxKMQAAAAAAAFgOpRgAAAAAAAAsh1IMAAAAAAAAlkMpBgAAAAAAAMuhFAMAAAAAAIDlUIoBAAAAAADAcjxMB6hOubm5WrNmjekYTu+ee+6Rn5+f6RgAYEl79+5VUlKS6Rjl9u3bp5KSEkVFRZmOUs7X11fBwcGmYwAwzNnmS2fEfAkrc7bn/8ePH1e9evW0ceNGpaammo5Tjuf/F2ez2+120yGqS2pqqtq2bWs6htPbtWuXAgICTMcAAEuaMWOGpk2bZjqGU2vdurVTLSYBmMF8+euYL2FlPP+/NDz/v6jXa+XbJ3ft2iW73c7P//ykpKSY/qsBAOjckxjT1wRn/QkLCzP91wPAiTBfMl8Cv4bn/+f/4fn/pamVpRgAAAAAAABwMZRiAAAAAAAAsBxKMQAAAAAAAFgOpRgAAAAAAAAsh1IMAAAAAAAAlkMpBgAAAAAAAMuhFAMAAAAAAIDlUIoBAAAAAADAcijFAAAAAAAAYDmUYgAAAAAAALAcSjEAAAAAAABYDqUYAAAAAAAALIdSDAAAAAAAAJZDKfb/ioqK1K5dO40ePbrSvoSEBAUFBalBgwby9fVVYGCg1q5dW21jX+r5ExISZLPZFBcXV21jAwBch6lrVXp6ut5//331799f3t7estlsio2NPe9juVYBcAYm5su8vDxFRETo3nvvlb+/v7y9vXXddddpxIgR2r1793lzMF8CZphaU8XHx2vs2LHq0KGDfHx81LBhQwUFBenzzz8/bw7mCAew1yIpKSl2SfZdu3Zd9rHvvvuu3cPDw56SklJhe2xsrN3d3d0uqcKPzWazR0VFXXHmyz1/UFCQvXPnzvaSkpLLHutK/nwAANUjLCzM3rp16yoda+pa1bRp00rnjomJueDjr+RadSV/PgBqF1ebL6dNm1bpvGU/np6e5503mS+BqnO15/9leS/0M3PmzErH8Py/xs3gTjFJhYWFCgsL09ChQ9WmTZsK2x977DGVlJRo4sSJOnHihLKzs/Xqq6/KbrcrJCREubm5VzTu5Z7/2WefVXJyshYvXlzlcQEArsfUtUqS/P39NWHCBMXGxmrcuHG/+niuVQBMMjVf+vr6atSoUVq1apV++OEHnTlzRrt371ZQUJCKioo0YcKESscwXwKOZ2qOcHNzU//+/RUREaH9+/fr7NmzSktL0+TJkyVJU6dOVU5OToVjmCMcwGgnV82q2oRGRkbaJdlXrlxZYfvq1avtkuy9e/eudMz9999vl2QPDw+vct6qnL+4uNjerFkz+1133XXZ49EUA4B5VX1l39S16n9NmDDhV+8Uu5JrFXc+ACjj6vNlmby8PPvVV19tl2TPzMyssI/5Eqg6V3v+fzGBgYF2SfYdO3ZU2M7z/xrHnWKSNH/+fPn4+GjAgAEVtm/dulWS9NBDD1U6ZtSoUZKkLVu2VHncqpzf3d1dQ4YM0ebNm3Xo0KEqjw0AcC2mrlVVwbUKgEnONl/WrVtXzZs3l4eHh+rVq1dhH/Ml4HjONkdIkqenpyTpmmuuqbCdOaLmWb4UKy4uVnx8vAICAsr/RyyTmpoqSerUqVOl47p06VLhMVVR1fPfcccdkqSNGzdWeWwAgOswea2qKq5VAExwxvly3759Sk5O1r333qs6depU2s98CTiOM80RpaWlOnLkiF577TWtX79eAwYMUMuWLSs9jjmiZlm+FPvuu++Um5urW265pdK+svfzNmzYsNK+sm2nT5+u8thVPf+tt94qSUpMTKzy2AAA12HyWlVVXKsAmOBs82VeXp4efPBBNWjQQDNnzjzvY5gvAcdxhjli7969stlscnd31w033KCwsDCFhIRc8HPDmCNqluVLsYyMDElS48aNK+2z2+0XPO5i+y5VVc/fpEkTSf/NDgCo3Uxeq6qKaxUAE5xpvszLy9OQIUO0d+9eLV++XP7+/ud9HPMl4DjONEeUyc/PV2JiopKSks67nzmiZlm+FDt16pSkc98W878aNGggSTp58mSlfdnZ2RUeUxVVPf9VV10l6b/ZAQC1m8lrVVVxrQJggrPMl9nZ2QoKCtKOHTu0Zs0a9e7d+4KPZb4EHMcZ5oj27dvLbreruLhYR44c0Zw5c3TgwAH169dPaWlplR7PHFGzLF+K+fn5SVKlrz6VVP71rHv27Km0r6zF/eVXuF6uqp6/7JbNq6++uspjAwBch8lrVVVxrQJggjPMlxkZGQoMDFRycrJiYmIUGBh40cczXwKO4wxzRBl3d3ddd911Gjt2rMLCwnT27NnzvoWSOaJmWb4Ua9asmSQpMzOz0r6yV3QiIiIq7QsPD6/wmKqo6vnLspZlBwDUbiavVVXFtQqACabnywMHDqhHjx5KT09XXFycevXq9avHMF8CjmN6jriQgoICSecv65gjapblS7Gbb75Z9evX1zfffFNpX79+/dS8eXNt3bpVzzzzjDIzM3X69Gm99tprio6OVuPGjTV06NAqj13V85dlLfsWCgBA7WbyWlVVXKsAmGByvtyzZ4969uyp7OxsrVu3Tt27d7+k45gvAccxOUfMmDFDzz33nL766itlZWUpPz9faWlpmjVrll588UVJOm+RzhxRsyxfinl4eKhnz57avXt3eTtbxsvLSx999JHc3d311ltvqUmTJvLz89P06dNls9n0wQcfqH79+hWO6dmzp2w223n/kf2vqpxfknbs2CFJ6tOnzxX8zgEArsLktUqSRo0aJZvNVn4+SQoODi7ftmTJkkrHcK0CYILJ+fKdd97RsWPHdOrUKf32t78tnyN/+XO+8zBfAo5jco44efKk/vGPf+j2229X48aN5ePjo1atWik0NFRnzpzRQw89pP79+1c6jjmiZlm+FJOkhx9+WPn5+VqzZk2lfQMGDNDmzZvVt29f+fr6ql69eurVq5diY2M1fPjwSo8vLS2VdO4f26W43POXlJRoxYoV6t27t1q0aHGZv1MAgKsyea26XFyrAJjEfAngYkzNEdOnT9cHH3ygwMBAXXPNNfL09FTTpk0VHBysyMhILViwoNIxzBEOYK9FUlJS7JLsu3btuqzjCgoK7E2aNLHfd999VzR+SUmJ3c/Pz96xY0d7aWnpFZ3rQuLi4uyS7JGRkZd9bFX/fAAA1ScsLMzeunXryz7OKteqqv75AKh9mC8vjvkSVsfz/4vj+f8lmcGdYjp3m+S0adO0cuVKpaSkVPk8e/bs0alTpzRlyhTZbLZqTPhfb775pjp16qRhw4bVyPkBAM6JaxUAXBrmSwAXwxyBX6IU+38hISFq1aqV/vrXv1b5HAkJCWrRooVGjhxZjcn+a9u2bVq3bp3efPNNubu718gYAADnxbUKAC4N8yWAi2GOQJmaeXO8C/L09NT+/fuv6BwhISEKCQmppkSV9ejRQ3a7vcbODwBwblyrAODSMF8CuBjmCJThTjEAAAAAAABYDqUYAAAAAAAALIdSDAAAAAAAAJZDKQYAAAAAAADLoRQDAAAAAACA5VCKAQAAAAAAwHIoxQAAAAAAAGA5lGIAAAAAAACwHEoxAAAAAAAAWA6lGAAAAAAAACyHUgwAAAAAAACWQykGAAAAAAAAy6EUAwAAAAAAgOVQitWwzMxM0xEAALioU6dOmY4AAC6BtT2Ai2FN5Xo8TAeoCevWrVNqaqrpGJKkmTNnauLEibLZbKaj6KeffjIdAQAgKTc3V1FRUaZjSDp3bdiyZYuGDx9uOookKTk52XQEAE7EmebLY8eOadOmTfrDH/5gOook5kugjDM9/3/33XcVGhpqOoYknv9fqlpZik2ZMsV0hApGjhxpOgIAwIn89NNPGjFihOkYFSxdutR0hHKtW7c2HQGAk3DG+XL58uWmI5RjvgSc7/n/9u3bTUfAZbDZ7Xa76RC11fTp0/Xaa68pNDRU77zzjuk4AABU0r59e+3bt09ffPGFbr/9dtNxAMBptWnTRgcOHNC2bdvUvXt303EAOJlXXnlFL7/8sp599lm98cYbpuPg0rzOZ4rVoPnz50uSIiIiVFJSYjgNAAAVJSUlad++fXJzc1NkZKTpOADgtL7++msdOHCA+RLABS1YsKD8v6WlpYbT4FJRitWQL774QocOHZJ07gM5N2/ebDYQAAD/IzIyUp6eniotLdWCBQt4AQcALmDhwoXy8vJSaWmpwsPDVVxcbDoSACdSVpxL5972HR8fbzgRLhWlWA2JjIyUl5eXJMnT01MLFy40nAgAgP+y2+2aP3++ioqKJElZWVm8gAMA51FWhBUWFko69+1yGzZsMJwKgDPh+b/rohSrAaWlpVq4cGH5hbOoqEifffaZ8vPzDScDAOCc7du36+jRo+W/ZgEHAOcXHx9f4VvcmC8B/FLZHfe/fP4fGRlZ/ms4N0qxGrBp0yadOHGiwrazZ88qNjbWUCIAACoqe+tkmaKiIkVFRamgoMBgKgBwPr+8A0Q6N18uXrxYZ8+eNZgKgLP43+JcknJzc7V27VpDiXA5KMVqQNlnDvySu7u7IiIiDCUCAOC/iouLFRkZWf7WyTJ5eXmKiYkxlAoAnM+F7vgoKCjQ6tWrDaUC4Ez+tziXeP7vSijFqllhYaEWL15c6cJZXFyslStXKicnx1AyAADOWb9+vU6ePFlpOws4AKgoLi7uvOt3Nzc3hYeHG0gEwJlcqDgvLi7W8uXLlZubaygZLhWlWDVbs2bNBf/HLy4u1ooVKxycCACAihYuXFjhrZNleAEHACq62Hy5Zs0anTp1ykAqAM7iQsW5dO6Gmc8//9zBiXC5KMWqWUREhDw8PM67z2az8YoSAMCo/Px8RUdHV3rrZJmyYgwArO7MmTNatmzZBefL0tJSLVu2zMGpADiTCxXnEs//XQWlWDX6+eeftWrVqgteOEtKSrRhwwYdP37cwckAADjn888/15kzZy64nwUcAJyzYsWKX/3ykQULFjgoDQBn82vFeUlJiWJjY5WVleXgZLgclGLVaPny5Rf8B1HGZrNp6dKlDkoEAEBF4eHhcnd3v+D+kpISrV+/nhdwAFheeHi43Nwu/HSppKREW7Zs0bFjxxyYCoCzuJTiXJKio6MdkAZVRSlWjRYuXCi73S5vb+8L/pSWlvIKPADAiJycHMXExKi0tFSenp7n/fHw8FBJSQkv4ACwtOzsbK1du1aSLriu9/LyUmlpqaKiogynBWBCZGSkJF1wTeXp6cnzfxdw/g+/wmUrLS1V165ddcstt5Rvy8nJUWRkpB544AE1bty4fLvNZlNhYWGlr20FAKAmpaWl6ZFHHqmwbd++fUpPT9c999xTYbvdbndgMgBwLhkZGXrmmWcqbNu9e7f27t2rP/zhDxW2N2jQwJHRADiB0tJStWjRQuPGjSvflpubq7Vr1+ruu++Wn59f+XY3Nzee/zsxm51Vb41JTU1V27ZttWvXLgUEBJiOAwBAJTNmzNC8efOUkpJiOgoAODXmSwAXw/N/l/Q6b58EAAAAAACA5VCKAQAAAAAAwHIoxQAAAAAAAGA5lGIAAAAAAACwHEoxAAAAAAAAWA6lGAAAAAAAACyHUgwAAAAAAACWQykGAAAAAAAAy6EUAwAAAAAAgOVQigEAAAAAAMByKMUAAAAAAABgOZRiAAAAAAAAsBxKMQAAAAAAAFgOpRgAAAAAAAAsh1IMAAAAAAAAlkMpBgAAAAAAAMuhFAMAAAAAAIDlUIoBAAAAAADAcijFAAAAAAAAYDmUYgAAAAAAALAcSjEAAAAAAABYDqUYAAAAAAAALIdSDAAAAAAAAJZDKQYAAAAAAADLoRQDAAAAAACA5VCKAQAAAAAAwHIoxQAAAAAAAGA5lGIAAAAAAACwHEoxAAAAAAAAWA6lGAAAAAAAACyHUgwAAAAAAACW42E6AAAAcJycnBz9/PPPKigokCQdPXpUBQUF2rdvnzw9PWWz2eTn56errrpK7u7uhtMCAAA4p/z8fP3888/6+eefJUn79++XJKWmpsrPz0+SVL9+ffn6+srHx8dYTlwcpRgAALXEyZMntWfPHh08eFBpaWk6ePCgDh48qBMnTigrK0tZWVkqKio677Ht27evtO3qq69W48aN1ahRI91www3y9/cv/2nfvr1atWolm81W078tAAAAhyosLNR//vMfHThwoHw9dfDgQR09erR8TZWXl3feY0eMGFFpW926ddWoUSM1atRI1113XYU1VevWrXXzzTerTp06Nf3bwnlQigEA4IJOnDihxMRE7dixQ99++62SkpJ0+PBhSVKdOnXUokUL+fv766abblLv3r3VqFGj8oKrQYMG8vT0lCQ1aNBAbm5uys3NLS/MTp06pdOnTyszM7O8UDt06JA2bdqkgwcPKisrS5Lk6+urTp06qUuXLuratau6d/JQa04AACAASURBVO+uDh06UJQBAACXUVBQoJ07d2r79u3avXu3kpOTtW/fPhUVFcnNza28xGrZsqU6deqkJk2alBdcDRo0UL169SSdK768vb1VUFCgM2fOSJLOnDmj06dPKysrS5mZmcrKytKRI0eUnJysVatW6ejRoyopKZGHh4fatWunzp0767bbblP37t3VtWtX7jBzAEoxAABcQFZWltauXat169Zp+/bt2rdvn9zc3NShQwfdeuuteuKJJ3TLLbeoY8eOuvHGG2s0S05Ojr777jslJSUpKSlJycnJCg8PV15enho2bKju3bsrMDBQwcHB6tixY41mAQAAuBxFRUVKSEhQXFyc4uPjtWvXLhUUFKhZs2YKCAjQ4MGDNW3aNHXp0kVt2rSRl5dXjWZJTU1VcnKyvv32WyUnJ+u9997TlClT5OXlpYCAAPXq1Uv9+/dXz5495e3tXWNZrMpmt9vtpkPUVqmpqWrbtq127dqlgIAA03EAAC5mz549io6OVkxMjL766iu5ubmpe/fu6tWrl7p3764777yz/DMrTCsuLta3336rbdu2adu2bdq4caMyMzN14403Kjg4WPfee6+CgoJqdGEJADVpxowZmjdvnlJSUkxHAXCZsrKytGzZMq1evVobNmzQzz//rJtuukl9+vRR9+7d1aNHD7Vq1cp0zHLp6elKSEhQYmKiNm3apO+++0716tVT3759NXDgQN1///1q0qSJ6Zi1weuUYjWIUgwAcLn27t2rRYsWKSoqSt99952uv/56DRw4UAMGDFC/fv101VVXmY54SUpLS7Vz507FxMQoJiZGX375pfz8/DRkyBANHz5cQUFB8vDghnUAroNSDHAt2dnZWrZsmaKiorRhwwZ5enqqb9++Cg4OVnBwsFq2bGk64iVLT09XbGysYmNjtW7dOuXn56tPnz4aPny4HnjgATVs2NB0RFdFKVaTKMUAAJciPz9fq1at0scff6wNGzaoUaNGCg4O1rBhwzRw4MBa8S2Qhw8f1tKlS7V48WJt375dTZs21ZgxYzRu3Di1bt3adDwA+FWUYoBr2LVrlz7++GOFh4erpKREQUFBGjZsmIYOHeoyLy5eTH5+vtatW6fFixdr2bJlKiws1JAhQzR+/Hj17duXz3a9PK+7mU4AAIBVHThwQE8++aSuvfZajRo1Sg0bNtTatWv1008/af78+Ro8eHCtKMQk6YYbblBoaKgSEhJ04MABjR07VgsWLFC7du10zz33aPXq1eJ1OgAAUBV5eXl6//331aFDB3Xt2lVff/213n77bR0/flyrVq3S6NGja0UhJp37QqXBgwdr/vz5ysjI0Icffqgff/xRQUFBuummm/T222/r559/Nh3TZVCKAQDgYImJifr973+vdu3a6fPPP9cLL7ygw4cPa9GiRerXr5/c3Gr35blly5Z69dVXlZ6ermXLlsnd3V2DBw9Wx44dNXfuXBUUFJiOCAAAXEBGRoamTp2q5s2b67nnntNdd92lr7/+Wl999ZXGjx9fa4qwC6lfv77+9Kc/KTExUcnJyerfv79efPFF3XjjjZo8eXL5N5Pjwmr3qhsAACcSHx+vu+66S927d9ePP/6oyMhIpaSk6Nlnn7Xkh6V6eHjo3nvvVUxMjJKSknTHHXfoiSeeUMuWLfXee+9RjgEAgPM6evSo/vKXv6hly5b65JNP9PTTT+vQoUP68MMPddttt5mOZ0SnTp303nvv6dChQ5oyZYoiIiLUqlUr/fnPf9aPP/5oOp7TohQDAKCGffHFF+rfv7969+4tm82mLVu26IsvvtDw4cNrzdsjr1SnTp30ySefKC0tTSNGjNDkyZPVtm1bffzxxyoqKjIdDwAAOIHjx49r4sSJatOmjZYvX663335b6enpeuGFF9SoUSPT8ZzC1VdfrSlTpigtLU3//Oc/FRsbq7Zt2yo0NFTHjh0zHc/pUIoBAFBDjhw5otGjR+vOO+9UTk6OVq5cqU2bNql3796mozmtZs2alS9wH3zwQYWGhqpTp05avHix6WgAAMCQoqIivfvuu2rXrp3Cw8P10ksvaf/+/Xr88cfl7e1tOp5T8vLy0tixY5WSkqJZs2Zp6dKlat26tV5++WXl5+ebjuc0KMUAAKhmZ86c0UsvvaR27dopMTFR0dHRSkxM1ODBg01HcxnXXHON/va3v+m7775T586dNXz4cA0cOFB79+41HQ0AADjQ8uXLdfPNN2vq1KkKDQ1VWlqannvuOfn4+JiO5hI8PT01fvx4paSkaOrUqXrzzTfVoUMHLVmyxHQ0p0ApBgBANdqyZYtuu+02vfXWW5o0aZL27NmjoUOHmo7lslq2bKklS5Zo8+bNysjIUJcuXTRlyhQ+bwwAgFouIyNDDzzwgO677z61b99e//nPf/TKK6+oXr16pqO5JB8fH02bNk379+/XPffcoxEjRig4OFjp6emmoxlFKQYAQDU4efKkHnnkEfXp00ddunRRSkqKXn75ZW7pryaBgYHauXOn/vGPf+j9999XQECAtm/fbjoWAACoZna7XR9++KHat2+vPXv2aPPmzVq1apX8/f1NR6sVrrvuOn300UfasmWL0tPT1alTJ82aNUulpaWmoxlBKQYAwBWKjY1Vx44dtW7dOkVHR2vx4sW69tprTceqddzd3fXUU09pz549at68uXr16qXJkyersLDQdDQAAFANfvzxR/Xt21ehoaGaMGGCvv32WwUGBpqOVSv17NlTu3fv1sSJEzVp0iQFBgbq4MGDpmM5HKUYAABVlJ+fryeffFIDBw5U37599Z///Ie3SjqAv7+/YmJiNHfuXM2ePVt33HGHvv/+e9OxAADAFYiKitItt9yiY8eOaceOHZoxY4bq1KljOlat5u3trVdeeUU7d+7U6dOndeuttyoiIsJ0LIeiFAMAoAr27t2rrl27av78+QoPD1d4eLj8/PxMx7KUP/7xj9q9e7e8vLz0m9/8RnPnzjUdCQAAXKazZ8/qT3/6k0aOHKmRI0dq586dCggIMB3LUjp37qwvv/xSjzzyiB5++GGNGjVKeXl5pmM5BKUYAACXaenSpbr99tvl6+urb7/9Vg8++KDpSJbVunVrJSQk6Omnn9b48eM1duxYvmYcAAAXkZaWpu7du2vFihVasWKF/vnPf6pu3bqmY1lSnTp19M4772jNmjWKi4vTHXfcoZSUFNOxahylGAAAl6ikpERTpkzRsGHDNGrUKG3ZskUtWrQwHcvyPDw8FBYWpuXLl2vJkiXq1auX5b9JCQAAZxcbG6uuXbtKkr766isNHjzYcCJI0oABA7Rr1y7VqVNH3bp104oVK0xHqlGUYgAAXILc3FwNHTpUs2bN0rx58/TPf/5TXl5epmPhF+6991599dVXys/P129/+1t9+eWXpiMBAIDzeO+99/S73/1OgwYN0vbt29WqVSvTkfALzZs3V3x8vH7/+9/r/vvv1xtvvGE6Uo2hFAMA4FdkZGTorrvuUmJiotauXasxY8aYjoQLaNu2rRITE9WtWzcFBgZq0aJFpiMBAID/Z7fb9fLLLys0NFQvvPCC5s+fLx8fH9OxcB516tTR3Llz9dZbb2nKlCkaO3asioqKTMeqdh6mAwAA4My+//57DRgwQHXr1tWXX37JK5kuoH79+lq2bJmeeOIJPfTQQzpx4oSeeOIJ07EAALC0/Px8Pfjgg4qJiVFkZKRGjBhhOhIuQWhoqJo3b65Ro0bp2LFjioqKqlWf+8adYgAAXMA333yjwMBA3Xjjjdq2bRuFmAvx8PDQ7Nmz9dprr+nJJ59UWFiY6UgAAFhWXl6eBg8erM2bN2vdunUUYi7mvvvu06ZNm/TFF18oODhYOTk5piNVG0oxAADOY+fOnerXr586duyomJgYNWzY0HQkVMGUKVM0e/Zsvfjii5oyZYrpOAAAWE5ubq4GDx6sr7/+WnFxcerZs6fpSKiC22+/XfHx8Tpw4IDuvvtuZWZmmo5ULSjFAAD4H9u3b9fdd9+tO++8UzExMfL19TUdCVdg/Pjxmjdvnt58801NnDjRdBwAACwjJydHffv21b59+xQfH69u3bqZjoQr0L59e23atEknTpxQv379dPLkSdORrhilGAAAv/D1119r4MCBuvvuuxUdHa06deqYjoRqMHr0aIWHh2vWrFmaPn266TgAANR6eXl5GjRokA4fPqwtW7bo5ptvNh0J1aBt27baunWrsrOzNWDAAJd/KyUftA8AwP/bt2+fBg4cqG7duumzzz6Tp6en6UioRiNHjlRBQYH+9Kc/qV69erydEgCAGlJYWKhhw4Zp79692rx5s9q0aWM6EqpRixYttGHDBgUGBio4OFhxcXGqX7++6VhVwp1iAABISk9PV58+fdS+fXutWLGCO8RqqTFjxujdd9/V1KlTNWfOHNNxAACodUpLSzVy5Ejt2LFD69atU8eOHU1HQg1o06aN1q5dq/3792vEiBEqLi42HalKKMUAAJZ36tQpDRo0SE2aNNHKlStr1ddMo7InnnhCL774okJCQhQbG2s6DgAAtcozzzyjmJgYrVy5UrfeeqvpOKhBHTt21Jo1a7R582Y98cQTpuNUCW+fBABYWlFRkYYPH67s7GwlJibqqquuMh0JDvDSSy/p4MGDGj58uLZu3cqiHQCAavDRRx/p3Xff1fz58/mWSYvo1q2boqKiNGTIELVq1UqTJ082HemycKcYAMDSQkJCtGPHDq1evVrNmzc3HQcOYrPZ9PHHH6tr164aPHiwjh8/bjoSAAAuLSYmRhMmTNCMGTM0atQo03HgQIMGDdLMmTP1/PPPa/ny5abjXBZKMQCAZc2ZM0f/+te/tGDBAu4UsiAvLy8tXbpUXl5eLv1ZGAAAmPbDDz9o1KhRevDBB/kiG4sKDQ3Vo48+qjFjxmj//v2m41wySjEAgCXt3r1boaGhmjZtmoYMGWI6Dgy5+uqrtWzZMn355Zd6/vnnTccBAMDl5Ofna/jw4brhhhs0e/Zs03Fg0AcffKDOnTvr3nvvVU5Ojuk4l4RSDABgOSdPntTQoUPVu3dvvfLKK6bjwLAuXbroo48+0syZM7Vs2TLTcQAAcCkhISH64YcftGzZMr6syOI8PT0VGRmpkydP6vHHHzcd55JQigEALOfPf/6zSkpKFBERITc3LoWQRo0apfHjx2vs2LE6cuSI6TgAALiEqKgo/fvf/9ann36qVq1amY4DJ3DjjTcqIiJCn332mebPn286zq/imQAAwFLmzZunpUuX6tNPP1WjRo1Mx4ETeeutt3TNNdfowQcfVElJiek4AAA4tSNHjujxxx/X448/rsGDB5uOAycSFBSkp556ShMmTFBKSorpOBdFKQYAsIwffvhBoaGhmjhxovr27Ws6DpxM3bp1FRERoR07dujtt982HQcAAKdVWlqqhx9+WE2bNtUbb7xhOg6c0IwZM9SmTRuNGTPGqV9spBQDAFiC3W7XuHHj1LJlS4WFhZmOAycVEBCgV155RdOnT3epb04CAMCRPvroI8XHxysiIoLPEcN5eXt7KyIiQl9//bXeffdd03EuiFIMAGAJn3zyiTZv3qzZs2fLy8vLdBw4sWeffVYdO3bU+PHjZbfbTccBAMCpHD16VFOnTtWkSZN02223mY4DJ3bzzTdr6tSpmj59ug4cOGA6znlRigEAar1jx45p0qRJeuqpp3TnnXeajgMn5+HhoX/961/avn275s6dazoOAABOJSQkRE2aNNH06dNNR4ELmDp1qtq1a+e0LzZSigEAar1nnnlGDRo00F//+lfTUeAibrnlFoWGhuq5555TZmam6TgAADiF5cuXa+XKlfr444/l4+NjOg5cgIeHhz788ENt3rxZixYtMh2nEkoxAECttmPHDkVGRurtt99WvXr1TMeBC3nppZfk4+OjF1980XQUAACMKyws1OTJk/WHP/xBd911l+k4cCF33HGHxowZo0mTJikvL890nAooxQAAtZbdbldoaKjuuusuDR061HQcuJj69esrLCxMH3/8sZKSkkzHAQDAqHfeeUeHDx/WjBkzTEeBC3r99deVk5OjmTNnmo5SAaUYAKDWioiI0K5du/TOO++YjgIXNXr0aN1222165plnTEcBAMCYEydOKCwsTJMnT1aLFi1Mx4ELatq0qZ5//nn9/e9/15EjR0zHKUcpBgColYqKivTSSy9pzJgx6tKli+k4cFFubm6aOXOm1q9fr40bN5qOAwCAEX/7299Ut25dTZ482XQUuLCnn35ajRs3VlhYmOko5SjFAAC10rx58/Tjjz/qhRdeMB0FLq53797q168f37IFALCkjIwMzZ49W88//7zq1q1rOg5cmLe3t6ZNm6a5c+cqLS3NdBxJlGIAgFqosLBQr7/+usaNG6eWLVuajoNaYMaMGUpMTFRcXJzpKAAAOFRYWJj8/Pw0btw401FQC/zxj3/UjTfe6DR3i1GKAQBqnXnz5unYsWOaOnWq6SioJbp166aBAwfqlVdeMR0FAACHycjI0Ny5czV9+nT5+PiYjoNawNPTUy+++KI+/fRTHTx40HQcSjEAQO1it9v1zjvvaPTo0br++utNx0EtMmXKFCUmJmrbtm2mowAA4BCzZs1SgwYN9Mgjj5iOglrkoYce0nXXXad3333XdBRKMQBA7bJy5Urt27dPTz31lOkoqGV69uypO++80+m+ShwAgJpw5swZzZkzR08++aTq1KljOg5qEQ8PDz355JOaM2eOTp48aTQLpRgAoFZ56623NGjQIHXo0MF0FNRCzzzzjFasWKGUlBTTUQAAqFGffPKJzp49qz//+c+mo6AWGjdunDw8PDRnzhyjOSjFAAC1RnJysrZu3aqnn37adBTUUkOHDlWLFi00e/Zs01EAAKgxdrtdH3zwgUaPHq1GjRqZjoNa6KqrrtLYsWP14YcfqrS01FgOSjEAQK0xZ84ctW7dWn369DEdBbWUu7u7Hn30UX366acqKCgwHQcAgBoRHx+vvXv3avz48aajoBYbP368Dh06pHXr1hnLQCkGAKgVzp49q/DwcI0fP142m810HNRijz76qE6fPq3ly5ebjgIAQI2YM2eOunXrpttuu810FNRi7dq1U69evYy+hZJSDABQKyxZskR5eXkaM2aM6Sio5a699loNHDhQc+fONR0FAIBql52draVLl2rs2LGmo8ACxo0bp5UrV+r48eNGxqcUAwDUCgsXLlRwcLCaNm1qOgos4JFHHtHGjRuVkZFhOgoAANVq2bJlstvtGjlypOkosIAHHnhAderU0eLFi42MTykGAHB52dnZ2rhxo0aMGGE6CiwiODhY9evX15IlS0xHAQCgWi1atEgDBw7UVVddZToKLMDHx0eDBw9WVFSUkfEpxQAALm/JkiVyc3PToEGDTEeBRdSpU8foAg4AgJqQmZmpjRs3atiwYaajwEKGDx+uhIQEHTlyxOFjezh8xBpUVFSk9PR00zHKlWX58ccfnaplv/HGG+Xt7W06BgBUm6VLl/KKJhxu+PDhuu+++3TkyBFdf/31puMAtU52draysrJMxyiXlZWloqIipaammo5SzsvLS82bNzcdA7XI8uXL5enpqd/97nemo8BC+vfvL19fXy1dulRPPvmkQ8e22e12u0NHrEGpqalq27at6RhOb9euXQoICDAdAwCqRV5enho1aqQ5c+bo4YcfNh0HFpKfn69GjRpp1qxZevTRR03HAWqdGTNmaNq0aaZjOLXWrVs7VUkH13ffffeppKREK1euNB0FFjNixAidPn1asbGxjhz29Vp1p1iZiIgItW/f3nQMp3P48GENGTLEdAwAqFYbN25UUVGR7rnnHtNRYDF16tRRYGCgYmNjKcWAGnLDDTdoxYoVpmM4pU8++cTRTx5RyxUVFWnTpk16/fXXTUeBBQ0YMEAhISE6c+aM6tat67Bxa2Up1r59e+6EOg/eVgSgNoqJiVFAQADfOgkjBgwYoOnTp6uoqEienp6m4wC1jre3N+v6C6AQQ3VLSEjQ6dOn1b9/f9NRYEHBwcEqKCjQli1bFBwc7LBx+aB9AIBLi4uL04ABA0zHgEUFBwcrJydHX3zxhekoAABckbi4OLVv316tWrUyHQUWdO2116pLly6Ki4tz6LiUYgAAl3X06FH98MMPuvvuu01HgUW1bdtWN9xwg+Lj401HAQDgimzdulV9+vQxHQMW1qdPH23dutWhY1KKAQBcVkJCgjw8PNStWzfTUWBhPXr00LZt20zHAACgygoKCvT111+re/fupqPAwnr06KGkpCSdPn3aYWNSigEAXNa2bdt0yy23qH79+qajwMLKSrHS0lLTUQAAqJKvvvpKBQUF6tGjh+kosLBevXqppKREX375pcPGpBQDALisHTt28IomjOvRo4dOnTql77//3nQUAACqJDExUc2aNVPLli1NR4GFNW3aVK1bt3boHfiUYgAAl1RcXKykpCR17drVdBRYXJcuXeTt7a3du3ebjgIAQJXs3r2bNRWcwm9+8xt98803DhuPUgwA4JL279+v/Px8denSxXQUWJyHh4fat2+v5ORk01EAAKiSpKQk1lRwCp07d1ZSUpLDxqMUAwC4pKSkJHl4eKhDhw6mowDq0qWLQxdwAABUl4KCAu3fv1+dO3c2HQVQly5ddPDgQeXk5DhkPEoxAIBLSk5OVrt27eTt7W06CqDOnTtzpxgAwCV9//33KioqUqdOnUxHAdSlSxfZ7Xbt2bPHIeNRigEAXFJqaqpuuukm0zEASVK7du109OhRnTlzxnQUAAAuS0pKitzc3NSmTRvTUQC1aNFCderUUWpqqkPGoxQDALikgwcP8g1JcBr+/v6y2+1KT083HQUAgMty8OBBXX/99dx9D6dgs9nUvHlzHTx40CHjUYoBAFzSwYMH1aJFC9MxAElSq1atJElpaWmGkwAAcHnS09Pl7+9vOgZQzt/fn1LM0YqKitSuXTuNHj260r6EhAQFBQWpQYMG8vX1VWBgoNauXVttY1/q+RMSEmSz2RQXF1dtYwOAK8rLy9OJEydYwF3Ezp07ZbPZ9PLLL5uOclH//ve/ZbPZtGTJkvJtF8qem5urJ598Uv7+/vLw8JDNZlNubq4kKTo6WgEBAapfv75sNpvefPNNR/425Ovrq0aNGlGKAU7CxNo+Ly9PERERuvfee+Xv7y9vb29dd911GjFihHbv3n3eHKzt4Qx4ofHiWFM5dk0lSS1btnTYmsrDIaO4gA8//FBpaWlas2ZNhe1xcXEaNGiQSkpKyrdt3bpV8fHxWrRokYYNG3ZF417O+Xv27KmgoCBNmjRJQUFBcnOj0wRgTceOHZPdbtf1119vOgoc6KWXXtJ7771Xafv333+vESNGqLi42ECq/7r++uuVkZFhNAOAc0ys7V9//XWFhYVV2JaRkaGoqCgtW7ZMK1eu1IABA8r3sbaHs8jIyOBD9i3GFdZUmzdvdshYzLySCgsLFRYWpqFDh1b4cMHCwkI99thjKikp0cSJE3XixAllZ2fr1Vdfld1uV0hISHmbWtVxL/f8zz77rJKTk7V48eIqjwsAri4zM1OS1KRJE8NJUBO6du0qu91e6VXN2NhYNWjQQN99951KSkpkt9tVv359rV+/XsXFxXrttdeUn58vu92uZ5991uG5GzVqpKysLIePC6AiU2t7X19fjRo1SqtWrdIPP/ygM2fOaPfu3QoKClJRUZEmTJhQ6RjW9nAGJ06cYE1VS7nqmqpx48bl6/2aRimmc7cHHj9+vNLt1evXr1d6erp69+6tmTNnqnHjxvLz89MLL7yg+++/X5mZmVqxYkWVx63K+fv27atmzZpp9uzZVR4XAFxd2UWyUaNGhpPAkTIyMnTTTTepQ4cOFe6oKLs7a+DAgUY/JLhx48aUYoATMLW2f+6557RgwQL97ne/U8uWLeXj46Nbb71Vy5cv19VXX60ffvih0hzB2h7OICsrizWVxTj7mqpRo0bKzs6ucFdvTaEUkzR//nz5+PhUuJ1ZOncrtSQ99NBDlY4ZNWqUJGnLli1VHvf/2Lv3uBzv/w/gr7u7o1QoJqayCCM5zjqQQ6YwZiMUZst5Dhub4xw2xw1jDjM5zmnURDWdnClhTouGkg7UjDKlVPdd9/37w7f7t1asUven7vv1fDz6w3Vf93W9uh899O59fQ4Vub5UKsXAgQNx6tQppKSkVPjeREQ1WUZGBgwNDWFsbCwsQ25uLr766iu0atUKhoaGMDMzQ69evYqtDXP69GlIJBJMmzat1GsEBARAIpFg+fLlqmNKpRLbt2+Hk5MTTExMYGRkBAcHB2zcuBFKpVJ1XlhYGCQSCdauXYvTp0/D1dUVJiYm6NSp00tznzlzBt7e3mjWrBkMDAxQv359vPvuu4iKiip23j+vf/z4cTg5OaFWrVpo0KABxo4di0ePHpXr83ry5AkmT54MS0tLGBkZoVOnTvj1119LPfff6198+umnkEgk+Pvvv3Hx4kVIJJJiX0WfX4cOHVTHRDA3N1fbU00iejFRtf2L1KpVC1ZWVtDV1S3xe4u1PYmWm5uLZ8+ewcLCQmgG1lRlpw01lYWFBRQKBZ48eVLl99L6plhBQQHOnj2LDh06QE9Pr9hrd+7cAYBS51e3bdu22DkVUdHrv/322wCAEydOVPjeREQ1WVZWFurUqSPs/jKZDL1798aiRYtw69Yt5OfnIysrCydOnICHh4fqib+rqyvs7OywZ88e5Ofnl7jOtm3bIJVK8eGHHwJ4XryNHDkSPj4+iI6ORnZ2NvLy8hATE4PJkydj/PjxJa5x7tw5uLm54cyZM8jOzoZCoXhh7gcPHsDV1RX79u1DQkICZDIZ0tPT8euvv6J79+6qPxj/ff0+ffogOjoaubm5ePToEbZu3Ypu3bqVeZpRXl4eevTogY0bN+LB6ozUFgAAIABJREFUgwfIy8vD5cuXMWDAAISFhZXpGjVBnTp1kJmZKToGkVYTWdu/yO3bt3H9+nUMGDAAhoaGJV5nbU8iZWVlAQDMzMyE3J81FWuq0hTV+WyKqcEff/yB7OxsODg4lHit6D+IevXqlXit6NirFL8VvX67du0AANHR0RW+NxFRTZaXlyd0SPeGDRsQFRUFKysrBAcHIzMzEykpKVi0aBEkEgk+++wzPHjwAADw8ccf4/Hjxzh8+HCxa6SmpiI8PBx9+/ZFo0aNAAB79uzB3r17YW9vj5CQEGRkZCA7OxunT5+Gg4MDtmzZUuL/fn9/f4waNQq3b99GQUEBrly58sLcEokEvXv3RnBwMO7duweZTIa//voLfn5+MDAwwIoVK0q8x9/fHyNHjkR8fDyys7Nx5swZ2Nvb49atW/jmm2/K9HmtX78e165dQ4sWLXDs2DE8ffoUd+/excSJE3HgwIH/fP/atWuhVCphZmaGLl26QKlUFvuaNWsWAODq1auqYyIYGBiUWqgTkfqIrO1Lk5OTAy8vL5iZmWH16tWlnsPankTKy8sDAGF1FWsq1lSlKfp5lMlkVX4vrW+KFc2ZLW246Mt+ACrjh6Oi1y9aBJE7XBGRtpLJZNDX1xd2/6IFkQ8cOID+/fvD1NQUTZo0wcKFCzFmzBjk5eUhKCgIADB69Gjo6upi27Ztxa6xc+dOFBYWwsfHR3Vsx44dkEqlCA8Ph4eHB+rVqwdjY2N069YN+/btA4AS6928/fbb2Lp1K+zs7CCVSl+a+7XXXsPy5cuxa9cudOnSBbVq1cJrr70GT09P5OTk4Pr16yXe89Zbb2H79u1o1qwZjI2N0bVrVxw+fBh6enrFtvx+mYMHD0IikeDgwYPo1asXateujaZNm2Ljxo3o1atXma5RE+jr67MpRiSYyNr+33JycjBw4EDcunULhw8fho2NTannsbYnkYqaDqLqKtZUrKlKU/TzqI66SuubYkXD8UxMTEq8VjSE9PHjxyVe+/vvv4udUxEVvb6pqSkA9QwlJCKqjkQ3xe7cuQNzc3PVlJd/6t+/v+oc4HnR1L9/f9UCz8DzP7527NiBhg0bol+/fqr3xsbGorCwEE2aNIGuri6kUil0dHSgo6OD1q1bA0CJNWfc3NzKvN7DuXPn4OTkBH9/f6SlpZXYbjs3N7fEe955550S13/jjTdgZ2eHhIQEAM83Pvj3mhT//IP0zp07aNy4sep7+Kd/r/lTk3GkGJF4Imv7f1+vd+/eOH/+PEJCQtCtW7cXnsvankQq+r0lqq5iTcWaqjRFI8XYFFODormqRcOp/6loC+cbN26UeC0mJqbYORVR0esXDeuuW7duhe9NRFSTyeVy6OrqCs1QnoVHx4wZoyraAODUqVNISEhQPfEsUrR2RWFhIQoLC6FQKEoMXf/3MPLy7Ba1YsUKyGQyLFy4EHfu3EFubq7qHi1atCjzdah0+vr6kMvlomMQaTWRtX2RP//8E66urrh+/TpCQ0Ph6ur60vNZ25NIRc2cf6/Bp06sqejfin4eOX1SDSwtLQGg1N2iip7o7N27t8Rre/bsKXZORVT0+kVZi7ITEWkbPT29Ek/k1KlZs2ZIT0/HxYsXS7wWEhKiOqeIu7s7Xn/9dezYsQMKhQJbt24F8HxtjH9q2bIlatWqhSdPnpRY46Hoq6zD60tz9+5dvPbaa1i0aBFsbW1haGgIiUSChIQExMfHl/qeiIiIEtOK7t69i7i4ONja2gJ4Pk3p3zn/+Xu1WbNmSE1NRWxsbInra9KisDKZTOgfFUQktrYHgISEBDg7OyM5ORnh4eHo2rXrf76HtT2JVNRIElVXsaZiTVWaooeM6hjBqPVNsTfffBO1a9fGtWvXSrzm5uYGKysrnDlzBjNmzEB6ejoyMzOxZMkSBAQEwMLCAu+9916F713R6xdlLW2IKRGRNtDX11fLk6MXGTJkCABg6NChCAkJQVZWFu7fv4/FixfD19cXBgYGGDBggOp8qVSK0aNHIyUlBX5+fggICICrqyuaN29e7Lo+Pj549uwZ3Nzc8Ouvv+LRo0eQyWRITk7GkSNH8MEHH+D48eMVzm1lZYWHDx9iw4YNyMzMRGZmJkJCQtC3b98X7rB08eJF+Pj44M6dO8jJyUFkZCQGDRoEuVyOwYMHl+m+H3zwAZRKJT744AOcOHEC2dnZSExMxCeffPJK3091I5PJhG4AQURia/sbN27AxcUFf//9N44ePQonJ6cyvY+1PYmkzmlqpWFNxZqqNEV1vlrqKqUGiY+PVwJQXr58uVzvc3d3VxoaGirz8vJKvBYaGqqUSqVKAMW+JBKJ8sCBAyXOd3Z2VgJQXr16tUz3Lu/1lUqlcsKECUoAyqSkpHJ9nxX9fIiIqpuVK1cqra2thd0/Pz9f6eTkVOL/7qKvTZs2lXhPYmKiUiKRKM3MzJQAlLt27SpxjkKhUI4ePfqF1wWgDA0NVSqVz39/AFCuWbOm1Iy//fabEoBy4cKFqmOHDx8u9Zrt27dXtmnTRmlubq46t+j6gwcPLvX3VMuWLZVPnz4t0+eVm5urbNeuXam/64YOHaoEoPT3939pdqVSqTQzM1N26dKlxPVnzZpVrt+9VWXhwoXK1q1bC81ApEmWLl2qtLW1Lff7RNX2Pj4+L/3/+0XXqWhtX9HPh+ifkpKSlACUFy5cEHJ/1lSsqUpz48YNJQDlH3/8UdW3Wqb1I8UAYOTIkcjLy1MNz/wnd3d3nDp1Cr169YKJiYlql4iwsDB4enqWOL+oK1zWtW7Ke/3CwkIEBgaiW7dusLa2Lud3SkSkGUQvaK6vr49jx45h4cKFaNGiBfT19WFiYoIePXogNDQUEyZMKPEeGxsbuLm5ITMzE2ZmZqU+EZRIJNixYwcOHDgANzc31K1bF/r6+njjjTfw3nvv4dChQ3Bzc6tw7oEDB2Lv3r1o27YtjIyMYGlpifHjx+P48eMvfBLn7OyM0NBQvPXWWzAyMoKFhQV8fHxw5swZ1K5du0z3NTQ0xMmTJzFp0iS89tprMDQ0RPv27XHo0CGNWhSWI8WIqgeRtX15sbYn0USPFGNNxZqqNOrcFVWiVFbB/sOC3LlzB82bN8fly5fRoUOHMr9PJpPh9ddfh4uLCwICAip8f4VCAXNzczRu3BjXr18v14KBZRUREYE+ffrg559/xrBhw8r13op+PkRE1c2uXbswfvz4Unf2ocoRFhYGDw8PrFmzBp9++qnoODXCxIkTERcXp1HTF4hEWrZsGbZv367aea6stKW2r+jnQ/RPubm5qFWrFoKDg1W7PVLlYk1VfidOnECvXr2Qnp5erg0QKmA5R4rhefdx3rx5CAoKeuGieGVx48YNPHnyBLNnz66SX5oAsGrVKrRp00Y195qISBtZWFggLy8POTk5oqMQqWRkZFR14UZEZcDanqjsjIyMUKtWrVI3pyASJT09HTo6OmrZlZdNsf+ZNGkS3njjDXz99dcVvkZkZCSsra3L/ZSnrKKionD06FGsWrUKUqm0Su5BRFQTFDUeMjIyBCch+n9qeJpJRGXE2p6o7MzNzVlTUbWSkZGBunXrQken6ltWVTM5vgbS09NDXFzcK11j0qRJmDRpUiUlKsnZ2bnEFq5ERNqoqPGQnp4OKysrwWmInnv8+DHq1asnOgYRgbU9UXlYWFhwpBhVK+ocfc+mGBER1TgNGzYEAKSmpnKNxCri7u7OP9bKKTU1FZaWlqJjEBERlUvDhg2RlpYmOobGYk1VfmlpaWqrqTh9koiIapzatWvDwsICSUlJoqMQAQCePn2K9PR0NG3aVHQUIiKicrGxsWFNRdVKYmIibGxs1HIvNsWIiKhGsrGxQXJysugYRACg+mNCXQUcERFRZWFTjKobNsWIiIj+Q9OmTVnAUbWRmJgIALC2thachIiIqHxsbGyQmpoKuVwuOgoRlEolkpOT1Tb6nk0xIiKqkZo1a4bbt2+LjkEEAIiLi4OlpSVq164tOgoREVG5NG/eHIWFhbhz547oKERISUlBXl4ebG1t1XI/NsWIiKhGsre3x61bt5Cfny86ChFiYmLQtm1b0TGIiIjK7c0334Suri5iYmJERyFCTEwMJBIJ2rRpo5b7sSlGREQ1Utu2bVFQUIBbt26JjkKE69evsylGREQ1koGBAezs7HD9+nXRUYgQExMDa2tr1KlTRy33Y1OMiIhqpBYtWsDQ0JBPNUm4goIC3Lx5E/b29qKjEBERVUjbtm3ZFKNqQd0PGtkUIyKiGklXVxetW7fG5cuXRUchLRcbG4v8/Hy0a9dOdBQiIqIKadeuHWsqqhauXr0KBwcHtd2PTTEiIqqxnJyccO7cOdExSMudPXsWZmZmePPNN0VHISIiqhAnJyekpqYiOTlZdBTSYn/99Rfi4uLg7OystnuyKUZERDWWs7Mzrl69iuzsbNFRSItFRUXB2dkZUqlUdBQiIqIK6dSpE/T19REVFSU6CmmxqKgoSKVSvP3222q7J5tiRERUY7m4uKCgoACXLl0SHYW0WFFTjIiIqKYyMjJChw4d2BQjoaKiomBvbw8zMzO13ZNNMSIiqrEaN24MGxsbnDp1SnQU0lIJCQm4d+8eXFxcREchIiJ6JV27dmVNRUKdOnUKXbt2Ves92RSrYvn5+aIjEBFptD59+iA0NFR0DNJSYWFhMDExgaOjo+goRKQGrO1Jk73zzjv4448/uK4YCfHgwQNcvXoV77zzjlrvq6vWu6nJ/fv3YWpqKjoGAGDZsmWYO3eu6BgAgJSUFNERiIgqnbu7O7Zs2YKHDx+iQYMGouOQlgkLC4Obmxv09PRERyHSSHK5HHfu3BEdAwDw6NEjBAYGYsyYMaKjAAAeP34sOgJpmG7duqF27doICwvD+PHjRcchLRMeHg59fX10795drffVyKbYwIEDRUcoZseOHaIjEBFprF69ekFXVxfHjh2Dl5eX6DikRWQyGU6dOoXVq1eLjkKksVJSUtC8eXPRMYr55ptvREdQsbW1FR2BNIi+vj569OjBphgJER4ermrMqpNGNcWaNGmCy5cvi46hsnv3bqxduxbjxo2rVv+ptGrVSnQEIqJKY2Jigq5du+Lw4cNsipFaHT16FDk5OfDw8BAdhUgj+fj4wN3dXXQMFS8vL9y+fRt+fn7VphllaGgoOgJpmH79+mHGjBnIycmBsbGx6DikJWQyGUJDQ7FgwQK131uiVCqVar+rlnBwcEBMTAysra2RlJQkOg4RkcbavHkzpk+fjr/++kvtT5dIe40aNQoJCQncqYtICyQkJKhGrM2dOxdLliwRnIioaqSnp8PS0hJ79+6Fp6en6DikJYKDgzFw4EAkJSXByspKnbdezoX2q8jt27cRExMDAEhOTsalS5cEJyIi0lwffPABZDIZjhw5IjoKaYn8/HwEBQXxDwYiLbFv3z7o6upCqVTip59+AscVkKaysLBA9+7d4e/vLzoKaRE/Pz84OTmpuyEGgLtPVpmff/5Zteiunp4efv75Z8GJiIg0l4WFBXr06AE/Pz/RUUhLhIeH4+nTpxg8eLDoKESkBrt374ZcLgfwfFOvCxcuCE5EVHU8PT0REhKC7Oxs0VFIC+Tl5Ql90MimWBXZtWuX6henXC7H7t27UVhYKDgVEZHm8vLywpEjR5Ceni46CmmBn376Cd26dUPjxo1FRyGiKnbt2jXEx8er/q2vr88H3qTR3n//fRQWFvJhI6nFoUOH8OzZMwwZMkTI/dkUqwKXLl1CYmJisWOPHj3CmTNnBCUiItJ8Q4cOhZGREXbt2iU6Cmm4v/76C8HBwRgzZozoKESkBv+cAQI8XxB69+7dKCgoEJiKqOqYm5tj0KBB2LJli+gopAW2bNmCfv36wdLSUsj92RSrAj///DP09fWLHdPT08O+ffsEJSIi0nxGRkYYNmwYfH19udYLVakdO3bA2NgYgwYNEh2FiKqYUqnEnj17VDNAivz99984efKkoFREVW/s2LE4f/48fv/9d9FRSIPdvXsXp06dwtixY4VlYFOskikUCuzZswcymazYcblcjgMHDiA/P19QMiIizTdu3Djcvn0bZ8+eFR2FNJRCocC2bdswcuRI1KpVS3QcIqpikZGRSEtLK3GcD7xJ0/Xo0QPNmjXD1q1bRUchDebr64vGjRvD3d1dWAY2xSrZ6dOn8fDhw1Jfy87ORkREhJoTERFpj/bt28PR0RFr1qwRHYU0VHBwMBISEjBx4kTRUYhIDUqbAQI8f+Dt5+eH3NxcAamIqp5EIsGkSZOwc+dO/P3336LjkAbKzs7Gli1bMH78eEilUmE52BSrZPv27Su25sA/SaVS7N27V82JiIi0y4wZMxAYGIhbt26JjkIaaOXKlejfvz9atWolOgoRVbGCggLs37+/xAyQIrm5uQgLC1NzKiL1GTNmDHR1dbF582bRUUgDbdu2DXl5eZgwYYLQHGyKVaKiJ0b/XnOgSEFBAQ4fPsytbYmIqtCgQYNga2uLdevWiY5CGua3335DVFQUPv/8c9FRiEgNjh49+tIRMlKpFHv27FFjIiL1MjExwdixY7F+/foXNoeJKqKwsBDr1q2Dj48PLCwshGZhU6wShYaGIisr66XnyOVyBAUFqSkREZH20dHRwaeffoqdO3fizz//FB2HNMjSpUvRuXNndOvWTXQUIlKDl80AAZ4/8A4ODkZmZqYaUxGp19SpU/Ho0SPu7k2Vav/+/UhOTsa0adNER2FTrDLt27cPEonkpecolUrs3r1bTYmIiLSTj48PzM3NsWLFCtFRSENcvnwZQUFBWLBggegoRKQGubm5OHjw4AtngBSRy+UIDAxUUyoi9Xv99dfx0UcfYfHixdw0jipFYWEhFi9eDG9vb9ja2oqOA13RATSFQqFAbm5usafH+fn5iI2NRatWrWBkZKQ6LpFIIJPJSl20k4iIXp2hoSFmz56NGTNm4PPPP0eTJk1ER6Iabv78+ejYsSP69esnOgoRqcGNGzfg6OiIwsJC1bEHDx4gIyMDrVu3Vh2TSCRISkoSkJBIfRYuXIjdu3dj+/bt3GiGXtmuXbtw586dajODTqJUKpWiQ2iqO3fuoHnz5rh8+TI6dOggOg4RkVaRyWSws7ODu7s7fvzxR9FxqAY7d+4cnJ2dER4ejnfeeUd0HCISZNmyZdixYwfi4+NFRyFSu6lTpyIgIADx8fHFBnwQlYdMJkPLli3Rq1cvbNmyRXQcAFjO6ZNERKSR9PX1sXDhQmzbtg2xsbGi41ANpVQq8fnnn8PV1ZUNMSIi0lpz5sxBZmYmVq9eLToK1WDr16/HgwcPMH/+fNFRVNgUIyIijfXhhx+iffv2mDp1qugoVEPt3bsXFy5c4B8BRESk1SwtLTFnzhwsX74cKSkpouNQDfTw4UMsXrwYn3/+OaysrETHUWFTjIiINJaOjg7Wrl2LkydPIjg4WHQcqmFyc3Mxb948jBkzBh07dhQdh4iISKgZM2agUaNG+PLLL0VHoRroyy+/RO3atTFr1izRUYphU4yIiDSak5MTPD09MX36dOTm5oqOQzXI4sWLkZmZicWLF4uOQkREJJyBgQGWL1+OPXv2ICoqSnQcqkEuXbqE7du3Y8WKFTA2NhYdpxg2xYiISOOtWbMG6enp+Prrr0VHoRri+vXrWLVqFZYtW4YGDRqIjkNERFQtDB48GP3794ePjw/y8vJEx6EaoKCgAOPGjYOLiwu8vb1FxymBTTEiItJ4lpaWWL58OVatWoUrV66IjkPVnEKhwPjx49GxY0dMmDBBdBwiIqJqZcOGDUhLS8OKFStER6EaYNWqVfjjjz/w448/QiKRiI5TAptiRESkFcaPHw8nJyeMHTsWcrlcdByqxtauXYsrV65g27Zt0NFhqURERPRPVlZWWLJkCZYvX47r16+LjkPVWFxcHL7++mt89dVXaNmypeg4pWKlR0REWkEikWDLli24ffs2Fi1aJDoOVVPXr1/HvHnzMH/+fLz55pui4xAREVVLkydPxltvvQVvb29Oo6RSyeVyeHt7o3Xr1pgxY4boOC/EphgREWkNOzs7rF69GitWrMDJkydFx6FqJi8vDyNGjECnTp0we/Zs0XGIiIiqLR0dHezbtw/379/HnDlzRMehamj+/Pm4efMm9uzZA11dXdFxXohNMSIi0irjx4/Hu+++i9GjR+PJkyei41A18sUXXyAlJQV79uyBVCoVHYeIiKhaa9KkCdavX4/vv/8eYWFhouNQNXLy5EmsXLkSa9euRYsWLUTHeSk2xYiISOts3boVhYWFGDlyJBQKheg4VA0cOHAAGzduxKZNm2BtbS06DhERUY3g7e0NLy8vjBw5EikpKaLjUDWQlpYGLy8vDBo0CGPGjBEd5z+xKUZERFrHwsICv/zyCyIiIrBkyRLRcUiwW7duYdy4cZgyZQqGDRsmOg4REVGNsnnzZjRs2BADBw5Ebm6u6DgkkFwux7Bhw2Bqaopt27aJjlMmbIoREZFWevvtt/Hdd9/hq6++QmhoqOg4JEhmZiYGDhwIe3t7rFq1SnQcIiKiGsfY2BgHDx5EYmIipkyZIjoOCTR9+nRcvXoVAQEBMDMzEx2nTNgUIyIirfXJJ5/A29sbw4cPR2xsrOg4pGYFBQUYOnQonj59Cj8/P+jp6YmOREREVCPZ2dnhp59+wo4dO7BmzRrRcUiAH3/8ERs3bsTWrVvRunVr0XHKjE0xIiLSalu3bkWHDh3Qp08f3L9/X3QcUqOpU6fizJkzCAgIQKNGjUTHISIiqtEGDhyI5cuX4/PPP0dAQIDoOKRGoaGhmDJlChYtWoShQ4eKjlMubIoREZFW09fXh7+/P4yNjTFo0CDk5OSIjkRqsHz5cvj6+mL//v14++23RcchIiLSCDNnzsS4ceMwcuRIXLx4UXQcUoOrV69i6NCh8Pb2xvz580XHKTc2xYiISOuZm5sjJCQEycnJGDRoEPLz80VHoiq0detWzJs3D9999x0GDBggOg4REZFGWb9+Pbp3745+/fpxeQoNFxcXBw8PD3Tu3Bm+vr6QSCSiI5Ubm2JEREQAbG1tcfToUVy+fBnvvfceZDKZ6EhUBQ4ePIgJEyZgwYIFmDp1qug4REREGkdXVxe//PILWrdujZ49e+LWrVuiI1EVuHfvHvr06QNra2scPnwY+vr6oiNVCJtiRERE/+Pg4IBff/0VkZGRGDVqFAoLC0VHokoUGBiI4cOHY9q0aVi0aJHoOERERBrLyMgIQUFBsLa2Rp8+fZCcnCw6ElWiP//8Ez179oSZmRnCwsJgYmIiOlKFsSlGRET0D46OjggMDERwcDCGDx/OEWMawt/fH56envDx8cGqVatExyEiItJ4pqamCAsLQ926deHq6oo7d+6IjkSVIDk5Gd26dYOenh4iIiJQt25d0ZFeCZtiRERE/9KzZ0+EhYUhPDwc7733HnJzc0VHolewd+9eeHl5YcyYMdi4cWONXO+CiIioJqpXrx5OnToFS0tLuLi44Pr166Ij0StITExEjx49YGBggOPHj6NBgwaiI70yNsWIiIhK0bVrV0REROD8+fPo378/srKyREeiCli3bh1GjhyJWbNmYePGjdDRYelDRESkTnXq1EF4eDjs7OzQs2dP/Pbbb6IjUQVcu3YNTk5OaNCgAc6ePQtLS0vRkSoFK0MiIqIX6NKlC06ePImbN2/CxcUF9+7dEx2JykihUGD69On49NNP8c0332DJkiWiIxEREWmtoqmUnTt3Rvfu3XH48GHRkagcQkND0a1bN7Ru3RpHjx6t8VMm/4lNMSIiopdwcHDApUuXIJVK0aVLF/j5+eHx48eiY9FL5OXlwcvLCz/88AP27NmDL774QnQkIiIirVerVi0EBwfjo48+wvvvv89Nb2qIbdu2YeDAgfjggw8QEhJSoxfVLw2bYkRERP+hUaNGCAwMhK6uLoYPH46IiAjRkegFkpKS4OLigmPHjuHYsWPw8vISHYmIiIj+RyqVYsOGDVixYgW+/vprjBs3Dvn5+aJjUSnkcjmmTp2KsWPHYv78+di+fTv09fVFx6p0bIoRERG9hEKhwLZt29C+fXvcu3cPjo6OGD58OKZPn46CggLR8egfIiIi0KlTJ8jlcly4cAEuLi6iIxEREVEpZs6ciYCAABw4cADdunXjEhXVTFpaGnr06IEdO3Zg//79mD9/vsZuVMSmGBER0QtcvHgRnTp1wrhx4/D48WNIpVL4+/tjz5492Lx5M3r16oXU1FTRMbVeYWEhFi9ejL59+8Ld3R3R0dGwtbUVHYuIiIhe4r333sPFixeRk5ODjh07ciR+NXHy5El07NgR6enpOH/+PDw9PUVHqlJsihEREf1LRkYGpkyZAkdHR9y4cQMKhQK6urro06cPLC0t4e3tjejoaDx48AAODg44dOiQ6MhaKyUlBT179sTSpUuxdu1a7NmzB7Vq1RIdi4iIiMqgRYsWOH/+PNzc3ODu7o4ZM2ZwOqUgcrkcc+bMgZubG5ydnXHx4kW0bt1adKwqx6YYERHR/xQUFMDX1xdvvPEGNm/eDIVCAblcDuD5aKQxY8aozm3bti2uXLmC999/H++//z7GjRuHnJwcUdG10oEDB+Dg4ICMjAxcuHABkydPFh2JiIiIyql27drYt28fdu7cia1bt+Ltt9/GH3/8ITqWVomLi4OTkxPWr1+PzZs345dffoGpqanoWGrBphgRERGA06dPw97eHhMnTkRWVpaqGVbE1NQU/fr1K3bM2NgYvr6+CAgIQEBAANq0aYPw8HB1xtZKaWlpeP/99zF8+HB4e3vjt99+g4ODg+hYRERE9ApGjRqFq1evwsjICB06dMDixYshk8lEx9JoBQUFWLFiBdq1awcAuHLlSrGHwNqATTEiItJqqampGDFiBHr06IH4+HgoFIoS5+jire5ZAAAgAElEQVTp6cHHx+eFO+4MGjQIsbGx6Nq1K9zd3eHp6YlHjx5VdXStk5aWhi+++AL29vb4/fffER4ejg0bNsDIyEh0NCIiIqoEb7zxBiIjI7Fu3Tp8++236NixI86fPy86lka6du0aHB0d8dVXX2HmzJmIioqCnZ2d6Fhqx6YYERFppby8PCxZsgS2trbw9/eHUqlEYWFhqefK5XKMHj36pdd77bXXsGvXLhw5cgQXLlxAixYt8M033/AJZyW5dOkShgwZglWrVqFVq1b4/fff0bt3b9GxiIiIqJLp6Ohg3LhxiImJQePGjeHk5IRRo0bhwYMHoqNphIyMDEybNg2dOnWCkZERrl69ikWLFr3w4a+mY1OMiIi0kkwmw9mzZ5Gfn//SxpVEIkG7du1gb29fpuv27dsXN27cwNixY7Fw4UK0b9+euym9gvv372PEiBF46623YGBgAGdnZ0RFRWH06NFcw42IiEiDNW3aFGFhYdi3bx9Onz4NOzs7rFixggvxV5BMJsPq1atha2uLgwcPYufOnTh9+jRatmwpOppQbIoREZFWMjU1RUhICGbNmvXS86RSKcaNG1eua5uYmOCbb75BXFwcOnbsiD59+sDFxQWnTp16hcTaJT09HbNnz4adnR3OnDmDnTt34sSJE/Dw8IBEIkFgYCA6d+6MxMRE0VGJiIioCg0bNgy3bt3CvHnzsGzZMjRv3hzff/89m2NlpFAo4O/vj9atW2Pu3Ln48MMPcfPmTYwYMQISiUR0POHYFCMiIq0llUqxYsUKbN68GVKpFDo6JX8tSiQSDBs2rELXt7Kywq5du3Dq1Cno6OigR48e6Nu3L3777bdXja6x0tPTMXfuXDRt2hQ7d+7E8uXLERcXh1GjRgEAHB0doVQqUVBQgPj4eDg4OODo0aOCUxMREVFVMjIywqxZs3Dz5k30798fM2fOxJtvvomffvqpxOZI9FxBQQH27t2Lli1bwtvbG927d0d8fDy+//57mJiYiI5XbbApRkREWm/kyJFwc3ODkZER9PT0VMd1dXXxwQcfoG7duq90fVdXV5w5cwZnz55FTk4O3nrrLbi4uMDf3/+F65hpm8TEREybNg02Njbw9fXFjBkzEBcXh2nTpsHQ0FB1XpcuXSCVSgE8L/ays7Ph7u6Ob775RlR0IiIiUpPGjRvjhx9+QHx8PNzc3DBmzBhYWVlh0aJF+Pvvv0XHqxays7Ph6+uL1q1bY9SoUWjXrh1iY2OxZcsWWFlZiY5X7bApRkREWk2pVGLMmDH47bff4Ofnh4YNG6oaYwUFBfDx8am0e7m4uOD06dM4duwYTE1NMXToUNjb22PTpk3IzMystPvUFAqFAsePH8fgwYPRrFkzBAcHY9myZUhKSsKiRYtgampa4j3GxsZo0aKF6t9KpRIKhQJz587F0KFD8ezZM3V+C0RERCSAlZUVNm/ejPj4eAwbNgzfffcdmjZtihkzZuD27dui4wmRkJCA2bNnw9raGtOnT0fv3r0RFxcHPz8/NG/eXHS8aotNMSIi0moLFy6Ev78//Pz80LdvX1y+fBkdO3YEAFhaWqJnz56Vfs9evXohJCQEMTExcHR0xOeff45GjRrho48+QlRUVKXfr7pJS0tTrQni5uaGBw8eYP/+/YiPj8fUqVNRu3btl76/e/fuJXZIUigUOHToENcZIyIi0iI2NjZYs2YNUlJSMGfOHBw8eBCtWrWCq6srdu/ejdzcXNERq1ReXh5+/vln9OrVC82bN8fevXsxffp0JCcnY8OGDbC1tRUdsdpjU4yIiLSWn58flixZgvXr16NXr14AgPr16+PUqVMYMWIExo4dW+o6Y5WlTZs22LZtG/7880+sWbMGMTExcHFxgbW1NaZNm4bIyEgolcoqu786PX78GLt27cK7774La2trrFy5Em5ubrh27RoiIyMxZMgQ1bTI/+Lo6IiCgoISx+VyOeLj49G+fXscP368sr8FIiIiqqbq1KmDWbNm4e7du4iIiMBrr72GMWPGwNzcHO+++y527dqFnJwcJCcni476ygoLCxEZGYnx48ejYcOGGDFiBHR0dHDgwAEkJiZi3rx5MDc3Fx2zxpAoNaXarobu3LmD5s2b4/Lly+jQoYPoOERE9A+//fYbXF1dMXnyZHz77bclXlcqlXj27BmMjY3VmuvatWvYv38//Pz8kJiYCFtbW/Tr1w8eHh5wdXWFkZGRWvO8ipiYGISFhSEsLAxnzpyBoaEh+vfvD09PT/Tr1w8GBgYVum5CQgKaNWv2wtelUimUSiWWLVv2n7uLEhGV1bJly7Bjxw7Ex8eLjkJEZfDw4UPVbIDIyEgYGxtDX18fK1euhLu7OywtLUVHLLO//voL4eHhqrrqyZMncHJygqenJ4YMGVKjvpdqZjmbYlWITTEiouopKSkJb7/9Njp27IigoKAyj1BSt4sXLyIgIABhYWH4/fffYWRkhG7duqFr165wcXFB586dUatWLdExATxvIt68eRNRUVGIjIzE8ePHkZqaigYNGuCdd97BgAED0K9fv0rLa25ujsePH//neZMmTcLGjRsr5Z5EpN3YFCOquVJTUzFo0CBcunQJBgYGyM/Ph4ODA7p37w4XFxc4OzujYcOGomOqPHz4UFVTnTp1ClevXoW+vj66du2Kvn37YvDgwWjSpInomJqATbGqxKYYEVH18/TpUzg7O0MqleLs2bP/uX5VdZGWloawsDAcP34cZ8+exb1796Cnp4f27dujXbt2sLe3h729Pdq2bVvm3TLlcnmx3TbLSiaT4datW7h+/TquX7+OmJgYXLx4ERkZGTA2NkaXLl3Qo0cPuLu7o0OHDlUyBXXgwIH49ddfoVAoSrymo6MDhUIBd3d3/Pjjj7C2tq70+xOR9mFTjKjmOnDgAIYNGwYAyMrKQmRkJMLDw3HmzBnExMSgsLAQtra26NixI9q2bauqq2xsbCCRSCo9T3R0NBwdHQEAycnJxWqqK1euIC4uDlKpFK1bt4arqyveeecd9OjRQ+0zGLTAcl3RCYiIiNSlsLAQXl5eePToES5evFhjGmIA0KhRI3z88cf4+OOPAQD37t3D2bNnceHCBcTExMDf31+1FXndunVhY2ODpk2bwsrKCo0aNYK5ubnqy8jICJmZmbh8+TI8PT1hYGCg2rUxKysLcrkcGRkZSE9PR0ZGBjIyMpCcnIzExEQkJSUhNTUVCoUC+vr6aNWqFezt7TF//nw4OzujXbt20NWt+vLC2dkZoaGhJZpiurq6qFOnDlavXo1Ro0ZVeQ4iIiKq3uLi4vDRRx8VO+bh4QEPDw8Azx+Ynj9/HlFRUbh27Rq2bduGpKQkKJVKGBgYwMbGRvXVuHFjmJubw8LCAvXr14epqSkMDQ1Vy1uYmJjg6dOnAIDc3Fzk5eUhKysL6enpqroqJSUFe/fuRZMmTZCcnIy8vDwAzzcNsLe3x9ChQ+Hk5AQnJ6dSd+KmysWmGBERaY3PPvsMx48fx8mTJ2v8kPMmTZrAy8sLXl5eqmP3799HbGws7t69q2pgRUdH48GDB8jIyEB2dnaJ68ycOfOF99DX11c10qysrGBvb493330XNjY2aNmyJVq2bFmhkWaVwdHREXK5XPVvXV1dFBYWok2bNoiIiED9+vWF5CIiIqLqIz8/H4MHDy62QU9ubi5MTExU/zYxMUHv3r3Ru3dv1bGsrCzExsYiPj5eVVPdvn0bp06dUj0wLO+ku38+nHz27Bns7OwwZ84cNGvWDG3atIGZmdmrf8NUbmyKERGRVti6dSs2bNiAvXv3okuXLqLjVInXX38dr7/++gtfz8/PR0ZGBp49ewZHR0c8efIEYWFh0NPTUw3HNzMzg66uLszNzYsVjNVNp06doKuri4KCAujo6KBVq1ZYvnw5hg0bho0bN2LRokWiIxIREZFg06dPx82bN0s0xf6LqakpHB0dVVMc/02pVCIjIwNZWVnIz89Xjbh/8uQJ6tSpAwAwMjKCoaEhTExMYG5urlpO4ttvv8Xvv/+Oa9euISAgQC0j7OnF+OkTEZHGi4iIwMSJE7F48WIMHz5cdBxhDAwM0KhRI0RERCA9PR0SiQQPHz6skZ+JkZER7O3tcevWLSxbtgxTpkyBVCrFV199hTlz5mDo0KFo1aqV6JhEREQkyK+//opNmzaVGNFV1MB6FRKJBBYWFrCwsCj3e6Ojo6Gjo4PU1FTs2bMHo0ePfuU8VHGVv/ItERFRNXLr1i0MHToUH3zwAebOnSs6TrWwbds26OnpQSqVwt/fX3ScCpszZw5u376NTz/9VLWD6LRp09CmTRtMnDix3NMaiIiISDPcu3cP3t7epb5WlpFiVSkqKgoKhQJKpRILFy4sNoqN1I9NMSIi0lgZGRl499130bp1a/z0009VsntQTZOZmYnDhw9DLpejoKAAISEhlfLEVIQhQ4aUWBtOKpVi8+bNiIyMxK5duwQlIyIiIlEKCgowePBg5ObmlvqATGTdk5KSgkePHgF4PgXz/v37+Pnnn4XlITbFiIhIQ8nlctXCqgEBATAwMBAdqVrYt28fCgsLVf+WyWSIiIgQmKjyderUCRMnTsSMGTNUhScRERFph3nz5uHy5cvFNuT5J5Ejxc6fP1/iIe2CBQuK1WakXmyKERGRRvLx8cGVK1cQHByMBg0aiI5Tbfj6+hZ7aiqVSnHw4EGBiarG0qVLYWhoiNmzZ4uOQkRERGoSHh6OlStXvrTJJHKk2IULF4rt3K1QKJCSkgI/Pz9hmbQdm2JERKRxli5din379mHfvn1o06aN6DjVRmxsLK5duwaFQqE6VlBQgMOHD0MmkwlMVvlMTU2xdu1a7NixAydOnBAdh4iIiKrYX3/9BW9v75culyGRSIQ2xc6ePVtqzbVgwYJi9RmpD5tiRESkUQICArBgwQJ8//336Nevn+g41cqOHTuKPZ0skp2djZMnTwpIVLUGDx6M/v37Y+LEicjPzxcdh4iIiKqIQqHA8OHDkZGR8dLmko6OjrDpk3K5HL///nuJ4wqFAgkJCRo5cr8mYFOMiIg0xpUrVzBq1ChMnjwZn3zyieg41UpBQQF27txZ6voaenp6OHTokIBUVW/Dhg1IS0vDt99+KzoKERERVZHCwkJMnz4dY8eOhbm5OQCUup6sjo6OsJFiV69efeHIfIlEgi+//JKjxQRgU4yIiDRCWloaBg4cCBcXF6xevVp0nGonJCQEGRkZpb4ml8vh7++vkYu8WllZYcGCBVi6dClu374tOg4RERFVAT09PfTv3x++vr54+PAhzp07Bzc3N9SrV0/1uo6ODhQKhbCRYufPn4eurm6prykUCsTHx+Pw4cNqTkVsihERUY2Xm5uL9957DyYmJti/f/8LCw5ttnXr1pd+Lo8fP0ZUVJQaE6nPZ599hjfffBMTJkwodWt2IiIi0hw6OjpwdHREZmYm+vfvj9u3b2Pp0qXo1KkTFAqFsJFi58+ff2kdIpFIsGDBAtYqasamGBER1WgKhQJeXl5ITExEcHAw6tSpIzpStZORkYHQ0FAUFBS88BxNnkKpq6uLzZs348yZM9i7d6/oOERERFTFMjIyEB0djYEDB8LOzg5ffPEFLly4gAcPHmDIkCFCMkVGRr50VL5CoUBsbCyCg4PVmIrYFCMiohpt9uzZCAkJwS+//AJbW1vRcaql3bt3v7QhBjyfQrl//36NfTrZuXNnjB8/Hp999hnS09NFxyEiIqIqFBQUBF1dXfTu3bvY8QYNGuDNN99Ue55Hjx7h3r17kEql0NfXL/aakZERmjVrBg8PD3zyySf/WbNR5eL8EiIiqrF27NiBVatWYdeuXXB1dRUdp9p6+vQphgwZAqVSiUePHgEAEhISYGBgACMjI2RlZaGwsBASiQTXr19H27ZtBSeuGitWrEBQUBDmzp0LX19f0XGIiIioigQGBsLNzQ0mJiaiowAAkpKSMGjQIFhbW8PGxgbW1taIjo7G9u3bVbUZicGmGBER1Uhnz57FhAkTMH/+fIwYMUJ0nGpt/vz5JY6ZmJhg7dq18PHxEZBIDFNTU6xevRrDhw+Hl5cXunfvLjoSERERVbLc3FwcO3YMa9asER1FpXPnzggICCh2TEdHBytXrsSzZ89Qq1YtQcmI0yeJiKjGuXv3Lt5//30MGDAAixYtEh2nRpLJZKVuVa7phg4din79+mHy5Mkv3BadiIiIaq6jR48iNzcX/fv3Fx3lpaytraFUKnHv3j3RUbQam2JERFSjPH78GB4eHrC2tsZPP/0EiUQiOlKNo1QqIZfLtbIpBgAbNmxAUlISVq1aJToKERERVbLAwEC89dZbsLS0FB3lpaytrQEAycnJgpNoNzbFiIioxpDL5fD09ER2djYCAwM51LyCZDIZlEpliYVetYW1tTXmzZuHJUuWICEhQXQcIiIiqiQKhQIhISEYOHCg6Cj/qU6dOjAzM2NTTDA2xYiIqMaYOnUqLly4gJCQEDRu3Fh0nBqraNqgto4UA4AvvvgCdnZ2mDRpkugoREREVEmio6Px4MGDGtEUAwArKys2xQRjU4yIiGqEVatWwdfXF3v27IGDg4PoODVafn4+AGjtSDEA0NXVxebNm3Hs2DHs379fdBwiIiKqBIGBgWjWrBlatWolOkqZWFtbsykmGJtiRERU7YWGhmL27NlYuXJljXnyV51xpNhzXbp0wZgxY/Dpp5/i77//Fh2HiIiIXlFQUBDee+890THKzMrKCikpKaJjaDU2xYiIqFqLjY3FsGHD8OGHH2L69Omi42gEjhT7f99++y10dHQwd+5c0VGIiIjoFdy6dQu3b9+uUQ9QOVJMPDbFiIio2nrw4AH69u2Ldu3aYdOmTaLjaIyippi2jxQDADMzM6xcuRK+vr44d+6c6DhERERUQYGBgTA3N4ejo6PoKGVmbW2N1NRUFBQUiI6itdgUIyKiaik3NxeDBg2CkZERDh8+zFFNlaho+iQ/0+e8vb3h7u6O8ePHQy6Xi45DREREFRAYGIgBAwZAKpWKjlJm1tbWKCgoQFpamugoWotNMSIiqnaUSiV8fHwQFxeHoKAg1K1bV3QkjcKRYiV9//33SEhIwHfffSc6ChEREZXTw4cPceHChRo1dRJ43hQDwCmUArEpRkRE1c6CBQvwyy+/wN/fH3Z2dqLjaBwutF9Ss2bNMHfuXHz11Ve4e/eu6DhERERUDkFBQTAwMICbm5voKOXSsGFDGBoasikmEJtiRERUrfj5+WHp0qVYv349evbsKTqORuJC+6WbOXMmmjZtik8++UR0FCIiIiqHwMBA9O7dG8bGxqKjlItEIsHrr7/OpphAbIoREVG1ce7cOYwaNQpffPEFxo8fLzqOxuJIsdLp6+tj8+bNCA8Ph7+/v+g4REREVAbPnj3DiRMnatzUySLcgVIsNsWIiKhaSEpKwqBBg9CrVy8sW7ZMdByNxpFiL+bi4oKPP/4YU6dOxZMnT0THISIiov8QHh6OvLw89O3bV3SUCmFTTCw2xYiISLinT59iwIABaNSoEQ4cOFCjdg2qibj75Mt9++23UCgU+PLLL0VHISIiov8QGBgIR0dHNGzYUHSUCrGyskJKSoroGFqLTTEiIhKqsLAQXl5eSE9PR1BQEGrXri06ksbLz8+Hvr4+JBKJ6CjVUr169bBy5Ups2rQJ0dHRouMQERHRCxQWFuLIkSM1duok8P8jxZRKpegoWolNMSIiEurTTz/F8ePHcejQITRp0kR0HK1Q1BSjFxs1ahR69uyJ8ePHQy6Xi45DREREpYiKikJ6ejoGDBggOkqFWVtbIzc3F+np6aKjaCU2xYiISJitW7di48aN2L59O7p06SI6jtaQyWRcZL8MfvjhB8THx2PdunWioxAREVEpAgMD0bJlS7Ro0UJ0lAqztrYGAK4rJgibYkREJERERAQmTpyIpUuXYtiwYaLjaBWOFCub5s2bY/bs2ViwYAESExNFxyEiIqJ/CQ4OrtFTJwGgSZMmkEqlbIoJwqYYERGp3c2bNzF06FB4eXlhzpw5ouNoHY4UK7s5c+bA2toan3zyiegoRERE9A+xsbGIj4+v8U0xPT09NGzYkE0xQdgUIyIitcrIyMCAAQPQpk0b+Pr6io6jlfLz89kUKyN9fX38+OOPCAsLQ0BAgOg4RERE9D+BgYFo0KCBRizBUbTYPqkfm2JERKQ2MpkMgwcPRmFhIQ4ePMjGjCAymYzTJ8uhW7du+PDDDzF58mRkZmaKjkNERER43hQbMGAAdHRqfluDTTFxav5PDxER1QhKpRJjxozBlStXEBQUhAYNGoiOpLU4fbL8Vq1ahYKCAixYsEB0FCIiIq33119/4dKlSzV+6mQRNsXEYVOMiIjUYunSpdi3bx/27duHNm3aiI6j1bjQfvmZm5vjm2++wYYNG3D+/HnRcYiIiLTa4cOHYWhoiJ49e4qOUimsrKyQkpIiOoZWYlOMiIiq3MGDB7Fw4UKsW7cO/fr1Ex1H63FNsYoZPXo0unfvjvHjx6OgoEB0HCIiIq0VGBiIPn36oFatWqKjVApra2s8fvwYT58+FR1F67ApRkREVery5cv48MMPMWXKFEyaNEl0HALXFKsoiUSCTZs2IS4uDhs2bBAdh4iISCtlZ2fj5MmTGjN1EnjeFAPA0WICsClGRERVJi0tDQMHDoSLiwtWrVolOg79D0eKVZydnR1mzpyJL7/8EklJSaLjEBERaZ2wsDDI5XKNmn1Q1BTjumLqx6YYERFViezsbPTt2xdmZmY4cOAAdHV1RUei/+FIsVczd+5cNGnSBJ988onoKERERFonMDAQzs7OsLCwEB2l0tSuXRv16tVjU0wANsWIiKjSKRQKjBgxAqmpqQgKCoKZmZnoSPQPHCn2agwMDPDjjz8iNDQUgYGBouMQERFpjcLCQoSGhmrU1Mki3IFSDDbFiIio0s2cORPh4eEICgqCra2t6Dj0LzKZjE2xV+Tq6ooRI0ZgypQpXBSXiIhITc6cOYOMjAy8++67oqNUOjbFxGBTjIiIKtWOHTvw3XffYcuWLXB0dBQdh0qRn5/P6ZOVYM2aNcjNzcXChQtFRyEiItIKgYGBaN26NZo3by46SqVjU0wMNsWIiKjSnDlzBhMmTMCCBQswYsQI0XHoBThSrHKYm5tj+fLlWLduHa5cuSI6DhERkcYLCgrSyKmTAJtiokiUSqVSdIia5vHjx0hKSkJSUhL+/PNPZGRkFPsqKCiAQqHAkydPVIsZm5mZQSqVQldXF/Xq1YO5ubnqy9LSEjY2NrCxsYG5ubnob4+IqELu3r2LLl26oHv37vDz84NEIhEdiV6gc+fO6NGjB7799lvRUWo8pVKJXr164enTpzh//jykUqnoSERUDgqFAmlpaUhKSkJiYiLS09NVNX16ejqePHkCAMjLy0N2djYKCwthZGQEU1NTAICRkVGxur5+/fpo3LgxbGxs0LRpUxgaGor89og0SkxMDBwcHHDhwgW89dZbouNUuoMHD8LT0xO5ubkc0a8+y7kV2EtkZGTg2rVriImJwfXr1xETE4P4+HhkZWUBACQSCSwsLGBhYaH6RdioUSPo6upCR0en2MLSWVlZKCwsRGFhITIyMnDv3j3VL91Hjx6hqDdpYmKCZs2awd7eHm3btkXbtm3Rrl071K9fX8hnQERUFo8fP4aHhwesra3x008/sSFWzXGh/cojkUiwadMmODg44IcffsCUKVNERyKiF7hz5w5+//13VV1/48YNJCcnQyaTAQD09fVRv359mJubw8LCAvXr18cbb7wBADA0NISRkRGA5wt9F/09kJubi4cPH+LmzZtIT0/Hw4cPi60z2LBhQ7Rs2RJt27aFvb09HBwcYG9vz2YZUQUEBgbC0tISnTt3Fh2lSlhbW0OhUOD+/fuq/3uo6rEp9g/x8fE4e/YsIiMjER0djdu3b0OpVKJBgwZo27YtXF1dMXbsWNWoLhsbm0r5oyI/Px8pKSmq0WdxcXGIiYlBREQEHjx4AACws7ODo6MjXFxc4OLigpYtW77yfYmIKoNcLoenpydycnJw4sQJ1KpVS3Qk+g9Fo5ipcrRo0QKff/455s2bh0GDBuH1118XHYlI68nlcly8eBFRUVGIiopCdHQ0Hj16BB0dHdja2sLBwQHe3t6wtbVVjeqytLSEjs6rry7z5MkTVV2fmJiImzdv4vz589i2bRtycnKgr6+Pjh07wsnJSVXbW1hYVMJ3TaTZAgMDMWDAAI19+GptbQ0ASE5OZlNMjbR6+mROTg5OnjyJ0NBQhIWF4e7du6hVqxY6d+4MFxcXODo6olOnTnjttdeEZXz06BEuX76Mc+fOISoqChcvXkR2djZsbGzg7u4Od3d39OrVC7Vr1xaWkYi024QJE7B3715ERkbCwcFBdBwqg6ZNm2LChAmYNWuW6CgaIz8/Hw4ODmjTpg1++eUX0XGItNL9+/dVdf2xY8eQlZUFS0tLODk5wdnZGY6Ojmjbtq2whzcKhQIJCQm4cOECoqOjERkZidjYWABAp06d4OHhAXd3d3Tu3LlSmnNEmiQ1NRVNmjTBkSNH4OHhITpOlalduzY2bNiA0aNHi46iLbRv+uSzZ89w5MgR+Pn54ciRI8jLy0OHDh0wfPhweHh4oEuXLtDVrT4fS/369VXNLwAoKCjApUuXEBoaitDQUPj6+kJfXx8eHh7w9PRE//792SAjIrVZuXIltmzZgkOHDrEhVoNwof3KZ2BggHXr1qFPnz4ICgrCgAEDREci0gr37t2Dv78//Pz8cPHiRRgZGaFHjx5YtmwZ+vTpg2bNmomOqKKjo4PmzZujefPmqs1osrKycPz4cYSFhWH79u1YtGgRLC0tMXjwYHh6esLJyYkNMiI8HyVmbGyMHj16iI5SpZo0acLF9tVMK0aKKZVKnP4/9i+02OoAACAASURBVO47rqnr/x/4KwSQISIqLiDBXZGhOLBiXUBFVLAO9ONEQeusqy1aW0WhotWKtlqLSq0W68AVURkqVgWtuAEngjhwooiCQIDc3x/+4FsMKiPJyU3ez8ejj8/jkxzOfQlczs37nnPuiRPYtGkT9u/fj4KCAvTq1Qve3t7w8vJiOhOspp49e4bIyEjs2rULx44dg56eHjw9PeHn5wcXFxeNnVpKCGHv8OHD8PT0xIoVKzB79mzWcUgVNGjQAIGBgZgyZQrrKBpn1KhRZbM/6CYVIcqRl5eHnTt34o8//sDp06dRt25deHl5wdvbG7179+b1fl0pKSnYs2cPdu3ahWvXrsHS0hKjR4+Gr6+vWhX4CFG1vn37ok6dOoiIiGAdRanc3d3RtGlT/PHHH6yjaItgjb7tkJWVhRUrVuCTTz5B7969cfv2baxYsQIPHz7E0aNHMWnSJF4XxIC3M8kmTJiA6OhoPH78GGvWrMGDBw/g5uaGVq1aITg4GE+fPmUdkxCiYS5fvozhw4dj3LhxVBDjIdpTTHlWrVqF169fY/HixayjEKJxLl++jClTpqBp06aYOnUqRCIRIiMj8fjxY2zevBn9+vXjdUEMAGxtbbFo0SJcvXoVKSkp8PHxQXh4OFq3bg1XV1fs3LkTRUVFrGMSolKvX7/GiRMn4OXlxTqK0onFYpoppmIaWRRLT0/HzJkzIRaLERQUhF69euHixYv4999/MWXKFDRs2JB1RKWoX78+Jk6ciPj4eNy4cQNDhw5FSEgIrKysMHbs2LI9CwghpCYeP34MT09PODo6Yv369azjkGqgp08qT6NGjRAcHIzVq1fj0qVLrOMQohHi4+MxcOBAODo6Ii4uDt999x3u37+Pv//+G/3799fYIn+7du0QGBiIu3fvIjY2FvXq1cOYMWMgEokQEBCA7Oxs1hEJUYnDhw+juLhYo/cSK0VFMdXTqKLYxYsX8cUXX6BVq1Y4dOgQli9fjocPHyI0NBQdOnRgHU+l2rRpg2XLluHu3bv45ZdfcPbsWdjZ2WHgwIFITExkHY8QwlP5+fkYNGgQjIyMsH//fo39IKLJOI5DUVER/eyUaOLEiXBycsKXX36JkpIS1nEI4aWSkhL89ddfaNeuHXr06AGpVIqYmBjcuHED/v7+MDc3Zx1RZXR0dODq6opdu3bh9u3bGDlyJEJCQmBtbY1vvvmGVoUQjSeRSNCjRw/Ur1+fdRSlE4vFuH//PmQyGesoWkMjimIpKSkYMmQIOnXqhMzMTOzatQs3b97E9OnTYWxszDoeU4aGhvjyyy9x/fp17Nu3D8+fP4eTkxM8PT1x+fJl1vEIITzCcRx8fX2RmpqKyMhImJmZsY5EqqGoqAgcx9FMMSXS0dHB77//jsuXLyM0NJR1HEJ4RSaTYefOnbCzs8OECRPQqVMnXLlyBTExMXBzc9P6/XJFIhF+/vln3Lt3D99//z3Cw8PRokULfPfdd3jx4gXreIQoXFFREaKjo7Vi6STw9hyXSqV4/Pgx6yhag9dFsfv372P06NFwcHBAWloa9u/fj7Nnz2LIkCEQCoWs46kVHR0deHl54fTp0zh06BAePXoER0dHDB8+HBkZGazjEUJ44IcffsDu3bsRERGBVq1asY5DqqmwsBAAaKaYktna2mLu3LmYP38+MjMzWcchhBeOHj2KDh06YOTIkejQoQOuXr2KLVu2wM7OjnU0tWNqaopvvvkGaWlpWLhwITZu3IjmzZsjODgYBQUFrOMRojAnTpxAdna21jzVWSwWAwDu3bvHOIn24GVR7M2bN1i8eDE++eQT/Pvvv9ixYwcuXboET09Prb97VBkeHh5ITEzE3r17ceXKFbRt2xbff/89cnNzWUcjhKipnTt3YunSpVi7di369OnDOg6pgdKiGM0UU76FCxeiQYMGmDNnDusohKi11NRUeHl5wc3NDWKxGElJSdi2bRtat27NOpraMzIywjfffIP09HTMmTMHP/74I2xsbLB7927W0QhRCIlEAnt7ezRr1ox1FJWwsLCAnp4e7SumQrwrikkkEnzyySdYtWpV2ZNZhg0bRsWwKhIIBBg0aBCSk5Px448/Yt26dWjTpg0NoIQQOQkJCRg3bhz8/f0xadIk1nFIDUmlUgA0U0wVDA0N8dtvv2HXrl04ePAg6ziEqJ2CggIsWLAAtra2SEtLQ2xsLA4cOIB27dqxjsY7JiYmWLhwIW7evInu3bvD29sbffr0wa1bt1hHI6RGDh48qDVLJwFAKBSiadOmVBRTId4UxR4/fgxvb28MGjQIvXv3xq1bt/Dtt9/Sne4a0tPTw5w5c3Dr1i24u7uXfY8fPnzIOhohRA1kZGRg8ODBcHV1RVBQEOs4RAFopphq9e3bF97e3pg+fTry8vJYxyFEbZw8eRIODg5Yu3Ytfv75Z1y+fBlubm6sY/GehYUFtm7dijNnziA7OxsODg4IDg5GUVER62iEVNmlS5eQkZGhVUUxgJ5AqWq8KIr99ddfsLGxwfnz5xETE4MtW7agUaNGrGNpFHNzc4SFheHYsWO4evUqbGxsEBYWxjoWIYSh169fw9PTExYWFti5cyft1aghSmeKUVFMddasWYOcnBwEBgayjkIIc3l5eZgyZQp69eqF1q1b4+rVq5g+fTp0dXVZR9MoTk5OOHfuHAICAhAYGIjOnTvjypUrrGMRUiUSiQQWFhZwdHRkHUWlqCimWmpdFHv58iVGjBiBcePGYezYsUhOTsbnn3/OOpZG6927N5KSkjBp0iRMmjQJQ4YMwfPnz1nHIoSoWElJCUaOHImsrCxIJBKtf5KvJqGN9lWvcePG+PHHH8tmwxCirc6fPw9HR0dERETg77//RmRkJCwtLVnH0li6urrw9/dHUlISTE1N4eTkhFWrVoHjONbRCKkUiUQCLy8vrdsqiYpiqqW2RbETJ07A3t4ep06dQkxMDFavXk0fylTE0NAQP/30E+Li4nDu3DnY29vj6NGjrGMRQlRo5syZOHbsGPbv3w8rKyvWcYgC0UwxNiZPnozOnTvjyy+/hEwmYx2HEJWSyWQIDg5Gt27dIBKJcOXKFYwYMYJ1LK3RsmVLxMXFYdGiRZg3bx769u2LR48esY5FyAfdu3cPV65c0bqlkwAVxVRN7YpiHMdhxYoVcHFxQceOHXHlyhXaX4CRnj174sqVK3B2dkbfvn0RFBREd5YI0QK//vorfvvtN2zevBldunRhHYcoGM0UY0NHRwehoaG4dOkSNm7cyDoOISqTnZ2NAQMGYPHixQgODkZsbCwsLCxYx9I6QqEQ8+fPR0JCAjIyMuDo6IiTJ0+yjkXIe0kkEtSuXRs9e/ZkHUXlxGIxXr9+jezsbNZRtIJaFcVyc3MxfPhwzJ8/Hz/++CP27t2LBg0asI6l1czMzLBr1y6sX78egYGBGDhwIJ2chGiwmJgYzJkzB0uXLsXw4cNZxyFKQDPF2LGzs8OsWbPg7+9PD7QhWuHKlSvo1KkTkpKS8M8//2Du3LlatwxK3XTu3BkXLlxA9+7d4eLiguXLl9NNb6KWJBIJPDw8tPJ6RSQSAQDNFlMRtSmK3blzB05OTjhx4gSOHj0Kf39/GjTVyKRJkxAXF4eLFy/CycmJHu9MiAa6fv06RowYgVGjRmHevHms4xAloZlibAUEBKBevXr4+uuvWUchRKkiIiLQrVs3iMViXLx4EV27dmUdifx/JiYm2LVrFwIDA7FgwQKMGTOmbGwgRB3k5OTg1KlTWrl0EnhbFBMIBLh37x7rKFpBLYpiiYmJ+PTTT1GrVi1cuHABvXr1Yh2JVMDZ2RkXLlyAmZkZunXrhvj4eNaRCCEKkpWVBU9PT9ja2iI0NJR1HKJEpR98tPHOqzowMjLCunXrsH37dhw6dIh1HEKUYsWKFRgxYgT8/PwQGxuLhg0bso5E3iEQCDBv3jwcPnwYBw8exOeff44XL16wjkUIAODQoUPgOA7u7u6sozBhaGgIc3NzmimmIsyLYvv370fv3r3RsWNHnDx5kp5Ao+aaNGmC48eP47PPPoObmxt27tzJOhIhpIakUimGDh2KkpIS7N27l4olGq50+STNFGOnX79+GDJkCKZPn468vDzWcQhRmOLiYkyePBnz58/HqlWrsGbNGujq6rKORT7g888/R3x8PDIyMtCtWzekp6ezjkQIJBIJevbsCTMzM9ZRmKHN9lWHaVFs8+bNGDp0KMaNG1e2kR5Rf0ZGRtizZw8mT56MkSNHYv369awjEUKqieM4+Pr64tKlSzhw4ADMzc1ZRyJKVlhYCD09PdqigLFff/0VL1++xNKlS1lHIUQhpFIphg8fjr/++gt79uzBzJkzWUcilWRra4t///0XxsbGcHZ2RkpKCutIRIsVFRUhNjZWa5dOlqKimOowK4r9/vvv8PPzw9dff43ffvuN7iLxjI6ODkJCQrB06VJMnToVgYGBrCMRQqohMDAQO3bswO7du2Fra8s6DlEBqVRKswHVQJMmTbBkyRL89NNPuHLlCus4hNRIYWEhvL29ERsbi4MHD2r9h1k+atKkCU6ePIl27dqhR48eOHv2LOtIREvFxcXh5cuXGDBgAOsoTFFRTHWYFMVWrFiBqVOnYunSpVi2bBmLCERB/P39sXr1aixatAgBAQGs4xBCqmD37t0ICAjAmjVr4ObmxjoOUZHCwkIqiqmJadOmoVOnTpg+fTo9/Y3wVl5eHvr164dTp04hLi4OvXv3Zh2JVJOxsTEOHDiALl26oG/fvjh9+jTrSEQLSSQSdOjQAdbW1qyjMEVFMdVReVFszZo18Pf3L/tfwn8zZ87Ehg0bEBgYSMtACOGJCxcuYNy4cZg5cyamTp3KOg5RIalUSvuJqQkdHR2Ehobi7NmzCAsLYx2HkCorKCiAl5cXrl69iuPHj6Nz586sI5EaMjIyKtvPycPDA+fPn2cdiWgRjuMQGRlJs03xtij27NkzvHnzhnUUjafSotiff/6J2bNnY9myZZgxY4YqD02UzM/PDxs2bMD333+PlStXso5DCPmAhw8fwsvLCz169MCKFStYxyEqRjPF1Iu9vT2mT58Of39/PH36lHUcQiqtqKgI3t7eOH/+PKKiomBvb886ElGQWrVqISIiAt27d4ebmxsuXbrEOhLREhcuXMCDBw+oKIa3RTGO43D//n3WUTSeyopi27dvh6+vLwICAvDtt9+q6rBEhXx9fbF8+XJ8++232Lx5M+s4hJAK5ObmwsPDA6amptixYwft56iFaKaY+gkKCkKdOnUwd+5c1lEIqRSZTIZRo0bhn3/+QUxMDBwdHVlHIgqmr6+PXbt2wcHBAR4eHrh9+zbrSEQLSCQSiEQiODg4sI7CnFgsBgBaQqkCKimK/fPPP/Dx8cHs2bOxcOFCVRySMPLNN99gwYIFmDRpEmJiYljHIYT8h0wmw+jRo5GZmYkDBw7A1NSUdSTCAM0UUz9GRkZYt24dwsPDcfToUdZxCPmor7/+GpGRkYiMjISTkxPrOERJjIyMEBkZCUtLS3h4eOD58+esIxENJ5FI4OXlRU/IBlC3bl3UqVMH9+7dYx1F4ym9KHbjxg0MHjwYnp6e+Omnn5R9OKIGlixZgpEjR2LYsGH0RC1C1Mg333yDmJgYHDhwAC1atGAdhzBCM8XUk4eHBwYNGoQpU6agoKCAdRxC3mvDhg1YvXo1Nm7ciJ49e7KOQ5TMxMQEhw8fhkwmw6BBg+jvE1GajIwMJCcn09LJ/xCJRDRTTAWUWhR7+vQpPDw80LZtW/z111/Q0WHysEuiYgKBABs3bkTHjh0xYMAAPHz4kHUkQrTeH3/8gZCQEGzatAmffvop6ziEIZoppr7WrVuHZ8+e0UNriNo6ePAgpk6dih9//BGjR49mHYeoiLm5OQ4cOICUlBSMHz+enpZLlGL//v0wNTXFZ599xjqK2qAnUKqG0qpUxcXFGDFiBIC3v+AGBgbKOhRRQ/r6+ti7dy+MjIzg7e2NoqIi1pEI0VonT57ElClTsHDhQowaNYp1HMIYzRRTX02bNkVAQACWL1+Oa9eusY5DSDm3bt3C6NGjMXbsWMyfP591HKJiNjY22L17N3bv3k0P1SJKIZFI0L9/f7pG+Q8qiqmG0opi8+bNw5kzZxAREQFzc3NlHYaoMTMzMxw4cADJycm0eTAhjKSlpWHIkCHw8vLCokWLWMchaoBmiqm3GTNmwM7ODpMnT6bZGERt5ObmYvDgwWjevDnWrVvHOg5hxMXFBcuWLcP8+fMRGxvLOg7RIC9evEB8fDwtnXwHFcVUQylFsd27d2PVqlUIDQ1Fx44dlXEIwhNt2rTBxo0bsXbtWmzbto11HEK0yosXL+Dh4QFra2v8+eeftGkpAfB2phgVxdSXUChEaGgoTp8+jT///JN1HEIAAH5+fnj69Cn2798PQ0ND1nEIQ3PmzMGQIUMwZswYPHjwgHUcoiEOHToEgUCAzz//nHUUtSIWi5GZmYni4mLWUTSawotid+/ehZ+fHyZPnoyxY8cqunvCQ97e3pg9ezYmT55Mj3MmREWKioowbNgwFBYW4uDBgzAyMmIdiaiJwsJCWpqg5jp27Ihp06bh66+/xtOnT1nHIVpu06ZNiIiIwN9//w2RSMQ6DmFMIBAgLCwM9evXx5gxYyCTyVhHIhpAIpGgT58+qFu3LusoakUsFqO4uJj26FYyhRbFZDIZfHx8YGFhgZ9//lmRXROeW7ZsGWxsbPC///2P9hcjRAVmzJiBc+fO4cCBA2jUqBHrOESN0EwxfggKCoKRkRG+/fZb1lGIFktLS8OcOXPg7+8PV1dX1nGImqhduzZ27dqFf//9Fz/99BPrOITnCgsLERsbS0snKyAWiwGAllAqmUKLYsHBwThz5gz+/vtvmlpNytHT08O2bdtw48YNLFmyhHUcQjTaTz/9hI0bNyI8PBz29vas4xA1QzPF+MHExARr1qzB1q1bcezYMdZxiBYqLi7GqFGj0KpVKwQEBLCOQ9SMra0tgoKC8MMPP+Ds2bOs4xAeO3bsGHJzczFw4EDWUdRO48aNYWBgQEUxJVNYUSwpKQmLFy9GcHAwHBwcFNUt0SAtW7bEypUrERwcjMTERNZxCNFIhw8fxnfffYeff/4Znp6erOMQNUQb7fPH4MGDMXDgQEyZMgUFBQWs4xAtExwcjJSUFPz9999USCcVmj17Nnr16gUfHx8UFhayjkN4SiKRoGPHjrC0tGQdRe0IBAJYWlri3r17rKNoNIUUxUpKSuDr64uOHTti5syZiuiSaKhJkyahT58+8PPzo2WUhCjY5cuXMXz4cPj4+GDWrFms4xA1JZVK6QMuj/z666949OgRli9fzjoK0SI3btzA0qVLERgYiDZt2rCOQ9SUjo4OwsLCkJmZiaVLl7KOQ3iI4zgcOnSIlk5+gEgkopliSqaQolhISAiSk5MRFhYGHR2lPNCSaAiBQIANGzYgPT2d9iAgRIEePXoET09PdOzYEb/99hvrOESN0UwxfhGJRAgICEBwcDCuX7/OOg7RAjKZDH5+frCzs8NXX33FOg5RcyKRCIGBgVi6dCkuX77MOg7hmcTERGRmZlJR7APEYjEVxZSsxhWsjIwMLFq0CAsWLICNjY0iMhENZ21tjUWLFiEoKAipqams4xDCe/n5+fjiiy9gbGyMffv20Swg8kE0U4x/Zs6cCRsbG0yZMgUcx7GOQzTc+vXrkZiYiE2bNkEoFLKOQ3hgxowZ6NSpE6ZOnUp/o0iVSCQSWFtbw87OjnUUtUVFMeWrcVHs22+/haWlJfz9/RWRh2iJ2bNno1WrVpg7dy7rKITwGsdxmDBhAm7fvo0DBw7AzMyMdSSi5mimGP/o6uoiNDQU8fHx+Ouvv1jHIRrsxYsXWLhwIWbNmkUPaiGVpqOjg9DQUCQmJtLfKFIlEokEgwYNYh1DrZUWxajgrDw1KoolJCRg9+7dCAkJobvOpEp0dXWxevVqREZGIjo6mnUcQnjr+++/x549exAREYFWrVqxjkN4gGaK8VPnzp0xefJkzJkzB1lZWazjEA21aNEi6OrqYsGCBayjEJ6xt7eHn58fvv32W7x69Yp1HMIDaWlpuHbtGi2d/AixWIz8/Hwa+5Wo2kUxmUyGWbNmwcXFBR4eHorMRLREnz594OXlhTlz5tCm+4RUw9atW7F06VKsW7cOvXv3Zh2H8ATNFOOvpUuXwsDAAPPmzWMdhWig69evIzQ0FMHBwTA1NWUdh/BQYGAgCgsLad9gUin79+9HvXr10L17d9ZR1JpYLAYAWkKpRNUuim3fvh2XLl3CmjVrFJmHaJmVK1ciLS0NW7ZsYR2FEF5JSEjApEmTMH/+fEycOJF1HMIjNFOMv+rUqYOQkBD88ccfiIuLYx2HaJjvvvsO7dq1g4+PD+sohKfMzc3x/fffY9WqVXj06BHrOETNSSQS9O/fH7q6uqyjqDVLS0vo6OhQUUyJqlUUKykpQWBgIEaPHk2b65MaadmyJcaPH192Z4kQ8nEZGRkYPHgw+vfvj6CgINZxCM/QTDF+GzZsGAYMGIApU6bQuEkU5sKFC5BIJAgKCqInyZMamTZtGurXr4/g4GDWUYgae/78Oc6cOUNLJytBX18fTZo0oaKYElVr1NuyZQvS09Pxww8/KDoP0UILFy7Es2fPEBYWxjoKIWrv1atXGDhwICwsLLB161b68EKqrLCwkGaK8dzatWvx8OFDrFixgnUUoiG+//57dOzYkbZEITVmYGCA+fPnIzQ0FBkZGazjEDUVGRkJoVCIzz//nHUUXhCLxbh37x7rGBqryp+mioqKEBQUBB8fH7Ro0UIZmYiWadq0KSZOnIgff/yR7noT8gElJSUYOXIknj9/jgMHDsDY2Jh1JMJDRUVFNFOM50QiEX744QcEBQXh5s2brOMQnjtz5gyio6OxdOlSCAQC1nGIBvDz80OTJk2wfPly1lGImpJIJHBxcYGJiQnrKLwgEoloppgSVbkoFhERgfv37+O7775TRh6ipfz9/ZGVlYXw8HDWUQhRW1999RXi4uKwf/9+WFpaso5DeEgqlYLjOJoppgHmzJmDtm3bYvLkyfSYdlIjK1asQNeuXeHm5sY6CtEQ+vr6mDdvHv788088efKEdRyiZvLz83HkyBFaOlkFYrGYimJKVOWi2OrVqzF06FBYW1srIQ7RVk2bNsWoUaOwYsUKyGQy1nEIUTtr1qzB+vXrsXnzZnTp0oV1HMJTpbNxaaYY/+nq6iI0NBQnT57E33//zToO4anU1FRIJBJ8/fXXrKMQDePj4wNTU1P89ttvrKMQNXP06FG8efMG/fv3Zx2FN6goplxVKoodP34c586dw6xZs5SVh2ixOXPm4NatW4iKimIdhRC1EhMTg6+//hrBwcEYPnw46ziEx6RSKQAqimmKLl26YNKkSZg1axaysrJYxyE8FBISArFYjEGDBrGOQjSMgYEBJk+ejLVr1yIvL491HKJGJBIJunTpAgsLC9ZReEMsFuPFixd4/fo16ygaqUpFsTVr1qBHjx5wcnJSVh6ixWxtbeHu7o7Vq1ezjkKI2rh27RqGDx+OUaNGwd/fn3UcwnOlM8Vo+aTmWL58OfT19bFgwQLWUQjPvHz5Elu2bMHs2bMhFApZxyEaaNq0acjPz8e2bdtYRyFqQiaT4dChQ7R0sorEYjEA0Gb7SlLpotijR49w+PBhTJ06VZl5iJabMmUKjh07htu3b7OOQghzWVlZ8PT0hJ2dHUJDQ1nHIRqAZoppnjp16uDnn3/Gxo0bER8fzzoO4ZHw8HAIBAKMGzeOdRSioczNzTF06FBs3LiRdRSiJv799188fvyYimJVVFoUoyWUylHpolhYWBjq1KlD06uJUnl4eMDS0hKbN29mHYUQpgoKCuDp6QmZTIa9e/dSEYMoBM0U00wjRoyAh4cHJk+ejKKiItZxCE+EhYVhxIgRqFOnDusoRINNnDgR58+fx6VLl1hHIWpAIpGgRYsWsLGxYR2FV2rXro169epRUUxJKlUUk8lkCAsLg4+PD30wI0olFAoxbtw4/PHHH3RhT7QWx3GYOHEirl69isjISJibm7OORDQEzRTTXOvWrUNGRgZWrlzJOgrhgbNnz+Ly5cuYOHEi6yhEw3322WewsbHBpk2bWEchakAikdAkm2oSi8W0fFJJKlUUO3HiBDIyMuDr66vsPIRgwoQJePLkCY4cOcI6CiFMLFmyBDt27MCePXvQrl071nGIBqGZYppLLBZjwYIFCAwMRFpaGus4RM1t2bIFtra2tE8wUYnx48dj+/btZTdmiHZKTU3FzZs3aelkNdETKJWnUkWxnTt3okOHDmjbtq2y8xCCZs2aoWvXrti1axfrKISo3O7du7F48WL88ssvcHV1ZR2HaJjSohjNFNNM33zzDVq3bo1p06axjkLUWElJCfbu3Yv//e9/rKMQLTFixAi8fPkSsbGxrKMQhvbt24f69evj008/ZR2Fl0QiERXFlOSjRbGSkhLs27cPw4YNU0UeQgAA3t7e2LdvHwoKClhHIURlLly4gHHjxmHWrFmYMmUK6zhEA5XepaeZYppJV1cXoaGhOHLkCHbs2ME6DlFTx48fx5MnT+janqiMpaUlPv30U7rhreUkEgkGDhwIXV1d1lF4iWaKKc9Hi2JxcXF4+vQpDZxEpYYPH47c3Fy6o0S0RmZmJry8vNCjRw+sWLGCdRyioWimmOZzcnKCr68vZs2ahezsbNZxiBqKiIiAo6MjWrVqxToK0SLe3t7Yv38/3fDWUk+fPsXZs2dp6WQNiMViPHr0iJYhK8FHy7QHDhxA+/bt0bJlS1XkIQQA0KRJE3Tt2hUSiQSenp5KP154eDg2bNig9OMQ8j5v3rxBQUEBXr16hd69e7OOQ5Ro9OjRmDRpEpNj00b7bCkNCwAAIABJREFUquXn54dbt26p/LjFxcXgOA79+vXTqlmBYWFhVOj5CI7jEBkZSUtsicoNGTIEs2fPxj///AN3d3fWcdQeq/FDWaRSKRo1aoQVK1Zg1apVrOPI4cP4IRaLIZPJ8ODBAzRv3px1HI3y0aJYdHQ0vL29VZGFkHLc3d2xfv16cBwHgUCg1GPdu3cPSUlJGD16tFKPQ8iHdO3alXUEomQ7d+7EnTt3mB2/dKaYnp4eswza5MKFCxAKhUzObUdHR5Ufk5WcnByEh4fj9evXrKOovcuXL+PRo0fo378/6yhEy1haWsLOzg4xMTFUFKsEluOHsnTq1Il1BDl8Gj/EYjEA4O7du1QUU7APFsVSU1Nx+/Zt9OvXT1V5CCnj7u6OhQsXIiUlBXZ2dko/XoMGDbB27VqlH4cQor0SEhKYHl8qlUJPTw86OpV6zg5RADc3NwQHB7OOodFu376N8PBw1jF4ISoqCo0bN4aDgwPrKEQLubu7QyKRICQkhHUUXqDxQ/n4NH6Ym5vD2NiY9hVTgg9eFUdFRcHU1JQe10yY6NixIxo2bIioqCjWUQghRCMUFhbS0klCtFhUVBT69eun9Bn4hFTE3d0dN2/eRHp6OusohPCSlZUVFcWU4INFsePHj6NPnz60zIIwoaOjAxcXFxw/fpx1FEII0QhSqVSr9pgihPyfN2/e4OzZs3Bzc2MdhWgpZ2dnGBkZ0bU9IdUkFotx79491jE0znuLYhzH4fTp0+jevbsq8xBSTvfu3XH69GmUlJSwjkIIIbxHM8UI0V6JiYkoKiqia3vCjL6+Prp06cJ8KwFC+EosFtNMMSV4b1Hs9u3bePr0KZydnVWZh5BynJ2d8erVK1y9epV1FEII4b3CwkKaKUaIljp9+jQsLCxgZWXFOgrRYt27d6eiGCHVJBKJqCimBO8tiiUkJMDAwAAdOnRQZR5CyrGzs4OpqSni4+NZRyGEEN6TSqU0U4wQLZWQkIDPPvuMdQyi5ZydnZGamoqnT5+yjkII75Qun5TJZKyjaJT3FsXOnz+PDh060B1lwpSOjg46d+6Mc+fOsY5CCCG8R3uKEaK9zp8/jy5durCOQbSck5MTOI7D+fPnWUchhHfEYjGkUimePHnCOopGeW9R7MqVK2jfvr0qsxBSIQcHByQnJ7OOQQghvEd7ihGinR49eoSnT5/CwcGBdRSi5czMzCASiZCUlMQ6CiG8IxaLAYCWUCpYhUUxjuOQkpICOzs7VechRI6dnR1SUlJQXFzMOgohhPAaLZ8kRDuVFiDo2p6oAzs7O7rhTUg1WFhYQFdXl4piClZhUezu3bt4+fIl7O3tVZ2HEDl2dnYoLCxEamoq6yiEEMJrtNE+IdopKSkJTZs2hbm5OesohMDe3p5mihFSDUKhEBYWFlQUU7AKi2I3btwAANjY2Kg0DCEVadu2LXR0dHD9+nXWUQghhNdophgh2unmzZto27Yt6xiEAHj7GfPWrVsoKSlhHYUQ3hGLxVQUU7AKi2J37tyBqakpzMzMVJ2HEDmGhoZo1KgRMjIyWEchhBBeo5lihGinO3fuoHnz5qxjEAIAaNasGaRSKR4+fMg6CiG8U/oESqI4710+SQMnUSfNmjWjohghhNQQzRQjRDtlZGTA2tqadQxCAKDsd5Gu7QmpOpoppngVFsVo4CTqxtramgZOQgipIZopRoj2KSkpwf379+nanqiNpk2bwsDAAHfu3GEdhRDeEYlEVBRTsAqLYvfv34eVlZWqs/DG+fPnIRAIEBAQwDrKB/35558QCATYvXt32Wvvy56bm4uvvvoK1tbW0NXVhUAgQG5uLgBg7969cHR0RO3atSEQCLBy5UpV/jMAqPc00aKiIrRu3Rpjx46Vey8+Ph5ubm4wNTWFiYkJevbsidjYWIUdW1H9V6UfqVSKpUuXol27djAwMEC9evXg5eWFy5cvU3tqz7v2MpkMW7ZswaeffooGDRrAzMwMnTp1wrp161BUVFSubXx8PAQCAWJiYirsiw8KCwtpphhPsBpb7t69i7Vr16Jv376oVasWBAIBoqOjq9xPVc5FTTi31Nnjx49RVFQEkUjEOoraomt71V7bCwQCWFlZqe21Pd+xGD/y8vKwbds2eHp6wtraGrVq1ULTpk0xfPhwXLp0qUp9VWUc0sbxQywW49WrV3j58iXrKJqDq0DLli25oKCgit4iHMedO3eOA8AtWrSIdZQP2rx5MweAi4iIKHvtfdnnzJnDASj33+vXr7lr165xurq65V5fsWKFiv8lHLdq1SquadOmSuv/xx9/5Fq0aFGtr12zZg2nq6vLpaamlns9OjqaEwqFct9XgUDA7dq1q8aZFdV/VfopKiriXF1d5doC4GrVqsWdPHmS2lN73rTnOI4bOXJkhe0BcO7u7pxMJivX3s3NjbOzs+NKSkrk+qqM9u3bc/PmzavW1ypCnz59uC+//JLZ8bVNTX7erMaWRo0ayfUdFRVVpT6qcy7W5NxKTU3lAHAXLlyo8tdqg0uXLnEAuJs3b7KOorbo2l711/bdunXjZs6cqfLj8gXfxo8FCxa893pKT0+vSuNIVcchbRs/bty4wQHgLl++zDqKplhaYVHMzMyM+/3331Udhjf4PHC+j42NDWdqaspdu3at3B+UX375hQPABQUFcQUFBcqM+0Fbt27latWqpbT+q1sUKyws5Bo2bMgNHTpU7nWxWMwB4ObMmcM9e/aMy87O5gIDAzkAXIMGDbjXr19XO6+i+q9qP2FhYRwAzsLCgjt48CD36tUrLjMzk1u4cCEHgGvdujVXXFxM7ak9L9pfvHix7EP6n3/+yb148YLLycnhdu/ezdWpU4cDwMXGxpY7Z2JiYjgA3I4dO7jqYF0Uc3Z25r766itmx9c21f15sxpbOI7jnJycuGnTpnHR0dHcxIkTq1UUq+q5yHE1O7f4+KFGlY4ePcoB4J4/f846itqia3vVGzhwIDd69Ghmx1d3fBs/li1bxo0ePZqLjIzk0tPTuTdv3nCXLl3i3NzcOABc8+bNK91XVcchbRs/3rx5wwkEAk4ikbCOoinki2LFxcWcjo5Opf7YaitNHDjNzMy4Ll26yL0+f/58DgB38eJFZUSstEOHDnEAuNzcXKX0X92i2Pbt2zkA3IEDB8q9Xpq3R48ecl8zePBgDgAXHh5e7byK6r+q/Xh5eXEAuP3798u1HzRoEAeAO3LkCLWn9rxo/9dff3EAuMmTJ8u1X7RoEQeACwkJKfd6cXEx16RJE65Xr15yX1MZrItinTt35r755htmx9c21f15sxpb3jVt2rRqFcWqei5yXM3OLT5+qFGlnTt3ckKhsNozXLUBXdur3vjx47l+/foxzaDO+D5+lMrLy+PMzMw4AFxWVlaVv74y45A2jh8NGzbkfvnlF9YxNMVSuT3FXr58CZlMhnr16r37lsrk5+dj8eLFaNu2LQwMDGBqagoXF5dya4VPnDgBgUCAmTNnVtjH3r17IRAIEBwcXPYax3H4448/0K1bN5iYmMDQ0BAODg5Yt24dOI4raxcdHQ2BQIDVq1fjxIkT6NmzJ0xMTNCpU6cP5j558iRGjRqFli1bolatWjA3N8fAgQORkJBQrt1/+z927Bi6desGIyMjNGzYEBMnTsSzZ8+q9P16+fIlpk+fjiZNmsDQ0BCdOnXCwYMHK2z77r4Ds2bNgkAgQHZ2NhITEyEQCMr9V/r9c3R0LHuNhfr16wMAnj9/zuT477N161YYGhrC3d293OsnT54EAIwaNUrua0aPHg3g7e9wdSmq/6r28+TJEwBA+/bt5dqXvvbPP/9Qe2rPi/aNGzeWa/euJk2alPv/QqEQXl5e+Oeff3i5FwpttM8PrMYWRanquQjw/9xSZy9evEDdunWho1PhVsIqQdf2dG3/rvr16+PFixdMjq3J1G38MDIygkgkgq6uLoyNjRXeP6Cd4wc9gVKx5EbH/Px8AG9/gVmQSqVwc3NDQEAAbty4gcLCQrx69QpxcXHo168ffv/9dwBAz5490bp1a4SHh6OwsFCun7CwMAiFQowbNw7A20FzzJgx8PX1xZkzZ5Cbm4uCggIkJSVh+vTp+PLLL+X6OH36NFxdXXHy5Enk5uZCJpO9N/fjx4/Rs2dP/P3330hLS4NUKkVWVhYOHjyIXr16lf0herf/vn374syZM8jPz8ezZ8+wadMm9OjRo2wjzI8pKChA7969sW7dOjx+/BgFBQW4cOECPD09q7UxrroyNDQE8Pbfqy6Ki4tx6tQpODo6Qk9Pr9x7t2/fBgDY2trKfZ29vX25NtWhqP6r2k+DBg0AoMKNkktfS01NpfbUnhfte/fujXbt2mHz5s3YsmULXr58iVevXmHPnj0ICQmBSCTCwIED5frq2rUrACAuLk7uPXUnlUqpKKbmWI4tilLVc7EUn88tdZafn8/suh6ga3u6tq+YoaFh2edOohjqOH7cvHkTycnJ8PT0hIGBgcL7L6Vt4wcVxRRLrihWOgixumheu3YtEhISIBKJEBkZiZycHNy7dw8BAQEQCASYPXs2Hj9+DACYMGECXrx4gf3795frIzMzEzExMfDw8EDTpk0BAOHh4di2bRvs7Oxw+PBhPH/+HLm5uThx4gQcHBywceNGnDlzplw/ERERGDt2LG7evIni4mJcvHjxvbkFAgHc3NwQGRmJ+/fvQyqV4smTJ9i1axdq1aqFZcuWyX1NREQExowZg9TUVOTm5uLkyZOws7PDjRs3sHz58kp9v3799VdcvnwZbdq0wdGjR/H69Wukp6djypQp2Llz50e/fvXq1eA4DqampnBycgLHceX+8/f3BwBcunSp7DUWSp+WVtFFEivXrl1Dbm4uHBwc5N579eoVAFQ447L0tZycnGofW1H9V7Wf0rtO06dPx6FDh5Cbm4uHDx9i0aJFkEgkAFDuSSjUntqrc3uhUIhjx45h6NChmDBhAszMzGBqaoqhQ4eiT58+OHHiRIUfJEtnurw7ZvABPX1S/bEcWxSlqudiKT6fW+qM9QxRurana/uK6Ovrq9V1vSZQt/EjLy8PI0eOhKmpKX7++WeF9v0ubRs/qCimYO8uqLx27RoHgEtOTlb22s0Kde3alQPAnTlzRu69SZMmcQC40NBQjuM47vHjx5yuri7n5uZWrl1QUJDcXha9e/fmhEIh9/DhQ7l+r169ygHg/P39OY7juKioKA4A17VrV7knj3Hc+/cdOH/+PDds2DCuadOmck91sbS0LGtX2n+XLl3k+k9LS+P09PS4Tz755CPfqbecnJw4gUDApaSkyL3n4uIit+/A+7KbmppyTk5Ocn34+/tzALhLly5VKo+ypKencwC4c+fOKaX/6uwpFh0dzQHgFi5cKPde6VO3rl+/Lvfe8+fPOQCco6NjtfMqqv+q9lNQUMB17ty53O926X9jx47lgLdP7KP21J4P7TmO4w4fPszZ2NjItW/evPl7N2zNzMzkAHADBw6s8P0PYb2nmIWFBbdq1Spmx9c21fl5sxxb3lXdPcWqcy5yXPXPLb7uCaMqixcv5tq2bcvs+HRtT9f2FVm+fDlnbW3NNIM64/v4kZuby7m4uHBGRkbciRMnqt1PZcchbRs/fvnlF65Ro0asY2gK+T3FpFIpAHYzxW7fvo369euXTYH8rwEDBpS1AYBGjRphwIABOHr0aFmllOM4bN68GY0bN0b//v3Lvvbq1asoKSmBlZUVdHV1IRQKoaOjAx0dHbRr1w4A5NYgu7q6Vnqd/enTp9GtWzdERETg4cOHKC4uLvd+RdODP//8c7n+mzdvjtatWyMtLQ0AkJWVJbcXQOmyhNLvhYWFRdm/4b/eXUvOZ6UzG9Rp+WTpXW4TExO590xNTQGgwr0SsrOzy7WpDkX1X9V+atWqhePHj2PevHlo3rw59PX10axZM6xdu7ZsmZm5uTm1p/a8aJ+YmIgBAwYgPz8fhw8fRnZ2dtmSHmNjY4wYMQJRUVF4V506dQBUPNNF3dFMMfXHcmxRlKqei6X4fG6pM6lUKreUSpXo2p6u7StiYGBAM8UUTF3Gj+zsbLi5ueHff//F4cOH0aNHD4X0+yHaNn6IRCI8ffqUliAriFxRrPQPOcdoKu1/M1SGn59f2WAJvN24NS0tDT4+PtDV1S1rV7pnQElJCUpKSiCTyeSmDJcWBEuVbu5eGcuWLYNUKsWiRYtw+/Zt5Ofnlx2jTZs2le6HVKz058Ryk9h31a1bF8D/TUf+r5YtWwIAUlJS5N5LSkoq16Y6FNV/dfoxNjZGcHAw0tLSUFhYiPT0dEybNg2xsbEAgI4dO1J7as+L9mFhYZDJZPj111/Rr18/1K1bFyYmJujdu3fZmLJhwwa8q3R5gZmZmdx76o71MirycSzHFkWq6rkL8PvcUmesNlKvbga6ttcOMplMLX43NYk6jB+PHj1Cz549kZycjKioKPTs2bPGfVaGto0f1tbW4DhOax4soGxyFYbSi+V3BxFVadmyJbKyspCYmCj33uHDh8valHJ3d4elpSU2b94MmUyGTZs2AXi7J8F/ffLJJzAyMsLLly/l1taX/rd79+5q505PT0ejRo0QEBCAFi1awMDAAAKBAGlpaRVuJgsAsbGxcsXH9PR03Lp1Cy1atADwdrPad3NmZWWVtW/ZsiUyMzNx9epVuf41aTPO0jtJ6jTDofSpdP/9eZQqvSOybds2uffCw8PLtakORfWvqH5u376N8PBwCIVCDB48mNpTe160/9BTr0o/bFX0xNvSc/7dJ1PygVQqVau/o0Qey7FF2T527vL53FJn+vr6zK7rAbq2p2v7itHMZcVjPX6kpaXB2dkZd+/eRUxMDD777LMa9VcV2jZ+WFlZAZCfDUuqR64oVvrHidXgOWzYMADA8OHDcfjwYbx69QoPHjxAYGAgNmzYgFq1asHT07OsvVAohI+PD+7du4ddu3Zh79696NmzJ1q1alWuX19fX7x58waurq44ePAgnj17BqlUirt37+LQoUMYMmQIjh07Vu3cpVMY165di5ycHOTk5ODw4cPw8PB475NtEhMT4evri9u3byMvLw/x8fH44osvUFRUhKFDh1bquEOGDAHHcRgyZAji4uKQm5uLO3fuYNq0aTX696ib0t9HdRo8bWxsULt27QqfruXq6gqRSISTJ09i7ty5yMrKQk5ODoKCgrB37140aNAAgwYNqvaxFdV/dfoZNGgQDh48iOfPn+P169fYt28fXFxckJ+fj8mTJ5f9kab21F7d23fo0AEAMGPGDERFRSEnJwe5ubmIi4vD+PHjy7X5r9JzvqKlQOqOnj6p/liOLYpU1XMX4Pe5pc5q1arFtChG1/Z0bV8RukmjeCzHj5SUFHTv3h3Z2dk4cuQIunXrVpN/SpVp2/hRr149mJiYUFFMUd7dZezBgwccAO706dMK3r+scgoLC7lu3bpVuDkrAG79+vVyX3Pnzh1OIBBwpqamHABu69atcm1kMhnn4+Pz3n7xnw38SjfLDAkJqTBjRRta7t+/v8I+O3TowNna2nL169cva1va/9ChQzmhUCj3NZ988gn3+vXrSn2/8vPzufbt28v1IRAIuOHDh2vMZpyXL1/mAHC3bt1SSv/V2Wif4zjO3d2dMzAw4AoKCuTei4qKqvDnKxAIuJ07d8q1d3Z2rtL3uqr916pVixMKhTXup1GjRhX+rru4uHBv3ryh9tSeN+1fvHjBNW/e/L1jQuPGjbkHDx7IHWPy5MkcAC4jI0PuvY9hudF+YWEhB4Dbt28fk+Nro+r+vFmOLaNGjfrgtdJ/ryk47v1jS1XPXY6r/rnF142SVSUkJISzsLBgdny6tqdr+4osWLCAc3BwYJpBnfFt/PD19f3guVhRP+8bP6o6DnGcdo4fNjY2cuc9qRb5jfaNjY0BALm5ue++pRL6+vo4evQoFi1ahDZt2kBfX79sj5eoqChMnjxZ7musra3h6uqKnJwcmJqaVngnRiAQYPPmzdi5cydcXV1hZmYGfX19NG/eHIMGDcK+ffvg6upa7dxeXl7Ytm0b7O3tYWhoiCZNmuDLL7/EsWPH3nsXxNnZGVFRUejSpQsMDQ3RoEED+Pr64uTJk6hdu3aljmtgYIDjx49j6tSpaNSoEQwMDNChQwfs27dPozbjzMvLAwAYGRkxTlLemDFjUFBQUDb9/7/c3d3xzz//wMXFBSYmJjA2NsZnn32G6OhoeHt7y7Uvvev43/0yPqSq/Suqn8jISAwePBgNGzaEsbExOnbsiF9//RXR0dEwNDSk9tSeN+3NzMyQmJiIuXPnok2bNqhVqxb09fXRokULTJ06FRcvXoSFhUW5rykpKYFEIkGPHj0gFovljq/O1HHGLakYy7FFUap67vL53FJ3xsbGZddRLNC1PV3bVyQvL6/scydRHE0YP6pKW8cPsVhMM8UU5d0ymUwm4/T09Ljt27ezqNJphY/drSLyJBIJB4DLz89XSv/VnSlWWFjImZubc1988UWNjl9SUsLVrVuXa9euXYWPCieEqIeYmBgOQLXHSJYzxbKysjgA3NGjR5kcXxtV9+etjWNLTc4tPt/pV4U9e/ZwAoGAk0qlrKNoLLq2r7rRo0dznp6erGOoLRo/Kk9bx48vv/yS69OnD+sYmkB+pphAIICZmVmFG/QRwkpWVhZq164NAwMD1lHK0dfXx4IFC3DgwIH3brpaGSkpKXj58iXmzZtHT+IhRI2tXLkStra2ZXvk8AnNFOMPbRxb+HxuqbvSjd0/9HARQlTt+fPnVXoaKKkcGj+0h5WVFc0UUxC5ohjw9nHFVBQj6iQrK0ttB86pU6eiefPmWLJkSbX7iI+Ph1gsxogRIxSYjBCiSAkJCThy5AhWrlwJoVDIOk6VlT7Flzba5wdtGlv4fm6pu9LrJ7q2J+pEna/t+Y7GD+0gEolw//59uSfekqqrcIGwubk5nj59quoshLzXs2fP0KBBA9YxKqSnp4dbt27VqI+pU6di6tSpCkpECFEGZ2dnXl940EwxftGmsYXv55a6Mzc3BwA8ffoU7dq1Y5yGkLfU+dqe72j80A4ikQiFhYV48uQJGjduzDoOr1VYFKNN25TL3d1da0/e6srIyIC1tTXrGIQQwls0U4wQ7WRubg4jIyPcvXuXdRSNRdf2VVNcXIwHDx5o1abohCiaSCQCANy7d4+KYjVU4fJJa2tr3LlzR9VZCHkvKooRQkjNlBbFaKYYIdpFIBBAJBIhIyODdRRCAAD3799HcXExmjVrxjoKIbxlaWkJoVBIk5kU4L1FsYyMDLrjQdTGnTt3qChGCCE1ULp8kmaKEaJ9Sq/tCVEHpb+LdG1PSPXp6emhcePGVBRTgAqLYs2aNcObN2/w5MkTVechRE5OTg6eP39Od5MIIaQGaKYYIdqrefPmSEtLYx2DEABAeno6jIyM0LBhQ9ZRCOE12vZKMSositna2gIAkpOTVRqGkIqU/h6W/l4SQgipOtponxDtZWNjg5SUFFoFQtRCcnIybG1tIRAIWEchhNdEIhEVxRSgwqKYubk5GjdujKSkJFXnIUROcnIyTE1NyzYTJIQQUnW00T4h2sve3h4vX77E/fv3WUchBElJSbC3t2cdgxDeo6KYYlRYFAPeDp40U4yog+TkZNjZ2dHdJEIIqQHaU4wQ7WVvbw+BQEA3vIlaSElJgZ2dHesYhPCelZUVFcUU4INFsStXrqgyCyEVSkpKooGTEEJqqLCwEHp6etDRee/QTwjRUKUz7qkoRlh7+PAhnj17Rtf2hCiASCTCs2fP8ObNG9ZReO29V8ZOTk5ITk7G69evVZmHkHIKCwtx4cIFdO3alXUUQgjhNalUSrPECNFiTk5OOHPmDOsYRMslJCRAKBSiU6dOrKMQwnul2wvR0viaeW9RrHv37igpKUFiYqIq8xBSzvnz51FQUIDu3buzjkIIIbxWWFhIm+wTosWcnZ2RkJAAmUzGOgrRYgkJCXBwcICJiQnrKITwXmlRjJZQ1sx7i2KNGzdGs2bNkJCQoMo8hJQTHx+Pxo0bo3nz5qyjEEIIrxUWFtJMMUK0mLOzM7Kzs3Hz5k3WUYgWS0hIoJvdhChIvXr1YGJiQkWxGvrgxiLOzs44deqUqrIQIic+Pp4GTkIIUQCpVEozxQjRYg4ODqhduzZd2xNmXr9+jcuXL8PZ2Zl1FEI0Bj2BsuY+WBRzcXHBqVOnkJeXp6o8hJSRSqU4ceIEXF1dWUchhBDeo5lihGg3XV1d9OzZE7GxsayjEC0VFxcHmUyGXr16sY5CiMagoljNfbAo5u7uXlaYIETVTp06hdevX+Pzzz9nHYVomcTERHAcxzoGIQpFM8WIIj169Ih1BFIN7u7uOHLkCIqKilhHIVooOjoanTp1QsOGDVlHIVVUUFCA7Oxs1jFIBagoVnO6H3qzcePGaN++PaKiouDh4aGqTIQAAGJiYtC2bVs0a9ZMJcfLzMxEjx49VHIsor7y8vJw/fp1eioSUYrU1FS4u7szOTYVxdjYtm2bRu7Pev36dYjFYhgZGbGOgoKCAtYReKN///6YMWMGzpw5Q9c8ROViY2MxevRo1jF4Q13GD47jcOPGDTRr1gwGBgas4yiUJowfVlZWOHbsGOsYvPbBohgA9OvXD9u3b8cvv/wCgUCgikyEAAAOHTqEvn37quRYnTp1gq+vr0qORdRXdnY29uzZAwMDA9jb27OOQzSQvb09Pv30UybHpuWTqjdixAiNfUx6ZmYmbty4gWHDhsHY2Jh1HHTp0oVmn1RCs2bN0KpVKxw8eJCKYkSlrl27hvT0dJVd2/OdOo0fx48fR1ZWFry8vDSuKAbwf/wQiUS4f/8+OI6jek01CbiPrBG6cOECOnXqhMTERHTu3FlVuYiWS0lJgZ2dHU6dOkUb7ROVuHPnDj799FM8efIEzs7OiI+PZx2JEIXeMB4RAAAgAElEQVSaNm0arl27huPHj7OOQjTA+PHj8eeff6J169Y4c+YM6tWrxzoSqaR58+Zh586dSE9Ppw9QRGUCAgKwYcMG3L9/H0KhkHUcUkk//PADgoKCIBAIUFRURD87NXTixAn06tULjx49QuPGjVnH4aPgD+4pBgAdO3ZEy5YtERERoYpAhAAAdu3ahSZNmqBbt26soxAtkJmZiZ49e+LFixcQCASwtLRkHYkQhaOZYkSR6tatC11dXdy5cwf9+/dHfn4+60ikkry9vZGRkYFz586xjkK0SEREBLy9vamowiO//fYbgoKCAACGhob0s1NTYrEYAGhfsRr4aFEMAIYNG4YdO3bQxtNEZXbv3o3hw4dDR6dSv6KEVFtWVhZ69+6Nx48fo6ioCHp6emjUqBHrWIQoXGFhIe0pRhSmbt26EAqFKCoqwoULFzBkyBAUFxezjkUqwdHREa1ataIb3kRlkpKScO3aNXh7e7OOQipp//79mDFjRtn/r1OnDsM05EMsLCwgFApx9+5d1lF4q1IVB29vb9y/f18tNvojmu/ixYu4fv06DZxE6XJycuDq6oqMjIyyJ3EJBAKYm5szTkaI4kmlUpopRhSmbt26ZTdLi4qKcOTIEfj4+NANVJ7w9vbGjh07UFJSwjoK0QLbt2+HlZUVsz01SdUcP34c3t7e5f6e161bl2Ei8iF6enpo0qQJzRSrgUoVxdq3bw9HR0eEhYUpOw8h2LhxI9q0aYOuXbuyjkI02Js3b9CvXz9cu3at3KPpS0pKaKYY0Ug0U4wokpmZWbmCSnFxMbZv347vv/+eYSpSWRMmTEBmZiaio6NZRyEarri4GFu3bsX48eNpDzseSEpKgqenJ0pKSsoVxWjfSPVWutk+qZ5Kr03z8/PDzp07kZ2drcw8RMvl5+djx44dmDRpEg2cRGmkUik8PT1x7ty5cgUx4O3FG5+fQEPI+9BMMaJIdevWlZtlJJPJsHTpUoSEhDBKRSqrefPm6NWrFzZu3Mg6CtFwkZGRePz4McaPH886CvmI9PR0uLi4oKCgADKZrNx7DRo0YJSKVIZIJKKZYjVQ6aLYyJEjoaOjg+3btyszD9FyO3bswJs3bzBmzBjWUYiGKioqwqBBg3DixIn37n9DRTGiiWimGFGkDy2lmTt3LrZu3arCNKQ6Jk6ciEOHDuHhw4esoxANtmnTJri5ucHa2pp1FPIBz549g6urK3JycuSuj4VCIc0UU3NUFKuZShfFTE1NMWLECKxdu5b2iyBKs27dOgwePJj2dCJKUVJSgtGjRyM2NvaDG0LT8kmiiaRSKRXFiMJ8qCjGcRwmTJiAmJgYFSYiVTV48GCYmZnh999/Zx2FaKjU1FRER0dj0qRJrKOQD3j16hVcXV3x4MEDuRUUwNuiGO0ppt6srKyoKFYDVXq036xZs3Djxg0cPnxYWXmIFouLi8OFCxcwa9Ys1lGIBuI4Dn5+ftizZ89HNxamoizRRIWFhbR8kiiMmZnZB9/nOA5eXl44c+aMihKRqqpVqxamTp2KdevWIS8vj3UcooFWrVoFsVgMLy8v1lHIe0ilUgwaNAjXr1+vsCAGvH0IFRXF1JtIJMKzZ8/ob3k1VakoZmtri759++Lnn39WVh6ixVauXIlevXrBycmJdRSigfbs2YOtW7d+dK86fX19mJiYqCgVIapDM8WIIn3sA5JMJoNUKsWAAQOQmpqqolSkqqZNm4b8/Hxs2bKFdRSiYZ4/f46//voLc+fOhVAoZB2HVEAmk2HkyJE4fvz4ewtiwNubHKampipMRqpKLBYDAG22X01VKooBb/eJOH78OM6fP6+MPERLpaSkIDo6GnPmzGEdhWiooUOH4vbt25g7dy6MjY2hq6tbYbv69eurOBkhqkEzxYgi1a5d+70fdAUCAXR0dFC7dm34+vpSMVaNmZubY+zYsQgJCfnoLGpCquLXX3+FgYEBfHx8WEch71FSUoIBAwbA3t4eAN57jVBSUkIzxdScSCQCAFpCWU1VLoq5urqic+fOCAgIUEIcoq0WL14MW1tb9O/fn3UUosGaNWuGZcuW4eHDh/juu+9gZGQEHR0d6Oj835/Cxo0bM0xIiPJQUYwokkAggLGxcbnX9PT0AABt27bF+vXr8ejRI/z0009lF+tEPX399dfIyMhAeHg46yhEQ7x8+RJr1qzBjBkz5P5OEPWhp6cHHx8fXLlyBefPn8fYsWOhp6cnd+O4pKTko0vmCVtmZmaoU6cOFcWqqcpFMQBYsmQJDh06hH///VfReYgWSk5Oxt69e7FkyZJyxQlClKVOnTrIycmBmZkZQkND0bp1awBvP+RRUYxoKlo+SRStTp06AABdXV0IhUK4urpCKBRi/fr1mDRpEn0Y5omWLVti7NixCAgIgFQqZR2HaIDSrXZmzpzJOAmprI4dOyI0NBRWVlb47LPP0LBhQwgEgrIZwTRTTP1ZWVnR8slqqlYFwt3dHT169MDChQsVnYdooQULFqB9+/a0CSdRmVevXmHz5s2YPXs2/Pz8cO3aNURHR6NXr15o0qQJ63iEKAXNFCOK1qBBAzRo0AD/j707j6s5f//H/zgtllBRlqITMZZWElLyUUKRNRVKZKm0MISat92YdxgNJ5WKjImyhCIUSpaytKtkG5QWgwqTpP33x/ur3xhrnM7znNN1v93c5javc3q9HmdGdc71up7Xc9WqVSgoKMCZM2cwdOhQ+Pn5sY5Gmmjt2rUoLi6m2WLku5WWloLH48HT05MKKSImNjYWDx8+hK+vLwoLC3H48GEMHToUABXFRAGXy6VOsW/EaWhoaPiWL0xISICJiQni4uIwevRofuciLURSUhKMjIxw6tQpjB8/nnUc0kJs2bIFv/zyCwoKCj4YHFpeXk6D9olYkpOTg4+PDxYsWMA6ChET165dw+DBg98rtoaHh2POnDl49OgRevTowTAdaSoXFxdER0fj7t27kJGRYR2HiKilS5ciPDwcDx48QPv27VnHIU0wYcIEVFdX4/z58+8dz8rKgqqqKg3bF3LOzs64d+8eLly4wDqKqPH+5rVqxsbGsLCwwOLFi1FbW8vPUKSFqK+vx9KlS2FsbEwFMSIwNTU18Pf3h6Oj40d/uVNBjIirqqoqWj5J+Gr48OEfdB9aWVmhS5cuCAoKYpSKfKv169ejvLwcW7ZsYR2FiKg7d+7A398fP//8MxXERMyDBw8QGxsLNze3Dx7T1tamgpgIUFFRoU6xb/RdA5x27NiBBw8eYPfu3fzKQ1qQffv2IT09HTt27GAdhbQgBw8exJMnT7B48WLWUQgRqOrqalo+SZqdtLQ0FixYgKCgILx9+5Z1HNIEXbp0wapVq/Drr78iPz+fdRwigpYtWwZ1dXXMnz+fdRTSRP7+/ujRowcsLCxYRyHfiMvloqCgAPX19ayjiJzvKor17t0brq6uWLt2LcrKyviVibQAf//9N1avXg0nJydoaWmxjkNakO3bt8Pa2pp2QyMtSk1NDRoaGqhTjAiEs7MzXr58iaNHj7KOQppoyZIl6N69Ozw9PVlHISLmzJkziImJwY4dOxqHsxPR8ObNG/zxxx9wcXGh/3ciTFVVFdXV1Xj69CnrKCLnu7f6W7t2LaSlpbF8+XJ+5CEtxE8//YTa2lps3LiRdRTSgpw/fx6ZmZm0GxJpcaqqqgCAOsWIQCgpKWHq1Knw9/dnHYU00evXrzFr1iwcPnwYzs7OrOMQEZGSkgIbGxsMGTKEdvEWQfv370dFRQUcHBxYRyHf4d0Nf1pC2XTfXRSTk5PDzp07sW/fvg+G8hHyMTdu3EBgYCB27NgBBQUF1nFIC+Lj4wNjY+PGnXQIaSmqq6sBgDrFiMC4ubnh+vXrSElJYR2FfEZxcTEOHToENzc39OvXD4qKiti4cSNkZWVx5swZlJeXs45IRMDBgwdRW1uLlJQUDBgwAJ06dcLUqVPB4/GQnp6Ouro61hHJZwQEBMDW1hZdunRhHYV8h+7du0NSUpKKYt/gm3ef/DdLS0ukp6cjJycH7dq148cpiRiqrq6Grq4uVFRUEBMTwzoOaUFycnKgra2N6OhoTJgwgXUcQgTqyZMnUFZWxuXLl2FkZMQ6DmkhBg8eDC0tLezbt491FPL/3L9/H4mJibh06RISEhLw+PFjcDgctGrVqrGjVEZGBhcuXMDEiRMxa9Ysmv1KPislJQXDhw9HUFAQjh07htjYWDQ0NEBCQgISEhKora2FjIwMDAwMYGxsjJEjR2LIkCF0k0ZIXLx4EcbGxkhJSYGenh7rOOQ7qaio4Mcff4SHhwfrKKLEm29FseLiYmhoaMDOzg47d+7kxymJGFq5ciV27dqFnJwcqKqqso5DWhAHBwdcu3YNubm5kJD47iZZQkRKXl4eevXqhRs3blCnJBGY3bt3w93dHY8fP6YOBEYePnyIuLg4XLlyBfHx8Xjy5Ml7xYp/43A4iIiIgKWlJUJDQ+Hg4IC4uDgYGxszSE+EXWVlJfT09KCkpITz58/j1atX0NHRQXFx8Qd/vzgcDqSkpFBTUwNJSUloamrCzMwMhoaGGDFiBDp27MjoVbRsVlZWKC4uRlJSEusohA8MDQ2hp6cHHo/HOooo8ebbJ0NlZWXs2bMH/v7+iI6O5tdpiRi5dOkSfvvtN/j6+lJBjAjU06dPcejQISxfvpwKYqRFerd8kmaKEUGys7ND+/btERISwjpKi5SQkIA+ffrAxcWlcedlAKivr/9oQUxSUhIrVqyApaUlAMDe3h5WVlaYPXs2SktLBZqdiAYPDw8UFxcjJCQEHA4H8vLyOHHixEffazU0NKCmpgYAUFdXh5s3b2L79u2YNGkS7QjOSHFxMU6cOAE3NzfWUQifcLlcWj75Dfj66dDS0hJ2dnaYP38+/vrrL36emoi4Fy9ewN7eHpMnT6YhjkTgeDweZGVlYWdnxzoKIUy8WxZFy1WIILVt2xYODg4IDAz8aBGGNC9jY2PY29tDQkLiizOdpKWlYWhoiP/+97/vHQ8MDISkpCQcHR2bMyoRQTExMQgMDMSuXbveu9k9cOBABAcHf9U5ampqICcnBx8fn+aKST4jICAACgoKjYVwIvqoKPZt+N4y4efnh/bt22POnDk0VJEA+N+doTlz5qChoQF79uxhHYe0MG/evEFwcDDc3NzQpk0b1nEIYYIG7RNW3NzcUFRUhJMnT7KO0iLxeDzIy8t/tktaUlIS8vLyOHToECQlJd97TF5eHnv37kVUVBSCgoKaOy4REY8fP4a9vT3mzJmDGTNmfPD4nDlz4OTk9MHfp4/x8/Oj5dUMVFdXY8+ePXBycqIucjGioqJCRbFvwPeimKysLI4fP44rV65g7dq1/D49EUE///wzYmNjERYWRvMCiMCFhISgsrISixYtYh2FEGbedYrRG18iaKqqqjA3N4e/vz/rKC2SnJwc/P39UV9f/9nnRUZGQklJ6aOPjR49GqtXr4a7uzvNHSKoqqrC9OnToaioCF9f308+b+fOndDT04O0tPRHH5eWlsbo0aOpi5+Rw4cPo7S0FAsXLmQdhfCRqqoqSkpKUFFRwTqKSGmW4ToDBw5EUFAQvL29cezYsea4BBERcXFx2LhxI3777Tfa8YwIXF1dHXg8HubOnQtFRUXWcQhhhjrFCEtubm64cOECsrOzWUdpkSorK6Gurv7R4gSHw4Gvry8MDQ0/e45169ZhzJgxsLKyapxNRlomNzc33LlzB8ePH0eHDh0++TxpaWlERESgffv2H+1U5HA4UFRUxMuXL5szLvkEf39/WFpaonv37qyjED7icrkAgIKCAsZJREuzTZyePXs25s+fj/nz5+PWrVvNdRkixO7duwcbGxvMmDGDBjgSJiIjI/Ho0SO4u7uzjkIIU9QpRlgaO3Ys+vXrh127drGO0qIUFhZiwoQJcHBwgJGR0QcjBKSkpGBjYwMXF5cvnktCQgL79+9HmzZtMHPmzMZCO2lZAgMDERISgtDQUAwYMOCLz1dRUcHRo0c/OC4hIQFHR0dcvHgRGhoatLxawNLT03Hjxg36fCaG3hXFaAll0zTrNmx+fn7Q0tLChAkTaPB+C1NSUoIJEyagd+/eXz1skxB+++233zB58mT079+fdRRCmKJOMcISh8PBokWLsH//frx69Yp1HLHX0NCA0NBQ6Ojo4O7du4iLi0NgYCC2bdvW2LEjLS2NPn36NGln0E6dOiEqKgoZGRmYP38+GhoamuslECEUExMDd3d3rFu3DlOmTPnqrzMxMcGmTZsa/+5JSUlh4MCB2LFjB27fvg0LCwtMnjwZ1tbWeP78eXPFJ//A4/Ggo6ODESNGsI5C+Kxjx46QlZWlolgTNWtRrHXr1oiKikKbNm1gYWFBa1tbiLdv32Ly5Mmora1FdHQ0ZGRkWEciLVBSUhKuXbsGDw8P1lEIYY46xQhr8+bNg4SEBPbt28c6iljLy8vD2LFjMX/+fNjZ2eHmzZswNjYGACxcuBAGBgbgcDho3br1N71H09bWRlRUFI4cOYINGzY0x0sgQignJwczZ86ElZXVN82M9vLywoQJE8DhcAAAoaGhjRs8BAUFISYmBjdu3ICmpiZCQ0P5HZ/8Q0lJCY4cOUJdYmKMhu03XbMWxQBAQUEBp06dQn5+PmxsbFBTU9PclyQM1dbWwtbWFrm5uTh9+jS6du3KOhJpoXx8fDBkyJAvzkkhpCWoqqqClJTUZ3egI6Q5dejQAba2tvDz8/vi0HfSdA0NDQgODoaWlhaePHmCpKQk8Hg8tGvXrvE5HA4HISEhaNOmDcLCwtCnT59vupaxsTH8/f2xceNG7N69m18vgQipR48ewczMDLq6uti3b19jYaspOBwO9u/fj169emHVqlXQ0NB473EzMzNkZ2djxowZcHBwwMSJE1FUVMSvl0D+ITg4uHEZNBFPXC6XimJNJJB3x3369MGpU6dw+fJl2NnZoa6uThCXJQJWX1+P+fPnIzY2FidOnIC6ujrrSKSFevjwIU6ePImVK1eyjkKIUKiurqalk4Q5d3d3PHjwAOfOnWMdRaw8ePAAJiYmcHV1haurK9LS0jB06NCPPrdv375ITk7GpEmTvuuaCxYswLp16+Ds7Izw8PDvOhcRXkVFRTA1NUXnzp1x/Pjx7+o2lpOTQ0xMDP7zn/989HFZWVnweDxcvHgRd+/ehaamJo1g4bO6ujrs3r0bCxYseK9gTsQLFcWaTmC3jIcNG4aYmBicPn0a8+bNo7uEYub27duwsrLCoUOHEBERgZEjR7KORFowHx8fqKioNGnmBSHirKqqipZOEuYGDBjQ2GVEvl9tbW3jbKCysjJcv34dmzdv/mIBXFNTky/XX7duHVasWAF7e3tERETw5ZxEeJSUlGDs2LGQkpJCbGws5OXlv/ucffv2/eLvIiMjI9y8eRNOTk5wcXGBubk57aTHJ1FRUXj8+DEWLVrEOgppRlQUazqBrqMwNDREREQEDh06BCcnJyqMiYmGhgYEBAQgMjIS0tLSiIqKQlxcHHUEEibKysrwxx9/YOnSpZCSkmIdhxChQJ1iRFi4urri9OnTuH//PusoIu3WrVswNDTEihUr4ObmhpSUFAwePFjgOby9veHo6IjZs2cjKipK4NcnzePZs2cwNTVFVVUVEhISBD4OpW3btti8eTMuX76MvLw8aGpqgsfj0WfH7+Tv748JEyZATU2NdRTSjLhcLgoKCuj7pQkEPlzE3NwcR48exYEDBzB79mzU1tYKOgLho7q6OixcuBDBwcHYunUr3r59iz179mDMmDFQVFSEk5MT4uPjqUBGBMbf3x+tWrXCvHnzWEchRGhUVVVRUYwIhcmTJ0NVVRVBQUGso4ikmpoabNy4Ebq6upCUlERWVhY2b97MrBOUw+HAz88Pc+fOhZWVFQ4ePMgkB+GfwsJCjBw5Em/evMGFCxegrKzMLIuBgQHS09Ph5OQEDw8PjBs3Do8ePWKWR5Tl5ubi4sWLcHV1ZR2FNDMul4vq6mo8ffqUdRSRwWTi7sSJE3Hq1CmcOHECVlZWjbtiEdFSU1MDOzs7hIeHIzIyEsuXL4eXl1fjIOeXL19i3759MDU1RadOnWBvb4/o6GjabIE0m6qqKgQEBMDZ2Rnt27dnHYcQoVFdXU3LJ4lQkJSUhKOjI0JCQmhX8ibKycnB8OHDsXnzZmzcuBFXrlxB//79WceChIQEdu3ahSVLlmD27NnYs2cP60jkGz148AAjR46EtLQ0Ll26BC6XyzoS2rZti61btyI1NRWlpaXQ1NTEli1bqAumiXbu3Ik+ffpgzJgxrKOQZvbu+5aWUH49ZttQjR49GmfPnkVCQgLGjh2LsrIyVlHIN3j16hUmTJiAU6dO4fTp0xg/fjwAYM2aNVBTU4OkpCSA/30QA4C///4bhw8fxqRJk6CoqEgFMtIs9u/fj9LSUri4uLCOQohQoeWTRJgsXLgQb9++pQHtX6m2thZbtmyBnp4eWrdujczMTHh6eja+1xIGHA4H27Ztw+rVq+Ho6IiNGzeioaGBdSzSBMnJyTA0NISCggIuXrwIJSUl1pHeM3DgQNy4cQNr167FmjVr8H//93/4888/WccSCeXl5QgLC4ObmxvtQt0CdO/eHZKSksjPz2cdRWQw/a4wNDREUlIS8vPzMWzYMNy7d49lHPKVioqKMGrUKOTk5ODixYswNjZufKx169b4/fffP3r35p8FskOHDmHSpEno1q0bXFxckJubK7D8RDw1NDRg+/btsLW1RY8ePVjHIUSo0KB9IkwUFRVhY2MDX19f1lGE3q1btzB8+HBs2LABGzZswOXLl9G3b1/WsT5p/fr12LNnDzZt2gQHB4fG935EuEVFRcHY2Bg6OjqIj4+HgoIC60gfJS0tDU9PT6SkpOD169fQ0dEBj8ejAuwXhISEoKGhAXPmzGEdhQiAtLQ0lJSUqFOsCZiXijU0NHD16lXIysrCyMgIiYmJrCORz0hOTsaQIUNQV1eHGzdufHSoq6GhIVxcXD475Pxdh9iLFy9w7Ngxof3lS0RHTEwMcnNz8eOPP7KOQojQoZliRNgsXrwYOTk5uHLlCusoQuldd9jgwYMhJSWF9PR0oesO+5R58+bhxIkTOH78OMzNzVFSUsI6EvkMHx8fWFpawt7eHqdPn4asrCzrSF+ko6OD5ORkrFixAh4eHjAzM6MCwCc0NDQgMDAQ9vb2kJOTYx2HCMi7Yfvk6zAvigGAsrIyLl26hOHDh8PExITuHAqpoKAgjBw5EgMHDkRiYiJUVFQ++dwtW7ZASUnpi2/eOBwOjh49KvBdbYj48fHxwbhx46Cjo8M6CiFCh2aKEWGjq6sLfX19+Pn5sY4idHJzc2FoaIj169djw4YNSExMFIrZYU1hbm6Oy5cv488//4Senh7S0tJYRyL/8vr1a8yYMQOenp7YunUrdu3aJVK7dktLS2P9+vVISkrC48ePoaWlheDgYOoa+5ezZ8/i7t27cHZ2Zh2FCBCXy6VCcRMIRVEMANq3b4/IyEisW7cOy5Ytg52dHd68ecM6FgHw9u1bzJs3D4sWLYKnpydOnTr1xbtI7dq1++Qyync4HA5+++03GBkZ8TsyaWGysrKQkJAADw8P1lEIEUrUKUaEkaurK44fP47CwkLWUYRCfX09goODMWTIEAAQqe6wjxk4cCDS0tLwww8/YMSIEdi7dy/rSOT/uXv3LvT19XHhwgWcO3dOpN8/DRs2DBkZGVi0aBFcXFxgbm5OP1P+wc/PD6NHj4aWlhbrKESAqCjWNEJTFAP+VyRZtWoV4uLicP78eQwePBjp6emsY7Voubm50NfXx7Fjx3Ds2DFs2LDhqwc0jh49GnZ2dpCWlv7gMSkpKQwZMgRLlizhd2TSAm3duhWampowNTVlHYUQoUSdYkQYWVtbQ1FREbt372YdhbkHDx7A2NgYbm5ucHd3R2JiIgYMGMA61ndTVFTEuXPnsH79eixcuBDW1tZ48eIF61gtWmhoaOOmDcnJyTAxMWEd6bu1adMGmzdvRmJiIvLy8qCpqYng4GDWsZjLy8tDbGwsXF1dWUchAkZFsaYRqqLYO6NGjUJqaiq6desGfX19rF+/nrbdFbCGhobGu5Vt27ZFeno6pk6d2uTz7NixA7Kysu8V0qSkpNCxY0ekpKTA1tYWf//9Nz+jkxamqKgIR44cwfLly8HhcFjHIUQoUacYEUatWrXCwoULERgYiKqqKtZxmHj3fktHRwcvX75EcnIyNm/e/NEbiqKKw+HA09MTsbGxSEpKwsCBA3H58mXWsVqcV69ewdbWFnPnzsW8efNw9epV9OzZk3UsvtLX10dGRgacnZ3h4uKC8ePHo6ioiHUsZvz8/NC9e3dMnDiRdRQiYFwuFyUlJaioqGAdRSQIZVEMAFRUVBAfH4+ff/4Z3t7eMDU1pW13BSQvLw9mZmZwdXWFl5cXEhMT0bt37286V6dOneDv799Y1ORwOJCWlsbFixdx/vx5XLx4Edra2khKSuLnSyAtyI4dO9C5c2fMmDGDdRRChFZ1dTUVxYhQcnZ2xosXL3D06FHWUQTu0aNHMDExgZubG9zc3JCSkoKBAweyjtVsxowZg4yMDGhra8PExAReXl6orKxkHatFOH36NLS0tHDp0iWcP38ePB5PbH8ntG3bFps3b8bly5fx4MGDFts19ubNG/z+++9YtGiRSM2KI/zB5XIBgLrFvpLQFsUAQEJCAp6enrh27RrKysqgra2NrVu3ora2lnU0sVRXV4ft27dDU1MTRUVFSExMxJo1a757loWNjQ0sLCwaz/P7779DXV0do0ePRmZmJjQ1NTFq1CisX78edXV1/HgppIUoLy/H7t27sXjxYloaRshnVFVV0fcIEUrKysqYMmUK/P39WUcRmIaGBvj7+0NTUxMvX75EamoqNl5VR/YAACAASURBVG/e3CK+R7t06YKTJ08iICAAgYGB0NHRwcWLF1nHEltPnz7FzJkzYWFhgZEjR+LmzZsYPXo061gCYWBggPT0dNja2sLZ2RmWlpZ4/vw561gCc+DAAVRUVGDevHmsoxAGqCjWNEJdFHtHV1cXKSkpWLNmDdatW4ehQ4ciMTGRdSyxcv36dejr6+Onn37CypUrkZ6ejmHDhvHt/EFBQZCRkYG7uztsbGwaj3fu3BnR0dHYsmULNm/ejLFjx7boNmfSNMHBwaitrcWCBQtYRyFEqFGnGBFmbm5uuHbtGlJTU1lHaXaFhYUYN24cfvzxR3h4eCA5ORna2tqsYwkUh8OBo6Mjbt26BXV1dZiYmGDevHl4+vQp62hio66uDkFBQVBXV8f169cRExODAwcOQEFBgXU0gWrXrh38/PwQFxeH1NRUaGlpITo6mnUsgfD398fMmTPRpUsX1lEIAx07doSsrCwVxb6SSBTFgP9tu/vTTz/h5s2bUFRUxMiRIzFjxgz6H/2dioqKMHv2bBgYGKBDhw7IyMjA2rVr+X63UllZGZGRkdi2bdsHj3E4HCxbtgxXr15FUVERtLS0EB4eztfrE/FTW1sLX19fLFiwoMW9ySOkqahTjAizkSNHQltbW+y7xSIiIqCjo4MHDx4gISEBGzduFKvZYU3VvXt3REVF4ciRI4iLi0Pfvn2xdevWFjtfjl8SEhKgq6sLd3d3ODg4ICcnB2ZmZqxjMWViYoLs7GxMnjwZkyZNEvsNHy5fvoysrCy4uLiwjkIYUlFRQUFBAesYIkFkimLv9O3bF+fOnUNUVBTS09PRv39//Oc//0FZWRnraCLl1atXWLduHfr164ekpCRERETgwoULzbrT0ejRoz/75k9XVxcZGRlwdHTE7NmzYWVlhZKSkmbLQ0TbkSNHUFRUBHd3d9ZRCBF6NGifCDtXV1ccPHgQz549Yx2F716+fAk7OzvY2Nhg+vTpyMrKwogRI1jHEhrTp0/HnTt3sGzZMmzYsAEaGhoIDw+nTbaaKCcnB1OnToWJiQl69OiB7OxsbNu2De3atWMdTSjIysoiKCgIp0+fRmJiIgYNGoSEhATWsZqFn58f9PX1MWTIENZRCEO0A+XXE7mi2DuTJk1CTk4Ofv75ZwQHB0NNTQ0bNmygnQy/oLy8HL/88gt69eqFnTt3YvXq1cjNzYWlpSXraAD+/+GYZ8+exY0bN6CpqYkTJ06wjkWEEI/Hg6Wl5TdvAkFIS1JdXU2dYkSo2dnZoV27dti7dy/rKHx19uxZaGpq4sKFCzh16hSCgoKoSPERMjIyWLduHe7cuQMDAwPY29tDW1sbx44dQ0NDA+t4Qu3u3buYNWsWdHR08PDhQ8TExOD06dPo168f62hCafz48cjMzMSgQYMwevRoODk54c2bN6xj8U1xcTGioqLg5ubGOgphjIpiX09ki2LA/7by9vDwwKNHj+Dh4YEdO3agV69eWL16Nc0l+Jfnz59jw4YNUFNTw9atW+Hu7o6HDx/Cy8sLbdq0YR3vA6ampsjKysLYsWMxZcoULFy4EOXl5axjESGRkJCA5ORkLF26lHUUQkQCLZ8kwk5GRgZz587Frl27xGLTnTdv3mDJkiUwNzeHgYEBcnJyMH78eNaxhJ6KigpCQ0ORnZ0NTU1NWFtbY+DAgdi/fz9qampYxxMq6enpmDVrFjQ0NJCZmYmDBw8iIyOjxS+V/BpdunRBZGQkDh8+jIiICAwZMgRpaWmsY/FFYGAg5OXlMX36dNZRCGNcLhf5+fmsY4gEkS6KvdOhQwesWbMGjx49wpIlS7B7926oqqpi4cKFyM3NZR2PqXv37mHRokVQVVXFzp074ezsjIcPH2LDhg2Ql5dnHe+z5OXlERoaitOnT+P06dPo378/IiMjWcciQsDHxwdGRkbQ19dnHYUQkUCD9okocHFxQWFhocgPwr527Rp0dHQQGhqK/fv348iRI+jUqRPrWCJlwIABOHToEDIyMqChoYF58+ZBTU0Nv/76K16+fMk6HjP19fWIiYnB6NGjMXjwYOTm5uKPP/5AdnY2rK2tISEhFh/tBMbKygqZmZno2rUr9PX14eXlJdLF1+rqauzevRvOzs70O5+Ay+WisLCQlqJ/BbH6ySkvL4+1a9fi8ePHCA4OxtWrV6GhoQE9PT0EBwejoqKCdUSBqKqqQkREBMaMGYP+/fvj7Nmz8Pb2Rn5+Pn7++WeRG0o+fvx43Lp1CxYWFpg2bRqsra3FcuYI+Tp3795FTEwMPDw8WEchRGTQTDEiCnr37g1zc3P4+fmxjvJNqqqq4OXlBSMjI/Tp0we3bt2Cra0t61giTVtbG+Hh4Xj8+DHmz5+P//73v+jWrRusra0RFxfXYpZWPnnyBFu2bMEPP/yA8ePHo6qqCidPnkRGRgZsbW0hKSnJOqLI4nK5iI+Ph7+/P3bu3IkRI0bgzp07rGN9k4iICJSUlMDR0ZF1FCIEuFwuqqur8ddff7GOIvTEqij2TuvWrWFvb4/s7GycPXsWampqcHd3R48ePeDk5IT4+HixaM3/p/r6ely6dAkuLi5QVlaGra0tOnTogFOnTuHPP//EkiVLRHqGRceOHREUFIQzZ87gxo0b6N+/P4KDg1nHIgxs27YNvXv3xsSJE1lHIURk0EwxIipcXV0RHx+PnJwc1lGaJDs7G/r6+ggICEBAQADOnDkDZWVl1rHEhpKSEtavX4/8/Hzs2LEDDx8+xJgxY6Curo5Nmzbh3r17rCPy3d9//40DBw7AwsICKioq2LZtG6ZMmYLc3FwkJiZi4sSJ4HA4rGOKBQ6HA0dHR6SmpqK+vh66urrYsmWLyHXY+Pn5Ydq0aejRowfrKEQIcLlcAKC5Yl9BLIti70hISGDs2LE4cuQICgoKsHr1aqSkpMDU1BTKyspwcXHBuXPn8PbtW9ZRv0lVVRXi4+OxePFi9OjRA6NGjUJSUhJWrlyJx48f4/jx4xg/frxYtVKbm5sjJycHs2bNwqJFi2Bubo68vDzWsYiAPHv2DGFhYVi2bJlY/b0mpLlRpxgRFWZmZujXrx8CAwNZR/kqdXV1+OWXX6Cnpwc5OTlkZWXB0dGRihXNRFZWFs7OzkhNTUVaWhpMTU3h5+eHfv36YdCgQfD29kZWVhbrmN/s+fPnOHDgAKZOnYquXbti/vz5AICwsDAUFhbCx8enWXeKb+kGDBiAq1evYsWKFVi9ejXGjRuHwsJC1rG+SkZGBq5fvw5XV1fWUYiQ6N69OyQlJako9hU4DS2l7/gf7t+/jyNHjiAiIgI3b96EjIwMRo0aBXNzc4waNQrq6upC+YG7oaEBt2/fxsWLFxEbG4sLFy6goqICmpqasLKygrW1Nfr37886psAkJSVh4cKFyM/Px3/+8x8sX76cPvSJubVr18Lf3x+PHz8W6c5HQgStbdu2CAoKgr29PesohHzRjh07sGbNGhQWFkJOTo51nE969OgRZs+ejbS0NGzatAlLly4VyveP4q6urg6XLl3CkSNHEBkZiWfPnqF79+4wMzPD2LFjMXLkSHTr1o11zI+qrKxESkoKzp8/j7NnzyItLQ1SUlIwNjaGtbU1pk6dio4dO7KO2SIlJyfD3t4ez549Q2BgIKytrVlH+iwHBwekpKQgOzubivKkkYqKCpYsWYLly5ezjiLMvFtkUeyfCgsLERsbi9jYWMTFxeHVq1fo2LEjDAwMYGBgAD09PWhpaUFJSYmv121oaPjiD6ynT58iOzsbaWlpSEpKwtWrV1FaWooOHTrA1NQU48aNg5mZGVRVVfmaTZTU1NQgICAAa9asQZcuXeDr60u7O4mpyspKcLlcuLi4YMOGDazjECJSJCUlER4eDhsbG9ZRCPmi8vJydO/eHZs2bcLixYtZx/moiIgIODk5QUlJCWFhYRg4cCDrSAT/GyeSnp7e+N7++vXrqKurQ+/evWFoaAgDAwMMGjQIGhoaAr+5VldXh4cPH+LmzZu4ceMGkpKSkJaWhurqavTs2RNmZmYwMzPD6NGj0b59e4FmIx9XWVkJLy8v7Ny5E9OnT0dwcLBQblRWUlICFRUV+Pr6YuHChazjECFiaGgIPT098Hg81lGEGRXF/qmurg5ZWVlITEzE1atXkZiY2Ngyq6ioCB0dHfTt2xc9e/ZEz5490atXL3Tv3h0KCgpN7lDas2cPLC0t8fbtWxQVFSEvLw95eXl49OgR7t27h6ysrMZh8srKyjA0NGz8M3DgQEhJSfH99Yuy4uJieHl5Yf/+/bCwsICvry969erFOhbho127dmHp0qXIy8sT2ju+hAijmpoatGrVCsePH8fUqVNZxyHkqyxatAjx8fG4c+eOUHVfvXr1Cm5ubggLC8PChQuxfft2yMjIsI5FPqG8vBzXr19HUlISEhMTkZycjPLyckhISKBXr17Q1taGmpoaevXq1fjevkuXLlBQUPjozeuGhgbcvXv3kyszXr9+jefPn6OgoACPHj1q/JObm4vc3Fy8efMGkpKSUFdXx4gRI2BgYIARI0agZ8+ezfxfgnyPs2fPwsHBAa1atcL+/fthZGTEOtJ7vL29sXXrVhQWFtJKCvKemTNnorKyElFRUayjCDMqin1JaWkpbt68iezsbGRnZ+P+/fvIy8tDUVHRe8P627dvD0VFxcadHeXl5T/4ZfrixQsAQFlZGQoKClBbW9v4mISEBJSVldGzZ0/07dsXmpqa0NLSgo6ODjp37iyAVyoezp8/D3d3dxQUFMDLywseHh70ZlUMNDQ0QF1dHUZGRrTBAiFN9Pr1a3To0AGnT5+mTloiMnJzc6GpqYnY2FiMHTuWdRwAwLVr12BnZ4eKigqEhIRgwoQJrCORJmpoaMDDhw+RlZWFrKws3Lp1Cw8fPkReXh5KS0sbn8fhcKCgoABFRUW0a9cO0tLSaN++PV69eoXi4mIMGDAA1dXVqKioQE1NDUpLS1FSUoKqqqrGc7Rp06bxRnr//v2hpaUFbW1taGhooG3btixePvkOz549w4IFC3DmzBksX74cP//8M6SlpVnHQl1dHfr06QNLS0ts27aNdRwiZLy8vHDu3Dmkp6ezjiLMqCj2rWpqavD48WM8efIEpaWl7/0B/ncn8Z87lnA4nMZ2W1lZWaxbtw6Kioo4fPgwlJWVweVyaWcwPqmursb27dvxyy+/QFZWFps2bYK9vb1Q3WkmTRMVFYVp06YhJycH6urqrOMQIlLKysqgoKCA8+fPw9TUlHUcQr6aiYkJ2rdvj5MnTzLNUVtbi02bNmHTpk2YNGkSgoODoaioyDQT4b/y8nLk5+fj2bNnKCkpQUlJCUpLS1FRUYHa2lqUl5fj6tWruHfvHuzt7dG2bVvIyMhAWloaCgoK7/3hcrl8H71ChENoaChcXFygrq6OsLAw/PDDD0zzREZGwtLSEnfu3EHfvn2ZZiHCx9/fH+vWrUNJSQnrKMKMimIsJCQkwMTEBAAQExMDMzMzxonEU2lpKTZu3IiAgAD07dsXW7dupbu6IsrIyAjy8vKIjo5mHYUQkfPkyRMoKyvj8uXLQrfkg5DPOXbsGKytrXH//n2oqakxyXDnzh3Y2tri9u3b8Pb2xpIlS5jkIOzV1dWhS5cuKCsrw8mTJzFx4kTWkQgjwvRzYfTo0Wjbti1OnTrFLAMRXtHR0Zg0aRLKy8tpVuGneVPrDANxcXFo1aoVJCUlqc21GSkoKIDH4yErKwtqamqwsLCAubk5MjIyWEcjTZCSkoLExER4eHiwjkKISKqurgYA2p2XiJwpU6ZARUUFgYGBTK4fGhoKPT09SEpKIjMzkwpiLdyFCxdQVlYGCQkJhIWFsY5DGOrfvz+uX7+OlStXwsPDA9OmTXtv+a2g3L59GwkJCXBzcxP4tYlo4HK5AICCggLGSYQbFcUYiImJQXV1Nerq6hAfH4+srCzWkcTagAEDEB0djQsXLqC0tBSDBw+GlZUVcnNzWUcjX+HXX3/F4MGDMWrUKNZRCBFJ72bc0BJ9ImokJSXh6OiIPXv2oKKiQmDXff78OSZPngwHBwfMnz8fiYmJtCyJICwsDK1atUJ9fT2ioqLw+vVr1pEIQ9LS0li/fj3Onz+P1NRUaGho4MyZMwLN4Ofnh969ewvN3EUifN4VxR4/fsw4iXCjopiAvXz5Ejdv3mz8d2lpafj5+TFM1HIYGxsjOTkZ586dw4MHD6ClpQVra2vcu3ePdTTyCXl5eYiMjKQuMUK+A3WKEVHm6OiIyspKHDx4UCDXO3fuHHR0dHDz5k0kJCSAx+NRQZng7du3OHbsWOPP05qaGuaz7ohwMDY2RnZ2NkxNTWFhYQEnJye8efOm2a9bXl6OAwcOwNXVleYmk0/q2LEjZGVlqSj2BfQdJGAXLlzAP8e41dTU4I8//qDhdwJkamqK1NRUhIWFISsrCxoaGpgzZw5u377NOhr5l+3bt6Nbt26YPn066yiEiCzqFCOiTFFREdbW1s1+A7GyshKurq4wMzODqakpsrKyMHLkyGa9JhEdZ86cea9bkcPhYP/+/QwTEWEiJyeHAwcOYN++fTh06BD09fWRk5PTrNf8/fffUVtbizlz5jTrdYjoU1FRoaLYF1BRTMDi4+M/2L63oaEBQUFBjBK1TBISEpgxYwZycnIQEhKClJQUaGpqwtLSEmlpaazjEQAvXrzA3r17sXTpUqHY8poQUUWdYkTULVmyBDdv3kRiYmKznP/WrVsYOnQowsPDcfDgQYSGhkJWVrZZrkVEU1hYGKSkpBr/va6uDufPn2cyR4oIL3t7e2RmZqJDhw4YOnRos81DbGhoQEBAAObMmYOOHTs2yzWI+FBVVaWi2BdQUUzAzpw50/gB5Z2amhrweLwPjpPmJyUlBXt7e+Tk5CAiIgL5+fnQ09PDuHHjcP78edDmrOwEBQVBQkIC8+fPZx2FEJFGnWJE1Onq6mLo0KHN0i0WGhqKYcOGQUZGBmlpabCxseH7NYhoKy8vx6lTp1BTU/PBY0ePHmWQiAizXr164fLly1i5ciXc3NwwdepUlJWV8fUa586dw927d7Fo0SK+npeIJy6XS0WxL6CimAAVFRUhLy/vo4+VlpbiyJEjgg1EGklISGDatGlITU1FbGwsamtrMXbsWGhpaWHPnj2orKxkHbFFqampgb+/PxwdHSEnJ8c6DiEi7V1RjDrFiChzc3PDsWPHUFRUxJfzvXr1CjNnzsTcuXMbh+mrqanx5dxEvBw/fhy1tbUfHG9oaEBoaCiDRETYSUpKYv369YiLi0NKSgoGDhyIy5cv8+38/v7+MDY2hpaWFt/OScQXLZ/8MiqKCdC5c+c+Owhx69atAkxDPmXcuHGIj49HZmYmhg4dCjc3N6iqqmL16tX0A0VAwsPD8fTpU7i7u7OOQojIe9eFTJ1iRJTZ2NhAQUEBu3fv/u5z3bhxA7q6ukhISEBMTAx4PB4t0yeftH//fnA4nA+O19fX49q1aygsLGSQioiCUaNGIScnB/r6+jAxMcH69etRV1f3XefMz8/HmTNn4ObmxqeURNxxuVwUFhaivr6edRShRUUxAYqLi4OkpORHH6uvr0d2djauXLki4FTkU3R0dLB3717k5+fD1dUVe/fuRa9evWBhYYGTJ09+9y818mk7duyAtbV14zbChJBvR8sniTho1aoVFixYgKCgoG8eN1FfXw8ejwcjIyP06dMHmZmZGDduHJ+TEnHy/PlzXLx48ZPv+aSkpHD48GEBpyKiRF5eHkeOHMHevXvx66+/YsSIEXj06NE3n8/Pzw/KysqYNGkSH1MSccblclFdXY2//vqLdRShRUUxAWloaMC5c+c+Oo/gHWlpafj4+AgwFfkaXbt2xbp165Cfn48jR46gpqYGU6dORc+ePbF27Vrcv3+fdUSxcu7cOWRmZmLZsmWsoxAiFqqrqyElJfXJmzKEiAoXFxeUlpbi2LFjTf7ap0+fwtzcHJ6envj1118RGxuLbt26NUNKIk6+NNqktrYWf/zxh4DSEFFmb2+P5ORkVFRUYNCgQd80NqeyshK///47nJ2d39v4gZDPeddkQCuePo2KYgJy69YtlJSUfPY59fX1iI6O/q67B6T5SEtLw9LSEmfPnsW9e/dgZ2eHvXv3om/fvjAwMMCuXbv4PkizJfLx8YGJiQl0dXVZRyFELFRVVdE8MSIWlJWVMXny5CYP3D958iQ0NDSQn5+Pa9euYcmSJR9dDkfIv4WGhn5206WGhgZkZ2cjNzdXgKmIqNLQ0MCNGzcwZ84c2NjYwN7eHm/evPnqrw8LC8Pr169pEyrSJN27d4ekpCQVxT6DimICEhcX996/S0pKQkZGBl26dIGhoSEsLS3h6OiIVatW0fbOIqB3797w9vZGfn4+zp49i969e2PFihVQUlKCubk5goOD8fTpU9YxRU5OTg7Onz8PDw8P1lEIERvV1dW0dJKIDVdXV1y9ehWpqalffO7bt2+xZMkSTJkyBePHj0dqaioGDRokgJREHOTn5yMlJeWr5vDQZlnka7Vt2xY8Hg9Hjx7FqVOnMGTIEGRnZ3/V1wYGBsLGxgZdu3Zt5pREnEhLS0NJSQn5+fmsowgtTsPnbn8QvsnNzUV5eTkUFBTQpUsXyMrKYtq0aWjdujUOHjzIOh7hg9evXyMqKgqRkZGIjY3F27dvYWBggKlTp2Lq1Kno1asX64hCb+7cubh+/Tpyc3M/uykFIeTr+fr6wtvbG0+ePGEdhRC+0NHRgZ6eHkJCQj75nDt37mDmzJl4+PAhAgICYGtrK8CERBw8fvwYN27ceO9YZGQkEhIS4Ovr+97xrl27YuTIkYKMR8RAfn4+bG1tkZ6eDm9vbyxZsuSTz01MTISRkRGSk5MxZMgQAaYk4mDEiBHQ1dX94GcXAQB402JkAVFXV//gmKKiIvLy8gQfhjSL9u3bw87ODnZ2dnjz5g3Onj2LyMhIbNq0CR4eHhg0aBCmTJmCyZMnQ1tbm5Zu/EtxcTEOHjyIgIAAKogRwkfUKUbEjYuLC5YsWQJvb2906dLlg8f37NmDJUuWQEtLC5mZmXRTinwTLpf7wYY/9+/fR0pKCqysrBilIuJEVVUVCQkJWLt2LZYtW4arV68iODgYcnJyHzzXz88Pw4YNo4IY+SZcLpeWT34GffJkSFFR8YtzxohokpGRwdSpUxEaGornz5/jypUrMDIyQnBwMAYOHIiuXbvC2toaPB4PaWlprOMKhZ07d0JeXp7u5hPCZzRTjIib2bNno127dvj999/fO/769WvY2trCyckJixcvxpUrV6ggRggRatLS0vD29sbZs2dx5coV6OrqfvDZ4MmTJzh+/DhcXV0ZpSSijopin0dFMYYUFBSoKNYCSEpKYsSIEeDxeHj8+DFSU1OxYsUKvH79GqtXr4aenh64XC7mzp2L0NBQFBYWso4scBUVFdi9ezfc3d3Rpk0b1nEIESvUKUbEjYyMDObMmYOAgADU1dUBAG7fvo3hw4fj3LlzOHXqFLy9vSEtLc04KSGEfB1TU1PcvHkTP/zwAwwNDcHj8RofCwoKgry8PHUokm+moqJCRbHPoOWTDCkqKuL58+esYxABkpCQwODBgzF48GCsWLECdXV1yMzMRFxcHOLi4uDk5IS3b99CSUmp8XmDBw+GkZER5OXlWcdvNiEhIaisrISzszPrKISIHeoUI+LI1dUVPB4Pp06dwqtXr+Di4gINDQ2kpKSgZ8+erOMRQkiTde7cGTExMdi6dSs8PDxw6dIlBAUFYc+ePXBycqIbx+SbcblclJaW4vXr12jfvj3rOEKHimIMKSoq4u3bt6ioqEC7du1YxyEMSEpKNha+PD09UVlZiWvXruHatWu4ceMGAgMD8fTpU0hKSkJDQwPDhg3D0KFDoaurCw0NDbH4oFtXVwdfX184ODhAUVGRdRxCxA51ihFx1Lt3b4wdOxaurq4oLi6Gu7s7tm3bRt1hhBCRxuFw4OnpiWHDhmHWrFnQ1tbG8+fP4eTkxDoaEWHv5iMWFBRgwIABjNMIHyqKMfSuAFBSUkJFMQLgf9s0m5iYwMTEpPFYcXEx0tLSkJaWhqSkJISFheHNmzeQkpICl8uFurp6Y2FNQ0MDampqDF9B0x0/fhyPHj3Cjz/+yDoKIWKJOsWIOLp79y7u3LmDoqIi+Pv7w8XFhXUkQgjhm1GjRiEzMxP9+vUDABw7duyzu1MS8jnvimL5+flUFPsIKoox9K4oVlpaClVVVcZpiLBSVlaGsrIyJk6cCACora3FvXv3kJWVhZs3byIrKwshISHYsGEDgP/9vdLW1oa6ujo0NTUb/9mxY0eWL+OTfvvtN0yZMgV9+vRhHYUQsVRdXU1FMSJWDhw4gEWLFqF///7gcDi4ffs260iEEMJ3xcXFePnyJebOnYtly5bhypUrCAkJ+ejulIR8TseOHSErK0tzxT6BimIMKSgoAAAN2ydNIiUlBXV1dairq2PGjBmNx8vKyhqLZDk5OUhLS8P+/fvx6tUrAICSkhI0NDSgqan53j87dOjA6qUgMTER169fR1JSErMMhIi7qqoqWj5JxMLbt2/h6emJnTt3wt3dHb/++iv8/f2xbt06/PLLL5CVlWUdkRBC+MbX1xcaGhrYu3cvZs+eDVtbWwwbNgxHjhyBtrY263hExHC5XBQUFLCOIZSoKMaQnJwcWrVqRUUxwhedOnWCsbExjI2N3zteUFCA3Nxc5OTkIDc3F1evXsWePXvw+vVrAEDPnj0bi2TvCmUaGhoC+RDt4+ODIUOGwMDAoNmvRUhLRZ1iRBzcu3cP1tbWePToEQ4fPty4C5uDgwPWrFmD0NBQuLm5MU5JCCH88eLFCxw+fBi//fYbOBwOTExMkJqaihkzZmDYsGHYvHkzLackTcLlcqlT7BOoKMYQh8NBp06dqChGmpWKpX1e3AAAIABJREFUigpUVFQwbty4944XFxcjNzcXt27dQm5uLhITE+Hr64vKykpISUmhb9++7+2AOWjQIL7Ovrt//z5OnjyJI0eO8O2chJAPVVVVoW3btqxjEPLNIiMjMW/ePPTu3RsZGRnvzc6Ul5eHnZ0dfH194erqCg6HwzApIYTwR3BwMFq1agU7O7vGY927d0dCQgI2bdqEZcuWIS0tDbt27aLZ1OSrcLlc3Llzh3UMoURFMcYUFRVRWlrKOgZpgd7NKjM1NW089m5eWUZGBjIyMpCeno7o6Gi8fPkSkpKS6NevH3R1dTF8+HCMGDECmpqakJCQ+Kbrb9++HaqqqpgyZQq/XhIh5COqqqogLy/POgYhTVZVVYWVK1fC19cXjo6O2Llz50e7mN3d3REcHIy4uDiMGTOGQVJCCOGf+vp6BAUFwcHB4YOCl5SUFNavX48RI0bAzs4Oenp6iIiIgKamJqO0RFSoqKjg3LlzrGMIJSqKMaaoqEidYkRo/HNema2tbePxhw8fIj09HRkZGUhLS8NPP/2Ev//+G3JycjAwMIChoSFGjBiBoUOHflVHSllZGUJDQ+Ht7Q1JScnmfEmEtHjV1dU0U4yInLy8PFhaWuLBgwc4evQoLC0tP/lcDQ0NjBw5Ev7+/lQUI4SIvOjoaOTl5cHZ2fmTzzE1NUVycjJmzJgBfX197N69GzNnzhRgSiJq3s0Uq6uro89f//JtLR6EbxQUFKgoRoSempoapk+fjl9++QWxsbEoKytDZmYmNm3aBHl5eQQGBmLUqFGNRbK1a9fi+vXrqKur++j5/Pz80KpVKzg4OAj4lRDS8lRVVdFMMSJSYmNjMXjwYNTV1SEtLe2zBbF33NzcEB0djUePHgkgISGENB8/Pz+Ym5ujb9++n30el8vFpUuXsHDhQtja2uLHH39ETU2NgFISUcPlclFTU4O//vqLdRShQ0Uxxmj5JBFFkpKS0NHRgZubG8LDw1FQUID8/Hzs27cP2traCA0NxfDhw9GtWzfY2toiLCyssfhbVVWFXbt2YdGiRWjfvj3jV0KI+KNOMSIqGhoasGXLFlhYWMDc3BxXr15F7969v+prp0yZAmVlZQQGBjZzSkIIaT73799HfHw8XF1dv+r50tLS2L59O8LDwxESEgJjY2M8efKkmVMSUaSqqgoANGz/I6goxhgtnyTigsvlYtasWQgMDEReXh5u3boFT09P/PXXX5g3bx66du0KfX19WFtbo7S0lHYJI0RAqFOMiIK///4b06dPx+rVq/HLL7/gwIEDkJGR+eqvl5KSgpOTE3bv3o03b940Y1JCCGk+vr6+UFNTg5mZWZO+bsaMGUhNTcWLFy+go6ODCxcuNFNCIqq6d+8OKSkpKop9BBXFGKPlk0RcqaurY/ny5YiPj0dJSQkiIiKgpaWFM2fOoKamBmPHjoW3tzfy8/NZRyVErFGnGBF2d+7cgb6+Pq5fv45Lly7B09Pzm87j5OSEyspKHDp0iM8JCSGk+ZWXlyM0NBSurq7ftJFVv379cP36dYwcORLjxo3Dli1bmiElEVVSUlJQUlKiothHUFGMMeoUIy1Bhw4dMG3aNEyZMgW1tbUIDw+HiYkJduzYgZ49e0JPTw88Hg/Pnj1jHZUQsUOdYkSYHTx4EHp6elBUVERqaioMDAy++VydO3eGlZUVdu7cyceEhBAiGPv27UNtbS3mzJnzzefo0KEDIiIisGnTJqxatQqzZs1CRUUFH1MSUfZu2D55HxXFGFNUVERVVRXKy8tZRyGk2fn4+MDMzAwzZ84Ej8dDYWEhoqOj0a9fP6xatQo9evTAxIkTcfDgQbx9+5Z1XELEAnWKEWFUW1sLLy8vzJo1C7a2toiPj4eSktJ3n9fV1RWZmZlISkriQ0pCCBGMhoYGBAQEYPbs2ejUqdN3nYvD4cDT0xNxcXG4cOEC9PT0cPv2bT4lJaKMy+XSKp2PoKIYY4qKigBA3WJE7KWnpyMhIQEeHh6Nx6SlpWFhYYGwsDA8f/4cYWFhAIA5c+agW7ducHJywq1bt1hFJkQsUKcYETbPnj3D2LFj4e/vj0OHDiEoKAjS0tJ8OfewYcMwZMgQ+Pv78+V8hBAiCHFxcbhz5w5cXFz4ds5Ro0YhNTUVcnJy0NfXx/Hjx/l2biKauFwuLZ/8CCqKMfauKEY7UBJx5+PjAy0tLYwePfqjj7dt2xZWVlaIjo7G48ePsWLFCsTGxkJLSwtjx47FiRMnUF9fL+DUhIg+6hQjwiQxMREDBw5EYWEhrl27BhsbG75fw83NDUePHkVRURHfz00IIc3Bz88Po0aNgra2Nl/P26NHD1y6dAk2NjaYPn06vLy8UFdXx9drENGhoqJCRbGPoKIYYwoKCgCoU4yIt8LCQkRERGDFihXgcDhffH63bt2watUqPHz4ECdOnIC0tDSmTZuG/v37Y9euXbSzGCFNQJ1iRFgEBwfDxMQEgwcPRnJyMjQ1NZvlOjY2NujUqRN2797dLOcnhBB+ys/Px+nTp+Hq6tos52/dujWCg4Oxb98++Pr6YsyYMTTHt4XicrkoKyuj0U3/QkUxxmRlZdG6dWsqihGxtmPHDnTp0qXJHQGSkpKYOHEiTp8+jdzcXBgbG8PDwwNcLhdr1qzB8+fPmykxIeKDOsUIaxUVFZg1axZcXFywYcMGnDx5EvLy8s12vdatW2P+/PkIDg5GdXV1s12HEEL4ISAgAF27dsXkyZOb9Tr29va4ePEi/vzzT+jr6yMjI6NZr0eEj6qqKgDQsP1/oaKYEFBQUKCiGBFb5eXl2LNnDxYvXvxdH8z79euHoKAg5Ofnw93dHUFBQejVqxeWL1+Ov/76i4+JCREfNTU1qK+vp04xwkx+fj4MDQ1x/vx5xMTE4KeffvqqjuHv5eLigpKSEpqhQwgRapWVlQgJCYGLiwvfZit+ztChQ5GWlgY1NTWMGDEChw4davZrEuHB5XIBgJZQ/gsVxYSAoqIizRQjYisoKAj19fVwdHTky/k6d+6MdevWIS8vDz///DPCw8OhpqaGxYsXo7CwkC/XIERcvOuSoaIYYSEpKQnDhg1DfX09kpOTMWbMGIFdu3v37pg4cSL8/PwEdk1CCGmqgwcPory8HAsWLBDYNTt37oyzZ8/C3d0ds2bNgpeXF83tbSHk5eUhKytLRbF/oaKYEFBUVKROMSKWamtrsXPnTsyfP5/vS2VkZGSwdOlS5OXlYceOHYiKikLv3r3h5OSEp0+f8vVahIiqqqoqAKDlk0Tg9uzZAxMTE+jp6SExMRG9evUSeAY3NzckJSUhLS1N4NcmhJCvERAQABsbG3Tt2lWg15WUlMTmzZuxf/9+8Hg8WFhY4NWrVwLNQNigHSg/REUxIUDLJ4m4Onz4MIqKiuDu7t5s12jVqhUcHR3x559/wsfHBydOnEDfvn2xceNGvH79utmuS4gooE4xImh1dXXw8vKCo6Mjli5dipMnT0JWVpZJFmNjY2hpaWHXrl1Mrk8IIZ/zrmjfXAP2v4atrS0uXLiAjIwMDB06FHfv3mWWhQgGFcU+REUxIUDLJ4m44vF4mD59OtTU1Jr9Wq1atYKbmxsePHiAlStX4rfffkPv3r3h5+eHmpqaZr8+IcKIOsWIIJWVlcHMzAw8Hg+hoaHYvHkzJCTYvtV0cXFBeHg4vc8ihAgdf39/6OrqYtiwYUxzDB8+HKmpqZCTk4OBgQHi4+OZ5iHNi4pi/x979x6X4/3/Afx1d1c6H5SwuiNJDnPM9pscUkTJsDLMmWwjNKd9mW3YnL5mhjmOrQwhCVMUllMqpM2cLZFjppNDpfvuvrt+f/jWpFDd3X2uw/v5eHg8vt/uu+t6yd7X++pzfz6fqzwaFOMBWj5JxOjIkSNITk7G1KlTa/W8pqam+PLLL5GWloaRI0dixowZaNu2LWJiYmo1ByF8QDPFSG35+++/4e7ujitXriA+Ph7Dhw9nHQnA86etGRkZISQkhHUUQggplZGRgcjISHz22WesowB4vg/jiRMn4OfnBx8fHyxZsoR1JKIjCoWCBsVeQoNiPEDLJ4kYLVu2DN26dWP26ZeNjQ2WLl2K1NRUdOzYEX5+fvD29sbFixeZ5CGEBZopRmpDTEwM3n33XdjY2ODs2bPo2LEj60ilTExMMGrUKKxZswYajYZ1HEIIAfD8QVQWFhYYNGgQ6yiljIyM8Ouvv2LBggWYPXs2Pv7449IP14h4ODo64u7du9QTX0CDYjxQMlOM4zjWUQipEdeuXUNsbCymT5/OOgoUCgU2b96MI0eOICsrCx06dMDUqVPx5MkT1tEI0TmaKUZ0rWSD5r59+yIuLg4NGjRgHamciRMn4s6dO9i/fz/rKIQQgqKiIvz888/45JNPYGRkxDpOGTKZDDNnzkRUVBQiIiLg5eVFD7ASmUaNGqGoqAgPHjxgHYU3aFCMB2xtbVFUVES/pBPRWLp0KZo2bYq+ffuyjlKqe/fuOHv2LNasWYMtW7agRYsWiIiIYB2LEJ2imWJEVwoLCzFq1ChMnz4dixYtwtatW3n3y12Jpk2bolevXlizZg3rKIQQgsjISDx48AAff/wx6yiv1KdPH5w+fRpZWVno2LEjzp49yzoSqSGOjo4AQEsoX0CDYjxga2sLALSEkojCw4cPERYWhmnTpjHfYPllcrkcH3/8MVJTUzFw4EAMGTIEXl5euHr1KutohOhEyaAYzRQjNen+/fvw8PBAVFQUYmJiMHPmTNaR3mjSpEk4fPgwXe8JIcytXr0aAwYMQOPGjVlHeS1XV1ckJibC1dUVXbt2RVhYGOtIpAbY29tDX1+fBsVeoM86APl3UCw7OxvOzs6M0xChys3NRXp6OjIyMpCdnY3s7GwUFBSUm4FoZGQEExMT1K1bFzY2NqhXrx4aNWoEe3v7GhnEWr16NczNzTFy5Eitj6Ur1tbWWLlyJT788ENMmDABHTp0wJdffomZM2dCX58ui0Q8aPkkqWmnT5/GBx98ACsrK5w+fRouLi6sI1VKnz594OLigrVr1+LHH3/U6lh86beEkKpjXb/nzp1DQkICjhw5ou1fpVbUrVsXMTExmDJlCkaMGIHU1FTMnTsXMpmMdTRSTfr6+mjYsCFu3brFOgpv0G9/PGBjYwOAZoqRyiksLMTZs2eRkpKCCxcu4K+//kJqaioeP35c+h4jIyPY2NjAzMwMZmZmZb5fpVIhLy8P2dnZZW4ADA0N4ejoiNatW6NNmzZo27YtOnXqVKX9YQoKCrBu3TpMnDgRxsbG2v9ldaxLly74448/8MMPP+Cbb77B3r178euvv6Jly5asoxFSI2j5JKlJu3btwsiRI+Hp6Ynt27fDwsKCdaRKk8lk+OSTT/DNN99gwYIFlcrO535LCHk9vtbv6tWr0bJlS3Tv3r1G/p61wcDAAGvWrEGbNm0wefJkpKamIiQkhD5wEzBHR0fcuXOHdQzekHG0uzsvmJiYYP369byeXUPYUKvVSEhIQGxsLI4fP46UlBSoVCrY2tqibdu2aN26NZo3b47GjRujcePGsLe3L9fYX6WoqAiZmZm4efMm0tPTkZaWVnrjkJaWhuLiYjg7O6Nz587w8fGBt7d36czGiqxduxbTpk1Denq64G7u09LSMGbMGCQnJ2PevHmYMWMG5HI561iEaCUyMhIDBw6EWq2m/56JVlauXIlp06YhMDAQa9euFeSs2kePHsHBwQFLlizBxIkTy70upH5L2Fi0aBFCQ0ORmprKOgp5iRDqNzc3Fw4ODli2bBnGjx9f0z+CWhEXF4eBAweiRYsW+O2331CvXj3WkUg1fPTRR3j27Bn27t3LOgofLKZBMZ5QKBSYOnUqpk2bxjoK4QGNRoO4uDhs2bIFUVFRePz4MVxcXODt7Q13d3e4u7vDyclJpxmePn2KpKQkJCYm4vjx40hISEBxcTH+7//+Dx9++CEGDhwIBweH0vcXFxejVatW6NatG3766SedZtMVtVqNZcuWYe7cuejQoQM2bdqEZs2asY5FSLVt27YNo0aNQlFREesoRKA0Gg2Cg4Oxbt06zJkzB/PmzWMdSSuffvop4uPjcenSJchkMkH2W8IODYrxi9Dqd+nSpZg/fz7u3bsHc3NznebSpUuXLsHPzw/6+vrYv38/XF1dWUciVfSf//wHcXFxSElJYR2FDxaDI7zQrl07bvbs2axjEMYuXLjAff7555y9vT0HgOvUqRO3cuVK7vr166yjcY8fP+YiIyO5UaNGcVZWVpyenh7n4eHBbd26lXv27Bm3e/duTiaTcZcvX2YdVWvnzp3j2rZty5mZmXG//PIL6ziEVFtoaChnYmLCOgYRqMePH3O9evXiTE1Nub1797KOUyP++usvDgD3888/C7bfEnYWLlzINW3alHUMyRPi/fKWLVs4JycnLjg4mHXEGpGRkcF17NiRs7W15U6ePMk6DqmiH3/8kbO1tWUdgy8W0S6fPGFra0t7ikmURqPBjh070LFjR7Ru3RoREREYO3Ysrl27hsTERAQHB/PiAQwWFhbw9/fHpk2b8ODBA+zduxc2NjYYM2YM7O3t8dlnn6Fnz55o0aIF66haa9u2Lc6cOYNJkyZh3LhxGD16NAoKCljHIqTKlEol7flBquXBgwfw8PDAhQsXcPz4cfTv3591JK1pNBpcvnwZLi4uGDdunGD77ezZs/Hw4UPWMQmpVUK/Xx47dixycnKg0WhEUb8NGjTAsWPH0LlzZ3h7e9MyPIFRKBTIysqi32/+hwbFeMLGxoYGxSSmqKgIISEhaNGiBYYPHw4XFxccP34cN27cwLfffsvrZXt16tTB+++/j8jISNy+fRvTp09Hfn4+4uPjMWXKFNy9e5d1RK0ZGhpi8eLFiIqKQlRUFDp27IhLly6xjkVIlahUKtpkn1TZjRs30K1bNzx58gQnTpyAm5sb60haebnfurm5Cbrf/vLLL3BychJNvyXkdcR0v/yf//wHERERoqlfU1NTREZGYvTo0Rg4cKBgt0+RIoVCAQC4d+8e4yT8QINiPGFra4vs7GzWMUgtUCqVWL16NZo2bYoJEyaga9euuHLlCrZv345u3boJ7hHHDRo0wOzZs3H37l0sWbIEu3fvhrOzMz755BPcvHmTdTyt+fn54dy5c7CyskKnTp2wY8cO1pEIqTSaKUaqKiUlBZ06dYKlpSWSkpLQtGlT1pGqTaz9Nj09HYsXLxZdvyXkRVS/wiCXy7F27VosXLgQ48ePx6xZs1hHIpVQMihGT6B8jgbFeIKWT0rD0aNH0b59e8yYMQM+Pj64fv06fvnlF7i4uLCOpjVjY2MEBwcjLS0NGzduxIkTJ+Dq6opZs2ahsLCQdTytKBQKHDt2DKNGjcJHH32E4OBg2ricCIJSqaSZYqTSjhw5Ai8vL7Ru3RpHjhyBnZ0d60jVRv2WEOGi+hWemTNnIjQ0FMuWLUNgYCDUajXrSOQ16tWrB2NjYxoU+x8aFOMJWj4pbhkZGRg5ciS8vLzg7OyMa9eu4aeffiodpRcTAwMDjBw5EhcvXsTSpUuxbt06tGrVCgcOHGAdTSuGhoZYtWoVduzYgZCQEPj6+iI3N5d1LEJeS6VS0UwxUik7d+6Er68v+vXrh5iYGME+GY36rfD7LZEuql9h1+/o0aOxc+dObNu2DUOHDoVKpWIdibyCTCaDvb09DYr9Dw2K8UTJ8kmO41hHITVIrVZj2bJlaNasGZKSkhATE4OoqCg0atSIdTSd09fXx2effYbLly+jY8eO8PPzQ0BAgOAvvoMHD0ZiYiJSU1Px7rvv4urVq6wjEfJKtKcYqYxff/0VQ4cOxYQJE7B582YYGBiwjlRl1G/F12+JdFD9iqd+P/jgA8TGxiI2Nhb+/v6Cnv0mdgqFQrD/ndU0GhTjCVtbW6jVajx69Ih1FFJD7t69C09PT8yePRsTJ07EhQsX4OPjwzpWrbO3t0d4eDiOHj2Kq1ev4u2330Z4eDjrWFpp06YNTp06hbp166Jz5844cuQI60iEVIj2FCNv8tNPP2Hs2LGYMWMGVqxYIbh9egDqtyXE2G+J+FH9Piem+vXw8MDRo0dx6tQp+Pj44OnTp6wjkQrQoNi/aFCMJ2xtbQGAllCKRHR0NNq1a4esrCycPXsW//3vf2FkZMQ6FlPdu3dHSkoKRo8ejSFDhmDkyJF49uwZ61jV1rBhQxw/fhy+vr7o3bs31qxZwzoSIeXQ8knyOqtXr8aECRMwZ84c/Pe//2Udp1qo35Yntn5LxIvqtzyx1K+bmxtOnDiBv//+Gz169EBOTg7rSOQlCoUCt2/fZh2DF2hQjCdKBsXoCZTCplarMW/ePPTv3x99+vTB2bNn0bp1a9axeMPIyAgrV65EZGQkoqKi0KVLF1y/fp11rGozMjLCli1b8MUXX2Dy5MmYPXs2LYEmvEIb7ZNXWbJkCYKDg7Fs2TLMnTuXdZwqo377emLrt0RcqH5fTyz127JlSxw9ehQZGRnw9vamyR88Q4Ni/6JBMZ6gmWLC9/DhQ3Tt2hXLli3Dpk2bsHnzZpiamrKOxUv+/v44c+YMOI6Dm5sboqOjWUeqNplMhm+//RahoaFYunQpPv74Y3riDuENmilGKjJnzhx88cUX+PHHHzF16lTWcaqM+m3lianfEnGg+q08MdSvq6sr4uPj8fjxY3Tr1g33799nHYn8j0KhwNOnT/HkyRPWUZijQTGeMDY2homJCQ2KCdTNmzfRpUsXZGVlITk5GSNGjGAdifdcXFyQmJiIgIAAfPDBBwgNDWUdSSujRo1CTEwMwsPD4e/vL8ip7kR8aKYYeRHHcZgyZQoWLVqE0NBQTJo0iXWkKqN+W3Vi67dEuKh+q04M9du4cWPEx8dDT08Pnp6etI8VT5Q81ZX+PWhQjFdsbW1pUEyALl26hK5du8LIyAjHjx9H8+bNWUcSDCMjI4SEhGDBggUIDAzEvHnzWEfSSs+ePREXF4ekpCR4eXnRcmjCHG20T0poNBqMGzcO69atQ3h4OEaNGsU6UpVRv60+sfVbIjxUv9Unhvpt2LAh4uLiYGRkhK5duwpyOajYODo6AqBBMYAGxXjF1taWfokWmFOnTsHDwwMuLi6Ij4/HW2+9xTqSIM2cOROrVq3C/PnzERwcjOLiYtaRqu3dd9/FsWPHcPfuXXh5eSEjI4N1JCJhKpWKZooRaDQajBkzBmFhYYiIiEBAQADrSFVG/bZmiKnfEuGg+q0ZQq/f+vXr49ixY2jQoAG6du2Kixcvso4kaZaWlrCwsKBBMdCgGK/QTDFhOXjwIDw9PdG9e3fExsbC0tKSdSRBmzhxIsLCwvDTTz8hMDBQ0BvWt2rVCgkJCVCpVOjWrRs1G8IMzRQjKpUKAQEB2LNnD2JiYtCvXz/WkaqM+m3NElO/JfxH9VuzhF6/1tbWOHjwIJydndGjRw+cP3+edSRJc3BwoN9TQINivGJjY0ODYgJx+vRpBAQE4MMPP0R4eDj90llDhgwZgr1792Lbtm2YMWMG6zhacXR0xPHjx2FiYoKuXbvixo0brCMRCaKZYtJWVFSEQYMG4ejRozh06BA8PT1ZR6oy6re6IaZ+S/iL6lc3hF6/lpaWOHjwIFq1aoWePXvi0qVLrCNJlkKhoEEx0KAYr9DySWFITU1Fv3790L17d4SEhEAul7OOJCq+vr749ddfsWLFCnz33Xes42jFzs4Ox44dg52dHTw9PWn/BFLraKaYdGk0GowcORK///47oqKi0KlTJ9aRqoz6rW6Jqd8S/qH61S2h16+pqSmio6Px9ttvw8vLiwbGGFEoFLh9+zbrGMzpsw5A/kUzxfjv3r178Pb2hpOTE8LDw6GvTyWkC0OGDEFOTg4mTZoEW1tbjB07lnWkarO2tsahQ4fg4+ODrl27Ii4uDi1btmQdi0iESqWiQTEJKhkQ27dvH/bv349u3bqxjlRl1G9rh5j6LeEPqt/aIfT6NTExQXR0NPz8/ODl5YWjR4/SPXItUygUOH78OOsYzNEVikdoTzF+y83NRa9evWBubo6YmBiYmpqyjiRqQUFBuHfvHj799FM0aNAAffr0YR2p2qysrBAbGwsfHx94e3sjLi6OnrpEaoVSqaTlkxKj0WgwevRo7N27F9HR0ejevTvrSFVG/bZ2ianfEvaofmuX0Ou3ZGCsT58+pQNjLVq0YB1LMkqWT3IcB5lMxjoOM7R8kkdsbW2Rk5MjuCeJSAHHcRgzZgyePHmC2NhYWFtbs44kCQsWLMDw4cMxbNgw3Lx5k3UcrVhZWeHQoUNo3LgxevTogbS0NNaRiATQnmLSUlxcjDFjxiAyMhJRUVGC3EOM+i0bYuq3hB2qXzaEXr+mpqaIiopC48aN0atXL7pHrkWOjo4oLCyU/BZONCjGI7a2ttBoNMjNzWUdhbxkxYoV2L9/P7Zv3w57e3vWcSRDJpNh3bp1cHJywuDBg6FSqVhH0oqFhQViYmJgb28PT09PpKens45ERI72FJMOjuMwYcIE7Ny5E7t27YKXlxfrSNVC/ZYNsfVbwgbVLxtiqF8LCwscPHgQb731Fjw9PekBVbVEoVAAgOQ326dBMR6xtbUFAFpCyTPJycmYNWsW5s+fjy5durCOIzlGRkbYuXMnrl27hlmzZrGOozULCwscOnQI9erVg7e3N+7fv886EhExWj4pDRzHISgoCJs2bcKuXbsEt3ymBPVbtsTWb0ntovplSwz1W/JUyvr168PT01OQs96ExsHBAQANitGgGI+UDIpJffoinzx69AiDBw9Gly5d8J///Id1HMlq2rQpNmzYgBUrVmDPnj2s42itZI8xQ0NDeHp64sGDB6wjEZGijfbFj+M4TJo0CSEhIdi1axf69u3LOlK1UL/lB7H1W1I7qH75QQz1a2VlhcOHD6NevXq0qqIWmJiYwMbGhgbFWAcg/6I/rTN9AAAgAElEQVSZYvzz6aefQqlUYseOHdDTo3JhafDgwQgMDERgYKAoZlfVq1cPhw8fhkajQe/evWnZNNEJmikmbhzHYfLkyfj5558RERGB999/n3WkaqN+yx9i67dE96h++UMM9Vvy4bGFhQW8vb1x79491pFErWSzfSmjqxaP1KlTB2ZmZjQoxhMxMTHYuXMnQkJCUK9ePdZxCIAff/wRdevWxbRp01hHqRFvvfUW4uLikJubi/fffx8FBQWsIxGRoZli4jZz5kxs2LABO3bsQL9+/VjHqTbqt/wjtn5LdIfql3/EUL+2trb4/fffYWhoCG9vb2RmZrKOJFoKhQK3b99mHYMpGhTjGVtbWxoU4wGlUokpU6Zg0KBB6N27N+s45H+MjY2xZs0ahIeHIzY2lnWcGtGoUSPExcUhNTUVgwYNglqtZh2JiIRarUZxcTENionUggUL8P333+Onn37CBx98wDpOtVG/5Scx9ltS86h++Uks9WtnZ4ejR4+iuLgY3t7etKpCR2imGA2K8Y6trS3tKcYDixcvRkZGBn744QfWUchLevfujQEDBiA4OBhKpZJ1nBrh4uKCqKgoHD9+HGPGjAHHcawjEREoqQ9aPik+a9euxddff40ffvgBY8aMYR1HK9Rv+UuM/ZbULKpf/hJL/drZ2eHQoUPIzc2Fn58f8vPzWUcSHRoUo0Ex3qGZYuylpaVhyZIlmDdvHj1Omqd+/PFHZGRkYNmyZayj1Jh3330Xe/bsQUREBGbOnMk6DhGBkkey00wxcdm6dSsmT56MxYsXY8qUKazjaIX6Lf+Jsd+SmkH1y39iqV9HR0ccPnwYN27cwIABAwQ9yMdHjo6OuH//PjQaDesozNCgGM/Y2NjQoBhjU6ZMgYuLC4KDg1lHIa+gUCjw5ZdfYuHChbh79y7rODWmZ8+e+Pnnn/H9999j+fLlrOMQgaOZYuKzb98+jBkzBsHBwZg1axbrOFqjfst/Yu23RHtUv/wnpvpt1qwZYmNjcfbsWQwZMoS2G6lBCoUCRUVF+Oeff1hHYYYGxXiGlk+ylZKSgujoaCxduhT6+vqs45DXmDZtGmxtbfHdd9+xjlKjhg8fjqVLl2LGjBmIjIxkHYcIGM0UE5cjR45g8ODBGDFihCiWKlG/FQ6x9ltSfVS/wiGm+m3Xrh3279+Pw4cPIzAwkLYbqSEKhQIAJL2EkgbFeIZmirG1cOFCdOjQAb169WIdhbyBoaEhPv/8c2zcuBEZGRms49So6dOnY+LEiRg+fDgSExNZxyECRTPFxOP06dPo378//Pz8sHHjRshkMtaRtEb9VjjE3G9J9VD9CofY6tfd3R27d+9GeHg4PvvsM9ZxRMHe3h56eno0KEb4g/YUY+fKlSv47bffMGfOHFH8wiEF48aNQ926dbFy5UrWUWrc8uXL0bt3b/Tr1w+pqams4xABKhkUo5liwnbhwgX06dMH7u7u2LZtG+RyOetIWqN+Kzxi7rekaqh+hUds9durVy9s27YNa9euxTfffMM6juAZGBigfv36uH37NusozNCgGM/Y2toiNzdX0hvdsbJw4UI0b94c77//PusopJKMjIwwZcoUrF69WnSDyXK5HNu2bUPTpk3h6+uLzMxM1pGIwJQsn6SZYsJ148YN9OrVC23atMHevXtF829J/VZ4xNxvSdVQ/QqPGOvX39+/dFBs1apVrOMIntSfQCnjaDEugOdP51i8eDHrGFCr1cjPz4eFhQXvPn1xcnIS7VKutLQ0NG/eHL/++iuGDh3KOg6pgry8PDRu3BiTJk3CvHnzauWctXm9KC4uxqNHj2BhYSHZfTuCg4PxxRdfsI4hOElJSXB3d8ft27dL94sQivT0dHTq1Il1DOY4jkNeXh7MzMx0ek9Qm/2d+q1wib3fVoZSqURRURHMzMxYRylF9UsqQ6z1W1BQAAMDAxgYGOj0PEKgzf3ywIEDAQC7du2qyUhCsViav2FVIC8vD2q1Gl999RXrKLx0+PBhXL16lXUMndm4cSPs7e0xePBg1lFIFZmZmWHChAnYsGEDvv7661pZWkTXi9qzdOlSPHnyhHUMQRLyRvtqtRoPHjzAjBkz4ODgwDqOqNV2f6d+K1zUb/mH6pdUFtWvuGl7v+zo6IiEhIQaTCQsNCj2AktLS9qw7xXy8/NFOyhWXFyMbdu2YfTo0aLYq0WKRo8ejYULF+L3339H7969a+WcdL2oHZs2bWIdQbDEsNH+Rx99hA4dOrCOIWq12d+p3wof9Vt+ofolVUH1K17a3i9Lffkk7SlGJC8uLg537tzBsGHDWEch1eTs7Iz33nsPW7ZsYR2FEN4Q8kwxIk7Ub4WP+q10Uf0KH9UveRWFQoF//vmn9N5RamhQjEjeli1b8N5778HV1ZV1FKKFESNGYM+ePXj69CnrKITwghhmihFxoX4rDtRvpYnqVxyofklFFAoFiouLcf/+fdZRmKBBMSJp+fn52LNnD0aMGME6CtHSkCFDoNFosHv3btZRCOEFlUoFuVxOy1wIL1C/FQ/qt9JD9SseVL+kIiUPZJLqEkoaFCOStmfPHqhUKtowVASsra3h5+eHrVu3so5CCC8olUpaOkl4g/qteFC/lR6qX/Gg+iUVadCgAQwNDXH79m3WUZigQTEiadHR0fDw8ICNjQ3rKKQGfPDBBzhx4gRNCScEzwfFaOkk4Qvqt+JC/VZaqH7FheqXvExPTw8NGzakmWKESI1Go8Hvv/8OX19f1lFIDfHx8YFarcaRI0dYRyGEOZVKRTPFCC9QvxUf6rfSQfUrPlS/pCKOjo40KEaI1CQnJyM7Oxs+Pj6so5AaYmtri44dO+LgwYOsoxDCHM0UI3xB/VZ8qN9KB9Wv+FD9koooFAoaFCNEak6ePAk7Ozu0aNGCdRRSgzw8PBAfH886BiHM0UwxwhfUb8WJ+q00UP2KE9UveRkNihEiQYmJiejcuTPrGKSGde7cGZcuXUJOTg7rKIQwRYNihC+o34oT9VtpoPoVJ6pf8jIaFCNEgk6dOoVOnTqxjkFqmLu7OziOQ3JyMusohDBFyycJX1C/FSfqt9JA9StOVL/kZQqFAtnZ2SgoKGAdpdbRoBiRpMzMTGRkZKB9+/aso5AaVq9ePdjb2+P8+fOsoxDCFM0UI3xA/Va8qN+KH9WveFH9kpcpFAoAkORsMRoUI5J07tw5AECbNm0YJyG60Lp1a1y4cIF1DEKYoplihA+o34ob9Vtxo/oVN6pf8iIaFCNEYi5dugQ7OzvY2dmxjkJ04O2338bFixdZxyCEKaVSSTPFCHPUb8WN+q24Uf2KG9UveZGtrS1MTExoUIxUT1FREZo1a4aRI0eWe+3kyZPw9vaGpaUlzM3N4eHhgUOHDtXYuSt7/JMnT0Imk9Gjd//n5s2baNq0KesYOnP27FnIZDLMmzePdRQmnJ2dcePGDdYxKiSE68XrqFQqLFq0CK1atYKRkRHq1q2L/v37l36a/PL56LrDjkqlkuRMMVY1duvWLaxevRq9e/dGnTp1IJPJEBsbq9PjCKHGqN+KG/XbsvLz8xEWFoZ+/fqhcePGqFOnDt566y0MHjwYf/75Z4U5+FzDVL/iRvVbVlXr93WEer/s4OAgyUExcITjOI5buHAh5+zsXK3vXblyJaevr8+lpqaW+XpsbCwnl8s5AGX+yGQybufOnVpnrurxvb29udatW3MajabK59Lm58NH77//Pjd06FDWMbQSHx/PAeDmz59f7rXk5GQOADd37txKvV9sYmNjOQBcbm6uTo4vhetFRYqKiriePXuWOwYArk6dOtyJEyfKfY821x2O47h27dpxs2bNqtb3St3gwYM5f39/1jGqJTU1lQPApaSkVPl7WdVY/fr1yx07JiZG58fRtsZ03d+p34ob9duyvvzyywp7JADOwMCgwlrm8/051a+4Uf2WVZ36rYiQ75d79OjBjRs3TuvjCMwimimmJZVKhYULF2LAgAFlPklRqVT49NNPodFoMG3aNGRmZiI3Nxfz588Hx3EICgpCXl6eVuet6vFnzJiBCxcuICIiotrnFYvbt2+jUaNGrGPoTMeOHcFxnGQ/+WrcuDEAID09nWmOlwnpelGRzZs34/fff4e9vT2io6Px5MkT3Lt3D3PmzIFSqcS4ceOg0WjKfA9dd9iR4kwxVjUGPL/uTJw4EbGxsfj4449r7Th8rzHqt+JG/bYsc3NzDB8+HFFRUbhx4wYKCgrw559/wtvbG0VFRZg4cWK57+FzDVP9ihvVb1nVqd+KCPl+WaFQSHKmGA2KaWn37t14+PBhuamdv//+O27duoVu3bph2bJlsLW1hZWVFb766iv4+/sjKysLv/32W7XPW53j9+jRAw0bNsT69eurfV6xePjwIe2PIGIl/7aZmZmMk5QlpOtFRfbt2wcAWLNmDfz8/GBubo633noL33zzDQYMGIC///4bR48eLfM9dN1hR4p7irGqMQA4depU6bJHbQYjq3ocvtcY9Vtxo35b1syZM7Flyxb07dsXTk5OMDY2Rrt27bB3715YW1vjxo0byM7OLvM9fK5hql9xo/otqzr1WxEh3y/ToBipls2bN8PY2Bg+Pj5lvn7ixAkAwLBhw8p9z/DhwwEAx48fr/Z5q3N8uVyO/v3749ixY7h9+3a1zy0GOTk5sLW1rZVz5ebmIigoCA0aNICxsTE6duyI6OhobNq0CTKZDLt27Srzfo7jEBISAnd3d5ibm8PY2Bht27bFmjVrwHEcAGDBggXo2rUrAODrr7+GTCYr/QOU3yPhTe+v7HkBIDY2FjKZDCtWrMDRo0fh7u4OU1NTKBQK/Pe//y1936pVq+Dq6gojIyM0b968Vj/5sLKygoGBQaUaV20S0vWiIv/88w8AoF27duVeK/nasWPHynydrjvsqFQqyQ2KsaoxlvheY9Rvqd+ywLdrgYmJCRwdHaGvrw9TU9Myr/G5hql+qX5ZEFL9VkTI98tSHRTTZx1AyNRqNeLj49GhQwcYGBiUee369esAnj/V42UljzUueU91VPf47733HtavX48jR45g9OjR1T6/kOXn50OpVKJu3bo6P1dhYSG8vLzKbKqYkpKCfv36YdCgQeXez3EcRowYgbCwsDJfP3/+PCZNmoS//voLGzZsqPGc1TnvqVOn8Pnnn0OtVgMACgoK8MUXX6BOnTp48OABvvvuu9L3Xrt2DUOGDIGLi0uFDaKmyWQyWFtb86rJC/F68bKSG+Nz586VW05R8t94ampque+j6w4bSqVSUssnWdYYa3ytMeq35VG/1T0+XguuXbuGCxcuYMCAATAyMir3Oh9rmOq3PKpf3RNi/b5MyPfLCoUCT58+xaNHj2BlZcUkAws0U0wLly9fRl5eHtq2bVvutSdPngBAhY2k5GuPHz+u9rmre/ySC2xSUlK1zy10z549AwAYGxvr/FyrVq3CuXPn4Orqiri4ODx9+hQ3b97EpEmTEB4eXu79W7duRVhYGFq3bo0DBw4gOzsbeXl5OH78ONq2bYuNGzciKSkJX331FeLj4wGgdB19yZ+KvOn9lT3vi8LDwzFp0iSkp6cjLy8Pu3btgoGBAb755husW7cOP//8Mx4+fIjs7GxMnz4dxcXFWL58eU3+eF/L2NgYhYWFtXa+NxHi9eJlJZ/YTZo0Cfv370deXh7u37+PuXPnlk5Xf/ToUbnvo+sOG1KbKcayxljja41Rv6V+ywLfrgX5+fkYOnQoLC0tsWzZsgrfw8capvql+mVBiPX7MiHfLysUCgCQ3GwxGhTTQkZGBgBUOK34VRfbN71WWdU9fr169QD8m12KVCoVANTKDIpdu3ZBJpMhMjISXl5eMDMzQ+PGjfHjjz/C29u73PtDQ0Mhl8tx8OBB+Pr6om7dujA1NUW3bt2wbds2ANB635uKVOe8Pj4+WL58ORo1agRTU1MEBASgX79+ePz4MebNm4fAwEDUq1cPdevWxZIlS2BpaYnLly/XePZXMTQ0hFKprLXzvYkQrxcvGzduHN555x3cvXsXffv2hbm5Oezt7fHtt99ixIgRAAA9vfJtha47bEhtphjLGmONrzVG/bY86re6x6drQX5+Pvr374+rV69i7969pRubv4yPNUz1Wx7Vr+4JsX5fJuT7ZQcHBwDA3bt3mWVggQbFtFAywmtubl7uNUtLSwDP1+K/LDc3t8x7qqO6x7ewsABQ8ei0VJQ0+Zen5OpCWloa7O3t0apVq3Kv9e7du9zXLl26BI1GA4VCAX19fcjlcujp6UFPT6/0GLpYZ16d83p4eJQ7TskU4W7dupX5ulwuh729feka+9pQp04dXjV5IV4vXlanTh0cPXoUs2bNQpMmTWBoaAgnJyesXr0a77//PoB/G/qL6LrDhtQGxVjWGGt8rTHqt+VRv9U9vlwLcnNz4e3tjVOnTuHAgQPl/q1exMcapvotj+pX94RYvy8T8v2ypaUlLCwsaKYYqbySdbYlUzlfVPL42IsXL5Z77fz582XeUx3VPX7JlFJra+tqn1voSkbmi4uLa+V8L27O+aKKPtEoyaTRaKDRaFBcXFxumnfJTUpNqs55K1pTX/J3fdVrtfUzB57vSSCXy2vtfG8ixOtFRUxNTbF48WKkpaVBqVTixo0bmDhxIg4dOgQAcHNzK/c9dN1hQ2rLJ1nWGGt8rTHqt+VRv9U9PlwLMjIy4OHhgQsXLiAmJqbCgZEX8bGGqX7Lo/rVPSHWb0WEfL/s4OBAM8VI5TVs2BAAkJWVVe61ktHklzdiBJ6vR3/xPdVR3eOXZC3JLkUlvyTqolm+zNnZGXfv3q1wGvThw4fLfa158+YwMTHBo0ePyuxj8OKfkqfvlNyslGzc+Save39VzisUfBsQEOL1orKuX7+OrVu3Qi6Xw9/fv9zrdN1hQ2ozxVjWGGt8rTHqt9RvWWB9LUhLS0Pnzp1x69YtHDx4sPRphq/Dxxqm+qX6ZUGI9VtZQrlfpkExUiUtW7aEmZlZmSellOjZsyccHR1x4sQJTJ8+HVlZWXj8+DEWLFiA3bt3w9bWFgMGDKj2uat7/JKs7733XrXPLXQlvyTWRpMPCAgAx3EYOHAgjh07hvz8fNy6dQtTp04t/aTgRYGBgSgoKEDPnj0RHR2NzMxMqFQq3Lp1C/v370dAQADi4uIA/LuhZHx8fKWeGvO691flvELBtyYvxOtFRQYMGIDo6GhkZ2fj6dOn2LNnD3r06IFnz55h/PjxpRt0voiuO2zwrQZ0jWWNscbXGqN+S/2WBZbXgosXL6JLly7Izc3F4cOH4e7uXqnv42MNU/1S/bIgxPqtiJDvlxUKheSWT4IjHMdx3MKFCzlnZ+cqf5+Pjw9nZGTEFRYWlnstJiaGk8vlHIAyf2QyGRceHl7u/Z07d+YAcH/++Welzl3V43Mcx40fP54DwKWnp1fp71ndnw8fFRUVcTKZjNu1a5fOz1VQUMC1adOmwn+jDz/8kAPA7d27t/T9xcXF3OjRo8u9/8U/MTExHMdxnFqt5uzt7cu9znEcl5yczAHg5s6dW3rs172/KueNiYnhAHDLly8v9/edPn06B4C7cOFCuddatWrF2dvb19jP9k3MzMy4kJAQnRxbCteLOnXqcHK5vNzX69evX+F/Hz169OAKCgoqPHd1rzscx3Ht2rXjZs2aVeXvIxxnaWnJbdiwgXWMaklNTeUAcCkpKVX6PpY1NmzYsNdeQyMiIsq8/1U1VtXjcJx2NabL/k79lvqttoTWbwMDA1/7b/uq4/Dx/pzql+pXW1KoXzHeL8+dO5dr3rx5jRxLIBbRTDEtjRgxAoWFhThw4EC513x8fHDs2DH06NED5ubmMDU1RdeuXREbG4tBgwaVe3/J+nF9ff1Knbuqx9doNPjtt9/QrVu30g0epUhfXx+WlpaV+rRIW8bGxjh69Cg+/fRT2NnZwcjICG5ubti3bx9atmwJoOy6cZlMhtDQUISHh6Nnz56wtraGoaEhmjRpggEDBmDPnj3o2bMngOebce7atQtdunSBqanpG7O87v1VOa8QKJVK5OXlwcbGhnWUMoR0vXiVqKgo+Pv7w87ODqampnBzc8OqVasQGxtb4WPb6brDjkqlktTySYBtjbHC5xqjfkv9lhUhXQv4WsNUv1S/rAipfl9FyPfLNFNMwqo7kq1UKrl69epxH3zwgVbn12g0nJWVFdeqVSuuuLhYq2O9ysGDBzkA3Pbt26v8vWKaKcZxHNe0aVNu4cKFzM6v0Wi49u3bczKZjMvKymKWQ6zu3bvHAeDi4+N1cnwpXC9qijbXHY6jmWLakMvl1f65s1bdmWJUY1Wn6/5O/VbcqN9qj8/351S/4kb1yx98ul+OjY3lAHA5OTk1cjwBoJli2jI0NMSXX36Jffv2ITU1tdrHuXjxIh49eoRZs2a98ukr2vr+++/x9ttv48MPP9TJ8YWkYcOGuHfvXq2ca/r06di6dStu3bqFgoICnDt3DoMGDcKff/6J7t278+7TGTEo2RyS9UaVLxPS9aKm0HWHDbVaDY1GI7mZYlRj/EP9Vtyo32qPzzVM9StuVL/8wafrQMl+Z1LabJ8GxWpAUFAQmjRpgm+//bbaxzh58iQaNWqEIUOG1GCyfyUkJODw4cP4/vvvefXYXVYaN26MW7du1cq5rl27hhEjRqBx48YwNTVF+/btERkZCTMzM/zwww+1kkFqbt68CblcDkdHR9ZRyhHC9aKm0HWHnZKNkfm0eW5toRrjF+q34kb9Vjt8r2GqX3Gj+uUHvl0HSgbFpLSEkt8bZQiEgYEB/v77b62OERQUhKCgoBpKVF7nzp3BcZzOji80jRs3RkpKSq2ca/ny5ahXrx5OnjyJO3fuwMLCAh4eHpg7dy7efvvtWskgNenp6XBwcICBgQHrKOUI4XpRU+i6w45SqQQAyc0UA6jG+Ib6rbhRv9UO32uY6lfcqH75gW/XAXNzc1hYWEhqphgNihFJatasGa5fv46ioiKdNwIXFxeEhobq9BykrKtXr6JZs2asYxDCTMmgmBRnihF+oX4rbtRvxY3qV9yofsmrKBQKSQ2K0fJJIklt2rSBSqXC1atXWUchOnD+/Hm0adOGdQxCmClZPinFmWKEX6jfihv1W3Gj+hU3ql/yKg4ODpJaPkmDYkSSmjdvDkNDQ5w/f551FFLDNBoNrly5QlPtiaTRTDHCF9RvxYv6rfhR/YoX1S95HZopRogEGBoaonXr1khOTmYdhdSwCxcu4NmzZ3Bzc2MdhRBmpLzRPuEX6rfiRf1W/Kh+xYvql7wOzRQjRCI6d+6MhIQE1jFIDTt58iSsrKzQqlUr1lEIYUbKG+0T/qF+K07Ub6WB6lecqH7J69CgGCES4e7ujr/++gv5+fmso5AalJCQgE6dOkFPjy5vRLpophjhE+q34kT9VhqofsWJ6pe8jkKhQEFBAXJzc1lHqRVUBUSyPDw8oFarcezYMdZRSA0pLi5GXFwcPD09WUchhCmaKUb4hPqt+FC/lQ6qX/Gh+iVv4uDgAACSmS1Gg2JEsho0aIB27dohJiaGdRRSQ86ePYvMzEz4+vqyjkIIUzRTjPAJ9VvxoX4rHVS/4kP1S95EoVAAgGQ226dBMSJpvr6+OHDgAOsYpIYcOHAADg4O9CQdInk0U4zwDfVbcaF+Ky1Uv+JC9UvexNzcHJaWljRTjBApGDBgAG7evImUlBTWUUgN2LFjBwICAljHIIS5kkExmilG+IL6rbhQv5UWql9xofolleHg4EAzxQiRgnfeeQfOzs6IiIhgHYVo6dSpU7h27RpGjBjBOgohzKlUKsjlcsjlctZRCAFA/VZMqN9KD9WveFD9kspSKBQ0KEaIVAwcOBDh4eEoLi5mHYVoYevWrWjZsiXc3NxYRyGEOaVSSUsnCe9QvxUH6rfSRPUrDlS/pLIcHBxo+SQhUjF69GjcunULcXFxrKOQalKpVAgPD6dPvQj5H5VKRUsnCe9QvxU+6rfSRfUrfFS/pCpo+SQRnezsbNYReKt58+bo3LkzNm7cyDoKqaYDBw4gJycHw4YNYx2F10JCQlhHILVEqVTSoBhjR48eRWFhIesYvEL9Vvik3m/VajUSExNZx2CC6lf4pF6/FQkNDWUdgbcUCoVkZorpsw7AJ+np6WjYsCHrGDqhVCpRUFAAc3Nz6OtX/Z89Pz8fdnZ2OkjGD59++inGjh2LW7duoVGjRqzjkCpav349vLy8Sh8fXBuEdr3gOA4PHz7EF198AT094XwekpWVBR8fH9YxBEelUoli+WTv3r2r1bP44MmTJ9DX14eJiQnrKK9V2/2d+q2wSb3fKpVKPHv2DFZWVqyjAKD6JVUj9fp9mUajQVZWFr744gvIZDLWcbSii/tlBwcHFBQUICcnB3Xr1q3RY/ONMO80daBXr14wNTVlHUNniouL8c033yAnJwedO3eGj49Plf++fLkB0IXBgwfj66+/xtKlS7F69WrWcUgV/PHHHzh06BBiY2Nr7ZxCvF4kJycjLCwM3bp1Q5cuXVjHqZJ33nmHdQTBEfpMsXr16mHFihWsY2jlhx9+QHZ2NqZPnw4DAwPWcV6rNvs79Vvhon4LhIWF4c8//8TUqVN5c42l+iWVQfVb3rp165CZmYmPP/4Ytra2rONorabvl0sGT+/cuSP6QTEZx3Ec6xCkdsyfPx9z5syBXC6HkZER5syZg+DgYBgZGbGOxgtr167F9OnTkZaWhrfeeot1HFJJAwYMwJ07d3D27FnBf8qjS71798ahQ4fwf//3fzh16hTrOETH5s2bh4iICFy6dIl1FEnSaDQwMzNDYWEhli1bhmnTprGOxCvUb4VJ6v22sLAQtra2yM/Px5YtWzB8+HDWkZig+hUmqdfvy8LDwzFkyBAAQFxcHLy8vBgn4p+nT5/CwsIC0dHR8PPzYx1HlxYLZw0N0drHH+eAz+wAACAASURBVH8MuVwOjUaD/Px8zJ49G05OTtiwYQM9SQZAYGAg6tatK/jZCVJy+fJlREVFYe7cudTgXyMzM7N0Y9wzZ84gPT2dbSCic0KfKSZ0ly5dKt1PbMGCBcjLy2OciF+o3woP9Vtg//79KCgogJ6eHrZu3co6DjNUv8JD9VvWkydPEBwcDD09Pcjlcty+fZt1JF4yNzeHpaWlJPYVo0ExCWnQoAEGDBhQuoxDo9Hg4cOHGD9+PDp06IDjx48zTshWnTp1MHXqVKxduxZZWVms45BKmD9/Plq0aIG+ffuyjsJrERERpf9bX18f4eHhDNOQ2iCWPcWEKjk5GXK5HMDzT1rXrFnDOBG/UL8VHuq3wJYtWyCXy1FcXIzff/8dDx8+ZB2JCapf4aH6LWvmzJnIyclBcXEx9PX1aVDsNRQKhSSeQEmDYhIzceJEFBUVlf7/4uJicByHixcvonv37ujRo4ekl9uMHz8eRkZGWLZsGeso5A0uXryIiIgIfPXVV4LaOJ6FzZs3o2SlfFFREX799VfGiYiu0Uwxts6ePVs6KKZWq7Fo0SI8efKEcSp+oX4rHNRvn88siYmJgVqtBgDIZDLs3r2bcSp2qH6Fg+q3rOTkZGzYsKG0ljUajSRmQlWXg4MDDYoR8fH09ISLi0u5qbMajQYAEB8fj7Zt2+KTTz6R5CdgZmZmmDt3Ln744QdcuXKFdRzyChzHITg4GO3bt8egQYNYx+G127dv48yZM2WWSF+5ckXSg99SQDPF2EpMTIRKpSr9/wUFBVi5ciXDRPxD/VYYqN8+t3v37tJfooHnHypv3ryZYSK2qH6Fgeq3LLVajbFjx5YZHFSr1bhx4wbDVPymUCgkMWhIg2ISFBQU9MpPCoqKiqDRaLBp0yY0bdoU33//fZmZZVIQFBSEVq1aYcKECaDnUPDTli1bcPz4caxZs4Y+9XqD7du3l85YKWFoaIgdO3YwSkRqA80UY0elUpX7JVGtVmPJkiXIzc1llIqfqN/yH/Xb57Zs2VLmA+Xi4mKcOnVK0nt0Uv3yH9VvWStWrMDly5fLDHADkHQdvwnNFCOiNWrUKOjr67/2PUVFRXj69Cmys7Pf+F6xkcvl+OmnnxAfH097L/HQkydPMGvWLEyYMAHvvvsu6zi8t3nz5tKZoCVUKhU2bdpEN7EiplKpaFCMkfPnz1f4YZJSqaSNqV9C/ZbfqN8+l5mZiePHj5frpfr6+mX27JQaql9+o/ot6/bt25gzZ06FD5e7d+8eg0TCQINiRLSsra0xdOjQ0g33XyaTyaCnp4fVq1dj8eLFknxKyTvvvIPAwEBMnToVjx8/Zh2HvGD27NnQaDSYP38+6yi8d/XqVVy+fLnCwa+7d+/izJkzDFKR2qBUKmn5JCPJyckVfpikVquxdOlSZGZmMkjFX9Rv+Yv67XM7duyo8F6Y9uik+uUzqt+ygoKCys0QK6FUKpGdnV3LiYRBoVCgoKBA9D8fGhSTqMmTJ1f4SXbJo2m3b9+OiRMnMkjGH4sXL4ZarcbMmTNZRyH/k5CQgPXr12Pp0qWwtrZmHYf3wsLCXjn4bWhoiO3bt9dyIlJbaKYYOykpKa/8MEmtVmP58uW1nIj/qN/yD/Xbf1U047rEpUuXcPny5VpOxC9Uv/xD9VtWZGQk9u/f/9otgegJlBVzcHAAANHPFqNBMYlq37492rZtW2Z9ub6+PuRyOdq3b48PPviAYTp+sLGxwfr167Fhwwbs3LmTdRzJy87OxkcffYQ+ffpgxIgRrOMIwpYtW155A6BSqbB169ZX3ugTYaOZYuwkJCS8su6KioqwfPlyST7I5nWo3/IL9dt/3bp1CykpKa/cbsDAwEDySwepfvmF6resp0+fYuLEiW/cU40GxSqmUCgAQPSb7dOgmIQFBweX/m8DAwPUr18fO3bswJUrVzB69GjabwhAQEAAgoKCEBgYiGvXrrGOI1kcxyEwMBAAEBoaKsklvVV1+vRp3Lp167Xvyc7OxrFjx2onEKlVtNE+GwUFBUhNTX3tezQaDZYuXVpLiYSD+i0/UL8tKyws7LV76xYVFSE0NFTy98xUv/xA9VveV199hX/++afCvcRKGBgY0KDYK5iZmcHKyopmihHxGjJkCExMTCCTyeDq6ork5GT4+/vjt99+w65du/DVV1+xjsgLy5YtQ7NmzTBo0CA8e/aMdRxJWrp0Kfbv34/t27fDxsaGdRxB2LFjxxs/FdPT08O2bdtqKRGpTSqVimaKMfDXX3+9dvalvr4+iouLsXr1amRkZNRiMmGgfsse9duytm7d+sansN+5cwdnz56tpUT8RfXLHtVvWRqNBqampnB3dy/9oNDAwKDc1iIymUz0M6G0IYXN9mlQTMJMTEwQGBgILy8vJCYmomHDhgAALy8vhISEYPHixVi1ahXjlOzVqVMH4eHhSE9Px4wZM1jHkZzExER89dVXWLx4MTp37sw6jiBoNBrs2LHjtZ+KAc8fKR8ZGQmlUllLyUhtoZlibJT8YvzyDbelpSXee+89DB8+HPPmzcMvv/zCIh7vUb9li/ptWRcvXsSVK1cq9V7ao5PqlzWq3/LkcjkWLVqEhIQEPH36FKdPn0ZQUBBcXV1Rv359AM8HxIqKit64ukLKFAqF6AcNXz0fmEjC7NmzYW1tXe4GftiwYbh58yamTp0Ke3t7+Pv7M0rID02bNsXGjRsxZMgQtGjRApMmTWIdSRLS0tLg7+8PHx8fTJ8+nXUcwZDL5eVmoVy/fh0uLi5ISUlBhw4dGCUjtYVmirEhl8sxadIkODs7w9nZGU2aNMFnn32GRo0a0UBYJVG/ZYP6bXkNGzYsNwMsJCQEUVFR2LNnT5mvm5mZ1WY03qL6ZYPq980MDAzw7rvvYteuXQCABw8e4N69e0hKSkJiYuIbZ4RKmYODA9LS0ljH0CkaFJM4Ozu7V75WsgZ7+PDhOHz4sOQ/dRg0aBDS0tIQHBwMCwsLjBw5knUkUcvMzESfPn2gUCiwbds22heBkCqgmWJsBAUFlfuai4tLpWebkOeo39Yu6rcVs7GxKbcE7eDBg6hTpw7c3NwYpeI/qt/aRfVbNYmJiejUqRMAwN7eHgMHDsTAgQMZp+I3hUIh+j2IaVCMvNaKFStw79499O/fHwkJCXB1dWUdiakvvvgCWVlZGDduHOrXr4/evXuzjiRKT548gY+PDzQaDaKjo+kTWEKqiGaK8UeTJk0QHR3NOobgUL+tHdRviS5Q/dYOqt+qKSoqwh9//FH6MAJSOQ4ODrhz5w44jhPtoCvtKUZeSy6XIywsDK6urvD19cWDBw9YR2Lu+++/x9ChQ+Hv74+kpCTWcURHpVJh4MCByMjIwOHDh0vX/BNCKo9mivGHs7Mz7t27RxtPVwP1W92ifkt0iepXt6h+q+6PP/7As2fP4O7uzjqKoCgUChQWFiInJ4d1FJ2hQTHyRsbGxti3bx8MDQ3h5+eHvLw81pGYkslk2LBhA7p27Yp+/frRE4dqUEFBAfz9/XHmzBnExMTAycmJdSRCBIlmivGHs7MzOI5Deno66yiCQ/1Wd6jfEl2j+tUdqt/qSUpKQt26ddGsWTPWUQTFwcEBAES92T4NipFKsbGxQUxMDO7fv4/+/ftDpVKxjsSUoaEhIiMj0bFjR3h6euLw4cOsIwleTk4OvL29cerUKcTGxqJt27asIxEiWDRTjD+cnZ0BADdu3GCcRJio39Y86rektlD91jyq3+pLSkpCp06dRLsEUFcUCgUA4O7du4yT6A4NipFKc3JyQnR0NM6cOYOxY8eC4zjWkZgyNTVFVFQUBg0ahL59+9LjuLVw//59eHp6Ij09HUePHsV7773HOhIhgkYzxfjDzMwMdnZ2on9yky5Rv6051G9JbaP6rTlUv9opGRQjVWNqagpra2tRzxSjjfZJlbi5uWHnzp3o168fnJycMH/+fNaRmNLX18fPP/8MGxsbDBs2DPfv36dHIVfRlStX4OPjAzMzM5w6dar00whCSPWo1WpoNBqaKcYjzs7ONCimJeq32qN+S1ih+tUe1a927t+/jzt37tCgWDU5ODjQTDFCXuTr64vQ0FAsXLgQq1evZh2HOZlMhu+++w6LFy/G559/jvHjx6OwsJB1LEHYs2cP3N3doVAocPLkSWrwhNSAkuXtNFOMP2hQrGZQv60+6reENarf6qP61V5CQgLkcjneeecd1lEESaFQ0KAYIS8bPnw45s2bhylTpmDPnj2s4/DCzJkzERERgR07duC9997D33//zToSb6lUKnz22WcICAjAhx9+iMOHD8Pa2pp1LEJEQalUAgDNFOORJk2a0KBYDaJ+W3nUbwnfUP1WHtVvzUlKSkLr1q1hbm7OOoogOTg4iHr5JA2KkWqbM2cOxo8fj2HDhiExMZF1HF4ICAjA+fPnYWJiAjc3N4SFhbGOxDu3b9+Gh4cHQkNDsXXrVmzYsAHGxsasYxEiGiUzxWhQjD+cnZ1x8+ZNFBcXs44iGtRvX4/jOIwbNw6dO3emfkt45+X6DQ4OxunTp1nH4hW6X65ZiYmJtHRSC7R8kpDXWLlyJXr37o1+/frh2rVrrOPwgqOjI44dO4bAwECMGDEC48aNw6NHj1jH4oWtW7eiTZs2KCwsxNmzZzF06FDWkQgRnZKZYrR8kj+cnZ2hVCpx//591lFEhfrtq4WFhWHLli3466+/sHbtWuq3hHccHR0RGRmJ+vXrY9WqVVi/fj3V7//Q/XLNUiqVOHfuHA2KaUGhUODOnTuifdAeDYoRrcjlcmzbtg3NmjWDr68vHjx4wDoSLxgaGmLFihXYvXs3oqOj0bx5c2zevFm0F5I3uXLlCry8vDBq1CiMGDECSUlJaNasGetYhIgSzRTjH2dnZwCgJZQ6QP22rBf7rbe3N4qKijBy5EjMmDGjdMCcED44ePAg2rZti7S0NLi5uSEmJobql+6XdeLs2bNQKpVwd3dnHUWwHBwcUFhYiOzsbNZRdIIGxYjWjI2NsW/fPhgaGqJv377Iy8tjHYk3BgwYgKtXr2Lw4MEYO3YsPDw8cOHCBdaxak1BQQHmzZuH9u3b49GjRzh58iRWrVoFIyMj1tEIES2aKcY/DRo0gJmZGQ2K6RD12/L9Njw8HAYGBuA4DitWrED79u0l9TMh/PTs2TNMnjwZvr6+yM7OhkwmwyeffEL1S/fLOpOUlAQ7O7vSD6hI1ZU83EGsSyhpUIzUCFtbWxw4cAB3797FoEGDoFarWUfiDSsrK6xcuRKnT5+GUqmEm5sbpk2bhn/++Yd1NJ3RaDQICwtDixYtsHLlSvzwww9ITk6macuE1AKaKcZPTk5ONCimY9Rvy/ZbU1NTeHh4QE9PDxqNBqmpqejQoQOWLFlC+9sRJi5cuAA3NzesX78eHMeV/nfo5+dH9Uv3yzqTlJREP1MtOTg4AIBoN9unQTFSY5o0aYLo6GjEx8dj9OjRkp36/Cpubm5ISkrCqlWrsG3bNjg5OSE4OFhUFxeVSoVffvkFzZs3x+jRo9GjRw9cu3YNQUFBkMvlrOMRIgk0U4yf6AmUtYf67b/9tl+/ftDTe367r1aroVarMXv2bHh6eorq50H4rbi4GCtXrkSHDh2Qmppa5sPzVq1awd7evvT/U/3S/XJNO336NA2KacnU1BTW1tY0U4yQyujYsSPCw8MRHh6OefPmsY7DO3p6evj0009x+/ZtrF+/HgcOHICzszNGjhwp6AcVqFQqbN68GS1btkRQUBA6deqES5cuISQkBHZ2dqzjESIpJYNiNFOMX5ydnXHjxg3WMSSD+u1z/fr1Kzd7v7i4GElJSWjRogW2bNlSW9GJRN26dQtdu3bFtGnTSgdmSxgaGsLf37/c91D9kpqSnp6Oe/fu0aBYDSjZbF+MaFCM1Lg+ffpg/fr1+Pbbb7FmzRrWcXjJ0NAQI0eOxOXLl7Fu3TokJSWhVatW8PX1RVhYGAoKClhHrJRTp05h0qRJeOuttzB+/Hj4+fnh+vXr2Lx5M20MSggjJcsnaaYYvzg7O9NMMQak3m8bNWqEpk2blvt6UVER8vPzMWrUKAwcOBA5OTm6jE8kKiIiAm+//TaSk5MrXLKrUqng5+f3yu+Xev0S7SUlJcHAwAAdO3ZkHUXwHBwccO/ePdYxdIIGxYhOBAYGYu7cufjss8+wd+9e1nF4y9DQEIGBgbh69WrphrhjxoxBgwYNMGbMGBw5coR3+36kp6dj/vz5cHV1RadOnXD06FHMmDEDN2/exMqVK0s3YiSEsEEzxfjJ2dkZOTk5yM3NZR1FkqTcb/39/WFgYFDhaxzHYd++fXB1dUVMTExNxicSlpWVhf79+2PQoEHIz89HUVFRhe+ztrau1GCFlOuXaCcpKQlt27aFiYkJ6yiC5+DgINrlk/qsAxDxmjdvHjIzMzF06FDExcXRtNXXkMvlCAgIQEBAADIzM7F9+3Zs3boVPXr0QIMGDeDr6wtfX1/06NEDdevWrdVsRUVFOHPmDGJjYxETE4M//vgD9erVw0cffYRt27bBzc2tVvMQQl6PNtrnp5KnXt24cYOumwxJsd/6+fnhu+++e+15c3Jy4Ofnh6VLl2L69OnV/SsQgqtXr8LDwwOZmZkA8Mo9hg0MDPD++++X7nlXGVKsX6KdxMREdO7cmXUMUbC3t8exY8dYx9AJGUe7oRMd0mg0CAgIQEJCAk6ePAlXV1fWkQTlypUr2LNnD2JiYpCUlITi4mK0aNECnTt3xjvvvIM2bdqgVatWMDMze+OxsrKyYGtr+9r3aDQapKWl4fz58zh37hwSEhJw5swZFBQUwMnJCT4+Pujbty969eoFfX0aUxeS69evw8XFBSkpKejQoQPrOESHtm/fjuHDh0Oj0bCOQl5QVFQEY2NjbNu2DYMGDWIdh7ykJvttZdRmv1Wr1ahbty6ePn36yvfIZDIMGDAAv/zyC6ytrbU6n5gtWrQIoaGhSE1NZR2F1zZu3IjJkyejuLj4lbPEZDIZwsPD8eGHH2p9PjHXL6m+Z8+ewdLSEps3b8aQIUNYxxG8kJAQTJ48Gfn5+ayj1LTFNChGdK6goAA9e/bEP//8g8TERNSvX591JEHKzc3FyZMnkZCQgISEBJw7dw55eXmQyWSwt7eHk5MTnJyc4ODgABsbG9ja2sLY2BhWVlbIyMhATEwMAgMDkZeXh8LCQmRnZyM7OxsPHz7EzZs3S/8UFhZCLpfDxcUFnTp1QpcuXdClSxfa80DgaFBMOn79f/buPDyms38D+D2JLBJJkIglI7JQJfYShNJSSxC8liAbitJQtLG0UppqeKvWUqSUkK32XSKW2g2lSGNPSGKpiBA0IpNI5veHX7zVxJbMzHNm5v5cV673epPJOTf1fc6Z7zzneVavxqeffqoza60YEmdnZ3zyySf46quvREehVyjL9VYmkz0/jpSut4MGDcKGDRuKLbpvYmICmUyGH374AePGjVP7efUNm2Jv7vLly/D29sb58+dL/JDG2NgY9+7dg42NjVrPq4/1S6Vz8OBBfPDBB0hNTUWtWrVEx9F5u3fvRpcuXXDv3j2tz8TUsP+ydU0aZ2FhgW3btqFNmzbo0aMH9u/fr7ZPagxJpUqV4OXlBS8vLwDPpqNfu3YNiYmJSEpKQkpKClJTU5GQkPD8Av7kyZMXjrFmzRoAz25EbG1tn385OzujefPmcHFxgZubG9zc3FC+fHmt/xmJqOyUSiUfnZQo7kCpG9RxvS0ilettjx49sG7dumLZKlSogP3796Nx48Yaz0CGpW7dujh16hT69++Pbdu2QSaTPV/3y8jICG3btlV7QwzQz/ql0lEoFKhRowYbYmoil8sBADdv3tS3phjXFCPtsLOzQ1xcHDw8PODt7Y1t27ZxOnEZyWQyuLq6Pl+n5mUePnyIpk2bIiUlBbt27UKHDh1euuAuEem+vLw87jwpUa6urpxhooPe5nr7z8W+K1SoIJnrraen5/NZMEZGRigsLMTAgQOxadMmbNq0iU0x0ojk5GTs2bMHgwYNwt69e5GVlYX8/HwYGxujV69eWsmgD/VLpaNQKLimtRoVbQ5x8+ZNNGrUSHAa9eLuk6Q1Li4u2LFjBw4fPoxRo0aJjmMwrl69ipSUFBgZGWHHjh28wBPpOc4Uky5XV1dcvXpVdAzSEBsbG1SqVOn5l5Sut5UrV0aLFi0APJtJEx8fj6ioKMyePRuhoaHYv3+/4ISkb5RKJXx9feHm5oZVq1YhMTERHTp0APBsjcXu3bsLTvgiKdcvlc6JEyfYFFMjKysrWFtb6+UOlGyKkVY1b94ca9euxerVqxESEiI6jkGIiYmBqakpCgsLERUVVWw9ESLSL5wpJl2urq64efMmlEql6ChkgHr16oVu3brhwoUL6Ny5MwBg9OjR8PLyQkBAAO7fvy84IemTL7/8EklJSYiOjoaJiQns7e0RFxeHBQsWwM3NjWtvkUYlJyfjzp07bIqpmVwux61bt0THUDs2xUjrunXrhqVLl+Lbb7/FkiVLRMfRa0WNsLy8PADAgwcPsG/fPsGpiEiTOFNMulxcXFBYWIjU1FTRUcgAjRkzBjt27IC9vf0L3//ll19QWFiIESNGCEpG+iY+Ph4//vgjli5dijp16jz/vkwmw7hx46BQKASmI0Nw7NgxmJmZcXMpNZPL5ZwpRqQuw4cPx7Rp0zB27Fhs3bpVdBy9dfjwYdy5c+f5/zcxMUFMTIzARESkaZwpJl1Fa9rwEUoSoUKFCi/srlfEzs4OMTEx2Lp1K1asWCEgGemTjIwMDBkyBP3794efn1+Jr7GystJyKjI0CoUCTZs2hbm5uegoeoVNMSI1CwkJweDBg+Hj48NPjDTk119/feHNcX5+PtavX//SXXaISPdxpph0WVtbw87OjjtQkuS0b98eQUFBGDduHC5duiQ6DukolUqFYcOGwcLCAsuXLxcdhwyYQqGAh4eH6Bh6h00xIjWTyWRYtmwZOnXqhJ49e+LKlSuiI+mV/Px8/Prrr88fnSyiVCqxc+dOQamISNPy8vLYFJMwLrZPUhUaGooGDRrA19e32L0D0ZtYsGABdu3ahaioKFhbW4uOQwYqOzsb58+f53piGuDg4IAbN26IjqF2bIqRUMbGxoiJiUHt2rXh6en5wqN+VDbx8fF49OhRse8bGRkhKipKQCIi0galUsnHJyWMTTGSKhMTE0RHRyMpKQlTpkwRHYd0zLlz5zBlyhR8++23bEaQUCdOnMDTp0/RqlUr0VH0jlwux99//13ie0xdxqYYCWdhYYHt27fD2NgYPXr0QHZ2tuhIeiEmJqbE7aSfPn2K2NhYPHjwQEAqItI0zhSTNjbFSMpcXV3x448/Yt68eZxVTm8sJycH3t7eaNGiBSZPniw6Dhk4hUIBR0dHyOVy0VH0TtHfqb49QsmmGEmCnZ0d4uLicP36dQwYMABPnz4VHUmn5eTkYPPmzcjPzy/x54WFhdi8ebOWUxGRNnCmmLS5uLjg2rVrKCwsFB2FqERDhw7FoEGD8PHHHyM9PV10HNIB48ePR3p6OqKiomBsbCw6Dhk4hULB2YoawqYYkYa5urpix44dOHjwID799FPRcXTa1q1boVQqX/mayMhILaUhIm3iTDFpc3V1RW5uLm7fvi06CtFLLVmyBBYWFhg6dChUKpXoOCRhmzdvxvLlyxEWFgZHR0fRccjAqVQqnDhxgk0xDalcuTIsLS3ZFCPSpBYtWmDt2rVYtWoVpk+fLjqOzoqKioKR0cvLu6CgAAcPHuQnwER6iDPFpM3V1RUAuAMlSZqNjQ2ioqKwd+9eLFq0SHQckqhbt25hxIgRGDlyJLy9vUXHIcLly5dx7949NsU0yMHBgU0xIk3r3r07lixZgpCQEKxcuVJ0HJ2TlZWF3bt3AwDMzMxK/DI1NUVhYSHWrVsnOC0RqZtSqeRMMQmrXr06LCwsuK4YSV6bNm3w9ddfY9KkSUhISBAdhySmsLAQAQEBsLe3x7x580THIQIAHDt2DObm5mjSpInoKHpLLpfj1q1bomOoVTnRAYhKMmLECFy/fh2ffPIJbG1t0atXL9GRdMbt27cRFBT0wvfOnDmDS5cuYdCgQS9838bGRpvRiEgL8vLyOFNMwmQyGZydndkUI50wdepUHDhwAD4+Pjh58iQsLCxERyKJmDlzJo4ePYrjx4/z3wVJhkKhQPPmzXkfpEFyuVzvZoqxKUaSNX36dNy6dQs+Pj7Yt28ft9V9Q/Xr18f333//wvdmzpyJa9euFfs+EekfzhSTPu5ASbrCyMgIkZGRaNy4MSZMmIAlS5aIjkQScPLkSUyfPh0//PADZ+SQpCgUCnTv3l10DL0ml8tx9uxZ0THUio9PkmTJZDL8/PPPaNeuHby8vJCUlCQ6EhGR5HGhfelzcXFhU4x0hlwux7JlyxAWFoatW7eKjkOCZWdnw9fXFx06dMC4ceNExyF67sGDB7h48SLXE9MwrilGpGUmJibYuHEjateuDU9PT9y5c0d0JCIiSeNC+9Ln6urKhfZJp/Tt2xdDhw7F0KFDcf36ddFxSKBRo0bh4cOHWLVqFWQymeg4RM+dOHEChYWFfLpIw+RyOe7fv4/Hjx+LjqI2bIqR5FlYWGDbtm0wMjKCl5eXXhUgEZG6cU0x6XN1dUVmZiYePHggOgrRG1u4cCHs7e0REBCAgoIC0XFIgMjISMTExGDFihWoVq2a6DhEL1AoFHBxceG/TQ2Ty+UAoFeL7bMpRjqhSpUqiIuLQ1paGgYMGICnT5+KjkREJElcU0z6XF1dAQApKSmCkxC9OUtLS8TExEChUGD27Nmi45CWXbt2DWPGjMH48ePRo0cP0XGIilEoFHx0UguKmmL69Aglm2KkM1xdXbFjxw4cOHAAgYGBouMQEUkSZ4pJn5OTE4yNjbmuGOmcZs2a7XgbfAAAIABJREFUITQ0FFOnTsXx48dFxyEtefr0Kfz8/ODo6IiZM2eKjkNUTGFhIU6cOMGmmBZUqVIFZmZmbIoRidKiRQusWbMG4eHhCA0NFR2HiEhyOFNM+kxNTSGXy9kUI50UFBSEDz/8EH5+fnj06JHoOKQF33zzDRISErBu3TqYm5uLjkNUzIULF/Dw4UM2xbRAJpPp3WL7bIqRzunRowcWL16MadOmITw8XHQcIiJJ4UL7uoE7UJKuMjIyQmRkJLKzszF27FjRcUjDDh06hFmzZmHBggWoV6+e6DhEJTp27BgsLS3RqFEj0VEMglwu16s1xcqJDkBUGp988gnS0tIwcuRIVK9eHV27dhUdiYhIEvLy8jhTTAdwB0rSZVWrVkV4eDi6d++Ozp07w8fHR3Qk0oCsrCz4+/ujZ8+eGDFihOg4RC+lUCjQokULlCvH9oY2yOVyzhQjkoLQ0FD4+vqib9++XNeCiAhAQUEBCgoKOFNMB7i6unKmGOk0T09PjB49GoGBgdw0Qk+NGjUKBQUFWL58uegoRK+kUCjg4eEhOobBYFOMSCJkMhmWLVuG999/Hz179kRSUpLoSEREQimVSgDgTDEd4Orqihs3biAvL090FKJSmzNnDpycnDBgwADk5+eLjkNq9PPPP2PDhg2IiIiAra2t6DhEL3Xv3j1cuXKF64lpEdcUI5IQExMTrF+/HjVr1oSnpycyMjJERyIiEqaowcKmmPS5urqioKAAaWlpoqMQlZqZmRliYmJw7tw5boCkRy5evIgvvvgCU6ZMQYcOHUTHIXqloieGWrZsKTiJ4ZDL5bh79+7zD2N1HZtipPOsrKywa9cuyGQy9OjRA48fPxYdiYhIiKKbEz4+KX2urq4AwEcoSefVr18fs2fPRmhoKPbv3y86DpWRUqmEj48P3NzcMG3aNNFxiF5LoVCgTp06qFKliugoBkMul0OlUunNYvtsipFeqFKlCuLi4pCWloaBAwfi6dOnoiMREWkdZ4rpDhsbG1SuXJlNMdILo0ePhpeXFwICAnD//n3RcagMJk+ejOTkZERHR8PExER0HKLXUigUfHRSy+RyOQDozSOUbIqR3qhduza2b9+O/fv3Y/To0aLjEBFpHWeK6RbuQEn6JDw8HDKZjLsU6rD4+HgsXLgQYWFhqFOnjug4RK9VUFCA33//nU0xLatatSrKlSvHphiRFLm7u+PXX3/FihUrMHPmTNFxiIi0ijPFdAt3oCR9UqlSJURGRmLr1q1YsWKF6Dj0ljIyMjBkyBD4+fnB19dXdByiN5KYmIjs7GzuPKllxsbGqF69OptiRFLl5eWFxYsX4+uvv0Z4eLjoOEREWsOZYrqFTTHSN+3bt0dQUBDGjRuHS5cuiY5Db0ilUmHYsGGwsLDATz/9JDoO0Rs7duwYrKysUL9+fdFRDI5cLtebNcXKiQ5ApAkjR45EamoqRo4ciRo1aqBLly6iIxERaVxRU4wzxXRD0eOTKpUKMplMdBwitZgxYwYOHjwIX19fKBQKNul1wPz587Fr1y4cOnQI1tbWouMQvTGFQoFWrVrB2NhYdBSDo09NMc4UI701c+ZM+Pr6on///jh9+rToOEREGlf0+CTfhOoGFxcX5OTkID09XXQUIrUpV64coqOjkZSUhODgYNFx6DXOnTuH4OBgfPvtt1yXiXQOF9kXRy6X8/FJIqmTyWRYtmwZPDw80LVrVyQnJ4uORESkUZwppltcXV0BgI9Qkt5xdXXFwoULMXfuXOzcuVN0HHqJnJwceHt7w93dHZMnTxYdh+itZGRk4OrVq2yKCeLg4MCmGJEuMDExwfr16yGXy+Hp6YmMjAzRkYiINIYL7esWBwcHlC9fnjtQkl4aMmQIBg0ahI8//pizISVq/PjxSE9PR2RkJB8/I52jUCggk8ng7u4uOopBksvlSE9Px9OnT0VHKTM2xUjvWVlZYefOnXj69Cm8vLzw+PFj0ZGIiDSCC+3rFplMBicnJ84UI721ZMkSWFhYYOjQoVCpVKLj0D9s3rwZy5cvR1hYGBwdHUXHIXprCoUC9erVQ+XKlUVHMUhyuRwFBQW4ffu26ChlxqYYGYTq1atjz549SElJwcCBA/Wio01E9G95eXkwMjJCuXLcR0dXcAdK0mc2NjZYu3Yt9u3bx10NJeTmzZsYMWIERo4cCW9vb9FxiErl2LFjfHRSILlcDgB68Qglm2JkMGrXro3t27fjt99+w+jRo0XHISJSO6VSyUcndQybYqTv3N3dERwcjIkTJyIhIUF0HINXWFiIwYMHw97eHvPmzRMdh6hU8vPz8ccff7ApJlCNGjVgbGzMphiRrmnZsiXWrFmDFStW4Pvvvxcdh4hIrfLy8vjopI5xcXFhU4z03tSpU9G6dWv4+PggJydHdByDNnPmTBw9ehQxMTGwsLAQHYeoVM6ePYucnBx4eHiIjmKwTExMYG9vz6YYkS7y8vLC4sWLMWXKFKxatUp0HCIiteFMMd3j6uqKu3fv4tGjR6KjEGmMkZERIiMjkZ6ejgkTJoiOY7BOnjyJ6dOnY9asWWjSpInoOESlplAoULFiRdStW1d0FIMml8tx69Yt0THKjE0xMkgjR47ExIkT8cknnyA+Pl50HCIitVAqlZwppmNcXV0BACkpKYKTEGmWXC7HsmXLEBYWhq1bt4qOY3Cys7Ph6+uLDh06YOzYsaLjEJWJQqFA69atYWTEdoZIcrmcM8WIdNn3338PHx8f9O/fH2fOnBEdh4iozPLy8jhTTMc4OzvDyMiIj1CSQejbty+GDh2KoUOH4vr166LjGJRRo0bh4cOHWLVqFWQymeg4RGVS1BQjsdgUI9JxMpkMy5cvR+vWrdG9e3ekpqaKjkREVCacKaZ7zMzM4ODgwKYYGYyFCxeiatWqCAgIQEFBgeg4BiEyMhIxMTFYsWIFqlWrJjoOUZn89ddfSEtLY1NMAhwcHNgUI9J1JiYm2LBhA6pWrYpOnTrh7t27oiMREZUaZ4rpJu5ASYbE0tIS0dHRUCgUmD17tug4eu/atWsYM2YMPv/8c/To0UN0HKIyUygUMDIyQosWLURHMXhyuRx//fWXzn/AwaYYGTwrKyvs3LkT+fn58PLy4q5IRKSz2BTTTWyKkaFp1qwZQkNDMXXqVBw/flx0HL319OlT+Pn5wdHRETNmzBAdh0gtFAoFGjRoABsbG9FRDJ5cLkd+fj4yMjJERykTNsWIANSoUQNxcXFISkrCwIEDdb7bTUSGiY9P6iYXFxdcu3ZNdAwirZowYQI6d+4MPz8/7r6qIdOmTUNCQgLWrVsHc3Nz0XGI1OLYsWN8dFIi5HI5AOj8I5TlRAcgkop69eohNjYWHTp0wOjRoxEWFiY6ElGp5efn4/79+3j48CH+/vtv3LhxAwBw8eJFqFQqWFlZwdraGra2tjAxMRGcltSFM8V0k6urK9LS0pCfnw8TE5Ni9QsAKpXq+eLYrF/SBzKZDOHh4WjUqBHGjh2LVatWiY6kVw4dOoQffvgBS5cuRb169UTHIUJOTg7u3buHR48eITc3F8D/rm0ymQwVK1ZExYoVUbly5ZceQ6lU4syZMxg5cqS2YtMryOVyyGQy3Lx5U6cfZ2VTjOgfWrZsiV9//RV9+vSBs7MzJk+eLDoS0Us9evQIiYmJ+PPPP3Hx4kWkpKQgNTUVN2/exIMHD0r8HT8/v2Lfs7a2Rs2aNeHk5AQnJyfUq1cPjRo1QsOGDVGxYkVN/zFIjThTTHf8s36PHz8OZ2dnNGnSBH/99ddL67ckrF/SZfb29ggPD0f37t3RuXNn+Pj4iI6kF7KysuDv74+ePXtixIgRouOQAblx48bza9uVK1eQmpqK1NRUpKen48mTJ290DCMjI1SpUgW1atWCk5MTnJ2d0aBBAzRq1AgPHz5Ebm4uPDw8NPwnoTdhZmYGOzs7zhQj0jc9e/bETz/9hMDAQFSrVg2DBw8WHYkIwLMbjb179+Lo0aM4duwYLl26BJVKBRsbG9SvXx8uLi7o1asXatasCXt7e9ja2qJSpUqwtLQsdqzHjx/jwYMHuHfvHjIyMnDz5k2kpKTgzJkziImJQVZWFgCgbt26aN26Ndq2bYuOHTvCyclJy39qehtKpZIzxSTqdfXbsmVLODk5sX7J4Hh6emL06NEIDAxE69at4ezsLDqSzhs1ahQKCwuxfPly0VFIjxUWFuKPP/7AgQMHcPToUSgUiudrSzk6OqJu3bqoXbs2OnXqhBo1asDOzg62traoWLFiiR/gPXjwAPfv30dmZiYyMjKeN9R27dqF+fPnIy8vD6ampqhZsyaWLVuGtm3bokOHDrCystL2H53+QS6X49atW6JjlAmbYkQlGDVqFK5du4YRI0agevXq6Ny5s+hIZKBOnz6NNWvWIDY2FufPn4eFhQWaN2+O3r17o1WrVmjUqJFG3ujeuHEDCQkJOHHiBI4cOYL169fj8ePHePfdd9GtWzf06dMHrVu3hpERl6aUkqIbRpIG1i/Rm5kzZw4OHz6MgQMH4siRI3wsuAzCwsKwYcMG7NmzB7a2tqLjkJ7Jy8vDzp07sXHjRuzevRt3795FtWrV4OHhgcmTJ6N58+Zo1KiR2mcq5+fn4/Llyzhz5gyOHTuG+Ph4zJs3D8bGxmjbti26deuG/v37o1atWmo9L72eXC7X+ZliMpVKpRIdgkiKVCoVhgwZgs2bN+PgwYNo2rSp6EilNnPmTISHhyMpKUl0FHoDt27dQnR0NCIiInD+/HnUrl0bPXv2RNeuXdGuXTshM4Hy8vJw5MgRxMXFYefOnbh48SLkcjn69++PYcOGwc3NTeuZqLgePXrA1tYWq1evFh3FYLF+iUrnwoULaN68OSZOnIhvv/1WdJwSSf1+6uLFi2jevDm++OILfPfdd6LjkB45fvw4IiMjsWbNGjx48ADt2rVDt27d4OnpiQYNGgjJlJmZid27dyMuLg6xsbHIysqCu7s7fHx84O/vj0qVKgnJZWgCAwNx4cIFHDhwQHSU0vovm2JEr5Cfn4/u3bvj3LlzUCgUOvvpg9Rv4ggoKCjAxo0b8csvv+C3336DjY0NBgwYAH9/f0nusHPu3DmsW7cOMTExuHr1Kjw8PBAYGIgBAwagXDlOQhalc+fOqFWrFh+Z0TLWL5F6LFmyBJ999hn27t2LDz/8UHScYqR8P6VUKtGqVSuYmJjg6NGjnG1HZXbv3j38/PPPWL16Na5cuQI3Nzf4+/vD19f3+a6DUpGfn4+9e/di3bp12LhxI/Lz89GvXz+MHTtWpxeA1wUzZsxAeHg4kpOTRUcprf9y3jzRK5iYmGDDhg2oWrUqPD09cf/+fdGRSM/k5+cjPDwc9erVg4+PDywsLLBu3Tr89ddfWLJkiSTfUANAgwYNMH36dCQlJWHv3r2oWbMmhg4dinfeeQc///wzlEql6IgGiWuKaRfrl0i9AgMD4eXlhYCAAN5zvaXJkycjOTkZ0dHRbIhRmaSnp2PixIlwcnLCvHnz4OnpiVOnTuHcuXOYPHmy5BpiwLP3bJ6enggPD8etW7ewcOFCXLx4Ee7u7ujSpQsOHTokOqLeKlpTTJfnWrEpRvQa1tbW2LlzJ3JyctCtWzfk5OSIjkR6IC8vDxEREahfvz5GjhyJVq1a4fz589iyZQv69OmjM40NmUyGjh07Ys2aNUhKSoKXlxc+//xzODo6IiQkBI8ePRId0aDk5eXpzL8dXcb6JdKc8PBwyGQy7pr4FuLj47Fw4UKEhYWhTp06ouOQjrp+/TrGjRsHFxcXREREICgoCFevXsWCBQvw3nvviY73xqysrDBixAicOnUKhw8fhqmpKdq3b4+2bdti+/btOt28kSK5XI7c3FxkZmaKjlJqbIoRvYEaNWogNjYWV65cwaBBg1BQUCA6EukolUqF6OhoODk5YdSoUejatSuSk5MRERGBunXrio5XJrVq1cKPP/6I5ORk+Pn5Yc6cOahTpw5WrlzJGxAtUSqVXGhfg1i/RJpXqVIlREZGYuvWrVixYoXoOJKXkZGBIUOGwM/PD76+vqLjkA569OgRPv/8c9SuXRvbtm3DnDlzkJaWhpCQENjY2IiOVyZFjbAjR47A2toaPXv2RJs2bXDmzBnR0fRG0cxBXV5sn00xojdUv359bNmyBbt378aYMWNExyEddOHCBXTo0AEBAQHo1asXUlJSsGjRIjg6OoqOplY1atTA3LlzkZqaikGDBmHkyJFo27YtEhISREfTe5wppjmsX9YvaU/79u0xYcIEjBs3DpcuXRIdR7JUKhU+/vhjWFhY4KeffhIdh3TQmjVrUK9ePURFRWHx4sW4cuUKAgMDYW5uLjqaWrVp0waxsbE4deoUypUrhxYtWmDs2LF4+PCh6Gg6j00xIgPTrl07rF27FsuXL8fs2bNFxyEdkZOTg5CQEDRr1gwPHz7E0aNHsXTpUlStWlV0NI2ys7PDggULcOrUKQBA8+bNMW7cOD6SpUGcKaZ+rF/WL4kRGhqKBg0awNfXF3l5eaLjSNL8+fMRHx+PqKgoWFtbi45DOiQpKQldu3aFj48POnbsiAsXLmDEiBF6vx7de++9h4MHD2LlypVYu3Yt3n33XURERHBGdBlYWlqiUqVKbIoRGZKePXti0aJFmDx5MiIiIkTHIYk7cuQI6tevjx9//BHz5s3DqVOn0KpVK9GxtKpx48Y4cuQIwsLCEBMTg3r16uG3334THUsvsSmmXqxf1i+JU65cOURHRyM5ORnBwcGi40hOYmIigoODMX36dMlu6kHSo1KpMGvWLDRo0AAZGRlQKBSIiIhAlSpVREfTGplMhoCAAFy6dAn/+c9/MHToUHTp0gXp6emio+msosX2dRWbYkSl8Omnn+KLL77A8OHDsWfPHtFxSIJUKhW+//57fPjhh2jcuDEuX76MwMBAGBkZ5rArk8kwbNgwXLp0CW3atEHnzp0REhLC9fnUjI9Pqgfr90WsXxLF1dUVP/74I+bOnYudO3eKjiMZOTk58Pb2hru7OyZNmiQ6DumIu3fvonv37pg6dSpmzJiBkydPomXLlqJjCVOpUiUsWbIECoUCKSkpaNq0Kfbt2yc6lk6Sy+WcKUZkiGbPno2BAweiX79+OHv2rOg4JCGZmZno0aMHpk6diuDgYGzevBn29vaiY0mCra0t1q1bh5UrV2L27Nno2LEj/vrrL9Gx9AZnipUd6/flWL8kwpAhQzBo0CB8/PHHnMnx/8aPH487d+4gMjISxsbGouOQDjh06BCaNm2K8+fP48CBA5gwYQL/7fw/d3d3nD59Gh9++CE6deqEcePGIT8/X3QsncKmGJGBkslk+OWXX+Du7o7u3bsjLS1NdCSSgCNHjqBJkya4cOECjh49ipCQEIOdXfIqAQEBOHLkCP766y80a9aMn8ypCWeKlQ3r982wfknblixZAktLSwwdOtTg1/7ZtGkTli9fjrCwML3b6IPUT6VSYebMmejYsSNatGiBs2fPwsPDQ3QsybGyskJMTAwWL16MZcuWoXPnzmzCvwUHBwc2xYgMlampKTZu3IgqVaqgW7duuH//vuhIJNDGjRvx0UcfoUWLFjhz5gzc3d1FR5K0pk2b4tSpU2jfvj08PT0RFRUlOpLOUyqVbIqVEuv37bB+SZtsbGywZs0a7Nu3z6B3Wbx58yY++eQTjBo1Ct7e3qLjkMQ9ffoUw4YNQ0hICObMmYNNmzahUqVKomNJ2qeffgqFQoGbN2+iTZs2SE5OFh1JJ3CmGJGBs7a2RmxsLLKzs9G7d2/k5uaKjkQCrFq1CgMHDsTw4cOxceNGVKxYUXQknWBtbY01a9ZgypQpCAgIwA8//CA6ks4qKChAQUEBH58sBdZv6bB+SZvc3d0RHByMiRMnIiEhQXQcrSssLMTgwYNhb2+PuXPnio5DEqdUKjFw4ECsXbsWW7Zswbhx4yCTyUTH0glNmjTBiRMnULVqVbRq1QrHjx8XHUny5HI5Hj9+jKysLNFRSoVNMSI1qFGjBuLi4nDu3DkMGDCAiw8bmFmzZmHo0KEICgrCTz/9xMet3pJMJkNISAgWLFiAr776CuPGjUNhYaHoWDonLy8PADhT7C2xfsuG9UvaNHXqVHh4eMDHxwc5OTmi42jVzJkzcfToUcTExMDCwkJ0HJKwBw8eoFOnTvjtt9+we/dudOvWTXQknVO5cmXs2bMHLVq0QKdOnRAfHy86kqTJ5XIA0NnZYrzzI1KT+vXrY8uWLdi9ezc+++wz0XFIC1QqFcaMGYPg4GD8/PPP+P7770VH0mljx47F6tWrsXTpUgwbNozN5bekVCoBgDPF3hDrV71Yv6QNRkZGiIiIQHp6OiZMmCA6jtacPHkS06dPx6xZs9CkSRPRcUjC0tPT0a5dO6SkpODIkSNo06aN6Eg6y9LSElu3boWXlxd69eqFDRs2iI4kWbreFCsnOgCRPmnXrh1Wr16NQYMGwdXVFUFBQaIjkQZNmjQJy5Ytw9q1a9G3b1/RcfSCn58fbG1t0adPH5ibm2Pp0qWiI+kMzhR7O6xf9WP9kjbI5XIsW7YM/fv3R5cuXdCrVy/RkTQqOzsbvr6+6NChA8aOHSs6DknYgwcP0KVLFyiVShw9epQbMaiBqakpoqKiMHbsWPj4+KBChQro2rWr6FiSY2NjAysrKzbFiOgZb29vZGZmYsyYMbC3t4e/v7/oSKQBs2fPxty5cxEeHs431Grm6emJdevWoU+fPqhatSpCQkJER9IJnCn25li/msP6JW3o27cvhg4diqFDh+Ls2bN6/eZ/1KhRePjwIVatWsU1oeilnjx5gl69eiEzM5MNMTUzMjLCokWL8OTJE/Tt2xd79uzhDp4lkMvluHXrlugYpcLHJ4k0IDAwEOPHj8fw4cOxZ88e0XFIzaKjozF58mTMmTMHgwcPFh1HL3l5eWHFihWYPn06Fi5cKDqOTihqinGm2KuxfjWP9UvasHDhQlStWhUBAQF6+7huREQEYmJisHLlSlSrVk10HJKogoIC+Pv7IyEhAbGxsXBychIdSe/IZDIsW7YMXbp0Qc+ePXHx4kXRkSRHl3egZFOMSEPmzp0Lb29v9OvXzyB3SdJXO3fuxJAhQzBlyhR88cUXouPotYCAAHz33Xf4/PPPsX79etFxJK/o8UnOFHs51q/2sH5J0ywtLREdHQ2FQoE5c+aIjqN2165dw2effYbPP/8c3bt3Fx2HJEqlUmHUqFGIjY3Fjh070LhxY9GR9JaxsTGio6NRr149dO7cGdevXxcdSVLYFCOiYmQyGVasWAF3d3d069aNA6ceuHjxIgYMGIAhQ4bgu+++Ex3HIAQHB2P06NEICAjA2bNnRceRNM4UezXWr/axfknTmjVrhhkzZuDrr7/G8ePHRcdRm6dPn8LPzw+1atXCjBkzRMchCZs7dy5WrVqF9evXo23btqLj6L3y5ctj69atsLa2Rp8+fZ7fexGbYkT0Eqampti4cSOqVKkCT09PZGVliY5EpZSbm4tBgwbBzc0Nixcv5roeWrRgwQK0bdsW/fv3x6NHj0THkSwutP9yrF9xWL+kaUFBQejcuTP8/Pz05t/YtGnTkJCQgHXr1sHc3Fx0HJKo33//HcHBwZg5cyZnE2pR5cqVsXXrViQnJ2PixImi40iGg4MDm2JEVDJra2vs3LkT2dnZ6N27N3Jzc0VHolIYM2YMrl+/jrVr1/LxNC0zMjJCVFQUHj9+jBEjRoiOI1lcaP/lWL/isH5J02QyGcLDw5Gdna0XuzMeOnQIP/zwAxYsWIB3331XdBySqKysLAwcOBAdO3bEhAkTRMcxOLVr18by5cvx008/YdOmTaLjSIJcLsfDhw/x999/i47y1tgUI9ICBwcHxMbGIjExEYMHD0ZhYaHoSPQW1q5di5UrV2LlypVcvFSQqlWrIjo6Ghs3bsSyZctEx5EkzhQrGetXPNYvaZq9vT3Cw8OfL0yvq7KysuDv749evXqxiUwvpVKp8PHHHyM/Px8RERGc/SxI//798cknn2DYsGG4du2a6DjCyeVyANDJHSjZFCPSEjc3N2zevBlbt27FZ599JjoOvaErV65g+PDhGD9+PHr37i06jkH78MMP8dVXX2H8+PH4888/RceRHM4UK471Kx2sX9I0T09PjBkzBoGBgUhJSREdp1RGjRqFwsJCNo/plX788Ufs2LEDv/76K+zs7ETHMWgLFixArVq1MHDgQOTn54uOI1RRU0wXH6FkU4xIi9q3b4/Vq1cjLCwM8+fPFx2HXkOlUuGTTz5B3bp18f3334uOQwBCQkLQrFkzjBgxgjMu/4UzxV7E+pUe1i9p2uzZs+Hk5KSTb1DDwsKwYcMGrF69Gra2tqLjkESlpqYiODgY33zzDRfWlwBzc3OsW7cO586dM/j3dra2tihfvjybYkT0egMGDMCsWbMQFBSEyMhI0XHoFaKionD48GEsXryYs28kwtjYGD///DPOnDmD5cuXi44jKUqlEkZGRihXrpzoKJLA+pUe1i9pmpmZGWJiYnDu3DmEhoaKjvPGLly4gKCgIEyZMgUdOnQQHYckbOzYsZDL5VzgXULeeecdTJkyBd9++y1SU1NFxxFKVxfbZ1OMSIAJEyZg3LhxGD58OPbu3Ss6DpXg0aNHmDx5MkaNGoWWLVuKjkP/4ObmhnHjxuGrr77C3bt3RceRDKVSyebP/2P9ShfrlzStfv36mD17NkJDQ7F//37RcV5LqVTC19cXbm5umDZtmug4JGHbtm3D9u3bsXTpUs4Kl5hJkyahZs2aBr/pgVwu55piRPTm5s6di169eqFv375ISEgQHYf+JTg4GHl5eZg+fbroKFSCb7/9FtbW1vjyyy9FR5GMvLw83iT/P9avtLF+SdMCAwPh5eWFgIAA3L9/X3ScV5o8eTKSk5MRHR0NExNfm5cqAAAgAElEQVQT0XFIop48eYLx48fD19eXswklyNTUFIsWLcLGjRuxc+dO0XGEkcvlnClGRG+uaJv6Fi1aoHv37rh+/broSPT/Tp8+jaVLl2Lu3Llc10OiLCwsMGfOHISHh+Po0aOi40gCZ4o9w/qVPtYvaUN4eDiMjIwkvYvjrl27sHDhQoSFhaFOnTqi45CEzZgxA/fv38ecOXNER6GX6NSpE7y9vTF+/Hjk5uaKjiMEm2JE9NZMTU2xceNG2Nraolu3bsjKyhIdiQBMnToV7u7uCAgIEB2FXqFfv37o0KEDgoODRUeRBM4Ue4b1qxtYv6RplSpVQkREBLZu3YoVK1aIjlNMRkYGhg4dCn9/f/j6+oqOQxKWkZGB+fPn45tvvkG1atVEx6FXmDdvHm7duiXJMUcbuKYYEZWKjY0NYmNj8ejRI/znP/+BUqkUHcmgnT17FnFxcZg2bRpkMpnoOPQa06dPx8GDB3H48GHRUYRTKpUG3xRj/eoW1i9pWvv27Z+v43rp0iXRcZ5TqVT4+OOPYWFhgUWLFomOQxI3f/58VKhQASNHjhQdhV7DwcEBw4YNw6xZs57vCm5I5HI5MjMz8eTJE9FR3gqbYkQS4ODggLi4OCQkJGDw4MHcql6g0NBQNG7cGF26dBEdhd6Ah4cH3n//fcycOVN0FOHy8vIM/vFJ1q9uYf2SNoSGhqJhw4bw9fWVzJvU+fPnIz4+HlFRUbC2thYdhyTs4cOHCAsLwxdffAELCwvRcegNTJo0CXfu3EF0dLToKFonl8sBQOcW22dTjEgi3NzcsHnzZmzZsgWTJk0SHccgXbp0CZs3b8bUqVM5y0SHBAcHY9euXTh58qToKEIZ+uOTrF/dxPolTStXrhyioqKQnJwsicd1ExMTERwcjOnTp6N169ai45DELVy4ECqVCqNGjRIdhd5QzZo14e/vjxkzZuDp06ei42hVUVNM1x6hlKlUKpXoEET6Jj4+Htu2bSvV7yYlJWHfvn3o168f7Ozs1JInISEBV65cQf/+/dVyPHWoUqUKQkJCRMd4QUBAAE6dOoVz587ByIifGegSd3d3yOVybNq0SSvny8zMxDfffKOVc72p33//Henp6ejZs6foKM99+eWXqFmzplbOxfrVXdquX9IdZbmf+rfLly/j0KFD8PX1LfWMG3XcT+3evRtPnjxBz5491dLAl+L9FKnH48eP4ezsjMDAQP431jFXr17Fu+++i8jISAwcOFAr51TneFlaKpUKP//8Mzp27CjJzUNeMl7+l00xIg2YOXMmvvvuO7i7u5fq9588eYLy5curOZV0XL9+HcbGxkhOThYd5bn09HTUrFkTK1euhL+/v+g49Ja2bNmCPn36IDk5GS4uLho/X3JyMurUqYNmzZqhQoUKGj+frsnNzcXvv/+OP/74A82aNdP4+Vi/uk3b9Uu6o6z3U/8mhbUXCwsLUVBQABMTkzIfS4r3U6Q+S5YswaRJk5CWlsbdlHWQj48PkpOT8fvvv2vlfOoeL0ursLBQkh9OvmK8/G85EYGIDIGDgwMOHjwoOoYkzZw5EytXrhQd4wXR0dGwtLREv379REehUvDy8kLVqlURGRmp1Rlcy5cv10rTR9cUNQ21hfWr20TVL+kG3k+9nBTvp0h9IiIi0K9fPzbEdNSIESPQoUMHnDt3Dg0aNNDKOTlevtyrxkvptfCIiASIjIzEgAED9HqGnj4zNjaGj48PIiMjwQnQhof1q9tYv0REL0pKSsLvv//O2c867IMPPoCTkxNiYmJER6HXYFOMiAzeuXPnkJCQwBsPHefv74+rV69CoVCIjkJaxPrVD6xfIqL/Wb16NWrUqIEPPvhAdBQqJZlMhkGDBiEiIgIFBQWi49ArsClGRAZv1apVcHJyQps2bURHoTJo0qQJGjZsiMjISNFRSItYv/qB9UtE9IxKpUJMTAz8/f1hbGwsOg6Vgb+/P27dusVHGiWOTTEiMmgFBQWIiYnB4MGD1bILFInl7++PtWvXQqlUio5CWsD61S+sXyIi4ODBg0hJSYGfn5/oKFRG9erVQ/PmzfmBj8SxKUZEBu348eO4ffs2BgwYIDoKqcGAAQOQlZXFT+QMBOtXv7B+iYie7cjbsGFDuLm5iY5CajBw4EBs376dj1BKGJtiRGTQ4uLi4OzsjHr16omOQmrg6OgINzc37Nq1S3QU0gLWr35h/RIRAbGxsejWrZvoGKQmnp6euHfvHk6ePCk6Cr0Em2JEZNB27doFT09P0TFIjbp168Y31QaC9at/WL9EZMiuXbuGpKQkdO3aVXQUUpP69eujVq1aiIuLEx2FXoJNMSIyWI8ePcLZs2fRsWNH0VFIjTp27IiLFy8iIyNDdBTSINavfmL9EpEhO3ToEMqXLw8PDw/RUUiNOnbsiEOHDomOQS/BphgRGazjx4+joKAArVu3Fh2F1Kh169YwNjbG0aNHRUchDWL96ifWLxEZsiNHjqBFixYwNTUVHYXUqE2bNjhx4gTy8vJER6ESsClGRAZLoVDAxcUF1atXFx2F1Mja2hoNGjTgm2o9x/rVT6xfIjJkx48f5ywxPdSmTRs8efIEZ8+eFR2FSsCmGBEZrNOnT6NFixaiY5AGvPfee7zx0HOsX/3F+iUiQ/TkyRNcunQJzZs3Fx2F1Oydd96BtbU1zpw5IzoKlYBNMSIyWAkJCWjYsKHoGKQBDRs2REJCgugYpEGsX/3F+iUiQ5SYmIiCggI0atRIdBRSM5lMBjc3NyQmJoqOQiVgU4yIDNKjR49w/fp13njoqYYNGyIzMxPp6emio5AGsH71G+uXiAxRYmIiLC0t4erqKjoKaUCjRo3YFJMoNsWIJCY/Px/vvPMOAgICiv3syJEj6NSpE2xsbGBlZYX27dtj9+7dajv3mx7/yJEjkMlkiI+PV9u5tS05ORkqlQp169YVHUVjTp06BZlMhpCQENFRtO6dd94BAFy9elVwkuJE1XhaWhp++ukndOnSBWZmZpDJZNi1a1eJr5V6jbN+9ZuU65d0h4ix9vHjx4iOjkbPnj3h5OQEMzMz1KhRAwMGDCjxsSmpj7WkXcnJyahduzaMjPTzLbohX9cAoE6dOkhOThYdo0Si7k0PHz6M4cOHo169eihfvjwqV66MTp06YceOHSXm0NR4qZ8VR6TDli5dipSUFEybNu2F78fHx+ODDz7A3r178ejRI2RnZ+PQoUPo2rUr1q9fX+bzvs3x27Zti06dOmHixIkoLCws87lFSE1NhUwmg6Ojo+goZVJ0gQgNDdXI63WVg4MDzMzMkJKSIjpKMaJqvGXLlvjss8+we/fu1+5+JPUaZ/2yfoleR8RY+9///hd+fn7Yvn070tLSkJeXh9u3b2PdunVo2bJlsQ8ipD7WknalpqbC2dlZdIwy4XXt5ZydnXH79m3k5uaKjlKMiPEyOTkZ7dq1w4oVK3Dp0iXk5uYiKysLe/fuhZeXF+bNm/fC6zU5XrIpRiQheXl5mDFjBnr37o3atWu/8P2RI0eioKAAX3zxBe7evYusrCx89913UKlUCAwMRHZ2dpnO+7bHnzBhAhITE9XyZl2EtLQ0VKtWDebm5qKjaEzz5s2hUqkM8hM5IyMjODo6Su5NtagaBwAnJyeMHj0au3btwogRI177einXOOtXv0m1fkl3iBprraysnjfFrl27hpycHJw5cwadOnVCfn4+Ro8eXex3pDzWknalpqaiVq1aomNojCFf1wDAxcUFKpUKaWlpoqO8QNR4aWRkhC5duiA6OhpXrlzBkydPkJKSgkmTJgEApkyZgkePHr3wO5oaL9kUI5KQTZs2ISMjo9jU1b179yItLQ3t2rXD3LlzYWdnh4oVK+Lrr79Gnz59kJmZia1bt5b6vKU5fseOHVG9enWEhYWV+rwi3b59Gw4ODqJjkAbVqFFDcmsSiapx4Nk270WPT5qamr729VKucdav/pNi/ZLuEDXWTp48GZGRkejRowecnZ1Rvnx5NGnSBFu2bEGlSpVw7do13Lt374XfkfJYS9p1+/Zt1KhRQ3QM0pDq1asDgOSubaLGSxcXF+zatQs+Pj6oU6cOzM3N4eTkhFmzZqF9+/ZQKpW4ePHiC7+jqfGSTTEiCYmIiED58uXRtWvXF75/6NAhAICvr2+x3/Hz8wMAHDx4sNTnLc3xjY2N0atXLxw4cADXr18v9blFuXfvHmxtbbV2vqysLAQGBqJatWooX748mjdvjh07dmDVqlWQyWTYsGHDC69XqVRYuXIlPDw8YGVlhfLly6Nx48ZYvHgxVCoVACA0NBTvv/8+AGDq1KmQyWTPv4Diaze87vVvel4A2LVrF2QyGRYsWID9+/fDw8MDlpaWqFmzJr7//vvnr1u0aBHq1q0Lc3NzvPvuu1r9JNzW1rbYmw/RRNV4aUi5xlm/rF+iV5HaWGthYQFHR0eUK1cOlpaWL/xMymMtade9e/dgZ2enlXPxuibmuiaTySR3bZPaeAkAJiYmAAB7e/sXvq+p8bKc2o5ERGXy9OlTHD58GM2aNXs+EBQpWpSxQYMGxX6vaPe1sizcWNrjt2rVCmFhYfjtt98wZMiQUp9fhPv372vtTXVubi46dOiAs2fPPv/eH3/8gZ49e8Lb27vY61UqFfz9/REdHf3C9//880+MGTMGCQkJWLZsmdpzlua8x48fx8SJE/H06VMAQE5ODr766iuYmZkhPT0dP/zww/PXXr58GQMHDkSdOnXQpEkTtef/Nzs7O1y7dk3j53lTImu8tKRa46zf4li/RM9Icay9fPkyEhMT0bt37xIf+5bqWEvak5eXh+zsbK1c23hde0bb17Vy5crBxsZGUk0xKY2XhYWFuH37NsLDw7F371507dq1xDX2NDFecqYYkURcuHAB2dnZaNy4cbGfFT1PXbly5WI/K/rew4cPS33u0h6/6AKiUChKfW5RsrOzYWVlpZVzLVq0CGfPnkXdunWxb98+/P3330hJScGYMWOwdu3aYq+PiopCdHQ0GjZsiNjYWNy7dw/Z2dk4ePAgGjdujOXLl0OhUODrr7/G4cOHAeD58/1FXyV53evf9Lz/tHbtWowZMwapqanIzs7Ghg0bYGJigm+//RZLly7FL7/8goyMDNy7dw9BQUEoLCzE/Pnz1fnX+1JWVlZlXodLnUTWeGlJtcZZv6xfopeR2lj7+PFj+Pj4wMbGBnPnzi3xNVIda0l7isY7bVzbeF0Tc10DpHdtk8J4eenSJchkMhgbG0Mul2PGjBkIDAx86Sw+TYyXbIoRScTt27cBoMRp0y+7mLzuZ2+qtMevUqUKgP9l1yVKpfKN1lVShw0bNkAmk2Hjxo3o0KEDKlSoACcnJyxcuBCdOnUq9vrw8HAYGxsjPj4enp6eqFy5MiwtLdGuXTvExMQAQJnXlypJac7btWtXzJ8/H7Vq1YKlpSX69u2Lnj174uHDhwgJCcGwYcNQpUoVVK5cGbNmzYKNjQ0uXLig9uwlMTU1hVKp1Mq53oTIGi8tqdY467c41i/RM1Iaax8/foxevXrh0qVL2LJlC5ycnEp8nVTHWtKeol2h/z1bRxN4XRNzXQOkd22T0nhZJDc3FwqFAn/++WeJP9fEeMnHJ4kk4sGDBwBK/oTIxsYGwLNHhv4tKyvrhdeURmmPb21tDeB/2XVJXl6e1t5UX716FQ4ODnBzcyv2sy5dumDPnj0vfO/8+fMoKChAzZo1AeCFT82K/lcT646U5rzt27cvdpyinZPatWv3wveNjY3h4OCAO3fuqD17SaR24yGyxktLqjXO+i2O9Uv0jFTG2qysLHTv3h1//vknYmNji9XUP0l1rCXtKRrvtHFt43XtGW1f1wDpXdukMF6+++67UKlUKCgowJ07dxAbG4ugoCB89NFHOH/+fLFHKDUxXnKmGJFEVKxYEQCKbT0L4Pn2uOfOnSv2s6Iu+j+30H1bpT1+0ZTZSpUqlfrcomh79s0/Fw19XY7CwkIAQEFBAQoKClBYWFhs+nnRJ4rqVJrzlrQ2StGf9WU/KzqPphkZGQmdZfVvImu8tKRa46zf4li/RM9IYay9ffs22rdvj8TERMTFxZX4Rv2fpDrWkva97HqjrfPwuqZZRkZGWj3f60hhvCxibGyMGjVqYPjw4ZgxYwaePHlS4iOUmhgv2RQjkoiibXozMzOL/azok41/LzQJPHve/p+vKY3SHr8oa1F2XWJqaor8/HytnMvV1RU3b94scXr2vz+NA559YmJhYYEHDx68sL7CP7+KdgUyMno2jBctKPo6r3r925xXFyiVSpiZmYmO8ZzIGi8tqdY465f1S/Qyosfaq1evok2bNkhLS0N8fPzz3fVeRapjLWlP0QwxTTSX/o3XNXGUSmWJzTlRRI+XL1M0m66kZp0mxks2xYgkon79+qhQocILO8EU+eijj+Do6IhDhw4hKCgImZmZePjwIUJDQ7Fp0ybY2dmhd+/epT53aY9flLVVq1alPrcoZmZmWrnxAIC+fftCpVKhX79+OHDgAB4/foy0tDR8/vnn2L17d7HXDxs2DDk5Ofjoo4+wY8cO3L17F3l5eUhLS8POnTvRt29f7Nu3D8D/Fro8fPjwG+1m86rXv815dUFeXp6k3lSLrPHSkmqNs35Zv0QvI3KsPXfuHNq2bYusrCzs2bMHHh4eb/R7Uh1rSXuKmmLa+MCH1zVxpHZtEzlezpw5E5MnT8bJkydx79495ObmIiUlBQsXLsS0adMAoMQPFTQyXqqISO1mzJihcnV1fevf69q1q8rc3FyVm5tb7GdxcXEqY2NjFYAXvmQymWrt2rXFXt+mTRsVANWZM2fe6Nxve3yVSqUaNWqUCoAqNTX1rf6cpf37UScvLy+Vv7+/Vs6Vk5OjatSoUYl/t/3791cBUG3ZsuX56wsLC1VDhgwp9vp/fsXFxalUKpXq6dOnKgcHh2I/V6lUqpMnT6oAqL755pvnx37V69/mvHFxcSoAqvnz5xf78wYFBakAqBITE4v9zM3NTeXg4KC2v9tX+fTTT1UffvihRo6dlJSkAqD6448/3ur3RNa4r6/vK//brl+/vtjvlLbGS/v386ZYv6xfMgy6dj81bNiwV9bgy46jy/dTpB5PnjxRAVBt375d4+fide1/tHldU6lUKltbW9XSpUs1cmxdGy+L/ru87MvX17fE39PAeDmTM8WIJMTf3x+5ubmIjY0t9rOuXbviwIED6NixI6ysrGBpaYn3338fu3btgre3d7HXFz2vXq7cm+2n8bbHLygowNatW9GuXbvnC1jqEltb2zf6BEsdypcvj/3792PkyJGwt7eHubk53nvvPWzbtg3169cH8OJz8TKZDOHh4Vi7di0++ugjVKpUCaampnBxcUHv3r2xefNmfPTRRwCePX+/YcMGtG3bFpaWlq/N8qrXv815dUFmZmaJu+mIJLLG35aUa5z1y/olehWOtaRrzM3NYWFhUeJjbOrG65oYBQUFyMrKkty1TdR4OXXqVCxevBjt27eHvb09TExMULVqVXh6euLXX39FZGRksd/R2Hj5Vu01Inojpe3UK5VKVZUqVVT/+c9/ynT+goICVcWKFVVubm6qwsLCMh3rZeLj41UAVL/++utb/64UPtkMCgpSubu7C81QUFCgatq0qUomk6kyMzOFZtFHH374oWrUqFEaOXZpZ0IZSo1reqYY61f/abJ+SXfwfurVpHA/RepTs2ZN1ezZs4Wdn9c1zcrIyFABUP32228aOT7Hy1fjTDEiHWFqaorg4GBs27YNSUlJpT7OuXPn8ODBA3z55Zca28Vmzpw5aNCgAfr376+R42uavb090tPTtXa+oKAgREVFIS0tDTk5OTh79iy8vb1x5swZfPDBB7C1tdVaFkNx584dVKlSRXSMF7DG1YP1q/+kWL+kOzjWki6yt7fHnTt3tHIuXte0r+i/rdSubRwvudA+keQEBgbCxcUF06dPL/Uxjhw5glq1amHgwIFqTPY/R48exZ49ezBnzhwYGxtr5ByaVqtWLdy6dUtrO9hdvnwZ/v7+cHJygqWlJZo2bYqNGzeiQoUKmDdvnlYyGBKVSoXU1FQ4OzuLjlIMa7zsWL/6Tcr1S7qDYy3pmlq1aiEtLU0r5+J1TftSU1MBQJKPSRv6eKmZh+OJqNRMTExw5cqVMh0jMDAQgYGBakpUXJs2baBSqTR2fG1wcnJCQUEBbt68qZU3XvPnz0eVKlVw5MgR3LhxA9bW1mjfvj2++eYbNGjQQOPnNzQZGRnIycmR5Jtq1njZsX71m5Trl3QHx1rSNc7Ozjh06JBWzsXrmvalpKSgSpUqsLKyEh2lGEMfL9kUIyKD5OrqCgBISkrSyhuvOnXqIDw8XOPnoWeKpn+7uLgITkKawPrVb6xfIjJELi4uWLFihVbOxeua9iUlJT2/fyFp4eOTRGSQ7OzsUL16dfz555+io5AGJCYmwsbGBjVr1hQdhTSA9avfWL9EZIgaNmyIBw8e4Pr166KjkAYkJiaiYcOGomNQCdgUIyKD1ahRIyQmJoqOQRpQdOOhqYU+STzWr/5i/RKRIWrUqBFkMhk/8NFT58+fZ1NMotgUIyKD1aRJE5w+fVp0DNKAM2fOoFGjRqJjkAaxfvUX65eIDJGNjQ2cnJx4bdNDN27cwN27d3ltkyg2xYjIYHl4eOD8+fO4f/++6CikRk+ePMHp06fRpk0b0VFIg1i/+on1S0SGzMPDA8eOHRMdg9TsyJEjMDExQYsWLURHoRKwKUZEBsvDwwMAcOLECcFJSJ1+//135OXloW3btqKjkAaxfvUT65eIDJmHhwcUCgUKCgpERyE1Onr0KJo1awYLCwvRUagEbIoRkcGys7PDu+++i/3794uOQmp04MABODo6wtHRUXQU0iDWr35i/RKRIXv//ffx6NEjnDlzRnQUUqP9+/fj/fffFx2DXoJNMSIyaF26dMGuXbtExyA1iouLQ9euXUXHIC1g/eof1i8RGbKGDRuiZs2avLbpkRs3buDChQu8tkkYm2JEZNA8PT2RmJiIGzduiI5CapCZmYlTp07xxsNAsH71C+uXiAjo3LkzYmNjRccgNYmNjYWlpSWXBZAwNsWIyKC1a9cOVlZW2LJli+gopAabNm2CqakpPvroI9FRSAtYv/qF9UtEBPTo0QMnTpzA7du3RUchNVi/fj26dOkCMzMz0VHoJdgUIyKDZm5ujp49e2L9+vWio5AaREREoHfv3rCyshIdhbSA9atfWL9EREDXrl1RoUIFbNiwQXQUKqNbt27hwIED8PPzEx2FXoFNMSIyeN7e3jh69Chu3rwpOgqVwbVr13Ds2DHeeBgY1q9+YP0SET1jbm4OLy8vrFu3TnQUKqOoqCjY2Nige/fuoqPQK7ApRkQGr0uXLqhcuTJWr14tOgqVQVRUFOzt7dG5c2fRUUiLWL/6gfVLRPQ/vr6+OHr0KK5cuSI6CpVBZGQkBgwYAFNTU9FR6BXYFCMyICkpKaIjSJKZmRn8/f2xYsUKFBYWio5DpRQdHQ0fHx+UK1dOdBQhDHWmFOtXPxh6/ZLuMNSxlrSrS5cucHR0xC+//CI6CpXS6dOncf78eQQEBIiOohb5+fn/x959x9d89n8cf2cKIuREidqUWok9g7sqYlXULG6C3tUakR05QmTKkI3WqloRsVVIIyKpmbZIam9S7lgVIVKR5IzfH73ld7txjIzrjPfz8fBHT1J5tVzJOZ9zfa8viouLRWdUCD7zIKogDx48wKxZs0RnvGD//v3o3r07zMzMhHZkZmYK/fqvMm3aNERHRyM5ORlDhgwRnUPv6NChQ7h8+TISEhIq9euGhYWhdu3alfo1X2f37t0YNmwY9PT0RKfg8ePHlfr1uH41m6j1S5pBnZ5PPXjwAJcuXYKNjY3oFADq+XyKyoe+vj6+/PJLLF26FP7+/qhataroJHpHa9asQYsWLdC9e/dK+5oV9f2ypKQEBw4cgJ2dHfT1NXNflarvl3pKpVJZiS1EOmHjxo1YuXKl6IyXHDt2DJaWlmjWrJnoFDRo0AAbN24UnfGCwYMH4/Hjxzh27JjoFHpHQ4YMwaNHjyrtzy4nJwcTJkyolK/1NgoKCpCZmQlra2vUqlVLdE6p77//Hi1atKiUr8X1q7kqe/2S5lC351M3btzA3bt30aNHD7V4AwJQz+dTVD7u37+Ppk2bIiwsDI6OjqJz6B08/7MLDQ3F7NmzK+VrVtT3y6KiIpw5cwb6+vro1KlTuf/+lek13y9DOBQj0hG//fYbunfvDlNTU9y5cwempqaik9RORkYGevXqhYMHD6Jv376ic+gtZWVloXPnzkhKSsKgQYNE5wjh4eGByMhIfP3111ixYoXoHCG4fjUT1y9pCqVSiQYNGuD27dtITU1F//79RSeRDnBycsKuXbtw9epVnkulQaRSKdauXYvr16+jWrVqonPe29mzZ2FnZ4c7d+5g6tSp+OGHH0QnVYQQzdz7RkTvbP/+/TA0NERhYSE2bNggOkct9ezZE//4xz+wcOFC0Sn0DgIDA9GhQwcMHDhQdIoQCoUCcXFxAICEhAStPe/hTbh+NZOur1/SHMeOHcPt27ehr6+P+Ph40TmkI+bMmYN79+7xubsGefz4MZYvXw43NzeNHog9P3bnzz//hIGBAaysrEQnVRgOxYh0RFJSEuRyORQKBcLDw8FNoq82b948pKSk4Pjx46JT6C1cuHABP/74IxYsWKA2l7JUtsOHD+PevXsAgCdPniAlJUVwkThcv5qF65c0SXx8PIyMjKBQKJCQkIBnz56JTiId0KBBAzg4OCAkJAQymUx0Dr2F6OhoGBgYYMaMGaJT3tu6deswePBgPHv2DDKZDHK5HO3btxedVWE4FCPSAU+ePMGvv/4KpVIJpVKJGzduIDU1VXSWWhowYAC6deuGoKAg0Sn0FgIDA48aJ5AAACAASURBVNGmTRsMHz5cdIowmzZtKr2kwsDAQKfPluH61Sxcv6QpZDIZEhISUFJSAgAoLCxEcnKy4CrSFVKpFNnZ2di8ebPoFHqDx48fY8mSJXByckKNGjVE57yXsLAwTJ06tXQzxXPcKUZEGi09PR1yubz0nw0NDREdHS2wSL0FBARg9+7dOr3jRhMcOXIECQkJ8Pf319ldJiUlJdi0aVPpJZMymQw7d+5EQUGB4DJxuH41A9cvaZLU1FQ8fPiw9J91/Q0IqlzNmzfH5MmTIZVKdfrnuybw9fWFvr4+nJycRKe8M5lMhmnTpmHu3LkvXVFUu3ZtfPDBB4LKKh6HYkQ6ICUl5YXDOWUyGZKTk3H58mWBVepr4MCBGDlyJGbNmsXLI9SUTCaDo6MjBgwYgJEjR4rOEWbfvn3Iz89/4bGSkhIkJiYKKhKP61f9cf2Spnl+6eRzMpkMu3fvfun7L1FFWbRoEZ49e4aAgADRKfQaZ86cwbfffouwsDCYm5uLznknBQUFGDp0KNasWfPKI3Y6dOggoKrycChGpAP27Nnz0uHbhoaGWLZsmaAi9RcTE4O7d+8iIiJCdAq9wuLFi3Hx4kUsXrxYdIpQGzdufOGFGgDo6emVHryvq7h+1RvXL2mSZ8+eYceOHaWXTj4nk8nw448/CqoiXWNhYYHAwEBER0fj9OnTonPofyiVSkyfPh2dOnXClClTROe8k9u3b6Nnz54vXVn0XJUqVdC5c2cBZZWHQzEiLZednY0//vjjpcdLSkqwcuVKvsv5Gg0bNoSPjw+Cg4Nx/fp10Tn0X+7evYuAgABIpVJ8/PHHonOEefr0KXbt2vXSCzW5XI59+/YhNzdXUJl4XL/qi+uXNE1iYiKePn360uN8A4Iq29dff40uXbpg1qxZvGGWmvnhhx/w66+/YsWKFdDX15wRy9mzZ9GlSxdcunTppeeTz5WUlGj1eWIAh2JEWm/fvn0wMDB45ceKioqwfv36Si7SHK6urmjatClmz57NJx9qZPbs2ahduzakUqnoFKF+/PFHFBUVvfbjO3bsqMQa9cP1q564fknTxMXFvfJ5lFwux4EDB3D//n0BVaSL9PX1sXTpUmRkZGDdunWic+g//vzzT0ilUjg6OmrUZYYHDx5Ez549cffu3dcOxABAoVDA2tq6EssqH4diRFpu3759r/2YQqFAZGTkC3cWof9nZGSElStXIiUlhZf5qInvv/8eO3bswPLly2FiYiI6R6i4uLjXvhupVCp1fuDN9at+uH5J0+Tn5yM5ORkymey1n7Nt27ZKLCJd17lzZzg7O8PJyYlnA6sBhUIBBwcHmJqaatx5b507d4aLiwuMjY1fOHv6fxkaGmr9zm4OxYi0mFwuR2pq6iuvDwf+fuGcnZ3Nu7SpYGNjAz8/P3h6eiIjI0N0jk47e/YsnJ2dIZVKYWtrKzpHqLy8PKSkpLx2bSsUChw9ehQ5OTmVXKZeuH7VB9cvaaLt27e/9vss8Pf3Wl1/A4IqX2hoKNq1a4fRo0ejsLBQdI5OCwsLw4EDBxAfHw8zMzPROe/E1NQUgYGBuHbtGhwcHKCnp/fSObUA0KJFC5VDM23AoRiRFvvtt9/w5MkTlZ+jr6+P6OjoSirSTHPnzkW/fv0wbty4F27JTpXnr7/+wtixY9G5c2f4+/uLzhFu69atb9zhaWhoiM2bN1dSkfri+hWP65c01YYNG1R+XKlU4rfffkN2dnblBBHh753QCQkJyMnJgZubm+gcnfXLL7/A19cXYWFh6Nmzp+ic91a/fn2sWrUKHh4esLS0hJ6eHvT09AAABgYG6NKli+DCisehGJEWe74DzMjICFWqVEGVKlVgaGj4wucoFAqkpqbiypUrIhI1gr6+PjZs2ACZTIYpU6bwfCIBZs6ciXv37iEuLu6lv8O6KD4+HkqlsnRdv+qXXC7nIdDg+lUHXL+kie7du4eDBw9CT0/vtd9njY2NoVQqsWXLFtG5pGMaNWqElStXYvny5di4caPoHJ3z8OFDjBs3DgMHDoSLi4vonDL7888/sXLlSkydOhUbN26EpaVl6c9rbT9PDAD4zIRIi/31118YPXo0LCwsIJFIYG5ujh07dsDGxgbDhg2Dubk5JBIJJBIJqlWrJjpXrdWpUwcbN26Era0tQkNDMXfuXNFJOmPx4sWIi4vDnj170KhRI9E5wikUCgwdOhSDBw8ufSwvLw+rVq3C5MmTUbdu3Rc+v7i4WOu3vb8J1684XL+kqfLy8hAcHPzCY7/88gvOnDmDadOmvfB4kyZNKrGM6G+jRo2Co6MjZsyYgbZt22rUIe+arLi4GGPHjgUArF+/vnRXlSZbsGABTE1NMWfOHFSvXh2ff/45oqKiEBISohNDMT0l3zIl0ilt27bFmDFj4OfnJzpFIy1ZsgTOzs5YvXo1pk6dKjpH623evBkTJkxASEgI5syZIzpHbV29ehUtWrTAyZMn0alTJ9E5aovrt3Jx/ZK2CQ4Oxpo1a7i7ntRGUVERhg4dinPnzuHIkSNo3ry56CStplAoMGHCBPz00084ePCgVgwiL1y4AGtra6xevRoODg4vfOzOnTuoXr26xp2X9o5CuFOMSMdIJBLk5eWJztBYs2fPxr179zBt2jTUrFkTI0eOFJ2ktdLT0zF58mTMmDGDL6ipXHD9Vh6uXyKiilelShXs3LkT/fr1g52dHY4ePQpLS0vRWVrL3d0dO3fuxJ49e7RiIAYArq6usLKywsSJE1/6WL169QQUVT6eKUakY8zNzTkUK6PAwEB8+eWXmDhxIg4fPiw6RyudPn0aI0aMwMiRI7F48WLROaRFuH4rHtcvEVHlqVGjBpKTk2FkZAQ7Ozs8evRIdJJWCgoKKj0SYMCAAaJzykVSUhL27duHmJgY6Ovr7mhId//LiXSURCLhHdjKSE9PD8uWLcPAgQMxfPhwZGZmik7SKufPn8eAAQPQvXt3rF27Vqd/SFP54/qtWFy/RESVr3bt2khKSsKDBw8wYsQIFBQUiE7SKt999x0WLFiAJUuWYMyYMaJzyoVMJsOcOXMwevRo9O3bV3SOUHymQqRjOBQrHwYGBti0aRO6dOmCfv36IS0tTXSSVjh27Bj69OmDli1bYvv27Tp/QDxVDK7fisH1S0QkTrNmzfDTTz/h/Pnz6N+/Px48eCA6SSsEBgbC0dERQUFBmDlzpuiccrN8+XJcuXIFISEholOE41CMSMeYm5tzKFZOTExMsGfPHgwZMgSDBw/G5s2bRSdptD179mDAgAGwsbFBSkoKTE1NRSeRFuP6LV9cv0RE4rVv3x4ZGRl4+PAhevTogWvXrolO0lhKpRLu7u7w9/fHd999B29vb9FJ5ebRo0fw9/eHi4sLPvroI9E5wnEoRqRjeNB++TI2NkZ8fDxmz56N8ePHIzo6WnSSRlq/fj1GjhyJMWPGYMeOHahataroJNIBXL/lg+uXiEh9NGvWDIcPH0aNGjXQp08fnDp1SnSSxikuLsb48ePx7bffIj4+HtOnTxedVK4CAgKgp6enVYO+suBQjEjHPN8pplQqRadoDT09PURERCAwMBDu7u7w8vKCTCYTnaUR5HI5fH19MWXKFHh6emLNmjUwNOSNkanycP2+P65fIiL1ZGlpifT0dLRo0QL9+vVDcnKy6CSNce/ePdjZ2SE5ORnJyckYO3as6KRyde3aNXz33XcIDAxEzZo1ReeoBQ7FiHSMRCKBTCbjAZwVYN68eVizZg2WLFmCfv364d///rfoJLV29+5dDBw4EGFhYVi2bBkWLlwIPT090Vmko7h+3w3XLxGReqtVqxb27duHIUOGYMiQIfD29uabPm+QlpaGDh064N///jcOHTqETz75RHRSuXNzc0Pz5s3xr3/9S3SK2uBQjEjHSCQSAOC5YhVk8uTJOHnyJB49eoSOHTsiKSlJdJJa+vnnn9GpUydcvXoVP//8M7755hvRSURcv2+J65eISDOYmJggLi4Oa9euxeLFi2FjY4Ps7GzRWWpHqVQiLCwMdnZ26NGjB44fPw5ra2vRWeUuPT0du3fvRnR0NHd2/xcOxYh0DIdiFa9169bIyMjA4MGD8dlnn0EqlaKkpER0llqQyWTw8/ODra0t+vTpg9OnT6NHjx6is4hKcf2+HtcvEZFmcnBwQEZGBp48eYKuXbti7969opPUxp07d2BrawtfX18sXrwYO3fuhLm5ueiscqdQKODp6YnPPvsMdnZ2onPUCodiRDrm+Td5DsUqlqmpKdavX4/Vq1djyZIlaN++PdLT00VnCXX06FF07twZYWFhWLJkCTZv3gwzMzPRWUQv4fp9GdcvEZFms7KywvHjxzFkyBB89tlnGD9+PG7fvi06Sxi5XI4lS5agdevWuHXrFjIyMjBz5kzRWRXmhx9+wKlTpxAaGio6Re1wKEakY2rVqgV9fX3egbKSTJ06FZcuXUK7du3w6aefYtiwYTp1VtHjx4/x8OFDODs7o2/fvrCwsEBmZiZmzJghOo3ojV63fp88eQKFQiE6r1Jw/RIRaY/q1atj3bp1SE1NRVZWFlq2bAk/Pz8UFxeLTqtUJ0+eRK9eveDu7o7JkycjMzMTHTt2FJ1VYQoKCrBgwQLMnDkTbdu2FZ2jdjgUI9IxBgYGMDMz406xStSgQQNs2bIFP/74I86ePYt27dph8eLFWn9JllwuR+/evdGsWTPs2LEDmzdvRlpaGlq3bi06jeit/e/6bdu2LXr06AG5XC46rULJ5XKsWLECLVq04PolItIy/fv3R1ZWFtzc3BAaGoquXbvi8OHDorMq3J9//olp06ahW7duqFGjBs6cOYPY2FiYmpqKTqtQwcHBePbsGRYsWCA6RS1xKEakgyQSCYdiAtjb2+P8+fNwcXHBnDlz0KJFC8TGxqKwsFB0WrkqKSnB+vXr0bZtW5w7dw5FRUWIi4vD6NGjRacRvTd7e3ts27YNCoUCFy9e1In16+joiIkTJ+L8+fNcv0REWqZq1aoICAjAuXPnUL9+ffTt2xe9e/dGYmKi6LRyd//+ffj5+eGjjz7C3r17sWbNGuzfvx8ff/yx6LQKd+vWLcTGxsLX1xcWFhaic9QSh2JEOkgikfDySUGqVq0KPz8/XL58GcOHD8fcuXPRpEkT+Pn54fHjx6LzyqSoqAgrV65E8+bNS9+Fc3JywrNnzzBo0CDs3r1bdCLRe0tLS8M//vEPFBQUYNq0aTqxfs+dO4fY2FjUqFFDdB4REVWQ5s2bIykpCYcPH4a5uTns7e1hY2ODxMREKJVK0XllcvPmTTg7O6NJkyZYtmwZXF1dcfHiRTg4OEBPT090XqXw9PREvXr1ePSBChyKEekg7hQTr1GjRoiNjcW1a9cwadIkREZG4qOPPoK3tzcuXrwoOu+dXL16FX5+fmjcuDFcXV0xYsQIXLt2DevXr8enn34K4O8X3CNGjMB3330nuJbo3a1fvx4DBw7Es2fPoKenBxsbG51Yvy1bthSdR0REleT5LrGjR4+iVq1aGD58OLp06YKVK1fi0aNHovPemkKhQFpaGiZNmoSPPvoIu3fvRlRUFG7evAk/Pz+duklMRkYGtmzZgujoaBgbG4vOUVscihHpIHNzc+4UUxP16tVDREQEsrOzMXPmTMTFxaF169bo1q0blixZgj///FN04is9fPgQy5Ytg42NDVq0aIFVq1bhyy+/xI0bNxAbG4sGDRoAAKytrQEASqUSCoUCjo6OcHJy0plDyknzxcbGYsqUKZDJZJDL5VAqlWjfvj0A7V+/RESke3r16oW9e/fi5MmTaNWqFVxcXFCvXj2MGTMGiYmJansm7rlz5yCVStGkSRP0798fly9fxqpVq3D58mVMnz4dVapUEZ1YqZRKJTw8PPDJJ59g2LBhonPUmp5S0/dEEtE7mzlzJi5evIi0tDTRKfQ/FAoFfv75Z6xfvx47duwovfRw2LBhGDx4sNAXq7dv30ZycjISExORlJQEIyMjjBgxAhMnToStrS0MDAxe+neUSiXMzMxQUFBQ+piBgQGGDRuG+Ph4VK1atTL/E7TW1atX0aJFC5w8eRKdOnUSnaMVZDIZZs2ahVWrVr1w+YihoSH++uuvV77jqm3rl4heFBwcjDVr1uDKlSuiU4gqTX5+PrZt24b169fj8OHDsLCwwKhRozB06FD069cP1atXF9KlVCqRlZWF5ORkbN++HZmZmWjUqBEmTZqEiRMnolWrVkK61EVcXBymTJmCzMzM0jep6ZVCOBQj0kHz58/Hnj178Pvvv4tOIRWePn2KnTt3IiEhAWlpaXj69Cnatm2LPn36wMbGBj179kSzZs0q7EyEGzduICMjA8eOHcOhQ4dw9uxZmJiY4JNPPsEXX3yBUaNGvdXdenr06IFff/31hccMDQ3RsWNH7N27Fx988EGF9OsSDsXKV0FBAUaPHo3U1NSX7jLZqlUrXLhw4Y2/h7asXyL6fxyKka77448/EBcXh507dyIzMxPGxsbo2bMnevfujV69eqF79+6QSCRv/fspFAro67/dxWvFxcU4c+YMjh07hqNHj+LgwYO4e/cuLC0t8dlnn+Gf//wn+vbt+9a/nzYrLCxEq1atMGjQIKxYsUJ0jrrjUIxIF0VGRiI2NhY3b94UnUJv6dmzZzh06BD279+PY8eO4cSJEyguLoapqSnatm2Ldu3aoWnTpmjatCkaN26M2rVrw8LCAhYWFq990Z2bm4sHDx4gNzcXf/zxB7Kzs3H9+nWcP38eZ8+eRX5+PoyMjNC5c2f06tULtra2+OSTT955d9fz3Tb/u93e0NAQ9evXx/79+9GiRYv3/n9DHIqVpzt37sDOzg6XLl166e+sgYEBxo8fjw0bNrzT76nJ65eI/h+HYkT/7969e9i3bx/S09Nx7NgxXL58GQDw4Ycfol27dmjVqlXpz7YPP/wQderUgYWFRekbMvn5+di+fTumTp0K4O+hV25uLnJzc3Hv3j1kZ2fjxo0buHr1Ks6ePYvLly+jpKQE5ubm6NWrF3r37o2BAweiQ4cOOnNo/tsKCAhAREQELl++DEtLS9E56i7EUHQBEVU+3n1S85iYmMDOzg52dnYA/n6RferUKZw+fRqnT5/GhQsX8PPPP+PmzZsvvZDX19dHzZo1S//58ePHL53pZWhoiIYNG6Jp06bo0KEDHBwcYGVlhQ4dOqBatWplare2tn7l3YtkMhlu376Nrl27IikpCb169SrT1yEqq7Nnz8LOzg4PHjx45ZkpBgYGpeeJvQtNXr9ERESvUrduXTg4OMDBwQEAcP/+ffz+++84deoUzp49i+PHj2PLli24e/fuS/9ulSpVYGhoiKKiIri4uCA/P/+lz6levTqaNm2K5s2bw97eHu3bt4eVlRVatWrF3WAq3L59G4sWLYKPjw8HYm+JQzEiHWRubo6CggIUFxfzTiQaysTEBN27d0f37t1feFwul+Pu3bul77Tl5uZCoVC8cNegmjVrQl9fv3QnioWFBSwtLWFoWDE/EqytrSGTyV75sZKSEhQUFKB///7YsmULDwIlYQ4cOIDhw4ejqKjotX9fi4uLy+VcDk1av0RERG+jTp06L7wB9FxhYSHu3LlTuru5oKAARUVFCAoKwqVLl+Dj44PGjRvD2Ni49Oda7dq1ebzGe/L29kadOnXg7OwsOkVj8BkUkQ56fq3/w4cP+Q6CljEwMED9+vVRv3590Sml2rVrBz09vVfuFgP+HgTI5XJ8/vnnWLt2LSZNmlTJhaTrtm/fjnHjxpXeXVIVKyurCutQx/VLRERUFlWrVkWzZs3QrFmz0sfu3r2LyZMnA/j7eeCYMWNE5WmVrKwsbNiwAQkJCTAxMRGdozG475BIBz0fivESSqoMNWrUUPki38jICEZGRvD09MTw4cMrsYzob4MGDYK3tzeMjY1V7p6tVasW6tWrV4llRERE2mfz5s2ll0CuW7dOcI32cHFxQffu3TF69GjRKRqFQzEiHfTfO8WIKkPnzp1fOv/BwMAAADBgwABcvHgRoaGhMDMzE5FHOq569erw9/fHtWvX4ODgAD09vVdejtixY0cBdURERNpl/fr1pXd3vnDhAs6dOye4SPNt374dhw8fRkxMDG888I44FCPSQRyKUWXr0KEDjIyMAAB6enrQ09NDlSpV8Nlnn2Hv3r0vbKknEqV+/fpYtWoVxo8fX/r39fkw19jYmHf2JCIiKqPr168jKyur9LgCY2NjJCQkCK7SbMXFxZg7dy4mTpyIbt26ic7ROByKEekgExMTVK1alZdPUqWxtrZGcXExDA0NUadOHaxbtw4rV65EUlISTp48KTqPqNS1a9ewbds2REdHY/PmzahXrx4MDQ0hk8kq9DwxIiIiXRAfH//Cbuzi4mKsW7fujWd60uvFxMTg3//+N4KCgkSnaCQOxYh0lEQi4U4xqjTW1taoWrUq5s2bh2vXrmHSpEmYMGECevbsCQ8PD9F5RKVcXV3x0Ucf4V//+hfGjh2Lq1evIjAwENWqVSuXO08SERHpsg0bNqCkpOSFx27duoXffvtNUJFm+/PPPxEcHIw5c+agUaNGonM0EodiRDrK3NycO8Wo0jRr1gyXL1+Gn58fqlevDuDvyygjIyNx8OBB/Pjjj4ILiYD09HQkJiYiOjq69F1sExMTSKVSXL16FW3bthVcSEREpLlOnTqFy5cvv/S4sbExNm3aJKBI8/n4+MDU1BSenp6iUzQWh2JEOoo7xagy6evrv/IOlN27d8e4cePg7u6OoqIiAWVEf1MoFPDw8MCwYcNgZ2f30sfr1q2r8s6UREREpNqmTZtKz+z8b8XFxYiLiys9fJ/ezvnz57F69WqEhISUvulM745DMSIdxaEYqYtFixbhzp07+O6770SnkA5bvXo1Tp8+jdDQUNEpREREWkepVL7y0snncnNz8fPPP1dulIZzc3ODlZUV/vnPf4pO0WgcihHpKF4+SeqiQYMGcHV1RUBAAB48eCA6h3TQkydP4Ovri1mzZqFNmzaic4iIiLTOsWPHcPv27dd+3MjICPHx8ZVYpNn27t2Lffv2ITY2tvRO2fR++H+PSEdxpxipE6lUiqpVq8Lf3190Cumg4OBgPHv2DD4+PqJTiIiItNLrLp18rqSkBAkJCXj27FklVmkmmUwGLy8vjBkzBn369BGdo/E4FCPSUebm5hyKkdowNTVFUFAQli9fjnPnzonOIR2SnZ2NmJgY+Pn5wcLCQnQOERGR1pHJZIiPj3/tpZPPPX36FMnJyZVUpbmWLVuGK1euIDg4WHSKVuBQjEhHcacYqZspU6agffv2mDNnjugU0iFeXl5o3LgxZsyYITqFiIhIK504cQJmZmaoX79+6S8LCwuYmpq+8FiDBg1w6NAh0blqLS8vDwEBAXB1dcVHH30kOkcrGIoOICIxJBIJHj16BIVCwevQSS3o6+sjIiIC/fr1Q3JyMgYNGiQ6ibRcRkYGtm7dit27d6u8pIOIiIjeX48ePZCdnf3CY8HBwVizZg2uXLkiJkpD+fv7Q19fH3PnzhWdojX4SphIR5mbm0MulyM/P190ClGpTz75BJ9//jnc3Nwgk8lE55AWUyqVcHFxQb9+/fDZZ5+JziEiIiJS6dq1a1i2bBkCAwNRs2ZN0Tlag0MxIh0lkUgAgJdQktqJjIzE9evXsWrVKtEppMXi4uJw8uRJREdHi04hIiIieqPnl0x++eWXolO0CodiRDrq+VAsLy9PcAnRi5o1awZHR0f4+vri0aNHonNICxUWFmL+/Pn46quvYG1tLTqHiIiISKX09HQkJiYiOjoahoY8Bas8cShGpKO4U4zU2fz586FUKrFw4ULRKaSFFi1ahLy8PPj5+YlOISIiIlJJoVDAw8MDw4YNg52dnegcrcOhGJGOMjMzg4GBAYdipJZq1aoFf39/LF68mAewUrnKyclBeHg45s+fD0tLS9E5RERERCqtXr0ap0+fRmhoqOgUrcShGJGO0tfXR61atXj5JKmtb775Bi1btoRUKhWdQlrE29sbderUgZOTk+gUIiIiIpWePHkCX19fzJo1C23atBGdo5U4FCPSYRKJhDvFSG0ZGBggJiYGO3bswIEDB0TnkBbIyspCXFwcFi1aBBMTE9E5RERERCoFBwfj2bNn8PHxEZ2itTgUI9Jh5ubm3ClGaq1///4YNGgQPDw8oFAoROeQhnNxcUH37t0xatQo0SlEREREKmVnZyMmJgZ+fn6wsLAQnaO1OBQj0mHcKUaaICoqCufOncO6detEp5AG27ZtGw4fPozY2Fjo6emJziEiIiJSycvLC40bN8aMGTNEp2g1DsWIdBiHYqQJWrdujWnTpmHu3LnIz88XnUMaqLi4GHPnzsWkSZPQtWtX0TlEREREKmVkZGDr1q2IiIiAkZGR6BytxqEYkQ6TSCS8fJI0QmBgIEpKShAeHi46hTRQdHQ0cnJyEBgYKDqFiIiISCWlUgkXFxf069cPn332megcrcehGJEOMzc3504x0ggSiQTz5s1DZGQk/vjjD9E5pEHu37+PkJAQeHl5oVGjRqJziIiIiFSKi4vDyZMnERMTIzpFJ3AoRqTDOBQjTeLo6IiGDRvC29tbdAppEB8fH5iamsLDw0N0ChEREZFKhYWFmD9/Pr766itYWVmJztEJHIoR6TCeKUaaxNjYGGFhYdi0aROOHj0qOoc0wPnz5/HDDz8gNDQU1atXF51DREREpNKiRYuQl5cHPz8/0Sk6g0MxIh0mkUhQWFiIZ8+eiU4heiuff/45+vfvDw8PDyiVStE5pOZcXV1hbW2NCRMmiE4hIiIiUiknJwfh4eGYP38+LC0tRefoDA7FiHSYubk5AHC3GGmUiIgIHD9+HJs3bxadQmpsz549SElJQUxMDPT1+XSHiIiI1Ju3tzfq1KkDJycn0Sk6hc8SA0XNowAAIABJREFUiXSYRCIBwKEYaZb27dtj8uTJ8PT0xNOnT0XnkBqSyWSQSqUYO3Ys+vTpIzqHiIiISKWsrCzExcVh0aJFMDExEZ2jUzgUI9Jhz4dieXl5gkuI3k1wcDDy8/N5Vx56pe+++w5XrlxBcHCw6BQiIiKiN3JxcUH37t0xatQo0Sk6h0MxIh3GnWKkqerWrYs5c+YgJCQEd+7cEZ1DaiQvLw8BAQFwc3ND8+bNRecQERERqbR161YcPnwYsbGx0NPTE52jczgUI9JhxsbGqF69OodipJHc3d1hYWGB+fPni04hNeLv7w8DAwNIpVLRKUREREQqFRcXw9vbG5MmTULXrl1F5+gkDsWIdJxEIuFQjDSSiYkJQkJCsHbtWpw8eVJ0DqmBa9euYdmyZQgKCkLNmjVF5xARERGpFB0djZycHAQGBopO0VkcihHpOIlEwjPFSGONGzcOvXr1goeHh+gUUgOurq746KOPMHXqVNEpRERERCrdv38fISEhkEqlaNSokegcncWhGJGOMzc351CMNJaenh4iIiJw8OBB7Nq1S3QOCZSWlobExERER0fD0NBQdA4RERGRSj4+PjA1NYW7u7voFJ3GoRiRjuPlk6TpunfvjvHjx8Pd3R1FRUWic0gAuVwOV1dX2Nvbw87OTnQOERERkUrnz5/HDz/8gNDQUFSvXl10jk7jUIxIx3EoRtogLCwMd+/exbfffis6hQRYvXo1Lly4gPDwcNEpRERERG/k6uoKa2trTJgwQXSKzuNQjEjH8Uwx0gYNGjSAm5sbAgMD8eDBA9E5VImePHkCX19fzJo1Cy1bthSdQ0RERKTSnj17kJKSgpiYGOjrcyQjGv8EiHScubk5d4qRVvDy8kK1atXg5+cnOoUq0cKFC1FUVIT58+eLTiEiIiJSSSaTQSqVYuzYsejTp4/oHAKHYkQ6j0Mx0hampqYICgrC8uXLcfbsWdE5VAlu3LiB2NhY+Pv7w8LCQnQOERERkUrfffcdrly5guDgYNEp9B8cihHpOIlEgsePH0Mul4tOISqzyZMno2PHjnB1dRWdQpXAy8sLjRs3xvTp00WnEBEREamUl5eHgIAAuLm5oXnz5qJz6D84FCPScRKJBAqFAo8fPxadQlRm+vr6iImJwYEDB5CcnCw6hypQRkYGtm3bhsjISBgZGYnOISIiIlLJz88PBgYGkEqlolPov3AoRqTjzM3NAYCXUJLWsLGxwYgRI+Dm5oaSkhLROVQBlEolXFxc0K9fPwwdOlR0DhEREZFKV69exfLlyxEUFISaNWuKzqH/wqEYkY6TSCQAOBQj7RIeHo7r169j1apVolOoAmzYsAEnT55ETEyM6BQiIiKiN3J1dUXr1q3x5Zdfik6h/2EoOoCIKl9hYSFycnKQm5uL27dvY9iwYdi7dy8SExNRUlICmUyGJ0+eAACePn0KIyMjGBkZQU9PD7Vq1QIAVKtWDRYWFrCwsEDt2rVRu3ZtWFhYoF69ejA05LcWEqtZs2aYPXs2fHx8MG7cuNLhL2m+wsJC+Pj44KuvvoKVlZXoHCIiIiKV0tLSsGfPHqSkpMDAwEB0Dv0PvnIl0lJ//fUXzp49i9OnT+PatWvIzs4u/XXv3r0XPtfExASZmZmwsLAoHYCZmpqWfkwmk0EmkwH4+4BI4O9hWW5uLnJzc184pN/Q0BANGjRAkyZNSn+1atUK1tbWaNGiBQdmVGkWLFiADRs2IDg4GBEREaJzqJyEhYUhLy8Pfn5+olOIiIiIVJLL5XB1dYW9vT0GDBggOodega9OibTAkydP8MsvvyAjIwOnT5/GqVOncP36dSgUCpiamqJ58+Zo0qQJevbsifHjx6Np06aoX79+6Q6v6tWrl+nrP3z4EA8ePEBubi7++OMPZGdn48aNG8jOzsaxY8dw/fp1yGQymJiYoE2bNrC2tkbHjh1hY2OD9u3bc1BGFaJGjRrw9fWFi4sLvvnmG7Ro0UJ0EpVRTk4OIiIi4OvrC0tLS9E5RERERCqtXr0aFy5cwNatW0Wn0GvwlSiRBvrzzz9x4MABHD16FEeOHMGZM2cgl8vRtGlTdOrUCRMnToSVlRXat2+Ppk2bQl+/Yo8PlEgkpZen9ezZ86WPFxUV4dy5czhz5gzOnDmD06dPY/fu3Xj48CFMTU3RrVs32NjYoE+fPujTpw9MTEwqtJd0x9dff41ly5bBy8sLO3bsEJ1DZTR37lzUqVMHTk5OolOIiIiIVHry5Al8fX0xa9YstGzZUnQOvQaHYkQaQKFQICsrC6mpqUhNTcXPP/8MAGjZsiV69+4NV1dX/OMf/0Djxo3Fhr5GlSpV0KlTJ3Tq1OmFx69fv44jR47g6NGj2L59O4KCgmBiYgIbGxvY2tpi2LBhaNOmjaBq0gYGBgaIjo6Gra0tUlNTYWtrKzqJ3lNWVhY2btyILVu2oEqVKqJziIiIiFRauHAhioqKMH/+fNEppAKHYkRqSiaTIS0tDVu2bMGuXbuQm5uLxo0bY9CgQZg1axZsbW1Lz/3SVM2aNUOzZs3g4OAAALh16xaSk5ORnJyM4OBgSKVStGrVCmPGjMHYsWPRrl07wcWkifr374/BgwfD09MTJ0+erPCdk1QxnJ2d0aNHD4wcOVJ0ChEREZFKN27cQGxsLBYtWgQLCwvROaQCXxkQqRGFQoH09HR88803qFevHgYOHIhTp05hzpw5OHfuHLKzs7F8+XJ8/vnnGj8Qe5WGDRti2rRp2L59Ox48eID09HQMGjQIa9asgZWVFdq2bQt/f39cvnxZdCppmKioKJw7dw5r164VnULvYevWrTh69ChiYmKgp6cnOoeIiIhIpTlz5qBx48aYPn266BR6Aw7FiNTA3bt3ERYWhpYtW+LTTz/FkSNHMGvWLFy6dAnHjx/HnDlzdO4yQiMjI3zyySeIjo7GrVu3cOLECdja2mLlypX4+OOP0aVLF6xcuRJPnz4VnUoaoFWrVvj666/h7e2N/Px80Tn0DoqLi+Ht7Y1Jkyaha9euonOIiIiIVMrIyMD27dsRGRkJIyMj0Tn0BhyKEQmiVCqRnJyMESNGoGHDhggPD4e9vT3Onz+Pc+fOwc/Pjwcy/pfOnTsjNjYWt27dwk8//YTGjRvD0dERDRo0gLOzMy5evCg6kdRcQEAAZDIZFi1aJDqF3kF0dDRycnIQGBgoOoWIiIhIJaVSCWdnZ/Tr1w9Dhw4VnUNvgUMxokpWVFSE1atXw8rKCkOGDMGjR4+wbt065OTkICoqCq1btxadqNb09fUxaNAgbN++HTdv3oSXlxeSkpLQpk0bDBs2rPQmBET/SyKRYN68eYiMjMQff/whOofewv379xESEgKpVIqGDRuKziEiIiJSacOGDcjMzERMTIzoFHpLHIoRVZKHDx8iKCgIjRs3xsyZM9G1a1ecOnUK6enpmDBhAu+m9h4sLS3h5eWFS5cuYdeuXcjPz0e/fv3QpUsXbNq0CXK5XHQiqRlHR0c0atQIc+fOFZ1Cb8HHxwempqZwd3cXnUJERESkUmFhIXx8fDBt2jRYWVmJzqG3xKEYUQUrKChAWFgYmjdvjvDwcHzxxRe4du1a6eHxVHb6+vqwt7fHwYMHkZmZiTZt2sDBwQEtWrTAypUrORyjUkZGRli0aBESEhJw5MgR0Tmkwvnz5/HDDz8gNDQU1atXF51DREREpFJYWBjy8vLg6+srOoXeAYdiRBXkr7/+QlhYGBo1aoSFCxfim2++wc2bNxEbG4sGDRqIztNaHTt2xPr163HlyhUMGDAAM2fOhLW1NdavXw+FQiE6j9TA8OHDYWtrCw8PDyiVStE59Bqurq6wtrbGhAkTRKcQERERqZSTk4OIiAj4+PjA0tJSdA69Aw7FiMqZXC7H8uXL0bRpUwQHB2P27Nm4efMmQkNDUbNmTdF5OqNJkyZYsWIFzpw5g3bt2mHq1Kno1q0bdwcRACA8PBwnTpxAQkKC6BR6hcTERKSkpCA2Nhb6+nyqQkREROpt7ty5qFOnDpycnESn0DviM02icpSWloZOnTrByckJEydOxPXr1+Hv749atWqJTtNZrVu3xubNm5GVlQWJRIK+ffti3LhxuHnzpug0Eqh9+/aYMmUK5syZg6dPn4rOof8ik8kglUrxxRdfoHfv3qJziIiIiFTKysrCxo0bER4eznOiNRCHYkTl4MaNGxg5ciT69++Phg0b4syZM4iKioKFhYXoNPoPa2trpKSkYNeuXcjMzESrVq2wYMECFBYWik4jQYKDg5Gfn4+oqCjRKfRfvv32W1y7dg0LFy4UnUJERET0Rs7OzujRowdGjhwpOoXeA4diRGUgl8sRHR0NKysrXLhwAT/99BP27NmDjz/+WHQavYa9vT3Onj0Lf39/xMbGwtraGunp6aKzSIA6derAy8sLYWFhuH37tugcApCXl4fAwEC4ubmhefPmonOIiIiIVNqyZQuOHj2KmJgY6Onpic6h98ChGNF7Onv2LGxsbODl5QVHR0f8/vvvGDRokOgsegvGxsbw9PTExYsX0b59e/Tv3x8ODg7Izc0VnUaVzM3NDbVr18b8+fNFpxAAPz8/GBgYQCqVik4hIiIiUqm4uBje3t5wcHBA165dRefQe+JQjOgdyWQy+Pr6olOnTtDX10dWVhZCQ0N5/bgGqlevHrZt24aEhASkpKTAysoKiYmJorOoEpmYmCAkJATr1q3DiRMnROfotEuXLmHZsmVYuHAhzMzMROcQERERqRQVFYU7d+4gICBAdAqVAYdiRO/g6tWr6N27NyIiIhAZGYkjR46gbdu2orOojMaOHYsLFy5gwIABsLe3x4wZM3j4ug4ZN24cevXqBQ8PD9EpOs3DwwNt2rTB1KlTRacQERERqXT//n2EhoZCKpWiYcOGonOoDDgUI3pL69evR8eOHfHXX3/hl19+wezZs6GvzyWkLczNzbFu3Tps27YNW7duRefOnZGZmSk6iypJZGQkDh06hJ07d4pO0UlpaWnYs2cPwsPDYWBgIDqHiIiISKX58+fD1NQUbm5uolOojPiKnugN8vPzMWbMGEydOhUzZszAyZMnYWVlJTqLKsioUaOQlZWFevXqoWfPnoiOjhadRJWgW7dumDBhAjw8PFBUVCQ6R6fI5XK4uLjA3t4eAwYMEJ1DREREpNL58+exZs0ahIWFoXr16qJzqIw4FCNS4cKFC+jWrRsOHz6M/fv3Y9GiRTA2NhadRRWsYcOGSE1NhZ+fHzw9PfHFF1+goKBAdBZVsLCwMNy7dw9Lly4VnaJTvv/+e1y8eBHh4eGiU4iIiIjeyNXVFdbW1hg/frzoFCoHHIoRvcbu3bvRs2dP1KhRA7/99hs+/fRT0UlUifT19TF37lykpaXh4MGD6NKlC86fPy86iypQ/fr14ebmhoCAANy7d090jk548uQJ/Pz84OjoiJYtW4rOISIiIlIpMTERKSkpiI2N5VE6WoJ/ikT/Q6FQwMvLC59//jn++c9/4ujRo2jUqJHoLBKkb9++OH78OMzMzNCzZ0/enVLLSaVS1KxZk3cRqiRBQUEoKirCvHnzRKcQERERqVRSUlJ6FUnv3r1F51A54VCM6L8UFhZizJgxiI2NxZo1a/Dtt9/ycklCw4YNcfjwYYwePRojRozAkiVLRCdRBalWrRoCAgKwYsUKnDlzRnSOVrtx4wYWL16MgIAAWFhYiM4hIiIiUunbb7/FH3/8gdDQUNEpVI44FCP6j9zcXNjZ2SE9PR379u3D5MmTRSeRGqlSpQpWr16NyMhIuLi4wNnZGQqFQnQWVQAHBwd07NgRrq6uolO02pw5c9CkSRN88803olOIiIiIVMrLy0NQUBBcXV3RpEkT0TlUjgxFBxCpg0uXLmHIkCHQ09NDRkYGPv74Y9FJpKacnZ1Rt25dTJ06Fbdu3UJcXByqVasmOovKkb6+PmJjY9G7d2/89NNPGDx4sOgkrZORkYHt27djz549MDIyEp1DREREpJKvry8MDAwglUpFp1A5404x0nlZWVno06cP6tSpw4EYvZVx48Zh//79OHToEAYNGoT8/HzRSVTOevXqhZEjR8LNzQ0lJSWic7SKUqmEs7Mz+vXrhyFDhojOISIiIlLp0qVLWL58OYKDg2FmZiY6h8oZh2Kk006cOIEBAwagbdu22L9/Pz744APRSaQhevfujSNHjuD69ev49NNP8eDBA9FJVM7Cw8Nx48YNrFy5UnSKVtmwYQMyMzMRExMjOoWIiIjojdzd3dGmTRtMmTJFdApVAA7FSGcdOnQI/fv3R48ePfDTTz/B1NRUdBJpmFatWuHIkSPIy8tD3759cfv2bdFJVI6aNm0KJycnLFiwAA8fPhSdoxUKCwvh4+ODadOmwcrKSnQOERERkUppaWnYu3cvwsPDYWBgIDqHKgCHYqSTUlNTMWjQIAwaNAg7d+6EiYmJ6CTSUE2aNEF6ejpkMhn69euHO3fuiE6icuTj4wNjY2MsXLhQdIpWCAsLQ15eHnx9fUWnEBEREakkl8vh4uKC4cOHY8CAAaJzqIJwKEY658iRIxg+fDhGjRqF+Ph4HvJMZdaoUSMcOnQIenp6GDBgAC+l1CI1atSAr68vli5disuXL4vO0Wg5OTmIiIiAj48PLC0tRecQERERqfT999/j4sWLWLRokegUqkAcipFO+f3332Fvbw87OzusWbOGW2Cp3FhaWuLAgQN4+vQpbG1tkZeXJzqJysm0adPw8ccfw8vLS3SKRpNKpahbty6cnJxEpxARERGp9OTJE/j5+cHR0REtW7YUnUMViEMx0hlnzpyBra0tunbtioSEBBgaGopOIi1Tv359/Pzzz8jLy8OQIUNQUFAgOonKgYGBAWJiYrBr1y6kpqaKztFImZmZiI+PR3h4OKpUqSI6h4iIiEiloKAgFBUVYd68eaJTqIJxKEY6ITs7G3Z2drC2tsauXbv4oowqTKNGjZCcnIzr169jzJgxkMlkopOoHHz66acYMmQIPDw8IJfLRedoHBcXF/To0QMjRowQnUJERESk0o0bN7B48WIEBATAwsJCdA5VMA7FSOvl5+fD3t4etWvXxs6dO1G1alXRSaTlWrdujaSkJBw+fBjTp08XnUPlJDIyEufPn8fatWtFp2iULVu24OjRo4iNjYWenp7oHCIiIiKVPD090aRJE3zzzTeiU6gScChGWq2kpASjRo1Cbm4ukpKSULNmTdFJpCM6d+6MzZs3Y+3atQgNDRWdQ+WgVatWmD59Ory9vZGfny86RyMUFxfD29sbDg4O6NKli+gcIiIiIpWOHTuGHTt2IDIykjdk0xEcipHWUiqV+Oqrr/Drr78iKSkJDRs2FJ1EOmbo0KGIioqCt7c3EhISROdQOfD394dcLkdYWJjoFI0QFRWFO3fuICAgQHQKERERkUoKhQIuLi6lx2aQbuBJ46S1IiIiEB8fj8TERLRv3150DukoJycnXL9+HV9++SVatmyJTp06iU6iMjA3N8f8+fMxd+5cTJs2DU2aNBGdpLbu37+P0NBQSKVSvilBREREam/Dhg3IzMxEVlaW6BSqRNwpRlopPT0d3t7eCA0NxaBBg0TnkI6LiopC3759MWLECDx48EB0DpXRrFmz0KhRI8ydO1d0ilqbP38+TE1N4ebmJjqFiIiISKXCwkL4+Pjg66+/hpWVlegcqkQcipHWuXXrFr744gsMGzaML8ZILejr6yM+Ph4GBgYYN24c716o4YyMjBAeHo7NmzfjyJEjonPU0vnz57FmzRqEhYWhevXqonOIiIiIVAoNDcWjR4/g6+srOoUqGYdipFWKioowevRoSCQSrF27lnc6I7UhkUiwfft2HDt2DH5+fqJzqIzs7e1ha2sLDw8PKJVK0Tlqx9XVFZ06dcKECRNEpxARERGplJOTg8jISCxYsAB169YVnUOVjEMx0ipSqRQXL17Ejz/+CDMzM9E5RC/o2LEjYmNjERwcjNTUVNE5VEbh4eE4ceIENm3aJDpFrezevRspKSmIjIzkGxNERESk9qRSKerWrYvZs2eLTiEBOBQjrbF//37ExsZi6dKl+Pjjj0XnEL3StGnTMHbsWEyePJnni2m49u3bY+rUqfDy8sLTp09F56iFkpISeHp6Yty4cejdu7foHCIiIiKVMjMzER8fj/DwcFSpUkV0DgnAoRhphQcPHmDy5MkYNWoUJk2aJDqHSKVly5bB0NAQ06ZNE51CZbRw4ULk5+cjMjJSdIpa+Pbbb3Hz5k2EhISITiEiIiJ6IxcXF/To0QMjRowQnUKCcChGWuGrr76CgYEBVqxYITqF6I1q1aqFuLg4JCYmYtWqVaJzqAzq1KkDqVSK0NBQ3Lp1S3SOUHl5eQgKCoKbmxuaNGkiOoeIiIhIpc2bN+Po0aOIjY3lkQ86jEMx0nhr165FYmIiNm7cCIlEIjqH6K306dMHHh4ecHNzQ3Z2tugcKgM3NzfUq1cPCxYsEJ0ilK+vLwwMDODl5SU6hYiIiEiloqIizJs3D5MnT0aXLl1E55BAHIqRRnvw4AE8PT0xe/Zs9O3bV3QO0TsJCAhAo0aNMGPGDNEpVAZVqlRBcHAw1q9fjxMnTojOEeLSpUtYvnw5goODeZMTIiIiUntRUVG4d+8egoKCRKeQYByKkUabOXMmqlWrxm9mpJGMjY2xevVqpKSkIC4uTnQOlcHYsWNhY2MDZ2dnKJVK0TmVzt3dHW3atMGUKVNEpxARERGpdP/+fYSGhsLLywsffvih6BwSjEMx0lh79+7F1q1bsXTpUpiamorOIXovPXr0wPTp0+Hi4oL79++LzqEyiImJwS+//IKdO3eKTqlUaWlp2Lt3L8LDw2FgYCA6h4iIiEilefPmwczMDG5ubqJTSA1wKEYaqaCgANOnT8fEiRMxbNgw0TlEZRISEoJq1arBw8NDdAqVQadOnTBhwgR4enqiqKhIdE6lkMvlcHFxwfDhwzFgwADROUREREQqnTp1CmvWrEFYWBiqVasmOofUAIdipJFCQ0NRUFCAqKgo0SlEZWZmZobo6GjExcXhl19+EZ1DZRAaGop79+5hyZIlolMqxapVq3Dx4kUsWrRIdAoRERHRG3l6eqJLly4YP3686BRSExyKkca5desWoqOjsWDBAnzwwQeic4jKxahRo2BrawtHR0coFArROfSe6tevD3d3dwQEBODevXuicyrUkydP4O/vD0dHR7Rs2VJ0DhEREZFKu3fvRmpqKiIiIqCnpyc6h9QEh2Kkcdzc3PDhhx9i1qxZolOIylV0dDROnTqFjRs3ik6hMpBKpahVqxb8/f1Fp1SowMBAFBcXY968eaJTiIiIiFQqKSmBp6cnvvjiC/Tu3Vt0DqkRDsVIoxw6dAjbtm1DTEwMjI2NRecQlau2bdviyy+/hFQqRUFBgegcek9Vq1ZFYGAgVq5ciTNnzojOqRA3btzA4sWLERAQAAsLC9E5RERERCotXboUN2/eREhIiOgUUjMcipFGkUqlsLOzw9ChQ0WnEFWIoKAgFBQUYPHixaJTqAwmTZqETp06wcXFRXRKhfD09ETTpk3x9ddfi04hIiIiUikvLw8LFy6Em5sbmjRpIjqH1AyHYqQxkpKSkJGRgYCAANEpRBXmgw8+gLOzM8LDw/Ho0SPROfSe9PX1ERMTg/T0dCQlJYnOKVfHjh3Djh07EBUVBSMjI9E5RERERCotWLAAhoaG8PLyEp1CaohDMdIY/v7+sLe3R/fu3UWnEFUod3f30qEKaa5evXph1KhRcHd3R0lJieiccqFQKODi4oJPP/0UgwcPFp1DREREpNLFixexYsUKBAcHw8zMTHQOqSEOxUgj7Ny5E8ePH9f6g6uJAKBmzZpwdXVFdHQ0Hj58KDqHymDRokXIzs7GihUrRKeUiw0bNiAzMxPR0dGiU4iIiIjeyN3dHW3atMHkyZNFp5Ca4lCM1J5SqYS/vz9GjRqFDh06iM4hqhTOzs4wNjZGVFSU6BQqg6ZNm8LJyQkLFixAbm6u6JwyKSwshI+PD77++mtYWVmJziEiIiJSKS0tDUlJSYiIiICBgYHoHFJTHIqR2tu/fz9OnToFb29v0SlElaZGjRpwcnLCsmXL8Ndff4nOoTKYP38+qlSpgoULF4pOKZPQ0FA8evQIvr6+olOIiIiIVJLL5XBxccHnn38OW1tb0TmkxjgUI7UXEREBW1tbdOzYUXQKUaWaNWsWioqK8MMPP4hOoTKoUaMG/Pz8sHTpUly+fFl0znvJyclBZGQkFixYgLp164rOISIiIlJp1apVuHTpEsLC/o+9+47Lst7/OP5mCoo4cO+tOTPNhYpbMDXN0XBn6cksK9MsTzY1rRx5Kj0tTUXlNhNnqKioKJajUktLzZHlAnEgsu/fH+cnJw5oMr/XDa/n49Hj9+te1wvoug587ut73TNMp8DiGIrB0g4fPqzQ0FCNHz/edAqQ50qWLKnhw4dr9uzZSkpKMp2DbHjiiSdUr149TZw40XRKlkyaNElly5bVM888YzoFAADgjq5fv6433nhDY8eOVZ06dUznwOIYisHS3n//fTVo0EDdu3c3nQIYMX78eJ05c0arVq0ynYJscHFx0Zw5c7R69Wpt3rzZdE6mHDhwQEuXLtV7772nQoUKmc4BAAC4o7feeksJCQmaPHmy6RQ4AIZisKxLly5p+fLleu655+Tk5GQ6BzCievXqevDBBzV37lzTKcimTp066YEHHtCECROUnJxsOueujRs3Tq1bt1bfvn1NpwAAANzRb7/9prlz5+rNN99UyZIlTefAATAUg2V9+eWX8vDw0KOPPmo6BTDqH//4h8LDw/Xzzz+bTkE2zZw5Uz///LMWLFhgOuWuBAUFaffu3ZozZw5vTgAAAMubMGGCatSooVGjRplOgYNgKAbL+uKLLzR48GAVLlzYdAqN6yJAAAAgAElEQVRgVJcuXVSzZk0uuJ8P1K1bV0899ZQmT56sa9eumc65o7i4OE2aNEnDhg1T8+bNTecAAADc0e7du7Vq1SrNmjVLbm5upnPgIBiKwZK2b9+uI0eOaOTIkaZTAOOcnJw0fPhwLVy4UPHx8aZzkE2vv/66kpOTNX36dNMpdzR79mxFRkbq7bffNp0CAABwRykpKRo3bpw6deokf39/0zlwIAzFYEmffvqpWrRooaZNm5pOASxh5MiRunr1qlavXm06BdlUokQJvfrqq5o9e7ZOnTplOidDFy9e1PTp0/XSSy+pQoUKpnMAAADuaNGiRfr+++81Z84c0ylwMAzFYDk3btzQqlWr9Pjjj5tOASyjfPny8vf316JFi0ynIAc8/fTTqlGjhiZNmmQ6JUOTJ0+Wt7e3XnjhBdMpAAAAdxQbG6spU6Zo9OjRatiwoekcOBiGYrCcNWvWKCEhQQ899JDpFMBSHn74YW3atEmXL182nYJscnV11fTp0xUUFKTw8HDTOWn8+OOPWrBggWbMmME1HQEAgOVNnz5dV69e1ZQpU0ynwAExFIPlrFixQp07d1bp0qVNpwCW8uCDD8rV1VXBwcGmU5ADevXqpW7dumncuHFKSUkxnZNqwoQJat68OZ/8CwAALO+PP/7QrFmzNGXKFJUtW9Z0DhwQQzFYyvXr1xUSEqKBAweaTgEsp2jRovL395fNZjOdghwye/ZsHTx4UMuWLTOdIklavXq1QkND9f7778vJycl0DgAAwB299NJLKlu2rMaOHWs6BQ6KoRgsZe3atUpKSlKfPn1MpwCWNHDgQG3ZskWRkZGmU5AD6tevrxEjRuill17SjRs3jLYkJiZq4sSJevjhh9W2bVujLQAAAH/n22+/1dKlS/X++++rUKFCpnPgoBiKwVLWrFmjjh07qmTJkqZTAEvq2bOnXFxc9M0335hOQQ55++23FRMTo5kzZxrt+PDDD3XmzBm98847RjsAAAD+jt1u14svvqj27durb9++pnPgwBiKwTKSk5O1efNmBQQEmE4BLMvLy0tt27ZVSEiI6RTkkDJlymjSpEmaPn26fv/9dyMN0dHRmjp1qsaPH69q1aoZaQAAALhbQUFB2r17t95//33TKXBwDMVgGXv27NHly5cZigF/w9/fX5s2bVJycrLpFOSQF154QRUrVtSrr75qZPtTpkyRq6urJk6caGT7AAAAdysuLk4vv/yyhg8frubNm5vOgYNjKAbLCAkJUfXq1VW3bl3TKYClBQQEKDIyUvv27TOdghzi7u6uadOmafHixdq7d2+ebvvo0aP697//rWnTpsnb2ztPtw0AAJBZs2bNUmRkpN5++23TKcgHGIrBMkJCQuTv7286A7C8Bg0aqEqVKiyhzGcGDBggX19fPffcc7Lb7Xm23fHjx6t+/foaNmxYnm0TAAAgKy5evKgZM2Zo0qRJKl++vOkc5AMMxWAJV69e1YEDB9S1a1fTKYBD6NKli7Zt22Y6Aznsgw8+0J49e/T111/nyfa2bt2qDRs26P3335eLi0uebBMAACCrXnnlFXl7e+v55583nYJ8wtV0ACBJERERstvt8vX1NZ0COIS2bdtq2bJlSkhIkLu7u+mcAic+Pl4//fRTrrx2QECAXn75ZVWvXv2un3PrAv1Hjx7N1LbGjx+vDh06qGTJkjpw4ECmnns37rnnHnl6eub46wIoGC5cuKA//vjDdEaqP//8U/Hx8blyvMwqDw8P1a9f33QGHEB+2J/Onz+vhQsX6s0338z07zx3g/2pYHKy5+UaDeA2Xn31VdlsNv3yyy+mUwCH8Ouvv6pu3bras2ePWrZsaTqnwDl+/Lhq165tOsPy9u/fr/vuu890BgAHNW3aNE2ePNl0hqXVrFlTx48fN50BB8D+9PfYnwqkdzhTDJawa9cuzhIDMqFOnToqV66cwsPDGYoZtHr1at5RzMCZM2fUuXNn0xkA8oEqVapoy5YtpjMsaf78+QoODjadAQfC/nR77E8FF0MxGJeUlKS9e/fqscceM50COJRWrVpp165dGj9+vOmUAqtSpUqqVauW6QwAyLfc3Nw4zt5GyZIlTSfAwbA/3R77U8HFhfZh3M8//6yYmBjOdgEyqVWrVtq7d6/pDAAAAABwSAzFYNyPP/6oQoUKqV69eqZTAIfSpEkTnT17VlFRUaZTAAAAAMDhMBSDcYcOHdI999wjNzc30ymAQ2nUqJGk/+xDAAAAAIDMYSgG4w4ePKjGjRubzgAcTsWKFeXj48NQDAAAAACygKEYjDt48GDqGS8AMqdRo0YMxQAAAAAgCxiKwajo6GidO3dODRo0MJ0COKSGDRvqp59+Mp0BAAAAAA6HoRiMOnnypCSpZs2ahksAx1S9evXU/QgAAAAAcPcYisGoU6dOycnJSVWqVDGdAjik6tWr6/z584qLizOdAgAAAAAOhaEYjDp58qTKly8vDw8P0ymAQ6pWrZrsdrtOnz5tOgUAAAAAHApDMRh1+vRpVa9e3XQG4LBq1KghSSyhBAAAAIBMYigGo06fPq2qVauazgAcVrFixVS8eHGdOnXKdAoAAAAAOBSGYjDqwoULKleunOkMwKGVLVtWFy9eNJ0BAAAAAA6FoRiMioyMlI+Pj+kMY0JCQuTk5KQ5c+aYTpFkvR7cnVKlSikqKsp0Bu5SYmKi6tSpo6FDh6a7Lzw8XF27dlWxYsVUtGhR+fn5adOmTTmy3dOnT+vDDz9U9+7dVahQITk5OSkkJCTDx4aHh8vJyUkbN27MkW0DQF4zcay9ceOGAgMD1bt3b1WrVk2FChVShQoV9PDDD+v777/PsINjLRyBqd9ddu7cqSeeeEL33HOPPD09VbJkSXXt2lXr1q3LsIP9CVnhajoABVtUVJRKlSplOgNwaD4+PgzFHMi8efN08uRJbdiwIc3tGzdu1AMPPKDk5OTU23bs2KGdO3cqKChIAwYMyNZ2W7ZsqQsXLtzVY9u2bauuXbtqwoQJ6tq1q5ydeQ8NgGMxcax95513NHXq1DS3nTt3TjabTatWrdKaNWvk7++feh/HWjgKE/vT8ePH1b59+zS3xcXFKTQ0VKGhoZo5c6ZeeOGF1PvYn5BV/JcCY5KSknT16tUCfaYYkBM4U8xxJCQkaOrUqerTp49q1aqV5vbRo0crOTlZL7zwgi5duqTo6Gi99dZbstvtGjNmjGJiYrK17WrVqunpp59WSEiInnzyyb99/IsvvqhDhw5pxYoV2douAOQ1U8faokWLavDgwVq7dq1+++03xcbG6vvvv1fXrl2VmJiop59+Ot1zONbC6kztT87OzurevbsCAwP166+/6ubNmzp58qQmTpwoSXrllVd07dq1NM9hf0JWMBSDMZcvX5bdbudMMSCbfHx8FBkZaToDd+Hrr7/WxYsX0y0/CA0N1enTp9W+fXvNnDlTpUqVUvHixfXPf/5TDz30kCIjI7V69epsbXvPnj2pyyfd3d3/9vGdO3dW+fLlNX/+/GxtFwDymqlj7UsvvaTFixerZ8+eql69ujw9PXXvvfcqODhYJUqU0G+//ZbuTSyOtbA6U/tTjRo1FBISoscee0y1a9eWh4eHqlWrphkzZsjPz0/x8fE6cuRImuewPyErGIrBmFvvHBQtWtRwyX/99Zpa27dvl5+fn4oWLarmzZtLkux2u7744gu1adNGRYsWlaenp5o0aaKPPvpIdrs9zWvZ7XYtXLhQ7du3V/HixVW0aFHdf//9+vTTT5WUlJRu23v27FGHDh1UpEgR+fj4aNiwYbp8+XKax3z22WdycnLSV199le75t+4LDg7O8Ou5m9e/nUOHDqlq1aoqV66cvv3220x9H7dt26Y2bdqoSJEiqly5sqZPn576uH/961+qW7euPDw8VK9evQzf1bnb7/nf/eyio6M1ZswYlStXTp6enmrevLnWrVunhQsXZvg9zczP2jRvb+9sn0WEvLFo0SJ5enqmWT4j/WepgSQNGjQo3XMGDx4sSdq+fXvuB/6Fi4uLHnzwQYWFhenMmTN5um0AyA6rHWsLFy6sKlWqyNXVVUWKFElzH8daWJ3V9idJcnNzkySVKVMmze3sT8gKhmIwJj4+XpLu6oyFvLZ792516dJFO3bsUExMjFJSUmS32zVkyBCNHDlSERERiomJUVxcnA4ePKixY8dq9OjRqc+32+169NFHNWLECO3cuVNXr15VTEyM9u3bp1GjRiksLCzN9vbu3asOHTpo+/btio2N1eXLl7Vo0SL17ds3R76e7Lz+hg0b5OvrK29vb3377bdq2bLlXW93z5496tatmyIiIhQbG6uzZ8/q5Zdf1uzZs/XSSy/p2Wef1a+//qr4+Hj98ssveuSRR/TDDz+kPj8z3/NbMvrZxcXFqVOnTpo3b54uXLiguLg47d+/X717987wQuNZ2a5J7u7uqfsTrCspKUk7d+7Ufffdl/rL3C3Hjx+XJDVs2DDd8xo3bpzmMXmpVatWkqStW7fm+bYBICuseKz95ZdfdOjQIfXu3VseHh7p7udYC6uy0v6UkpKiP/74Q2+//bZCQ0Pl7++v6tWrp3sc+xMyi6EYjElISJBkzaHYihUrNHToUP3yyy9KSkrSgQMHtGTJEgUGBqpRo0basGGDoqKiFBMTo+3bt6tJkyb69NNPFRERIUn64osvFBQUJB8fH82fP19nzpxRTEyM9u7dqyeeeCLd/6gsXbpUI0aM0LFjxxQbG6vw8HBVqVJFO3bs0I8//pjtryerrz937lz17t1bbdu21e7du1W1atVMbTcoKEhjx47VqVOnFBMTo6+++kpubm564403NG/ePH322We6ePGioqKiNH78eKWkpGj27Nmpz8/M9/yWjH52//rXv/TDDz+obt262rJli65fv66TJ09q7NixCgoKStedle2axFDMMfz888+KiYlRkyZN0t1365oYJUuWTHffrduuXr2au4EZuPfeeyXJUv+9A8CdWO1Ye+PGDT322GMqVqyYZs6cmeFjONbCqqywPx09elROTk5ycXFRpUqVNHXqVI0ZM+a21w1jf0JmMRSDMVY+U6xVq1b67LPPVKdOHbm4uEiSFixYIBcXF23cuFEBAQEqWbKkihQpovbt22vp0qWSlLpu/ssvv5QkLV++XKNHj1blypVVpEgRNW/eXJ9++qn8/PzSbK9bt26aN2+eatWqJU9PT/n6+qZeRDInhmKZff2kpCSNGTNG48aN01NPPaW1a9dmaZmrv7+/Zs+erapVq6pIkSLq16+fevfuratXr+r111/XyJEjVbp0aZUsWVIzZsxQsWLF9PPPP6c+PzPf81sy+tl99dVXcnJy0sqVK9WpUyd5eXmpWrVqmjt3rrp27ZquOyvbNalQoUIMxRzAuXPnJCnD6yjeaUmuyeW6pUuXlvTfdgCwOisda2/cuKEHH3xQR48eVXBwsKpVq5bh4zjWwqqstD/dEhcXp4iICB08eDDD+9mfkFmupgNQcN06U6xQoUKGS9Lr0qWLnJyc0tz2008/KTk5WZUrV5b0n4P9rQP+rf97a+360aNHVaJECXXp0uWuttehQ4d0t9WoUUOSdP369Sx9Ddl5/bfeekvXrl3Tyy+/rGnTpqW7PzIyMvV/cG7J6GLv/zv8k5R6ttn/fsSyi4uLKlasqAsXLqTelpnv+S0Z/exOnDihihUrqkGDBul6unfvrs2bN6e5LSvbNcnd3T11f4J1XblyRVLG11EsVqyYJGV4nb/o6Og0j8lL3t7ekv7bDgBWZ5VjbXR0tB544AEdPHhQGzZsSPd7z19xrIVVWWF/qlevnux2u5KTk3XhwgVt2LBB48ePV5cuXfTTTz+lW0LJ/oTM4kwxGHPrYvOurtabzfr4+KS7LSUlRZKUnJys5OTk1OuM/fWdkKwOJjw9PdPddmuw89fXd3Z2TtPyVzdv3sz269/Ss2dPlSxZUl988UW2zlTL6LoZt7Z7u/v++rVl5Xue0c/ur9v9Xxl9/bn5s84N7u7uSkxMNJ2Bv1G8eHFJSvfx4ZJSP+L88OHD6e679U7oXz8GPa/cWvZQokSJPN82AGSFFY61586dk5+fnw4dOqRvvvkmwzcJ/4pjLazKCvvTLS4uLqpQoYKeeOIJTZ06VTdv3sxwCSX7EzKLoRiMuTUMc5Q/5uvVq6fChQvrypUrqQOS//3n1icY1qtXT9HR0dqyZUuONtz6hJWTJ0+muy8nLyZ5//33a8eOHXJxcZGfn5/Cw8PT3F+qVKl0X/v/niWWEzLzPb+TmjVr6uzZs2mWZt7yv2eJ5eR280pCQkK669TBesqXLy9JGe4rt84gCAwMTHffkiVL0jwmL91qvdUOAFZn+lh74sQJ+fr66vTp09q4caPatWv3t8/hWAurMr0/3c6ty4ZkNKxjf0JmMRSDMbeWTVrpjJs7GTlypGJjY9WlSxetW7dOly5dUkJCgk6fPq3169erX79+qUOwYcOGSZIeffRRffrppzp79qxu3Lih/fv3a9SoUVn+eOL69etLkubMmaOwsDDdvHlTp06d0vjx4xUcHJwzX+j/a9CggXbt2qXSpUurW7du2rBhQ46+/t3IzPf8Tvr16ye73a7+/fsrLCxMN27c0OnTp/X8889r06ZNubbdvJKQkGDJZchIq379+vLy8krzCau3dOnSJfXDL8aPH6/IyEhdvXpVb7/9tr7++muVKlVKffr0yfPmW623PskJAKzO5LH28OHDatu2raKjo7V582a1adPmrp7HsRZWZXJ/mjZtml566SXt3btXUVFRiouL08mTJzV37lxNmTJFkjIcOrM/IbMYisGYWxfYd5Sh2LBhwzR8+HDt27dPvXr1UpkyZVSoUCFVq1ZNPXv21Ndff5161tuIESPUv39/Xbp0SaNGjVLlypXl5eWVeqH9rJ4dV6NGDT300EM6f/68OnbsqMKFC6t69eqaO3euhgwZkpNfriSpWrVqCg8PV926ddWnT5/Ui8znlcx8z+/kmWeeUePGjXXkyBF17Ngx9UL7H3zwgQYMGCBJac60yqnt5pX4+HiGYg7A1dVVbdu21ffff5/ugxHc3d3173//Wy4uLpo1a5ZKly6t4sWL69VXX5WTk5M++ugjeXl5pXlO27Zt5eTklOEvqhkZPHiwnJycUl9PkgICAlJvy+jsxz179kiSOnbsmJUvGQDynMlj7Zw5c3T+/HlduXJFLVu2TD2+/vWfjF6HYy2syuT+dPnyZb377rtq0aKFSpUqJU9PT9WoUUPjxo1TbGysBg0apO7du6d7HvsTMouhGIxxtDPFnJyctGDBAgUFBalLly4qUaKE3N3dVaNGDfXp00erVq1KvbC+s7OzbDabPvnkE7Vq1UpFihSRt7e3WrRooc8++yzDC9/frc8//1yPP/64fHx85OHhodatWys0NDTXTk8uW7aswsLC1KpVKw0ePDj1j+m8kJnv+Z14enpq27ZtGj16tMqUKSMPDw81a9ZMa9asST377q/XHcip7eaVhIQES36KK9IbMmSI4uLiMjzz0t/fX2FhYercubOKFi2qIkWKqF27dgoJCdHAgQPTPf7Wte9y67qMycnJWr16tdq3b5/6ARkA4Ag41gI5x9T+9Oqrr+qjjz6Sn5+fypQpIzc3N5UtW1YBAQFatmyZFi9enO457E/IEjtgyIkTJ+yS7Pv27TOdggIqOTnZ3rRpU7uTk5M9MjLSdE6WvfXWW/Z69eqZzihQjh07Zpdk379/f6aeFx8fby9durS9b9++2dp+cnKyvXjx4vYGDRrYU1JSsvVat7Nx40a7JPuyZcsy/dysfn8A4K+mTp1qr1mzZqafV1COtVn9/qBgYn+6M/anAmsaZ4rBmFsfl5vRBRKBnDZ+/HgtWbJEp0+fVmxsrH744QcNHDhQ33//vTp06HDbT610BFeuXMmxj5BH7nJ3d9fkyZO1Zs0aHTt2LMuvc/jwYV25ckWTJk267SerZtf777+vhg0bpi4xBgBHwbEWyDnsT8jvGIrBmJIlS8rZ2TlXPrUQ+F+//PKLhgwZomrVqqlIkSJq2rSpVq5cKS8vL82aNct0XrZERUU59FCvoBkzZoxq1KihN998M8uvER4erqpVq+qRRx7JwbL/2rVrlzZv3qz3339fLi4uubINAMhNHGuBnMP+hPwsdxbHA3fB2dlZxYsXV1RUlOkUFACzZ89W6dKlFR4ert9//13e3t7y8/PTa6+9poYNG5rOy5bIyEiGYg7Ezc1Nv/76a7ZeY8yYMRozZkwOFaXn6+sru92ea68PALmNYy2Qc9ifkJ8xFINRpUqV4kwx5InatWtrwYIFpjNyRVRUlGrXrm06AwAAAAAcCssnYZSPjw9nigHZxJliAAAAAJB5DMVgVJkyZXT+/HnTGYBDu3DhgkqXLm06AwAAAAAcCkMxGFWtWjWdOnXKdAbgsC5fvqxr166pWrVqplMAAAAAwKEwFINRDMWA7Dl58qQkqXr16oZLAAAAAMCxMBSDUdWqVdOFCxcUGxtrOgVwSKdOnZKzs7OqVKliOgUAAAAAHApDMRhVrVo12e12nTlzxnQK4JBOnjypChUqqFChQqZTAAAAAMChMBSDUTVq1JAkHT9+3HAJ4Jh+++03lk4CAAAAQBYwFINR3t7eqly5sg4fPmw6BXBIhw4dUsOGDU1nAAAAAIDDYSgG4xo3bqxDhw6ZzgAcjt1u1+HDh9WoUSPTKQAAAADgcBiKwbjGjRvr4MGDpjMAh3PmzBlduXJFjRs3Np0CAAAAAA6HoRiMa9SokY4ePar4+HjTKYBDOXTokJycnNSgQQPTKQAAAADgcBiKwbjGjRsrKSlJR44cMZ0COJSDBw+qSpUqKl68uOkUAAAAAHA4DMVg3D333KNixYopIiLCdArgUHbv3q2WLVuazoBF3Lx503QCAOR7HGuBzLHb7aYTgDtyNR0AODs7q2XLltq1a5eeeuop0zmAQ7Db7YqIiNBrr71mOqVAO3r0qOmEVO+9954mTJhgOkOSdPbsWdMJAPKJ+Ph4HThwwHSGJOnSpUtav369hg8fbjpFkvTnn3+aToCDyev9aeXKlercubNDrGpgfyq4GIrBEnx9fbVgwQLTGYDD+Pnnn3X58mW1bdvWdEqBNmjQINMJaSxfvtx0AgDkqLNnz6pZs2amM9L417/+ZTohVc2aNU0nwIGY2J+mTZuWp9vLDvangsnJzvmMsIAtW7aoS5cu+v3331WpUiXTOYDlffLJJxo/fryio6Pl6sr7G3ktMTFRp0+fNp2R6tNPP9W7776rp59+Ws8995zpnFSVK1dWoUKFTGcAcFDR0dGKiooynZGqV69eOnr0qNatW6e6deuazpEkubu7q0qVKqYz4ADycn+Kjo5Wz549dfHiRe3atUtlypTJk+1mF/tTgfQOf0nBElq2bClXV1ft3r1bAwcONJ0DWN6uXbtS9xvkPTc3N9WqVct0Rqr169dLktasWaMPP/zQcA0A5IwSJUqoRIkSpjMkSceOHdPRo0fl5OSkXbt26YEHHjCdBGRKXu1PycnJGj16tC5duiTpP2+QVa5cOde3C2QVF9qHJXh5een+++/X5s2bTacAlme32xUaGqpOnTqZToEFHD16VD/99JMk6ffff9d3331nuAgA8p+lS5fKzc1NdrtdCxcu5OLhwG1MmTJFYWFhqftISkqK4SLgzhiKwTL8/f0VEhLCLxnA3/jhhx/0559/KiAgwHQKLODWH2rSf077X7ZsmeEiAMh/lixZosTEREnSuXPn+NR0IAPr1q3TO++8k2YQlpycbLAI+HsMxWAZAQEBOnv2rA4fPmw6BbC0kJAQlStXTvfee6/pFFjAokWLUv9QS0hI0OLFi/kFFABy0IEDB3T8+PHUf3dzc+MNCOB/HD9+XI8++mi62/mdBFbHUAyW0axZM5UpU0YhISGmUwBLCwkJUffu3eXk5GQ6BYZ999136S74HxUVpbCwMDNBAJAPLVu2TO7u7qn/npiYqCVLligpKclgFWAdN2/eVN++fRUfH59u1Q9DMVgdQzFYhrOzs7p166YNGzaYTgEs68qVK4qIiJC/v7/pFFjAsmXLUpdO3uLm5qalS5caKgKA/MVutyswMFAJCQlpbr9y5Yq2bNliqAqwltGjR+vo0aOpZ67/FdcUg9UxFIOlPPjgg9qxY4fOnTtnOgWwpODgYDk5Oal79+6mU2BYSkqKAgMD0/0CmpiYKJvNpvj4eENlAJB/3O73Ut6AAP7jww8/vOOZk5wpBqtjKAZL6dGjhwoXLqxVq1aZTgEsyWazyd/f3zIfUQ9ztm3blvpx5//rxo0bLEUHgBzwv0snb0lMTNRXX32lmzdvGqgCrGHPnj16/vnn7/hBaQzFYHUMxWAphQsXVs+ePbVixQrTKYDlREdHa8uWLXr44YdNp8ACli5dmuEfapLk4uKiwMDAPC4CgPwlMTFRy5cvT7d08pa4uDitX78+j6sAa7h48aL69Olzx4GYxFAM1sdQDJYzcOBA7dixQ3/++afpFMBSVq5cKWdnZ/Xs2dN0CgxLSEjQihUrbvuHWlJSklavXq1r167lcRkA5B+bNm3S1atXb3u/s7OzlixZkodFgDUkJSWpf//+unjx4t8OvRiKweoYisFyAgIC5OXlpa+++sp0CmApQUFB6tGjh7y9vU2nwLANGzYoJibmjo9JSkrSmjVr8qgIAPKfpUuXpvswk79KSkrShg0bdOXKlTysAsyLjIxU06ZNVbp0aUm67ZnrEkMxWB9DMViOh4eHBgwYoM8++8x0CmAZp06d0tatWzV06FDTKbCAu7m4s91u5wwGAMii2NhYrVq1KsNP0/urxMREBQcH51EVYA3lypXTBx98oHPnziksLExPPPGEihQpIkkqVKhQmscyFIPVuZoOADLy5JNP6vPPP9e3336rloDmcVMAACAASURBVC1bms4BjPv8889VpkwZ9ejRw3QKDEtJSVHhwoXVv3//1Ntu3Lih0NBQdejQQcWKFUu93c3NTYmJiXc80wEAkN6vv/6a7nIFv/76q86cOaMuXbqkuf3y5ct5mQZYhrOzs/z8/NSuXTutXr1a/fr1k6enp5YvX5669JihGKzOyf53V8YDDGnatKmaNWvGGWMo8JKTk1W9enUNGTJEU6dONZ0DCzp+/Lhq166t/fv367777jOdAwD50rRp07RgwQIdO3bMdApgKdu3b1eHDh10+PBhNWjQQElJSdq2bZuCgoI0atQotWjRwnQicDvvsHwSlvX4449r+fLlXCgaBd6GDRt09uxZjRgxwnQKAAAAkIbNZlPDhg3VoEEDSZKrq6u6du2qzz77jIEYLI+hGCxr8ODBSklJ0eLFi02nAEbNnz9fnTp1Uq1atUynAAAAAKlSUlK0atUqDRw40HQKkCUMxWBZJUqU0LBhwzRz5kzWoqPAOnr0qEJCQjRu3DjTKQAAAEAaYWFhOnfuXJprnQKOhKEYLO2FF17Q6dOntXr1atMpgBHvvvuuateurQceeMB0CgAAAJCGzWZTkyZNdM8995hOAbKEoRgsrXbt2urVq5dmzpxpOgXIcxcuXNCyZcv04osvytmZwzUAAACsIzk5maWTcHj8lQXLGz9+vHbv3q2IiAjTKUCe+uCDD1SsWDENHjzYdAoAAACQxtatW3Xx4kUNGDDAdAqQZQzFYHnt2rVTq1at9NZbb5lOAfLM5cuX9fHHH+vZZ5+Vh4eH6RwAAAAgDZvNpmbNmql27dqmU4AsYygGh/DGG2/om2++0c6dO02nAHni/fffl6urq5555hnTKQAAAEAaiYmJLJ1EvsBQDA6hW7du8vPz05tvvmk6Bch1kZGR+vDDDzVx4kQVLVrUdA4AAACQRmhoqKKiotSvXz/TKUC2MBSDw3j77bcVGhqqsLAw0ylArpo+fbo8PDw0ZswY0ykAAABAOjabTS1atFDNmjVNpwDZwlAMDqNt27bq3LmzXn31VdntdtM5QK44e/as5s2bp1deeUVeXl6mcwAAAIA0EhMTtWbNGpZOIl9gKAaHMn36dO3evVsrVqwwnQLkikmTJqls2bL6xz/+YToFAAAASGfjxo2Kjo5W//79TacA2cZQDA6lefPmGjp0qF588UXFxsaazgFyVEREhJYuXaqZM2fyiZMAAACwJJvNplatWqlq1aqmU4BsYygGhzN9+nRdvXpVM2fONJ0C5Bi73a7nnntOHTp0UN++fU3nAAAAAOnEx8ezdBL5CkMxOJyyZctq0qRJmjFjhs6ePWs6B8gRixYt0v79+zV79mzTKQAAAECGQkJCdO3aNT300EOmU4AcwVAMDun5559X+fLl9cwzz5hOAbItKipKEydO1OjRo9WkSRPTOQAAAECGbDab2rZtqypVqphOAXIEQzE4JA8PD3366adavXq1vvrqK9M5QLa88MILcnFx0dSpU02nAAAAABmKi4vTunXrWDqJfIWhGBxWhw4dNGLECD3zzDOKjo42nQNkybZt27R48WJ99NFHKl68uOkcAAAAIEPr169XTEwMSyeRrzAUg0ObNWuWXFxcNHHiRNMpQKbFxsbqySefVL9+/bi4PgAAACzNZrOpffv2qlChgukUIMcwFINDK1asmObMmaPPP/9c33zzjekcIFMmTpyoy5cva+7cuaZTAAAAgNuKjY3V+vXrWTqJfIehGBxe//799dhjj2n48OE6f/686RzgroSEhOjjjz/WRx99pPLly5vOAQAAAG5r3bp1iouLY+kk8h2GYsgXPvroIxUuXFgjRoyQ3W43nQPc0cWLFzVixAgNHTpUjz76qOkcAAAA4I5sNps6dOigsmXLmk4BchRDMeQLxYoV05IlS7R582bNmzfPdA5wW3a7XSNHjpSnpyfLJgEAAGB5N27cUEhICEsnkS8xFEO+4evrq1deeUUvvviifvjhB9M5QIZmzpypkJAQBQYGytvb23QOAAAAcEdr1qxRfHy8+vTpYzoFyHEMxZCvvPbaa2rXrp369OmjyMhI0zlAGtu2bdPLL7+sd955R61btzadAwAAAPwtm82mzp07q0yZMqZTgBzHUAz5iouLi5YuXSonJyc9+uijSk5ONp0ESJLOnTunQYMGqWfPnho/frzpHAAAAOBvXb9+XRs3bmTpJPIthmLId3x8fBQUFKSdO3fqjTfeMJ0DKDExUQMGDJC3t7e+/PJLOTk5mU4CAAAA/lZwcLCSkpJYOol8i6EY8qUWLVpo7ty5mjp1qlasWGE6BwXcqFGjdPDgQQUHB3MdMQAAADgMm82mrl27qmTJkqZTgFzhajoAyC2jRo3STz/9pKFDh6pixYpq06aN6SQUQG+++aYWL16slStXql69eqZzAAAAgLty5coVbd68Wf/+979NpwC5hjPFkK/Nnj1b/v7+6t27t3799VfTOShgli9frtdff10ffPCBHnzwQdM5AAAAwF0LDg6W3W5X7969TacAuYahGPI1Z2dnLVmyRNWrV1evXr0UFRVlOgkFRFhYmIYNG6YXX3xRTz/9tOkcAAAAIFNsNpu6d++uEiVKmE4Bcg1DMeR7RYoU0dq1a5WQkKAePXro2rVrppOQzx04cEB9+vTRgw8+qOnTp5vOAQAAADIlOjpaW7Zs4VMnke8xFEOBUK5cOW3evFlnz55VQECAYmJiTCchn/rll1/Uo0cP3X///Vq0aJGcnTnMAgAAwLF8/fXXcnZ2Vq9evUynALmKv9ZQYNSqVUtbt27ViRMn1LdvX8XFxZlOQj5z4sQJderUSTVr1tSqVavk4eFhOgkAAADINJvNpoCAABUrVsx0CpCrGIqhQKlbt67Wr1+vvXv36pFHHlFCQoLpJOQTp0+fVpcuXVSxYkV988038vLyMp0EAAAAZFpkZKS2bt3K0kkUCAzFUOA0a9ZMGzZs0LZt29SnTx/dvHnTdBIc3K+//qp27dqpePHi+uabb+Tt7W06CQAAAMiSlStXyt3dXT179jSdAuQ6hmIokNq0aaOtW7dq79698vf35+L7yLKff/5ZHTt2VNmyZRUaGiofHx/TSQAAAECW2Ww29ejRg5UPKBAYiqHAatasmbZv367jx4+rc+fOioqKMp0EB7N//375+fmlXq+OgRgAAAAc2aVLl7Rjxw6WTqLAYCiGAq1+/fratm2bLly4ID8/P50+fdp0EhzEpk2b1KlTJ7Vo0UIhISEqWrSo6SQAAAAgW1asWCF3d3f16NHDdAqQJxiKocCrU6eO9uzZI3d3d7Vu3Vr79u0znQSL+/zzz9WzZ0899NBDCg4Olqenp+kkAAAAINtsNpt69eqlIkWKmE4B8gRDMUBShQoVtGPHDjVt2lQdOnTQ2rVrTSfBgux2u15//XU9+eSTeuWVV7RgwQK5ubmZzgIAAACy7fz58woPD2fpJAoUhmLA//Py8lJwcLAefvhh9e3bV7NnzzadBAu5fv26+vfvr+nTp2vRokV6/fXXTScBAAAAOWbFihUqXLiwAgICTKcAecbVdABgJW5ubvr8889Vp04dTZgwQd99950+++wzTh8u4I4ePaqHHnpIUVFR2rRpk9q3b286CQAAAMhRNptNvXv35tIgKFA4UwzIwEsvvaQtW7Zo27Ztat68uY4cOWI6CYasWbNGrVq1UuHChfXdd98xEAMAAEC+c/bsWe3evZulkyhwGIoBt+Hn56fvvvtOXl5eat26tVauXGk6CXkoISFBEyZMUJ8+ffTYY49p9+7dqlq1quksAAAAIMetWLFCXl5e6tatm+kUIE8xFAPuoEqVKtq5c6ceeeQR9e/fX0888YRiYmJMZyEXxcTE6OjRo2rdurXmz5+vhQsX6uOPP5a7u7vpNAAAACBX2Gw29enTRx4eHqZTgDzFUAz4Gx4eHpo/f76++eYbrV+/Xo0aNdKuXbtMZyGXPPnkk2rSpIlcXFy0f/9+DR061HQSAAAAkGt+//13ffvttyydRIHEUAy4S/7+/tq/f79q166tjh076o033lBCQoLpLOSQP/74Q71795bNZlNCQoK8vb3l7e1tOgsAAADIVUFBQSpWrJi6du1qOgXIcwzFgEyoUKGCNm7cqPfee0/vvfee7rvvPkVERJjOQjakpKRo3rx5atCggY4cOaKtW7fKx8dHW7ZsUf369bVu3TrTiQAAAECusdls6tu3L5cLQYHEUAzIJCcnJ40bN06HDx9WpUqV5Ovrq9GjR+vatWum05BJx48fV9euXfXss89q2LBh+uGHH+Tn56eePXvK1dVVV69eVa9evTRkyBDduHHDdC4AAACQo06ePKl9+/axdBIFFkMxIIuqVaumkJAQLVy4UCtXrlT9+vUVGBgou91uOg1/4/r165o0aZIaNmyoq1ev6rvvvtMHH3ygIkWKSJJ69Oih5ORkpaSkSJKWL1+uJk2a6MCBAyazAQAAgBxls9lUvHhxderUyXQKYARDMSCbhg4dqiNHjqhHjx4aOnSo2rRpo++++850FjKQkpKiBQsWqE6dOvrkk0/07rvvas+ePWratGmax3Xt2lXOzv89PCYlJen06dNq0aKFXn/99dRhGQAAAODIbDab+vfvz9JJFFgMxYAcULp0aX3yySfat2+fChUqpFatWmnYsGE6c+aM6TT8v+3bt6tly5YaNWqU+vXrp2PHjunZZ5+Vq6truseWKFFC999/v5ycnFJvS0pKUnJyst566y117NhRZ8+ezct8AAAAIEedOHFCBw4cYOkkCjSGYkAOatq0qcLCwmSz2RQeHq7atWtr7Nix+vPPP02nFVgRERHq0qWLOnTooBIlSuj777/Xhx9+KB8fnzs+r1evXhkOzFJSUhQREaF69epp2bJluZUNAAAA5Krly5erVKlS6tChg+kUwBiGYkAu6N+/v44ePaq5c+dqzZo1qlWrll544QVduHDBdFqBsW/fPvXo0UNt2rRRQkKCwsLCtGnTJjVs2PCunt+jRw8lJiZmeF9iYqJiY2P12GOPafDgwYqJicnJdAAAACDX3Vo6mdEbwUBBwVAMyCVubm4aPXq0jh8/rjlz5igoKEhVq1bV0KFD9fPPP5vOy7fCw8PVq1cvtWjRQpcvX9aaNWu0Y8cO+fn5Zep1mjRpotKlS9/2/lsfqBAYGJh6YX4AAADAEfzyyy86ePAgSydR4DEUA3KZu7u7Ro0apePHj2vWrFmKiIhQo0aN1KdPH+3cudN0Xr6QkJCgL7/8Uo0bN1a7du0UHx+vkJAQ7dmzR7169crSazo5OalXr15yc3O742N69uypr7/+Wi4uLlnNBwAAAPJUUFCQypYtq/bt25tOAYxiKAbkEU9PT40ZM0a//PKLgoODdePGDbVv314NGjTQjBkzFBUVZTrR4Rw7dkyvv/66atWqpSeffFL16tXTt99+q02bNqlbt27Zfv2AgAAlJSWlu93NzU3u7u6aPXu21q5dq1KlSmV7WwAAAEBeubV0kjd2UdAxFAPymLOzs3r16qXNmzcrIiJCLVq00FtvvaXKlStr2LBhCg8PT12ah/Ti4uK0dOlSderUSXXr1tUXX3yhxx9/XL/99ptsNptatGiRY9vq1q2bnJ3THiZdXFzk7Oys5cuXa9y4cTm2LQAAACAvHD16VD/99BNLJwExFAOMatWqlRYsWKA///xTc+bM0YkTJ9SuXTtVrVpV48aNY0D2/+Lj47V27VoNHTpUZcuW1dChQ+Xi4qKgoCD99ttvev3111WpUqUc3663t7datWolJycnOTs7y9nZWRMnTlSbNm00efJkxcbG5vg2AQAAgNy0bNkylS9fXr6+vqZTAOMYigEW4O3trVGjRik8PFw//PCDBg8erHXr1qldu3aqXbu2Xn75Ze3atatAXcz9+vXrWrVqlYYPH65y5cqpT58+OnXqlKZOnao//vhDmzdv1oABA3L903J69+4tu92ucuXKKSwsTNOmTdOiRYt04cIFTZw4MVe3DQAAAOS0FStWaODAgSydBCTx2auAxTRp0kRNmjTRtGnTtG/fPgUFBSkoKEjTp09XiRIl1LVrV/n7+6t79+6qUKGC6dwcY7fbdfDgQYWEhCgkJCR1CNiyZUu99tpr6t+/f66cDfZ3AgIC9OOPP+rjjz9WsWLFJEmVKlXSJ598ogEDBqh79+5Zvpg/AAAAkJcOHjyoI0eO6LPPPjOdAlgCQzHAwpo3b67mzZvrvffe02+//abQ0FCFhobq2WefVUxMjMqXL6+2bdvK19dXbdu2VdOmTdNdA8uqkpKS9OOPPyo8PFy7du1SWFiYLl26pFKlSqljx4768MMP1atXL5UvX95oZ6NGjRQYGJju9n79+mnw4MEaOXKkDh48qHLlyhmoAwAAAO6ezWZTpUqV1Lp1a9MpgCUwFAMcRI0aNTRq1CiNGjVKN2/e1M6dO1MHSpMnT9aNGzdUsmRJNW3aVI0aNVKjRo3UuHFjNWjQQJ6enkbbIyMjdfDgQR06dEiHDh1K/f/j4uJUrlw5+fr66pVXXlG7du0carD38ccfq2nTphoxYoQ2bNggJycn00kAAADAbdlsNg0cOJDfW4H/x1AMcECenp7q1q2bunXrJuk/Z119//33ioiI0MGDBxUeHq5PPvlEsbGxcnFxUcWKFVW9enVVq1ZN1atXV/Xq1VWxYkWVKlVKpUqVko+Pjzw8PDLc1pEjR1S7du3bXrvr+vXrioyM1KVLlxQZGakzZ87o5MmTOnXqlE6dOqWTJ0/q0qVLkqRSpUqpSZMm8vX11dixY+Xr66uaNWvmzjcpD3h5eWnhwoXy8/PTvHnzNGbMGNNJAAAAQIYOHDigY8eO8amTwF8wFAPyAVdXV91///26//77U29LTk7WiRMndPDgQZ04cSJ1QLVnzx6dOnVK8fHxaV6jSJEi8vHxkaurqwoXLqxChQpJki5evKhixYql/ntMTIwSExN18+ZNRUVFKSEhIc3rFC9ePHX45uvrq0GDBqlevXpq1KiR8aWQueHWWW7jx49Xu3bt1KhRI9NJAAAAQDo2m02VK1dWixYtTKcAlsFQDMinXFxcVKdOHdWpUyfdfXa7XVFRURn+k5SUpJs3byouLk52u11z586Vp6enHnjgAUlS0aJF5erqKk9PT/n4+KT+U7p0afn4+Kho0aJ5/aUaN2XKFG3evFnDhg3Tnj175O7ubjoJAAAASOOrr77SI488wtJJ4C8YigEFkJOTU+rSyTvZvHmz3n33Xf3++++aMmWKChcunEeFjsXV1VWBgYG699579c9//lPvvvuu6SQAAAAg1d69e3XixAmWTgL/wzGuZg3AiGXLlsnV1VVxcXFat26d6RxLq1GjhubMmaOZM2dq69atpnMAAACAVDabTTVq1FCzZs1MpwCWwlAMQIbi4+O1YsUKJSUlycXFRYGBgaaTLO/xxx9X//79NXToUEVFRZnOAQAAAGS32/XVV1/p4YcfZukk8D8YigHI0Pr163Xjxg1J//l0yw0bNujy5cuGq6xv/vz5cnFx0ahRo0ynAAAAAPr222916tQplk4CGWAoBiBDgYGBcnX972UH7Xa7goODDRY5hhIlSmjRokUKDg7Wl19+aToHAAAABZzNZlPNmjV17733mk4BLIehGIB0rl+/rnXr1ikxMTH1NrvdrsWLFxuschx+fn567rnnNHbsWB07dsx0DgAAAAoou92ulStX6tFHHzWdAlgSQzEA6axatUpJSUlpbktJSdH27dv1559/GqpyLNOmTVOtWrU0aNCgNMNFAAAAIK/s2rVLZ86cYekkcBsMxQCks3jx4gwvwuni4qIVK1YYKHI8hQoVUmBgoA4fPqxp06aZzgEAAEABZLPZVLduXTVq1Mh0CmBJDMUApHHp0iVt27ZNycnJ6e5LTk7mOlmZUL9+fc2YMUNvv/22IiIiTOcAAACgAElJSdHKlSv1yCOPmE4BLIuhGIA0bDbbbe+z2+36/vvvuU5WJowdO1b+/v4aNGiQrl27ZjoHAAAABcTOnTv1559/snQSuAOGYgDSWLRokex2+23vd3NzU1BQUB4WOTYnJyd9/vnnio2N1bhx40znAAAAoICw2Wxq2LCh6tevbzoFsCyGYgBSnT59Wnv37lVKSsptH5OYmMgSykwqU6aMFixYoC+//FLLly83nQMAAIB8LiUlRatWreIsMeBvMBQDkGr58uV3PEvsluPHj+vHH3/Mg6L8IyAgQKNHj9ZTTz2lM2fOmM4BAABAPhYWFqZz586pf//+plMAS3M1HQDAOtq2bZvummIvvfSS7r33Xj366KNpbi9SpEhepuULM2fOVFhYmIYMGaKtW7fKxcXFdBIAAADyIZvNpnvvvVf33HOP6RTA0hiKAUjl6+ub7rZ33nlH9erV04ABAwwU5S+FCxdWYGCgWrdurVmzZmnChAmmkwAAAJDPJCUladWqVXruuedMpwCWx/JJAMhD9913n958801NnjxZe/fuNZ0DAACAfGbr1q26ePEib2oDd4GhGADksQkTJqhdu3YaNmyYYmNjTecAAAAgH7HZbGrWrJlq1aplOgWwPIZiAJDHnJ2d9eWXX+rChQuaOHGi6RwAAADkE4mJiQoODuZTJ4G7xFAMAAyoVKmSPvnkE3388cdau3at6RwAAADkA6GhoYqKilK/fv1MpwAOgaEYABjSr18/DR48WCNHjtT58+dN5wAAAMDB2Ww2tWjRQjVr1jSdAjgEhmIAYNDHH3+s4sWLa/jw4bLb7aZzAAAA4KASExO1Zs0alk4CmcBQDAAM8vLy0sKFCxUaGqp58+aZzgEAAICD2rhxo6Kjo9W/f3/TKYDDYCgGAIa1adNGr7zyisaPH69Dhw6ZzgEAAIADstlsat26tapWrWo6BXAYDMUAwAKmTJmipk2b6rHHHlNcXJzpHAAAADiQ+Ph4lk4CWcBQDAAswNXVVUuWLNHp06c1ZcoU0zkAAABwIN98842uX7/O0kkgkxiKAYBF1KhRQ3PmzNHMmTO1ZcsW0zkAAABwEDabTb6+vqpYsaLpFMChMBQDAAt5/PHHNWDAAA0bNkxRUVGmcwAAAGBxcXFxWr9+PUsngSxgKAYAFjN//ny5uLho1KhRplMAAABgcevXr1dMTIweeugh0ymAw2EoBgAWU7x4cS1atEjBwcFauHCh6RwAAABYmM1mU/v27VWhQgXTKYDDYSgGABbk5+en559/XmPHjtWxY8dM5wAAAMCCYmNjWToJZANDMQCwqKlTp6p27doaNGiQEhMTTecAAADAYtatW6e4uDiWTgJZxFAMACyqUKFCCgwM1OHDhzV16lTTOQAAALAYm82mjh07qmzZsqZTAIfEUAwALKx+/fqaMWOGpk6dqoiICNM5AAAAsIiYmBht2LCBpZNANjAUAwCLGzt2rPz9/TVo0CBdu3bNdA4AAAAsYM2aNUpMTFSfPn1MpwAOi6EYAFick5OTPv/8c8XGxmrcuHGmcwAAAGABNptNnTt3VunSpU2nAA6LoRgAOIAyZcpowYIF+vLLL7V8+XLTOQAAADDo+vXr2rhxI0sngWxiKAYADiIgIECjR4/WU089pTNnzpjOAQAAgCHBwcFKTk5m6SSQTQzFAMCBzJ49W5UqVdKQIUOUnJxsOgcAAAAG2Gw2de3aVSVLljSdAjg0hmIA4EA8PDy0aNEi7dmzR7NmzTKdAwAAgDx25coVbd68maWTQA5gKAYADqZp06Z68803NXnyZO3du9d0DgAAAPJQcHCw7Ha7evfubToFcHgMxQDAAU2YMEHt2rXTsGHDFBsbazoHAAAAecRms8nf318lSpQwnQI4PIZiAOCAnJ2dtWjRIl24cEETJkwwnQMAAIA8EB0drS1btrB0EsghDMUAwEFVrFhRn3zyiebNm6e1a9eazgEAAEAuW7lypZydndWrVy/TKUC+wFAMABxYv379NGTIEI0cOVLnz583nQMAAIBcZLPZFBAQIG9vb9MpQL7AUAwAHNxHH32k4sWLa/jw4bLb7aZzAAAAkAsiIyO1bds2lk4COYihGAA4OC8vLy1cuFChoaH6+OOPTecAAAAgF6xcuVLu7u7q2bOn6RQg33A1HQAgrQULFlhqGdyFCxcUERGhd955x3RKqjZt2sjPz890Ro7IyZ+3n5+fJk2apKioKLm5ueXIa1qBFX/e0dHRmj9/vumMVFFRUZL+89/Txo0bDdf81+OPP66yZcuazgDgoCIiIhQWFmY6I9X27dsVHR1tqd+JSpYsqdGjR5vOQB6x2Wzq0aOHvLy8TKcA+YaTnbU2gKU0bdpUp06dUsmSJU2nWNLZs2f1wgsvWOoX0uzIyZ+33W5XcnKyXF3zz/sdVv15Hz9+XLVr11alSpXk7u5uOsdykpKSdObMGe3fv1/33Xef6RwADmratGl67bXXVKVKFdMplnTlyhWVKFFCx48fN52CPHDp0iVVqFBBS5cu1YABA0znAPnFO/nnLycgH/nHP/5huSGAVTRt2tR0Qo7j5317Vv95r169mqFPBm4NDQEgu6pWrcrQ5zamTZumL774wnQG8ojNZpO7u7t69OhhOgXIV7imGAAAAAAAFrZixQr17t1bRYoUMZ0C5CucKQYAAAAAgEWdP39e4eHhWrFihekUIN/hTDEA/8fencdVVSf+H39fNlFRlKVSy4XQzCWVslxQc0Msc8utxmxmqqmfTjWZU86Y0+pY39JJ08nKvlZq6QERNxYxU8Iw0zQU0dyXRA2FXEjZ7u+PvloEKiLcz+Xe1/Px4FGPe+79nDd+7j3Km/M5BwAAAICTsixLNWrUUGRkpOkogMuhFAMAAAAAwElZlqX+/furevXqpqMALodSDAAAAAAAJ3T48GGlpqZq2LBhpqMALolSDAAAAAAAJxQVFSU/Pz9FRESYjgK4Ruf9KQAAIABJREFUJEoxAAAAAACckGVZGjhwoHx9fU1HAVwSpRgAAAAAAE7m0KFD+vrrr1k6CVQiSjEAAAAAAJzMggUL5O/vr969e5uOArgsSjEAAAAAAJxMVFSUBg8eLB8fH9NRAJdFKQYAAAAAgBPZt2+fNm7cyNJJoJJRigEAAAAA4EQWLlyogIAA9ejRw3QUwKVRigEAAAAA4EQsy9LgwYPl7e1tOgrg0ijFABeSn5+vZs2aadSoUSW2paSkqHfv3vL391etWrXUrVs3rVy5skL2e+DAAc2YMUN9+vRRtWrVZLPZlJCQUOpzU1JSZLPZlJiYWCH7dmem5vtqxme+S+JzCgCVz8Sx9uzZs5o/f7769++vxo0bq1q1aqpfv76GDx+uzZs3l5qDYy1Ks2fPHm3evJmlk4Aj2AE4lbZt29rHjx9frtdOmzbN7uXlZd+1a1exxxMSEuyenp52ScW+bDab3bKsa858/fXXlxg7Pj7+ks/v3bu3vXXr1vbCwsKr3te1/Pk4o6o431c7vivO965du+yS7Js2bbrq17rD5/Ra/nwA4IJJkybZb7755nK91sSxdsKECSXGvfDl7e1d6jH3Wo611/LnA+f22muv2YODg+35+fmmowCu7t+cKQa4iLy8PE2aNEkDBw5UaGhosccff/xxFRYWauzYsfrxxx+VnZ2tV199VXa7XaNHj9aZM2euad+NGzfWmDFjlJCQoMcee+yKzx83bpy2bt2qqKioa9qvOzM13+UZn/n+FZ9TAKh8po61tWrV0siRI7Vs2TLt3btXubm52rx5s3r37q38/HyNGTOmxGs41qI0lmVpyJAh8vLyMh0FcHmUYoCLiImJ0fHjx0ssE1i1apUOHDigrl27asqUKQoKClKdOnX0wgsvaPDgwcrKytKSJUuuad/r16+/uCyrLLeM7tmzp+rVq6dZs2Zd037dman5Ls/4zPev+JwCQOUzdax9/vnnNXfuXPXr109NmjRR9erV1bZtW8XGxqpu3brau3evTpw4Uew1HGvxezt37lRaWpqGDh1qOgrgFijFABfxySefqHr16oqMjCz2eHJysiTpD3/4Q4nXjBw5UpK0du3ayg/4G56enhowYIDWrFmjgwcPOnTfrsLUfJdnfOb7V3xOAaDyOduxtkaNGmrYsKG8vLxUs2bNYts41uL3FixYoBtuuEFdu3Y1HQVwC5RigAsoKCjQl19+qbCwsBJ3qNm9e7ckqVWrViVed9tttxV7jiN16NBBkrR69WqH77uqMznf5R2f+eZzCgCO4IzH2p07d2rr1q3q37+/fH19S2znWIvfioqK0pAhQ+Tp6Wk6CuAWKMUAF7B9+3adOXNGbdq0KbHt1KlTkqSAgIAS2y489tNPP1VuwFK0bdtWkpSamurwfVd1Jue7vOMz33xOAcARnO1Ye/bsWT344IPy9/fXlClTSn0Ox1pcsGPHDqWnp3PXScCBuHIf4AIyMzMlSUFBQSW22e32S77uctsqW3BwsKRfs6PsTM53ecdnvvmcAoAjONOx9uzZsxowYIB27Nih+Ph4NW7cuNTncazFBZ999pnq1aunzp07m44CuA1KMcAF5OTkSPrlrke/5+/vL0k6efJkiW3Z2dnFnuNItWvXlvRrdpSdyfku7/jMN59TAHAEZznWZmdn695771VaWpri4uIue30ojrW4ICoqSsOGDZOHBwu6AEfh0wa4gDp16kj6dVnAb124Ffm2bdtKbEtLSyv2HEe6sDyhbt26Dt93VWdyvss7PvPN5xQAHMEZjrWZmZnq1q2btm7dqvj4eHXr1u2yz+dYC0n67rvvlJGRwdJJwMEoxQAXUK9ePUlSVlZWiW0XfjM5f/78EtvmzZtX7DmOdCHrhewoO5PzXd7xmW8+pwDgCKaPtXv27FHnzp114MABJSYmqkuXLld8DcdaSJJlWbrpppvUsWNH01EAt0IpBriAFi1ayM/PT1u2bCmxrVevXmrYsKGSk5P17LPPKisrSz/99JNee+01xcTEKCgoSAMHDnR45gtZL9xxCWVncr7LOz7zzecUABzB5LF227ZtCg8PV3Z2tpKSktSpU6cyvY5jLaRfl07abDbTUQC3QikGuAAvLy+Fh4dr8+bNOn/+fLFtPj4+eu+99+Tp6ampU6cqODhYderU0cSJE2Wz2TRz5kz5+fkVe014eLhsNlup/6AszciRI2Wz2S6OJ0l9+/a9+Fh0dHSJ16xfv16S1L179/J8y27N5HyXZ3yJ+Zb4nAKAI5g81r799ts6evSocnJydNddd108vv72q7RxONbi22+/1a5duzR06FDTUQC3QykGuIiHHnpI586dU1xcXIltkZGRWrNmjXr27KlatWqpZs2a6tKlixISEkq9bkFRUZGkX/5hWRkKCwu1ZMkSde3aVY0aNaqUfbg6k/N9teMz37/icwoAlY9jLaoay7LUsGFD3XnnnaajAG6Hu08CLmLIkCH629/+prlz52rQoEEltoeHh2vVqlVXHKeoqEgZGRlq2bKlWrZsWaZ9z5s37+K1OMri888/V2ZmpqZOnVrm16A4k/N9NeNLzPdv8TkFgMpn6lg7e/ZszZ49+6qycqyFJEVHR2vEiBEsnQQM4EwxwEX4+PhowoQJWrp0qXbt2lXucbZt26acnByNHz++0v5ifuutt9SqVStOEb8GzHfVxLwBQOXjWIuq5JtvvtGePXu46yRgCKUY4EJGjx6tkJAQvfLKK+UeIyUlRY0aNdKIESMqMNmv1q1bp6SkJL311lvy9PSslH24C+a7amLeAKDycaxFVWFZlkJCQhQWFmY6CuCWWD4JuBBvb299//331zTG6NGjNXr06ApKVFLnzp1lt9srbXx3wnxXTcwbAFQ+jrWoCux2u6Kjo/XAAw+wdBIwhDPFAAAAAABwsPXr12v//v0snQQMohQDAAAAAMDBLMtSs2bN1LZtW9NRALdFKQYAAAAAgAPZ7XbFxMRo+PDhpqMAbo1SDAAAAAAAB1q3bp0OHjzInUcBwyjFAAAAAABwIMuy1Lx5c7Vu3dp0FMCtUYoBAAAAAOAgRUVFWrRoEUsnASdAKQYAAAAAgIMkJyfryJEj3HUScAKUYgAAAAAAOEhUVJRat26tFi1amI4CuD1KMQAAAAAAHKCwsFCLFi3iLDHASVCKAQAAAADgAGvWrNGxY8c0ZMgQ01EAiFIMAAAAAACHsCxLbdu2VfPmzU1HASBKMQAAAAAAKl1BQYFiY2NZOgk4EUoxAAAAAAAq2erVq3X8+HENHTrUdBQA/4dSDMBlff/99yosLDQdAw62fft20xFwlTIyMkxHAAAAl2FZlm6//XaFhoaajgLg/3iZDgCgpNTUVE2ePNl0DEnSihUr1KxZMzVt2tR0FEnSsWPHTEeocM4039Ivd0V69913NWbMGNlsNqNZnH2+58yZo8TERNMxZLfbNXPmTP2///f/5OnpaTqOTp48aToCABeRnZ3tVH9HOpO1a9eajoCrkJ+fr9jYWD333HOmowD4DUoxwMncdNNNSk9P1+zZs01HkSQdOHBAaWlpCg4ONh1FklS9enUFBgaajlFhnG2+Jennn39WZmam3nnnHdWoUcNoFmedb29vb4WEhCguLs50FEnSuXPndOTIEc2cOdP4nF0QEhKiatWqmY4BoAqrW7eu6tSp41R/Rzqbxo0bm46AMkpKStKJEyd0//33m44C4DdsdrvdbjoEAOe0evVq9ezZUzVq1FBWVpaqV69uOhIcYMKECfr3v/+tXr16KSkpyXQclMHo0aP17rvv6sEHH9T8+fNNxwEAAL/zpz/9SRkZGVq/fr3pKAB+NZlrigG4pM8++0xeXl76+eefFR8fbzoOHOTC2U+ff/65duzYYTgNrqSgoECfffaZJGnx4sXKzc01nAgAAPxWXl6eli5dyl0nASdEKQagVHl5ebIsSwUFBfL09NS8efNMR4IDnDhxQt99952kX5YITp8+3XAiXMnKlSuVk5Mj6ZdllMuWLTOcCAAA/FZiYqKys7NZOgk4IUoxAKVKSEjQ6dOnJf1yJsry5cv1008/GU6Fyvb5559f/P+8vDz97//+LxdNd3KffvqpvL29JYkCGwAAJ2RZljp27KhGjRqZjgLgdyjFAJRq/vz58vL69V4chYWFio2NNZgIjpCUlFRi3j/66CNzgXBZ586d0+LFi5Wfny/plwI7ISGBIhMAACdx/vx5LVu2jKWTgJOiFANQwtmzZ7V06dKLP2hLks1m09y5cw2mgiPExcUVm/eCggJNmTJFhYWFBlPhUpYsWaKff/652GN2u12LFy82lAgAAPxWfHy8Tp8+rSFDhpiOAqAUlGIASoiNjVVeXl6xxwoLC/XFF1/o2LFjhlKhsu3cuVNHjhwp8XhmZibXqXJS8+fPl6enZ7HH7Ha7PvnkE0OJAADAb1mWpfDwcDVo0MB0FACloBQDUMK8efPk4VHy8ODh4aGoqCgDieAIv186eYGHh4emTJliIBEuJycnRwkJCSooKCj2eFFRkb788kv98MMPhpIBAADpl8scrFixQkOHDjUdBcAlUIoBKObkyZNatWpViR+0pV/OFuMMFNeVmJgou91e4vHCwkKlpKQoLS3NQCpcyqJFi1RUVFTqNk9PTwpsAAAMW758uc6cOaPBgwebjgLgEijFABRjWVapxYj0y7KsjRs3at++fQ5OhcpWUFCg1atXX/LaYd7e3po+fbqDU+FyLneNv8LCQn388ccOTAMAAH4vKipK3bp1U/369U1HAXAJlGIAipk7d+4lSzFJ8vLy0oIFCxyYCI6Qmpqq3NzcS27Pz8/X3LlzlZWV5cBUuJTMzEx9+eWXlywx7Xa7tmzZol27djk4GQAAkKTc3FytWLGCu04CTo5SDMBFhw4dUmpq6iWXZEm/lCOcgeJ6kpKS5OPjc9nn5Ofna/bs2Q5KhMtZuHBhqdf9+y1vb28tXLjQQYkAAMBvLVu2TOfOnWPpJODkKMUAXLRw4cLLniV2wc6dO7Vt2zYHJIKjxMfHKz8/X9WqVZOPj0+JOxpKv5x9NHfu3MuWpnCMTz/9tNTr/v1Wfn6+5s+f76BEAADgtyzLUvfu3XXdddeZjgLgMkreZgyA2+rUqZMsyyr22PPPP6+2bdvqgQceKPZ49erVHRkNlaigoEC33HKL7rzzTgUEBCggIEA///yzJkyYoHnz5un222+/+Hhpd6eEYxUVFem5554rVmAfPXpUTz31lN544w01adKk2PPz8vKueBYgAACoOGfOnFF8fLymTZtmOgqAK7DZy3JaCAC3FRYWpsjISP373/82HQUOdPToUdWrV0/Jycnq0qWL6Ti4gt27d6tp06batGmTwsLCTMcBAMCtffrpp3r44Yd15MgRBQcHm44D4NIms3wSAFBCQECAJOnkyZOGkwAAAFQtlmWpV69eFGJAFUApBgAowcfHR35+fjpx4oTpKAAAAFXGqVOnlJiYqKFDh5qOAqAMKMUAAKUKCAjgTDEAAICrEBsbq8LCQg0cONB0FABlQCkGAChVQECAsrOzTccAAACoMqKiohQREXHxUhQAnBulGACgVIGBgSyfBAAAKKOcnBwlJSVp2LBhpqMAKCNKMQBAqVg+CQAAUHaLFy+WJA0YMMBwEgBlRSkGACgVpRgAAEDZWZalPn36yN/f33QUAGVEKQYAKBXLJwEAAMomOztbq1evZukkUMVQigEASlW3bl3OFAMAACiDRYsWycPDQ/fdd5/pKACuAqUYAKBUgYGBlGIAAABlYFmW7rnnHtWuXdt0FABXgVIMAFCqgIAAnTlzRufPnzcdBQAAwGllZWXpiy++0NChQ01HAXCVKMUAAKUKCAiQJM4WAwAAuIzo6Gj5+PioX79+pqMAuEqUYgCAUlGKAQAAXJllWbr33nvl5+dnOgqAq0QpBgAoVWBgoCRKMQAAgEs5duyYkpOTueskUEVRigEASsWZYgAAAJcXHR2tatWqqW/fvqajACgHSjEAQKl8fHzk5+enEydOmI4CAADglCzLUv/+/VWzZk3TUQCUg5fpAAAA5xUQEMCZYgAAAKU4evSo1q1bp6ioKNNRAJQTZ4oBAC4pMDCQUgwAAKAUlmWpRo0aioyMNB0FQDlRigEALokzxQAAAEpnWZYGDBig6tWrm44CoJwoxQAAl0QpBgAAUNLhw4eVmpqqoUOHmo4C4BpQigEALolSDAAAoCTLsuTn56eIiAjTUQBcA0oxAMAlBQYGcvdJAACA37EsS4MGDZKvr6/pKACuAaUYAOCS6taty5liAAAAv3Ho0CFt2LBBw4YNMx0FwDWiFAMAXBJ3nwQAAChuwYIF8vf3V69evUxHAXCNKMUAAJcUEBCgM2fO6Pz586ajAAAAOAXLsjR48GD5+PiYjgLgGlGKAQAuKSAgQJI4WwwAAEDSvn37tGnTJpZOAi6CUgwAcEmUYgAAAL9auHChAgMD1aNHD9NRAFQASjEAwCUFBgZKohQDAACQfl066e3tbToKgApAKQYAuCTOFAMAAPjFnj17tHnzZpZOAi6EUgwAcEk+Pj7y8/PTiRMnTEcBAAAw6rPPPlNwcLC6detmOgqACkIpBgC4rICAAM4UAwAAbs+yLA0ZMkReXl6mowCoIHyaASczZ84cHT161HSMi4qKirRt2zZNnjzZdJSLOnXq5PK/ocvOztasWbNMx5Ak1alTR1999ZVTvQcu+POf/6zrr7/e4ft1pvmRpJ9++kkNGjTQvHnzlJiYaDrORabmBwCAirZz505t3bpV06dPNx0FQAWy2e12u+kQAH7Vrl077d+//+K1nFDc4cOHNXbsWKcsaCrS7t271bRpU914443y8fExHcfpFBQU6ODBg9q0aZPCwsIcvn/m5/JMzw8AABXt5Zdf1qxZs3T48GF5enqajgOgYkzmTDHACT3xxBMuX/qUV7t27UxHcKglS5ZQKpTiQillGvNTOmeZHwAAKkpUVJSGDBlCIQa4GK4pBgAAAADAJWzbtk3p6encdRJwQZRiAAAAAABcgmVZqlevnjp37mw6CoAKRikGAAAAAMAlREdHa/jw4fLw4MdnwNXwqQYAAAAAoBTfffedMjIyWDoJuChKMQAAAAAASmFZlm666SZ16NDBdBQAlYBSDAAAAACAUkRFRWnYsGGy2WymowCoBJRiAAAAAAD8zqZNm7Rr1y6WTgIujFIMAAAAAIDfiYqKUsOGDdW+fXvTUQBUEkoxAAAAAAB+Jzo6WiNGjGDpJODCKMUAAAAAAPiNDRs2aM+ePSydBFwcpRgAAAAAAL9hWZZCQkIUFhZmOgqASkQpBgAAAADA/7Hb7SydBNwEpRgAAAAAAP9n/fr1OnDgAEsnATdAKQa4kPz8fDVr1kyjRo0qsS0lJUW9e/eWv7+/atWqpW7dumnlypUVtu+yjp+SkiKbzabExMQK2zeK433g3EzNz4EDBzRjxgz16dNH1apVk81mU0JCQqnPdef5AQDAsiw1a9ZMbdq0MR0FQCXzMh0AQMV59913tW/fPsXFxRV7PDExUffee68KCwsvPpacnKwvv/xSCxcu1NChQ69pv1czfnh4uHr37q2///3v6t27tzw86OYrGu8D52Zqfu666y4dO3asTM915/kBALg3u92umJgYPfzww6ajAHAA/pULuIi8vDxNmjRJAwcOVGhoaLHHH3/8cRUWFmrs2LH68ccflZ2drVdffVV2u12jR4/WmTNnrmm/Vzv+uHHjtHXrVkVFRZV7vygd7wPnZmp+JKlx48YaM2aMEhIS9Nhjj13x+e44PwAApKSk6ODBgyydBNwEpRjgImJiYnT8+PESS7JWrVqlAwcOqGvXrpoyZYqCgoJUp04dvfDCCxo8eLCysrK0ZMmScu+3POP37NlT9erV06xZs8q9X5SO94FzMzU/0i/XR7mwfNLHx+eKz3fH+QEAICoqSs2bN1erVq1MRwHgAJRigIv45JNPVL16dUVGRhZ7PDk5WZL0hz/8ocRrRo4cKUlau3ZtufdbnvE9PT01YMAArVmzRgcPHiz3vlES7wPnZmp+ysMd5wcA4N6Kioq0aNEijRgxwnQUAA5CKQa4gIKCAn355ZcKCwuTt7d3sW27d++WpFJ/23XbbbcVe055lHf8Dh06SJJWr15d7n2jON4Hzs3k/JSXO80PAADJyck6cuTINV/HE0DVQSkGuIDt27frzJkzpd4h59SpU5KkgICAEtsuPPbTTz+Ve9/lHb9t27aSpNTU1HLvG8XxPnBuJuenvNxpfgAAsCxLrVu3VosWLUxHAeAglGKAC8jMzJQkBQUFldhmt9sv+brLbSur8o4fHBws6dfsuHa8D5ybyfkpL3eaHwCAeyssLFRMTAwX2AfcDKUY4AJycnIkSbVq1Sqxzd/fX5J08uTJEtuys7OLPac8yjt+7dq1Jf2aHdeO94FzMzk/5eVO8wMAcG9r1qzRsWPHNGTIENNRADgQpRjgAurUqSPp1yVYvxUaGipJ2rZtW4ltaWlpxZ5THuUd/8JSsLp165Z73yiO94FzMzk/5eVO8wMAcG+WZaldu3Zq3ry56SgAHIhSDHAB9erVkyRlZWWV2Na1a1dJ0vz580tsmzdvXrHnlEd5x7+Q9UJ2XDveB87N5PyUlzvNDwDAfRUUFCg2NpYL7ANuiFIMcAEtWrSQn5+ftmzZUmJbr1691LBhQyUnJ+vZZ59VVlaWfvrpJ7322muKiYlRUFCQBg4cWO59l3f8C1kv3N0O1473gXMzOT/l5U7zAwBwX59//rmOHz9OKQa4IUoxwAV4eXkpPDxcmzdv1vnz54tt8/Hx0XvvvSdPT09NnTpVwcHBqlOnjiZOnCibzaaZM2fKz8+v2GvCw8Nls9lK/eH998ozviStX79ektS9e/dr+M7xW7wPnJvJ+ZGkkSNHymazXRxPkvr27Xvxsejo6BKvcaf5AQC4L8uydMcddxi5VAEAsyjFABfx0EMP6dy5c4qLiyuxLTIyUmvWrFHPnj1Vq1Yt1axZU126dFFCQkKpd9gpKiqS9MsP8WVxteMXFhZqyZIl6tq1qxo1anSV3ykuh/eBczM5P1fLHecHAOB+8vPzFRsby10nATdVOf+SBuBwQ4YM0d/+9jfNnTtXgwYNKrE9PDxcq1atuuI4RUVFysjIUMuWLdWyZcsy77+s40u/nKKemZmpqVOnlnl8lA3vA+dmcn7mzZt38fpkZeGO8wMAcD9JSUnKzs5m6STgpjhTDHARPj4+mjBhgpYuXapdu3aVe5xt27YpJydH48ePl81mq8CEv3rrrbfUqlUr/vFRCXgfODfmBwAA52JZlu688041btzYdBQABlCKAS5k9OjRCgkJ0SuvvFLuMVJSUtSoUSONGDGiApP9at26dUpKStJbb70lT0/PStmHu+N94NyYHwAAnENeXp6WLl3K0knAjbF8EnAh3t7e+v77769pjNGjR2v06NEVlKikzp07y263V9r44H3g7JgfAACcQ2JionJycnT//febjgLAEM4UAwAAAAC4Hcuy1KlTJ24oA7gxSjEAAAAAgFs5d+6cli1bxtJJwM1RigEAAAAA3Ep8fLxOnz7N0knAzVGKAQAAAADcimVZCg8PV4MGDUxHAWAQpRgAAAAAwG3k5uZq+fLlLJ0EQCkGAAAAAHAfcXFxys3N1aBBg0xHAWAYpRgAAAAAwG1YlqVu3bqpfv36pqMAMIxSDAAAAADgFnJzcxUXF8fSSQCSKMUAAAAAAG5i2bJlOnfunAYPHmw6CgAnQCkGAAAAAHALlmWpR48euu6660xHAeAEKMUAAAAAAC7v9OnTio+PZ+kkgIsoxQAAAAAALm/p0qXKz8/XgAEDTEcB4CQoxQAAAAAALs+yLPXq1UvBwcGmowBwEpRiAIAKt2PHDtMRAAAALjp16pRWrlzJ0kkAxXiZDgCgpNTUVE2ePNl0DKd07Ngx0xEcas6cOUpMTDQd46qtWbNG58+fV58+fSpl/JMnT1bKuFerqs5PZXOW+QEA4ILY2FgVFhaydBJAMZRigJO56aablJ6ertmzZ5uO4pSqV6+uwMBA0zEqnbe3t0JCQhQXF2c6SrmcPXtWx44d0+bNmxUUFFQp+wgJCVG1atUqZewrqerz4wgm5wcAgN+zLEsREREKCAgwHQWAE7HZ7Xa76RAAANeyZcsWtWvXTpI0cuRIzZkzR15e/B4GAAA4Xk5Ojq6//np98MEHGjVqlOk4AJzHZK4pBgCocKGhobLZbJKkBQsWaMCAATp37pzhVAAAwB0tXrxYNpuNpZMASqAUAwBUOD8/v4vLEwoKCrRy5UpFRETo9OnThpMBAAB3Y1mWIiMj5e/vbzoKACdDKQYAqBRNmza9+P8FBQVKTU3V3XffzUXYAQCAw2RnZ2v16tXcdRJAqSjFAACVokWLFsWuI1ZQUKCtW7eqW7duOn78uMFkAADAXURHR8vDw0P9+vUzHQWAE6IUAwBUitDQUHl4FP9rJj8/Xzt37lTHjh116NAhQ8kAAIC7sCxL99xzj2rXrm06CgAnRCkGAKgUTZs2VX5+fonH8/PzdejQIXXo0EG7du0ykAwAALiDrKwsrVmzhqWTAC6JUgwAUCmaNm0qu91e6rb8/HwdP35cHTp00HfffefgZAAAwB1ER0fLx8dH9957r+koAJwUpRgAoFKEhobKZrNdcntBQYFycnLUtWtXbdiwwYHJAACAO7AsS/fee6/8/PxMRwHgpCjFAACVombNmgoMDLzkdi8vL9ntdnXr1k01atRwYDIAAODqjh07puTkZJZOArgsSjEAQKVp2rRpiccu3JEyPDxcX3/9tZYuXapWrVo5OhoAAHBh0dHR8vX1Vd++fU1HAeDEKMUAAJWmRYsW8vb2liR5enpe/O+YMWP0xRdfqH379ibjAQAAF2VZlvr376+aNWuajgIG0TfYAAAgAElEQVTAiVGKAQAqTdOmTVVQUCCbzaaWLVsqPj5eY8aMkWVZOnPmjOl4AADABWVmZmrdunUsnQRwRZRiAIBKExoaqubNmys6OlpbtmxRZGSk/vGPf+jcuXOaOXOm6XgAAMAFWZalGjVqqE+fPqajAHByNrvdbjcdAgDgmnJzc+Xr6ysPj+K/g5k4caJmzJihvXv3qm7duobSAQAAV9S5c2eFhIRo7ty5pqMAcG6TOVMMAFBpatSoUaIQk6Rx48bJw8NDb7/9toFUAADAVR0+fFipqaksnQRQJpRiAACH8/f317hx4zR16lQdP37cdBwAAOAiLMuSv7+/IiIiTEcBUAVQigEAjHjqqadUs2ZNvfnmm6ajAAAAF2FZlgYMGKBq1aqZjgKgCqAUAwAYUbNmTf3jH//QjBkzdPjwYdNxAABAFXfo0CFt2LCBpZMAyoxSDABgzBNPPKHg4GBNnjzZdBQAAFDFLViwQHXq1FGvXr1MRwFQRVCKAQCMqVatmiZOnKgPPvhAe/fuNR0HAABUYZZlafDgwfLx8TEdBUAVQSkGADDqz3/+s0JCQvTqq6+ajgIAAKqovXv3atOmTSydBHBVKMUAAEZ5enpq4sSJmjt3rjIyMkzHAQAAVdDChQsVGBioHj16mI4CoAqx2e12u+kQAAD3VlRUpLCwMN1yyy1auHCh6TgAAKCKadeune6880699957pqMAqDomc6YYAMA4Dw8Pvfjii4qKitLmzZtNxwEAAFXInj17tGXLFpZOArhqlGIAAKcwaNAg3XnnnfrXv/5lOgoAAKhCPvvsMwUHB6tbt26mowCoYijFAABO4+WXX9by5cuVmppqOgoAAKgiLMvSkCFD5OXlZToKgCqGa4oBAJxK9+7dVVRUpLVr15qOAgAAnNzOnTvVvHlzffHFF7r77rtNxwFQtXBNMQCAc3n11VeVnJys1atXm44CAACc3IIFC3TDDTeoS5cupqMAqII4UwwA4HQiIyN18uRJff3117LZbKbjAAAAJ9WyZUv17NlT06dPNx0FQNXDmWIAAOczadIkbdy4UStWrDAdBQAAOKlt27Zp+/bt3HUSQLlRigEAnM7tt9+uAQMG6J///KeKiopMxwEAAE7IsizVq1dPnTp1Mh0FQBVFKQYAcEqvvfaa0tPTtWjRItNRAACAE4qOjtbw4cPl4cGPtQDKh6MHAMAptWzZUiNGjNALL7yggoIC03EAAIAT2bJlizIyMlg6CeCaUIoBAJzWyy+/rH379mn+/PmmowAAACdiWZZuuukmdejQwXQUAFUYpRgAwGmFhobq4Ycf1osvvqi8vDzTcQAAgJOIiorSsGHDuEs1gGtCKQYAcGovvfSSjh8/rg8//NB0FAAA4AQ2bdqk3bt3s3QSwDWjFAMAOLUGDRroscce06uvvqrc3FzTcQAAgGGWZalJkyZq37696SgAqjhKMQCA03vhhRd05swZvfvuu6ajAAAAwxYtWsTSSQAVglIMAOD0goODNWbMGL3++us6deqU6TgAAMCQDRs2aM+ePSydBFAhKMUAAFXC888/r8LCQk2bNs10FAAAYIhlWQoJCVFYWJjpKABcAKUYAKBKqFOnjp555hlNmTJFJ0+eNB0HAAA4mN1uV3R0tEaMGGE6CgAXQSkGAKgynnnmGVWrVk1vvvmm6SgAAMDBUlNTdeDAAZZOAqgwlGIAgCrDz89Pzz33nN555x0dPXrUdBwAAOBAlmWpWbNmatOmjekoAFwEpRgAoEoZM2aM6tatq8mTJ5uOAgAAHKSoqEjR0dEaPny46SgAXAilGACgSvH19dU///lPzZo1S/v27TMdBwAAOMC6dev0ww8/sHQSQIWy2e12u+kQAABcjfz8fDVv3lw9evTQBx98YDqOQ506dUo//vijsrKydPr0aZ0+fVoFBQWy2+3KycmRJJ0/f165ubmqXr26fH19JUn+/v7y8PCQl5eXatWqJT8/PwUFBSkoKEh16tQx+S0BAHBFTz75pFatWqWMjAzTUQC4jslephMAAHC1vL299a9//UuPPPKIxo0bp1tuucV0pGuWn5+vQ4cOaf/+/dq/f7/27dun/fv36+DBgzpx4sTFr/z8/FJf7+HhIX9/f0mSj4+PatasqdzcXJ0/f17SL2VaYWFhqa/18vJSYGDgxa+GDRuqcePGF7+aNGmim266ST4+PpXzzQMAcBlFRUWKiYnRX/7yF9NRALgYzhQDAFRJhYWFat26tdq1a6f58+ebjlNm+fn52rFjh7Zu3aq0tDSlpaVp+/btOnz48MXSqkaNGmrSpImaNGmihg0bKigoSIGBgRf/GxwcrKCgINWqVeviGWBlVVRUpJ9++kmnT5/WiRMnLp51dqF0y8rK0oEDBy6Wc2fOnJH0S+l244036tZbb1WbNm3UunVrtW7dWrfeeitlGQCgUq1Zs0bdu3dXenq6WrRoYToOANcxmVIMAFBlWZalBx54QN9++61T3omqqKhI27Zt07p165Samqq0tDRlZGQoLy9P3t7euvXWW9W6dWu1atVKISEhF8/Muu6660xHv+jHH3+8WJDt3btX27Zt07Zt27R9+/aL30fz5s112223qUOHDgoPD1fr1q3l6elpOjoAwEWMHj1a69at03fffWc6CgDXQikGAKi67Ha7br/9djVu3FgxMTGm4+js2bP6+uuvlZKSotTUVH311Vc6deqUateurQ4dOqhdu3bFzrDy9vY2Hbnc8vPztXPnzotnvG3ZskXr169XTk6OatWqpQ4dOqhTp07q3LmzOnbsKD8/P9ORAQBVUGFhoRo0aKAnn3xSEyZMMB0HgGuhFAMAVG3Lly/Xfffdp/Xr1+uuu+5y+P737t2rVatWadmyZUpKStL58+dVr149hYeHq3Pnzrr99tt11113VekC7Grs3btXKSkpWrdunVJSUpSRkSEPDw+1bdtW/fr103333aewsDDZbDbTUQEAVcCqVavUu3dvZWRkqHnz5qbjAHAtlGIAgKqvU6dOql27thISEip9X7m5uUpMTFRCQoISEhJ08OBBBQUFKSIiQn379lWPHj1Uv379Ss9RVWRmZuqLL75QfHy8Vq5cqePHj6tBgwbq27evIiMj1adPH84iAwBc0l/+8hdt3LhR3377rekoAFwPpRgAoOpLTk5Wt27d9MUXX+juu++u8PHPnTunpKQkRUVFKTY2VmfPnlW7du3Uq1cv9erVS3fffbe8vLihc1mkp6dr+fLlWrVqldauXStPT0/16tVLQ4cO1eDBgynIAAAXFRQUqH79+ho7dqzGjx9vOg4A10MpBgBwDT179tT58+eVkpJSIeOdP39eiYmJWrhwoZYtW6bc3Fx17dpVw4YN0+DBg53qYvhVVVZWlhYvXizLsvTFF1/I19dX9913n4YNG6a+ffvK19fXdEQAgEGJiYmKjIzUrl27FBoaajoOANdDKQYAcA3ffPON7rrrLsXHx6tPnz7lHmfHjh366KOP9OGHH+rkyZPq2LGjhg4dqmHDhqlevXoVmBi/dfLkSS1fvlxRUVFKSEhQjRo1NGLECD3++OMKCwszHQ8AYMAjjzyitLQ0ffPNN6ajAHBNlGIAANdx3333KTMzU998881VXcj97NmzWrhwoWbPnq3U1FSFhobqkUce0UMPPaQGDRpUYmKUJjMzU/Pnz9fs2bO1c+dOtW/fXo899phGjBihWrVqmY4HAHCA/Px83XDDDRo/frz+/ve/m44DwDVRigEAXMfWrVvVtm1bRUdHa9CgQVd8fkZGhqZPn65PP/1U58+f16BBg/TYY4+pe/fu3B3RCdjtdn355Zf64IMPFB0dLS8vL40YMUJPP/20WrVqZToeAKASxcXFqV+/ftq7d68aN25sOg4A10QpBgBwLcOHD1d6errS0tLk4eFR6nPWrFmjKVOmaMWKFWratKmeeOIJPfTQQwoKCnJwWpRVdna25s2bp1mzZikjI0MREREaN26cevXqZToaAKAS/PGPf9TOnTuVmppqOgoA1zW59J8WAACool599VXt3LlTn332WbHHi4qKtGzZMnXs2FHdu3dXZmamPvroI23fvl3PPPMMhZiTq1u3rp588kmlp6crOTlZ3t7eioiIUJs2bfT+++/r3LlzpiMCACpIXl6eli5dqmHDhpmOAsDFUYoBAFxKs2bNNHLkSE2cOFF5eXnKy8vTrFmzFBISokGDBqlhw4b6+uuvtXHjRo0aNUqenp6mI+MqhYeHa9myZdq4caNatWqlv/71r2ratKneeecdnT9/3nQ8AMA1SkhIUE5Oju6//37TUQC4OJZPAgBczoEDB3TLLbdoxIgRWrt2rTIzM/Xoo4/q2WefVZMmTUzHQwU7ePCgpk6dqvfee0/BwcF64YUX9Kc//Une3t6mowEAymHkyJHav3+/UlJSTEcB4NpYPgkAcC1FRUXasGGD6tatq/nz56tLly7avn27ZsyYQSHmoho2bKi3335bBw4c0IMPPqinn35aoaGhev/991VQUGA6HgDgKpw7d07Lli1j6SQAh6AUAwC4jBUrVqh169Z64IEH1KdPH+3cuVOffPKJQkJCTEeDA1x33XV6/fXXtWPHDkVEROivf/2rWrZsqcWLF5uOBgAoo/j4eJ05c4alkwAcglIMAFDlZWRkKDIyUv369VOLFi2Unp6ujz76iDLMTTVq1EgffPCBMjIydMcdd+j+++9Xz549lZaWZjoaAOAKLMtSeHi4GjRoYDoKADdAKQYAqLKys7M1fvx4tW3bVsePH9fatWsVFRWlW265xXQ0OIGbb75Z8+fP19dff61z586pXbt2GjVqlI4dO2Y6GgCgFLm5uVq+fDlLJwE4DKUYAKDKKSws1IwZMxQaGqqPPvpIM2fO1MaNG9W1a1fT0eCE2rdvr5SUFM2ZM0eff/65mjdvrv/85z9cbwwAnExcXJxyc3M1aNAg01EAuAnuPgkAqFK2bt2qRx99VFu2bNHTTz+tF154QbVr1zYdC1XEmTNnNHnyZE2dOlW33nqrPvzwQ7Vr1850LACApGHDhunEiRP6/PPPTUcB4B64+yQAoGrIz8/XG2+8ofbt26ugoEDr16/X//zP/1CI4ar4+flp0qRJ2rZtm+rWras777xTTz/9tM6ePWs6GgC4tdzcXMXFxbF0EoBDUYoBAJzeV199pbZt2+qVV17Ryy+/rA0bNnB2D67JzTffrFWrVunDDz/UvHnzdNttt2nVqlWmYwGA21q6dKnOnTvH0kkADkUpBgBwWj///LOeeuopdenSRY0aNdL27dv1/PPPy9PT03Q0uACbzaZRo0YpLS1NrVu3VkREhB5//HHOGgMAAyzLUo8ePXTdddeZjgLAjVCKAQCc0nfffaf27dtr7ty5+vjjjxUXF6dGjRqZjgUX1KBBA8XGxmrhwoVatGiRwsLCtHHjRtOxAMBtnD59WgkJCSydBOBwlGIAAKdit9s1bdo03XXXXapVq5Y2bdqkkSNHmo4FNzB06FClp6fr5ptvVseOHfXSSy+psLDQdCwAcHlLly5VQUEBSycBOBylGADAaRw7dkz9+vXTuHHjNH78eKWkpCgkJMR0LLiR66+/XitWrNBbb72l119/XV26dNHevXtNxwIAl2ZZlnr27KnAwEDTUQC4GUoxAIBTWLlypVq1aqVdu3bpq6++0ksvvcS1w2CEzWbT008/rfXr1ysnJ0d33HGHli9fbjoWALikU6dOaeXKlSydBGAEpRgAwCi73a5///vfuueeexQREaFvv/1W7du3Nx0LUNu2bbVp0yYNHDhQ/fv314svvqiioiLTsQDApcTGxqqwsFADBgwwHQWAG7LZ7Xa76RAAAPd0+vRp/elPf9KSJUv02muv6fnnnzcdCSjVJ598oieeeEJ333235s2bp4CAANORAMAl9OvXTzabTcuWLTMdBYD7mcyZYgAAI3bu3KkOHTooOTlZiYmJFGJwaqNGjVJKSoq2b9+udu3a6ZtvvjEdCQCqvJycHCUlJbF0EoAxlGIAAIeLjY3VHXfcobp162rLli3q0aOH6UjAFYWFhWnDhg0KCQlRt27dZFmW6UgAUKXFxMTIZrOpf//+pqMAcFOUYgAAh5o2bZqGDBmiBx98UKtXr1b9+vVNRwLK7LrrrlNSUpIeffRRjRgxQm+88YbpSABQZVmWpcjISPn7+5uOAsBNeZkOAABwD4WFhRo7dqzeeecd/etf/9JLL71kOhJQLl5eXpo+fbpatWqlMWPG6Pvvv9esWbPk7e1tOhoAVBknTpzQ6tWr9dFHH5mOAsCNUYoBACrd2bNn9Yc//EEJCQmaN2+eHnzwQdORgGv2l7/8RQ0bNtSwYcN06NAhRUVFcbYDAJRRTEyMPD091a9fP9NRALgx7j4JAKhUx44d03333ad9+/ZpyZIl6tSpk+lIQIX65ptv1L9/f11//fWKi4tjSTAAlEHv3r1Vu3ZtLVq0yHQUAO6Lu08CACrP4cOH1a1bN2VnZys1NZVCDC6pffv2Sk1NVV5enrp06aJ9+/aZjgQATi0rK0tr1qzhrpMAjKMUAwBUiv379+vuu++Wh4eH1q5dq9DQUNORgErTuHFjrVu3TkFBQercubO2bdtmOhIAOK3o6Gj5+Pjo3nvvNR0FgJujFAMAVLgdO3aoS5cu8vf3V3JyMsvJ4Bbq1q2rlStXqkmTJurZs6e2bNliOhIAOCXLstSvXz/5+fmZjgLAzVGKAQAqVHp6unr06KF69eopKSlJQUFBpiMBDuPv76+VK1eqTZs26t69u1JTU01HAgCncvToUSUnJ7N0EoBToBQDAFSYb7/9Vl26dNGtt96q1atXKyAgwHQkwOFq1qx58aYSffr00VdffWU6EgA4jejoaPn6+ioyMtJ0FACgFAMAVIz09HT16dNHd9xxh1asWMGSCLi16tWra/Hixerevbvuvfdebd682XQkAHAKlmWpf//+qlmzpukoAEApBgC4drt371ZERISaNm2qmJgY+fr6mo4EGOfj46OoqCh17NhRERERSk9PNx0JAIzKzMzUunXrWDoJwGlQigEArsnhw4fVu3dvXXfddZwhBvyOj4+PoqOj1aJFC/Xs2VM7d+40HQkAjLEsSzVr1lSfPn1MRwEASZRiAIBrcPz4cfXu3Vu1atXSqlWrVLduXdORAKdTo0YNLVu2TA0bNlTv3r21f/9+05EAwAjLsjRgwABVr17ddBQAkEQpBgAop1OnTqlXr16y2+1KSkpSYGCg6UiA06pdu7bi4+NVp04d9e3bVydPnjQdCQAc6tChQ0pNTWXpJACnQikGALhq+fn5Gjp0qLKysrRy5Updf/31piMBTi8wMFAJCQnKzc3V4MGDdf78edORAMBhLMuSv7+/IiIiTEcBgIsoxQAAV+3pp59WSkqKYmNj1bBhQ9NxgCqjfv36io+P13fffaeHH35YdrvddCQAcIioqCgNHDhQ1apVMx0FAC6iFAMAXJVJkybp/fff16effqo777zTdBygymnRooUWL16sxYsX68UXXzQdBwAq3cGDB7VhwwaWTgJwOl6mAwAAqg7LsjRx4kRNmzZNAwYMMB0HqLLuvvtuvfvuu3rkkUdUv359PfHEE6YjAUClWbBggerUqaOePXuajgIAxVCKAQDKZP369Ro1apSeeeYZPfnkk6bjAFXen//8Z+3du1dPPfWUWrRooa5du5qOBACVwrIsDR48WD4+PqajAEAxNjsXswAAXMHx48d1++23q3Xr1lq+fLk8PFh9D1QEu92u+++/X1999ZU2bdqkBg0amI4EABVq7969Cg0NVUJCAhfZB+BsJvNTDQDgsgoKCjR8+HB5enpq7ty5FGJABbLZbPrkk08UGBioIUOGcEdKAC5n4cKFCgwMVI8ePUxHAYAS+MkGAHBZzz//vNavX6+YmBgFBgaajgO4HD8/P8XExGj79u0aO3as6TgAUKEuLJ308uLKPQCcD6UYAOCSFi9erP/85z969913FRYWZjoO4LJuueUWffzxx3r33Xc1Z84c03EAoEJ8//332rJlC3edBOC0KMUAAKXasWOHRo0apTFjxuiPf/yj6TiAyxs4cKDGjRunMWPGKC0tzXQcALhmCxcuVHBwsLp162Y6CgCUigvtAwBKyMvLU4cOHeTt7a2UlBR5e3ubjgS4hYKCAvXo0UMnT57UN998o+rVq5uOBADldtttt6lLly6aOXOm6SgAUBoutA8AKOmFF17Q999/r7lz51KIAQ7k5eWlTz/9VEeOHNHzzz9vOg4AlNuOHTu0detWlk4CcGqUYgCAYpKTkzV16lRNnz5dzZo1Mx0HcDs33nij3n//fc2YMUPLly83HQcAymXBggW64YYbFB4ebjoKAFwSyycBABfl5OSoTZs2uv322xUTE2M6DuDWRo0apYSEBKWlpemGG24wHQcArkrLli3Vs2dPTZ8+3XQUALgUlk8CAH712GOPqaioSLNnzzYdBXB7M2bMkJ+fnx599FHxO0wAVcnWrVu1fft2lk4CcHqUYgAASb8sc1i0aJE+/vhjBQQEmI4DuL3atWtr3rx5SkhI0Jw5c0zHAYAysyxL9evXV6dOnUxHAYDLohQDAOjEiRP629/+pscff1w9evQwHQfA/+nUqZOefPJJjR07VkeOHDEdBwDKJDo6WsOHD5eHBz9uAnBuHKUAABo7dqw8PDw0efJk01EA/M6kSZMUGBioZ555xnQUALiiLVu2aMeOHRo6dKjpKABwRZRiAODmVq9erblz52rmzJmqU6eO6TgAfqdGjRqaOXOmLMtSbGys6TgAcFmWZemmm25Shw4dTEcBgCvi7pMA4MZyc3N12223KSwsTJZlmY4D4DIeeughff7559q+fTsFNgCn1bRpUw0cOFBvvvmm6SgAcCXcfRIA3NnEiRN18uRJbpcOVAH/+c9/VFBQoAkTJpiOAgCl2rRpk3bv3s1dJwFUGZRiAOCmduzYoXfeeUeTJ0/WDTfcYDoOgCsICgrSm2++qffee09paWmm4wBACZZlqUmTJrrjjjtMRwGAMmH5JAC4qXvuuUdHjhzRpk2b5OnpaToOgDKw2+3q0KGDatasqdWrV5uOAwDFhIaGasiQIXr99ddNRwGAsmD5JAC4o7i4OMXHx+utt96iEAOqEJvNpmnTpmnNmjVavHix6TgAcNHXX3+tPXv2sHQSQJXCmWIA4GYKCgrUtm1bNW/eXNHR0abjACiHkSNHKjU1Venp6fL19TUdBwD07LPPasmSJdq9e7fpKABQVpwpBgDuZsaMGdq1axdLG4Aq7I033tCxY8c0bdo001EAQHa7XYsWLdKIESNMRwGAq0IpBgBuJDs7W6+88oqeffZZhYaGmo4DoJwaNGig5557TpMmTdLx48dNxwHg5lJTU3XgwAENHTrUdBQAuCqUYgDgRqZMmSIPDw+NHz/edBQA12jcuHGqWbOm3njjDdNRALg5y7J0yy23qE2bNqajAMBVoRQDADeRlZWl6dOn6+9//7tq165tOg6Aa1SjRg2NHz9e//3vf/XDDz+YjgPATRUVFSk6OlrDhw83HQUArhqlGAC4iTfeeEO+vr4aPXq06SgAKsjjjz+u4OBgrhEIwJh169bphx9+4K6TAKokSjEAcANHjx7Vf//7X/3zn/9UrVq1TMcBUEF8fX31z3/+U++//772799vOg4AN2RZlpo3b66WLVuajgIAV41SDADcwOTJk+Xv76/HH3/cdBQAFeyRRx7RjTfeqMmTJ5uOAsDNFBUVKSYmRg888IDpKABQLpRiAODijhw5ovfff18TJkxQ9erVTccBUMG8vb01YcIEzZkzh7PFADjU2rVrdeTIEe46CaDKohQDABc3ffp01a5dW4888ojpKAAqyahRo1S/fn29/fbbpqMAcCOWZem2227TrbfeajoKAJQLpRgAuLCzZ89q9uzZeuqpp+Tr62s6DoBK4uXlpaeeekqzZ8/WiRMnTMcB4AYKCwsVExPDBfYBVGmUYgDgwmbPnq2ff/5ZTzzxhOkoACrZY/+fvTsPq6rc/zf+3iCDIpqipjljDoUTOaWIs4k5lqmnpBwq9ZjFKSs9TdKxcqgsMzM1M0krcSwnHHJGc4rBqXIAs8wBUlGZBNbvj/OTbx6sHMBnr839ui6uU6wF695wwu2HZz37ySfl4eGhGTNmmE4BUAisX79ep06dYigGwNYYigGAi8rOztbkyZM1aNAg+fn5mc4BUMB8fX01ePBgTZ48WZmZmaZzALi4yMhIBQYGqmbNmqZTAOCGMRQDABe1cOFCJSYmKiwszHQKgFvkmWeeUVJSkr744gvTKQBcWFZWlpYsWcIqMQC257AsyzIdAQDIf82bN1fFihW1YMEC0ykAbqHHHntMcXFxiouLM50CwEVFRUWpc+fOOnjwoO68807TOQBwo8ayUgwAXFBcXJy+++47PfPMM6ZTANxizzzzjOLj47V161bTKQBc1Pz589WkSRMGYgBsj6EYALig6dOnq1atWgoODjadAuAWa9y4sQIDA/XJJ5+YTgHggi5dusStkwBcBkMxAHAxaWlp+vLLL/Xkk0/K4XCYzgFgwBNPPKGvvvpKZ8+eNZ0CwMWsXr1aZ86c0UMPPWQ6BQBuGkMxAHAxkZGRunjxoh577DHTKQAM6devnxwOh7766ivTKQBcTGRkpJo1a6Zq1aqZTgGAm8ZQDABczIwZM9SzZ0+VK1fOdAoAQ0qWLKmHHnpIH3/8sekUAC4kIyNDX3/9NbdOAnAZDMUAwIXs379f0dHReuKJJ0ynADDsySefVFxcnL7//nvTKQBcxKpVq5SSkqJevXqZTgGAfMFQDABcyJw5c1S1alW1b9/edAoAw1q2bKnatWvr888/N50CwEVERkaqRYsWqlKliukUAMgXDMUAwIXMnz9fffv2lZsbPxuAHEMAACAASURBVN4BSH379tW8efOUk5NjOgWAzaWnp2vp0qXcOgnApfC3JgBwEbt27dKhQ4d4sgog18MPP6zffvtNW7duNZ0CwOZWrFihCxcucOskAJfCUAwAXMS8efPk7++ve+65x3QKACdRp04dBQQEaN68eaZTANjc/PnzFRwcrIoVK5pOAYB8w1AMAFyAZVlasGCB+vbtK4fDYToHgBPp06ePFixYoOzsbNMpAGwqNTVVy5YtYzU6AJfDUAwAXMD27duVmJjIk1UAefTt21cnTpzQ5s2bTacAsKnly5crNTVVDzzwgOkUAMhXDMUAwAUsXLhQNWvWVMOGDU2nAHAytWvXVv369bVgwQLTKQBsKjIyUm3atFGFChVMpwBAvmIoBgAuYPny5erevbvpDABOqlu3blqxYoXpDAA2lJqaqpUrV7IaHYBLYigGADZ37NgxHThwQJ07dzadAsBJhYSEKCEhQT/99JPpFAA288033ygjI4NbJwG4JIZiAGBzy5cvl4+Pj1q2bGk6BYCTat68uUqXLq2VK1eaTgFgM5GRkWrXrp3KlStnOgUA8h1DMQCwuaioKLVv315eXl6mUwA4KXd3d7Vv315RUVGmUwDYyPnz5xUVFaXevXubTgGAAsFQDABsLDMzU+vWrVNISIjpFABOrnPnztqwYYNSU1NNpwCwia+//lpZWVncOgnAZTEUAwAb27Jli86fP69OnTqZTgHg5Dp37qyMjAxt3LjRdAoAm5g/f746dOggPz8/0ykAUCAYigGAja1bt041a9aUv7+/6RQATq58+fKqW7euvv32W9MpAGwgJSVFq1ev5lUnAbg0hmIAYGPR0dEKDg42nQHAJlq2bKno6GjTGQBsYPHixcrOzlb37t1NpwBAgWEoBgA2denSJe3YsUMtWrQwnQLAJoKCgrR79272FQPwtyIjI9WpUyeVLl3adAoAFBiGYgBgU7GxsUpNTVVQUJDpFAA20bJlS126dEm7du0ynQLAiZ09e1Zr167l1kkALo+hGADYVHR0tPz8/FS7dm3TKQBsomrVqqpUqRK3UAL4S4sWLZLD4eDWSQAuj6EYANhUdHS0WrRoIYfDYToFgI0EBQUxFAPwlyIjI9W5c2eVLFnSdAoAFCiGYgBgU9u2bWM/MQDXLSgoSNu2bZNlWaZTADihpKQkrVu3Tr179zadAgAFjqEYANjQqVOn9Ouvv6px48amUwDYTOPGjfX7778rMTHRdAoAJ7Ro0SK5u7ura9euplMAoMAxFAMAG4qLi5Mk1a9f33AJALupV6+eHA6H4uPjTacAcELz589Xly5dVKJECdMpAFDgGIoBgA3Fx8erfPnyKleunOkUADZTvHhxVa9eXXv27DGdAsDJnD59Whs2bOBVJwEUGg6LDSUAwHYGDBig3377TatWrTKdAsCGevbsKS8vL82bN890CuDSjh07ZqvbEC3LUkpKinx9feXmduvWT8ybN0916tS5ZdcDgP9vbBHTBQCA6xcfH6/27dubzgBgU/Xr19f8+fNNZwAuLyMjQ/Hx8Ro0aJDKly9vOsfpnDlzRlOnTlVqaqrpFACFFEMxALCZrKwsHThwQP/6179MpwCwqXr16umtt95SWlqaihYtajoHcHlPPfWU7rnnHtMZTufQoUOaOnWq6QwAhRh7igGAzRw6dEjp6emqW7eu6RQANlWvXj1lZ2frwIEDplMAAACMYSgGADZz6NAhSVLNmjUNlwCwqxo1asjd3V2HDx82nQIAAGAMQzEAsJnExESVKVNGvr6+plMA2JSHh4fuuOMOJSYmmk4BAAAwhqEYANhMYmKiqlWrZjoDgM1Vq1aNoRgAACjUGIoBgM0wFAOQH6pXr66EhATTGQAAAMYwFAMAm0lISFD16tVNZwCwOVaKAQCAwo6hGADYDCvFAOSH6tWrKzExUZZlmU4BAAAwgqEYANjI+fPn9fvvv6tq1aqmUwDYXLVq1ZSWlqaTJ0+aTgEAADCCoRgA2MipU6ckSeXLlzdcAsDubr/9dknS6dOnDZcAAACYwVAMAGwkKSlJklSmTBnDJQDs7vLPkcs/VwAAAAobhmIAYCPJycmSGIoBuHmlS5eWm5tb7s8VAACAwoahGADYSFJSkry9veXj42M6BYDNubu767bbbmOlGAAAKLQYigGAjSQnJ7NKDEC+KVOmDCvFAABAocVQDABsJDk5WX5+fqYzbGHXrl1yOBwKDw83nQI4LT8/P4ZigJO6dOmSatWqpcceeyzPsS1btqhjx44qWbKkfH191bp1a61evTpfrrt582Y98cQTuuuuu1S0aFGVLl1aHTt21LJly67a4XA4tGrVqny5NgDcagzFAMBGfv/9d5UuXdp0htO4/GT8jTfeKJDzkf/s8D2wQ2N+YSgGOK+pU6cqISFBr7322hXvX7Vqldq0aaO1a9cqJSVFFy5c0KZNmxQSEqL58+ff1DUPHTqkVq1aaebMmfrhhx+Unp6uM2fOaO3aterWrZsmTpx4xfktW7ZUx44d9cILLygnJ+emrg0AJjAUAwAbSU1NZT+xa9S4cWNZlsVKMeAvFCtWTGlpaaYzAPyPzMxMvfnmm+rZs6fuvPPOK94/ZMgQZWdn67nnntPp06d15swZjRkzRpZladiwYbpw4cINX9fNzU2dOnXS3Llz9dNPPyktLU0JCQl68cUXJUkvvfSSUlJSrviY559/Xnv27LnpgRwAmMBQDABsJDMzU56enqYzALgILy8vZWRkmM4A8D8WLVqkU6dO5bl1cu3atTp69KhatWqld999V2XKlNFtt92mV155RQ8++KCSkpL09ddf3/B1/f39FRUVpUceeUQ1a9aUt7e3qlWrpvHjx6t169bKyMjQgQMHrviY9u3bq0KFCvr4449v+LoAYApDMQCwkYyMDFsOxc6cOaNhw4apfPnyKlq0qBo3bqxly5bps88+k8Ph0IIFC64437Isffrpp2rRooV8fX1VtGhRNWjQQFOmTJFlWZKkN954Q8HBwZKkV199VQ6HI/dNyrun2N+df63XlaSoqCg5HA69//77Wr9+vVq0aCEfHx9VrlxZ48aNyz1v8uTJql27try9vVWnTp3r/i26ZVn67LPP1KpVK912223y9fVVkyZNNGPGDGVlZeWel5aWptdff1133XWXvL29VbJkSbVv3z7PHi9/7P7uu+/Upk0b+fj4yM/PT/3799fvv/9+ww2bNm1Sv379dOedd8rLy0tly5ZVt27dFB0dnXtOQX0PrvWx3OpGO/D09GQoBjihiIgIFS1aVCEhIVe8f9OmTZKkfv365fmY0NBQSdLGjRsLpMnDw0OSVK5cuSve7+7urh49emjDhg36+eefC+TaAFBgLACAbXTt2tXq37+/6YzrkpaWZjVs2NCSdMWbw+Gw+vbta0my5s+fn3t+Tk6O1a9fvzznX3578sknLcuyrDFjxvzpOZZlWTt37rQkWaNHj76m86/1upZlWStXrrQkWX379rWKFCmS59yJEydaL774Yp73u7m5WTExMdf0dcvJycn9+lztbc2aNZZlWVZGRoYVFBR01XMcDoc1derUPN2PPPKI5eXllef8Vq1a3VDDb7/99qfnFClSxNq4cWOBfQ+u9bGYaLSDYcOGWW3btjWdAbisgwcPWpKs3bt3X/PHXLp0ySpevLgVFBSU51ivXr0sSVZ0dHSeY4cOHbIk5et/09nZ2dYvv/yS+7MxJCTkqud99tlnliRr1qxZ1/X5b+TrAwD56C1WigGAjdhxpdjkyZMVGxur2rVr69tvv9X58+eVkJCg4cOHa968eXnOnzNnjubOnat69eppxYoVSk5O1oULF7Rx40Y1aNBAM2bM0LZt2/TKK69o8+bNkpS7l8rlt6v5u/Ov9bp/NG/ePA0fPlyJiYm6cOGCFixYIA8PD73++uuaOnWqPvnkE506dUrJyckaMWKEcnJy9N57713T1+3TTz/VvHnz5Ofnp48//lg///yzLly4oJ07d+qJJ57I/Y39hx9+qOjoaFWpUkVLly7VuXPn9PPPPys8PFwOh0PPPvusTpw4ccXn/uKLLzRw4EAdPHhQqamp2rJli6pUqaJNmzYpLi7uuhscDoc6duyopUuX6tixY8rMzNTJkycVGRkpLy+v3NVzBfE9uNbHYrLRmbFSDHA++/fv14ULF9SgQYM8xy7v53W1F925/L5z587ddMMPP/wgh8Mhd3d3VapUSW+++aaGDRv2pyueGzZsKEm2+vkHAJJYKQYAdtK6dWvrqaeeMp1xXZo2bWo5HA5r7969eY517Ngxz0qxtm3bWu7u7tbx48fznL9v3z5LkjVy5EjLsixr8+bNliRrzJgxec7935Vif3f+9Vz38iqlq/3G/PJv8d99990r3p+VlWWVLFnSaty4cZ6PuZrg4OArVmP9mXvvvdeSZG3bti3PscGDB1uSrGnTpl3Rfd999+U598MPP7QkWbNnz77uBsuyrF27dlm9e/e27rjjjjyr5ypVqpR7Xn5/D671sZhotIORI0dajRo1Mp0BuKwbWQkVFRVlSbJee+21PMc6dOhgSbIOHDiQ51hycrIlybrnnntuqtmyLOvAgQN5VsIGBgZedYWaZVnWr7/+akmyunXrdl3XYaUYAMPeKlKwIzcAQH7KzMzMXZ1jF4cPH1bFihUVEBCQ51inTp20Zs2aK963b98+ZWdnq3LlypJ0xSqdy/9bEHuW3Mh1W7dunefzVK1aVZLUqlWrK97v7u6uihUr6uTJk5KkpKQklS1b9opz/Pz8lJSUJOm/v6UvVaqUOnTo8Jfdhw4dkp+fn+699948x7p27arp06fr0KFDV7y/TZs2ec719/eXJJ0/fz73fdfasHXrVrVt21aZmZlXPX6tr254I9+Da30sJhudGSvFAOdz9uxZSZKvr2+eYyVLlpSkq+6beObMmSvOuRl16tSRZVnKzs7WyZMntWLFCo0YMUIdOnTQvn37VL169SvOL1GixBXtAGAX3D4JADbicDhst5G3pCs2Kf+jqz2WnJwcSVJ2drays7OVk5OT57bIPxts3Iwbua63t3eez3P5sf7ZscvXyU9/9vX9M0WLFv3Tz3Ej//8aN26cMjMzNXr0aB06dEhpaWm5X7/atWtf8+e5ke/BtT4Wk43OLCcnR25uPB0EnMltt90m6f9ulfyjO++8U5K0d+/ePMfi4+OvOCc/uLu764477tATTzyhN998U2lpaVe9hfLyLZulSpXKt2sDwK3AsyAAsBEvLy9b/YVbkmrUqKFffvlF+/fvz3Psf1eJSf/97XSxYsV09uzZK/Zz+uPb5VervPyX+T++CuJf+avzr+e6+aFMmTJ5Pv/lVWKXe86cOaNvv/32Lz/PnXfeqaSkJO3YsSPPsRUrVuSecyOuteHIkSO6/fbbFR4erho1asjb21sOh0OHDx/WwYMHrzjX1PfADo0mZGZmysvLy3QGgD+oUKGCJF3xZ8Jll1chz507N8+xOXPmXHFOfru8qvRqw7rLrZfbAcAuGIoBgI14enrabijWq1cvWZalhx56SBs2bNDFixd19OhRPfvss1q9enWe8x9//HGlpqaqQ4cOWrZsmU6fPq3MzEwdPXpUy5cvV69evXKHNJc3Fd68ebOSk5P/tuWvzr+e694K/fv3lyQ9/PDDmjFjhn755RddvHhRu3fv1uDBg7Vx40ZJUu/evSVJffv21YoVK5SSkqJffvlFY8aM0fTp0+Xl5aXu3bsXaEOVKlV06tQpffjhhzp37pzOnTunFStW6P7778+zMs7U98AOjSZkZGQwFAOczN13363ixYsrNjY2z7EOHTrkvpjIiBEjlJSUpHPnzumNN97QokWLVKZMGfXs2fOGr/3WW29p5MiR2rlzp5KTk5Wenq6EhAR98MEHeu211yRJwcHBeT7ucuvVbuUHAKeWf/uTAQAKWvfu3a1HH33UdMZ1SU1NterXr59nw16Hw2H17t3bkmQtWbIk9/ycnBxrwIABec7/49vKlSsty/rv5vUVK1bMc9yyrr7R/l+dfz3XvbzJ+3vvvZfn8Y4YMcKSZO3ZsyfPsYCAAKtixYrX9HXLzs62HnrooT9tubz5fUZGhtWiRYs/PW/q1Km5n/Ovui8fmzx58nU3LFmy5KrHAwMDrbp161p+fn639HtwtcdiotEOhg4darVv3950BuCybnQj+ZCQEMvb29tKT0/Pc2zlypWWu7v7Vf9cnTdvXp7zg4KCLElWTEzM31738p9hf/bWr1+/q37c0KFDLUlWYmLidT1ONtoHYNhbrBQDABux40qxokWLav369RoyZIjKlSsnb29vNWrUSN98843uvvtuSVfuQeJwODRr1izNmzdPHTp0UKlSpeTp6Sl/f3/17NlTixcvzt343d3dXQsWLFDLli3l4+Pzty1/df71XPdWcHNzU2RkpKZPn657771XPj4+KlGihJo2bapPPvkkd4N5T09PrV27VqNHj1bt2rXl6ekpX19ftW3bVitXrtTQoUMLvKFHjx6aO3eu6tevr6JFi6pChQoaMmSIvv322zyrkEx9D+zQaEJGRoY8PT1NZwD4H48++qjS09Nzb4P/o5CQEG3YsEHt27eXr6+vfHx8FBwcrKioKPXp0yfP+ZdXwxYp8vevsfbqq69qypQpat26tcqVKycPDw/dfvvt6ty5s7788kt9/vnneT4mOztbX3/9tVq1apX7YjMAYBcOy7Lhjs0AUEiFhobq4sWLWrx4semUm5aTk6PGjRsrNjZWp0+flp+fn+kkoNBxpZ8pgDM6dOiQatasqd27d+uee+655o/LzMxUpUqV1LJlSy1atOiGr5+TkyM/Pz9VrFhRe/bsue4XZrkWq1evVqdOnfTll1/qH//4x3V97I1+fQAgn4xlpRgA2IgdV4pJ0ogRIzRnzhwdPXpUqampio2NVZ8+fRQTE6M2bdowEAMMyczMZKUY4IQ8PT318ssv65tvvsnzYiDXY+/evTp79qxGjRpVIAMxSXrnnXdUt27d3D0uAcBOGIoBgI34+vpe9VWfnN2PP/6oRx99VNWqVZOPj48CAwO1cOFCFS9eXBMnTjSdBxRa586dU4kSJUxnALiKYcOGyd/fX//5z39u+HNs2bJFVatWve4VXNcqOjpaa9as0TvvvCN3d/cCuQYAFKS/v7EcAOA0/Pz8rvoS7c7uvffeU9myZbVlyxYdO3ZMJUqUUOvWrTV69GjVrVvXdB5QaCUlJXHLEuCkPDw89NNPP93U5xg2bJiGDRuWT0V5BQUFid14ANgZQzEAsJEyZcooOTnZdMZ1q1mzpmbNmmU6A8D/SE5O5vZlAABQaHH7JADYiJ+fn37//ffcV5ICgJuRlJTEUAwAABRaDMUAwEbKlCmj7OxsnT171nQKAJtLT0/XxYsXVaZMGdMpAAAARjAUAwAbubyiw477igFwLpd/jrBSDAAAFFYMxQDARi6v6GAoBuBmXd6fkKEYAAAorBiKAYCNlCtXTm5ubjp+/LjpFAA2d/nnSPny5Q2XAAAAmMFQDABsxNPTU3fccYcSExNNpwCwuSNHjqh06dIqWbKk6RQAAAAjGIoBgM1Uq1aNoRiAm5aYmKjq1aubzgAAADCGoRgA2Ez16tWVkJBgOgOAzSUmJqpatWqmMwAAAIxhKAYANsNKMQD5ISEhgZViAACgUGMoBgA2U61aNSUkJMiyLNMpAGwsISGBlWIAAKBQYygGADZTvXp1paWl6dSpU6ZTANhUSkqKfv/9d4ZiAACgUGMoBgA2U6tWLUnSgQMHDJcAsKsffvhB0v/9PAEAACiMGIoBgM1UrFhRZcqUUXx8vOkUADYVHx8vHx8f1ahRw3QKUChlZGSYTgAASCpiOgAAcP3q1aunPXv2mM4AYFN79uxR3bp15ebG70eBW+Ef//iH3NzcdP78eZ0/f14+Pj4qV66c6SzjMjMzTScAKOQYigGADdWrV0/bt283nQHApuLj41W/fn3TGYBLS0tLU0xMjBo3bqyDBw/q3LlzkqQKFSqof//+DKX/oEKFCqYTABRSDMUAwIbq1aunmTNnKicnhyfVAK7b3r179eCDD5rOAFzOkSNHtHLlSi1dulQbNmxQRkaGPD09c1dEFS1aVJs3b+bWZQBwEgzFAMCG6tevr4sXL+rIkSO68847TecAsJHjx48rKSlJ9erVM50C2F5WVpa+++47LVu2TMuXL9fevXvl7u4uy7KUk5Mj6f9uEXQ4HJo6dSoDMQBwIgzFAMCGAgIC5Obmpvj4eIZiAK7L5RfpYCgG3Ljjx49ryJAhWrt2rdLT069YDZadnZ3nfA8PD/Xo0UP9+/e/1akAgL/APTcAYEM+Pj4KCAjQd999ZzoFgM189913qlGjhvz8/EynALZ1xx13yMPDI/dVJP9qw3g3Nzf5+flp+vTptyoPAHCNGIoBgE0FBQUpOjradAYAm9myZYuCgoJMZwC29+mnn6p8+fJyd3f/y/Msy9LcuXNVqlSpW1QGALhWDMUAwKZatGih3bt3Kz093XQKAJvIysrSjh07GIoB+eC2227Tl19+mbt32NUUKVJEI0eOVLt27W5hGQDgWjEUAwCbCgoKUkZGhnbv3m06BYBNxMXF6fz582rZsqXpFMAltGrVSt26dbvqajEPDw/dddddev311w2UAQCuBUMxALApf39/VahQgVsoAVyz6OholSpVSnXq1DGdAtjeqVOn1K1bNy1fvlxVq1aVh4fHFcfd3NwUGRkpT09PQ4UAgL/DUAwAbKxFixYMxQBcs+joaAUFBcnNjaeAwM1YvXq1GjZsqL1792rdunVatmyZHA5H7nGHw6FJkyYxgAYAJ8czIgCwsZYtWyo6OvqqL/8OAH9kWZY2b97MfmLATUhPT1dYWJhCQkLUsmVLxcTEqFWrVrrrrrs0ceJEubm5qUiRIrr//vs1ZMgQ07kAgL/BUAwAbKxjx45KTk5mXzEAfysuLk6//fab7rvvPtMpgC3t27dPzZo102effaaIiAhFRkZe8YqSw4YN03333adSpUpp1qxZBksBANeKoRgA2FhAQICqVq2qlStXmk4B4OSioqJUtmxZNWzY0HQKYCuWZWnSpElq1KiRfHx8FBMTo9DQ0DznORwOffbZZ4qMjFTZsmUNlAIArhdDMQCwuU6dOjEUA/C3Vq5cqc6dO7OfGHAdTp48qS5duuj555/XqFGjtHnzZvn7+//p+bfffrvatGlz6wIBADeFZ0UAYHMhISHauXOnTp06ZToFgJNKSUnRtm3b1LlzZ9MpgG0sWrRIAQEB+uGHH7Rx40aFh4fL3d3ddBYAIB8xFAMAm+vQoYOKFCmitWvXmk4B4KTWrl2rnJwcdezY0XQK4PTS0tIUFhamXr166f7771d8fLxatGhhOgsAUAAYigGAzfn6+iooKIhbKAH8qZUrV6pJkyby8/MznQI4tZ07d6pBgwb64osvtGTJEkVERKh48eKmswAABYShGAC4gK5du2r58uXKzMw0nQLAyWRnZ2vp0qXq2rWr6RTAaWVnZ2v8+PEKCgpS1apVFRsbqx49epjOAgAUMIZiAOACevfurbNnz2r16tWmUwA4mfXr1+vkyZPq06eP6RTAKR09elTt2rVTeHi4xowZo1WrVqlixYqmswAAtwBDMQBwAZUrV1bz5s0VGRlpOgWAk4mMjNQ999yjmjVrmk4BnM78+fMVGBiopKQkbdu2TSNHjuQVWgGgEOEnPgC4iD59+mjJkiVKT083nQLASWRlZWnJkiXq27ev6RTAqaSkpOjRRx9V37591bt3b+3cuVMNGzY0nQUAuMUYigGAi+jTp49SU1O1atUq0ykAnMS3336r06dPq1evXqZTAKexbds2BQYGas2aNVq6dKmmTZumYsWKmc4CABjAUAwAXESFChUUFBSkefPmmU4B4CQiIyPVtGlT1ahRw3QKYFxWVpbCw8MVHBysWrVqKTY2Vl26dDGdBQAwiKEYALiQvn37aunSpTp//rzpFACGpaena/HixWywD0hKSEhQ69atNWHCBL377rtauXKlypcvbzoLAGAYQzEAcCGPPPKIsrOzWS0GQAsXLtT58+f1yCOPmE4BjIqIiFD9+vWVmZmpmJgYhYWFmU4CADgJhmIA4EJuu+02PfDAA5oxY4bpFACGzZgxQ927d1eFChVMpwBGJCUlqWfPnhowYIAGDRqk6Oho1a5d23QWAMCJFDEdAADIX08++aTatm2r2NhYXkkLKKQOHz6sTZs2afny5aZTACPWrl2rAQMGyN3dXevXr1fr1q1NJwEAnBArxQDAxbRp00Z16tTRzJkzTacAMGT69OmqWLGi7rvvPtMpwC2Vnp6uUaNGqVOnTmrevLliYmIYiAEA/hRDMQBwQQMHDtTnn3+u1NRU0ykAbrGsrCx9/vnneuKJJ+Tu7m46B7hl9u/fr+bNm2vq1KmaOnWq5s+fr9KlS5vOAgA4MYZiAOCCBgwYoLS0NM2fP990CoBbbMmSJTp58qQGDhxoOgW4JSzL0vTp09WkSRN5eXlp9+7dGjx4sOksAIANOCzLskxHAADyX79+/bRv3z7FxsaaTgFwCwUFBals2bJasmSJ6RSgwJ06dUqDBg3SqlWrNGLECI0ZM0YeHh6mswAA9jCWjfYBwEW9+OKLCgwM1Nq1a9WhQwfTOQBugejoaG3dulWbN282nQIUuKioKA0cOFDe3t7asGGDgoKCTCcBAGyGlWIA4MLatWsnLy8vrVy50nQKgFvgwQcf1C+//KIdO3aYTgEKTFpamkaNGqXJkycrNDRUH330kYoXL246CwBgP6wUAwBXNmLECHXt2lVxcXFq0KCB6RwABejIkSP65ptv9NVXX5lOAQrMrl27FBoaqhMnTmju3Ll6+OGHTScBAGyMjfYBwIXdf//9CggI0Pvvv286BUABe+ed7S5iZwAAIABJREFUd1SlShU98MADplOAfGdZliZNmqSgoCBVrFhRe/fuZSAGALhpDMUAwIU5HA49++yz+uKLL/Trr7+azgFQQE6fPq3Zs2frueeek7u7u+kcIF8dO3ZM7dq10wsvvKB///vfWrNmjSpVqmQ6CwDgAhiKAYCLCw0NVbly5TRu3DjTKQAKyIQJE+Tr66uBAweaTgHy1YIFC9SwYUOdPHlS27dvV3h4uNzc+CsMACB/8CcKALg4Ly8vvfTSS5o+fboSExNN5wDIZydOnNBHH32kkSNHysfHx3QOkC9SUlI0ZMgQ9e7dW126dNHOnTsVGBhoOgsA4GJ49UkAKAQuXbqkOnXqqEOHDpo2bZrpHAD5KCwsTPPnz9fhw4dVtGhR0znATdu+fbtCQ0N17tw5zZw5U926dTOdBABwTWNZKQYAhYCHh4defvllzZo1S0eOHDGdAyCfHD9+XDNmzNArr7zCQAy2l5WVpfHjxys4OFj+/v6Ki4tjIAYAKFCsFAOAQiI7O1sBAQFq3ry5Zs2aZToHQD745z//qRUrVuinn36Sl5eX6RzghiUmJurRRx/Vrl27NG7cOD3zzDNyOBymswAAro2VYgBQWLi7u+uVV17R559/rh9++MF0DoCblJCQoE8//VSvvvoqAzHYWkREhOrXr6+zZ89q+/btCgsLYyAGALglWCkGAIVIdna27rnnHlWuXFnLli0znQPgJvTu3Vt79uzRnj175OHhYToHuG7nzp3TsGHD9OWXX+rpp5/WhAkTGPACAG6lsUVMFwAAbh13d3e9//77ateunaKiohQSEmI6CcAN2LJlixYuXKjly5czEIMtrVu3Tv3791dWVpaWL1+uzp07m04CABRCrBQDgELowQcf1A8//KC4uDj+Qg3YTE5Ojpo2bapSpUppzZo1pnOA63Lp0iW9+eabGjNmjHr27Knp06fLz8/PdBYAoHBiTzEAKIzeeecdJSQkaOrUqaZTAFynGTNmKC4uTu+//77pFOC6HDhwQM2aNdPbb7+tiRMnauHChQzEAABGMRQDgELI399fYWFhCg8PV1JSkukcANcoJSVF4eHhGj58uAICAkznANcsIiJCTZo0kYeHh2JjYxUWFmY6CQAAhmIAUFi9/PLL8vLy0quvvmo6BcA1Gj16tC5duqTXXnvNdApwTU6fPq3u3btr0KBBGj58uLZs2aKaNWuazgIAQBJDMQAotHx9ffXOO+9o+vTp2rJli+kcAH9j586dmjx5ssaPH69SpUqZzgH+1urVq9WgQQPFx8dr/fr1GjduHPtYAgCcChvtA0Ah1717d/3000+KjY2Vt7e36RwAV5GVlaWmTZuqRIkSWr9+vRwOh+kk4E+lp6dr5MiRmjx5sh566CFNmzaNQS4AwBmx0T4AFHYffvihjh8/rrFjx5pOAfAnJkyYoP379+vjjz9mIAantnfvXjVr1kyzZ89WRESEIiMjGYgBAJwWQzEAKOSqVKmiMWPG6K233lJsbKzpHAD/4+DBg3rjjTf0+uuvq06dOqZzgKuyLEuTJk1S48aN5ePjo++//16hoaGmswAA+EvcPgkAUE5OjoKDg5WVlaWtW7fK3d3ddBIA/XfQ0LFjR50+fVq7du1iPyY4pRMnTmjQoEFas2aNXn75Zb366qv8OQIAsANunwQASG5ubpo2bZpiY2P19ttvm84B8P9NnjxZGzdu1KeffspADE5p0aJFqlu3rn788Udt2rRJ4eHhDMQAALbBUAwAIEmqW7eu3njjDb366qvavn276Ryg0Nu3b59GjRqlV199VY0aNTKdA1whNTVVYWFh6tWrl+6//37FxcWpefPmprMAALgu3D4JAMiVk5Oj++67T0ePHtX3338vX19f00lAoZSRkaFmzZqpePHi2rhxIytv4FR27typfv366cyZM/rkk0/Uo0cP00kAANwIbp8EAPwfNzc3zZ49W2fOnNHzzz9vOgcotF588UUlJiZqzpw5DMTgNLKzszV+/HgFBQWpatWqiouLYyAGALA1hmIAgCtUrFhRM2bM0PTp0xUZGWk6Byh0Vq1apcmTJ2vKlCmqVq2a6RxAknT06FG1a9dO4eHhGjNmjFatWqU77rjDdBYAADeF2ycBAFf15JNPavHixfr+++9VpUoV0zlAofDbb78pMDBQHTp00Jw5c0znAJKk+fPna8iQIapQoYLmzp2rhg0bmk4CACA/jGUoBgC4qosXL+ree+9V0aJFtWnTJnl7e5tOAlzapUuX1LZtW50+fVo7duxQyZIlTSehkEtJSdFTTz2luXPn6sknn9R7772nYsWKmc4CACC/sKcYAODqfHx8tGjRIh08eFCDBw82nQO4vOeee05xcXFatGgRAzEYt23bNgUGBmrNmjVaunSppk2bxkAMAOByGIoBAP5UzZo1FRERoblz52rGjBmmcwCX9cUXX2jKlCmaOXOmAgICTOegEMvKylJ4eLiCg4NVq1YtxcbGqkuXLqazAAAoENw+CQD4W6+88oreeecdbdq0SU2bNjWdA7iU+Ph4NW/eXP/85z/1zjvvmM5BIZaQkKDQ0FDFxMRo7NixCgsLM50EAEBBYk8xAMDfy8nJ0f3336/9+/dr586duv32200nAS4hOTlZTZs2VeXKlbV27VoVKVLEdBIKqYiICD311FOqU6eO5syZo9q1a5tOAgCgoLGnGADg77m5uWnu3Lny9PRU9+7dlZqaajoJsL2MjAw98MADysrK0rx58xiIwYikpCT17NlTAwYM0KBBgxQdHc1ADABQaDAUAwBcEz8/P61atUoJCQnq27evsrOzTScBtmVZlp544gnFxcVp6dKlrL6EEWvXrlXDhg0VExOj9evXa9KkSfL09DSdBQDALcNQDABwzWrUqKFFixZp7dq1evHFF03nALb18ssva968eVqwYIHq169vOgeFTHp6ukaNGqVOnTqpefPmiomJUevWrU1nAQBwy7FOHwBwXVq2bKnZs2fr4YcfVrVq1fT000+bTgJs5dNPP9XYsWM1depUdezY0XQOCpn9+/erX79+OnLkiKZOnarBgwebTgIAwBiGYgCA69anTx8dPnxYzz77rKpWraru3bubTgJsISoqSkOHDtUrr7yioUOHms5BIWJZlmbMmKFnn31W9erV0+7du3XnnXeazgIAwChefRIAcMOGDh2q2bNna9myZWrfvr3pHMCpbd68WSEhIerVq5dmz54th8NhOgmFxKlTpzRo0CCtWrVKI0aM0JgxY+Th4WE6CwAA08ayUgwAcMM++ugjnT9/Xt27d9fKlSvVqlUr00mAU4qNjVWPHj1033336dNPP2UghlsmKipKAwcOlLe3tzZs2KCgoCDTSQAAOA022gcA3DA3NzdFRESoS5cu6tatm3bt2mU6CXA6e/fuVYcOHdSoUSN99dVXKlKE30mi4KWlpSksLEz333+/OnbsqD179jAQAwDgf3D7JADgpmVmZuqBBx7Qjh07tGHDBgUEBJhOApzCoUOH1KpVK1WvXl2rV6+Wj4+P6SQUArt27VJoaKhOnDihqVOn6uGHHzadBACAMxrLSjEAwE3z9PTU/Pnzddddd6ljx446cOCA6STAuMOHD6t9+/aqVKmSVq5cyUAMBc6yLE2aNElBQUGqWLGi9u7dy0AMAIC/wFAMAJAvihUrpmXLlql69epq06aNYmNjTScBxhw4cECtWrVS2bJlFRUVpRIlSphOgov7+eef1bZtW73wwgv697//rTVr1qhSpUqmswAAcGoMxQAA+aZEiRJas2aNGjRooLZt22rbtm2mk4BbLiYmRq1bt5a/v7++/fZblS5d2nQSXNyCBQsUGBioU6dOafv27QoPD5ebG0/zAQD4O/xpCQDIV8WKFdPSpUvVtm1bdezYUWvXrjWdBNwyO3fuVIcOHRQQEKAVK1aoZMmSppPgwlJSUjRkyBD16dNHDz30kHbu3KnAwEDTWQAA2AZDMQBAvvPy8lJkZKQefPBBde3aVV9//bXpJKDAbdy4Ue3bt1eLFi20cuVK+fr6mk6CC9u+fbsaNWqkJUuW6Ouvv9a0adPYtw4AgOvEUAwAUCCKFCmiWbNm6ZFHHlHv3r312WefmU4CCsyXX36pTp06qWvXrlq0aJG8vb1NJ8FFZWVlafz48QoODpa/v79iY2PVrVs301kAANhSEdMBAADX5e7urpkzZ6pKlSoaOHCgYmJi9P7778vhcJhOA/LNpEmT9Nxzz2n48OF677332MsJBSYxMVGhoaHavXu33n77bT3zzDP8PAUA4CYwFAMAFCiHw6Hw8HBVrVpVQ4YM0W+//aaIiAhW0sD2srKy9PTTT2vGjBmaNGmShg8fbjoJLiwiIkJPPfWUqlWrpu3bt6t+/fqmkwAAsD1+lQkAuCUGDhyoFStWaPXq1Wrfvr2SkpJMJwE37MKFC+rRo4c+//xzLV68mIEYCsy5c+f0yCOPaMCAARo0aJB27drFQAwAgHzisCzLMh0BACg84uPj1bVrVxUrVkxLlixRnTp1TCcB1+XQoUN64IEHlJycrKVLl6pRo0amk+Ci1q1bp/79+ysrK0uzZs1SSEiI6SQAAFzJWFaKAQBuqfr16+u7777TbbfdpqZNm2rRokWmk4BrtmzZMjVp0kSenp767rvvGIihQFy6dEnh4eHq2LGjmjZtqr179zIQAwCgADAUAwDccnfccYc2btyogQMH6qGHHlJYWJiysrJMZwF/yrIsjR8/Xj169FDXrl21efNmValSxXQWXNCBAwfUrFkzTZw4UVOnTtXChQvl5+dnOgsAAJfEUAwAYISXl5cmTZqkiIgIffLJJ+rQoYNOnjxpOgvIIyUlRQ8++KBGjx6tiRMn6vPPP1exYsVMZ8EFRUREqEmTJvLw8NDu3bs1ePBg00kAALg0hmIAAKNCQ0O1adMmJSYmqmnTptq6davpJCDXzp07FRgYqF27dmnDhg0KCwsznQQXdPr0aXXv3l2DBg3S8OHDtWXLFtWsWdN0FgAALo+hGADAuEaNGmn37t2qW7euWrdurfDwcG6nhFHZ2dkaO3asgoKC5O/vr927d+vee+81nQUXtHr1ajVo0EDx8fFav369xo0bJw8PD9NZAAAUCgzFAABOwc/PT8uWLdOUKVP09ttvKygoSIcOHTKdhULo2LFjat++vUaPHq2XXnpJq1atUrly5UxnwcWkp6crLCxMISEhatmypWJiYhQcHGw6CwCAQoWhGADAaTgcDg0ePFi7du3SpUuXdM8992j69Omms1CILFy4UA0bNtTJkye1fft2hYeHy82Np0vIX3v37lWzZs00e/ZsRUREKDIyUqVKlTKdBQBAocOzPACA07nrrru0bds2PfHEExo6dKh69+6tEydOmM6CC0tKStKjjz6q3r17q2/fvvr+++8VGBhoOgsuxrIsTZo0SY0bN5aPj4++//57hYaGms4CAKDQYigGAHBKXl5emjhxolavXq1du3bp7rvv1qeffirLskynwcXMmTNHd999tzZs2KClS5fqo48+UtGiRU1nwcWcOHFCXbp00fPPP69Ro0Zp8+bN8vf3N50FAEChxlAMAODUOnTooH379mnw4MEaPHiwWrdurR9//NF0FlzAr7/+qgceeECPPfaYHnjgAe3bt09dunQxnQUXtGjRItWtW1dHjhzRd999p/DwcLm7u5vOAgCg0GMoBgBwesWKFdO4ceO0detWnTt3ToGBgZowYYIuXbpkOg02lJ2drffff1+1a9fWjz/+qM2bN2vatGkqUaKE6TS4mNTUVIWFhalXr166//77tWvXLjVq1Mh0FgAA+P8YigEAbKNp06bavXu3Ro8erdGjR6tu3bpatmyZ6SzYyPr163XPPffoxRdf1PDhwxUTE6OgoCDTWXBBO3fuVMOGDfXFF19oyZIlioiIUPHixU1nAQCAP2AoBgCwlSJFimjkyJH66aef1KxZM3Xr1k0dO3bUvn37TKfBiR07dkyPPfaY2rVrp3LlyikmJkbjxo2Tl5eX6TS4mOzsbI0fP15BQUGqWrWq4uLi1KNHD9NZAADgKhiKAQBsqXLlyoqIiNC6det0+vRpBQYGasiQIUpKSjKdBidy8eJFhYeHq1atWtqxY4eWLVumNWvWKCAgwHQaXNDRo0fVrl07hYeHa8yYMVq1apXuuOMO01kAAOBPMBQDANha27ZttXv3bn3wwQdavHix7rrrLr377rtKTU01nQaD0tPT9cEHH6hGjRqaPHmyJkyYoL1797KRPgrM/PnzFRgYqKSkJG3btk0jR46UmxtPtQEAcGb8SQ0AsD13d3cNHTpUP/30kx5//HGNHj1ad955pyZPnqyMjAzTebiFMjMz9fHHH6tmzZoaNWqU+vXrp59++klPP/20ihQpYjoPLujcuXN69NFH1bdvX/Xu3Tt3LzEAAOD8HJZlWaYjAADIT0lJSXrnnXf0wQcfyM/PT88//7yGDh3K/lEu6MyZMypVqpRycnK0cOFCvfTSS/r55581YMAAjR49mlvXUKC2bdum0NBQXbx4UTNnzmQlIgAA9jKWlWIAAJdTpkwZjRs3TocOHVKPHj304osvqk6dOpo8ebIuXrxoOg/5aN26derRo4dq1aqlfv36qV27djp48KCmTZvGQAwFJisrS+Hh4QoODlb9+vW5NRcAAJtipRgAwOUdPXpUEyZM0GeffSZvb28NHTpUTz/9tMqXL286DTfo9OnTmjJlij744AOdOXNGTZs21Zdffil/f3/TaXBxR44cUWhoqGJjYzV27FiFhYWZTgIAADeGlWIAANdXtWpVTZkyRcePH9drr72m2bNnq2rVqnrssce0d+9e03m4DocPH1ZYWJiqVaumKVOmqF+/fpKkHTt2aN68eYbr4OoiIiLUoEEDXbp0SbGxsQzEAACwOYZiAIBCo2TJkgoLC9ORI0c0Y8YMff/996pXr54aN26s6dOn84qVTiozM1Pz589Xt27dVLt2bS1btkxvvfWWjh49qkmTJuVuoP/SSy9p4sSJhmvhipKSktSzZ08NGDBAgwYNUnR0tGrVqmU6CwAA3CSGYgCAQsfT01OPPfaY4uPjtWLFClWpUkXDhw9X5cqVFRYWxuoxJ3HgwAGNGDFCFStW1MMPPyyHw6HFixfr4MGDCgsLU7FixeTm5qayZcvmfsyIESM0YcIEg9VwNWvXrlWDBg0UExOj9evXa9KkSfL09DSdBQAA8gFDMQBAoeXm5qbOnTtr0aJF+vnnn/XCCy9oxYoVqlevnpo3b66pU6fq1KlTpjMLlaSkJE2fPl0tW7bU3XffrcWLF+tf//qXjh49qm+++UbdunWTm9uVT18qVap0xb+PGjVKkydPvpXZcEHp6ekaNWqUOnXqpKCgIMXExKh169amswAAQD5io30AAP7Asixt2LBBM2fO1JIlS5Senq62bduqT58+evDBB+Xn52c60eX8/vvvWrJkiSIjI/Xtt9/K09NT3bp10+OPP6727dvnGYL9rz59+mjhwoXKycnJfZ/D4dDkyZP11FNPFXQ+XND+/fvVr18/HTlyRG+//bYGDx5sOgkAAOQ/NtoHAOCPHA6H2rZtqzlz5ujUqVP68ssvddtttyksLEzly5dXSEiIPvnkEx0/ftx0qq2dOHFCs2bNUpcuXVShQgU99dRTKlasmD7//HOdOnVKX331lTp27Pi3AzFJqly5cu6+YpdZlqWnn35aH330UUE9BLggy7I0ffp0NWnSRN7e3vr+++8ZiAEA4MJYKQYAwDW4cOGCli5dqsjISK1atUrp6emqX7++OnfurJCQELVo0UIeHh6mM51WVlaWtm3bpqioKEVFRSkmJkaenp6677771KdPH3Xv3l0lSpS4oc89ceJE/fvf/1ZmZmaeYw6HQ1OmTNE///nPm30IcHEnT57U448/rlWrVunll1/Wq6++Knd3d9NZAACg4IxlKAYAwHVKS0vThg0btHLlSkVFRengwYMqUaKEOnTooLZt2yo4OFh169Yt1H+hzsnJ0b59+7RlyxatW7dOa9eu1dmzZ1WjRg2FhIQoJCREbdu2lY+Pz01fa968eXr44Yf1Z09pHA6HPvroIw0dOvSmrwXXFBUVpYEDB8rb21tz5sxRUFCQ6SQAAFDwGIoBAHCzDh8+nLsCavPmzTp37pxKlCih5s2bq0WLFmrZsqWaNm2q4sWLm04tMKmpqdqxY4e2bNmirVu3auvWrblfh6CgIIWEhKhz586qWbNmvl97y5YtCg4O/stzHA6HZs2apf79++f79WFfaWlpGjVqlD744AM9+uij+uijj1z6v1MAAHAFhmIAAOS3I0eOaMuWLYqOjtaWLVu0f/9+ubu7q2rVqrr77rvVqFEjBQQE6O6779Zdd911TftmOZPjx49r//792rdvn3bv3p37z+np6apQoYIaNWqkli1bKigoSM2aNSvw20oTExNVvXr1vzzHzc1Nbm5uio6OVtOmTQu0B/awa9cuhYaG6uTJk/roo4/08MMPm04CAAC3FkMxAAAK2q+//qpt27YpLi5Oe/bs0Z49e5SQkCDLsuTr66uAgAD5+/urevXqqlatWu7/VqlSxcg+ZZcuXdKxY8eUmJiohIQEJSYmKjExUYcPH9b+/ft17tw5SVK1atVUr1491atXTw0aNFDz5s1VuXLlW96bmZkpb2/vq94+6eHhoaysLHXu3Fn/+c9/1KhRo1veB+diWZY++OADvfjii2rZsqVmz56tSpUqmc4CAAC3HkMxAABMOH/+vPbu3av4+Hjt379fCQkJuQOoCxcuSJLc3d1VoUIF+fn5qWzZsipTpozKlCkjPz+/3DcPDw95eXmpWLFikiRfX98rXokxOztbKSkpkv57i2NGRoaysrKUnJyspKQkJScn5/7z6dOnlZSUpN9++03Z2dmSpGLFiql69eq5g7qAgADVq1dPdevWVcmSJW/xV+3PlS5dWmfOnMn9dw8PD+Xk5KhPnz4KDw9XrVq1DNbBWfz888967LHHtHXrVr300kt67bXXbLdSEwAA5JuxRf7+HAAAkN98fX3VvHlzNW/ePM+x06dP567OOnbsmJKTk3MHVvHx8bmDrOTkZF26dOm6r12kSJErBmt+fn6qWrWqGjVqpDJlyqhSpUq5Q7By5crlx8MtcBUqVNCZM2dUpEgReXh4aODAgZo5c6Zat27NQAySpAULFmjIkCG6/fbbtX37dgUGBppOAgAAhjEUAwDAyZQtW1Zly5ZVkyZNrun8zMxMXbx4UdJ/V6BlZWXlHnN3d1eJEiUkST4+PvL09Mz/YCdQvXp1/frrrxoxYoSGDx+uUqVKKTs7WxMmTNDjjz9+xeo5FC4pKSl64YUXNGPGDD355JOaOHFivrzqKQAAsD9unwQAALa3fft21a1b94phx5EjR1S7dm3Nnj1bjzzyiME6mLJ9+3aFhoYqJSVFn3zyibp162Y6CQAAOI+xbKIAAABsr1mzZnlW//j7+6tPnz568803lZOTY6gMJmRlZWn8+PEKDg6Wv7+/YmNjGYgBAIA8GIoBAACX9fLLL+uHH37Q8uXLTafgFklMTFSbNm0UHh6ut99+W1FRUapQoYLpLAAA4IQYigEAAJd19913q0uXLnrzzTdNp+AWiIiIUL169XTu3Dlt375dYWFhcjgcprMAAICTYigGAABc2ssvv6zt27dr48aNplNQQM6dO6dHHnlEAwYM0KBBg7Rr1y7Vr1/fdBYAAHBybLQPAABcXtu2beXl5aWoqCjTKchn69atU//+/fX/2rvzoKzK/43j18PiEriGMpqJ4TKWuFBqOWzjKAPamEuaJthCjs5gSpoouBSTqWmIo2Vmmk64phOpleOCQoJBuJESpuLPZcZBkVEwFRTw+f3xzYqwEsRu5Lxff577nHNfz39nLj7nUFpaqlWrVik4ONh0JAAA8HDgQ/sAAKD2i46O1o4dO3TgwAHTUVBNSkpKFBMTo8DAQPXs2VNZWVkUYgAAoFKYFAMAAJbQo0cPtWnTRps2bTIdBffp2LFjCgkJUU5OjmJjYzVmzBjTkQAAwMOHSTEAAGANUVFRSkhIUHZ2tukouA/x8fHq0aOHnJ2ddfDgQQoxAABQZZRiAADAEgYPHqyOHTsqNjbWdBRUwaVLl/TCCy8oLCxMb775plJTU9W+fXvTsQAAwEOMUgwAAFiCg4ODJk+erDVr1ujs2bOm46ASdu7cqa5du+rIkSNKSkrSBx98IGdnZ9OxAADAQ45SDAAAWEZoaKhatmypuLg401FwD4qLixUREaHg4GD5+vrq8OHD8vPzMx0LAADUEpRiAADAMpydnTVp0iStWLFCeXl5puPgH2RlZenZZ5/VF198odWrV2vjxo1q0qSJ6VgAAKAWoRQDAACWMnr0aLm6umrx4sWmo+Au7Ha7Fi1apO7du8vFxUWHDh1SSEiI6VgAAKAWohQDAACW8sgjj2jChAn6+OOPVVBQYDoO/uTChQvq37+/Jk+erKioKKWkpMjT09N0LAAAUEtRigEAAMsZP368bDabli1bZjoKfpOQkCAvLy+dOXNG6enpiomJkaOjo+lYAACgFqMUAwAAltOwYUONHTtWCxcuVFFRkek4lnbjxg1FREToxRdfVP/+/XXgwAE988wzpmMBAAALoBQDAACWNHHiRF29elWrVq0yHcWyMjIy1K1bN61fv16bN29WfHy8XFxcTMcCAAAWQSkGAAAsyd3dXa+//rrmzZunkpIS03EspaysTPPmzZOvr688PDyUmZmpgQMHmo4FAAAshlIMAABY1tSpU5Wbm6sNGzaYjmIZZ8+eVe/evRUTE6NZs2Zpx44datmypelYAADAgijFAACAZbVu3VojRozQ3Llzdfv2bdNxar1NmzbJ29tbly9fVnp6uqZOnSoHBx5HAQCAGTyFAAAAS4t/BNt8AAAMZ0lEQVSOjtbx48e1detW01FqrcLCQo0aNUrDhw/XsGHDlJGRoa5du5qOBQAALM5mt9vtpkMAAACYNHjwYJ0/f14ZGRmmo9Q6aWlpCg0N1fXr17Vy5Ur179/fdCQAAABJmsukGAAAsLxp06Zp//792r17t+kotUZpaaliYmLk5+enLl26KCsri0IMAADUKEyKAQAASOrbt68kKTEx0XCSh9/x48cVEhKi7OxszZ07VxEREaYjAQAA/BWTYgAAANL/vi22e/dupaWlmY7yUIuPj1f37t1ls9mUmZlJIQYAAGosSjEAAABJffr0Ua9evTR//nzTUR5K+fn5GjRokF577TWFhYVp37596tChg+lYAAAAf8vJdAAAAICaYsqUKRoyZIiysrLk5eVlOs5DIzExUa+++qqcnJyUlJSkgIAA05EAAAD+FZNiAAAAvxk4cKA6derEtNg9Ki4uVlRUlIKCguTj46PDhw9TiAEAgIcGpRgAAMBvbDabpkyZovXr1+vMmTOm49Ro2dnZ6tWrl5YuXaqlS5dq48aNatq0qelYAAAA94xSDAAA4E9GjhwpDw8PxcbGmo5SI9ntdn322Wfq0aOH6tWrp0OHDmnMmDGmYwEAAFQapRgAAMCfODo6atKkSfr888+Vm5trOk6NcvHiRQ0YMEDjxo1TZGSkUlNT1bZtW9OxAAAAqoRSDAAA4C/CwsLUpEkTLV682HSUGmPz5s3y8vLSzz//rOTkZMXExMjR0dF0LAAAgCqjFAMAAPiLevXqacKECfrkk09UUFBgOo5RRUVFioiI0ODBg9WvXz8dPXpUPj4+pmMBAADcN0oxAACAuwgPD5eDg4OWLFliOooxBw4ckLe3t+Lj47Vu3TrFx8fL1dXVdCwAAIBqQSkGAABwFw0bNtS4ceO0cOFCXb9+3XSc/5TdbteiRYvk4+Ojxx57TEePHtXLL79sOhYAAEC1ohQDAAD4GxMnTlRxcbFWrlxpOsp/5ty5c+rdu7ciIyMVHR2tXbt2qVWrVqZjAQAAVDtKMQAAgL/x6KOP6o033tCHH36oW7dumY7zwG3atEne3t7Ky8vTjz/+qJiYGDk48LgIAABqJ55yAAAA/kFkZKQuXryodevWmY7ywFy9elVjx47V8OHDNXToUO3fv1/e3t6mYwEAADxQNrvdbjcdAgAAoCYLCwvTDz/8oOzs7Fo3OZWenq7Q0FD9+uuvWrFihQYMGGA6EgAAwH9hbu16qgMAAHgApk6dqpMnT+rrr782HaXalJaWKiYmRr6+vmrXrp0yMzMpxAAAgKUwKQYAAHAPhg4dqlOnTunQoUOy2Wym49yXM2fOKDQ0VAcPHtQHH3ygCRMmPPS/CQAAoJKYFAMAALgXM2bM0E8//aRdu3aZjnJf4uPj1blzZxUWFiojI0MREREUYgAAwJKYFAMAALhHQUFBunXrlpKSkkxHqbSCggKFh4drw4YNGj9+vObPn6+6deuajgUAAGAKk2IAAAD3Kjo6WsnJydq3b5/pKJWyZ88ede7cWUlJSdq2bZsWLVpEIQYAACyPSTEAAFBr5OfnKy8v74HuERISInd3d8XFxT3QfarLV199pZiYGAUGBurdd99Vs2bN1K5dO9OxAAAATJtLKQYAAGqNOXPmaPr06aZj1Ght27ZVTk6O6RgAAACmzXUynQAAAKA6Pf7449q2bZvpGDXS8uXL9d1335mOAQAAUCNQigEAgFqlTp068vLyMh2jRnJ3dzcdAQAAoMbgQ/sAAAAAAACwHEoxAAAAAAAAWA6lGAAAAAAAACyHUgwAAAAAAACWQykGAAAAAAAAy6EUAwAAAAAAgOVQigEAAAAAAMByKMUAAAAAAABgOZRiAAAAAAAAsBxKMQAAAAAAAFgOpRgAAAAAAAAsh1IMAAAAAAAAlkMpBgAAIKmkpEQdOnTQK6+8UmEtNTVVgYGBatSokRo0aKCAgADt3LmzWvZNSUnR6NGj9eSTT6p+/fpq2rSpAgMD9e233941h81m044dO6plbwAAACtzMh0AAACgJli6dKlOnz6tbdu2lTu+Y8cOPf/88yorK/v92N69e5WSkqIvv/xSw4YNq/KeOTk58vf3L3esuLhYiYmJSkxM1IIFCzRp0qTf13x9fRUYGKjIyEgFBgbKwYG/bwIAAFQVT1IAAMDybt26pdmzZ2vQoEFq165dueNjx45VWVmZJk2apEuXLunKlSuaNWuW7Ha7wsPDde3atSrv6+DgoKCgIK1du1YnTpxQUVGRTp8+rSlTpkiSpk2bpqtXr5a7ZvLkyTp69Kg2bdpU5X0BAABAKQYAAKCEhATl5eVVeHUyMTFRZ8+elb+/vxYsWCA3Nzc1btxYM2bM0JAhQ5Sfn68tW7ZUeV9PT09t375dI0eOVPv27VWvXj21adNG8+bNU0BAgG7evKljx46Vu6ZPnz5q0aKFPv300yrvCwAAAEoxAAAAxcfHq379+goODi53fO/evZKkkJCQCteEhoZKkr7//vsHksnZ2VmS1Lx583LHHR0dNXDgQCUnJ+vcuXMPZG8AAAAroBQDAACWVlpaqpSUFD399NO/F1F35OTkSJK8vLwqXNelS5dy51SH27dv6/z583r//feVmJio4OBgPfHEExXOe+655yRJe/bsqba9AQAArIZSDAAAWFp2drauXbumrl27Vli78z2vpk2bVli7c6ywsPC+M/zyyy+y2WxydHRUq1atNHv2bIWHh//td8O6desmSUpLS7vvvQEAAKyKUgwAAFhabm6uJMnNza3Cmt1u/9vr/mntfhUXFystLU1Hjhy563qzZs0k/ZEdAAAAlUcpBgAALK2goECS1KBBgwprjRo1kiRdvny5wtqVK1fKnXM/OnbsKLvdrtLSUp0/f17Lly/XqVOn1LdvX50+fbrC+Q0bNiyXHQAAAJVHKQYAACytcePGkv54VfLP2rVrJ0nKysqqsHZniuvOOdXB0dFRLVu21OjRozV79mwVFRXd9RXKO69sNmnSpNr2BgAAsBpKMQAAYGktWrSQJOXn51dY8/f3lyStXbu2wtqaNWvKnVPdbt68KenuZd2drHeyAwAAoPKcTAcAAAAw6amnnpKrq6syMzMrrPXt21etW7fW3r179fbbbys6OlrOzs766KOPlJCQIDc3Nw0aNKjKe8+ZM0eFhYUaOnSoPD095eLiotzcXH3zzTd65513JEl+fn4VrruT9c5/oQQAAEDlMSkGAAAszcnJSb6+vjp8+PDv01l31KlTR8uWLZOjo6Pi4uLUrFkzNW7cWDNnzpTNZtOSJUvk6upa7hpfX1/ZbLa7lmx/dfnyZc2fP189e/aUm5ub6tevL09PT0VEROjGjRsKCQlRUFBQhevS09MlSb17976PXw4AAGBtlGIAAMDyRo0apeLiYm3btq3CWnBwsJKTk9WnTx81aNBALi4u8vPz0/bt2/XSSy9VOP/27duS/le2/ZuZM2dqyZIlCggIUPPmzeXs7Cx3d3f169dP69ev1+rVqytcU1ZWpi1btsjf318eHh5V+LUAAACQeH0SAABAQ4cO1VtvvaXVq1dr8ODBFdZ9fX2VmJj4r/e5ffu2jh07pk6dOqlTp07/en6jRo0UHh6u8PDwe866e/du5ebmKi4u7p6vAQAAQEVMigEAAMurU6eOpk+frq1bt+rkyZNVvk9WVpYKCgoUFRUlm81WjQn/EBsbKy8vLw0bNuyB3B8AAMAqKMUAAAAkhYeHy9PTU++9916V75GamioPDw+NGDGiGpP9Yd++fdq1a5diY2Pl6Oj4QPYAAACwCl6fBAAAkOTs7KwTJ07c1z0q+ypkZfn4+Mhutz+w+wMAAFgJk2IAAAAAAACwHEoxAAAAAAAAWA6lGAAAAAAAACyHUgwAAAAAAACWQykGAAAAAAAAy6EUAwAAAAAAgOVQigEAAAAAAMByKMUAAAAAAABgOZRiAAAAAAAAsBxKMQAAAAAAAFgOpRgAAAAAAAAsh1IMAAAAAAAAlkMpBgAAAAAAAMuhFAMAAAAAAIDlOJkOAAAAUJ1KSkqUnZ1tOkaNdOnSJdMRAAAAagxKMQAAUKucO3dOnTp1Mh2jxmrbtq3pCAAAADWCzW63202HAAAAqA75+fm6cOGC6Rg1Wt26ddW+fXvTMQAAAEyby6QYAACoNdzc3OTm5mY6BgAAAB4CfGgfAAAAAAAAlkMpBgAAAAAAAMtxkvR/pkMAAAAAAAAA/6Er/w/OLVbYXDYZxwAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<IPython.core.display.Image object>" | |
] | |
}, | |
"execution_count": 20, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data_diffed.visualize(optimize_graph=True)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"id": "cdf1b854-4d60-4a13-b6b1-49b796ffc379", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Calling diff on array of shape (30, 6)Calling diff on array of shape (30, 6)\n", | |
"\n", | |
"Calling diff on array of shape (30, 6)\n", | |
"Calling diff on array of shape (30, 6)\n" | |
] | |
} | |
], | |
"source": [ | |
"np.testing.assert_equal(data_diffed.compute(), expected_result)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "bc830f05-333f-417d-afe7-7c197ffd47e2", | |
"metadata": {}, | |
"source": [ | |
"🎉🎉🎉 It worked!\n", | |
"\n", | |
"Making this work at the Xarray level involves a few more complications.\n", | |
"\n", | |
"The function composition is a bit more involved. Generalizing this will take work.\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"id": "744eea17-6e3c-4c14-b4e7-4155059e72a0", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def compose_boundary_and_operation(boundary_fn, operation_fn):\n", | |
" def composed_function(da_in):\n", | |
" data_padded = boundary_fn(da_in)\n", | |
" padded_chunks = data_padded.chunks\n", | |
" non_core_dim_chunks = padded_chunks[:-1]\n", | |
" core_dim_chunks = padded_chunks[-1]\n", | |
" # need to generalize to more boundary conditions\n", | |
" rechunked_core_dim_chunks = (core_dim_chunks[0] + core_dim_chunks[1],) + core_dim_chunks[2:]\n", | |
" core_dim_axis = len(padded_chunks) - 1\n", | |
" data_padded_rechunked = data_padded.rechunk({core_dim_axis: rechunked_core_dim_chunks}) \n", | |
" core_dim_chunks = rechunked_core_dim_chunks\n", | |
" true_core_dim_chunks = ((core_dim_chunks[0]-1,) + core_dim_chunks[1:],)\n", | |
" true_chunks = non_core_dim_chunks + true_core_dim_chunks\n", | |
" return dsa.map_overlap(\n", | |
" operation_fn,\n", | |
" data_padded_rechunked,\n", | |
" depth={1: (1, 0)},\n", | |
" boundary='none',\n", | |
" trim=False,\n", | |
" meta=np.array([], dtype=data_padded_rechunked.dtype),\n", | |
" chunks=true_chunks,\n", | |
" )\n", | |
" return composed_function" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"id": "96bde340-b6aa-41f4-a2de-619b33018cbf", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 4.69 kiB </td> <td> 1.17 kiB </td></tr>\n", | |
" <tr><th> Shape </th><td> (30, 20) </td> <td> (30, 5) </td></tr>\n", | |
" <tr><th> Count </th><td> 32 Tasks </td><td> 4 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"130\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"80\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"120\" x2=\"80\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"120\" />\n", | |
" <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"120\" />\n", | |
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"120\" />\n", | |
" <line x1=\"80\" y1=\"0\" x2=\"80\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 80.0,0.0 80.0,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"40.000000\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n", | |
" <text x=\"100.000000\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,100.000000,60.000000)\">30</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table>" | |
], | |
"text/plain": [ | |
"dask.array<diff, shape=(30, 20), dtype=float64, chunksize=(30, 5), chunktype=numpy.ndarray>" | |
] | |
}, | |
"execution_count": 23, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"compose_boundary_and_operation(pad, diff)(da_chunk_x.data)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 24, | |
"id": "c06d1ac7-ecce-430e-8395-f2a29e687d51", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", | |
"<defs>\n", | |
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", | |
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", | |
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", | |
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", | |
"</symbol>\n", | |
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", | |
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", | |
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"</symbol>\n", | |
"</defs>\n", | |
"</svg>\n", | |
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", | |
" *\n", | |
" */\n", | |
"\n", | |
":root {\n", | |
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", | |
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", | |
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", | |
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", | |
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", | |
" --xr-background-color: var(--jp-layout-color0, white);\n", | |
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n", | |
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", | |
"}\n", | |
"\n", | |
"html[theme=dark],\n", | |
"body.vscode-dark {\n", | |
" --xr-font-color0: rgba(255, 255, 255, 1);\n", | |
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n", | |
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n", | |
" --xr-border-color: #1F1F1F;\n", | |
" --xr-disabled-color: #515151;\n", | |
" --xr-background-color: #111111;\n", | |
" --xr-background-color-row-even: #111111;\n", | |
" --xr-background-color-row-odd: #313131;\n", | |
"}\n", | |
"\n", | |
".xr-wrap {\n", | |
" display: block;\n", | |
" min-width: 300px;\n", | |
" max-width: 700px;\n", | |
"}\n", | |
"\n", | |
".xr-text-repr-fallback {\n", | |
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-header {\n", | |
" padding-top: 6px;\n", | |
" padding-bottom: 6px;\n", | |
" margin-bottom: 4px;\n", | |
" border-bottom: solid 1px var(--xr-border-color);\n", | |
"}\n", | |
"\n", | |
".xr-header > div,\n", | |
".xr-header > ul {\n", | |
" display: inline;\n", | |
" margin-top: 0;\n", | |
" margin-bottom: 0;\n", | |
"}\n", | |
"\n", | |
".xr-obj-type,\n", | |
".xr-array-name {\n", | |
" margin-left: 2px;\n", | |
" margin-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-obj-type {\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-sections {\n", | |
" padding-left: 0 !important;\n", | |
" display: grid;\n", | |
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n", | |
"}\n", | |
"\n", | |
".xr-section-item {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-section-item input {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-section-item input + label {\n", | |
" color: var(--xr-disabled-color);\n", | |
"}\n", | |
"\n", | |
".xr-section-item input:enabled + label {\n", | |
" cursor: pointer;\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-section-item input:enabled + label:hover {\n", | |
" color: var(--xr-font-color0);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary {\n", | |
" grid-column: 1;\n", | |
" color: var(--xr-font-color2);\n", | |
" font-weight: 500;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary > span {\n", | |
" display: inline-block;\n", | |
" padding-left: 0.5em;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:disabled + label {\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in + label:before {\n", | |
" display: inline-block;\n", | |
" content: '►';\n", | |
" font-size: 11px;\n", | |
" width: 15px;\n", | |
" text-align: center;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:disabled + label:before {\n", | |
" color: var(--xr-disabled-color);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked + label:before {\n", | |
" content: '▼';\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked + label > span {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary,\n", | |
".xr-section-inline-details {\n", | |
" padding-top: 4px;\n", | |
" padding-bottom: 4px;\n", | |
"}\n", | |
"\n", | |
".xr-section-inline-details {\n", | |
" grid-column: 2 / -1;\n", | |
"}\n", | |
"\n", | |
".xr-section-details {\n", | |
" display: none;\n", | |
" grid-column: 1 / -1;\n", | |
" margin-bottom: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked ~ .xr-section-details {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-array-wrap {\n", | |
" grid-column: 1 / -1;\n", | |
" display: grid;\n", | |
" grid-template-columns: 20px auto;\n", | |
"}\n", | |
"\n", | |
".xr-array-wrap > label {\n", | |
" grid-column: 1;\n", | |
" vertical-align: top;\n", | |
"}\n", | |
"\n", | |
".xr-preview {\n", | |
" color: var(--xr-font-color3);\n", | |
"}\n", | |
"\n", | |
".xr-array-preview,\n", | |
".xr-array-data {\n", | |
" padding: 0 5px !important;\n", | |
" grid-column: 2;\n", | |
"}\n", | |
"\n", | |
".xr-array-data,\n", | |
".xr-array-in:checked ~ .xr-array-preview {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-array-in:checked ~ .xr-array-data,\n", | |
".xr-array-preview {\n", | |
" display: inline-block;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list {\n", | |
" display: inline-block !important;\n", | |
" list-style: none;\n", | |
" padding: 0 !important;\n", | |
" margin: 0;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list li {\n", | |
" display: inline-block;\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list:before {\n", | |
" content: '(';\n", | |
"}\n", | |
"\n", | |
".xr-dim-list:after {\n", | |
" content: ')';\n", | |
"}\n", | |
"\n", | |
".xr-dim-list li:not(:last-child):after {\n", | |
" content: ',';\n", | |
" padding-right: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-has-index {\n", | |
" font-weight: bold;\n", | |
"}\n", | |
"\n", | |
".xr-var-list,\n", | |
".xr-var-item {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-var-item > div,\n", | |
".xr-var-item label,\n", | |
".xr-var-item > .xr-var-name span {\n", | |
" background-color: var(--xr-background-color-row-even);\n", | |
" margin-bottom: 0;\n", | |
"}\n", | |
"\n", | |
".xr-var-item > .xr-var-name:hover span {\n", | |
" padding-right: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-var-list > li:nth-child(odd) > div,\n", | |
".xr-var-list > li:nth-child(odd) > label,\n", | |
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", | |
" background-color: var(--xr-background-color-row-odd);\n", | |
"}\n", | |
"\n", | |
".xr-var-name {\n", | |
" grid-column: 1;\n", | |
"}\n", | |
"\n", | |
".xr-var-dims {\n", | |
" grid-column: 2;\n", | |
"}\n", | |
"\n", | |
".xr-var-dtype {\n", | |
" grid-column: 3;\n", | |
" text-align: right;\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-var-preview {\n", | |
" grid-column: 4;\n", | |
"}\n", | |
"\n", | |
".xr-var-name,\n", | |
".xr-var-dims,\n", | |
".xr-var-dtype,\n", | |
".xr-preview,\n", | |
".xr-attrs dt {\n", | |
" white-space: nowrap;\n", | |
" overflow: hidden;\n", | |
" text-overflow: ellipsis;\n", | |
" padding-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-var-name:hover,\n", | |
".xr-var-dims:hover,\n", | |
".xr-var-dtype:hover,\n", | |
".xr-attrs dt:hover {\n", | |
" overflow: visible;\n", | |
" width: auto;\n", | |
" z-index: 1;\n", | |
"}\n", | |
"\n", | |
".xr-var-attrs,\n", | |
".xr-var-data {\n", | |
" display: none;\n", | |
" background-color: var(--xr-background-color) !important;\n", | |
" padding-bottom: 5px !important;\n", | |
"}\n", | |
"\n", | |
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", | |
".xr-var-data-in:checked ~ .xr-var-data {\n", | |
" display: block;\n", | |
"}\n", | |
"\n", | |
".xr-var-data > table {\n", | |
" float: right;\n", | |
"}\n", | |
"\n", | |
".xr-var-name span,\n", | |
".xr-var-data,\n", | |
".xr-attrs {\n", | |
" padding-left: 25px !important;\n", | |
"}\n", | |
"\n", | |
".xr-attrs,\n", | |
".xr-var-attrs,\n", | |
".xr-var-data {\n", | |
" grid-column: 1 / -1;\n", | |
"}\n", | |
"\n", | |
"dl.xr-attrs {\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
" display: grid;\n", | |
" grid-template-columns: 125px auto;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt,\n", | |
".xr-attrs dd {\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
" float: left;\n", | |
" padding-right: 10px;\n", | |
" width: auto;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt {\n", | |
" font-weight: normal;\n", | |
" grid-column: 1;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt:hover span {\n", | |
" display: inline-block;\n", | |
" background: var(--xr-background-color);\n", | |
" padding-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dd {\n", | |
" grid-column: 2;\n", | |
" white-space: pre-wrap;\n", | |
" word-break: break-all;\n", | |
"}\n", | |
"\n", | |
".xr-icon-database,\n", | |
".xr-icon-file-text2 {\n", | |
" display: inline-block;\n", | |
" vertical-align: middle;\n", | |
" width: 1em;\n", | |
" height: 1.5em !important;\n", | |
" stroke-width: 0;\n", | |
" stroke: currentColor;\n", | |
" fill: currentColor;\n", | |
"}\n", | |
"</style><pre class='xr-text-repr-fallback'><xarray.DataArray (y: 30, x: 20)>\n", | |
"dask.array<diff, shape=(30, 20), dtype=float64, chunksize=(30, 5), chunktype=numpy.ndarray>\n", | |
"Dimensions without coordinates: y, x</pre><div class='xr-wrap' hidden><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'></div><ul class='xr-dim-list'><li><span>y</span>: 30</li><li><span>x</span>: 20</li></ul></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-24c48f1d-25ef-4a0c-a7fc-260475986e81' class='xr-array-in' type='checkbox' checked><label for='section-24c48f1d-25ef-4a0c-a7fc-260475986e81' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>dask.array<chunksize=(30, 5), meta=np.ndarray></span></div><div class='xr-array-data'><table>\n", | |
"<tr>\n", | |
"<td>\n", | |
"<table>\n", | |
" <thead>\n", | |
" <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr><th> Bytes </th><td> 4.69 kiB </td> <td> 1.17 kiB </td></tr>\n", | |
" <tr><th> Shape </th><td> (30, 20) </td> <td> (30, 5) </td></tr>\n", | |
" <tr><th> Count </th><td> 32 Tasks </td><td> 4 Chunks </td></tr>\n", | |
" <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</td>\n", | |
"<td>\n", | |
"<svg width=\"130\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"80\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"0\" y1=\"120\" x2=\"80\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"120\" />\n", | |
" <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"120\" />\n", | |
" <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"120\" />\n", | |
" <line x1=\"80\" y1=\"0\" x2=\"80\" y2=\"120\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"0.0,0.0 80.0,0.0 80.0,120.0 0.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"40.000000\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >20</text>\n", | |
" <text x=\"100.000000\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,100.000000,60.000000)\">30</text>\n", | |
"</svg>\n", | |
"</td>\n", | |
"</tr>\n", | |
"</table></div></div></li><li class='xr-section-item'><input id='section-b430eade-83e2-44b6-ae2d-dfefe8fd602d' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-b430eade-83e2-44b6-ae2d-dfefe8fd602d' class='xr-section-summary' title='Expand/collapse section'>Coordinates: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-e567a98f-c7a8-4d4e-8dea-7c234e331944' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-e567a98f-c7a8-4d4e-8dea-7c234e331944' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>" | |
], | |
"text/plain": [ | |
"<xarray.DataArray (y: 30, x: 20)>\n", | |
"dask.array<diff, shape=(30, 20), dtype=float64, chunksize=(30, 5), chunktype=numpy.ndarray>\n", | |
"Dimensions without coordinates: y, x" | |
] | |
}, | |
"execution_count": 24, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"da_out_chunk_y = xr.apply_ufunc(\n", | |
" compose_boundary_and_operation(pad, diff),\n", | |
" da_chunk_x,\n", | |
" dask=\"allowed\",\n", | |
" input_core_dims=['x'],\n", | |
" output_core_dims=['x'],\n", | |
" output_dtypes=[da_in.dtype]\n", | |
")\n", | |
"da_out_chunk_y" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"id": "403529e3-aae2-4622-a9a9-7df6766142a4", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Calling diff on array of shape (30, 6)Calling diff on array of shape (30, 6)\n", | |
"\n", | |
"Calling diff on array of shape (30, 6)\n", | |
"Calling diff on array of shape (30, 6)\n" | |
] | |
} | |
], | |
"source": [ | |
"np.testing.assert_equal(da_out_chunk_y.values, expected_result)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "1145efea-fd8e-4b9b-904b-6c9a78dd6233", | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8.10" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment