Skip to content

Instantly share code, notes, and snippets.

from fastai.vision import *
from fastai.script import *
from torch import nn
from fastai.metrics import top_k_accuracy
path = untar_data(URLs.CIFAR)
data = ImageDataBunch.from_folder(path, valid='test')
class block(nn.Module):
def __init__(self, n_in, n_out, two_d=True):
@radekosmulski
radekosmulski / train_on_CIFAR10_fastai_only.py
Last active August 17, 2019 09:31
train on CIFAR10 in console using fastai
from fastai.vision import *
from fastai.script import *
from torch import nn
from fastai.metrics import top_k_accuracy
path = untar_data(URLs.CIFAR)
data = ImageDataBunch.from_folder(path, valid='test')
class block(nn.Module):
def __init__(self, n_in, n_out, two_d=True):
@radekosmulski
radekosmulski / train_on_CIFAR10.py
Created June 20, 2019 19:29
training on CIFAR10 using fastai from the command line
import fire
import fastai
from fastai.vision import *
from torch import nn
from fastai.metrics import top_k_accuracy
path = untar_data(URLs.CIFAR)
data = ImageDataBunch.from_folder(path, valid='test')
class block(nn.Module):
class ConcatDataset(Dataset):
"""Concatenates a dataset and an iterable of appropriate size."""
def __init__(self, ds, y2):
assert(len(ds)==len(y2))
self.ds,self.y2 = ds,y2
def __len__(self): return len(self.ds)
def __getitem__(self, i):
x,y = self.ds[i]
return (x, (self.y2[i],y))
def denorm(self, im): return self.ds.denorm(im)