Created
June 13, 2014 18:11
-
-
Save rabernat/4683dc8cf34794119141 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "# A Wind-Driven Oscillating Thermocline\n$\\newcommand{\\ol}[1]{\\overline{#1}}$\n$\\newcommand{\\ab}[1]{\\langle #1 \\rangle}$\n$\\newcommand{\\pd}[2]{\\frac{\\partial #1}{\\partial #2}}$\n\n## Steady State\n\nConsider a wind driven channel in a statistically steady state, such as described by Marshall and Radko (2003). In the adiabatic ocean interior, the buoyancy equation satisfies\n\n$$ J(\\Psi_{res}, \\ab{\\ol{b}}) = 0 \\ . $$\n\nThe residual circulation is given by the sum of wind-driven (Ekman) and eddy components, such that\n\n$$ \\Psi_{res} = -\\frac{\\tau}{\\rho_0 f} + \\Psi^\\ast \\ .$$\n\nIn MR03, the eddy-induced transport $\\Psi^\\ast$ is specified using the QG transformed-eulerian-mean definition $ \\Psi^\\ast = \\overline{v'b'} / N^2$, where $N^2 = \\partial \\overline{b} / \\partial z$. An important limit is simply $\\Psi_{res} = 0$.\n\nThe domiant balance in the buoyancy equation is approximately 1D, between the vertical advection terms:\n\n$$ J(\\Psi_{res}, \\ab{\\ol{b}} ) \\simeq ( \\ab{\\ol{w}} + w ^\\ast) \\pd{\\ab{\\ol{b}}}{z} $$\n\nwhere\n\n$$ \\overline{w} = - \\frac{1}{\\rho_0 f} \\pd{\\tau}{y} $$\n\nis the Ekman pumping velocity and\n\n$$ w^\\ast = \\pd{\\Psi^\\ast}{y} $$\n\nis the eddy-induced vertical advection.\n\n## Time Dependent Response \n\nWe need to define an anomaly of the zonal average buoyancy field from the steady state. Define\n\n$$ b^+ = \\ab{b} - \\ab{\\ol{b}} \\ .$$\n\nWhen the system is not in a steady state, the buoyancy equation gains a time dependent term. The 1D approximation is \n\n$$ \\pd{\\ab{b}}{t} = - ( \\ab{w} + w ^\\ast) \\pd{\\ab{b}}{z} \\ .$$\n\nHere we interpret the overbar as a zonal average but not necessarily a time average. Perhaps it is best to think of it as a low pass filter in time.\n\nWe impose time variability by making the winds, and the Ekman pumping, oscillate in time, such that\n\n$$ \\ab{w} = w_0 + w_1 \\sin(\\omega t) $$\n\nwhich means that $\\ab{\\ol{w}} = w_0$. We substitute this into the buoyancy equation\n\n$$ \\pd{\\ab{b}}{t} = - ( w_0 + w_1 \\sin(\\omega t) + w ^\\ast) \\pd{\\ab{b}}{z} \\ .$$\n\n### No Eddy Response\n\nAssuming that the eddies do not respond at all, the steady state balance simply subtracts out of the equation for $b^+$, leaving\n\n$$ \\pd{b^+}{t} = - w_1 \\sin(\\omega t)\\pd{\\ab{b}}{z} \\ . $$\n\nFurther assuming that the buoyancy anomaly is small, we can replace $\\pd{\\ab{b}}{z}$ with the time average, leading to a closed equation for the anomaly:\n\n$$ \\pd{b^+}{t} = - w_1 \\sin(\\omega t)\\pd{\\ab{\\ol{b}}}{z} $$\n\ngiving\n \n$$ b^+ = \\frac{w_1}{\\omega} \\cos(\\omega t)\\pd{\\ab{\\ol{b}}}{z} \\ .$$\n\nThe RMS average of the buoyancy anomaly generated by the oscillations is therefore\n\n$$ \\ol{(b^+)^2}^{1/2} = \\sqrt{\\pi} \\frac{w_1}{\\omega} \\pd{\\ab{\\ol{b}}}{z} $$\n\n### Gent-McWilliams Eddy Response\n\nUnder the GM parameterization, the eddy-induced vertical advection is given by\n\n$$ w^\\ast = \\pd{\\Psi^\\ast}{y} = K_{GM} \\pd{s}{y} \\ .$$\n\nWe identify steady and oscillating components as above by\n\n$$ w^\\ast = w^\\ast_0 + w^{\\ast +} $$\n\nwhere\n\n$$ w^\\ast_0 = \\ab{\\ol{w^\\ast}} = K_{GM} \\pd{\\ol{s}}{y} \\ .$$\n\nWe can identify the oscillating component with thermocline oscillations:\n\n$$ w^{\\ast +} = K_{GM} \\pd{s^+}{y} $$\n\nwhere $s^+ = s - \\ol{s}$\nHow can we relate $s^+$ to $b^+$?\n\n$$ s = - \\frac{ \\partial_y \\ab{b}}{\\partial_z \\ab{b}} = \\frac{ \\partial_y \\ab{\\ol{b}} +\\partial_y b^+ }{\\partial_z \\ab{\\ol{b}} + \\partial_z b^+} \n= \\frac{ \\frac{\\partial_y \\ab{\\ol{b}}}{\\partial_z \\ab{\\ol{b}}} + \\frac{\\partial_y b^+}{\\partial_z \\ab{\\ol{b}}} }{1 + \\frac{\\partial_z b^+}{\\partial_z \\ab{\\ol{b}}}} \n$$\n\nApplying QG scaling and a binomial expansion, we find\n\n$$ s = \\ol{s} \\left ( 1 - \\frac{\\partial_z b^+}{\\partial_z \\ab{\\ol{b}}} \\right ) $$\n\ngiving\n\n$$ w^{\\ast +} = - K_{GM} \\pd{\\ol{s}}{y} \\frac{\\partial_z b^+}{\\partial_z \\ab{\\ol{b}}} $$\n\n" | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "### Kinematics\n\nThe above argument doesn't make much sense. Instead, let's consider kinematics. Let $\\eta$ be the displacement of the zonal-mean isopycnal from its reference position. We have\n\n$$ \\pd{\\eta}{t} = w_{res} $$\n\n$\\eta$ can be related to buoyancy anomalies through the taylor expansion\n\n$$ \\eta \\simeq -\\frac{b^+}{\\partial_z \\ab{b}} \\simeq -\\frac{b^+}{\\partial_z \\ab{\\ol{b}}} \\ .$$\n\nIt is still not possible to related $\\eta$ to changes in slope without considering the meridional stucture of the wind forcing. Otherwise the wind pumping just moves the isopcnals up and down uniformly, with no changes in slope.\n\n$$ s^+ = \\pd{\\eta}{y} \\simeq - \\frac{\\partial_y b^+}{\\partial_z \\ab{\\ol{b}}} $$\n" | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "code", | |
"input": "", | |
"outputs": [], | |
"language": "python", | |
"trusted": true, | |
"collapsed": false | |
} | |
], | |
"metadata": {} | |
} | |
], | |
"metadata": { | |
"name": "", | |
"signature": "sha256:44cedcb4523b7f76fa39eef9d0e5e4c908236b3ee76bab91df2d8f5c7c94d60b" | |
}, | |
"nbformat": 3 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment