Skip to content

Instantly share code, notes, and snippets.

@rabernat
Created September 18, 2014 01:17
Show Gist options
  • Save rabernat/7821188855fb46a31476 to your computer and use it in GitHub Desktop.
Save rabernat/7821188855fb46a31476 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"worksheets": [
{
"cells": [
{
"metadata": {},
"cell_type": "heading",
"source": "Can you read this?",
"level": 1
},
{
"metadata": {},
"cell_type": "code",
"input": "# namespace\nprint dir()",
"prompt_number": 1,
"outputs": [
{
"output_type": "stream",
"text": "['In', 'Out', '_', '__', '___', '__builtin__', '__builtins__', '__doc__', '__name__', '__package__', '_dh', '_i', '_i1', '_ih', '_ii', '_iii', '_oh', '_sh', 'exit', 'get_ipython', 'quit', 'readline', 'rlcompleter']\n",
"stream": "stdout"
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "whos",
"prompt_number": 2,
"outputs": [
{
"output_type": "stream",
"text": "Interactive namespace is empty.\n",
"stream": "stdout"
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "import numpy as np",
"prompt_number": 1,
"outputs": [],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "a = np.array([6,1,7,8,0,0,4,2,3,7])",
"prompt_number": 2,
"outputs": [],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "from IPython.display import Image\nImage(url='http://docs.scipy.org/doc/numpy/_images/threefundamental.png')",
"prompt_number": 3,
"outputs": [
{
"text": "<IPython.core.display.Image at 0x103823810>",
"html": "<img src=\"http://docs.scipy.org/doc/numpy/_images/threefundamental.png\"/>",
"output_type": "pyout",
"metadata": {},
"prompt_number": 3
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "a.dtype",
"prompt_number": 4,
"outputs": [
{
"text": "dtype('int64')",
"output_type": "pyout",
"metadata": {},
"prompt_number": 4
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "a.shape",
"prompt_number": 5,
"outputs": [
{
"text": "(10,)",
"output_type": "pyout",
"metadata": {},
"prompt_number": 5
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "b = a.view(dtype=np.float)\nb",
"prompt_number": 9,
"outputs": [
{
"text": "array([ 2.96439388e-323, 4.94065646e-324, 3.45845952e-323,\n 3.95252517e-323, 0.00000000e+000, 0.00000000e+000,\n 1.97626258e-323, 9.88131292e-324, 1.48219694e-323,\n 3.45845952e-323])",
"output_type": "pyout",
"metadata": {},
"prompt_number": 9
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "c = np.array([[2,1,4],[9,1,7]], dtype=np.float)",
"prompt_number": 10,
"outputs": [],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "c",
"prompt_number": 11,
"outputs": [
{
"text": "array([[ 2., 1., 4.],\n [ 9., 1., 7.]])",
"output_type": "pyout",
"metadata": {},
"prompt_number": 11
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "c.shape",
"prompt_number": 12,
"outputs": [
{
"text": "(2, 3)",
"output_type": "pyout",
"metadata": {},
"prompt_number": 12
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "a[1]",
"prompt_number": 13,
"outputs": [
{
"text": "1",
"output_type": "pyout",
"metadata": {},
"prompt_number": 13
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "c[1]",
"prompt_number": 14,
"outputs": [
{
"text": "array([ 9., 1., 7.])",
"output_type": "pyout",
"metadata": {},
"prompt_number": 14
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "c[1,0]",
"prompt_number": 15,
"outputs": [
{
"text": "9.0",
"output_type": "pyout",
"metadata": {},
"prompt_number": 15
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "c[:,0]",
"prompt_number": 16,
"outputs": [
{
"text": "array([ 2., 9.])",
"output_type": "pyout",
"metadata": {},
"prompt_number": 16
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "c[1,:]",
"prompt_number": 17,
"outputs": [
{
"text": "array([ 9., 1., 7.])",
"output_type": "pyout",
"metadata": {},
"prompt_number": 17
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "c[1,:2]",
"prompt_number": 18,
"outputs": [
{
"text": "array([ 9., 1.])",
"output_type": "pyout",
"metadata": {},
"prompt_number": 18
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "a.repeat(3)",
"prompt_number": 20,
"outputs": [
{
"text": "array([6, 6, 6, 1, 1, 1, 7, 7, 7, 8, 8, 8, 0, 0, 0, 0, 0, 0, 4, 4, 4, 2, 2,\n 2, 3, 3, 3, 7, 7, 7])",
"output_type": "pyout",
"metadata": {},
"prompt_number": 20
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "np.tile(a,3)",
"prompt_number": 22,
"outputs": [
{
"text": "array([6, 1, 7, 8, 0, 0, 4, 2, 3, 7, 6, 1, 7, 8, 0, 0, 4, 2, 3, 7, 6, 1, 7,\n 8, 0, 0, 4, 2, 3, 7])",
"output_type": "pyout",
"metadata": {},
"prompt_number": 22
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "r = np.arange(100)\nr",
"prompt_number": 23,
"outputs": [
{
"text": "array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,\n 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,\n 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,\n 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,\n 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])",
"output_type": "pyout",
"metadata": {},
"prompt_number": 23
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "other_r = np.arange(99,100,0.02)\nprint other_r",
"prompt_number": 24,
"outputs": [
{
"output_type": "stream",
"text": "[ 99. 99.02 99.04 99.06 99.08 99.1 99.12 99.14 99.16 99.18\n 99.2 99.22 99.24 99.26 99.28 99.3 99.32 99.34 99.36 99.38\n 99.4 99.42 99.44 99.46 99.48 99.5 99.52 99.54 99.56 99.58\n 99.6 99.62 99.64 99.66 99.68 99.7 99.72 99.74 99.76 99.78\n 99.8 99.82 99.84 99.86 99.88 99.9 99.92 99.94 99.96 99.98]\n",
"stream": "stdout"
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "linspc = np.linspace(2,5,99)\nlinspc",
"prompt_number": 26,
"outputs": [
{
"text": "array([ 2. , 2.03061224, 2.06122449, 2.09183673, 2.12244898,\n 2.15306122, 2.18367347, 2.21428571, 2.24489796, 2.2755102 ,\n 2.30612245, 2.33673469, 2.36734694, 2.39795918, 2.42857143,\n 2.45918367, 2.48979592, 2.52040816, 2.55102041, 2.58163265,\n 2.6122449 , 2.64285714, 2.67346939, 2.70408163, 2.73469388,\n 2.76530612, 2.79591837, 2.82653061, 2.85714286, 2.8877551 ,\n 2.91836735, 2.94897959, 2.97959184, 3.01020408, 3.04081633,\n 3.07142857, 3.10204082, 3.13265306, 3.16326531, 3.19387755,\n 3.2244898 , 3.25510204, 3.28571429, 3.31632653, 3.34693878,\n 3.37755102, 3.40816327, 3.43877551, 3.46938776, 3.5 ,\n 3.53061224, 3.56122449, 3.59183673, 3.62244898, 3.65306122,\n 3.68367347, 3.71428571, 3.74489796, 3.7755102 , 3.80612245,\n 3.83673469, 3.86734694, 3.89795918, 3.92857143, 3.95918367,\n 3.98979592, 4.02040816, 4.05102041, 4.08163265, 4.1122449 ,\n 4.14285714, 4.17346939, 4.20408163, 4.23469388, 4.26530612,\n 4.29591837, 4.32653061, 4.35714286, 4.3877551 , 4.41836735,\n 4.44897959, 4.47959184, 4.51020408, 4.54081633, 4.57142857,\n 4.60204082, 4.63265306, 4.66326531, 4.69387755, 4.7244898 ,\n 4.75510204, 4.78571429, 4.81632653, 4.84693878, 4.87755102,\n 4.90816327, 4.93877551, 4.96938776, 5. ])",
"output_type": "pyout",
"metadata": {},
"prompt_number": 26
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "x = np.linspace(-np.pi, np.pi, 100)\nf = np.sin(x)",
"prompt_number": 28,
"outputs": [],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "from matplotlib import pyplot as plt\n%matplotlib inline",
"prompt_number": 29,
"outputs": [],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "plt.plot(x, f)",
"prompt_number": 30,
"outputs": [
{
"text": "[<matplotlib.lines.Line2D at 0x10bc38d90>]",
"output_type": "pyout",
"metadata": {},
"prompt_number": 30
},
{
"png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVdXex/EPomVKmXmtNMUBZ9PKnMA0ykhNrUyLVMAJ\nmmy4ZXWzsnqqW09lpaYmIqjYTcmhUFHQVARDRVTEARMEBRvsVubYYw48fxy819tFAc+w9jnn+369\nzotpw/qK8Ds/1lp7bxAREREREREREREREREREREREREREQeLAw4C2y9yzLtAAbAZaOWKUCIi4jjd\ngVu4cKHvDKwDrgEGA0tdlEtERByoMRcu9E8Bfz3v7b1OTyMiIv9SxQVjdAZ2nff2P4EAF4wrIiK4\nptD7lD7OV+KCcUVEBKjqgjE2Am2AlNK362JbmP0PAQEBJXv3alZHRKSS9gLNLnaAKzr6jcBAoA4w\nBMgt66C9e/dSUlJi+cfrr79uPIMnZFRO6+TcunUrvXr1ol69erz33nv89NNPFfq8s2fPsmnTJp54\n4gmuueYann/+eX799Vev/366+kEFpsIdUejnAhlAS6AYGAk8WvoAyMS26yYLGAO84IAxRcROx48f\n5/nnn+fuu+/m/vvvp7CwkBdffJG6detW6PN9fHzo2LEjU6ZMYceOHRw5coQWLVowc+bMcwVILMIR\nUzeDK3DMS6UPEbGAzZs38+CDD9KtWzd27NjBtddea9fXq1evHtHR0YwePZqwsDCWLVtGdHQ011xz\njYMSiz1cMXXjUYKDg01HKJc7ZATldLSK5pw9eza9e/fm/fffZ86cOXYX+fO1b9+ezMxMGjRowC23\n3EJ2dvYl5zTNXXJWxJ93w5hUoj/3RJzn7NmzvPDCCyxdupQvv/ySNm3aOHW8+fPnM3r0aObMmUOv\nXr2cOpY38/HxgXJquQq9iBc4c+YMjzzyCLm5uSQlJVG7dm2XjPvNN98wcOBA/vd//5fhw4e7ZExv\nU5FC74rtlSJi0KlTp4iIiOCnn35ixYoV+Pn5uWzsbt26sXbtWnr27EmVKlWIiIhw2djybyr0Ih7s\n7NmzjBo1isOHD5OUlET16tVdnqFly5asXLmSnj17cvnllxMaGuryDN5OhV7Eg7300kvk5+fz9ddf\nGyny57Ru3ZqUlBRCQkLw8/Ojb9++xrJ4I83Ri3iojz/+mJiYGNLT06lTp47pOABs2LCBe++9l1Wr\nVtGuXTvTcTxCRebotb1SxAMtX76c8ePHk5ycbJkiD9C1a1cmTZpE//79OXjwoOk4XkMdvYiHyc/P\np1u3bixatIhu3bqZjlOm//mf/yE5OZnU1FQuv/xy03HcmrZXiniZY8eOERgYyOOPP84TTzxhOs4F\nlZSU8MADD9CoUSMmTJhgOo5bU6EX8TLh4eFUrVqVuLi4cwXAsg4dOkSHDh346KOPGDBggOk4bkv7\n6EW8yOeff05WVhabN2+2fJEHqF27NgkJCfTr14+bb76ZJk2amI7ksaz006COXuQS7du3j86dO5Oc\nnEyHDh1Mx6mUjz/+mPnz55Oeno6vr6/pOG5Hu25EvMDp06cJCwvjhRdecLsiD/DMM89QvXp1Pvzw\nQ9NRPJY6ehE3N378eJKSkli1ahVVqrhn77Zv3z46depEamoqbdu2NR3HrWgxVsTD5efn07VrVzZu\n3EhAQLk3GrK0mJgYpk2bxoYNG6hWrZrpOG5DUzciHqykpISoqCjGjh3r9kUeIDIykrp16/LRRx+Z\njuJx1NGLuKmYmBhiYmLIyMigalXP2EBXUFBA586d2bRpk3bhVJCmbkQ81E8//UTbtm1ZtWoV7du3\nNx3Hod59913WrVvH0qVL3WKbqGmauhHxUGPHjiUiIsLjijzAmDFjKCwsZNGiRaajeAwrPV2qoxep\ngA0bNjBw4EByc3O56qqrTMdxirS0NIYOHUpubq5Lb5TijtTRi3iYM2fO8OSTT/Lee+95bJEH6NGj\nB927d+f99983HcUjqKMXcSMxMTHEx8eTlpbm8fPXxcXF3HzzzWzZsoVGjRqZjmNZWowV8SBHjx6l\nRYsWJCUlueUZsJfi9ddfZ8+ePcydO9d0FMtSoRfxIK+99hqFhYXMmTPHdBSXOX78OK1atWLevHmW\nvba+aSr0Ih7iu+++o3379mzduhV/f3/TcVzqs88+Y/Lkyaxfv97jp6suhRZjRTzEuHHjiIqK8roi\nDzBkyBB+//13vvrqK9NR3JaVnh7V0YuUYfv27dx1113s2bOHWrVqmY5jxLJlyxgzZgzbt2/3mLOA\nHUUdvYgHeO211/jb3/7mtUUeoE+fPlx77bXEx8ebjuKW1NGLWNimTZsYMGAAeXl5XHHFFabjGLV+\n/Xoeeugh9uzZ4/Xfi/Opoxdxc+PGjePVV19VYQMCAwPp0KED0dHRpqO4HXX0IhaVnp7OsGHD2L17\nN5dddpnpOJaQnZ1Nnz592Lt3LzVq1DAdxxLU0Yu4sVdffZXXX39dRf48N998M4GBgerqK0kdvYgF\nrV27lsjISHJzc7XL5E+2bdtG79691dWXUkcv4qbefPNNXn75ZRX5Mtx0000EBQXx6aefmo7iNtTR\ni1hMRkYGQ4cOZc+ePbp36gVs376dkJAQCgoKvL6rV0cv4obeeustxo4dqyJ/Ee3ataNr167ExcWZ\njuIW1NGLWMimTZsYOHAgeXl5XH755abjWNrGjRt56KGHyMvL8+oFa3X0Im7mnXfe4YUXXlCRr4Au\nXbrQvHlzPv/8c9NRLE8dvYhF7N69m9tvv53CwkKvn3euqDVr1vD444+zc+dOfH19TccxQh29iBv5\n4IMPGD16tIp8JQQHB1O7dm3dSLwc6uhFLODAgQO0b9+evLw86tSpYzqOW0lMTOTtt98mMzPTK69X\nr45exE1MmDCBiIgIFflL0L9/f44cOcLatWtNR7EsKz39qaMXr3To0CECAgLIzs72yhuLOML06dNZ\nvHgxS5cuNR3F5dTRi7iBmJgY+vbtqyJvh4iICLKysti1a5fpKJakjl7EoFOnTtG0aVMWL17MLbfc\nYjqOW3v77bcpKCjwupOodHNwEYv7/PPPmTFjBqtXrzYdxe398ssvNGvWjF27dlGvXj3TcVzGVVM3\nPYBcIA94qoyPBwOHga2lj1cdMKaI2yspKeHDDz/kueeeMx3FI9SpU4chQ4boYmdlcERHvxV4BtgP\npAC3AT+f9/Fg4Dng3nK+jjp68Spr167l0UcfZdeuXVSpouUyR/j222/p0aMH+/fvp3r16qbjuIQr\nOvpzdytOw1boVwBdyspi5zgiHuejjz7i2WefVZF3oJYtW9KxY0ddFuFP7P0J6wTsPu/tXUDXPx1T\nAgQB2cBHQICdY4q4vYKCAjIyMggPDzcdxeM888wzTJgwAc0Q/Jsr7mqwBWgInAKGAROBfmUd+MYb\nb/zr9eDgYIKDg52fTsSAKVOmMHLkSF3uwAlCQkI4ffo0a9as4c477zQdx+FSU1NJTU2t1OfYO6VS\nC0gFzu0L+wRIBpIuMt6PgD9w8k8f0xy9eIVjx47RqFEjtmzZQqNGjUzH8UjTp09n6dKlLF682HQU\np3PFHP3h0pc9gMZACLDxT8dcd16I/kAO/13kRbzGnDlzCA4OVpF3orCwMNavX09hYaHpKJbgiFWg\nvwLRwNfAVGw7bh4tfQAMArZjm6MfBIxxwJgibqmkpIRJkybx1FNl7UQWR6lRowbDhw9n6tSppqNY\ngpV2w2jqRjzeypUrGTNmDNu2bfPKKy26UkFBAZ07d6aoqMij10J0rRsRi5k8eTJPPvmkirwLNG3a\nlMDAQObOnWs6inFW+mlTRy8ebf/+/XTo0IGioiJq1qxpOo5XSElJ4aWXXmLLli0e++Sqjl7EQqZP\nn054eLiKvAuFhIRw/PhxMjIyTEcxykpPceroxWOdPHkSf39/0tLSaNmypek4XmXChAlkZmZ67Nmy\n6uhFLGLhwoW0a9dORd6AYcOGsXz5cn766SfTUYxRoRdxgalTpzJ69GjTMbxS7dq1GTBgADNnzjQd\nxRhN3Yg4WU5ODvfccw/79u2jalVXXHVE/iwzM5OHH36Y/Px8j7uInKZuRCxg2rRpREVFqcgb1KlT\nJ2rXrk1KSorpKEaooxdxomPHjuHv709OTg4NGjQwHcerzZgxgyVLlpCYmGg6ikOpoxcxbO7cufTo\n0UNF3gIGDx7MunXrKCoqMh3F5VToRZwoOjqaRx99tPwDxelq1qzJkCFDvO7m4aCpGxGnycrK4sEH\nHyQ/Px9fX1/TcQTYvn07ffr08aiFcU3diBgUHR1NVFSUiryFtGvXjoYNG7J8+XLTUVxKHb2IExw9\nehR/f39yc3O5/vrrTceR88ycOZNFixaxZMkS01EcQh29iCFz587ljjvuUJG3oNDQUDIyMiguLjYd\nxWVU6EWcICYmhqioKNMxpAw1atRg8ODBxMbGmo7iMpq6EXGw7Oxs7rvvPgoKCjQ/b1E5OTn07duX\nffv2uf3/kaZuRAyIiYlh5MiRbl9APFn79u2pV68eK1asMB3FJdTRizjQiRMnaNCgAdu2baNhw4am\n48hFTJ8+nZSUFBYuXGg6il3U0Yu42Pz58+natauKvBt4+OGHWbVqFQcPHjQdxelU6EUcKDY2Vouw\nbuKqq67igQceID4+3nQUp9PUjYiDfPvtt9x+++0UFxdTrVo103GkAjIyMhgxYgS7d+9223vKaupG\nxIXi4uIIDw9XkXcjgYGB+Pr6kp6ebjqKU6nQizjAqVOniI+PZ9SoUaajSCX4+PgQGRnp8XvqVehF\nHGDZsmUEBATQqlUr01GkksLCwkhMTOTIkSOmoziNCr2IA8TGxqqbd1PXXnstPXv2JCEhwXQUp7HS\n6oMWY8Ut/fDDD7Rp04bi4mL8/PxMx5FLkJSUxFtvvcWGDRtMR6k0LcaKuEB8fDyDBg1SkXdjvXr1\nori4mJ07d5qO4hQq9CJ2KCkpIS4ujhEjRpiOInaoWrUqw4YN89i7T6nQi9hh/fr1+Pj4EBgYaDqK\n2GnkyJF89tln/PHHH6ajOJwKvYgd4uLiGDlypNuebCP/1qxZM1q1akVSUpLpKA5npZ9OLcaKWzl2\n7BgNGzZk165d1KtXz3QccYBZs2axaNEiFi9ebDpKhWkxVsSJFixYQPfu3VXkPcigQYNIT0/nxx9/\nNB3FoVToRS7RzJkztQjrYfz8/BgwYABz5swxHcWhNHUjcgn27t1LYGAgBw4c4LLLLjMdRxxo3bp1\nPPLII+zcudMt1l40dSPiJLNmzWLo0KEq8h6oW7dunD59mszMTNNRHEaFXqSSzpw5w+zZszVt46F8\nfHwYPny4R+2pV6EXqaTVq1dTt25d2rdvbzqKOElERATz58/n999/Nx3FIVToRSpp5syZDB8+3HQM\ncaIGDRrQuXNnvvzyS9NRHMJKKw1ajBXL++2332jcuDF79+6lTp06puOIE82bN4+4uDhWrFhhOspF\naTFWxMESEhIICQlRkfcC999/P5s3b6a4uNh0FLup0ItUwqxZs7QI6yWqV6/OQw895BE3D9fUjUgF\n7d69mzvuuIPi4mKqVq1qOo64QGZmJkOHDmXPnj2W3VOvqRsRB5o9ezbh4eEq8l6kU6dOVKtWjW++\n+cZ0FLuo0ItUwJkzZ4iPj9duGy/j4+PDiBEjmDVrlukodlGhF6mAlStX0qBBA9q0aWM6irhYWFgY\nCxcu5Pjx46ajXDIVepEKmDVrlrp5L1WvXj2CgoLcek+9Iwp9DyAXyAOeusAx7wIFwGaglQPGFHGZ\nQ4cOkZyczMMPP2w6ihgyfPhwt56+cUShnwg8CtwFjAb+8qePdwa6Ax2B8aUPEbeRkJBAr169qF27\ntukoYkj//v3Jzs5m//79pqNcEnsLfa3Sl2nAfmAF0OVPx3QBFgC/AnOB1naOKeJSmraR6tWrExoa\n6rbXqbe30HcCdp/39i6g65+O6Vz6/nP+CQTYOa7TlJSUkJKSwunTp01HEQvIzc2lqKiIkJAQ01HE\nsHPTN+54vo8rNgT78N+b+cv8Tr3xxhv/ej04OJjg4GCnhboQHx8fXn/9dc6ePUufPn1cPr5Yi/bO\nyzkdO3YkKCiIn3/+mbp16xrLkZqaSmpqaqU+x95TvWoBqcAtpW9/AiQD599G/SlsTygfl769l7I7\nesucGTtt2jTWrFlDQkKC6Shi0JkzZ/D392flypXaVimW5YozYw+XvuwBNAZCgI1/OmYjMBCoAwzB\ntkPH0kJDQ0lJSeHQoUOmo4hB2jsvnsIRu27+CkQDXwNTgZ+x7cJ5tPTjmcA6IAsYA7zggDGdqnbt\n2vTu3Zu5c+eajiIGzZo1i2HDhpmOIWI3K12lxzJTNwDJycm89tprHnXfSKm4Q4cO0aRJEwoLC7Wt\nUixNFzWzQ0hICN999x07d+40HUUMmDdvHr1791aRF4+gQn8Bvr6+hIeHM3v2bNNRxADtnRdPoqmb\ni8jNzeXOO+/U9ce9zK5duwgJCaGoqAhfX1/TcUQuSlM3dmrdujWNGjWy/D0jxbHO7Z1XkRdPoUJf\njhEjRjBz5kzTMcRFTp8+zZw5czRtIx5Fhb4coaGhrFy5kl9++cV0FHGBFStW4O/vT6tWusiqeA4V\n+nJcffXV3HPPPcybN890FHGBmTNn6ubf4nG0GFsBK1as4OWXXyYrK8t0FHGiX375hYCAAPbv30+t\nWrXK/wQRC9BirIP07NmTgwcPsn37dtNRxIk+//xz+vbtqyIvHkeFvgJ8fX2JiIhw6zvMSPm0d148\nlaZuKigvL4/bbruNAwcOUK1aNdNxxMFycnLo168fhYWF2lYpbkVTNw7UvHlzWrRowbJly0xHESeY\nOXMmw4YNU5EXj6SOvhLi4uJITEwkMTHRdBRxoD/++IOGDRuSkZFBQIBlb34mUiZ19A724IMPkpaW\nxsGDB01HEQdKSkqiZcuWKvLisVToK+HKK6/k/vvv57PPPjMdRRwoLi6OUaNGmY4h4jSauqmktLQ0\nHn/8cXbs2HHuTyZxY99//z1t27blwIED1KxZ03QckUrT1I0TdO/enZMnT+qGJB5izpw5DBo0SEVe\nPJoKfSX5+PgwcuRI4uLiTEcRO5WUlBAXF6dLHojHU6G/BMOGDWP+/PmcOHHCdBSxw/r16/Hx8SEw\nMNB0FBGnUqG/BDfccAOBgYEsWLDAdBSxQ2xsLCNGjNBai3g8K/2Eu8Vi7DkLFy7kk08+ITU11XQU\nuQRHjx7F39+f3Nxcrr/+etNxRC6ZFmOdqH///uzatYv8/HzTUeQSfPHFF/To0UNFXryCCv0luuyy\nywgLC9Pdp9xUbGys9s6L19DUjR127NhBr1692L9/v24e7kZyc3Pp2bMnRUVF+n8Tt6epGye78cYb\n8ff3Jzk52XQUqYTY2FiGDRumIi9eQx29nWJjY1myZAlfffWV6ShSAecuYLZu3TqaN29uOo6I3dTR\nu0BoaChr167lhx9+MB1FKmDp0qW0atVKRV68igq9nfz8/Bg0aBCzZ882HUUqICYmhsjISNMxRFxK\nUzcOsHHjRoYOHUpeXp5OvrGw/fv306FDBw4cOMAVV1xhOo6IQ2jqxkU6d+5MjRo1dPKUxcXFxTFk\nyBAVefE6KvQO4OPjQ2RkJDExMaajyAWcPn2auLg4oqKiTEcRcTkVegcJDw9n2bJl/Pzzz6ajSBmS\nk5OpX78+7du3Nx1FxOVU6B2kdu3a3HfffcTHx5uOImWIiYlRNy9ey0orh267GHvON998w6hRo8jN\nzdWirIV89913tGvXjqKiIvz8/EzHEXEoLca6WFBQEL6+vqSlpZmOIueJjY0lNDRURV68lgq9A/n4\n+PDII48wffp001Gk1OnTp5kxYwaPPfaY6SgixqjQO1h4eDhJSUlalLWI5cuXU79+fW666SbTUUSM\nUaF3sGuuuYb77ruPWbNmmY4iQHR0tLp58XpWWjF0+8XYczZs2EBYWBh79uyhShU9l5py7kzY4uJi\natSoYTqOiFNoMdaQLl264Ofnx9dff206ilebMWMGYWFhKvLi9dTRO0l0dDTJycl8+eWXpqN4pT/+\n+INGjRqxatUq2rRpYzqOiNOoozdo6NChrF27lgMHDpiO4pW+/PJLWrdurSIvggq90/j5+TF48GBd\n/8aQqVOn8sQTT5iOIWIJmrpxonP3lN23bx/VqlUzHcdrbN++nd69e+v7Ll5BUzeG3XjjjTRv3lzz\n9C726aefEhUVpSIvUkodvZMtWLCASZMm6bIILnLkyBEaN27Mjh07qF+/vuk4Ik6njt4C7rvvPgoK\nCti2bZvpKF4hPj6enj17qsiLnMeeQn8lkAgUAV8BF7pi1D4gB9gKZNoxnluqVq0ajz32GFOmTDEd\nxeOdPXuWyZMn8/TTT5uOImIp9hT6x7EV+ebAAeBC55mXAMHALUBnO8ZzW1FRUcyfP59Dhw6ZjuLR\nVq5cyRVXXMFtt91mOoqIpdhT6DsDscBJIA7ocpFjrbQW4HLXXXcd/fr1IzY21nQUjzZp0iSefvpp\n3QtA5E/s+Y3YD7QE/g+oAeQCjco4rgA4ChRie0JYfIGv55GLsedkZWUxaNAg8vPzqVq1quk4Hicv\nL49u3bpRVFRE9erVTccRcZmKLMaWV3FWAteX8f5XyvvC5+kG/AC0BpZgm6f/sawD33jjjX+9Hhwc\nTHBwcAWHsL6OHTvSoEEDEhMTGThwoOk4Hmfy5MlERUWpyIvHS01NJTU1tVKfY09HvxB4G9si663A\nWGBQOZ/zEbbOv6zTRT26owfbVsuJEyeSnp5uOopHOXz4ME2bNmXbtm00aNDAdBwRl3L29sqNwEjg\nitKXG8o4pga23TkAdYFeQLIdY7q1+++/n6KiIrKyskxH8SixsbH06tVLRV7kAuwp9J8C/sC3wA3A\ntNL31weSSl+/HkgHsoF5wIdAsR1jurWqVavy1FNPMXHiRNNRPMbp06eZOHEizz33nOkoIpZlpe0J\nHj91A/Dbb7/RtGlTnbnpIF988QWTJ0/WmcfitXRmrAVdffXVhIeHM2nSJNNR3F5JSQkffvihunmR\ncqijN6CwsJBOnTpRWFjIlVdeWf4nSJkyMjKIiIjg22+/xdfX13QcESPU0VtUkyZNuOuuu5gxY4bp\nKG5t/PjxPPPMMyryIuVQR29IVlYWDzzwAHv37tXldC/Bt99+S/fu3SksLKRmzZqm44gYo47ewjp2\n7EhAQADz5883HcUtffDBB4wePVpFXqQC1NEbtGzZMsaOHUt2drauz1IJ33//PTfeeCN5eXnUqVPH\ndBwRo9TRW1yfPn0AW8GXipswYQLh4eEq8iIVZKU20us6eoCEhAQmTpzIN998o66+An777TcCAgLY\nsmULjRqVdQ09Ee+ijt4NDBo0iH/+85864aeCJk+eTL9+/VTkRSrBSi2kV3b0YLtWyxdffEFKSorp\nKJZ29OhRAgICSE9Pp2XLlqbjiFiCOno3ER4ezq5du9i0aZPpKJY2depU7rrrLhV5kUpSR28RkydP\nJiUlhSVLlpiOYknHjx8nICCAVatW0bZtW9NxRCxDHb0biYyMZOvWrerqLyA6Opru3buryItcAnX0\nFjJlyhSWLVtGUlJS+Qd7kRMnTtCsWTOWL1/OTTfdZDqOiKWoo3czkZGRbN++nY0bN5qOYilTpkwh\nKChIRV7kEqmjt5hp06aRmJjI8uXLTUexhCNHjtCsWTNSU1Np06aN6TgilqOO3g2NHDmS3Nxc1q1b\nZzqKJUyYMIFevXqpyIvYQR29BcXHxzN9+nTS09O9+mzZX3/9lRYtWrBx40YCAgJMxxGxJHX0bmro\n0KEcPnyYpUuXmo5i1HvvvccDDzygIi9iJyu1i+roz7NkyRLGjh3Ltm3bvPLGGkVFRdxyyy3k5ORw\nww03mI4jYlnq6N1Yv379uPrqq/nss89MRzHilVdeYfTo0SryIg6gjt7CMjIyCA0NZffu3V51g40t\nW7bQt29f9uzZo3vqipRDHb2bCwoKolu3bnzwwQemo7hMSUkJzz//PG+88YaKvIiDqKO3uP3799Oh\nQweys7Np2LCh6ThOt3jxYl566SVycnKoWrWq6TgilleRjl6F3g2MGzeOgoIC/vGPf5iO4lS///47\nbdu2JTo6mpCQENNxRNyCCr2HOHbsGK1ateKLL74gKCjIdBynefPNN8nJyWHBggWmo4i4DRV6DzJv\n3jzeeecdNm/eTLVq1UzHcbh9+/Zx66236haBIpWkxVgPEhoayvXXX8/EiRNNR3GKZ599lmeffVZF\nXsQJ1NG7kfz8fLp27crmzZs9qiAuWrToXyeHVa9e3XQcEbeiqRsP9Pbbb5OZmUliYqJHXAfn0KFD\n3HjjjcybN4/u3bubjiPidlToPdDJkyfp0KEDr7zyCkOGDDEdx26RkZFcfvnlTJkyxXQUEbekQu+h\nNm/ezD333MPWrVupX7++6TiXbPXq1QwfPpwdO3Zw1VVXmY4j4pa0GOuhbr31Vh577DEeeeQR3PXJ\n8dChQ4wYMYLo6GgVeREnU0fvpv744w+6dOnCk08+yahRo0zHqZSSkhIefvhhrrvuOiZNmmQ6johb\n09SNh9uxYwd33HEHaWlptG7d2nScCouPj+f9999n06ZNXHHFFabjiLg1FXovEBsby8cff0xmZiY1\natQwHadc+fn5BAYGsmrVKtq3b286jojbU6H3AiUlJURERHDZZZcRGxtrOs5FHTt2jK5duzJ69Gge\nf/xx03FEPIIKvZc4duwYnTp14rnnniMqKsp0nDKdm5evWbMmsbGxHnEOgIgVVKTQ6zqwHsDPz4/E\nxES6d+9Os2bNuOOOO0xH+i/jx4+noKDA6294LmKClX7j1NHbafXq1QwePJj09HRatGhhOs6/LFiw\ngGeeeYYNGzZ4xTX1RVxJ++i9zJ133snf//53+vbty48//mg6DgBr1qzhiSeeICkpSUVexBBN3XiY\nyMhIfvjhB3r27Elqaip169Y1liU7O5vQ0FASEhK4+eabjeUQ8XYq9B5o3LhxnDx5kpCQEFavXs01\n11zj8gz7tmDKAAAFIUlEQVSZmZnce++9fPrpp5ZcMxDxJpq68VBvvfUWISEhBAcHc+DAAZeOnZaW\nRr9+/YiJiWHgwIEuHVtE/psKvYfy8fHh/fffJywsjKCgIHJyclwy7vz58xk4cCBz586lf//+LhlT\nRC5Ou268QEJCAk899RSffvqp0zrs06dP88orr5CQkMCiRYvo0KGDU8YRkf/k7F03DwI7gTPAxX6r\newC5QB7wlB3jySUKDQ1l6dKl/O1vfyMyMpJjx4459Ovv3buXu+++my1btpCVlaUiL2Ix9hT67cAA\nIK2c4yYCjwJ3AaOBv9gxpnGpqammI5SrrIydO3dm69atlJSUcNNNN7Fw4UK7L3F86tQp3n33XTp3\n7kzv3r1Zvnw5f/lLxf973eF7CcrpaMrpevYU+t3AnnKOqVX6Mg3YD6wAutgxpnHu8J9/oYxXXnkl\nsbGxTJs2jbfffpugoCBSUlI4c+ZMpb7+iRMnmDx5Mi1atCAtLY2srCxefPFFqlat3CYud/hegnI6\nmnK6nrMXYzthe0I4ZxfQ1cljSjlCQkLYvHkzo0eP5uWXX6ZJkyaMGzeO9PR0jh8/XubnHD16lK++\n+orIyEgaN27M6tWrmTt3LsuXL6dJkyYu/heISGWU14KtBK4v4/0vA0scH0dcpUqVKoSFhREWFkZO\nTg7x8fE8//zz7NixA39/f2rVqkWNGjU4ceIE+/bt4/Dhw3Tr1o1+/frx8ssv07RpU9P/BBGpIEfs\nulkDjAG2lPGxWkAqcEvp258AyUBSGcfmAwEOyCMi4k32As2cPcga4NaLfHwrtp03jbFN47j1YqyI\niDcZABQDvwM/AstL31+f/+zYb8e2vTIfeNqVAUVERERExIAxwFnA9Vfiqpi3gG1ANjAHqGM2zgV9\ngO0vqS3ABMCqd+Gu6Il3prjDCX9xwEFs57ZYWUNsU707sa3dDTGapmzVgY3Yfr83AM+ajVMuX2zT\n4261OaYhtsXaQqxb6K887/XXgDdNBSlHCLbts1WAGGCU2TgX1Apoga0AWLHQn1tjaoR115i6Y9vw\nYPVCfz1w7nrVfwEK+M/fJ6uoUfrycmAHLljotMNzwD+AxRc7yGoXNfsIeNF0iHIcLX1ZFagJ/J/B\nLBezEttfRmeBFGxrJVZUkRPvTHGXE/7SgUOmQ1TAj9g6ZYCfsXX2Hc3FuaATpS/9sP2enzSY5WIa\nAPcAM3CjO0zdBxwAXHOZRfv8HdsP7W3AeMNZKiIKN/vTziJ0wp/zNAPaApmmg5ShCrbp2YPAZGyb\nTqzoY+AFbM3cRbn6xiMXOgHrFWAscPd57zN5Zc3yThR7BVux/zvwHubm8SpyQttr2P4Kme+qUGXQ\niXdyviuBBGy/N2Wfim3WWeAmbFvClwHfYJvCs5J+wE/YcgWbjVJxN2J79iwsfZwC9gHXGsxUEe2w\nLdhY1XBsP6TVDeeoCCvO0dfiP3/BPwH6GspSnsZYf44eoBq2KbC/mg5SQeOBx0yHKMM72P7SKAR+\nwPaEGW800SWw8mJs89KXVbF9s626ptAb2xyoVXcF/Vl5J96Z4i4n/DXG+oXeB1sx+sh0kIv4C3B1\n6et1sE0l1zMXp0Jux03/Mi7AuoV+AbZfqEzgfaC22TgXlIdtAXFr6WOq2TgXdKET76zCHU74mwt8\nj23RsBgYYTbOBd2GbVokm3//XPY2mui/tcO2JXkbtk0MEWbjVMjtlLPrRkRERERERERERERERERE\nRERERERERERERETEY/w/DaCBtyH72CIAAAAASUVORK5CYII=\n",
"text": "<matplotlib.figure.Figure at 0x10bc0e850>",
"output_type": "display_data",
"metadata": {}
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "!curl -LO http://bit.ly/argo_prof",
"prompt_number": 31,
"outputs": [
{
"output_type": "stream",
"text": " % Total % Received % Xferd Average Speed Time Time Time Current\r\n Dload Upload Total Spent Left Speed\r\n\r 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0\r100 218 100 218 0 0 7901 0 --:--:-- --:--:-- --:--:-- 8074\r\n",
"stream": "stdout"
},
{
"output_type": "stream",
"text": "\r 0 0 0 4695 0 0 26503 0 --:--:-- --:--:-- --:--:-- 26503\r\n",
"stream": "stdout"
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "data = np.genfromtxt('argo_prof', delimiter=',', skiprows=1)\nprint data",
"prompt_number": 34,
"outputs": [
{
"output_type": "stream",
"text": "[[ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 0.00000000e+00 1.37310000e+01 3.58370000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.00000000e+00 1.37340000e+01 3.58350000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 2.00000000e+00 1.37370000e+01 3.58330000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 3.00000000e+00 1.37360000e+01 3.58340000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 4.00000000e+00 1.37350000e+01 3.58360000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 5.00000000e+00 1.37360000e+01 3.58350000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 6.00000000e+00 1.37370000e+01 3.58350000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 7.00000000e+00 1.37370000e+01 3.58350000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 8.00000000e+00 1.37380000e+01 3.58350000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 9.00000000e+00 1.37390000e+01 3.58350000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.00000000e+01 1.37400000e+01 3.58340000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.50000000e+01 1.37390000e+01 3.58340000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 2.60000000e+01 1.37380000e+01 3.58340000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 3.50000000e+01 1.37330000e+01 3.58340000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 4.60000000e+01 1.37230000e+01 3.58340000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 5.60000000e+01 1.37160000e+01 3.58350000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 6.50000000e+01 1.37160000e+01 3.58350000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 7.50000000e+01 1.37180000e+01 3.58350000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 8.60000000e+01 1.37190000e+01 3.58340000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 9.60000000e+01 1.37200000e+01 3.58350000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.06000000e+02 1.37220000e+01 3.58350000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.15000000e+02 1.37230000e+01 3.58350000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.25000000e+02 1.37240000e+01 3.58350000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.36000000e+02 1.37250000e+01 3.58350000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.46000000e+02 1.37260000e+01 3.58350000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.56000000e+02 1.37270000e+01 3.58340000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.66000000e+02 1.37280000e+01 3.58340000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.76000000e+02 1.37270000e+01 3.58340000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.86000000e+02 1.37230000e+01 3.58330000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.96000000e+02 1.36980000e+01 3.58280000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 2.13000000e+02 1.35880000e+01 3.58060000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 2.38000000e+02 1.34020000e+01 3.57740000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 2.62000000e+02 1.32130000e+01 3.57410000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 2.88000000e+02 1.29860000e+01 3.57090000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 3.13000000e+02 1.28330000e+01 3.56880000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 3.38000000e+02 1.26910000e+01 3.56690000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 3.64000000e+02 1.23830000e+01 3.56370000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 3.88000000e+02 1.21910000e+01 3.56200000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 4.13000000e+02 1.20970000e+01 3.56140000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 4.38000000e+02 1.19450000e+01 3.56050000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 4.63000000e+02 1.17240000e+01 3.55890000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 4.87000000e+02 1.15630000e+01 3.55750000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 5.13000000e+02 1.14370000e+01 3.55660000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 5.38000000e+02 1.12330000e+01 3.55350000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 5.63000000e+02 1.10530000e+01 3.55190000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 5.88000000e+02 1.08860000e+01 3.54980000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 6.14000000e+02 1.06490000e+01 3.54620000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 6.38000000e+02 1.06040000e+01 3.54730000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 6.63000000e+02 1.04570000e+01 3.54690000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 6.88000000e+02 1.03200000e+01 3.54620000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 7.13000000e+02 1.00310000e+01 3.54430000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 7.38000000e+02 9.73100000e+00 3.54300000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 7.63000000e+02 9.54900000e+00 3.54300000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 7.88000000e+02 9.37800000e+00 3.54300000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 8.13000000e+02 9.08800000e+00 3.54150000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 8.38000000e+02 8.80100000e+00 3.53990000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 8.64000000e+02 8.51900000e+00 3.53920000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 8.88000000e+02 8.36700000e+00 3.53940000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 9.13000000e+02 8.31900000e+00 3.54270000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 9.38000000e+02 8.44100000e+00 3.54960000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 9.63000000e+02 8.37500000e+00 3.55060000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 9.88000000e+02 8.19300000e+00 3.54950000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.01300000e+03 7.95000000e+00 3.54640000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.03800000e+03 7.42200000e+00 3.53860000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.06300000e+03 6.91800000e+00 3.53090000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.08800000e+03 6.56600000e+00 3.52550000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.11300000e+03 6.13000000e+00 3.51910000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.13900000e+03 5.78100000e+00 3.51460000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.16300000e+03 5.59800000e+00 3.51290000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.18800000e+03 5.47100000e+00 3.51170000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.21300000e+03 5.40100000e+00 3.51100000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.23800000e+03 5.30700000e+00 3.50990000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.26300000e+03 5.20100000e+00 3.50870000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.28800000e+03 5.09100000e+00 3.50740000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.31300000e+03 4.93100000e+00 3.50560000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.33800000e+03 4.76000000e+00 3.50370000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.36300000e+03 4.64500000e+00 3.50250000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.38800000e+03 4.57300000e+00 3.50180000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.41300000e+03 4.49600000e+00 3.50100000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.43800000e+03 4.42600000e+00 3.50020000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.46300000e+03 4.35900000e+00 3.49950000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.48800000e+03 4.30200000e+00 3.49890000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.51300000e+03 4.23500000e+00 3.49830000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.53800000e+03 4.17000000e+00 3.49770000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.56300000e+03 4.11300000e+00 3.49710000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.58800000e+03 4.07200000e+00 3.49670000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.61300000e+03 4.04400000e+00 3.49650000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.63800000e+03 4.00100000e+00 3.49610000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.66300000e+03 3.97500000e+00 3.49600000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.68800000e+03 3.94300000e+00 3.49580000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.71300000e+03 3.90600000e+00 3.49550000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.73800000e+03 3.85900000e+00 3.49510000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.76300000e+03 3.81600000e+00 3.49480000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.78800000e+03 3.77200000e+00 3.49440000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.81300000e+03 3.72700000e+00 3.49410000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.83800000e+03 3.69900000e+00 3.49390000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.86300000e+03 3.65800000e+00 3.49370000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.88800000e+03 3.62800000e+00 3.49350000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.91300000e+03 3.59100000e+00 3.49330000e+01]\n [ 6.90097200e+06 1.12542000e+05 3.98900000e+01 -2.75940000e+01\n 1.93600000e+03 3.57700000e+00 3.49330000e+01]]\n",
"stream": "stdout"
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "print data.shape\nprint data.dtype",
"prompt_number": 35,
"outputs": [
{
"output_type": "stream",
"text": "(100, 7)\nfloat64\n",
"stream": "stdout"
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "data_rec = np.genfromtxt('argo_prof', delimiter=',', names=True)\ndata_rec",
"prompt_number": 36,
"outputs": [
{
"text": "array([(6900972.0, 112542.0, 39.89, -27.594, 0.0, 13.731, 35.837),\n (6900972.0, 112542.0, 39.89, -27.594, 1.0, 13.734, 35.835),\n (6900972.0, 112542.0, 39.89, -27.594, 2.0, 13.737, 35.833),\n (6900972.0, 112542.0, 39.89, -27.594, 3.0, 13.736, 35.834),\n (6900972.0, 112542.0, 39.89, -27.594, 4.0, 13.735, 35.836),\n (6900972.0, 112542.0, 39.89, -27.594, 5.0, 13.736, 35.835),\n (6900972.0, 112542.0, 39.89, -27.594, 6.0, 13.737, 35.835),\n (6900972.0, 112542.0, 39.89, -27.594, 7.0, 13.737, 35.835),\n (6900972.0, 112542.0, 39.89, -27.594, 8.0, 13.738, 35.835),\n (6900972.0, 112542.0, 39.89, -27.594, 9.0, 13.739, 35.835),\n (6900972.0, 112542.0, 39.89, -27.594, 10.0, 13.74, 35.834),\n (6900972.0, 112542.0, 39.89, -27.594, 15.0, 13.739, 35.834),\n (6900972.0, 112542.0, 39.89, -27.594, 26.0, 13.738, 35.834),\n (6900972.0, 112542.0, 39.89, -27.594, 35.0, 13.733, 35.834),\n (6900972.0, 112542.0, 39.89, -27.594, 46.0, 13.723, 35.834),\n (6900972.0, 112542.0, 39.89, -27.594, 56.0, 13.716, 35.835),\n (6900972.0, 112542.0, 39.89, -27.594, 65.0, 13.716, 35.835),\n (6900972.0, 112542.0, 39.89, -27.594, 75.0, 13.718, 35.835),\n (6900972.0, 112542.0, 39.89, -27.594, 86.0, 13.719, 35.834),\n (6900972.0, 112542.0, 39.89, -27.594, 96.0, 13.72, 35.835),\n (6900972.0, 112542.0, 39.89, -27.594, 106.0, 13.722, 35.835),\n (6900972.0, 112542.0, 39.89, -27.594, 115.0, 13.723, 35.835),\n (6900972.0, 112542.0, 39.89, -27.594, 125.0, 13.724, 35.835),\n (6900972.0, 112542.0, 39.89, -27.594, 136.0, 13.725, 35.835),\n (6900972.0, 112542.0, 39.89, -27.594, 146.0, 13.726, 35.835),\n (6900972.0, 112542.0, 39.89, -27.594, 156.0, 13.727, 35.834),\n (6900972.0, 112542.0, 39.89, -27.594, 166.0, 13.728, 35.834),\n (6900972.0, 112542.0, 39.89, -27.594, 176.0, 13.727, 35.834),\n (6900972.0, 112542.0, 39.89, -27.594, 186.0, 13.723, 35.833),\n (6900972.0, 112542.0, 39.89, -27.594, 196.0, 13.698, 35.828),\n (6900972.0, 112542.0, 39.89, -27.594, 213.0, 13.588, 35.806),\n (6900972.0, 112542.0, 39.89, -27.594, 238.0, 13.402, 35.774),\n (6900972.0, 112542.0, 39.89, -27.594, 262.0, 13.213, 35.741),\n (6900972.0, 112542.0, 39.89, -27.594, 288.0, 12.986, 35.709),\n (6900972.0, 112542.0, 39.89, -27.594, 313.0, 12.833, 35.688),\n (6900972.0, 112542.0, 39.89, -27.594, 338.0, 12.691, 35.669),\n (6900972.0, 112542.0, 39.89, -27.594, 364.0, 12.383, 35.637),\n (6900972.0, 112542.0, 39.89, -27.594, 388.0, 12.191, 35.62),\n (6900972.0, 112542.0, 39.89, -27.594, 413.0, 12.097, 35.614),\n (6900972.0, 112542.0, 39.89, -27.594, 438.0, 11.945, 35.605),\n (6900972.0, 112542.0, 39.89, -27.594, 463.0, 11.724, 35.589),\n (6900972.0, 112542.0, 39.89, -27.594, 487.0, 11.563, 35.575),\n (6900972.0, 112542.0, 39.89, -27.594, 513.0, 11.437, 35.566),\n (6900972.0, 112542.0, 39.89, -27.594, 538.0, 11.233, 35.535),\n (6900972.0, 112542.0, 39.89, -27.594, 563.0, 11.053, 35.519),\n (6900972.0, 112542.0, 39.89, -27.594, 588.0, 10.886, 35.498),\n (6900972.0, 112542.0, 39.89, -27.594, 614.0, 10.649, 35.462),\n (6900972.0, 112542.0, 39.89, -27.594, 638.0, 10.604, 35.473),\n (6900972.0, 112542.0, 39.89, -27.594, 663.0, 10.457, 35.469),\n (6900972.0, 112542.0, 39.89, -27.594, 688.0, 10.32, 35.462),\n (6900972.0, 112542.0, 39.89, -27.594, 713.0, 10.031, 35.443),\n (6900972.0, 112542.0, 39.89, -27.594, 738.0, 9.731, 35.43),\n (6900972.0, 112542.0, 39.89, -27.594, 763.0, 9.549, 35.43),\n (6900972.0, 112542.0, 39.89, -27.594, 788.0, 9.378, 35.43),\n (6900972.0, 112542.0, 39.89, -27.594, 813.0, 9.088, 35.415),\n (6900972.0, 112542.0, 39.89, -27.594, 838.0, 8.801, 35.399),\n (6900972.0, 112542.0, 39.89, -27.594, 864.0, 8.519, 35.392),\n (6900972.0, 112542.0, 39.89, -27.594, 888.0, 8.367, 35.394),\n (6900972.0, 112542.0, 39.89, -27.594, 913.0, 8.319, 35.427),\n (6900972.0, 112542.0, 39.89, -27.594, 938.0, 8.441, 35.496),\n (6900972.0, 112542.0, 39.89, -27.594, 963.0, 8.375, 35.506),\n (6900972.0, 112542.0, 39.89, -27.594, 988.0, 8.193, 35.495),\n (6900972.0, 112542.0, 39.89, -27.594, 1013.0, 7.95, 35.464),\n (6900972.0, 112542.0, 39.89, -27.594, 1038.0, 7.422, 35.386),\n (6900972.0, 112542.0, 39.89, -27.594, 1063.0, 6.918, 35.309),\n (6900972.0, 112542.0, 39.89, -27.594, 1088.0, 6.566, 35.255),\n (6900972.0, 112542.0, 39.89, -27.594, 1113.0, 6.13, 35.191),\n (6900972.0, 112542.0, 39.89, -27.594, 1139.0, 5.781, 35.146),\n (6900972.0, 112542.0, 39.89, -27.594, 1163.0, 5.598, 35.129),\n (6900972.0, 112542.0, 39.89, -27.594, 1188.0, 5.471, 35.117),\n (6900972.0, 112542.0, 39.89, -27.594, 1213.0, 5.401, 35.11),\n (6900972.0, 112542.0, 39.89, -27.594, 1238.0, 5.307, 35.099),\n (6900972.0, 112542.0, 39.89, -27.594, 1263.0, 5.201, 35.087),\n (6900972.0, 112542.0, 39.89, -27.594, 1288.0, 5.091, 35.074),\n (6900972.0, 112542.0, 39.89, -27.594, 1313.0, 4.931, 35.056),\n (6900972.0, 112542.0, 39.89, -27.594, 1338.0, 4.76, 35.037),\n (6900972.0, 112542.0, 39.89, -27.594, 1363.0, 4.645, 35.025),\n (6900972.0, 112542.0, 39.89, -27.594, 1388.0, 4.573, 35.018),\n (6900972.0, 112542.0, 39.89, -27.594, 1413.0, 4.496, 35.01),\n (6900972.0, 112542.0, 39.89, -27.594, 1438.0, 4.426, 35.002),\n (6900972.0, 112542.0, 39.89, -27.594, 1463.0, 4.359, 34.995),\n (6900972.0, 112542.0, 39.89, -27.594, 1488.0, 4.302, 34.989),\n (6900972.0, 112542.0, 39.89, -27.594, 1513.0, 4.235, 34.983),\n (6900972.0, 112542.0, 39.89, -27.594, 1538.0, 4.17, 34.977),\n (6900972.0, 112542.0, 39.89, -27.594, 1563.0, 4.113, 34.971),\n (6900972.0, 112542.0, 39.89, -27.594, 1588.0, 4.072, 34.967),\n (6900972.0, 112542.0, 39.89, -27.594, 1613.0, 4.044, 34.965),\n (6900972.0, 112542.0, 39.89, -27.594, 1638.0, 4.001, 34.961),\n (6900972.0, 112542.0, 39.89, -27.594, 1663.0, 3.975, 34.96),\n (6900972.0, 112542.0, 39.89, -27.594, 1688.0, 3.943, 34.958),\n (6900972.0, 112542.0, 39.89, -27.594, 1713.0, 3.906, 34.955),\n (6900972.0, 112542.0, 39.89, -27.594, 1738.0, 3.859, 34.951),\n (6900972.0, 112542.0, 39.89, -27.594, 1763.0, 3.816, 34.948),\n (6900972.0, 112542.0, 39.89, -27.594, 1788.0, 3.772, 34.944),\n (6900972.0, 112542.0, 39.89, -27.594, 1813.0, 3.727, 34.941),\n (6900972.0, 112542.0, 39.89, -27.594, 1838.0, 3.699, 34.939),\n (6900972.0, 112542.0, 39.89, -27.594, 1863.0, 3.658, 34.937),\n (6900972.0, 112542.0, 39.89, -27.594, 1888.0, 3.628, 34.935),\n (6900972.0, 112542.0, 39.89, -27.594, 1913.0, 3.591, 34.933),\n (6900972.0, 112542.0, 39.89, -27.594, 1936.0, 3.577, 34.933)], \n dtype=[('PLATFORM', '<f8'), ('ARGOS_ID', '<f8'), ('LATITUDE', '<f8'), ('LONGITUDE', '<f8'), ('PRES', '<f8'), ('TEMP', '<f8'), ('SAL', '<f8')])",
"output_type": "pyout",
"metadata": {},
"prompt_number": 36
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "print data_rec.shape\nprint data_rec.dtype",
"prompt_number": 37,
"outputs": [
{
"output_type": "stream",
"text": "(100,)\n[('PLATFORM', '<f8'), ('ARGOS_ID', '<f8'), ('LATITUDE', '<f8'), ('LONGITUDE', '<f8'), ('PRES', '<f8'), ('TEMP', '<f8'), ('SAL', '<f8')]\n",
"stream": "stdout"
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "S = data_rec['SAL']\nT = data_rec['TEMP']\nP = data_rec['PRES']",
"prompt_number": 38,
"outputs": [],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "print type(data)\nprint type(data_rec)",
"prompt_number": 39,
"outputs": [
{
"output_type": "stream",
"text": "<type 'numpy.ndarray'>\n<type 'numpy.ndarray'>\n",
"stream": "stdout"
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "plt.plot(T, -P)",
"prompt_number": 41,
"outputs": [
{
"text": "[<matplotlib.lines.Line2D at 0x10c24f7d0>]",
"output_type": "pyout",
"metadata": {},
"prompt_number": 41
},
{
"png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEACAYAAAC3adEgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHjhJREFUeJzt3X98zvXi//EH+dE0iogiv1rmR2dmayFkHfmxoVKHzQ6W\ng0McybdPnOKc3OpT36MoOop82TmRMLWOhGlHXX40YbaxrMw25HCQ/Gh+Z7u+f7wvXDQx27XX9b6u\n5/12u2679r5+7HndxvXc6/V6v98XiIiIiIiIiIiIiIiIiIiIiIiIiIiI+I2HgG+BncBow1lERMQL\nZGCVQyPgO6C22TgiIv6noukAbm51fV0L7AE+B9qaiyMi4p+8qRgisEYJF2QD7QxlERHxW95UDCIi\n4gUqmQ7gZjPwhtv3rYBk9zvcc889zry8vHINJSLiA/KAoOu9szeNGI67vj4ENAa6Ahvd75CXl4fT\n6fTZy0svvWQ8g16fXp+/vTZfeH3t27dn/fr1V70duKckb8beNGIAeBZ4D6gMvA0cNhtHRMT7nTp1\nioCAgDJ7Pm8rhjVAC9MhRETsoqioiPz8fJo0aVJmz+lNU0l+LzIy0nQEj9Lrsy9ffm1g79eXnZ1N\n3bp1qVmzZpk9Z4Uye6by4XTNl4mICLBgwQKWLl1KYmLiVe9ToUIFKMH7vUYMIiI2VlBQUKajBVAx\niIjYWtWqVTlz5kyZPqeKQUTExgICAlQMIiJySZUqVTh37lyZPqeKQUTExm6++WaNGERE5JLAwEBO\nnjxZps+pYhARsbGqVaty+vTpMn1OFYOIiI1VrVpVawwiInKJFp9FROQyKgYREbmMikFERC6jYhAR\nkctUrFiRoqKisn3OMn02EREpVwUFBdxyyy1l+pwqBhERG0tJSaFFi7L9fDNv+wQ3ERG5DufPn+ft\nt9/mtddeY/Xq1WX63CoGERGb2bhxI8OHD6d27dps2LCBe++9t0yfX8UgImITeXl5TJw4kTVr1jBl\nyhT69+9/4dPZypTWGEREvNzBgwcZPXo0bdu2pVWrVuTk5BAXF+eRUgAVg4iI1/rpp5+YNGkSLVu2\n5KabbuLbb79l4sSJBAYGevTnqhhERLzMiRMn+Nvf/kZQUBB5eXmkpaUxbdo06tSpUy4/X8UgIuIl\nTp48yRtvvEFQUBDbtm1j7dq1zJ8/nyZNmpRrDi0+i4gYdvz4cWbPns2bb75Jp06dWL16Na1atTKW\nR8UgImLIf/7zH6ZPn05CQgI9evRg1apVhISEmI6lqSQRkfKWlZVFfHw8ISEhnD9/nvT0dBYsWOAV\npQAqBhGRcrN371769OlDt27dCA4OJjc3l7feeotGjRqZjnYZFYOIiIcVFRXx3nvvERYWRnh4OLt2\n7eLFF1+kVq1apqMVS2sMIiIelJuby7Bhwzh16hQOh8PoovL10ohBRMQDnE4nM2fOpF27dvTu3ZvU\n1FRblAJoxCAiUuYOHjzIkCFDOHDgAF999RXBwcGmI5WIRgwiImXE6XSydOlSQkNDCQ0NJTU11Xal\nABoxiIiUitPpJD09ncTERBITE6lWrRqJiYl06tTJdLQbpmIQESkhp9PJtm3bWLx4MYmJiQDExMTw\nr3/9i5CQEI+d9bS8qBhERK7Tzp07mT9/PosXL+bcuXPExMSQmJhImzZtbF8G7uz2SpxOp9N0BhHx\nMzt27OCVV15h1apVxMfHExMTw/3332+bMnDlvO6wWnwWEbmKHTt2MGDAADp27EiLFi3Iy8tjypQp\nRERE2KYUboSKQUTkCmfOnGHw4MGXFcKECROoUaOG6WjlQmsMIiJufv75Z2JiYqhatSp5eXl+Uwbu\nVAwiIi5FRUUMHjyY8+fPs2TJEqpUqWI6khEqBhER4MiRIzz99NMcOHCAlStX+m0pgNYYRERISkri\nvvvuo169eqxYsYJq1aqZjmSURgwi4rcOHTrE6NGjyczMJDExkY4dO5qO5BU0YhARv7Nv3z7Gjx9P\nixYtaNSoEZmZmSoFNyoGEfEbW7duZdCgQfzmN7/h7NmzpKWl8frrrxMQEGA6mldRMYiIT3M6naSk\npNCtWzeio6Np1aoVeXl5TJs2jSZNmpiO55U8VQyTgP8AGa5LlNttzwA7gWzAfezWAkgH8oFXPZRL\nRPzIzp076dmzJ3/605/4/e9/z65duxg/fjw1a9Y0Hc2reaoYnMCbQBvXZaVr+x3ASKAL8DTwtttj\npgKTgQigM3C/h7KJiI87efIkEyZMoH379jz88MNkZWURHx/v17ugloQn90oq7kQibYFk4HvXpQIQ\nCJwAgoHFrvslue6b5sF8IuKDVq1axR//+Ec6dOjA1q1bqV+/vulItuPJNYbRwNfAeKC6a9sDwLdu\n99mBVQBBwCG37dlAOw9mExEf43Q6mTp1KoMHDyYhIYEPP/xQpXCDSjNiSAHqFbN9AjATeBmoAbwB\nDAemUPwoorjzaF/1tIWTJk26eD0yMpLIyMjrzSsiPurs2bOMGDGCjIwMNmzYQKNGjUxHMsrhcOBw\nOG748eVx3tjWwLtAB6A38AgwxnVbJtAJKMBadG7q2v4ccAZ454rn0ucxiMhlNm7cyLPPPstdd93F\n+++/T2BgoOlIXsdbPo/hTtfXSkAcsML1/SagO9AQiASKsEoB4DsgFqgN9AE2eiibiPiA9evX0717\nd/r168dTTz3FkiVLVAplxFMjhnlAKHAOWAv8L3DEddsYrPWHc1hTTOtc21sCHwA1gUXAC8U8r0YM\nIn7M6XSyZs0aXn75ZXbv3s2LL77IoEGDtLfRNZR0xGC3jyBSMYj4qc2bN/P888+zf/9+JkyYQFxc\nHJUrVzYdyxa8ZSpJRKRM7N69m7i4OB5//HEGDhxIdnY28fHxKgUPUjGIiFc6duwY48aNIzw8nODg\nYHbs2MGQIUOoVEknhfY0FYOIeJWioiISEhJo3rw5R44cISsri5deekkLy+VI1SsiXiM9PZ1Ro0bh\ndDpZvnw54eHhpiP5JY0YRMS4H374gVGjRhEdHc2wYcNITU1VKRikYhARY7Kyshg6dCjNmjWjYsWK\nZGdn84c//IGKFfXWZJKmkkSkXBUVFbFixQqmTZtGdnY2I0eOJCcnhzp16piOJi4qBhEpN3PnzmXy\n5MlUr16dsWPH0q9fPx2c5oV0gJuIlItNmzbx5JNP8uGHH9KxY8cLB11JOdCRzyLilZ544gkefvhh\nRo8ebTqK31ExiIjXWbZsGUOHDmXXrl1Uq1bNdBy/U9Ji0BqDiHjMTz/9xHPPPUdKSgpLlixRKdiE\n9gkTEY9wOBy0bt0agG3btvHQQw8ZTiTXSyMGESlT586dY8KECSxcuJDZs2cTHR1tOpKUkIpBRMpM\nbm4u/fv358477yQzM5PatWubjiQ3QFNJIlJqTqeTBQsW0L59ewYNGsTSpUtVCjamEYOI3LDt27ez\naNEiFi1aREBAACkpKYSGhpqOJaWkYhCREsnPz2fx4sUsXLiQo0ePEhMTw6JFiwgLC9NBaz7Cbr9F\nHccgYsC+ffv46KOPWLhwIfn5+fTt25fY2Fg6dOigE97ZgA5wE5EysW/fPj7++GOWLFnC9u3befTR\nR+nfvz9dunTRp6jZjIpBRG5YcWXQt29funbtqpPd2ZiKQURKpLCwkHnz5pGQkKAy8FE6JYaIXBen\n08nKlSsZN24ctWrVYvz48XTr1k1lICoGEX+Unp7O888/z/79+5k8eTK9e/fWHkVykXYnEPEj+/fv\nZ9CgQfTs2ZO+ffuSlZXFo48+qlKQy6gYRPzA2bNnmTx5MiEhITRo0ICcnBxGjBihvYukWPpXIeLD\nnE4ny5cvZ+zYsbRs2ZKvv/6aoKAg07HEy6kYRHzQ3r17SUxMZOHChZw4cYK///3v9OjRw3QssQm7\nTSxqd1WRqzh06BBLlixh0aJFZGdn88QTTxAbG0tkZCQ33XST6XhikI5jEPEjx44dIykpiUWLFrFp\n0yZ69epFbGysdjuVy6gYRHzcyZMnWbZsGQsXLsThcNClSxf69+9Pz5499dGZUiwVg4gPOnfuHJ9/\n/jkLFy5k+fLltG3blri4OB5//HFuvfVW0/HEy6kYRHxEUVER69atY8GCBSQlJdG8eXP69+9P3759\nueOOO0zHExvRKTFEbG7nzp3Mnz+f+fPnExgYyMCBA9myZQuNGjUyHU38hIpBxAscO3aMxYsXM2/e\nPHJzc4mLiyMpKYnQ0FAdlSzlzm7/4jSVJD4lLS2N119/nVWrVtGtWzfi4+Pp3r07lStXNh1NfIjW\nGERsoKCggIkTJ7J48WL+8pe/EBcXR82aNU3HEh9V0mLQuZJEytmyZcto1aoVBQUFbN++nVGjRqkU\nxKtojUGkHP35z38mKSmJf/7zn/z2t781HUekWJpKEikne/fupXXr1uzcuZPbb7/ddBzxI5pKEvFS\nU6ZMYciQISoF8XoqBpFykpSURMOGDU3HELkmrTGIlJMVK1bw2GOPsW/fPl599VWd8VS8ltYYRMrR\n4cOH+d3vfkdgYCAffvghNWrUMB1J/ICOYxDxcqdOneLuu+9m/vz5REdHm44jfkCLzyJeburUqbRt\n25aoqCjTUUSKpRGDSDlKTU3lscceIz09nbvvvtt0HPET5Tli6AtsBwqBsCtuewbYCWQDHd22twDS\ngXzgVbftlYG5wB7AAdQrRS4Rr7Nnzx4GDhzIk08+yZw5c1QK4tVKUwxZQB9g7RXb7wBGAl2Ap4G3\n3W6bCkwGIoDOwP2u7X2AW7GKIxmYWIpcIl7j2LFjjBs3jrCwMJo0aUJOTg6PPfaY6Vgiv6o0u6t+\nd5XtbbHe3L93XSoAgcAJIBhY7Lpfkuu+aa6vHwCngNnAqlLkEjHu4MGDzJkzh+nTp/Poo4+SlZXF\nXXfdZTqWyHXxxOLzA8C3bt/vwHrjDwIOuW3PBtq5PSbbdf0IUBeo6oFsIh7jdDpZu3YtsbGxNG/e\nnF27dvHll18yZ84clYLYyrVGDCkUP9//IrDsKo8pboGjuBXjCm7bK1zxuKsukkyaNOni9cjISCIj\nI692V5Fycfz4cebPn8+sWbMoLCzk6aefZtasWdx2222mo4mfcjgcOByOG358WeyV9CXwHNaiMkBv\n4BFgjOv7TKATUIC16NzUtf054AzwDtbaw3rgE6AW8DmX1h/caa8kMaqwsJCdO3eSkZFBZmYmGRkZ\nbN68ma5duzJy5Eg6d+6sT1wTr2PqM5/df+Am4A2gIVYJFGGVAljrErHAv7EWnJ91bd8IDMAqhD8C\nX5dRLpEbdvr0abKysi4WQGZmJllZWdStW5c2bdoQGhrKmDFjeOCBB6hTp47puCJlpjR/2vTB2uOo\nNnAcyAAuHLEzBhgNnAOGA+tc21tiLTLXBBYBL7i2Vwbewxpp5GOVx4FifqZGDOIRP/7442UFkJGR\nQX5+PsHBwRdLoE2bNrRu3Zpbb73VdFyREtEpMUSu4YcffmDLli2XXY4ePUpoaOjFAggNDaVly5ZU\nrap9IMT+VAwibg4ePHjxzT89PZ0tW7bw008/ERYWRnh4+MWvQUFBVKyoM8SIb1IxiN8qKChg3bp1\npKWlXSyDkydPEh4eflkJNG3aVCUgfkXFIH7D6XTyzTffsHLlSpKTk9m8eTMRERG0bdv2Ygk0adJE\newmJ31MxiE87fvw4//73vy+WQZUqVYiKiiIqKorIyEgCAwNNRxTxOioG8SmnT59m8+bNrFu3jlWr\nVpGRkUHHjh3p0aMHUVFR3HvvvRoRiFyDikFs7cCBA3z11VcXL9988w333XcfHTp0oGvXrnTu3Jlq\n1aqZjiliKyoGsY3CwkKys7MvK4Jjx47x4IMP0qFDBzp06MD999+vIhApJRWDeLX8/Hw+++wzVq5c\nyYYNG6hbt+5lRRAcHKw9hkTKmIpBvMr58+fZsGEDy5Yt47PPPuPo0aP07NmT6OhoOnXqpFNJiJQD\nFYMYd/ToUZKTk/nss89ITk6mcePG9OrVi169ehEeHq4RgUg5UzGIMampqbz88sukpqYSGRlJr169\n6NmzJ/Xr1zcdTcSvmTq7qvixrVu3MnHiRLZt28Zf//pXPvnkEwICAkzHEpEbpDG93LDc3Fzi4uLo\n3r07Xbt2JScnhyFDhqgURGxOxSA3ZO7cubRr145WrVqRm5vLM888ozORivgITSVJiZw9e5ZnnnmG\ntWvXsm7dOlq0aGE6koiUMRWDXLf9+/fTp08fGjRowKZNm6hevbrpSCLiAZpKkuty/vx5+vXrxyOP\nPMJHH32kUhDxYSoGuS6TJ0/m5ptv5pVXXtFJ60R8nN3+h+s4BgM2btxI7969SU9Pp0GDBqbjiEgJ\nlfQ4Bo0Y5FdlZ2fz+OOPM3fuXJWCiJ9QMchV5efn0717d9544w169+5tOo6IlBMVgxRrz549dO3a\nlRdeeIEBAwaYjiMi5UjFIL+wY8cOOnXqxJgxYxg5cqTpOCJSznQcg1wmMzOTqKgoXnvtNQYPHmw6\njogYoGKQi9avX8+TTz7JjBkz6Nu3r+k4ImKIppIEgE8//ZQnnniCDz74QKUg4udUDEJCQgLDhw9n\n+fLldO3a1XQcETFMU0l+7MCBAzz77LNs2bKFNWvW0KxZM9ORRMQLaMTgh4qKipg1axYhISE0bdqU\nrVu3qhRE5CKNGPzMtm3bGDFiBBUqVOCLL77gvvvuMx1JRLyMRgx+4scff2TUqFE88sgjxMfHs27d\nOpWCiBRLxeDjCgsLmTlzJi1btqRChQp89913DB8+nIoV9asXkeJpKsmHZWVlMXDgQGrWrElKSgoh\nISGmI4mIDejPRh/1+eef06VLF8aOHcsXX3yhUhCR66YRgw9KSEjghRde4OOPP6ZTp06m44iIzagY\nfMzbb7/N9OnTWbt2LcHBwabjiIgN6RPcfEhaWhrR0dFs2rSJxo0bm44jIl5Cn+Dmp06cOEFcXBwz\nZsxQKYhIqWjE4AOcTifx8fFUqlSJhIQE03FExMuUdMSgNQYfMHv2bDIyMti4caPpKCLiAzRisLm0\ntDSioqL46quvdL4jESmW1hj8yIkTJ4iNjeXdd99VKYhImdGIwcaGDRtGYWGh1hVE5FdpjcFPLF26\nlNWrV7N161bTUUTEx2jEYEOHDx8mJCSExMREOnbsaDqOiHi5ko4YVAw2FBsbS/369Zk6darpKCJi\nA5pK8nGffPIJmZmZ/OMf/zAdRUR8VGn2SuoLbAcKgTC37Y2B00CG6/Ku220tgHQgH3jVbXtlYC6w\nB3AA9UqRy2edOXOGsWPHMmvWLAICAkzHEREfVZpiyAL6AGuLuS0XaOO6jHTbPhWYDEQAnYH7Xdv7\nALdiFUcyMLEUuXzWW2+9RXh4OJGRkaajiIgPK81U0nc38JhgYLHrehLQFkhzff0AOAXMBlaVIpdP\n+v7775k6daqObhYRj/PUAW5NgEzgPaC1a1sQcMjtPtlAO9f1B1zfAxwB6gJVPZTNdpxOJ0OHDmXs\n2LHcc889puOIiI+71oghheLn+18Ell3lMfuBu4GjQBQwHwjhlyviFQCn2/UKV9xWrEmTJl28HhkZ\n6RfTKnPmzOHIkSOMHz/edBQRsQGHw4HD4bjhx5fF7qpfAs9hLSoXJx3oh7XukA80dW1/DjgDvIO1\n9rAe+ASoBXzOpfUHd363u+revXsJCwvD4XDQqlUr03FExIZMnSvJ/QfWBm5yXQ8DArBKAax1iVjX\nffoAFybMNwIDgFuAPwJfl1EuW3M6nQwfPpwxY8aoFESk3JSmGPoAe7HWCZYDK13bOwNbsdYYXgSG\nuz3mf4BxwGZgHdbCM1gjhePAt0AP4H9LkctnLFiwgH379jFu3DjTUUTEj+jIZy91/Phxmjdvzqef\nfkpERITpOCJiYzolho8YP348hw8fZu7cuaajiIjNqRh8QH5+Pg888ABZWVnceeedpuOIiM3pg3p8\nwPTp0xk+fLhKQUSM0IjBy5w8eZKGDRuSkZFBw4YNTccRER+gEYPNJSYm8uCDD6oURMQYFYOXWbp0\nKbGxsaZjiIgf01SSFzl37hx16tQhNzeXOnXqmI4jIj5CU0k25nA4aNasmUpBRIxSMXiRmTNnMnTo\nUNMxRMTPaSrJS+zatYuIiAj27NnDLbfcYjqOiPgQTSXZ1Lx58xgwYIBKQUSMUzF4iZSUFKKjo03H\nEBHRVJI3OHHiBPXq1ePQoUNUq1bNdBwR8TGaSrKh1atX07ZtW5WCiHgFFYMXSEpKok+fPqZjiIgA\nmkoy7ueff6ZevXps3bqVBg0amI4jIj5IU0k2s3LlSpo3b65SEBGvoWIw7P333yc+Pt50DBGRizSV\nZNAPP/xAUFAQe/bs4bbbbjMdR0R8lKaSbGTGjBnExMSoFETEq2jEYEhBQQFNmzYlNTWVe++913Qc\nEfFhGjHYxNy5c4mMjFQpiIjX0YjBgMLCQpo1a8YHH3xA+/btTccRER+nEYMNrFixgttvv5127dqZ\njiIi8gsqBgOmT5/O6NGjL7S4iIhXsds7k+2nkrKysujevTu7d++mSpUqpuOIiB/QVJKXmzZtGqNG\njVIpiIjX0oihHB08eJAWLVqQk5ND7dq1TccRET+hEYMXe+edd4iJiVEpiIhX04ihnJw+fZpGjRqx\nfv16mjVrZjqOiPgRjRi81Jo1awgODlYpiIjXUzGUk+TkZKKiokzHEBG5JhVDOXA6naxYsYLu3bub\njiIick0qhnKwdu1aKlWqRFhYmOkoIiLXpGIoBzNnzmTEiBE60llEbMFu71S22yvp6NGjNG7cWB/G\nIyLGaK8kL5OcnMxDDz2kUhAR21AxeNiyZcvo3bu36RgiItdNU0kedPr0aerXr88333zDXXfdZTqO\niPgpTSV5kaVLlxIREaFSEBFbUTF40Lx58xg0aJDpGCIiJaKpJA8pKiqievXq/Pe//6VGjRqm44iI\nH9NUkpfYu3cvt912m0pBRGxHxeAhOTk5BAcHm44hIlJimkrykFOnTnH48GEaNmxoOoqI+LmSTiWp\nGEREfFx5rjG8AXwLpAPTgAC3254BdgLZQEe37S1c988HXnXbXhmYC+wBHEC9UuQSEZFSKE0xfA60\nAu4HbgHiXNvvAEYCXYCngbfdHjMVmAxEAJ1djwXoA9yKVRzJwMRS5LIth8NhOoJH6fXZly+/NvD9\n11dSpSmGFKDIdVmF9UYP0Bbrzf17YA3W8CXQdVswsBj4EUhy3ffCYz4ATgGz3bb7FV//x6nXZ1++\n/NrA919fSZXVXknDgGWu6w9gTTFdsAPrjT4IOOS2PRto5/aYbNf1I0BdoGoZZRMRkRKodI3bUyh+\nvv9FLhXBX4ECYInr++IWOIpbMa7gtr3CFY+z26K4iIi4PAV8Bdzstq03MN3t+0yguut6vtv254BR\nrutTsdYZAGoBaVf5eblYZaKLLrroosv1X3IpJz2A7cDtV2yvC3wHNAQisfZCumAFEAvUBtZzafG5\nH/Ax1iL2n4EZngotIiKesxNr99IM1+Vdt9vGYDVUNtDJbXtLrKLYBfxft+2VgQSsBWsH2l1VRERE\nRERK4m7gS6ypKweXjpnwJTdhjbyWXeuONnQL8D6Qw+V7o/mKYUAqsAXrYE+7SwAOAllu26oDS7FG\n9f/i0i7odlTc6/u1A3btprjXd8FzWIcY1CrXRB5SDwh1Xa+NtYhd/ep3t6X/AywAPjUdxAOmAK9g\n7aRQCetgRl9RC2tq9Bas3b9XAN2NJiq9TkAbLn9jGQf8HWs38hnA/xjIVVaKe31dsX5/FYH/Bwwx\nkKusFPf6wPoDOxnr36tPFMOVlgEPmw5RhhoA/8Z6Tb44YsjE3n+B/ZoAYDdwF1Y5OLCOy7G7xlz+\nxvIRl/44C+PS7ul21Zji/6IG+B0wr/yieERjfvn6lgAhXEcx2PG020FYp+LYZDpIGXoLeB5riOdr\nGmCNFGYCG4HxXL57s92dxjr1y27gANbu2770b/OCCKy9DXF99YXyuxr3A3Z9xWPAf4Bt13NnuxVD\ndaxTaowFThrOUlZ6YR0RnoFvHth3M9AMa3fkSKxS72cyUBmrg1V6LbH+SmsP9DQZyEN88d9mca48\nYNcXVMM6KPklt20+8/usjHXivmdNByljrwF7sYZ3/8UqPLsPY6/kfoqUKGChqSAe0BNY5Pb901gn\nirS7xlw+FfEx1rw1QDjW1JKdNeaXUy1P8csDdu2qMZde32+wFqN3uS4/Y41w7zARrCxVwHqzfNN0\nEA/rjO8NYcFaUG+LNUKdgb0X9q5UA+uYnVpYC7OfYp1Z2O4aU/zicwDwDvZefIZfvr6rHbBrV425\n+hqKzyw+d8Saf8/k0gF1PYwm8ozO+OZeSc2Ar7F+f1OwFml9yVNYZxLejLX3ld2maK+0ENgPnMUa\nzQ7Gt3ZXvfD6zmG9vj/w6wfs2k1xvz93+fhIMYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI/5\n/7/3R4ktEUE5AAAAAElFTkSuQmCC\n",
"text": "<matplotlib.figure.Figure at 0x10bc4e990>",
"output_type": "display_data",
"metadata": {}
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "print T.mean()",
"prompt_number": 42,
"outputs": [
{
"output_type": "stream",
"text": "9.35006\n",
"stream": "stdout"
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "print T.std()",
"prompt_number": 43,
"outputs": [
{
"output_type": "stream",
"text": "3.98860484084\n",
"stream": "stdout"
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "print T.max(), T.min()",
"prompt_number": 44,
"outputs": [
{
"output_type": "stream",
"text": "13.74 3.577\n",
"stream": "stdout"
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "b = -2e-4*T + 1e-3*S",
"prompt_number": 45,
"outputs": [],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "plt.plot(b, -P)",
"prompt_number": 47,
"outputs": [
{
"text": "[<matplotlib.lines.Line2D at 0x10c2e44d0>]",
"output_type": "pyout",
"metadata": {},
"prompt_number": 47
},
{
"png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEACAYAAACZLPCyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8THfi//FXIsStqNoqikUicWvpltAlSUkIxaKodsu2\nS7XVZdvV+lnXbLuql611SX3Lohdaamk8xBKJMNEtQalLikqjlWqrVlE0FSTz++NMmNGkSGbmzJl5\nPx+PeWRy5vauZvLO5/M55wyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIlEk0cADIAUabnEVERCzoE4wy\naQwcBOqYG0dERK4l2OwATmo6vm4GjgBpQJR5cURE5Hr4UpG0xxiFFNsPdDQpi4iIXCdfKhIREbGg\nELMDONkBvOr0fSsg1fkOzZo1s+fm5no1lIiIH8gFwjz15L40IvnB8TUa+DUQD2xzvkNubi52u91t\nl4EDB/LOO++49Tl/6TJ16lSvvZbyK78vXayc3R/yA808+cvbl0YkAE8D84CKwGzghCdfrFatWpw7\nd86TLyEi4vd8aUQCkAm0wBiCzfb0i0VFRWGz2Tz9MiIifs3XisSr7r//ftavX8/x48e98nqxsbFe\neR1PUX5zWTm/lbOD9fN7WpDZAW6Q3THf5zajR4+mWrVqvPTSS259XhERXxEUFAQe/H0f0CMSgC5d\nuqA9wUREyi7gi+TMmTPUqFHD7BgiIpYV8EWyb98+IiIizI4hImJZAV8k3377LQ0aNDA7hoiIZQV8\nkTRo0IBvv/3W7BgiIpYV8EVy+vRpbr75ZrNjiIhYVsAXydmzZ7XYLiJSDgFfJD/++CPVqlUzO4aI\niGUFfJHk5+dTtWpVs2OIiFhWwBfJuXPnNCIRESmHgD5FSkFBAXXq1CEvL08L7iLit3SKFA86duwY\ntWrVUomIiJRDQBdJUVERISG+9pEsIiLWEtBFEhISwsWLF82OISJiaQFdJOfPn6dy5cpmxxARsbSA\nLhK4vAglIiJlFPBFIiIi5RPQRXLTTTdx4sQJ8vPzzY4iImJZAV0kt912G9HR0bzzzjtmRxERsSyr\nLRC4/TPbMzMzGTlyJAcOHCA4OKB7VUT8lA5I9LDo6GiqV69Oamqq2VFERCwp4IskKCiIMWPGMGfO\nHLOjiIhYUsBPbYFxPEnjxo1ZtWoVnTp1cvvzi4iYSVNbXlC5cmUWLlxI3759SUtLMzuOiIilqEgc\nevfuTXJyMkOHDuW9994zO46IiGXojIVOOnfuTEZGBj179uSnn35i+PDhZkcSEfF5WiMpQU5ODp07\nd2b58uXExMR4/PVERDxJayQmCA8P59133+WBBx7giy++MDuOiIhPU5GUIi4ujgkTJtC3b1/OnTtn\ndhwREZ+lqa1ffjGGDx/O2bNnWb58uc4ULCKWpKktEwUFBTF37lzy8vKYNm0a3iwxERGrsNqf2F4d\nkRT75ptv6Nq1K5UrV+bJJ5/k97//PdWrV/d6DhGRstCIxAfUr1+f/fv388orr5CamkqjRo146qmn\nyM7ONjuaiIjpVCTXKTg4mO7du5OcnMzevXupU6cOPXr0oEuXLrz33ntcunTJ7IgiIqbQ1FY5XLx4\nkZSUFGbOnMnx48d54YUXuP/++3U6ehHxKZ6e2lKRuIHdbmfDhg1MmDCBS5cuMW3aNHr27Km9vETE\nJ6hIXPlkkRSz2+2sWrWKSZMmcfPNN/P222/TrFkzs2OJSIDTYruFBAUF0b9/f/bu3cugQYOIjo5m\n9+7dZscSEfEojUg8aMWKFYwaNYrly5cTGxtrdhwRCVAakVjYwIEDWbZsGYMHD2b69Onk5+ebHUlE\nxO1UJB7WtWtXtmzZwq5du2jevDmLFi2isLDQ7FgiIm6jqS0vysrKYty4cZw8eZKXX36ZXr16ac8u\nEfE47bXlytJFAsaeXWvWrGH8+PGEhoYyatQoHnroIapWrWp2NBHxUyoSV5YvkmJFRUWkpaUxd+5c\nPvroI4YNG8YTTzxBRESE2dFExM9osd1PBQcHk5CQwOrVq9m5cydVqlQhOjqauLg4kpOTKSoqMjui\niMh18VRDJQIjgP85vp8ArHNcHwOMBi4CI4H/Ora3AN4FagFLgYklPK/fjEhKUlBQwMqVK5kxYwah\noaG88cYbtGnTxuxYImJxVh2R2IEZQDvHpbhEbgVGAd2AJ4HZTo95DXgZaA/EAHd7KJvPCg0N5aGH\nHmLbtm0MHTqUrl278txzz+kTGkXEp3lyaquk9osCUoE8INNxn+IP9ogA3ge+Bz5w3DcgVahQgSee\neILs7GyOHTtGy5YtWb9+vdmxRERK5MkiGQ1kAf8PuMmxrQNwwOk+n2EURhhw3Gn7fqCjB7NZQt26\ndVm8eDFvvvkmI0aM4K9//atOVy8iPiekHI9NB24rYftE4P+A54EawKvA48A/KHmUUtKiR6lzeYmJ\niZevx8bGBsSpR7p168auXbsYOnQosbGxLF26lIYNG5odS0R8lM1mw2azee31vLH7753AXOC3QB8g\nDviz47bdQBfgLHAYaOrYPhY4D7x+1XP59WL7tRQVFfHKK68wc+ZMkpOT6dSpk9mRRMQCrLrYXs/x\nNQR4CFjr+H470ANoBMQCRRglAnAQGALUAfoD2zyUzbKCg4MZP348CxcuZMCAAXz55ZdmRxIR8VhD\nvQO0BS4Am4G/Aycdt/0ZY/3kAsaU14eO7S2BJcDNwDLgryU8b0CPSJzNnj2b+fPns2XLFmrUqGF2\nHBHxYTqy3ZWKxMFutzNq1Cg++eQT5s2bx5133ml2JBHxUVad2hIPCwoKIikpiUcffZTu3bvz5JNP\ncuLECbNjiUgAUpFYWIUKFXj88cc5cOAAFStWpGXLliQlJWkXYRHxKk1t+ZHs7GxGjx5NSEgIq1at\nolq1amZHEhEfoKktuW6tW7cmPT2dhg0bEh8fz+nTp82OJCIBQEXiZ0JCQliwYAEdOnQgNjaW48eP\nX/tBIiLloCLxQ8HBwfzzn/+kd+/exMfHc+rUKbMjiYgf0xqJH7Pb7YwdO5atW7eSnp5O9erVr/0g\nEfE7Oo7ElYrkBtntdkaMGMGRI0dYsWIFtWrVMjuSiHiZFtulXIKCgpg/fz6RkZFERESQlJTExYsX\nzY4lIn5ERRIAKlSoQFJSEunp6axevZo2bdqQkpKCRnci4g6a2gowdrud1NRUxo4dS926dZk4cSLd\nunUrHvqKiB/SGokrFYmbXLp0iSVLlvDqq68SGhrKc889x6BBgwgJKc9H1IiIL1KRuFKRuFlRURFr\n167l1VdfJS8vj2eeeYbhw4frqHgRP6LFdvGo4OBgevfuTWZmJsuWLWPz5s00adKEOXPmaFFeRK6L\nRiTyM9nZ2TzzzDN8/fXXzJgxg4SEBLMjiUg5aGrLlYrES+x2OykpKYwdO5bw8HD+8Y9/0LJlS7Nj\niUgZqEhcqUi87MKFCyQlJTF9+nQaNGhAnz596NOnD3fffTfBwZoZFbECFYkrFYlJCgsL2bp1Kykp\nKaSkpHDq1Cnuu+8++vTpQ1xcnBbnRXyYisSVisRH5ObmXi6VHTt20KVLl8ul0qxZMx2XIuJDVCSu\nVCQ+6PTp06xfv541a9awadMm7HY7sbGxxMTEEBsbS3h4uIpFxEQqElcqEh9nt9s5fPgwNpuNzMxM\nbDYbly5dulwqMTExREREqFhEvEhF4kpFYjF2u50vv/wSm812+VJQUEBMTAwJCQn07duXW265xeyY\nIn5NReJKReIHiotlzZo1pKen0759ewYMGEC/fv2oX7++2fFE/I6KxJWKxM/k5+eTlpbGBx98wJo1\na4iMjGTAgAEMGDCApk2bmh1PxC+oSFypSPzYhQsXsNlsrFy5klWrVlGvXj0GDx7MAw88QLNmzcyO\nJ2JZKhJXKpIAUVhYyEcffcT777/PihUraNiwIUOGDGHw4ME0atTI7HgilqIicaUiCUCXLl26fFLJ\n5ORkmjdvzgMPPMCgQYO0piJyHVQkrlQkAe7ixYts2LCBZcuWsXr1asLDw+nevTvx8fF06tSJSpUq\nmR1RxOeoSFypSOSygoICtm7dSnp6OmlpaRw6dIguXboQHx9P9+7diYyM1PEqIqhIrqYikVJ9//33\nZGRkXC6WwsLCy6OVuLg4fvWrX5kdUcQUKhJXKhK5Lna7nZycnMulYrPZiIiIICEhgYSEBDp06KCP\nFZaAoSJxpSKRMrlw4QJbtmwhNTWV1NRU8vLyiIuLIyEhgR49etCgQQOzI4p4jIrElYpE3OKbb75h\n/fr1pKamkp6ezu23307Pnj2Ji4vjnnvu0Wnxxa+oSFypSMTtLl26xI4dO1i3bh0bN25k9+7dtGnT\nhujoaGJiYujcuTM1atQwO6ZImalIXKlIxOPy8/PJyspi8+bNZGZmsmPHDiIjI4mJiblcLLVr1zY7\npsh1U5G4UpGI1xUUFLB9+3YyMzPJzMwkKyuLpk2bEhMTQ9++fbn33nupUKGC2TFFSqUicaUiEdNd\nuHCBnTt3Xj4v2NGjRxk0aBAPPvggHTt21GfZi89RkbhSkYjPycnJYdmyZSxdupQff/yRIUOGMGTI\nENq2basDIsUnqEhcqUjEZ9ntdvbt23e5VCpVqkSvXr3o3r070dHR2hNMTKMicaUiEUuw2+3s3LmT\n9evXk5aWxq5du4iKiqJ79+50796dO+64Q1Ng4jUqElcqErGks2fPYrPZSEtLIy0tjdOnT18+J1h8\nfDz16tUzO6L4MRWJKxWJ+IUvv/zy8ulbMjIyqF+/Pt26daNbt27ExMRQs2ZNsyOKH1GRuFKRiN8p\nLCxk165dZGRkkJGRQVZWFq1atbpcLPfccw+VK1c2O6ZYmIrElYpE/N758+fZunXr5WLJzs4mKiqK\nbt26kZCQQLt27cyOKBajInGlIpGAc+bMGTIzM8nIyCA5OZnIyEgSExPp1KmT2dHEIlQkrlQkEtAu\nXLjA22+/zbRp04iMjORvf/sbUVFRZscSH+fpItH+hyIWUqlSJR577DEOHTrEgAEDGDx4ML169WLL\nli1mR5MAVp4iGQR8ChQCd1112xggB9gPdHba3gLYBRwGpjltrwgsBI4ANuC2cuQS8XuVKlVi5MiR\nHDp0iL59+zJ06FA6d+7M6tWrKSoqMjueBJjyFMk+oD+w+arttwKjgG7Ak8Bsp9teA14G2gMxwN2O\n7f2BmhhFkwpMKkcukYARGhrKE088wWeffcaYMWN4/vnnadWqFQsXLqSgoMDseBIgylMkB4FDJWyP\nwiiDPCATY16uuuO2COB94HvgA8d9ix+zBMgH5jttF5HrEBISwuDBg9mxYwdz585lxYoVNGnShLlz\n52qEIh7niTWSDsABp+8/wyiGMOC40/b9QEenx+x3XD8J1AVCPZBNxK8FBQVx7733sm7dOtauXcuS\nJUvo2rUrubm5ZkcTPxZyjdvTKXm9YgKQUspjStozoKRdrYKctgdd9bhS9y5ITEy8fD02NpbY2NjS\n7ioS0Nq2bcuHH37IrFmziIqKYvLkyYwePVrn+AoANpsNm83mtddzx+5gm4CxGIvoAH2AOODPju93\nA12AsxiL7E0d28cC54HXMdZO/gskA7WBNK6snzjT7r8iZXDo0CGGDx/OTz/9xNNPP82gQYMIDdWg\nP1BYZfdf54DbgR5AIyAWKMIoETDWVYYAdTAW2Lc5tm8DHgaqASOBLDflEhGgefPmZGZmMmnSJN56\n6y0aN27M5MmTOXr0qNnRxA+Up0j6A19hrHP8B1jn2P4d8H/ARmAuV0YmAM8C44AdwIfAx47tycAP\nGGsrCcDfy5FLREoQHBxMv3792LBhA5s2beLUqVPccccdDB48mM2bN6PRvpSVjmwXCWBnzpxh8eLF\nzJkzhxo1ajB58mR69+6tT3b0MzpFiisViYgHFBUVkZyczAsvvEBwcDCTJk2iX79+Wpj3EyoSVyoS\nEQ+y2+2kpKTw/PPPU1BQwJQpUxg4cKBGKBanInGlIhHxArvdTmpqKuPHj6dp06b861//ok6dOmbH\nkjKyyl5bIuJHgoKC6NmzJ9u3bycsLIy2bduSnp5udizxURqRiMg1bdiwgUceeYSBAwcyZcoUateu\nbXYkuQEakYiI6eLi4tizZw/nzp0jPDycKVOmcOrUKbNjiY9QkYjIdbnllltYsGABO3bs4OjRo4SH\nh5OYmMjp06fNjiYmU5GIyA1p2rQpixYtIisriyNHjhAWFkZiYqJGKAFMRSIiZRIWFsabb75JVlYW\neXl5hIWFMXHiRE6cOGF2NPEyFYmIlEtYWBiLFi3i448/5sSJEzRv3pxx48bx3XffmR1NvERFIiJu\n0aRJE+bNm8eePXvIz8+nRYsWjB8/njNnzpgdTTxMRSIibtWwYUOSkpLYt28f3333HRERESxYsIDC\nwkKzo4mH6DgSEfGojz/+mKeffppz584xc+ZMfRidCXSKFFcqEhELstvt/Pvf/+bZZ59lxIgRTJ48\nWefv8iIViSsViYiFHTt2jD59+tC6dWvmzZtHpUqVzI4UEHRku4j4jdtuuw2bzcb3339Pr169tBDv\nJzQiERGvKywsZNiwYdSqVYvXX3/d7Dh+T1NbrlQkIn7i5MmTtGzZkv/85z/85je/MTuOX9PUloj4\npdq1a/Piiy/y1FNPaddgi1ORiIhpHnnkESpVqsScOXPMjiLloKktETHV559/TseOHdmyZQvNmzc3\nO45f0tSWiPi1sLAwpkyZwh/+8AcuXLhgdhwpA41IRMR0RUVF/O53v6NJkybMnj3b7Dh+RyMSEfF7\nwcHBLF68mHXr1rF48WKz48gN0ohERHzGvn376Nq1Kxs2bODOO+80O47f0IhERAJGmzZtmDlzJgMH\nDtRH+FqIRiQi4nP+9Kc/cfToUZKTk3VyRzfQke2uVCQiAaCgoIC4uDgaNWrEggULqFKlitmRLE1T\nWyIScEJDQ0lLS6OwsJB7772XY8eOmR1JfoGKRER8UpUqVVi6dCn33XcfHTp0YNeuXWZHklKoSETE\nZwUFBTF58mRmzJhBjx49WLhwodmRpARaIxERSzh48CD3338/UVFRJCUlUbVqVbMjWYbWSEREgMjI\nSLZt20ZBQQGdOnXi6NGjZkcSBxWJiFhG9erVWbJkCUOGDCE+Pp7//e9/ZkcSNLUlIhY1ceJE1q1b\nx8aNG6lVq5bZcXyajiNxpSIREQDsdjtjxowhOzubjIwMgoM1wVIarZGIiJQgKCiIWbNmUVBQwPz5\n882OE9A0IhERS/v000+JjY1lz5491K9f3+w4PklTW65UJCLyM5MnT2b//v2sXLnS7Cg+SVNbIiLX\nMHHiRLKzs1m1apXZUQKSRiQi4hcyMzN5+OGH+fTTT6lRo4bZcXyKprZcqUhEpFR//OMfqVu3LtOn\nTzc7ik9RkbhSkYhIqfLy8mjXrh0HDhzg1ltvNTuOz1CRuFKRiMgvGj16NBUrVmTGjBlmR/EZKhJX\nKhIR+UXffvstrVu3ZteuXTRu3NjsOD5BReJKRSIi1zR16lQOHz7M4sWLzY7iE1QkrlQkInJNZ8+e\npXnz5qxdu5Z27dqZHcd0vnwcySDgU6AQuMtp+6+Bn4BPHJe5Tre1AHYBh4FpTtsrAguBI4ANuK0c\nuUQkwN10002MGzeOl156yewoAaE8RbIP6A9sLuG2z4F2jssop+2vAS8D7YEY4G7H9v5ATYyiSQUm\nlSOXiAiPPfYYGzduJDc31+wofq88RXIQOHSDj4kA3ge+Bz4Aohzbo4AlQD4w32m7iEiZVK9enccf\nf5xp06Zd+85SLp46RUoTYDcwD7jTsS0MOO50n/1AR8f1Do7vAU4CdYFQD2UTkQDx3HPPkZaWxubN\nJU2ciLuEXOP2dEper5gApJTymG+AhsApoCewGLiDny/0BAF2p+tBV91WosTExMvXY2NjiY2NLe2u\nIhLgatasyZw5cxg5ciS7d++mcuXKZkfyCpvNhs1m89rruWMVfxMwFmMRvSS7gMEY6yaHgaaO7WOB\n88DrGGsn/wWSgdpAGlfWT5xpry0RuWH9+/enbdu2TJ061ewopvDlvbacOQesA1RwXL8LqIJRImCs\nqwxx3Kc/sM2xfRvwMFANGAlkuSmXiAizZs1izpw5HD582Owofqk8RdIf+ApjneM/wDrH9hhgD8Ya\nyQTgcafHPAuMA3YAHwIfO7YnAz8AB4AE4O/lyCUi4qJRo0b85S9/4emnnzY7il/SAYkiEhAKCgqI\njIzk3Xff5Z577jE7jldZZWpLRMSnhYaG8uyzz/LKK6+YHcXvaEQiIgEjPz+fJk2aYLPZaNGihdlx\nvEYjEhERN6latSrDhw9n0aJFZkfxKxqRiEhAOXDgAHFxceTl5VGhQoVrP8APaEQiIuJGLVq0oF69\nel49YM/fqUhEJOAMGjSIDz74wOwYfkNTWyIScA4ePEh8fDx5eXnF0z5+TVNbIiJuFhkZSbVq1di+\nfbvZUfyCikREAtKwYcNYuHCh2TH8gtXGdJraEhG3+Oabb2jVqhVfffUV1atXNzuOR2lqS0TEA+rX\nr0+XLl1Yvny52VEsT0UiIgFr2LBhvPvuu2bHsDxNbYlIwDp//jz169dn79693H777WbH8RhNbYmI\neEjlypUZOHAgS5YsMTuKpalIRCSgPfLII7z11ltotqPsVCQiEtA6deqE3W4nK0sfzFpWKhIRCWhB\nQUGXRyVSNlpsF5GA9/XXX9OmTRuOHj1K1apVzY7jdlpsFxHxsAYNGtChQwdWrlxpdhRLUpGIiACj\nR49mxowZWnQvAxWJiAjQs2dPLl68yIYNG8yOYjkqEhERIDg4mHHjxvHSSy+ZHcVyVCQiIg4PPvgg\nubm52hX4BqlIREQcKlasyLhx43jxxRfNjmIp2v1XRMTJTz/9RJMmTdi0aRMtWrQwO45baPdfEREv\nqlKlCsOHD+eNN94wO4plaEQiInKVI0eOcNddd5GXl0e1atXMjlNuGpGIiHhZ48aNiY2N1ajkOmlE\nIiJSgn379hEfH8/nn39u+Y/i1YhERMQEbdq0oWvXriQlJZkdxedpRCIiUopt27bx6KOPsn//frOj\nlItGJCIiJmnfvj2nT58mJyfH7Cg+TUUiIlKK4OBg+vTpw/Lly82O4tM0tSUi8guys7Pp2rUrOTk5\n1KxZ0+w4ZaKpLRERE7Vu3ZpevXrx2muvmR3FZ2lEIiJyDUeOHKFt27Z89dVXltwVWCMSERGTNW7c\nmI4dO5KSkmJ2FJ+kIhERuQ5Dhgzh/fffNzuGT9LUlojIdfjhhx9o0qQJ+/bto0GDBmbHuSGa2hIR\n8QE1a9Zk6NChzJo1y+woPkcjEhGR61R8VuDc3Fxq1apldpzrphGJiIiPaNy4Mb/97W9Zu3at2VF8\niopEROQGxMfHk5GRYXYMn6IiERG5Ad26dWPjxo1mx/ApWiMREbkBdrudnJwcwsPDi9cefJ6n10is\n8a9whYpEROQG+fJi+6vAAWAXMBOo4nTbGCAH2A90dtrewnH/w8A0p+0VgYXAEcAG3FaOXCIi4kXl\nKZI0oBVwN1ANeMix/VZgFNANeBKY7fSY14CXgfZAjOOxAP2BmhhFkwpMKkcun2Wz2cyOUC7Kby4r\n57dydrB+fk8rT5GkA0WOy3qMYgCIwiiDPCATYzhVfJazCOB94HvgA8d9ix+zBMgH5jtt9ytW/2FU\nfnNZOb+Vs4P183uau/baegwoPptZB4wpr2KfYRRDGHDcaft+oKPTY4o/y/IkUBcIdVM2ERHxoJBr\n3J5OyesVE7hSHFOAs8C/Hd+XtKBT0gp5kNP2oKseZ7WdAEREpIweAT4CKjtt6wM4n4xmN3CT4/ph\np+1jgacc11/DWCcBqA18XMrrfY5RPrrooosuulz/5XN8VALwKXDLVdvrAgeBRkAsxl5axdYCQ4A6\nwH+5stg+GFiJsWg/HkjyVGgREfEdORi7637iuMx1uu3PGA24H+jitL0lRrF8AUx32l4RWISxQG9D\nu/+KiIiIiIgnRGPs0ZUDjC7lPtMx1lJ2ApGObZWBbRjrLVnAM073fwHY47htMa5TbaUdGGmF/PEY\na0V7gVUYe7ZZKX+xRsA5jDWx8vJ2/jBgE8aeh3sp/56E3swfhLFWuRPYAozwwezFxmIcRlDbaZsV\n3rvFrs5vlfdusZL+/cG97123+gTjH6QxxjpKnatu74CxdlIbeBBY43RbVcfXUCAb400OVxbywdiD\n7HnH9Vu5slYTg+tajRXyt+XKFF80sLn88b2av9gKjGOH3PHD6O38/wUGOq7fTPl3l/dm/gSnx98E\nfAmU5wM0PJEdoCHGcWdfcOUXmVXeu6Xlt8p7t7T8xa77vevNs//WdHzdjLG2ksbPDzyMwgh/EliK\ncaR7sXzH1+oYuy0XOL4/6/gagrFYf97pua4+MNL5Tefr+XcDxxzXPwRaAxUslB+gH8ZfSPspP2/n\nvxVjb5cVju9PYfzVZpX8ZzB+gVTFKBC703P4SnaAGcC4Ep7LCu/d0vJb5b0LJeeHG3zverNI2mM0\naTHnAxKLOR+YCPA/oJnjegWMIfx3GHt1feV0v2kY/+M6Y5wDrPi5rj4wsjxDTG/l/0cJr/0gsBUo\nLGN28H7+6hg/oInlyOzM2/m7Y5RHOrAB4/+BlfJvwZjK+A7jF8ITwAUfy/474CjGFNDVz2WF925p\n+Z358nu3tPw3/N71tc8jufrARDD+kgLjf8SdGMOyUUA7p/tMxBgGbwdecXquq9lL2OZO7sj/8lWP\nb4MxXfEnd4ctgTvzJwL/xPhryFsHmLozf2WMN+vjwMPAXzGmFTzJnfl7Y/wCaoRxTrwF/Hz9yp1u\nNHtVjAObp171HM5fS3ouT3Fn/mK+/N79pfyJ3OB715tFsoMrC0Bg/HBnXXWfbRi7CBf7Fa4HMYIx\n17uWnw/t8jF2Ie5UynNFOjKUlbfzA9yOMVwdijGHWR7ezt8Bo9S/wNgdfALGD3FZeTv/VoxplcMY\nf+2vw1h3KCtv54/GODbrFHAIY4TSvmzR3Z69A9AU+DXGX8pfYPys78Q4Ds3X37u/lP9Wx319+b17\nrX9/d78cjDzVAAABEklEQVR33a54wejX/PKC0S0YZxMuXjCqw5WFwlswhmL1HN+HO76GAC9yZb7v\nlw6MtEL+Whj/k/u5IbcZ+Z1NBf5S7vTezR+MccDtzRhrD9txXaT09fw9MPYYquR4fC5XTp7qK9md\nOS/2WuW9W1p+q7x3nZW02A7ue++6VQzG3OfnGLv3gTF18LjTfV7C+I/ayZUFozYYP0x7MM40PMzp\n/iuAfVyZ1rrZ6bbSDoy0Qv5JGLvefeJ0ufqHx5fzO3PXD6O38/fDKJOtuGd6wpv5K2CsnezAGFk9\n7IPZnR3G9ReZFd67zpx/EVvlvevs6n//Yj5ZJCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiImJB\n/x8+f9Qxp+g+hQAAAABJRU5ErkJggg==\n",
"text": "<matplotlib.figure.Figure at 0x10bc20250>",
"output_type": "display_data",
"metadata": {}
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "#!pip install gsw\nimport gsw",
"prompt_number": 49,
"outputs": [],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "sigma0 = gsw.sigma0(S,T)",
"prompt_number": 50,
"outputs": [],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "plt.plot(sigma0, -P)",
"prompt_number": 53,
"outputs": [
{
"text": "[<matplotlib.lines.Line2D at 0x10d52bb50>]",
"output_type": "pyout",
"metadata": {},
"prompt_number": 53
},
{
"png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEACAYAAABVtcpZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHzNJREFUeJzt3Xt0VNXd//F3bhKNEIgRKRYTFCGESwgJJMCEhHIJEEUR\nHrEiLC8VhSK1ojzaK+2jrZdK/dUL6lILP7SPFBQtoIGA5EoSiJEREu4ICPijIAIRSgghvz/OEAZM\ngDCXPZP5vNaaxcyec3K+a5N1Pjl7nwuIiIiIiIiIiIiIiIiIiIiIiIiIiIh41EBgI7AVeMRwLSIi\n4mVfYAVBDLAJiDZbjohI8xZsugAnkY5/84FdwHIgxVw5IiLNny+FQB+sv/7PqARSDdUiIhIQfCkE\nRETEy0JNF+BkLfCC0+duQLbzAgkJCXV2u92rRYmINAN2oFdDX/jSkcARx78DgVhgKFDqvIDdbqeu\nrs7lV4cOHaisrLzs9X//+9+7pY7m8FJfqC/UF77fF0BCYzteXwoBgEeBN4AVwGvAQU9spEOHDuzd\nu9cTP1pExK/4WgjkAV2BTsDfPLWRUaNG8fe//91TP15ExG/4Wgh4xZQpU8jNzWX16tWXtX5GRoZ7\nC/Jj6ouz1BdnqS/O8vW+CDJdQBPVOca3XLZgwQJ+97vfUVlZSVCQv3WDiMilc+zjGtzR+dvez20h\nUFdXR3BwMLW1tQQHB+QBkYgEiAuFQMDu/Q4ePEibNm0UACIS0AJ2D7hmzRoSEho9a0pEJCAEbAjs\n3r2bG2+80XQZIiJGBWwItGvXjgMHDpguQ0TEqIANgX379nH99debLkNExKiADYFDhw5xzTXXmC5D\nRMSogA2Bw4cP07p1a9NliIgYFbAhcOTIESIjIy++oIhIMxawIfDdd9/pSEBEAl5AhkBdXR2lpaX0\n7NnTdCkiIkYF5G0jjh49Svv27amqqtJ9g0Sk2dNtI85TW1tLaGioAkBEAp6/7QXdciRQU1NDeHg4\ntbW1bihJRMS36UjgPKGhobRs2ZJdu3aZLkVExKiADIGgoCAmTZrEww8/zPHjx02XIyJiTECGAMAz\nzzxDdHQ0mZmZHD582HQ5IiJGBGwIhIWFMXfuXJKTk+nZsycLFizAXQ+sERHxFwE5MXy+/Px8pk6d\nyrXXXsvLL79MfHy827chImKKJoYvYuDAgZSXl3P77beTnp7O9OnTOXr0qOmyREQ8TiHgEBoayiOP\nPEJFRQWHDx8mLi6OefPmaYhIRJo1DQc1orS0lKlTp3LFFVfwyiuvkJiY6JXtioi4m4aDLkNKSgql\npaXcd999jBgxgvvvv5/y8nLTZYmIuJVC4AKCg4P52c9+xsaNG7nxxhsZPXo0ffr04a233uL77783\nXZ6IiMs0HNQEtbW1LF++nDfeeIP8/HzGjRvHQw89RK9evYzVJCJyMRoOcpOQkBBGjBjBRx99xPr1\n62nfvj2jRo2iX79+rFq1ynR5IiJNpiMBF9XW1rJw4UKefPJJevXqxQsvvECnTp1MlyUiUk9HAh4U\nEhLCuHHj2LhxIykpKaSmpvL444/rVhQi4hcUAm4SHh7Ok08+SUVFBUePHiUuLo533nmH06dPmy5N\nRKRRGg7ykPLyciZPnkxISAivvfaaJo9FxBgNBxnQu3dviouLue+++8jMzGTatGns37/fdFkiIudQ\nCHhQcHAwDz74IJWVlZw8eZLOnTvTtWtXJk2axLx58/RQGxExTsNBXlRbW4vdbqegoKD+1aJFC9LS\n0upfXbt2JThY2Swi7nOh4SCFgEF1dXVs3br1nFA4cuQINpuNtLQ0Bg8eTEJCwpn/QBGRy6IQ8CN7\n9+6lsLCQ/Px8srOzARg7dixjx44lOTlZgSAiTaYQ8FN1dXXY7XYWLlzIggULqK6uZsyYMYwdO5aU\nlBQNG4nIJVEINAN1dXVs2LCBhQsXsnDhQo4cOcL48eN56qmnaN26tenyRMSH6RTRZiAoKIgePXrw\nhz/8gYqKCpYvX86hQ4eIj4/nH//4hx5+IyKXRUcCfq64uJjJkycTHR3Nq6++SpcuXUyXJCI+RkcC\nzVi/fv0oKyvjlltuYcCAATzwwAMUFBToyEBELomOBJqR/fv3M3fuXObOnUt1dTUTJ05k4sSJxMbG\nmi5NRAzSxHCAqauro6ysjLlz5/L+++/To0cP7r33XsaMGcPVV19tujwR8TKFQACrrq5myZIlzJkz\nh7y8PPr378/w4cPJzMwkLi5O1x2IBACFgABw+PBhVq5cybJly8jOziYoKIjMzEyGDx/O4MGDiYyM\nNF2iiHiAQkB+oK6ujk2bNpGdnc2yZcsoKiqiV69eDB8+nFtuuYWEhATTJYqIm5gIgZnAz4ADjs+/\nAj51vJ8GPALUAJOAQkd7V+A9oDXwv8CvG/i5CgEPOX78OPn5+SxbtowPP/yQtm3bMnnyZO666y6u\nuuoq0+WJiAtMhMDvgSpg1nntbYF8YBjQEfgr0Nvx3SfAXGAF8DHwKFB23voKAS+ora1l2bJlzJ49\nm9WrV3PPPffw0EMPER8fb7o0EbkMpq4TaGiDKUA2sBvIcyxz5nSVLsB84FvgQ8eyYkBISAgjR45k\n8eLFlJeX07JlSwYPHkx6ejpLlizRNQgizYgnQ+ARoAT4b6Clo60vsNFpmc1YO/tOwL+d2iuBVA/W\nJpcoJiaGp59+mt27d/Pzn/+cp556iv79+/PZZ5+ZLk1E3CDUhXVzgHYNtP8amA38EWgFvAA8BPyF\nho8OGvqzstFhqpkzZ9a/z8jIICMj41LrFReEhYVx5513MmbMGObPn8+kSZOIiYnhmWeeITVVeS3i\nS3Jzc8nNzb2kZb1xdlAC8BowALgVGAL8wvHdOiANa/5gB3Cjo306cAJ49byfpTkBH1FTU8OcOXP4\n4x//SGJiIi+++CI333yz6bJEpAEm5gR+5Pg3FLgba9IXYA2QCdwAZACnsQIAYBNwFxANjAZKPVSb\nuEFYWBgPPvggW7duxWaz0a9fP379619z7Ngx06WJSBN4KgSeA77EmhMIwxoeAtjveP8Z1tHBL5zW\neRyYAawFCvjhmUHig8LDw5kxYwZ2u50dO3YQHx/PBx98oMljET+hi8XErVatWsXUqVNp06YNU6ZM\nYcyYMbRo0cJ0WSIBTVcMi1fV1NTw8ccf88Ybb2C325k4cSKTJk2ic+fOpksTCUh6noB4VVhYGGPH\njiUnJ4fVq1cTEhJCWloaP/nJT5g/fz4nT540XaKIOOhIQLzi5MmTfPTRR7z++uvs3LmTv/71r4wa\nNUp3MRXxAg0HiU9ZsWIF06ZN44YbbuCll14iLi7OdEkizZqGg8SnDBkyBLvdTmZmJmlpaTzxxBMc\nPXrUdFkiAUkhIEaEhYXxy1/+kvXr13Pw4EHi4uKYO3cup0+fNl2aSEDRcJD4hNLSUqZNm0ZQUBAv\nv/wyffr0MV2SSLOh4SDxeSkpKRQXF/Pwww8zatQoHnjgAfbu3Wu6LJFmTyEgPiM4OJh7772XTZs2\nER0dTY8ePXj44Yf56quvTJcm0mwpBMTnREZG8txzz7Flyxaio6Pp06cP9957L1u2bDFdmkizoxAQ\nnxUdHc3TTz/Ntm3buOmmm7DZbIwdO5YlS5ZQU1NjujyRZkETw+I3qqqqeO+995g3bx7btm1j3Lhx\nTJgwgeTkZF10JnIBulhMmp3t27fz7rvvMm/ePEJDQ5kwYQLjx48nNjbWdGkiPkchIM1WXV0dJSUl\nzJs3j3/+85/07t2bxx57jMzMTB0diDgoBCQgVFdXM3/+fF588UVOnTrFY489xvjx4wkPDzddmohR\nCgEJKHV1dXz22WfMmjWLzz//nMmTJ/PQQw/Rrl1Dj8QWaf4UAhKwNm7cyEsvvcT777/P9ddfj81m\nq3917NhRQ0YSEBQCEvBOnTrF+vXrKSwspLCwkIKCAoKCgs4JhZ49exISEmK6VBG3UwiInKeuro6d\nO3fWB0JhYSF79+4lNTUVm81Gv379SEpKok2bNqZLFXGZQkDkEhw8eJDVq1dTWFhIcXEx69ato127\ndiQnJ5OUlERycjK9e/emVatWpksVaRKFgMhlqK2tZfPmzZSVldW/7HY7HTp0IDk5uT4cEhMTufrq\nq02XK9IohYCIm5w6dYrKykrKysr4/PPPKSsrY/369XTs2JHk5GTS0tIYOnQoMTExpksVqacQEPGg\nkydPUlFRwdq1a8nNzSUnJ4eoqCiGDRvGsGHDyMjIoGXLlqbLlACmEBDxotOnT2O321m+fDnLly9n\nzZo1JCYm1odCUlKSzkISr1IIiBh0/Phx8vPzWb58OTk5Oezbt48hQ4YwcuRIRowYQdu2bU2XKM2c\nQkDEh+zbt4/s7GyWLl3KypUriYuLIysri6ysLBITE3UBm7idQkDER508eZKCggKWLl3K0qVLqaqq\nYuTIkWRlZTFkyBDNJYhbKARE/MS2bdvqA6G4uJgePXowYMAAbDYb/fv359prrzVdovghhYCIHzp2\n7Bhr1qyhqKiIwsJCSkpKaNeuHQMGDKgPhptvvlnDR3JRCgGRZqC2tpaKigoKCwvrg+E///kP/fv3\nx2azMWDAAJKSkrjiiitMlyo+RiEg0kx9/fXXFBUVUVRUREFBAdu3byc1NZX09HTS09Pp27cvLVq0\nMF2mGKYQEAkQ3333HYWFheTm5pKXl8emTZvo27dvfSikpqbqITsBSCEgEqCOHDlCYWEheXl55OXl\nUVFRQVJSEunp6dhsNlJSUoiMjDRdpniYQkBEAKiqqqKoqIi8vDyKioooLy8nNjaWfv361b+6dOlC\ncHCw6VLFjRQCItKgmpoa7HY7JSUlFBcXU1xczHfffUdKSkp9KOhowf8pBETkku3fv/+cUCgvLycm\nJoZ+/foxaNAgsrKyFAp+RiEgIpetpqaG9evXU1xcTHZ2Nnl5eQwYMIDRo0dz2223cd1115kuUS5C\nISAiblNVVcWnn37KokWL+PTTT+nevTt33HEHo0ePpmPHjqbLkwYoBETEI6qrq1m5ciWLFi3i448/\n5kc/+hGDBw8mIyODgQMH0rp1a9MlCgoBEfGC2tpaSktLWbVqFbm5uZSUlNC5c2cGDRpERkYGaWlp\nmkswRCEgIl5XXV3N2rVr60OhtLSUrl271oeCzWajVatWpssMCAoBETHuxIkTrFmzhtzcXFatWsXa\ntWuJi4sjLS2NgQMHYrPZdJdUD1EIiIjPOXHiBGVlZeTn51NQUMDq1atp3749AwcOJC0tjbS0NGJi\nYkyX2SwoBETE59XW1mK32ykoKKh/hYeH1wdCZmYmsbGxpsv0SwoBEfE7dXV1bNmypT4QPvnkEwYN\nGsSMGTNITk42XZ5fUQiIiN/7/vvveeutt5g1axY333wzM2bMYNiwYXqoziVQCIhIs1FTU8P777/P\n888/T3BwME888QR33nmnHqZzARcKAVduFfhfQAVQC/Q+77tpwFagErA5tXcFyoEdwDNO7WHA28Au\nIBdo50JdItKMhYWFMWHCBL788kueffZZ5syZQ0xMDDNnzuSbb74xXZ7fcSUE1gOjgfzz2tsCU4DB\nwGTgb07fvQg8B/QB0oEzA3ujgUiskMgGfuNCXSISAIKCghgxYgQrVqxgxYoV7N+/n/j4eMaPH09p\naanp8vyGKyGwCdjSQHsK1o58N5CHdQhyteO7LsB84FvgQ8eyZ9Z5FzgOvOnULiJyUd26dWP27Nns\n2LGDpKQkfvrTn9K3b19yc3NNl+bzPPHkiL7ARqfPm7F26p2Afzu1VwKpTutUOt4fAq4D9GBUEWmS\nNm3a8Nhjj7F161ZmzJjBPffcw+TJkzl69Kjp0nxW6EW+z6Hh8flfAYsbWaehyYeGZnODnNqDzluv\n0QnrmTNn1r/PyMggIyOjsUVFJECFhIQwduxYhgwZwuOPP0737t154403GDFihOnSvCI3N/eSj4Lc\ncXbQKmA61oQvwK3AEOAXjs/rgDSgCmtC+EZH+3TgBPAq1lxBIbAIiAKWc3a+wJnODhKRJsvJyWHS\npEkkJSXx29/+loSEBNMleZWnzg46ZxtO79cAmcANQAZwGisAwJpHuAuIxpoMPjN7UwrcA0QAk4AS\nN9UlIsLQoUPZsGED/fr1Y/jw4dx+++18/vnnpsvyCa6EwGjga6xx/aXAp472/cBs4DPgNc4eEQA8\nDswA1gIFQJmjfRFwBGsuYTjwtAt1iYj8QEREBNOnT2f79u0MGjSIUaNGkZWVRUlJYP/NqYvFRCQg\nnThxgnfeeYc///nP3HLLLcyaNYsrr7zSdFke4Y3hIBERvxIeHs6UKVPYsGED3377LampqWzevNl0\nWV6nEBCRgBYZGcn8+fOZMmUKNpuN9957z3RJXqXhIBERB7vdzsiRI5k7dy5DhgwxXY7b6AZyIiKX\naPny5TzwwAPY7XaioqJMl+MWCgERkSZ49NFH2bNnDwsWLGgWt6pWCIiINMGJEydIT09n8ODB/OlP\nfzJdjst0dpCISBOEh4ezdOlSPvjgA1555RXT5XjUxe4dJCISkKKjo8nOzsZmsxEVFcXdd99tuiSP\nUAiIiDSiY8eOLFu2jMzMTL7//nsmTZpkuiS3UwiIiFxA9+7dycvLY+jQoRw5coQnnnjCdElupYlh\nEZFLsGfPHoYOHcqtt97Ks88+S3Cw/0yp6uwgERE3OHjwIHfccQfR0dHMmzePiIgI0yVdEp0dJCLi\nBtHR0eTk5NCyZUvS09PZt2+f6ZJcphAQEWmCFi1aMGfOHG677TaGDBnCsWPHTJfkEg0HiYhcpokT\nJxIWFsbbb79tupQL0nCQiIgHvPbaaxQWFvr1nUd1JCAi4oKSkhLGjRvHV1995bNnDOlIQETEQ1JS\nUmjVqhWFhYWmS7ksCgERERcEBQUxYcIE5s2bZ7qUy6LhIBERF+3evZukpCS++eYbQkN970YMGg4S\nEfGgG264gdjYWPLz802X0mQKARERN7jjjjtYsGCB6TKaTMNBIiJusGvXLpKSktizZw/h4eGmyzmH\nhoNERDwsJiaG3r17s2jRItOlNIlCQETETe6//37mzJljuowm0XCQiIibHDt2jPbt27N9+3aio6NN\nl1NPw0EiIl4QERHBsGHD+Oijj0yXcskUAiIibjR+/Hhef/11Tp8+bbqUS6IQEBFxo1GjRlFXV8fC\nhQtNl3JJNCcgIuJmOTk5TJkyhcrKSsLCwkyXozkBERFvGjp0KB07duTNN980XcpF6UhARMQD7HY7\nmZmZbN68mcjISKO16EhARMTLEhISGDlyJM8//7zpUi5IRwIiIh6yc+dOkpOT2bVrFxEREcbq0JGA\niIgBsbGxDBgwwKcfP6kQEBHxoKlTpzJ79mzTZTRKw0EiIh5UW1tL+/btKSkpoWPHjkZq0HCQiIgh\nISEhZGVlsXjxYtOlNEghICLiYbfeeitLliwxXUaDNBwkIuJhR44c4cc//jEHDhww8sAZDQeJiBgU\nGRlJ9+7dKSoqMl3KDygERES8ICMjg8LCQtNl/IBCQETEC7p3705FRYXpMn5AISAi4gXdunXzyRDQ\nxLCIiBdUV1cTFRXFgQMHuOqqq7y6bU0Mi4gY1qJFC7p160Z5ebnpUs6hEBAR8ZKUlBRKS0tNl3EO\nV0Lgv4AKoBbo7dQeC/wH+MLxes3pu65AObADeMapPQx4G9gF5ALtXKhLRMQnJSYmYrfbTZdxDldC\nYD0wGshv4LttQKLjNcWp/UXgOaAPkA4kO9pHA5FYIZEN/MaFukREfFL37t3ZsGGD6TLO4UoIbAK2\nNHGdLsB84FvgQyDF0Z4CvAscB950ahcRaTa6devG5s2bqa6uNl1KPU/NCXQE1gFvAAmOtk7Av52W\nqQRSHe/7Oj4DHAKuA1p4qDYRESMiIiLo2bMn+fkNDaCYEXqR73NoeHz+V0Bjt8TbB3QAvgNGAPOA\nnvzw9KQgoM7pfdB53zVo5syZ9e8zMjLIyMhobFEREZ9z5mZyQ4cO9dg2cnNzyc3NvaRl3XGdwCpg\nOtaEb0PKgTux5gl2ADc62qcDJ4BXseYKCoFFQBSwnLPzBc50nYCI+DW73c7YsWPZunWr17bpjesE\nnH94NBDieN8buBIrAMCaR7jLscxo4My5UqXAPUAEMAkocVNdIiI+pWfPnhw9epSdO3eaLgVwLQRG\nA19jjesvBT51tKcDdqw5gV8BDzmt8zgwA1gLFABljvZFwBFgIzAceNqFukREfFZQUBCDBw9m5cqV\npksBdNsIERGve/3111m7di1vv/22V7an20aIiPiQrl27smnTJtNlAAoBERGvi4uLY+PGjfjCyIZC\nQETEy9q2bcvp06c5dOiQ6VIUAiIi3hYUFMRNN93Etm3bLr6whykEREQM6NSpk0JARCRQxcXFsXnz\nZtNlKAREREyIj4+nsrLy4gt6mEJARMSArl27+sQzh3WxmIiIASdOnKB169ZUVVURFhbm0W3pYjER\nER8THh5Ohw4djE8OKwRERAzp3r07X375pdEaFAIiIoakpqayevVqozUoBEREDBkwYABFRUVGa9DE\nsIiIISdOnCAqKoqDBw9y1VVXeWw7mhgWEfFB4eHhxMfHs27dOmM1KARERAzq27cva9asMbZ9hYCI\niEGJiYnY7XZj21cIiIgY1KNHD9avX29s+5oYFhExqKqqinbt2nH06FFCQkI8sg1NDIuI+KiWLVvS\nvn17Y4+bVAiIiBiWnJxMWVmZkW0rBEREDEtOTmbt2rVGtq0QEBExzGazUVBQYGTbmhgWETGspqaG\na665hp07dxIVFeX2n6+JYRERHxYWFkZycrKRi8YUAiIiPqBbt25GzhBSCIiI+IC4uDg2btzo9e0q\nBEREfECvXr2MnCGkiWERER9w8uRJoqOj+eqrr7jmmmvc+rM1MSwi4uOuuOIKbDYbq1at8up2FQIi\nIj6ib9++Xn+2gEJARMRHdOnShS1btnh1mwoBEREf0aVLFyorK726TYWAiIiP6NGjB9988w179uzx\n2jYVAiIiPiIsLIwRI0awZMkSr21TISAi4kOysrLIzs722vYUAiIiPqR37958+eWXXtueLhYTEfEh\np06dolWrVhw4cICIiAi3/ExdLCYi4idCQ0OJj4/niy++8Mr2FAIiIj4mPT2d3Nxcr2xLISAi4mMy\nMjK8dvsIzQmIiPiYQ4cOERsby+HDhwkOdv1vdc0JiIj4kaioKCIjI9m5c6fHt6UQEBHxQQkJCdjt\ndo9vR8NBIiI+6OuvvyYqKsotp4leaDhIISAi0sx5ak7gBWAjUA68BFzp9N00YCtQCdic2rs6lt8B\nPOPUHga8DewCcoF2LtQlIiKXyJUQWA50A5KBCOBuR3tbYAowGJgM/M1pnReB54A+QLpjXYDRQCRW\nSGQDv3GhLo/z1vm7/kB9cZb64iz1xVm+3heuhEAOcNrxWoa1UwdIwdqR7wbysA5BrnZ81wWYD3wL\nfOhY9sw67wLHgTed2n2Sr/+nepP64iz1xVnqi7N8vS/cdXbQg8Bix/u+WMNEZ2zG2ql3Av7t1F4J\npDqtc+ZJCoeA64AWbqpNREQaEXqR73NoeHz+V5zd6f8OqAIWOD43NPnQ0GxukFN70Hnr+duEtYhI\nQLoXKALCndpuBf6P0+d1QEvH+x1O7dOBnzvev4g1LwAQBZQ1sr11WMGhl1566aXXpb888vT64UAF\ncM157dcBm4AbgAyss4HO+AS4C4gGCjk7MXwn8AHWBPOTwCueKFhERNxnK9YpnV84Xq85ffcLYBvW\nOH+aU3s8Vih8BfzZqT0MeAdrMjkXnSIqIiIiIiLe0gFYhTXElcvZ6x4A7sM646kC6zqHhjwIrAY+\nx7p4zp811hfzOXvk95Xj34YMxOqvrcAjnizUC1zpiwv9TvkjV38vAEIc3y++wDL+wNW+iADmAls4\n90xJMagd0MvxPhprErsl0B0oBm52fHdtA+tGYf2HR2CddvsJkOnJYj2ssb5w9hcav6jvC6wgiMGa\nH4r2QI3e4kpfXMq6/sTV3wuAx4D3gH+5vTrvcrUv/gL8D9ZJNaFYF8uKj1kM/AR4AvjZRZa9EtgJ\ntMcKglysax+ai8XAIKfPQVjzNzc1sGwk5/718zcgy3OleV1T+uJi6/q7pvbFj4EVjnX8/UjgfE3t\ni3Wce6sd8TGdsJL9aqxf2pewTlt9C2tyuyEjgJNY10w808gy/uhMXzjfynAgsLaR5YcA/+v0+WGs\nv3iag6b2xcXW9WeX0xcLgESsuws0pxBoal/8GOsIeQ5QCvw3555m71V6nsAPtcQa1/sl8D3WlctR\nWGc5fUzDp69eC8zGCohYoB/N469f57445tT+U+AfRioyx5W+aGxdf3U5fXEL1h0DvqB5XQx6OX0R\nDnTGOi0+A+sebHd6rkRpijCsG+M96tT2Aufu0Pfxw9TOAt53+jyZxieQ/UVDfQHW+OX/wxr6asj5\nw0Ev4/+BeLl9caF1/dXl9sWfgK+x5s6+wdph/l8P1egtrvxeON9aZwTnHj2LIUFYv5Szzmu/A+uv\n/yCseyAVNLBuK6zrIqKwjhz+hXUXVX/VWF+AdZHgqousf2ZiOBb/nxh2pS8utK4/cvX34ozmMBzk\nal/8C2t/Eoy1f3nArdXJZbFh3RF1HWdP8RqOdUrb61jJvQjrNthgpfxSp/Xvxbpr6lqsMXB/Hmpr\nrC8A/g5MOm/58/siHau/tmE9W8KfudIXF1rXH7n6e3FGOv5/dpCrfdEZKHGs/xeaz1yRiIiIiIiI\niIiIiIiIiIiIiIiIiIiIiIiIiIiY8P8BILMQJ+1EPvwAAAAASUVORK5CYII=\n",
"text": "<matplotlib.figure.Figure at 0x10d1ca0d0>",
"output_type": "display_data",
"metadata": {}
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "fig = plt.figure(figsize=(10,5))\nplt.subplot(1,2,1)\nplt.plot(T, -P, 'r', linewidth=2, linestyle=':')\nplt.xlabel('Temperature')\nplt.ylabel('Pressure')\nplt.title('ARGO Profile')\nplt.subplot(1,2,2)\nplt.plot(S, -P, 'b', linewidth=2, linestyle=':')\nplt.xlabel('Salinity')\n#plt.ylabel('Pressure')\nplt.yticks([])\nplt.title('ARGO Profile')\nplt.tight_layout()\nplt.savefig('my_first_python_figure.pdf')",
"prompt_number": 63,
"outputs": [
{
"png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAFiCAYAAAAEBkVdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8XdP5+PHPzTwgkZCYKkENoahZ/QxRFFXU1BpbQ32J\nGlpTfWkNpb5taXWgihpqLC0tMZWWIIrGkAiJikiQICExJGS+9/fHc07PSdybnDucs/Y55/N+ve7r\n7r3PcJ+d3Lv2c9Z+1logSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkYDPgAeAjYF/gfuCI\n3GNHAk+kCUuSMsf2UpKKjABmAt2WOH4DMA+YBbwG/B5YZ4nn9AF+A7yce97rwPXA+kXP6QycDYwl\nGt5ngWOXEdNk4NPce44CLmwmvlL9ATivhceOxEZfUulGYHspSXVhMNG4vgIcuMRj1wM/zm2vCtxN\nNKB5PYFXgUeAw4AewOrAd4HvFz3v1tzzjgZWBE4FpgIXLSWuScCXc9ubAm8CBzfzvC5LeY+88cBu\nLTx2JDb6kkozGNtL20tJdeNc4B7gHGD4Eo9dT/RI5B0MTCva/yHR09F1Ke///4BGYMsljn+D6HUZ\n1MLriht9gKuAm3LbjcC3gBeIHhuAocCdwATgTOLiAjARWERc2D4meldGAMfkHj+SxRv9VYEf5d73\ndmCbpZybpPpie2l7qVbqlDoAqR2+RTRudwC7AwNaeN7ngMOBkUXHdgD+DixYyvvvRFwonl3i+ENA\nA7DtUl7bkPu+GbAn8Neix75DNNgbAWvlHruNaPw3By7LPW8dolfla8AKwHygKffVnPuAhcRF6kai\nNm+5pcQoqX7YXi7O9lJSzdoemAMsn9sfDXyv6PEbco9/SPRGjCZuGea9zOK3CfcBPiB6IP6eO/Y7\n4rZjc14ETm/hsclEfd1M4HHgLAofSBspDCQhF8OtRfufB94vev6SvSyPErcyYfGekXWJ26jF/goc\n1EKMkuqH7aXtpdrAnmRVq28TPRSzcvt/zh3LawIuAfoCmxC35I4uevwt4sKRd0/uOd+nMGhkCs3f\ngusLbJB7j+Y0ESOr+wE7Aj8lGvu8Z4q2twOeK9p/jai926iF927JrkQvywdFX7sQPUCS6pvt5eJs\nL1WSUgrhpazpSdS5dQLeyR3rTqGBfzF3LH8L7yXgOKIH4kbiQjES+AHRwM8veu+Gou3HiQEnWxGj\nrvN2Jxr2p9sY/8Ki7SdZ/MKyLlFX93Ir3/MRoiZvwzbGJKk22V5+lu2lSmJPsqrR14mGcwgxGnrT\n3PYTRN0dLN54AzxINIon5PZ/QdTPPUiM1u5F3Ir8IoUatpFE/d7NRK9Kf2K09i9zr3+jA87lbuIi\nsj8xWvwCYlBN49Je1Iz/ALOJW5qrEANstiJ6cCTVL9vLz7K9lFSzHiBuDS7pIOBtYq7O4imN8r5B\nTEeUH6HdB/gtMW3Qx8StuyXn/exEjAYfm3vOs0Qvy9IsWRdXbBGw9hLHdiHq4V4j6vH6LeW9imvs\nvk303uStBvwv0avyPvAPoqdIUv2yvQy2l6prOxJ/vBOAkxLHIkmSJGXCC0SiPIgYtbpS2nAkSZJU\nrWqlJrlP7vvjRN3TQzgxuCRJktqoVpLkrVh8zsNxLH3ickmSJKlFdTMF3DrrrNM0ceLE1GFIUntM\nJBZQKKtNN920acyYMeX+MZJUTmOIGVjarFZ6kkex+NQtG7HEnIwTJ06kqampJr7OO++85DF4Lp5L\ntXxVzbk0NtL0yCM0/fOfsd3Mc4ild8tuzJgx6f896u3/33Op2q96OpcJE5p44IH0cZbyRUx32C61\n0pP8Ue77jsTa7bsR8ydKUnVoaICdd04dhSQ16/33YcIE6N8/dSSVUytJMsQ69FcRczr+hpj3UJIk\nSe305pvwm9/AZpvB1lunjqYyailJfoxYRajmDR06NHUIHcZzySbPJYFFi2CbbWDgQBg+HDrVSjVc\nWlXz/18CzyWb6uVcNt8cHnigcrFkwZJLUdayplyNiiRlT2MjvPACvPce7LFHs09paGiAyrTbtpeS\nqlpHtJcmyZJUJUySJaXy/vswalTUJFdDuUVHtJfez5MkSdJSvfkmXHwx/POfqSOpHHuSJSkLfvlL\nuO02+P734dBDm32KPcmSVBrLLVrHRl9Sdk2ZAm+/DauvHl/NMEmWpNKYJLeOjb6kqmaSLCmVxsaY\neKehAfbZJ3U0y9YR7WUtTQEnSZKkMmhqgrvvhokTqyNJ7gj2JEtSFtx2G1x2GRx8MJx6arNPsSdZ\nkkpjuUXr2OhLyq533oG33oJVV4XPfa7Zp5gkS1JpTJJbx0ZfUlUzSZaUSmMj3H571CQffHDqaJbN\neZIlSZJUdk1NcM89MXivXtiTLElZ8NBDcM45sNtuMWN/M+xJlqTSWG7ROjb6krLr/ffh9ddh5ZVh\nrbWafYpJsiSVxiS5dWz0JVU1k2RJqViTLEmSJC3BmuTaZs+IpOx66ik4+WTYZhu4/PJmn2JPsiSV\nxnKL1rHRl5RdH34Ir74KK64I667b7FNMkiWpNCbJrWOjL6mqmSRLSmXaNPjzn2GLLeBLX0odzbJZ\nkyxJkqSymzkTRo2Cf/4zdSSVY0+yJGXByy/DUUfBBhvAjTc2+xR7kiWpNJZbtI6NvqTs+uQTeOUV\n6N4dvvCFZp9ikixJpTFJbh0bfUlVzSRZUiovvghPPgnbbw8bb5w6mmWzJlmSasUHH8REpJKUQfPm\nwfPPw6OPpo6kcuxJlqQsOPlk+Mc/4KabYvh4M+xJllRps2dDly7Qo0fqSFrHcovWsdGXlF1NTfDY\nY7DRRrDyys0+xSRZUqUddliUWAwbljqS1rHcQpKq2SefwP33x3ZDAwwd2mKCLEmV8PrrcO+9hf1h\nw6IWuR7ZkyxJqUyeDNttB1deCfvuu8yn25MsqdzGjoXdd4dJk2KynWplT7IkVaNFi+L74MFw332w\n/vpJw5FUv+bPh112gY8/jv2NN4ZzzoE5c9LGlQUmyZJUSY89BnvsAQsXxv5mm8UCIpJUIR9/DB99\nFNvdukWV1x//WHj8u9+Fvn3TxJYllltIUiUtWgR77QWnnQa77daql1puIakjnHQS9OsHF1wQ+9On\nQ58+1V1esSTLLSSpGowaVZhctHPnKLFoZYIsSW312mvwhz8U9k86CcaNK+wPGFBbCXJHsSdZkspt\nxAg49NCYiX+VVdr8NvYkSyrV/PlRSgHw9tux2v2kSdFjXA/sSZakrJoxo1B3PHQoXHcdrLhi0pAk\n1YeFC2Oow5Qpsb/aanD11S7q2Vr2JEtSORxxBKy1Fvz4xx32lvYkS2rJ00/HjarBg2P/pJNibaLj\nj08aVjKuuNc6NvqSyqupKRYFAZg2DU48EW67LdZ07QAmyZJacu658O670WMMsGABdO2aNqaULLeQ\npKyYOxe23BKmTo39gQPhz3/usARZkoqNHw/nnVfYP/lkGDSosF/PCXJHsSdZkjrKBRfArFlw6aVl\neXt7kqX6tnBh4XP3xx/D2mvDM8/AOuukjSuLLLdoHRt9SR1rwgR44gk4+ujYX7Agyi3K1HtskizV\nr4UL4YtfjAqujTeOY6NGxXaPHmljyyLLLSQppa5d4fzz4e67C/uWV0gqgy5dYNgwuOmmwrGttjJB\nLid7kiWpPV5/PeqPe/cu+4+yJ1mqL6+/DjfeGJ/FIcYGL1rkZ/FS2JMsSZU2bhwccEAM1IMoCqxA\ngiyp/gwcCLfcAvfeG/tlrOZSM0ySJak11lsvlpa+8srUkUiqQdOnRw8yxOfv+++HL385bUz1ynIL\nSSpF8bDyBQugU6dIlivIcgup9l13HfzqV7E4SK9eqaOpXpZbSFIlfPhhDCEfOzb2u3ateIIsqXYV\nfyY96ig49FCYPTtdPAr2JEtSKW6/PaZ7u/zyZCHYkyzVplNPjbWIDj00dSS1w3mSW8dGX1Lp3n8f\nzjgDrr02SisywCRZqh0zZkD//rE9ZgwceGDcrHJKt45huYUkdaSmJmhsjO3+/ePKNXx42pgk1Zy3\n34YhQ2KBToBNNzVBziKTZEnK+8534I47YruhAf70J9h117QxSaoJDz0UvccAq60Ge+0VK+blmSBn\nj+UWkurbggUxEA/gwQfh0kvhH/9IG1MLLLeQqtcxx8Caa8J558V+U1N8Fld5WG4hSe0xejR86UuF\nhUF2370wa78ktdN77xW2f/CDWBwkzwQ5+0ySJdWvTTeFddaJ+6AQVy3veUrqAG+9BV/4AvznP7G/\n3npw/PFpY1Lr1NPnGG8fSoKHH4aPPoqh5BAD9TIye8WyWG4hVZc//CGqub797dSR1B+ngGsdG31J\n8MIL8JWvxPc11kgdTauYJEvZN23a4mUVSsOaZElqrc02g7//PYaXS1IHmjULNtkE9ttv8VX0VJ3s\nSZZUH0aMgB13rJrSiubYkyxl35w5MbXbjjumjqS+WW7ROjb6Ur2aOxeGDoW+feGBB6p2WLlJsiSV\nxiS5dWz0pXq2aBE8/zxstVXqSNrMJFnKrltvjXmQt98+dSQCa5IlaekeewzGjYvtzp2rOkGWlG09\nesA3vxmr2as2mCRLql1TpsRMFlOnpo5EUo3bf3+YMCGmX1dtsNxCUm1paorSii5dYv/xx+P+ZxUP\n2Muz3ELKnv/8JxYKqdKhDjXLmuTWsdGX6sGFF0aSfP75qSPpcCbJUvYcdRS8/jrceSestFLqaJRn\nktw6NvpSPZg6FXbZBZ59FpZbLnU0HcokWcqeBQvglltiVT17k7PDgXuS1NgIBx8M77wT+6uvDi+9\nVHMJsqTsuPBCGD06trt2hSOPNEGuRSbJkqpbp06w7rrwv/9bOJavR5akMthgg1hVb+7c1JGonOrp\nc4+3D6VaMm4cbLhhbM+bBx9/DCuvnDamMrPcQkqnqWnx3uKpU+PGlbKpVsstzgemAC/kvvYseuxk\nYAIwDiiernsI8DzwOvCTikQpKZ0ZM6Lu+IEHYr9795pPkCWl9cMfwq9+Vdg3Qa59WUySm4BfApvl\nvnJXQQYAJwC7AMOA3xS95hfAz4CtgJ2ALSsVrKQE+vePoeQzZqSORFKdOO44uO46p12vJ1lMkqH5\n7vFtgAeBN4HHcs/Jj8xZH7gdmAHclXuupFrS1AR33BED9QC22w4OPzxtTJLqxpprwgsv2INcT7Ka\nJJ8EPA38AFg+d2xrYHzRc/5DJMOfB6YXHR8HbFuBGCVV0qefwhVXwBFHpI5EUp346CM45RSYnssy\nOndOG48qK9UQ8IeBVZo5fg5wJfBjYAXgEuA44FKa711ubmRJi0Xa5xctLjB06FCGDh1aarySUuvd\nGx5+GF58MXUkFTNixAhGjBiROgypbnXqFJPl/M//wN/+ljoaVVrWZ7fYFPgd8P+AvYFdgVNyj40G\ndgBmEQP21s4dPw2YC1yxxHs5WluqRs8+C6utFl91ztktpMpoaopJc3r0iP1Fi+xFrja1OrvFqrnv\nXYBDgftz+/8GdgfWBIYCjUSCDPAKcDCwErAf8EyFYpVUblOmwNZbw6uvpo5EUp34yU/gggsK+ybI\n9SmLPck3Al8E5gOPAxcBM3OPnULUK88nyjCeyB3fELgZWBH4E1C0qsB/2TMiVYt334UBA+JeJ8Cf\n/wz77gvduqWNKzF7kqXymDsXRo2CHXaI/cmTYe+9YcyYQjOk6tIR7WUWk+RysdGXqsWee8Iee8SI\nGf2XSbJUHtOmwZAh8Mor8fkcLLGodrVabiGp3l1+OYweHYWBklQGI0bAnDmxPXAgnH02vPNO4XET\nZNmTLCm9uXPh2GPht7+Fvn1TR5NZ9iRLHefII2HmTLjrrpjBQrXFnmRJtaFHD1hxRTjttNSRSKoT\nV18NBx5oj7FaZk+ypHQmToR11ontBQvgww9h5ZXTxpRh9iRL7XPBBfD1r8Omm6aOROVmT7Kk6vXu\nu7DttvDUU7HftasJsqSyGjIE9tsv5kCWlsUkWVIaq6wCN98Mr72WOhJJNeyhh6CxMba/8Q0YORK6\nd08bk6qD5RaSKueDD6IQ8MwzoaGemp+OYbmF1DqLFsH228PBBzujZL2x3EJSdenePYaSX3JJ6kgk\n1aiFC2Hs2Nju3Bluugn69Ekbk6pTPXXl2DMipTB/fgzQGzIk9qdPj2NrrJE2ripkT7K0bJMnw5Zb\nwptvQq9eqaNRKvYkS8q+55+H3XaLmSsglrMyQZbUgY4/Pj5/AwweDIcfDpMmJQ1JNcAkWVLHmz07\neoshZrA47jiYMiVtTJJqxpw5McQhb8ECuPbawv6vfgUbbVT5uFRbLLeQ1PGOPRbWXBN+9KPUkdQU\nyy2k8KMfwSefwC9/GftvvBHfBw1KF5OyxXILSdl07rnw5JMxtFySOtgxx8D48ZD/LDdokAmyOp49\nyZJUJexJlgpmzIge5M03Tx2JssieZEnZMmYMvPBCoXtHksrgjTdiBosHH0wdiWqZSbKkjjN2LBx4\nIFxzTepIJNWw1VePgXpnn506EtUyyy0kdaymppjNv2vX1JHUHMstJKk0lltISu/TT+EHP4jvEMtN\nmyBLKrPLLoOrroKZM1NHolplkiypfbp3h6lTYzZ/SaqQQYNg5MjF50uWOpLlFpLab+FCePddV9Ir\nM8stJKk0lltISqOpKRYMGTMm9rt0MUGWVDH5BT2lcjJJltR6DQ3wla/AIYdEL7IkVcgrr8DgwXDl\nlakjUa2z3EJS6d59F3r0gL59Y//TT6FXr7Qx1RHLLaQwZkwky9/8ZupIlFUd0V6aJEsq3fHHw0or\nwUUXpY6kLpkkq5699RYstxysuGLqSFQNrEmWVF4zZsC99xb2zzorZrKQpAq78kr49rehsTF1JKoX\n9iRLatnUqbDxxjB+PAwcmDqaumdPsurZ/Plwzjlw3nnRoywtjT3JkjreBRfEfU2ItV9//vPCQiGS\nVCFNTXDYYfD007HfrRtccokJsirHJFlSXI3yZs2CSy8t7H/nO7DWWpWPSVJda2iA/faD731v8SZK\nqhTLLaR6d/fd8NBDcMUVsT9tGkyZAltskTYufYblFqpHc+ZAz56po1C1cXaL1rHRl/KmT4cBA2J7\nxgwYMiTmU+rXL21cWiqTZNWDm2+O2SZPOy16k6W2sCZZUut99BFstBFMmBD7/fvDq6+aIEvKhJ12\nghtugH/9K3Ukqnf19BnNnhEp79prYd48OOGE1JGoFexJVr2YOzfWLZLaynKL1rHRV/2aMQPuuAOG\nDSsca2ryXmaVMUmWpNJYbiGpNJ07w2WXwU03FY6ZIEvKmJkz4ZRT4PzzU0ciQZfUAUgqo4ULoUsX\n6NsXhg+H3r1TRyRJLerSBdZeG5ZfPnUkkuUWUu169tkor3j0UWffrxGWW0hSaSy3kNSyLbaATTaB\n++9PHYkkSVXHnmSplrz6KowcCUcfHfsOzqsp9iSr1n3wAfz0p7F4iHXJag97kiUtrndvOP30WDUP\nTJAlVZW+fWHvvWHcuNSRSCbJUnVraoKDD4apU2N/9dXhxhudYFRSVXnvvcKNr+23h9tvTx2RZJIs\nVaeFC+N7QwOssQZccknhsa99Dfr0SROXJLXBSSfBySdHogzeBFM21NOvoTV2qg3XXw9PPQVXXx37\nM2fGlaV//7RxqeysSVat+ugjOOss+MUvoFev1NGoFrjiXuvY6Kt6vfUWfO5zsT1jRsxcMXask4nW\nGZNk1ZJ//QvWXDNuhkkdzYF7Uj349FPYfHOYMCH2+/ePWSxMkCVVsaeegj32iF5kKYtccU/Kolde\ngW7dYumpXr3gzDNjcZB1143Hu3VLG58ktdOpp8Lgwa51pOyy3ELKoosvhjFjHOKtxVhuoWr39tsx\nF/JGG6WORLXOcgupVsyaBbfcUtg/5RQYNAgaG9PFJEkd7OWXYZddYoCelHX2JEtZ8MknsN56cM89\nMShPaoY9yaoFc+ZEv8CAAakjUS2zJ1mqZnfdBaNHx3bv3jGlW/fuaWOSpDLr2dMEWdXBnmQplR//\nGEaOhIceSh2JqoQ9yapmTz8Nzz0XM1qss07qaFTrKt2TvFZ7fpCkJfzoR3DGGYUlpiSphj3ySEzv\nPndu6kik0pSSYQ8FfgYMBAYDmwEXAPuULarysGdE6Z1zDmy3Hey1V+pIVIXsSZak0lSqJ/kMIiH+\nILf/ArB2e36oVLf22QeGDYOPP04diSQlcc890assZV0pSfJywLSi/eUBr/BSW2yzDYwbByuskDoS\nSaq4piY4++zFZ7dcuDBdPNLSlJIk3w2cTKzOtyPwe8AVDqTWmD27cFVweSlJdaqxMYZj7LJL7C9Y\nEAuLTJmSNi6pOaUkyb8jeo4nAz8A7icSZUmluuSSWBzkvvtSRyJJyXTuDN/8JjTkKkWffBJWWw3W\nWCP2P/nEUgxlx7IKmrsAfwd2qUAs5eZAFKWVL7PIXw2kVnLgnmrRvHmFKeKvvBKefRauvTb2n3kG\n3nkHvv71dPGpOlVi4N5CoImY1UJSe2y4YSTI8+enjkSSMqN4DaWePWHffQv7f/0rvPhiYf/WW+NL\nqoQuJTznA+B54BHgndyxJqJOWVJrXHMNXH993GNsqKe1fCRp2Y48cvH9nXZa/Obb8OGxGEne//4v\nfOELcNhhsT97dixgavOqjlBKknxf7quY9+Gk1lqwIIrtbrjBFlySSrDnnovvn346rLlmYX/EiMWT\n5sMPhyOOgAMOqEh4qnH1dKW2xk5SVbMmWVrc++/HUI9u3WJ/k02it3nQoLRxKb2OaC9LefGkZo41\nUX0LitjoK73774c+fWLVPXuT1UomydLSFf/a3nADPPUUXH11snCUUEe0l6WUW2xVtN0POBKY1Z4f\nKtWtjz6Ck06Cq66CXXdNHY0k1ZR838O0aTH84/LL08aj6taWDLsTMAbYuINjKTd7RpQNixZFS96p\nlGnKpQJ7kiWpNJWYAg5gC2Dz3Nd2xIIib7Tnh0p1pbEx1mGdMSP2O3c2QZakMrvzTnjiidRRqJqV\ncqX+RdHXj4CuwEnt/LkHAS8Di4jku9jJwARgHLB90fEhxFR0rwM/KTreFbiWSNxHAKu0MzapY3Xq\nFHMjH3106kgkqW707g0HHQRjxqSORNUq1cihDYBG4CrgNCL5BRgAPA58BVgLuIxCEn0/8EfgH8Dd\nwPeAZ4Fv5L6+RSTYawAnNvMzvX2oynrvPVh55dheuBAmTIAhQ9LGpKpmuYXUOu+/D/37O066HlWq\n3OIUYIXc9s+Ah4Bt2/NDgVeAV5s5vg3wIPAm8BhxcsvlHlsfuB2YAdyVe27+NTcDnwJXFx2X0lmw\nALbdFkaOjP0uXUyQJanMZsyAHXaIJhhgpZVMkNV2pSTJxwAfE/XIXwTOAy4sUzxbA+OL9v9DJL2f\nB6YXHR9HIVHfOrcPMBMYCBQtcilVSGMjzJwZ2127wk9+UkiSJUllMXMmzJkT2/37R/P7t7+ljUm1\noZQp4HKfx/gW0VP7FLBSCa97mObrg88GhrfwmuY+7zV3z6+h6HjDEq/zM6PS+Mtf4He/g0cfja6L\ngw9OHZEk1bxhw2L56hNOiP3bb49kWWqvUpLkh4k64X5Ere8KRD3xsuzWhnieAYonj90AGEXMyzyw\n6PiGuefmX7Mh0evcD5gGzGvuzc8///z/bg8dOpShQ4e2IUSpyNNPw4YbxpJPBxwAf/wjvPEGDB6c\nOjLVgBEjRjBixIjUYUiZMnUqjB4Ne+0V+9//Plx7beHx/FAQqb1K7XVdG5gCzAf6A6sDL3bAz38U\nOB14Lrc/kKhF/kruZ/6SxQfu3UgM3Psbiw/c+ybR030SDtxTOU2eDL16wYABsb/nnnDMMXDggUnD\nUn1w4J7qxdy50KNHbE+dCqedBn/6U+y/+SZsvTVMmgQ9e6aLUdlWqYF7/4+oB54PfA04nkiY22M/\n4C2irvg+4IHc8WnAlcAjwO+IQYN5pwNnEj3LTxAJMsBfgY+IWuY9gIvaGZtUMGtWLN2U9/Ofw403\nFvYPPzxmrpAktcnChfDQQ4X9Dz+EVVeNYR4QPcP33FOoO/7c5+Dkk+HTTysfq+pLKRn2WGATYDBw\nD3ALsVT1AeULqyzsGdGyNTbCBx8UCtouuSTKJ/Jrmz74IDz7LPzwh+liVN2yJ1m1oKkJzjoLLrwQ\nunWLZrdv32hqV1wxnrPOOvDYY7DGGrE/ahR88YsxKE8qRaV6khcSg+SOInp3f0okzFJtmD+/sH3X\nXfDtbxf2d9+9MGMFwB57mCBL0jJ8/HFhGjaIpvOtt2K7oQGGD4fxubmsOnWCo45avKmdMKGQIANs\ntZUJsiqvlCR5MjHl2zeAW4HOQLcyxiRVzksvReub9+UvR8Fbvhdtk03g1lvTxCZJVeKxxxavTNtt\nN/j3vxd/zujRhe2LLoJ+/Qr7v/519B7ndSolO5HKrJRfw8OJpaAPIWp/VwcuKWdQUtnMnh2zUeTr\niIcMidnn33sv9vv1gxdfdPZ5SVqKP/whKs/yLr8cHnmksL/NNtHfkHfVVdEHkbf//lFbLGVZKUny\nJ0Qd8vK5/feJ2SWk6rDvvoUujuWWi+HQz+RmEOzcOYZIO2eQJP3X3LkxgC7vwgsXH7M8fjz885+F\n/a9/PZrXvN/8Bg45pLA/aBD07l2+eKVyKCVJ3h94Grg+t78GMaOElE033xwjQPK6dIG//72w//e/\nw3bbFfYtdJNU5xobo44479xz4dJLC/vLLx/Twud961uw886F/cMOg733Ln+cUiWVck/5H8C+wEhg\ns9yxscDG5QqqTBytXcsWLoxkGGJm+Z494eKLY3/y5Bgy3adPsvCkjuDsFupIxXMRX301PPUUXJ/r\nDnv4YbjzTvj972P/ww8jkS6uI5ayrFKzWzQBxbMRrgzMaM8PlTrUjTfC8ccX9k88MWaazxs82ARZ\nUt0rntL9kUdiLaS8oUMLs01ADLzLJ8gQU7SZIKvelJJhH0ssD/014GJiZbtbgWuX9qIMsmekVsye\nDXffHff3AKZPhy22gIkTY9JNqUbZk6zWmDcPuneP7cmT4Stfgf/8J8Ylz54N660XlWlduxYm9HHM\nsmpFR7T5IME9AAAbjUlEQVSXpby4AdiJWDykE5EgP9meH5qIjX41mzgR1l47WvD582G11eC552I0\nCMQxE2TVOJNkLc3UqdE05pvJgQPjWK9ekQQPGgRPPlmYVWLRohi7LNWiSpRbdAFeBkYAJwHfpToT\nZFWj4ov0175WmHSzWzf4v/9bfBEQE2RJdWb06MWXZt522+hPgGgShwyBl1+O/YaGWKCjeNo1E2Rp\n6ZaVJC8ExlMYsCdVxoknwl/+Utg/6ih47bXC/rHHwrrrVj4uSUrk8cfhnXcK+yedBP/6V2H/q1+N\nGS3znnhi8bWS8qUXkkpTSjf0o8COwGjg7dyxJmCfcgVVJt4+zLL77ov5h/ITa/7hD/Doo3DLLWnj\nkjLEcov68u9/w4ABMfYY4IgjYKed4Dvfif1f/hLWWgv22y9ZiFJmVaomeadmntcEPNaeH5yAjX7W\nzJkTU7VBzF183nmFiTjnzIn7g/n5iSSZJNe4xkaYNaswGc9ZZ8XyzPnZLO++O6rMDjooXYxSteiI\n9rLLUh7rCuwObA/8nUiKG9vzw6T/mjixMNS6S5fYLq4xzifPklQnrr02Sipuuin2DzsM/vGPwuP7\n7psmLqleLa0m+WJgGPAecC7wvYpEpNp1442FUSbrrANrrgkvvBD7DQ0u1ySprowfX5jJEqIJHDu2\nMGZ5441jbSRJaSytG/o5YFtgAdAXuJsovahW3j5Mbe+9YZ99YtAdxL3FTqWsZyMJLLeoBVOmwBpr\nxPa8ebDqqvDSSzF1G0SC7FzFUvuVewq4TkSCDPAhsEJ7fpDq0Ny50frnnXNOXBHyTJAl1ZE5c+BL\nX4ohGBCzTfz737DKKoXnmCBL2bG0P8dFLL4cdU9gTm67iepLmu0ZqbR//QsOPBBGjYLVV08djVT1\n7EmufiNHxtdZZ6WORKptlZrdolbY6Kfw+9/DDjvARhuljkSqeibJ1eeDD+BnP4OLLooxypIqwyS5\ndWz0K+HOO2HaNDjhhNSRSDXHJLn6LFwIe+4J228fs1xKqoxyTwEntd4XvxjLPm24IQwdmjoaSUqq\nSxe4444YpCeputiTrI43ezb07u0IFKmD2ZNcPa68EvbaK2a6lFR55Z7dQirN++/D8cdHcgyw3HIm\nyJLq2pw5UWLxySepI5HUVibJar/582NyzzPOSB2JJGXCqafCk0/GTTVJ1ameuvu8fVhuzoIvlZXl\nFtk3Zw707Jk6CkmWWyi9+fML2ybIkupYU1MsFnLEETBrVupoJLWXSbLabtGimM3i+9+PeY4kqY41\nNMBjj8F221lmIdUCk2S1XefO8M9/wsCBzpIvSUCfPjBsGHTy6ipVvXq6P26NnaSqZk1yNs2bB4cc\nAj/+MXzhC6mjkQTWJCuVWbPgf/4Hpk5NHYkkJde9O+y7L5x4YtQlS6oN9iSr9ebNg//7P3jmGXjg\ngdTRSHXDnuRsa2y0zELKio5oL02S1XaLFkVdsqSKMEnOlkcfhVdfheOOSx2JpCVZbqHKevPNGKiX\nZ4IsqY6tsQb86lfwt7+ljkRSOZgkq3Rvvw3f+hbcfHPqSCQpuXXXjaqzvfdOHYmkcrDcQq0zfXoU\n3a20UupIpLpjuUV68+fDhRfCmWfC8sunjkZSSyy3UGW88kphsZABA0yQJdWtTp1g2jT45jdTRyKp\n3OxJ1rIdcgi88w7cfXfMlC8pCXuSs6GpKarPVl89dSSSWmJPsirj5pvh6KO9tyipbl1zDfz737Hd\n0GCCLNUDk2Q17/334bnnYrtz5xiw5wSgkurU+uvDHnvETTVJ9cGsR80bOxa++lV4+eXUkUhSEu++\nG9PBA+y4Y/QbrLpq2pgkVY41yWrZ8OGwxRaw2mqpI5GENcmVduihMRfyz3+eOhJJrWVNsjrWqFGx\n3HTe3nubIEuqW7/9Lbz3HixYkDoSSSmYJKtg7bXhuuvg3ntTRyJJFdfUBCeeCG+9Ffv9+8P110PX\nrmnjkpSGSXK9a2yEDz+M7f794fHHYc8908YkSQk0NER5xTHHpI5EUhZYk1zv7rwzSiweewx6904d\njaSlsCa5PF58ETbZJLYbG6MnedCgtDFJah9rktV+++8P220H48enjkSSKm76dNh550KVWadOJsiS\ngj3J9erjj2GFFVJHIakV7Ekuj1dfhaefjungJdUGe5LVNu++CxtsEFO8SVId+vDDKK0AWG89E2RJ\nn2WSXI9WWQXuugteey11JJKUxDnnwEEHwSefpI5EUlZZbiFJVcJyi44zbx786Edw+ukwYEDqaCR1\ntI5oL02S68lrr8Ett8App0DfvqmjkdRKJsmSVBprktU63brBpElw7rmpI5GkJB55JAbpSdKy2JNc\nj5qaYtZ8SVXFnuT2u+MOOOMMuPJK+OpXU0cjqVwst2idmm30SzJ7Niy3XOooJLWDSXLHmD8/5kPu\n0iV1JJLKxXILlWbaNFhrLbjootSRSFISCxfGTTSIyjMTZEnLYpJcDwYOhFGjYO21U0ciSUn8/vew\n004wenTqSCRVCz9L14vBg+NLkurQsGHQq5fzIksqnTXJte6662J0yiqrpI5EUjtZkyxJpbEmWUu3\naFHcW9xyS5gzJ3U0klRxr74K995bqEeWpFLZk1wP5syBnj1TRyGpnexJbr1nnoGjjoJjjoHTTksd\njaRKcQq41qmZRl9SfTJJbpuFC6OvYPnlU0ciqVIst1DLTj8dTjwRpk5NHYkkJdWliwmypNYzSa5V\np58OffrArFmpI5Gkihs/HrbaCoYPTx2JpGpluYUkVQnLLUrX2Aj33AOTJ8P3vpc6GkmVZk1y61R9\no1+SBQtg5sxYQERSTTFJlqTSWJOszxo7FjbYAM44I3UkkpTEG29ET7IktUeqJPkg4GVgEbB50fHB\nwBzghdzX74oeGwI8D7wO/KToeFfgWuANYARQ36tmbL55XCG+9a3UkUhSEiecAOuv77hlSe2TKkke\nC+wHPN7MY68Bm+W+Tig6/gvgZ8BWwE7Alrnj+wF9iCT6QeCH5Qm5iqywAmy8ceooJCmJe++Fm2+G\n1VZLHYmkapYqSX4FeLWVr1kfuB2YAdwFbJM7vg1wM/ApcHXR8fpz223w8supo5CkpBoaYJtt4rsk\ntVUWa5LXAkYDVwGb5o59Hphe9JxxwLa57a1z+wAzgYFA9/KHmUHvvAO77gqTJqWORJIq7vXX4ZZb\nYN681JFIqgVdyvjeD9N8ffDZQEszV74NfA74ANgTuAnYhM+OTmwAmoq2G5Z4rFnnn3/+f7eHDh3K\n0KFDW3pqdTr11FhApFu31JFI6gAjRoxgxIgRqcOoGrNmwQ03wNNPw29/mzoaSdUu9c2oR4HTiAF5\nzXke+AZRp/w6sHbu+GnAXOAKolZ5JPBXoB/wEIV65WJOaSSpqjkFXGkWLYLOnVNHISmlWpkCrvgE\nVgLyTdvmQE8iQYaoYz4495z9gGdyx58BDgd6A/8DPF3meLPnxhvhgAPg+ZY+a0hS/TBBltQRUiXJ\n+wFvEXXF9wEP5I7vBIwhapLPBo4res3pwJnAKOAJ4Nnc8b8CHwHjgT2Ai8oce/bsvz/svDNMmZI6\nEklK4tBD4bLL4NNPU0ciqVakLreopKq+fShJllu0bORIuP76qEXu1St1NJJSc1nq1qm6Rr8kb7/t\nZKBSnTBJlqTS1EpNstpqzpyYDPTLX46RKpJUZ+bMcco3SeVhklzNevaMiUEvvtiRKpLq0n33waBB\nMfWbJHUkyy0kqUpYbtG8V1+NHuVNN132cyXVB2uSW6eqGv1levtteOMN2Hpre5GlOmGSLEmlsSa5\nnr32Ghx/PJxwQupIJCmJSZPgo49SRyGpVpkkV6sdd4QxY+CKK1JHIklJ3HADrLEGDB+eOhJJtchy\nC0mqEpZbfNacOdDU5NzIkhZnuUW9evNN+MtfoiZZkupYz54myJLKwyS5Gr33Htx0E/z616kjkaQk\nZsyA8eNh7tzUkUiqVZZbSFKVsNyi4MEH4eSTYYcd4NprU0cjKWucAq51Mt/oS9LSmCRLUmmsSa5H\nU6fCj38Mo0enjkSSJKlmmSRXm6Ym+Phj12CVVLemTYuxyx98kDoSSbXMcgtJqhKWW4SXX4YzzoC+\nfeHWW1NHIymLrElunUw3+pK0LCbJklQaa5Lrzbvvwne/CzffnDoSSZKkmtYldQBqha5dYd11Y/Ce\nJNWpJ56Ilfa23BL69UsdjaRaZbmFJFUJyy3C+efDk0/CT38KW2yROhpJWWRNcutkutGXpGUxSZak\n0liTXE+amuCQQ+C88+I+oyRJksrGJLlaNDXBoYfGdvfuaWORpESmT4ebboLnn08diaRaZ7mFJFUJ\nyy1g0qS4odajB1x9depoJGWVNcmtk9lGX5JKYZIsSaWxJrme7LYbHH00zJyZOhJJkqSaZ5JcLX79\n65gUdIUVUkciSUk0NcFFF8E998CiRamjkVTrTJKrxYYbwgknQBfXf5FUnxYsiO/XXAOdvHpJKjNr\nkqvBJ59A796po5CUmDXJklQaa5Lrwdy5MHgwfPWr3l+UJEmqEJPkrOvRAyZPhjPPhM6dU0cjSUnM\nnw8HHwxXXRW1yZJUbibJ1aB3bxg6NHUUkpTMokXwla/A1KnQUE+FgpKSqaempvpq7BYsgIkTYf31\nvSpIsiZZkkpkTXKtmzQJdt0V9tordSSSJEl1pZ66J6uzZ6SpCaZPh4EDU0ciKbF67kk+4ghYeWU4\n5xzo3z91NJKyzp7ketDQYIIsqe4NGwZ9+sByy6WORFK9sCc5q6ZMgZdegp13hu7dU0cjKQPquSdZ\nklrDnuRa9vbbsf7qd7+bOhJJSsp8XVIK9iRnXWOj669KAuq3J3njjWHIELj2Wlh++dTRSKoGHdFe\ndumYUFQ2JsiS6lhTE9xzDzz7rPXIkirLnuQsevhheO012G8/WGWV1NFIyoh67UmWpNayJrlW9ewJ\nI0dGsixJkqSKsydZkqpEPfYkH344jB0LV1wB22+fOhpJ1aIj2kuTZEmqEvWYJH/0EUycCIMHQ79+\nqaORVC1MklsnM43+Uj39NAwfDrvvDjvumDoaSRlSj0myJLWFNcm1qE8f6NoVXn89dSSSlJR5uqSU\n7EmWpCpRbz3JTz4JX/867LNPzJEsSaWy3KJ1MtHoS1Jb1VuS3NQE06bBxx/DeuuljkZSNbHcotYM\nHw4HHQQPPJA6EklKrqEhpoo3QZaUgivuZcm228LMmbBwYepIJCm5xkYXHZWUjuUWklQl6q3cYocd\n4M034ybbJpukjkZSNbEmuXUy0ehLUlvVW5K8cGEkyauuGguRSlKprEmuJc8+C1/6Evz856kjkaRM\n6NIF1l7bBFlSGvYkZ8X8+fDMM/DBBzHfkSQtoZ56khcsgM6drUmW1Db2JNeSbt2iAM8EWZK4/37o\n3RtOOCF1JJLqlT3JWdDYGN/tMpG0FPXUkwzw6acwaxYMHJg6EknVxp7kWvHcc3EVOPXU1JFIUmb0\n6mWCLCkde5KzYP58eOut+D5kSOpoJGVUvfUkS1Jb2ZNcK7p1g3XWMUGWpJxvfxt69IA//Sl1JJLq\nlT3JklQl6qknef78GK7RtWvMciFJrdER7aXLUmfB1Knw4Yew+urQt2/qaCQpuW7dUkcgqd7ZkyxJ\nVaKeepIlqT2sSZYkSZLKwCRZkiRJWoJJsiRJkrQEk2RJkiRpCamS5EuA8cDzwK+AnkWPnQxMAMYB\n2xcdH5J7/uvAT4qOdwWuBd4ARgCrlCvorBgxYkTqEDqM55JNnotqRS39/3su2eS51K5USfJDwEbA\nlkBv4NDc8QHACcAuwDDgN0Wv+QXwM2ArYKfcawH2A/oQSfSDwA/LHHtytfRL7Llkk+eiWlFL//+e\nSzZ5LrUrVZL8MNCY+/o7kfQCbEMkum8CjxFTdyyXe2x94HZgBnBX7rn519wMfApcXXRckiRJapMs\n1CQfCwzPbW9NlGHk/YdIej8PTC86Pg7Ytug143LbM4GBQPdyBStJkqTaV85J6R+m+frgsykkxecC\nmwAH5vYvAt4Crsrt/4noHX4TuAn4Uu74nsAhwLeAkcAxREJN7vWfB+Yt8XNfA9Zp89lIUnoTifat\n3EYDm1bg50hSuYwBvtieNyjnstS7LePxI4HdifrjvGeAXYv2NwBGAbOIHuK8DXPPzb9mQyJJ7gdM\n47MJMlTmwiJJtaBdFxZJUtvtAbwM9F/i+EDgFWBNYCgxm0Xe/cDBwEpE73F+4N43gDuJAYBnAZeX\nK2hJkiSpnCYQU7a9kPv6XdFjpxClEeOAHYqOb0gkzZOA/ys63hW4jijJGEEdTAEnSZIkSZIkSepg\nnwMeJco7RlCYk7ladSZ634cv64lVoDfwR+BVFp+xpNocC/wLeI5YHKeaXEfU8Y8tOrY8cDdxd+Zv\nFKZhzLrmzmVpCxdlWXPnkncaMX1mvza8bw9iHMdo4Gng+6187yz9rrd0LucDUyjcqdyjhdfvSPxu\nTABOKmegJWjPuWTtGtfe/xfIznWuveeSpWtce8+lGv72AY4i/q5fJtbWaE6W/vaTW4XCIJSViBX7\nlk8XTrudCtwC3JM6kA5wKXAh8QvfhVgUptr0I0qAehNTKt5PDEitFjsAm7F4MnYm8FtiKsXLgdMT\nxNUWzZ3LbsT/SyfgGmImnGrQ3LlAJEQPEr9zbUmSAXrlvncHXqIwqHlZ753F3/Ulz2Vd4DyinVyW\nF4iL5SBiLMxK5QiwFdp6Llm8xrXn/wWydZ1rz7lk7RrX1nOphr/9zwNfAJ4izgtg5RZeW/Lffhbm\nSS63d4lPGwDvE58utmz56Zm2BvBV4A+Ud/q+StkVuBiYCywEPkobTpvMIf4v+hC9lL2AD5JG1DpP\n8Nl4tyaWep9H9GhWywI9zZ1LSwsXZV1z5wLwS+JDTHt8mvu+HHHhzs8GtKz3zuLvekvnsqz2MZ+s\nPE6Mj3mI9L/nbT2XLF7j2noukL3rXHvOJWvXuLaeSzX87c8npge+lughBnivmde16m+/HpLkYp8n\nlsP+d+pA2ugy4Azigl/t1iA+XV9J3Db5QW6/2swhllCfTFysnqR6f7/ytiI+XZP7vnXCWDpS8cJF\n1Whf4rboi+18n07E/KHTiDsFb5X43ln8XV/yXN7MHT+JuA37A5rvVS3+HYf0t8Kh7edSLCvXuPac\nS9auc209lyxe49p6LtXyt7870Zv8LPEha8NmXpfFv/1MWJ6opdk3dSBt9DXgitz2UKr7Yg/RmDcC\nexOfTG8kFoepNisTDcfniSkNHwH2ShlQGwxm8dv6b1JozHsRn7arxWCar+M9F/hLZUNpt8EUzqUX\ncaFdIbc/ic9OodmW9x9HLNL0dAnvneXf9cHEuWwGDKDQ63U1zZcL7QrcVrR/PHFbPAsG07pzycvi\nNW4wrTuXLF/nBtO6c8nyNW4wrTuXavnbf4L4d+5J/Ls/0szzs/y3n0xXokv9e6kDaYeLiR6fScA7\nwCfEL0M1K16CfE8W/8WtFnsRK0PmDaPlwQJZNZjFE8s7iQYHYAuqK7kczGeT5COJno/UvTitNZjC\nuWxM9JhMyn0tIC5aA9r5My4FTizxvbP+u34pccErtinxf7+kPkRdYt5vyc5FH1p3LpDta1xrziXr\n17nW/r9k+RrXmnOplr/9S1j87/htPtvuZ/1vv+IaiD+yX6YOpAPtRLY+YbfVPUQtUCfidkm1DKoq\ntgIxr3c/YgDBPSy+imQ1GEzzA/d6Er061TJwDz57Li0tXFQNBtN8rzi0feDeSkDf3HZ/orxi1RLf\nO2u/6y2dS/58uhAX8nNaeH1+8M5g0g/ca8+5ZO0a197/l7wsXOfaey5Zusa151yq5W9/f+LfuYH4\nd3+ihddn6W8/ue2JWx6jKW3qmWqwE9kY9dte6xG3eUcTnwR7pw2nzY4EHiOWUL+Q6qr1v434tD2P\n6ME5iuqdAi5/LvOJczmapS9clGXN/b8Ue522JckbE9PhjSEGMjZ3+7f4vVcD7it67Eiy87ve0rnc\nSFw0nyUSx5bOZSeip+814OQKxLs07TmXrF3j2vv/kpeF61x7zyVL17j2nsuRZP9vvzPwe+Lv+q9E\n/TFk+29fkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiTVpv4U5gp9B5iS236emCw9S3YilgSW\npGpyLDFn7otE+7r1Up57A3BAbvsaYMgy3vs44Ijc9pF8drEbSVIHOA84NXEMnZfy2PnAaa18v6wl\n+pLqy2pEctwrt9+PpSey1xMrobXFo8AWbXyt1G7VtDKY1BYNwPrAlcAzxDLL+SWKRwAXUVip6vPA\nX4CXKKxpPxgYB1xLrNBzHrEsJ8t4358QKxidAnyNWHUpv+Jbv9z7Hgd8n+jl3p7Fe1wAZue+DyUu\nFncSF6cGoifnYeAftP0CJEmttR4wHfg0tz+TuGv3I+DfxIpsZ7fw2hHA5rnt2bnXvAzcSmGlt/OJ\nzoMDgC2BW4i286vEKmp5uwF3tfNcJKlunUc0tncDn8sdOwH4QW77UeL2X6fcc2cC6xDLML9JJKOD\niSVf9yOS4zspJLL3LOV9bwW65fbza8wDnEkkx/n4inu6r2fxJHlW7vtQYBGwWdH+L3Lx9SaS7G5I\nUvk1AI8Qy73/huhcAFgx970z0Taun9sv7kl+lEKS3Agck9u+hsLSwsXtYvHzIToq8p0RtwJ7te9U\npKXz1q1qXSdgB6LRhmjAJxc9fhvRWD8F7ApMzB1/C9gQ+AT4iEIPxm3AHsDjy3jfW4H5ue2VgUuA\nbYGuRM/0VcTFpqHE88j3dkMk0l8BvpzbXyH33o+X+F6S1FZNRNuzFXAg8CRwFLCAuAO3AdAH2B34\nz1LeZyHRSwyRdO8I3NjM84rbyJuIeuUbiDbv8Daeg1QSk2TVuu5ED/FmLTz+Ye77/KLt/H53Ikle\nUhORFM9Yyvu+XbR9DpHAHgfsQ5Rg5N+n2FwKpRy9iraXfL9OwMXAH1v42ZJUbqNyX+OBQ4na4YOI\ncrXLWPwOWnPmEW0eRILdo4XnFbeT1wPDc6+7g+jgkMrGmmTVujnAJKL3tYHoyd2wle/RB/g6kbR+\nE3gQeHcZ71vc+7E68BpxEfh20fE3iF7mvKeIGS8gbj229CH21tzj+deuR2EQjSSV03rAurntLsA2\nwL+IO1qTifZu33a8f/EdtjeAAUWPvUN0GPyQSJilsjJJVq1rIuqFd6ZQstDctGtNfLZnN+8Vogd4\nNNFLcl/u+NLet/i9LgZ+BTyRe27+sYeIgSkvAP8PuBdYnijHWIXCwL0l3+9JIlH+MzCWGDzoXSFJ\nlbAcUe7wMtEWzSPuav2UGLh3O3B/Ce/TtMR2UzPbNxM1ys9TuLN2KzFmZGmlHJKkChhMJKKSpPSu\nBg5LHYTqgz3J0rK11MMsSaqcUUT5xS3LeqIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkZdv/B/YD\nYwKUiBiKAAAAAElFTkSuQmCC\n",
"text": "<matplotlib.figure.Figure at 0x10e108bd0>",
"output_type": "display_data",
"metadata": {}
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "!open my_first_python_figure.pdf",
"prompt_number": 62,
"outputs": [],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "markdown",
"source": "fig = plt.figure(figsize=(8,4))\nax1 = fig.add_subplot(1,2,1)\nax1.plot(T, -P, 'r')\nax2 = fig.add_subplot(1,2,2)\nax2.plot(S, -P, 'b')\n\nax1.set_title('Temperature')\nax2.set_title('Salinity')\nax2.yaxis.set_ticklabels([])"
},
{
"metadata": {},
"cell_type": "markdown",
"source": "We have\n$ T(z) $\n\nLet's start by making\n$ T_{2D}(z,t) = T(z) f(t) $\n\nwhere\n$ f(t) = \\sin(a t) $"
},
{
"metadata": {},
"cell_type": "code",
"input": "time = np.arange(0,7,1/24.)\nf = np.sin(2*np.pi*time)\nplt.plot(time, f)",
"prompt_number": 74,
"outputs": [
{
"text": "[<matplotlib.lines.Line2D at 0x10f3f1dd0>]",
"output_type": "pyout",
"metadata": {},
"prompt_number": 74
},
{
"png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXtwXNd52H+7ABaPxWIXu3gRACWQkiVKfDhSK8tyLJpW\nYssdSVHkqI2aaZpxmo5dxW6sWpradWdEuWqiTFLXeVQxp1GiOnadju2Z1KlTR3IjyoonlmyLIsGX\nLD5EEQTxXjwXwGIXt38sLgiC+7j37n2cg/1+MxgCu/fe/enou9+e891zzwVBEARBEARBEARBEARB\nEARBEARBEARBEARBEARBEATBZf4MGAUGy2zzO8A54CfALj+kBEEQBPe4G7iN0on+PcDfA0ngnwP/\nxycvQRAEwUUGKJ3oPwV8esPfZz23EQRBENYJ+/AZ7wFObvh7HLjBh88VBEEQ8CfRh9Z+NmL48LmC\nIAgCUO/DZ7wK3Ar87drfnRQuzF7FDTfcYJw9K1UdQRAEm5wFbiy3gR89+leBXwJSwK8Ap4ptdPbs\nWQzDKPuzvLzMjh07ePHFF7n++ut55ZVXKu7j18+TTz5ZcZtLly6RTCZ59dVXSSaTXLp0KXBvq+6G\nYfDKK68wMDDAiy++yI4dO1heXg7c3Y7/l7/8ZT70oQ/x7LPP8pGPfCRwb7v+n/zkJ3nsscd49NFH\nefzxxwP3tuO/urrKBz7wAf70T/+U/fv38/zzzwfubcd/cXGR/v5+XnrpJfr6+njttdcC9zZ/8KkU\n/nVgGMgCF4FfBz6+9mPyDHCewvTKW0ocx6jEs88+a3zkIx8xDMMw/vzP/9y4++67jdXV1Yr7+cGT\nTz5ZcZtHH33UePzxxw3DMIzPfOYzxqOPPuqxlTWsuK+urhp333238fzzzxuGYRj33nuv8eyzz3ps\nZg0r/plMxujr6zNee+01Y3l52dixY4fx8ssvey9nASv+58+fN5LJpDE2NmYMDw8byWTSGBoa8l7O\nAlb8X3jhBeOmm24yVlZWjFdeecUYGBgwlpaWvJezgBX/L37xi8aDDz5oGIZhfPnLXzY+/OEPe2xl\nHTQrhVf8D7rllluMH/zgB4ZhGMbKyooxMDBgHD161Ot2tESlYMlkMkY0GjXGx8cNwzCM8fFxIxqN\nGplMxge78lgJ9KNHjxoDAwNGLpczDMMwfvCDHxi7du3y2MwaVvy/9rWvrXcSDMMwDh06ZDz88MMe\nWlnHiv/nPve59U6CYRjGpz71KePgwYMeWlnHiv8DDzyw3kkwDMP44Ac/aHzzm9/00Mo6Vvx37Nhh\n/PjHPzYMwzCy2azR19dnnD592mMza2Ah0ftRunGFTCbD+fPnueOOOwCor6/nrrvu4o033gjYrMCB\nAwfKvn/y5El27txJR0cHAB0dHezcuZOTJ0+W3c8PKrkDHDlyhLvuuou6ujoA7rjjDt5++20ymYzH\ndpWx6n/33Xev//3+979fm9gBeOONN8TfIyr5z8zMMDY2xm233QZAQ0MDd955pzL+VtAm0Z84cYKb\nb76ZhoaG9df27dvHsWPHArS6QqVgOXbsGPv27bvqtX379jE4WO6GYn+wcqJu9m9oaODmm2/mxIkT\nHppZw4n/TTfdxKVLl1hYWPDQzBpO/HWK/XQ6TTqdZmBgYP01nfwHBwfZs2cP4fCVdKmSvxW0SfSD\ng4PKJkorlPLXJVi2WvvX19eza9cuJb6oKjE1NcXc3BzXX3/9+ms33ngjIyMjzM/PB2hmjePHj7N3\n795rEqWusQN6+YNGif7YsWPs3bv3qtf27t2rTaIU/+AYHx8nk8mwffv2q17Xxd/sUYZCV25HMb+o\njh8/HqCZNYrFzg033MDo6Cizs7MBWVlH59g30SrRb/5W7e/vZ2lpibGxsYCsrGEYBkePHtW2VzA6\nOsry8jL9/f1Xva7LiGRwcJC9e/delShBH/9isQ96+9fV1XHrrbdq80W12X/nzp1MTEwwMzMTkJU9\ntEj0hmEUbexQKKRFshwdHWV1dZXe3t6rXu/t7SWXyzE6OhqQmTXMoWupRFm48K8uWzFRgvj7gWEY\n6x2FjYTDYfbs2aN87jHRItGPjIwQCoXo6em55j0dEn2pRGl+Uake7MVqlAA9PT2EQiFGRkYCsLJO\nKX8zdlT/oqrkrzKrq6vrNfrN6OB/4cIF4vE4yWTymvd08DfRItGbNbLNiRL0qJUVq/GZ6OwfCoW0\n9u/u7qauro7h4eEArKxhJso9e/Zc857Z9ip/Ub399tu0t7eTSCSueU/n2AE9/E20SfTFejSgx/Cv\nkr/qvQKd2z+fz3Py5MmiiRLU9z937hwdHR3E4/Fr3uvq6qKxsZGhoaEAzKxRLnZ0+KLSOfY3on2i\n37NnDydPniSXy/lsZR2dgyWXy3Hq1CltE+WZM2fo7u6mra2t6Puq+5eLHdDbv7Ozk2g0yjvvvOOz\nlXUqfVENDg6yurrqs5V9tEj0J06cKJloWltb6enp4dy5axbEVILV1VVOnTrF7t27i76/e/duTp06\npWywnDt3jp6eHlpbW4u+v2fPHqVnTpSLHRB/r9nK/slkklgsxsWLF322so8Wif7ChQtX3VW3mYGB\nAWV7BaOjo7S1tRGNRou+H41GicViyk4R1bntQfyDRmd/wzC09t+I8ok+k8mwsLBAZ2dnyW22b9+u\n7LfqxYsXr7lRZzM6+3d2drKwsKDEmjfFqOSvctuD+AfJ9PQ0dXV1Jct+oLb/RpRP9BcvXqS/v7/o\njBsTlRt7qyf6UChEf3+/tv79/f1cunRJ2dKZzolyZWWF8fFxtm3bVnIblf11P3c3okWir9TYOica\nUNt/aGjIUrCrOvOjkn9zczNtbW2Mj4/7aGUNwzDWOzqlUDnRDA8P09XVRX196QfZqexfqe1B7XN3\nI8on+qGhoYqNrXqi0dlf92DX2d9cB6bY1EqTzs5O5ubmWFxc9EvLMlY6Cf39/crGvu6dnI0on+h1\nHz6Jf3DkcjnGxsauWXpiM6r6m21frmwZDofp6+tTMtlYjZ2hoSEl59LrHPubkUTvMbr769yruXz5\nMp2dnVc9w6AYqvpbiR1QN36s+Le0tBCNRpUsnel+7m5kSyT6RCJBLpdTcslTnWv0s7Oz5PP5orev\nb0TVYN8KibJS2QnE3yus+Hd1dTEzM8PS0pJPVs5QPtFb6VGGQiEle2XmypSVSgd9fX2MjIyQz+d9\nMrOGldIBqH2i6pzorcQ+qDsiqQX/cDhMb28vly5d8snKGconep17BSMjI6RSKSKRSNntIpEIqVRK\nuVUgrba9qiOSreBvJVGKv/sYhmHri0o1/80onejn5ubIZrNFlwjdjIqNbTXQQU1/q4GeTCbJZrPM\nzc35YGUd3XuUuo9IdPafnJykqamp5B3tG1HRfzNKJ3qrpQNQs1dgJ9Hr7K9q6cyqf19fH5cvX1ay\ndKbraHZ5eZmpqSm6u7srbquiv9W2BzXP3c1okeitoGqwiH9wWPVvbGykvb1dqSd9mTdL6dojvnTp\nEtu2baOurq7itir66x77m1E60VsdeoOaw2/xDxad/dPpNJFIhFgsVnHbVCrF0tIS8/PzPphZQ+e2\nB/39N6N0orczfFLxW7WW/FUbvmazWSYmJoo+frIYqvnb6VGa6w2plGzs+Pf19TE8PKzUekPSo/cR\nJzVule6w07lGb6d0AOoF+/DwMD09PZZKB6Cev50vWdDbv6mpiXg8rlTpTOdOTjG2TKKPx+OEw2Gm\np6c9trKOzonSyhKtG1HN307bg/i7TS35q75UNyie6IeHh+nr67O8fV9fnzI3LuTz+YpLtG6kt7eX\nsbExZWZ+6Nz2IP5BU0v+oVBI+ZumlE70Y2NjlqZnmXR3dyuzZsbk5CSJRKLsEq0bqa+vJx6PMzU1\n5bGZNXRuexD/oBF/tVA20efzedLpNKlUyvI+XV1dytT5xsbG6OrqsrWPSv6jo6O2/FOpFFNTU8qM\nSOz6q9T24MxfpcdR2o1/lfyXlpZYXFwsuzz0ZlTyL4ayid5ujxjUamyniV5X//r6ehKJBJOTkx5a\nWUfnRAPiHyTj4+N0dXVZulHTRCX/Yiib6O32aECtxtbdv9a+qFKpFOl0WpkRiZNEqcqIxGmPWBV/\np+euKv7FUDbR11qiAfF3ExmRBIfprmuPWPfYL4bSid7OxRAoXBBRpbHFP1h09l9cXGR5edlWj7ij\no4Pp6WlyuZyHZtbQue1Bf/9iKJ3odf5WFf9g0dnfSY24rq6O9vZ2JUYkOrc96O9fDEn0HiH+wbG4\nuEg2m7W0TsxGVPF30vagt38qlVJqRKJr7JdCEr1HiH9wOOkRgzr+tZjoZUTiLVsq0be1tbG8vMzi\n4qJHVtbROVikRxws4h8suo9IirGlEn0oFKKrq0uJO9R0TvTSIw4W8Q8W3UckxdhSiR7UmM+ayWRY\nWVmx3SNWZUTiZB4xqNH2UNv+uiZKEH8v2ZKJPujGdtojNkckQfvr3PYg/kGjs79hGIyNjdHZ2Wl7\nXxX8S6FkonfaIwY1GttpoIPe/rFYjJWVlcCXa9U50YD4B8nMzAzNzc00NTXZ3lcF/1Iomeid9ohB\njcau1USvyjUSnRMN6O2ve49Y93O3FEomet0bW/z19JcRSfXo3iPWPfZLIYneA8RfT38VRiSGYTA+\nPi494oDQ3b8Ukug9QPzF3ynT09OOe8QqjEh0bnvQ378UbiT6/cAp4C3gU0XePwDMAEfWfv5jpQPq\n3tjiH5x/NT1iCN6/mrZXYUSic+yA/v6lcCPR/wHwceDngd8EOops8zJw29rP05UOODZmf/U4ExVW\nkRP/YHvE0WiUxsZGR/sH7V9N24Pe/rFYjFwuF/iIRNfYL0e1id5cR/X7wAXgBeDOItvZmj7j9IYR\nKDyRfXx8HMMwHO3vBtX4B90rqOUeMWwN/yBv+qom9lW4j6Tac1eFG+6KUW2ivwM4veHvk8B7N21j\nAO8D3gC+CNxQ6aDVBHtjYyMtLS2k02lH+7tBtcO/IIMlnU4TjUaJRCKO9g/av5oTFbaGv+5fVLr6\nt7a2ks/nWVhYcNmqeqw/kNU5rwPbgRXg1yiUeu4vtuHBgwcBOHbsGBcuXHD8gZ2dnYyNjZFMJh0f\nwymGYTAxMUFHR7EKVmU2jkic3EdQLdX05uFK2weFG/5Hjhxx0cgeW6H99+/f73h/Ffydtn8oFFo/\nf6PRqMtmVzh8+DCHDx+2tU+1if5HwO9t+Hs38N1N28xt+P054D8DjcDy5oOZif65557j3nvvdSyV\nSqUCW1xodnaWxsZGxzVic9/Z2VlbTxhyi4mJCVKplOP9g2x72Br+N9xQcdBbklQqxcTEhItG9tgK\n7e+G/8DAgHtSmzhw4AAHDhxY//upp56quE+1pZuZtX/3AwPAh4BXN23TzZUa/QPAMYok+Y1MTk5q\nGyzVuoPe/kGfqOIv/k4xDIN0Ol1VJSDo9i+FG7NuPg0cAr4HPAtMUJiF8/G19x8GBinU6B8GPlPu\nYIuLi+Tz+aqGPqlUiqmpKcf7V8PU1JQriV5X/2g0Sj6fD2wFzmr9g2x70N/fjUQflL95V6/T61MQ\nfPuXwo0a/cvALZteO7Th9/+29mMJM9CrqU/r3CMGvf1DodB6sPf19bloZo3JyUluvfVWx/sH3SPT\nuUcM7vgPDg66aGQd3c/dcih3Z6zujS3+evsnEgnm5uYCe1KQzok+k8lgGAYtLS2Oj6Fz7IAkesvo\n3tjir7d/OBwmkUgENj1X50RvustoXBJ9RXRvbPEXf6esrKywsLBQ1WyrZDLJ1NRUIDcM6tz2oL9/\nOSTRu4z4i79TpqamaG9vJxx2flpGIhGam5uZnZ110cwaOrc96O9fDkn0LiP+wfmvrq4yPT1d9Y1y\nQfm70fYQ7BeVrrED+vuXQxK9y4h/cP4zMzNEo1Hq66ubTCaJ3hlu+Le0tLC6uhrI9FydY78SWzrR\nS53SHoZhaO0vibKAzv7m9Fxd/SXRW8StXkEoFApkuVOdgyWTyRAOh2lubq7qODqfqCD+ThF/iMfj\nLCwsBDY9txRbMtGD3sGiszuIv1PEv4DO/ub0XNXujlUy0bux6mQymfQ9WLLZLIuLi7S1tVV1nHg8\nzuLiItls1iUza+jc9iD+JuLvDN39y6Fkote1V2BOj6t2eeFQKER7e7vvvQKd2x7E30T8naG7fzmU\nSvRuTY+DYBrbrUABvf2TySTT09Osrq66YGUd3U9U8S8QhH82m2Vpaanq0ThIoq/I9PQ0ra2tVU+P\nA70TJejtX19fT2trK9PT0y5YWUfnRAPibxJU7CeTSVce9iOJvgKSKK8g/vZxO9H4PT1X50SZz+eZ\nmZmhvb296mPpHDsgib4iuje2+F9BZ//m5mbq6up8f/anzol+enqaWCwmo3Ek0VdE98YW/yuIvz0M\nw3DlFnyQtneC7v6VUCrRuxXoEMyTXsT/CuJvj/n5eRoaGmhqaqr6WG1tbSwtLfk6PdftRKnrjDNQ\n8ylTSiV63b9Vxf8K4m8PN91DodD6csV+oXPbg/7+lZBE7yLifwW//ZeXl8lms7S2trpyPJ0TPejt\n397e7vv0XJ1j3wqS6F1E/K8QVKJxY3oc6J0oQW//+vp6YrGYr9NzdY59K2zZRN/e3s7s7Cz5fN6V\n41lB52DJ5/PMzs6SSCRcOZ7OiQbE3y7if4WgpueWY8sm+rq6Otra2nx99qfOiT6dThOPx6mrq3Pl\neDqfqCD+dhH/KzQ1NVFfX+/79NxyKJXop6amXFn+wMTPYDGnx7nlb16596tXoHPbg/hvRvztobt/\nJZRL9G72CpLJpG89+oWFBSKRCI2Nja4cLxKJEIlEfOsV6Nz2IP6bEX976O5fCeUSvRu3UJv4uQKk\n2+6gt7/fq2+K/9WIv3XM0biu/lZQKtFnMhlXVo8z8XMusdtDP9Dbv62tjUwmw8rKimvHLIfb/n7P\nQxf/q/HTf2Fhgfr6elduVjPxu/0roVSid2Mt9434OXxKp9OeJHpd/c019f2aIue2v99Db/G/Gp1j\nH6R0UxYpfVyN+FvHi6F3Op329WK4rqWDXC7HwsKCq6NxnWMHpHRTFp2/Vb0q3Uivxhpu+/t9MdyL\nHrFfiWZ6epp4PE447F468dPfq9iXRF8CnRtb92CRawzX4pe/FxcDpZNjHd39raBUotd5+KT78E/8\nr8Uvfy8uBsZiMd8uhuvc9qC/vxWUSvQ6f6vq3iuQ0s21+OXvhbt5MVxXfxmNu8uWT/QSLNbQufSx\nsrLi+tRc8M/fi7YH/76ovPD382K47p00KyiV6HUePuk+/NPZ37wY6ObUXPDP34u2B739zbvM5+fn\nXT1uMXSOfasoleilV3A1fvUKDMMgnU67Huw6lz5ga/j7kWzE/1qkdFMGtxu7qamJhoYGX6bIeZEo\n/bwY2NDQ4No6PSY69yjBX38vEqVfNXrxv5ZYLMbi4qJvd4ZXQqlELyfr1WyFGrH4V8arLyrxt4YX\n/n5eDLeCUole1+G3VxcD29rafOkVSOmjOFvBX9fSB4i/m9REove6saenp0kkEq5fDAyFQsTjcc/X\ni9kKpQ/d/aX0cS3i7x5KJXpdT1avAgX8+aLyMtCnprx/eIqUbooj/pXxYp0eE+nRlyASibh+TD+G\n314neq/9vRq6NjY20tjY6PnFcCndFEdKH5XxYp0eE0n0PuJHY3sx48bErxGJ+F+LlG4q48U6PSZ+\n+HvZSZPSjY9I6aYy4l8cvx6eonPpw4t1ekz8ih2vOjnSo/cRKd1UxquhN+jt79fDU3QufXgdO+Lv\nDjWR6KV0Ux4p3ZTGa/+VlRXPLgb6cWe47qUP3f2tsuUTvZRuKiP+pfHa38uLgX6sF6N76UN3f6ts\n+UQvpZvK6Fy68WqdHhOv/b1se/A+2ehe+tDd3ypuJPr9wCngLeBTJbb5HeAc8BNglwufaRkp3VRG\n59KHV+v0mHjt72UnAbwvH3jp78d6MVK6sc4fAB8Hfh74TaBj0/vvAe4G/jHw+2s/viGlm8ro7O91\novTD36svWdDb34/1YqR0Y4342r/fBy4ALwB3btrmTuCbwBTwdeCWKj/TFn5MkdO5dLOyssLi4qIn\nFwNha5Q+dPfXtXQDevv7uUx6JapN9HcApzf8fRJ476Zt3rP2usk4cEOVn2uZcDhMIpHwdIqczqUb\nrx7aYeJH6cPLHrGUbsoj/qXx8+Eplaj34TNCaz8bKfoVd/DgwfXfDxw4wIEDB1wRME/Wzs5OV463\nES/vDISr14vxIhlvhdKH1/4/+clPPDu+lG7Ks1X8Y7GYa8c8fPgwhw8ftrVPtYn+R8Dvbfh7N/Dd\nTdu8CtwK/O3a350ULsxew8ZE7yZeDr/n5+fX13Txgo3rxbS2trp+fCl9lMcP/+uvv96z4+tc+oCt\n4+/m/+PNneCnnnqq4j7Vlm5m1v7dDwwAH6KQ2DfyKvBLQAr4FQozdHzFy2Dxsmxj4mX5YCuUPnT3\nl9JHabz093o0DurMvHGjdPNp4BDQAPwhMEFhFg5rr78G/D3wYwoXZP+FC59pCy8TvdeBDlf8r7vu\nOteP7bX/xovhDQ0Nrh9fSk/lEf/SmFNzvVinx0SVmTduJPqXuXYmzaFNf3927ScQvPxW9SvRe+Xv\n9dB143oxXlwjSafT7Nixw/XjmvhRutG5xu2H/9mzZz05th+jcVUS/Za/MxakdFMOr4euoLe/1w9P\n0bn04eU6PSa6d9JUKd1Ioq8SP0s3XiD+5fF6ipzOpQ/zEZperNNjonPsgPTofUX3XoHOpRsQ/1J4\nvU4P6D+aFX93qIlEr3uw6Fz6APEvhdfr9IC368XoXvrQ3d8OkuirRPfhn/hXxit/P9y9XC9G57YH\n/f3tUBOJXvdegZQ+iuP1Oj0mXvn7MRoE75KNX6NZr9aLkdLNFsPrXoGupQPQ29/rdXpMvPL3o5MA\nevubF8Pn5uZcP7ZfpRtJ9D7hda9A1x6xHxcDwdsesR+JUvyLI/6V8fo+DKvURKJvbGykoaGBhYUF\n14+tc51vYWFhvcfkJTrXuMFbf51LN+JfmVgsxtLSEtls1tPPqURNJHrQO1i8HHr7caKKf3GkdGMN\nnf1DoRCJRCLwXn1NJXq3G9uvi4FtbW2eTJGTobc1xL844m8NFco3NZPovegVpNNpEomE5xcDQ6EQ\n8Xjc9YenbIUesfhXRvyLo7u/HWom0XtRuvFr6Ap6+3u1XsxWqNGLf2W88M/lcp6v02OiwhTLmkr0\nbg+f/Br6gd7+Gx+e4ia6D73F3xpe+PuxTo+JlG58xIvhk19DPxD/Yug+9NbZ34+HdpjoHDsgpRtf\n0bn0AeJfDL/8Nz48xU10Ln34sU6Pic6xA1K68RWdSx8g/sXwy3/jw1PcROfSh8SOdaR04yMy/LsW\n8beO2/7mQztisZhrxyyFFxfDdW570N/fLjWT6GX4dy3ibx23/f28GBiJRGhqanJ1vRid2x7097dL\nTSV6Gf5djc7+fq3TY+K2v59tD3r7S+xXT80kehn+XYvO/n5eDAT3/f1se9Db33x4ipvrxegc+06o\nmUQvw79r0dnfT3cQ/8346e/Fw1N0jn0n1Eyi92K9GJ2Hf36t02Oic+kAxH8z4m8dc8aWF8ukW6Vm\nEr0X68XoPPzz66EdJjqXDkD8NyP+1vHi4SmHDh2y1WmtmUQPhV7B5OSkK8cK4mKgm1PkJicnfe+R\nudX2IP52Ef+r0dk/l8vxyU9+krq6Osv71FSiT6VSrjX2zMwMTU1Nvl0MNKfIzc7OunK8yclJUqmU\nK8eygpttD+JvF/G/Gp39p6ambE/NrblE79bwb2pqytdAAXf9gwh0t4feup6oEIy/7u3vlv/q6qrv\n1xiCPndrLtG7dbL6nShBb/9oNEoul2NpacmV4+ncIwPxt4ub/rOzs0SjURoaGlw5nhWCPncl0TtE\nEr09QqGQ1v6SKK9GZ/9aPHcl0TukFoOlWnT2TyQSzM/Pk8vlXDmezokyk8kA0NLS4srxrKBz7EDw\n/pLoHVKLwVItOvuHw2ESiYTW10h0bXsQ/404mTEkid4hWyFYxN8ebvmvrKyQyWSIx+MuWFnDvOHI\njem5Orc91Ka/JHqH6B4sQc0a0r393ejRmzfr+HWzGhSm5zY3NzMzM1P1sXSP/Vr0l0TvkFoMlmpx\ny391dZXp6Wlfp8eBe/5BtD3o7S+xfwVJ9BUIurGrRfwLzMzMEI1Gqa+vd8HKOjonStDbv6WlBcMw\n1i8EV4POsQ+S6CtiNnat1ykNw9DaXxKlM3T2d3N6rs6xD5LoK9Lc3Ew4HK75XkEmkyEcDtPc3OyC\nlXV0PlFB/E3E3z7xeJyFhQVXVs+VRG8BnYNFZ3cQfxPxd4bO/uFw2JUVOJ2Oxmsu0buxilw2m/V1\nLXcTc039ap+042Qerhu4tYKf+DtDd383E72u/vPz8zQ0NNDU1GRrv5pL9G40thkofk6PgytP2qm2\nVyA9MmeIfwHxd4ZbuceJuyR6BwQVKKC3fzKZZHp6mtXV1aqOo/OJCuLvFDf8l5eXyWazxGIxl6ys\nI4neR3ROlKC3f319Pa2trVU/5UvnRAPi7xSdR+Mgid5XdE6UIP4QfKKpdnpu0P7VkM/nmZ2d9fUx\ngiY6xw644+/0jnZJ9A7QPVjE3xnNzc3U1dWxsLBQ1XF0TvTpdJq2tjZbj7FzC51jB6RH7ysSLOJf\nDdX6G4YRyDpDIG0Ptetfk4m+2lkrQZ2o4I5/0MGue/tXc7LOz88TiUR8e9bwRtra2lheXmZ5ednx\nMYJue91jJ6hztyYTvfQKxN8p1foH6R4KhUgmk1UlG53bHmrXv5pEHwP+N/AO8FdAa4nt3gaOAUeA\n16r4PFeQYNHb35we19paKty8RedED3r7t7e3MzMzQz6fd3wMnWMfgkn0/4ZCkn8XMAR8osR2BnAA\nuA14TxWf5wq1nihBb3/TPYjpcaB3ogS9/evq6mhra6tqeq7OsQ/BJPr3AM8By8CfAXeW2TaYs7II\niUSC2dnZmu0V5HI55ubmSCQSLlpZR+dEA+Iv/s5xY3puEIn+DuD02u+nKd1bN4C/o1De+YUqPs8V\n6urqiMeBz48PAAARAklEQVTjpNNpx8dQIVickk6nicfjgUyPA71PVBB/8XdOY2MjkUiE+fl5x8dw\n6l/pyQ0vAj1FXv881nvpPwtcBm4B/ppCnX6k2IYHDx5c//3AgQMcOHDA4kfYo7Ozk4mJCTo6Omzv\nu7q6qsSV+9XVVcJh+9/TTv+73cJse6eo4P/jH//Y8f4q+Ove/lvB38kSDNlslkwmw5EjR/j+979v\na99Kif5DZd77NQrJ+8javz8qsd3ltX9PAd8GHgD+e7ENNyZ6L+nq6mJ0dJRdu3bZ3ndqaopYLEYk\nEvHArDKRSITW1lbS6bSjL5uxsTG6u7s9MLOG2fZOGR0dDdx/bGzM8f6jo6Ps3bvXRSN7dHV18c47\n7zjeX4X21z1+RkdH2bFjh+19x8fH6ejo4J577uGee+5Zf/2pp56quG81pZtXgV8Hmtf+/WGRbVoo\nzM4B6ATuBb5bxWe6QjUn69jYGF1dXS4b2UNn/46ODiYmJhwvbBa0f7WJXvyroxr/bDbL/Px8YNen\nILhzt5pE/yfAdcCbQB/w5bXXe4HvrP3eA7wCvAH8JfBfgItVfKYr6JwoQW//SCRCLBZzfI0kaP9a\nTpSgt//4+DidnZ2OSp5uEdS5W83TleeAB4u8Pgzct/b7OeBnqvgMT9A5UUJ1/qOjo8r4Oy09qTIi\ncZIwgvbfCj3iH/2oVJW4PEG3PejZo9eWWk704l8d5ojE6d2lQftLj7g2Y18SvU1qOVjcolb9VegR\nV3ONROe2h9r2l0Rvk1oOFreoVX8VesSRSIS2tjZHIxKd2x5q218SvU1qOVjcopoe8cLCQqA9YnDu\nr0Lbg97+HR0dTE5OyojEJpLobRL0PHSA7u7umvRXoUcMzv1VSDSgt39DQ4OMSBxQk4k+kUgwPz9P\nNpu1va/OwbK8vEwmk5EecZWIf7Do7B/UiKQmE304HKazs5Px8XHb+6oQLNXWiINa+dFE5xMVxD9o\ndPZ3OiIxDIOxsTE6OzsdfW5NJnpwFiyq9IgTiQQLCwu2RyQqBDrofaKC+AdNLfrPz89TV1dHNBp1\n9JmS6G2gSo84FAo5GpHoHOgg/m5Ri/7V9ojdxIl/tW1f04ne7uJIKtxVauLEX5UT1RyR2H12qSrt\n7zRRquTvZGEwnf3n5uaq6hG7SRC5p6YTvd/fqm6is7+MSIKlmh6xrv6quIP06H3FyRSzWg8WN9HZ\nP5FIkMlkbI9IVJjaCs7afm5ujoaGBlpaWjyyso7Tc1eFtodg/Gs20eucaED8g8TJiKTWa8RuIv72\nkURvg1oPFjepNX+VesSJRILFxUWWlpYs76Nz24P4S6K3Qa0Hi5vY9VepRgz2/VVydzIiUcm/1mIf\nJNE7xmlj13Kdz03s+s/NzRGJRGhubvbQyjp2/VVKNKC3fzwelxGJTWo20Xd2djI2NoZhGJb30TlY\nVKoRg949YhD/IAmFQnR1dcmIxAY1m+hbWlpoaGhgbm7O8j46B4tqPWKdEw2If9Do7B/EiKRmEz1A\nT08Pw8PDlrZdXV1VKli6u7sZHR21vDjS5cuX6enp8djKOnbaHsTfbcQ/OEKhED09PVy+fNnS9tls\nlunpaUeP3jSp6US/fft2hoaGLG07OjpKIpGgqanJYytrNDY2kkgkLPdqLl68yPbt2z22so6dtgfx\nd5ta8jcMQ2v/4eFhenp6qK93/ojvmk70/f39XLx40dK2Fy9epL+/32Mje+js39HRwfz8PJlMxtL2\nqvnbaXsQf7ex4z89PU04HKatrc1jK+v4fe7WdKLfvn27rcZWqUcAevuHQiH6+/st92pU8+/v7+fS\npUuWS2eq+duJnZWVFcbHx+nt7fXYyjo6xz747y+J3mJjDw0N1XywuI3O/s3NzcRiMUszP7ZC6aCr\nq6uq0oHb2PFXre3Bnr8buafmE73OwWKnR6ziF5Vdf5VKB2A9fmZnZ4HCbAtV6OzsZHZ2lsXFxYrb\nqhg70kmzR00nep1r3GA/WHT1z+VyjI6OKlU6AOvxY7Z90M8x2Eg4HKavr8/SF5WKsWN2EqzcB6Oq\nv9TofULn0gHUjv/ly5fp7OykoaHBByvrWPVXse1Bb/+Wlhai0ail0pmK/tKj95H29nZyudz60Loc\nOg//ZmdnyefzgT8CcTM6JxrYGv5We/Ti7y7d3d3MzMxYumlKavRVEgqFLJ2s+XyekZER+vr6fDKz\nRm9vLyMjI+Tz+bLbmYGuUukA7Jc+VGMrJHrxD4ZwOExvby+XLl0qu93y8jLT09NVr1FV04kerPUK\nLl++TEdHh3Klg0gkQiqVYmRkpOx2Ko5GwHqPTPy9wWqi1NnfMAwlL+SDNf+hoSF6e3sJh6tL1TWf\n6K30KlUNFLAWLKr2iJPJJMvLy8zPz5fdTsUeGeg/IrE660ln/8nJSZqammhtbfXJyjpW/N3KPTWf\n6K0mShUTDVhLNqr6mzdN6fpF1dfXx+XLly2XzlTDSuwvLy8zNTWlzDoxG9H93PXTXxK9BEug6Ozf\n2NhIe3s7o6OjJbdR8WYpEyttf+nSJbZt20ZdXZ1PVtbROXZAEr2vSLAEy1b3n5qaIhKJEIvFfLSy\nRiqVYnFxkYWFhZLb6Nz2IP4mNZ/o/ayTeYGVC4I6+2ezWSYnJ9m2bZuPVtapFD8qt72V9YZU9u/r\n62N4eLjsekMq+0uN3kfMb9Vyd9ip3CuoVONWuXQAlf2Hh4fp7u5WsnQAlXtlKrc96O3f1NREPB4v\nu1S3yv7So/eReDxOOBwmnU6X3Eb1YHnnnXdKvj89PU1dXZ1SS7RupJK/ym0P4h80Ovt3dnaysLBQ\ndqluSfQucvPNN3P69Omi783MzDAzM6PczVImfX19zM7OMjMzU/T9U6dOcfPNN/tsZZ1ybQ/i7zXi\nHxyhUIh3vetdJf3Hx8fJ5/OuPOdZEj2wb98+BgcHi753/Phx9uzZU/UNC15RV1fH7t27OX78eNH3\nBwcH2bt3r89W1tmxYwfpdJrp6emi7w8ODrJv3z6frayzd+/ekrED6vuXi33DMDh27Ji2/qOjo+Tz\neeUWw9tIOX8zdty4o13N7OUze/fu5dixY0XfO3bsmNKJEir7q3yihsNhdu/eXTLYVW//66+/npmZ\nGaampq55z0yUKvuXix3zjmsV59CbWDl3VVv6YyN+5R5J9BS+VXVNlLB1/XXoUYbD4ZK9+uHhYerq\n6qpep8RLrrvuOubn55mYmLjmPbPtVU6UWzX2wV1/SfRc+VYtNvNG52DRoUcJpf2HhoZobGykq6sr\nACvrlOqV6ZAoQ6FQyfKBDrHf39/P0tJS0Zk3OvhLoveRzs5OotHoNVfvDcNQvsYNV+rEm7+o3nnn\nHaLRKB0dHQGZWaNUsOtwooL4B4nuX1S9vb3rD9bZSD6f59SpU+zZs8eVz5FEv0ax4feFCxdoa2sj\nmUwGZGWNVCpFLBbjwoULV72u+oVAk71793L8+PFrbnzR4UsWSl9Q08W/VOlJZ/9cLsebb77J7t27\nA7KyRigUKup/5swZenp6XFuMTRL9GsV6NTr0CEx09m9vbyeRSPD2229f9bou/qW+qHTxLxY7Kysr\nWiRKKO7/05/+lL6+PqLRaEBW1vHj3JVEv4bOiRJK++vQIwO92z8ej5NKpTh37tz6a9lslrfeeotb\nb701QDNr7NmzhxMnTly1Cuebb77JddddR0tLS4Bm1tA5dkASva9IsATLZv/l5WXOnj3LLbfcEqCV\ndTb7nz59moGBAZqbmwO0skZbWxvd3d2cPXt2/TWdYmfPnj2cOnXqqi8qnfxVT/T/FDgB5IHby2y3\nHzgFvAV8qorP85Rdu3Zx/vx5FhcX1187evSoVsFy9OjR9b8XFxc5f/48u3btCtDKOpv9T548yc6d\nO2lqagrQyjqb/XWKHdDbv7W1lW3btvHTn/50/TWd/Hfv3s3p06fJZrNAYRKI2/7VJPpB4CHg+xW2\n+wPg48DPA78JKDkFpLGxkZ/7uZ/jueeeA+Cll14il8tZTpSHDx/20K4yt9xyC/l8npdeegmA5557\njnvuuYfGxsaK+wbtDnDPPfdw+PDh9UWeDh06xP33329pXxX8H3jgAZ5//nmWl5cxDEM7//vvv59D\nhw4BkMlk+Iu/+Avuu+8+S/uq5n/u3Dl++MMfsn//fkv7Bu0fjUZ53/vex1e+8hUAXnjhBZqamrjh\nhhsC9drMS5Tu0ceBIxv+/kOgVPQYQfP6668bPT09xvz8vHHXXXcZX/3qVy3v++STT3onZpGvfvWr\nxl133WXMz88bPT09xuuvv25pPxXcDcMwPvvZzxq/8Ru/Ybz11ltGKpUyJiYmLO2niv/9999vfOlL\nXzK+853vGLfeequRy+Us7aeCfzabNW688Ubje9/7nvG7v/u7xsMPP2x5XxX8R0ZGjGQyabz99tvG\nr/7qrxoHDx60vK8K/v/wD/9g9Pf3G5lMxrj99tuNb3zjG5b3BUovvbtGva2Ubp87gI0r9pwE3gt8\nx+PPdcRtt93G/v37eeihh5ibm+ORRx4JWskWjzzyCM888wwPPfQQ+/fv57bbbgtayRZPPPEEN910\nE2fOnOG3fuu3SKVSQSvZ4umnn+bee++lu7ubp59+WtmllYvR0NDAF77wBZ544gmGhoZ4+eWXg1ay\nRXd3N5/4xCf42Mc+xokTJ3jrrbeCVrLFe9/7Xm6//XYefPBBAD760Y+6evxKif5FoNhCF/8B+GtX\nTRThC1/4Art37+Zb3/qWVicqFBY4e/rpp/noRz/KyZMng9axTTKZ5LHHHuNLX/oS3/72t4PWsc27\n3/1uPvjBD3LmzBl+8Rd/MWgd2/zyL/8yzzzzDPfdd582F8E38vjjj7Nz504+//nPK7ssdzmefvpp\n3v3ud/M3f/M3ri+i6Ma92S8BnwFeL/JeHDgMmF3LPwK+S/Ee/RlAraKUIAiC+pwFbvT6Q14C/lGZ\n949QmHkzQKGMo+TFWEEQBOFaHgIuAovACPB/117v5eoe+wcoTK88A/xbPwUFQRAEQRAEQfABLW6o\nKsGfAaMU7inQke0USm8nKFxL+ZVAbezTBLwKvAH8EHgsWB1H1FEob+o6ueFt4BiF/4bXglWxTRT4\nH8BPuTIjUBduptDm5s8MildMzBr+9ehXw7+bwoVmXRN9D/Aza793AOeAWHA6jjAXY2kEjuPDRSmX\n+XfA1wD9phkVOA+ovbxraX4f+E8UOgz1FCaP6EgYuEyh46Ykdm6oUpUB9E30m/lr4INBSzgkRaGj\noGywF6Ef+B6FNte1R3+eQtvryBuA+osRVebDwN+X2yDoRc1K3VAl+M+NwG70G36HgaMUSmh/TGGC\ngC78V+AJYLXShgpjAH8H/BXwCwG72KGfQk/+TyiU//792t868gjwP8ttEHSiF9QgBvwvCjXuhYBd\n7LIKvJvCF9WjXLlnQ3XuB8YojGjVfdZgZX6WQvt/DvgixW+wVJEm4CbgW8ABCp2cfxakkEMiwAPA\nN4IWKcfm0s0fIaUbv2kAXgA+HbSIC/w+8ImgJSzy2xRGH+cp1FcXgK8EalQ9XwT+ddASNji14fd/\nAnw9KJEqeJDCTajKo/sNVQPom+hDFJLLF4MWcUgHkFj7PUVh9se24HQc8wH0rNG3cOXifSeF2Vs6\nXSP5NnAnhcrGHwP/KlgdR/wl8GtBS1hB5xuqvg4MA8sUemcfC1bHNu+nUPp4gyvTtD4SqJE99lJY\neuMo8LfAvwxWxzEfQM9ZNzsoxM4bwP8Dfj1YHdvcRGFa7hsURoPqP3fwaqLABPrNlBMEQRAEQRAE\nQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQXDO/wcThnaNftqD1QAAAABJRU5ErkJggg==\n",
"text": "<matplotlib.figure.Figure at 0x10d57c850>",
"output_type": "display_data",
"metadata": {}
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "T_hourly = T[:,np.newaxis] * f[np.newaxis,:]\nprint T_hourly.shape",
"prompt_number": 82,
"outputs": [
{
"output_type": "stream",
"text": "(100, 168)\n",
"stream": "stdout"
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "print T[np.newaxis, np.newaxis, np.newaxis,:].shape\nprint f[:,np.newaxis].shape",
"prompt_number": 79,
"outputs": [
{
"output_type": "stream",
"text": "(1, 1, 1, 100)\n(168, 1)\n",
"stream": "stdout"
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "plt.pcolormesh(time, -P, T_hourly)",
"prompt_number": 83,
"outputs": [
{
"text": "<matplotlib.collections.QuadMesh at 0x10fc73850>",
"output_type": "pyout",
"metadata": {},
"prompt_number": 83
},
{
"png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEACAYAAABRQBpkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH71JREFUeJzt3X2wXGVhx/Hvze7NvTfvTdKAGSNhiCLgS2R4yYiStGp9\naW0nM1XQcbS1VisOqK1Vi9ZJWrVlFFtRcXSqM634wjCKIyOiKE1QKigDQSSABAlgo0l5DyTkZje3\nfzzPc+45z57X3bu759n8PjM7555znvPs717CPvuc55zngIiIiIiIiIiIiIiIiIiIiIiIiIiISC2d\nDdwJ3AOcP+QsIiIyJLdiGoTjgLuAlcONIyJydJg37AAxS+3yeuB+4AfAmcOLIyJy9KhTY3A6pjfg\n7AQ2DCmLiMhRpU6NgYiIDElz2AFifg58IrZ+CnBNvMCyE5bNPHbvYwMNJSIyAu4F1uUVGBtQkLJu\nBd4NPIBpCF4CPBTbP/OPMxdyHp8D4NgvPG62/odZ3HKzWd5gCz9il8vt8iy7PPU0+8PbzOJ37zDD\nFZfyLgAumTYXMj3+r8eaAp+x5R+6hVLvsPJUs7TXQy394O8AeP7Hz+HsLRs5n0sq5x929nfNv5Tr\nt2znii23Vc4eq135j9L8vfzbPxryf4YLAPjc9Hlzmh9g5iMwNjYGBZ/3deoZALwH+AIwDlxCsiEQ\nEZE+qVtjsB04adghRESONhpAHqDjNh3X9bE3FBfpu17y14HyD0/I2SH8/GWoMRig4zat7bkOd25y\nGOYi/zAp//CEnB3Cz1+GGgMREVFjECx7FYO7qsFdYXXBfHP5gbsKIrqqwF1lEF3X4K5CcFcl2BNR\n7qoFexVDdFWDiIw0NQY1V5dL60RktKkxqLlHiouIiPRMjYGIiKgxEBERNQYiIoIaAxERQY1BMOpw\nB7KIjC41BoGJ7kD27jMQEemFGoOaK3ufgYhIL9QY1JzuMxCRQVBjICIiagxERESNgYiIoMZARERQ\nY1B7y4uLiIj0rG7PQC6l7cduJhaFS/9wv75ms50sMO4fWLCMyqfXVyX/E5gGIcTsaUvlV/5kgUq1\nK3/F/FWoZ1Bz6hmIyCCoMRARkTBPE0Vc+oZZuB7SVMYy6kE1vOOL6o/KlXyHjuMK6s/JfxDTOwgx\ne0rtyq/8yf3Kn19/v/KnUM+g5nSaSEQGIcieQds1r14rm9Ua+9v9Vj2qz22e106tv/Q7ePVH9XWR\nfz+wCvgFcCaw+wZYuzGM7GnbQ/rbK7/yh54fbzw6j3oGNbfKLs+0y7Ubh5VERILTKC7iqDEQEZEw\nTxNFXPpJs3AdpgV2udhbj7pqk97xWVxPzJUv+w6ufNE1vyXyHwRWALcDZwSWPaV25Vf+5Psrf7p+\n50+hnkHNrbDLM4aaQkRGnRoDEREJ8zRRNALvX+vrbg1v2XWSxcb9kfamV1+0u508sONa32b+undc\ng4wrEkrkd9NRhJg9UbvyK7/yDzx/FeoZ1JzuMxCRQVBjICIiYZ4m6uC6aHY53kpsnu1QdduFavo/\nFHTZuqw/Lf8TmEHkELMnald+v8b0deVPr135/RrT13v4RFfPoOZWFBcREemZGgMREQnzNFE0Aj9B\nYrlkoVkuftosD9vd7vYMt98/LnNE393AEd34scSrseMdUo/LvCKhRP7DmEHkELMnald+5Vf+geev\nQj2DmtPVRCIyCEH2DCL+oIxtZLNm/O6YCbDot88sl/kOvdWfkt89z+AXD8MLVgHbgZcBVwBvgHVX\n/YZdr31mLbMnag/wb5+oXfkzalb+eL7a5W8VvE+MegY153oGL3DTl77MLt9gFqkNgYgIVPq6r8ZA\nREQCP03keF0jd+Wtv+z6Vu2O8pnv0Fv9Kfn3Y3oHd+6Dk1b3UHdkcNkTtQf4t0/UrvwZNSt/fBlc\n/hj1DGrOnSY6afVQY4jIiFNjICIiYZ4mamXMHOjfkd3RM8so3+q41reVXj6S+Q6p9Te8If0q+d2s\npSFmT9Su/Mqv/APPX4V6BjWn+wxEZBDUGIiISN9OE20B3gb8n12/EPie/fkC4HzM/dRvB35it58E\nfBVYBnwd+FDhu/hdInuLt3sq6EGS69Gt4JldMI8r508U2Mq48SOrfJYS+d0zkEPMHl9XfrtU/uT7\nK3+6fudP0a+ewQzwKeBF9uUaglXAeZhbp94JXBI75mLgIuB0YCNwWp+yBUWzlorIIPTzNNFYyrYz\ngWuABzATK4wBi+y+E4HLgYeBb9myqdo0adM0rV/Ky/04ZV9uPat8VJ/VtFtoYF6u7Lh9RT+4d7Dr\nbrMrb4+P6usi/wH789577A832OWVZvnc6+6nTZNzuByAN/MVmrQ54Y13mPd/iy3/6sFnD/1vr/zK\nH3r+KvrZGJwP3Ah8gNmp9c4A7oyVuRvzob8O2BfbvhPY0MdswXBzFR5zkv1ho12+zizu+MMTALic\ncwD4Gm8E4N7LTzEFvmrL/7CvMUWkjio0CM3iIpmuBY5N2f4h4PPAP2E+yz4BvAP4JOm9hZmUbWnl\nANi+5Xoe4hEAXr8ENq2vFlpEZOTdsQ12bgNgy525JSO9NAavKFHmceBzwKWYxuAm4OWx/c8Ffo6Z\ndeGY2PaTMb2KDhu3nM05/BaAU6571Gx0v4VdTtm5vA8+nVz3y5XWcZwbvDmYXJ+j+uP5DwLLJ+GJ\n+2DJszGniTZ2VlG27kFmj6+H+LePryu/26D8efXXJv8pm8wL2HIObN26tfCt+nWa6Bl22QTeCFxt\n138GvBJ4FrAJOIJpCADuAs4FVgKbMQ3HUW+5/ce05Nl2Q5WGQESkpF56BnkuAtYD08D1mNNGAHvt\nz9fZfe+IHfM+4DLgX4BvADf3KZuIiHj61Ri8OWffp+3LtxM4tdK7uPTeo+TGvQdNuHW/XOFv767Z\ndV09d9x+t2MqWXDCK+9NKNihRP6DT9tH5gWYPb6u/Hap/Mn3V/50/c6fQncg11z07FQRkT5SYyAi\nIn07TdRXbXfxbMZzRd0I/uF2cr1jxL3h1RdtbqeXj7perot2OLnu3wre9OrrIv/htu0dBJg9vq78\nyq/8g89fhXoGNafTRCIyCGoMREQkzNNEEa/L1TGy/3T69tIPgPC7XJN+AW/IvuoNJiXyH3wappYS\nZPa07crvKH8ij/Kn19+v/CnUM6i5qaXDTiAiRwM1BiIiEuZpomgEPqsrZZdTh9K3+8cVjui73e54\nN43ezFRyfdIrX3RFQpn8h4ClgWZP2a78yq/8g8tfhXoGdafTRCIyAEH2DDpk/RZZc3lX/a2r3tpd\ntXxe/icxj/+5B3g2Zvq+s/qYZS6zVymfRfnzKX8+5S9NPYO6c8+Bc7OWVmkIRERKUmMgIiKBnybK\nuMW7YxAla3vVa339+loF9VatPy3n08DCnPcoW/cwsudtV/78epU/f7vy59erAeQRpOkoRGQA1BiI\niEiYp4la/lC931Vy19z61/r6Xa2M+hpRH8w7zi3dxIH7vfWMLppfX6X87j6DELPH15U/mVf5k3mU\nP/X9es1fhXoGdaf7DERkANQYiIhImKeJIv7zRBd627PWm972LP4t3u6af3dcy1tf5JXvmGnQUyZ/\nyy5DzJ62rvyG8ifzKH9Sv/OnUM+g7nQ1kYgMQJA9g7aL7beyfiuMt+6Xa3r1RZvtZFGulXWDNO64\nxV79i739rnw0p5U/2VUX+fcAxwO3A6cBPwJeCafv+iU3rlvPa7iaq3kNm/k2V/Fa1r/4RnbctAH+\nHPgusAn4KbAeuNdmdoNQi4HfACf0KXtauZD+9sqv/IHm9+LnUs+g7tw/puPt8jS7fKVZ3LhuPQBX\n8xoAruK1AKYhANMQgGkIwDQEkGwIwDQEIjJasuZISqHGQEREwjxNFPEHS/xrfVsF+4taTTcD4GTG\nul9/VvksZfK3MINDvwXWBJY9b7/y5+9X/vz9yp+/v4vZS9UzqDt3lcCaoaYQkRGnxkBERMI8TdTx\n6Dm/y5Y1c2DG/sqPnsuaIbDbR+fl5XOzloaYvcR+5Vd+5e9f/irUM6g73WcgIgOgxkBEREbkNJHr\nIpW98cPrchV21dyNHO64RSQt8vZ7MwkWdjXL5A85e3y/8iu/8g8sfxXqGdSdThOJyACoMRARkTBP\nEzkztus15s/74c/Y53flJpLHZ5qcscuxZD1Z9XcsZ3Krr5Q/5Ozx/cqfXr/y59ev/Pn15+YfK3gz\nQz2DuvP/44uI9IEaAxERCfM0kRuBb7vZZN1v4UbWs0b03X43kl84ou+WzeTxWSP6Xv3u+KwrEirl\nDzl7Sv3Kr/zK3//8yY351DOoO11NJCIDEGTPwOlonf1bsf1H0/m3ghf99n7rnHULeNYt4s3ktwpf\nqfwt+z57MJPVhZQ9vh7i3z6+rvzJpfInqq93fvUMRoP7j65ZS0Wkj9QYiIhI2KeJIv6DIqquF/H/\nSkX1Vf2r5tXnZi3NKltkmNnLrBdR/nzKn0/5S1PPoO40gCwiA6DGQEREwj5N1HDPAW1nLAv2R8dn\naTWS9fj1Hc54v2iZ3ycslf9xzDXEIWbP2a/8Ge+n/Onvp/zJenrMn0Y9g7rzbzIREekDNQYiItJT\nY/A64A5MR+VUb98FwD3ATuAlse0nAbcAvwY+Fts+DnwJuB/YBhzbVaIG+aP1RfuLNMk/sVa0v0ha\nvidz9lUxjOxV9hdR/nzKn0/5C/XSGNwObAau97avAs4DXga8E7gktu9i4CLgdGAjcJrdvhlYimks\nrgE+3EOu0aLTRCIyAL20JXdlbD8T84H+gH2NYT7SngROBC635b5ly95sl5cBB4AvAt/Pe+OWP1mU\nf+v3RFQwue7td8e3vCa74Q50t3RPNN0Ow90V3PLW3f7o/dxkV8nRokr5W5jLS/cBq4E7gfXQvBkO\nbah59kR9yfUg/vbKr/yB568ykNyPMYMzMB9Zzt2YD/t1mI80ZyewIXbMTvvzI8AxzP5aRzd3n8Fq\nu1xvFoc2pBUWEYkpmGMpUbRg/7Wkn7+/ELgq45i0x+qkPTZoLLZ9zDsu89E827dcz33cbyrdABvP\nziopInKU+p/t8FNzBn/L4nIngIpKvaKLGDcBL4+tPxf4ObAf843fOdmWdcecjOlFLAf2AofSKt+4\n5WxeaocpXnzof2kBE80jZqf/CDq/q+Z12VqN/I7RPHsx8JFxe+CU3eG6Zoe9dbd/PHl8Fvf+ufnd\naaIQs6dtV37lV/7+5z/rLHjpWQBsOWYhW7duzX0/mLvTRPFv8j8DXgk8C9gEHME0BGDGGc4FVmIG\njeONwZswH3tvB26co1zh03QUIjIAvTQGm4EHMef9vwt8z27fC3weuA64FHh37Jj3Ae/H9BR+jBk8\nBrgSc6/tncCrgI/2kEtERCrq5WqiK+0rzafty7eTznsSwHR63lr2jadtn+vgxAIAFi61F+OvsAXc\nCSbXhXLfrt3+pSSOn/bGqieYBmDB4oMAPLnMVrDSFjiYUb/bv4zE8a6+nvKHnD2+X/mVX/kHlj9Z\nKJ/uQK47nSYSkQFQYyAiImHOWtq2d1gccl2shbarZrtgPGWXrgfmulRuv/227Y5vd9z4Ya7NnZg0\nfb4n3bdz2wWLpojwR/jdflveHd8gea1vV/lDzh7fr/zKr/wDy1+FegZ1N1lcRESkV2oMREQkzNNE\nbj6PaeabDa5LttBb+vN5uO22vDs+a36Q+fPslQSuS7bIW7rD/P123R2fNb9JpfwhZ49vV37lV/6B\n5a9CPYO602kiERmAIHsGbRv7kG1dZ2yrO+ZaXzdY4w/i2P0z0SDO/ER9TtMO4sx3Fw0vslMoLbI3\nWrvBmklvGbXeM4njmx2DUF3kfwozOfg+mDk+sOwQ9t9e+ZU/0PxVqGdQd+4/9iqzmDl+aElEZISp\nMRARkVBPE7lBHNMXm7bfnif8QRz/wRJ2uys/XXStr7sVfdIuF9kKXZfM1W9nCoy22/Lu+KxrlSvl\nt6eJgswe2678yq/8g8tfhXoGdef+Ma0aagoRGXFqDEREJMzTRL5DE2ZkfqJpu0b+AzO9LpsrX9Z8\ne2v3dMNW5F/u6T2HdH7FW8FL5Q85Oyi/8qdS/nz9zh+nnkHd+f+4RET6QI2BiIiEfZrIH4mPVv3f\nquntzzre419JEI3cu/omvfXxZPGO4z2V8oecPb4/63iP8it/Yl35k/X1mD+NegZ1F3RzLSKhGInG\noN1o0G40zAdn/OV426PyJTWabRrNdun6o/Jzkb9lf37CLJfsmabdaLCW3QCcyN0AnMxOAJ7P7Ynt\nJyy/l0azzdS6R009x9r6Jr36HzPL6d8sodFss/uJtQDczYkA7ORkAG7n+YntI/23V37lH/H8cSPR\nGIw096G93CweXWOmJdzNWqD4w9p9qB/c/XumgodsfU979dtnqE6tfRSAtUt2A8WNjYiMBjUGIiIS\n5hlpN/ji5gKPBmP8wZqM9czjo+JtuzRzi0fdLldfwdKVj47PuKW9VP4W5vLSx4EVgWVPWVd+5Vf+\nweWvQj2DunP3GawYagoRGXFqDEREJMzTRJn8rlM7Y/tc1Z+1nKv62/YVm45izuoeRPZ+1q/8+fUr\nf379yt9BPYO603QUIjIAagxERCTs00Tu+aEtb0Q++q1a3nq02Y3k5//67nmkjaY3Mp91xYBbteX9\n56f6SuVvkZipMKjs8fVos/In6lV+/41d0OR6tFn5E/V2mT+NegZ1509ZKyLSB2oMREQkzNNE/g0b\nUZfNDrY2XdfJe/CD2+/K+zeAEBVP3nDSdDd+TNou27j3Z3MzBtr9zejGj/QbQLrJH3L2+H7lV37l\nH1z+KtQzqLvyc1qJiHQtyJ6BL2ql7W/TdK2yNxmb2180l7ivMc/dEu5aae/PFs0t3k6WL6lM/uZT\ncGgprDzwMHsXrGIND/Iga1jHveziBE5gF/eyjhP5FXfznFplj+8P8W8f36/8yh8Xev449Qzqzv7H\nPrTULPcuWAXAg6wBYBcnAHAv6wASDYGISFlqDEREJOzTRG1vMKfVMG3bRPOIKeDdqu32+8dlmR1E\nMst5DTNIc6TpRouS9bv9/nE95bf3GUw8BU8tmRdW9tgyyL+98iv/iOZPo55B3dnTRE8t0X8qEekf\nfcKIiEjYp4l87ab7dabNopm1vzvN8Xa89o763f5upea3zygOMnvq/u4ofz7lz6f8xdQzqLuRaq5F\npK7UGIiISJjfO/1buv2R+Rm7Ouatzx6ffku50/RG5DtG5pszJN4hWif1OH8GwV7yh5xd+ZVf+Qeb\nvwr1DGrO/8ckItIPagxERCTM00RZ2g1vnhDbU4rmBWn09jW74Sp0y1byjaL9XUrLP9Y2Mx6GmD2+\nrvzKn0f58/U7P6hnUHstPQNZRAZgJHoGHY+es7LOt2eVz+LPaR7xBm8Ky2fIy99omW8Xi584yP4l\nU6zgYfayimewh9+yurDuYWavUj6L8udT/nzKX14vPYPXAXcAbeDU2Pa1wEHgVvu6NLbvJOAW4NfA\nx2Lbx4EvAfcD24Bje8g1Ulw3c/+SKQD2YmYtLdMQiIiU1UtjcDuwGbg+Zd8u4EX2dV5s+8XARcDp\nwEbgNLt9M7AU01hcA3y4h1wiIlJRL6eJ7urimBOBy+3P3wLOBG62y8uAA8AXge93E8h/0ISdyK/r\nB0v4OgdxGon1ngehUvI3WjA9GWb2+LryK38e5c/X7/zQvwHk44EdwBeAF9pt64B9sTI7gQ325zPs\nOsAjwDGAhk4xDYGISL8V9QyuJf38/YXAVRnH7AHWAI8Crwa+AryA2ZvynDEgfjvdmLcv1fYt13Mb\njwGwadMR1m9amv8biIgcZR7ftoMntu0AYAvbSx1T1Bi8oosc08xOrvc9zEDxOuAezDd+52TgJvvz\nTXb9bmA5sBc4lFb5xi1ns5bdAKzhAVp03tLttDN+O1e+aGTfjcz7t6RHMrpms7eU54/su/fPy++u\nJoq2BZQ9dbvy26DKH8/TkVP5E3k6g+bnX77peSzf9DwAtvAKtm7dmvt+MHenieLf5FdC9JueCkxh\nBpTBjDOca8tsJtkYvAlYCLwduHGOcgUv6x+ViMhc6qUx2Aw8iDnv/11MLwDMVUK3YcYMLgTeETvm\nfcD7gZ8DP8YMHgNcCTwO3Am8CvhoD7lERKSiXr53Xmlfvm/aV5qdJO9JcA4Db+0hCzDb9XLPG4Uj\nifWqN3z4Gk3TdYueR2q3R88fbXZ/wwfk5w85e3x/t5Q/n/LnU/5imo6i5mb/cYmI9I8+aUREJMy5\niXq9gaOovm4eDJHHr69K/mb7SG7voM7Zy1D+fMqfT/nnjnoGNafTRCIyCEH2DJzOR9DZ9ab7tVqJ\n9azyWfxH0DXttb3N8Xas9tl1tz/rkXm95F/QPsj+xmKW8RgPsyKo7HnllV/5lX/w+dPoa2fNuX9M\n+xuLAXiYFcOMIyIjSo2BiIioMai7Rqv364dFRIqoMai52XOQIiL9o8ZARETUGNSdThOJyCCoMag5\nnSYSkUFQYyAiImHfdJal3TA3drhTLG59rrjnjbYONxLrcyWev9FqMT0xd08AHWT2+PpcUf58yp9P\n+bOpZ1Bzc9kQiIhkGYnGoE0j8Yq2N5uJc+5Z5YpER8wzL6c53o5uBwei/a78XORvtE09CzhAmwbL\neIw2DY5hLwBreDCxnH0kqFlfzR4atFk1bx+NeW0WL9kPwMTUNM3xNu2Web8DTy6gMa/NYyyjQZu9\n9gmlD7ImsdzN2sT6HlbTpsE+VtGmwX7MndLTExOl8hcZ5t8+9H87yq/8VYxEYzDKXDfTfci66SjK\nfli7cu64/U+Yelwj4LqZrpFYwcMApRsbV84dtxhTj2sEivKLSD2oMRARETUGdee+Ybtv3CIi/aDG\noOb80ywiIv2gxkBERMK+zyBrVD7a3ihZLkPWqLx/bW/Wtb5Fo/q95A85e972ovdX/pK5lD99u/Jn\nUs+g5qpchiYi0i01BiIiEvZpIl/Rt+hev2UXdb26vdnDScvXoF35RpU0w8heZX8R5c+n/PmUv5h6\nBjWn00QiMghqDEREZDROE7W8b89u3XWdsvaX1SD5gJlG085IGE3p0MotXyQvf4M2h5ifWbbIMLPn\n7S9L+fMpfz7lL089g5qLNwQiIv0SZGNQdkC123JlZ/5rNNul5hP366uSq2mPm+IAACvthHCr7ARx\nq9lDmwar2QOYieQatKOJ5IaZPfS/vfLn5FL+SrnKlpvr/FUE2RgcTVy38iALAHjIzvq5z5u1dA+r\nE+tuKSJShhoDEREZjQFkJ/RrfdPyNWnTosEUB3iyh8nqdJ11PuXPp/z5Qs8P6hnUnjtN1EtDICJS\nRI2BiIiM1mkip21/LXclTnuOf82mHcVvt5qJ9bkSz9+kzSEm5qzuQWaPr88V5c+n/PmUP5t6BjU3\nlw2BiEgWNQYiIhL2aSI3Qp/VFcu69duVL/uAiWbGSL1/K7jjypd9QEZe/gatxP6Qsqcfp/yg/Mo/\n3Pxp1DOoubk+5ygikkaNgYiIjNbXzqIZAavOGOgrmhGweH9+1y0tnztNNOzsRer+ty+i/PmUP1/o\n+UE9g9rTaSIRGQQ1BjU3Fy2+iEiRsWEHqGhmZmZm2BlERIIyNjYGBZ/36hmIiEhPjcEngDuBW4B/\nB6Zi+y4A7gF2Ai+JbT/Jlv818LHY9nHgS8D9wDbg2B5yiYhIRb00Bj8ATgFOAxYCb7TbVwHnAS8D\n3glcEjvmYuAi4HRgoz0WYDOwFNNYXAN8uIdctbVt27ZhR+iJ8g9XyPlDzg7h5y+jl8bgWuCIfX0f\n8+EOcCbmA/0BYDvmPNUiu+9E4HLgYeBbtqw75jLgAPDF2PaREvo/KOUfrpDzh5wdws9fxlyNGfw1\ncJX9+QzM6SPnbsyH+zpgX2z7TmBD7Jid9udHgGNAM7SJiAxK0UXs15J+/v5CZj/8PwLsB66w62kj\n1mmXAI3Fto95x4V2lZOIyFHtL4AbgMnYttcCn46t74DoMV2/jm3/O+Bd9ueLMeMGAMuBmzPebxem\nAdFLL7300qv8axd99CrgDmCFt/0Y4C7gWcAmzNVDztXAucBK4CfMDiC/HvgmZiD6g8Bn+xVaRETm\n1j2YS0Fvta9LY/vejWmJdgIvjW0/GdM43Af8S2z7OPBlzKDzNnRpqYiIiIiIZDkbc5XSPcD5Q85S\n1ZeBvcDtww7SpTXAf2NOC25j9p6SEEwCN2HGrm4E3jvcOF1rYHrgVxUVrKHdwC8w+X823ChdWQj8\nJ/ArkldBhuBEZs/e3Ao8jrkpOGi3YhqE4zBjEiuHG6eSlwIvItzG4Fhgvf15JeZCgMXZxWtngV1O\nAL/EXOYcmr8Fvgp8Z9hBunAf5sKQUH0S+GfMF4sm5gbZEM0Dfov5chespZjGwLkE+OMhZenWWsJt\nDHxXAX8w7BBdWIH5IhHa/wzPBH6I+ZuH2DO4j84LTUKyg+R0O6H6I8yFO6lCmajudMz/xE5oXbVR\nsg4zDUlI3f15wG2YU3WfBR4cbpzK/g34e8zd/iGaAa4Dvg386ZCzVPVMTI/g85jTjR8geSl9SM4F\nvpa1M5TGQOphMWY6kfcCTw05SxVHgBdiGrLzMKfsQvEnmDv3byXcmzHPwvz9/wH4FGFdLTgJPAdz\n6fsmzBeh1w8zUJfmY+4Bu6KoYN35p4k+g04TDdo4ZnLC9ww7SI8+CfzNsENU8HFMT+Y+zPnep4D/\nGmqi3nwKM31NSOLT67wa+PqwgvTgzzBzxo0EN4C8lvAGkCHsxmAM8wH0qWEH6cJKYJn9eQXmqpZn\nDC9OTzYS3pjBAmYvNvh9zBVpoY3ZfAczv9o8zGnGvxpunK58A3jLsEPMlY2YFnoX4V0a9XVgD3AI\n8y3vL4cbp7KXYE617GD2ErVXDTVRec/H3Oh4G2Z23TcPN05PNhLe1UTHY/7d7AB+BLx1uHG68hzM\nZck7MD3LhcONU9lC4CHCugJQRERERERERERERERERERERERERERERERERESG6f8BMyCDfkjA46cA\nAAAASUVORK5CYII=\n",
"text": "<matplotlib.figure.Figure at 0x10fbf08d0>",
"output_type": "display_data",
"metadata": {}
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "plt.contourf(time, -P, T_hourly, 30, cmap='RdBu_r')",
"prompt_number": 84,
"outputs": [
{
"text": "<matplotlib.contour.QuadContourSet instance at 0x10fcf0560>",
"output_type": "pyout",
"metadata": {},
"prompt_number": 84
},
{
"png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEACAYAAABVtcpZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnX+QXld53z+SVl5ptZLlXSHvSjIYMCbYNGBiyxpjkJlA\nC5M2M/4jGZrJ0CmdQkMHcDsEEkpDSCCFGpOEpGbITDrTNp0MfwQyIQkEKMU4Q/GPsWzAsrGJjY1t\nSSa7Fpa8spAs9Y/73vXdq/vj3HvPueece7+fGY207767+r73nvN8n+c5594LQgghhBBCCCGEEEII\nIYQQQgghhBBCCCGEEEI45fXAfcCDwLs9axFCCNEzB0iM4EXA/cAOv3KEEGLYrPctIMP5k7+/CTwC\nfAW42p8cIYQYPiGZwFUk2X/KQWCfJy1CCDEKQjIBIYQQPTPlW0CGO4AbM19fDnw5+4aXvOiFZx96\n5NFeRQkhxAC4B3h10TfW9SykjgPAe4FHSQzgWuAfM98/e+rOv+b00mGO3fs9njm8zJG7HuXpx55m\neekEj584zRPPni78xbs2JX63e/MUF7/qQrYuzjKzOMcLXv0ypi+9gnVzi5ze8RJ+fGqKh4+e5NDx\nkxz40VEee2qFBx56iuNHn+XY8lFWlh5n5R+fWPO7Z3bsSv6e383Wue0sXLydXXObufql8+zcMs0r\nd86ye+tGPvnh3+C3//2/4tSDBzrpn5vfzO6rdq3q3zC/yMaXXbGq/+mfnuF7Tx4v1Q+s+Qym+m/8\n6Ef4yDt+uVI/UPgZyvRvWZhj6+WvXNX/7PppHj92ao3+J5ZPcPiHR431z27fxKUvuYA9F8xwxUXb\nV/VvOnOSj33oA3zwF/by3NIhfnz3g6wcWubxO55orH/bnm1c+JoXrtF/ZuYCVmYXVvU/+cxJbvuH\npVr96Weo0r/tvPW8YOPp1vrTz1Cmf2p+gbN7LlvVv7RyinuOPL2q//jRZzn00OFW+hdnp3nx9ulV\n/b/1tl/k5AMHVvUfO3ScH95zpLH+rYuzvOCKS4z1183hrP7Z7ZvY+9J5ds9t5lUXblvV/9GPfJgP\n/8t/yskHDrByeIkfH/gBxw4dN57DRfpnFuaZvvSKVf3HTj7Hw0dPcs+Rp3l8+QS3/8NSZ/2vf+kO\nKIn3IVUCADcAnwU2Ap9mrQEIIYSwTGgmcAvwCt8ihBBiLGhhuEf2XxP3ZqfXv+5a3xI6s3/fz/mW\n0Anp90vsc7gImUCP7H9t3ANo/wBM4Lp9V/qW0Anp90vsc7gImYAQQowYmYAQwjtz85t9SxgtMgEh\nhBgxMgEhhBgxMgEhhHeWl074ljBaZAJCCDFiZAJCCDFiZAJCCDFiZAJCCDFiZAJCCDFiZAJCCDFi\nZAJCCDFiZAJCCDFiZAJCCDFiZAJCCDFiZAJCeCZ9RrIQPpAJtKBq0s5u39Tpd6cPNBewe063Fw6N\nmfndTn7v3Pxmdm/W2PfBqEzA5SBzNTmGzszCvPXf2dWIY2Pbnm2177GRXGyd2174+pArmZ1bpn1L\ncM7gTKBusLt8eEXZJBkyWxdnfUuIgtSYXCYLY8ukZxbnat+z54KZ+t8zYBMzYXAmMGTSSW6S+WUx\nyYzT4BR6Fh1zxeUySRj6k7n6bpPuGlErUiZQwPzMRmu/a3HWbjkZSiXTpo3TJVOtM6ciczBdU0hN\ntYk+VUBx03f2b9vEsvq7fhaZQEdiKyXzwdKmftMg2rSSKcL2ce87k87rz56XOsObml+wrmfd3GKj\n99s4/lsWits5XQPmtvP8hrXYNneMwgS6npTspEwnq60glM0oy4Koi0HVp3ll9XcJtkWVSv5z2Ghn\nlR1vFz13F+fB5nip66nHlgSFRLqmsWG+mQHbZlAmkE5S00lQlon4xtYkzrZDXPb685m9r0zIVc89\ntswuT6o/a2K221mxrtXEbGIzO3aV6m+ypjEoE+ibqgFksiuhb/JB0uYEGPrCZJas6ZWtjZisBRUd\n/9AX5rOUjR/bn6HIxGywpq9u2cSyiUPXJML1InX0JlCX0djK4ma3b3KWaVb1yE30u+gRx4DLLK7s\nuPe5MF+3sF1VyQ6lehkStkysyLDKTMzkOofoTaCM0AdRPoPMB5fQ9deR6h/K52iL74owr39ufrOV\nhfkyiqoAm7vtUrq0s2xm/flrFWxWK31dqBadCRTtYti2Z1thhjb0ABTqmkbK0I9/6LjSXxZEbVfK\nuzZNWfkMTdspttpZtvS7JjoTaItuGSFE+JjMU5eVzBgZjQm0Ycw3MEvbGLYvdhNh3TrCxb2bXOJ6\nTSamhXlbyAQiQZWMPdKF9NDbaWPA5P4/IdJ1b39IV5zLBEQv2DSxc656tmhiY7sJW9+cmbnAtwSv\nuF6Yb4NMYISE1I6ow/fumj4IvRJru099zO1U28xu31S7TT1tZzVtaUVrAl17mV3K0LpJ2+Xijq5B\ndOv0hk4/3ydV7ZiuaxG2zUMVQjmhmljRFkvdyfVcojWBMnxN1lCfJeAyk7bVUx/KxW5lrY5sUmB7\nnJgmM7bmRahBtO4GeFUZclcT27o4G1yLpwmDM4EqXDh1n1lQVr/tBbVQTSxPSDpDW1h2mYnmg6jN\ncW8SRMtMrG1HoO/qxfotLzL6u36WUZhA9gRs27PN2cp8m36cL1bvhlowgFzdq8RmkMrrt2EOfZbz\ndRO3SwUXQ+uqandNKPrbrmmEot+UUZiAC2xkEmWZZH4Q2RxUNoJlWfsmDaK29Xcxpbq1haKKysXx\nL0sQbJiYz3ZEqOsBpsSu3waDNAGbQTOfkfnuibquZPoixv3hsS78NZ0Pvh/KksdVZm1qAF3vfeRS\nvw0TC+tse6TN/uUhZhGxtLNsE/PCnil5E6tb06i7gVl2/NtOjmJrqeSJSf+gTKAoU6s7Gb6f6uOT\n2Ewsb1Bl+pu2j3xdvRnT9RrCDSHctmNQJjBEQp/MdW2dvP62GXffFUrox32M9PkshzERtQmEtkXP\nJl2DUHZB1PWTieDc4F6lP6Y1jdjNwJf+MVzpHRJdTCxqE6gihMnb10MhTBlDv7+vz5itgIZysVuI\nhDCPu5DVb6uSMQ34pltcB2sCMKwB1BWXwbEssx/i8e/jqVwmlZvJWtYQj78N+trhZ0N/H/dfGrQJ\n2CKdlGWBtMugSjPKMexOGQouF5JjqNZ8b5NOcdkOHlM7azAmUBdEu5ZiNidnvn3g+97iY14Uc0lZ\nO7DJ8W56I726cZ7OExfXacRgYKFSd+8jl7gygd8GHgMOTP68JfO99wAPAgeBazOvvwK4C3gI+Jgj\nXdFSNrnHuMU1H0RtmlisF4Q1wXUl43IjQh/tOFNC2N5pA1cmcBb4FHDF5M+XJq/vBN4F/Dzwa8Cn\nMz9zE/AJ4CpgP3ClyX80szjnPZOuI7QrMH2U82MIrn0w9oeyNCXkZxqEsrvRZXRaV/Da1cCXgUeB\nWybvSSP4y4HPAUvA5yfv9UZVGT6W9klou5t8oj3q4RDzmkxfa39N1jRcmsC7gW8DHwC2Tl7bC9yX\nec/3SYL9JcCTmdcPAvscavOCSRanjLkfxtZGqxpXXbe4+jCxGO891ZZsQK8yqbYG1mUP01eBotHz\nn4DPAL8DbANuBN4JfJLi6uBswWtF7wPgI3/wWc4sH+LMynH2Lszx6tkta74/N7+Z5aUTZp9ACOGN\nmYV5njm87FvGOfRxcaVrHvnO7dzzgwNsOW+KnVvOq3xvFxN4k8F7fgL8N+BmEhO4DXhj5vs/A9wB\nHAMuzLx+GUkVcQ4fvuGdnHrwAM8tHWLl8FKQg0gI22yd3gBnTvuW4Q1bFfLs9k0cP/rsmtdsVTLb\n9mzj6ceern1fH+2sF/3sXq65bj87t0zzyp2z3HzTx0t/xlU7KK21p4BfAf528vXtwD8DXghcB5wh\nMQCA+4G3AjuA60kMQ4wYrUn4J7+w6rJn3ue1MrYCv+niblMTK7p9dfbYZ/V3/SyuTOATwHdIsvmN\nJO0hgCOTf3+dpDp4b+Zn3ge8n6QyuBW407ao/CCzscUrPQGx7pH2vSjZtjef6vatvynpOHGhO8Qg\n2vQ6B7C/Lpb21Pu6at5Ef9M1jSYtqqbtLFfXlb+t4nt/OPmT5yDwGpNfPjW/wHNLh4zFuFhs3Tq3\nnWPLR0u/b3NrWqrf5iTP67c5QfLrMjaPf1E5X0bbSqLPdSUXZhC7/j6JXb8NwtrAbonYd9i4fmC4\nDdpk8CFd6FNEmb6m56Ov60JMK1mb/XTbpO2Uqj65q/lgywB87VTaOrfdymcYpAlU0XVRpqwvl/9e\n37S5iMh2FtT3/Y/6zuLafL6qijCrP+R2Ytme81DuIWRC3zt+svpDT0oHbwJlJyCUq/WyFAWZqgFU\nlwn6XFhNdYc+AcpwobvPO7kW6Q+9EmtL37fy9nmfHxcMygSyg9xn8LFxB8Iy/X1dLRny5fZ9UjeO\nQr/ozNY8cJlJV7VTsvqHamK+GZQJ5CmbAC57eDYnS6xZdIpt/bYnaraSKjLXGI5/VUUbg/4qhqC/\nr8/QZW4M2gREeDStZJpUJKFmc3sumGmVHJi288Z0CwUbNBknbba4lmGrkrE9zmUCnujSRphZnGu1\npmEyeHbNbW7VzmrTpnJ5K161s9wRqtlmKbrYqg9ifDjUaEygzckxzcRimBRdKNvy2Nf91Ntm0kXk\nd1FtWZhrlEnbWJMpGy9DH0cmxBhEY2c0JmADH8/pTWk7OUwy4r6DT9tKJqVK7xBu/tWFpuMk9IXt\nMdD37qY8MgHRGZNMOpYMr4nOGJ8sFfoDmET/yASEEFZQOytOBmMCtjKcrdMbrPye0Mi2SWxO1nxb\nx0fGn/88Nq7TEGIsRGsCPnuZsWU8CordyZqb7S2Z2fGUmrWP3U22n19ctrGiyxW3amfZJ1oT6BsX\nC45pTzkbVGLpnY+dEG87UoWutq1nKJ8ji8l1DoMzAduDXfvNRd+4rtx0cdlaQg3+Ni9Uq2IQJhDz\noI4toxTDwcXuJldbdMuSu9i2uNq8i3GT71UxCBNwjXrq/dLX/fhFOV2vuA29gu47+7fdocjq7/pZ\nop5ttjKZNgtV6YEPtZSsIzT9TRclQ9PfFN/621aged1F+rsmTXUBs0vlX3e8s5VM01uxp1l+bOt6\nUZsAFA/m/ElIv7a9s8CmG2cp0++SWPT3ETT70m/7s5QFIVfjx5V+U7omgbPbN5V+hrpKpstVvm1N\nLN9qK9Lfph0XvQnU4duVu5bVWf2271vTdxYaugn73H5o+1z4Hvddyeov+iwmlUx+YdU0QNpo/9bp\nTwlhTWOwJhBL9pMlG4RinMRF+kP4HG3WGIr0h7JHvUn70ubxrwqiruZFCOPHhLLsvkq/SSXT9umA\nu+c2G//soEwgP0mLTkAsD5SBMCdAk959iPqb0EV/UQXY983t8vpDMTE4t51SNC/71O/CxKrGT5M1\nmd2527sXac2+1rSSGZQJjIGiyWLrmadjvwNnzLhIbmzuU/d9O5a6INqGDfOLzCzMGwf0kEw4y+hN\nwMZtXGPdoRIbvp5zK9bi85bqTdm5ZbrX7aqhBvoqRmMCMZ6ctpT1wMuCaNWkNl3YNg2iMbXjXBFT\nEE1xea2MLpj0y2hMIIvLQZedLFbL6RGZWB35INo0qFa1z+qOc5mJ2bj5WiwmZou0nSL8MkoTgHZ7\njIfSjvCRiY7dxKoy6TbnI9vGdJnU9N1OEf0zWhOA9nt06yZtl0ljEiz7qmR84utB4WW0MbG+bgDW\nBBfJRjofxlbJDIXBmEA6uEPJONvu722K7+eT2sBkd5OpObUxMdc9aZeZtGlFG8q8aEsf20PHamKD\nMQFf+NoZ1LSdlQ+OVfd+SYOWaSbbNIjaCLq+771jSlky0ER32UL/GB+sZKuSifVq+dSoiq6Wb2ti\nozABGyegLIg2pWgBsS4olul3GQSqKpm6zD2vt+vx75JJl7WV0gqqyEzr9NusHFw8GrPPrN9FMHWp\nP/+Y1b7122zH2dI/SBPoaxIUPRbQBjb0m/TUfWbRJpXM4ux0pRm1vflXio9M2tWznquwaWJ1+ruY\nWDZAZjWbzgfbj8dsSlf9vhiECRQN6vTAZ0+AqQuHcD/7LvrzZINimVm1NbGyYF6kP8+G+cXGaxqm\n+ndumW68MFs0iU0msK0rtlPaVj5t9YdMkf4xbIzoE//RziG2JoBJEG1LVUbcVX9dJt2FqfmFczLp\nvEnl9cd2VW6Vftv728vGVZddUk3GT9cs2sWi6hAMzKaJmRhUGxMblAnEEmTKMsdY9IuENpWMKS7M\n26WJZQn1uoKqANnVxHxf9dxFf/Qm4GowpxmYy62eIdxLXIRLaNcZtG2VmLRXTYKorSTJ11bQUPVH\nZwJdy9Ymjm06CdOT0mSSDGF/v2hGOj5cBKE2mWiahDRd0zDR3zZ5Mr4HVc+VjOldUGOs5qMzgSxN\nMukYT06WVL+LsrONifmgLIjaDKpDGSemuE5GQrvyOxRCasdFaQK2d2OMDR/3QHJpYildTMxnT3eo\nV6q6bmf5uk7GBy7XWaI0AfDbTon1RnK6HXB7Yq8QXDJUExsL0ZpAGZqswiWxmt3Q50XdWmEI928K\nlcGZQKzEGlyEPUJfk/HJEE0slN2BMgEhRLRMzS90XiMceztLJhAIzxxe9i1BiGBZOVQ8P04vHebs\n8qGe1djhuaUwdA/OBMoGixA2cGnWjz214ux3D531K09Vfv/x5ROl33ui4nsmrBxe6vTzvhmcCcSO\nSxNTkBkvLsdV1yAq/CITaIHLQT/EBTAhRLjIBFoQ60KSdp8IIfJ0MYFfAu4FngNek/vee4AHgYPA\ntZnXXwHcBTwEfCzz+kbgT4FHgG8AurGOCJJYt/K6rDBDSIp0nUB7upjAd4HrgW/mXt8JvAv4eeDX\ngE9nvncT8AngKmA/cOXk9euB80lM4svAh9qKivWKWyE0vsoZookN4TqB+4EHCl6/miSQPwrcAqwD\n0icrvBz4HLAEfH7y3vRn/gxYAf4k83rw2BpAsWaYoh2+Ak/bcZbPpIv0tzWxLpl02+sE+j7+XUys\n6D5GWf1Fn6XJvY9crAnsBe7LfP19kqB+CfBk5vWDwL7Mzxyc/HsZuBBodAenqsGdPwE2yreyQeSi\n7HSRBaX6Qyjl2xC7/hQX+vvcXDAk/XkTW5ydbnUX1Ng2d9SZwFdJ2j75P/+i4mfWFbx2tuR9ZzP/\nXpf7Xmv6OgmuApBP/TZM7BzTdfR5+jr+NvQXHVdb+uuSmtiOf56s/jaVTFlWbKq/6qE4fbd0ska1\na25zpYmZMlXz/Te1+J23AW/MfP0zwB3AMZIMP+WyyXvTn7mMpGqYA44AJ4t++e/c+AesO/UsnDjG\ntS/bzWv3nF8pJjZXzlOkP6aFKFvHf/fc5soLfrLva8rMwvw5F/zMLM5FfeGh9Bez54KZXq6Xyeqv\nMrHs3ZC7PjAry713fIuDd/4/Zs/bwMzG6gfi1JmAKdnM/XbgRuCFwEuAMyQGAMk6wluBr5EsBt8w\nef024FeBrwDvAL5d9h/91q/fwPqVpzi7fIjTS4dLL722HfzrglDWhW3ci9yn/qaUBdGq97elbBK7\nWFR1kUDUBSGb7URb+ndumebJZ5KczHYQ3TC/uDqHtyzMrbkiO7YErq3+qjWNxdlpDh0vzIcrufyq\na3jjG96w2s66+aaPl763y5rA9cCPSPr6fwN8afL6EeAzwNeBm4H3Zn7mfcD7SSqDW4E7J69/AfgJ\nyVrCm4GPdtBVStaF25ZxToKNYVC0sXhsor+tidXpa6u/rwd8mOpramIm+tuOq+w4dqXfhFR/aA+Z\nN32wTRv9Np9pUlQF2HoqW90znruYwBeAi4DNJPv635L53h+SLARfRhLsUw6SXFPwYuA3M6+fAt5O\nUj1cBxxuIiQd1L522BRN4DZPVWqiv4mJ1QUhH1sTQ3kqVBMdtsaXr62gbfQXjWNb+psG0VS/qYnl\ng2ga4G3ob7MjqYn+osBdpb+LCY/miuGiCWA6CPNBpWwQucyCbBqciX5TE/Ox1zmv32ZQNT3Opp87\nexzLxkdev6mJFY1fm+OkLIjmaas/i+9Eris29Zs+1N4W0ZtAfjLWnYS8Czdx9N0FK/FVAciknOui\nv2km1VR/G8r0t50cZUG0SH9TE8sev7rszHZwqtPflKb6u5p31/HTNJNuevzrWiBZ/U1NzOYCbltS\n3UX6mxK9CRSRHzBdJnBVMLEZQLOTOBb9ZUG0Sn8XE8vjqq1iS39dElClv87EqoKoqf6u5PXbqoRN\nxn9TEysK7H3q72rCTaqrppWYrd1B3snvUPFVVjY5AVPzC5xeKl7+MNXf9alKVXRZmLJx/OdnNrK0\ncqrz7yli3dxi5cNIYm1LpJjorzKxbeet5+mfnln9Ot0hZLpVt8rEzsxcUHv//zL9XU3MVH8ZRdqz\nO5xSfOhva2JRVwJNM8n0BORd2EZ5V3YC6srSvinTmb7e106cFFMTS3XV6c9ia3eFDer0dyGUe9C0\nJdXfNECWzX8bPfU2Gztiun4nS1gRKgJ8boErM7EyskHQdnAvCt61V6421N+GNp/TNAi5nORNTLgs\nafEZhELbGtoUH/pNk9g2htTkZwZlArYngWkQ7TqA2mZCfWBSycSeiTYl+3nLKpmq42Y6XmxXMrbG\nV5V+l5VkW/35gBib/jxF+rvEoEGYgEkQshlg6w64iQs37eVX6W/azsrrDzGLaxJEm+oPYXdHFqtX\nCRuMcxMTy1I3nsv0t7r5WkP9TXAR4PPZvMtEzkR/m88YrQmUDV7Tk9B1Z0o68LMTwMrtInqqBor0\np7QpP1PK9Ns0MajWn6Xpmkwb/XWkxzM7Pkz112E6jm2MKxv68+e6T/1ZsrptmFgTY7JROZvoNyVa\nE6giP2CyX9tsXbjKoE30102ebPArC+p5/aYmVhe0q/S3oSiIQrn+JiZWdBxt6y/D5vjJjuuu+k0X\nVkPQ32V33O65zW5u/V6g18UYsqV/kCYAzx9004NfFdjKgpBLmuo3wWU5nDfXMv2mJtY3pvpTXNz9\nscjE2u4uczF+6rA5vnzot0lWfxcT67IuZPqzgzGBogy/ywCyubUzn1llg0ZZEIV4J0DKEPXHtAhe\npd+lCXdpJ2axMX6aBNGmJlYXwGMZ/9GbQGgZpRAucbGoHdpCeRVdTcwk0NsysSK6JhFV+ttWYtGb\nQCj0fZGViJPYxkk+k26qv6qizmfSMVVZRYSiv6mJRWkCbTOX/EkK9ZYLZYR2kZUPynSGpL/vu0Cm\nhBKERD1NKxmX1UmUJuCTkIJNFlNjdKm/LgiFHqRc6DNNBtqcF5dJzNBwGURjb0nLBAKiaRCKrZKJ\nndBNrI4u+uuCqM/kKKY1jRAZlAmYDvIYdkYI9yiTDgPT+ah2qBsGZQJieKgiqSf2dkTI2NwqbsvE\nigyri4nJBIQ3xpSJq0IMB5/rYiEiE4gQtbPqUQXhjjG3TobIaExA/cT2lG157DOTt2VORYuIfbdT\nhj5euhBjJh07ozGB2Gk7OUwy4r6DUtegW6V3KJVMWxRE48P37iaZwEjIBkfbQd8kqMdSiTXROaY1\nDTFcZAItUDlfzlAz0eznst0+yo6n1Ky1piFsYLK7SSZQQzoZXbQZ0kwyG1SGGkSFX2KpxMTz2Nye\nWsXgTEBBVIhq0qTDRTvL1ZqMTGwtWc1d9UdtAkWZdN/EOICyhKjf5AZsIepuwtD1u2xn2ZjvZfpj\nNLGuRG0Cprg4AX1O4jHob7tDwsXn6HPCSv+5SH+/DNIE+joJrgKp9JvRl5G5+jzSb0aZ/q7trCr9\ndZVMl22dbSuZfJWyc8v0OZ+hTSUzSBPIEpsr54lVf6o7dv2xIv3nLqz2eTvprP7Qz8WUbwGuCP3A\n1xG7fgjnM7R9yEso+ttiW//i7DSHjp+0+jtTpuYXOL10eM1rQz/+ppXM/MxGllZONfq/m6zJDL4S\nyKP77pRjot/31Y0xowebPI/GUTiMzgTyxDYYY5vsNqkLol2C7JiPaxl97VN3jcudSkO4anwYZzlQ\nfE2isvZHCJmogm05oVaSunp52IzWBNo4uOkkbTNpFBzjoOw89V1RhljBtjGxIWTSsTMYE1AQFaHR\nRyXYNIhqnog8gzGBsZFO/hAzQrEWtVPsoY0d9pEJ9EwMQTsNWkNZGIydtltcRXiEaGKa5WKUpGas\nnrSICRfVikxABI/aKcIWIeyQCw2ZgCXG2k9si0kG3rYdJdNwh4Lo8BiVCWiQ2adrOyWGNRKbKIiK\n0BiVCcRO20lukhnHUsk00dm0klAQFWNEJlDAkHdj2Ar2bTL4EHdGtMXlgrLaWaJPZAINsR1shrQ7\nZeiZ9JBMLM/Y2nLieWQCBvSVmdkOMtrnL7IM2cREewYVJYaeiYrwiDWDHlIFaoMxm1j0JqDBLERY\nuKqcleSV08XEupjALwH3As8Br8m8fjFwAjgw+XNz5nuvAO4CHgI+lnl9I/CnwCPANwCdbTF61M4b\nFrZMzHbV0mWUfRe4Hvhmwfd+AFwx+fOuzOs3AZ8ArgL2A1dOXr8eOJ/EJL4MfKiDriiItY0gRFNc\n7Lbr0gHQtRpr6WIC9wMPNPyZlwOfA5aAzwNXT16/GvgzYAX4k8zr56DgKYRfht4/H9sWXVf15ouB\nu4HPAq+avHYJ8GTmPQeBfZN/7518DbAMXAhYHWltHNq0HB/6pBB20XgpJ8ZMOnamar7/VYr78x8E\nvljyM08AFwFPAW8B/hfws8C63PvWAWcz/16X+57IoO19woSp+QVOLx02fr8qa1FnAm9q8Tt/OvkD\n8CWSBeBLgAdJMvyUy4DbJv++bfL194E54AhwsuiX/+7vfZx1p06w7tSz7N/3c1y378qit4kBszg7\nzaHjJ9d8bYumQVSINri+4vz2b93KHd/6e6Y31OfTdSZgSvZ/2kFSBaS7hjaTLBRDso7wVuBrJIvB\nN0xevw34VeArwDuAb5f9R//5g7/B+pWnWL/ylCXp4yMfRG1SFkRV5pcz1EpMu5vsMT+zkaWVU8bv\n33vN69h7zetWz8Hv/9f/UvreLmfpeuBHJH39vyHJ+iHZ9XMPyZrAB4F3Zn7mfcD7gTuAW4E7J69/\nAfgJcB9bUuliAAAFTElEQVTwZuCjdf+5zzJWuwvGh85LOUM1sbHQpRL4wuRPnr+Y/CniIGuvKUg5\nBby9g5ZVVM4LcS5DN7G6pLBpJt2EdXOLnF0+5OR394HqNSFE8GhjhDtkAkIIr3RZJG3bFu478Ns2\nsaz+rp9FJtCR2LOI2PXHSmzHPX8BVWz6+yS21tsoTCB/UmJ7IIiLQRX7JE71u/gcsU3iPNJvh7Hs\nbhrHp3RA7EHUJflJHMqkbkvo/Wifd9LVPIifQZqAgo4IDZ/3o4l9PIVuwj6xoX+QJjB09AwFIbpj\nGkC73gXVlYnZMjCZgBCiFbFn0S6JqfoavAmolCynSP/YbqPrk9jHj0tiCqKxM3gTiB1NhoQic7IV\nRIvaa7Ef99j1j4UQ7uIqEwiU2Cdxqr/oc8S0phH7eRCijsGagCbvOFE7ay2xz4PY9ceArVtJB0ns\nAygW/WU30IpFfxnS7xfp74bpxW6DrQSEEELUIxMYCWqTCBEffdy6QiYgRENiWtgWog6ZgBABoYpN\n9I1MIACUWQoxbnxeLyATMEQZmhBiiMgEhBgZqjztEMLVvjaQCQghrKGKOT4GYQLKbIQQRYzl6WBd\n0BESQkSFkj67yASEEGLCGNtZMgEhhBgwdU9GkwkIIbwwlN01TQmtnSUTEEKIwCjK3k1aVW3aWTIB\nIUQp2l0zfEZ9hsdajgoh7BJai6cJozYBlyiDEiIsxrjzxwRFKiEiRZWssIFMQAjhnZjbKbEjExBC\nGKF2yjAZnQko4xB9orUhEToaoRbpO1NST1iI/hnavJMJCNETLpMEVbiiLTKByOhrsquNIcQ40EwX\nq4xt4W9oZb0QbZAJCIHaKWK8yARENIytUhGiD2QColeyGbdJO0ZrE0K4RTNMDAZVCiKl7kEq4nlk\nAj1yy61/7/X/7xokq/TH0lP3fQ66Iv1+iV1/ETKBHvlm5AMorz/k3TVlbaSu58C32Q1tDMVG7PqL\nkAkIIcSIkQkIIcSIWedbQEPuBl7lW4QQQkTGLcB1vkUIIYQQQgghhBBCCNGA1wP3AQ8C7/aspSn/\nHTgCfNe3kJZcBPxf4F7gG8CveFXTnE3AbSRrSt8G/oNfOa3ZABwAvuhbSAt+CHyHRP/tfqW0Ygvw\nP4AHgIPAPr9yxskBEiN4EXA/sMOvnEa8DriCeE1gAXj15N87gIeArf7ktGJm8vc08D3gEo9a2vIf\ngf8N/JVvIS14GJjzLaIDnwR+lyShmALO9ytnfJxPYgIpnwZ+wZOWtlxMvCaQ54vAG3yLaMk8SRJx\nkW8hDdkDfI3kuMdYCTxMcuxj5W5gs28RLojlOoGrSCZuisoxf1wCXE58Jf164B6SttwfAz/yK6cx\nvw/8OnDGt5CWnAW+Dvwl8IuetTRlD0kF8BmStuIHJl8PglhMQITBVuBzJD31ZzxracoZkmtMLgHe\nRdKei4V/DjxJUg3Hdm1PymtJjv9vAp8iaTHGwibgUuAvSPbaXw78sk9BYyTfDvoj1A7qm43AV4Ab\nfAuxwCeBf+dbRAN+j6RyeRg4RGLA/9Orom58Cvi3vkU05L7Mv98C/LkvIWMmXRi+mPgWhiFuE1hH\nEnQ+5VtIS3YA2yf/nifZpRLHbU/PZT/xrQnM8PxGgheQ7DKLbU3mr4CrSbonfwz8G79yxsl+Ejf+\nAfAez1qa8ufAE8BJkozuX/uV05hrSdopd5OY8QHgzV4VNeOfAHeRrAn8HfA2v3I6sZ/4dge9mGTs\n3A38H+DtfuW04lKS7cV3k1SSW/zKEUIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIITL8\nf3/Y1YKZ0+k8AAAAAElFTkSuQmCC\n",
"text": "<matplotlib.figure.Figure at 0x10fc56590>",
"output_type": "display_data",
"metadata": {}
}
],
"language": "python",
"trusted": true,
"collapsed": false
},
{
"metadata": {},
"cell_type": "code",
"input": "",
"outputs": [],
"language": "python",
"trusted": true,
"collapsed": false
}
],
"metadata": {}
}
],
"metadata": {
"name": "",
"signature": "sha256:ad216ccfa1cd2443ec59108e450b727a050d0f12884d10cd74f5d24994a5f7d0"
},
"nbformat": 3
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment