start new:
tmux
start new with session name:
tmux new -s myname
// see https://gist.github.com/2382341 | |
// scalaz for only solution3 | |
import scalaz._ | |
import Scalaz._ | |
object SolutionForMultiNestedMatchforMyStudy { | |
def f(num: Int): Option[Int] = { | |
num match { |
package recfun | |
import scala.collection.mutable.ListBuffer | |
import common._ | |
/** https://class.coursera.org/progfun-2012-001/assignment/view?assignment_id=4 */ | |
object Main { | |
def main(args: Array[String]) { | |
println("Pascal's Triangle") | |
for (row <- 0 to 10) { |
#!/bin/bash | |
UP=$(pgrep mysql | wc -l); | |
if [ "$UP" -ne 1 ]; | |
then | |
echo "MySQL is down."; | |
sudo service mysql start | |
else | |
echo "All is well."; | |
fi |
People
![]() :bowtie: |
π :smile: |
π :laughing: |
---|---|---|
π :blush: |
π :smiley: |
:relaxed: |
π :smirk: |
π :heart_eyes: |
π :kissing_heart: |
π :kissing_closed_eyes: |
π³ :flushed: |
π :relieved: |
π :satisfied: |
π :grin: |
π :wink: |
π :stuck_out_tongue_winking_eye: |
π :stuck_out_tongue_closed_eyes: |
π :grinning: |
π :kissing: |
π :kissing_smiling_eyes: |
π :stuck_out_tongue: |
Ambari uses a local postgres db by default.This page describes how to use ambari-server with remote postgres server.
Ambari is installed on centos 6.4 with the following command:
curl -so /etc/yum.repos.d/ambari.repo http://public-repo-1.hortonworks.com/ambari/centos6/1.x/GA/ambari.repo
yum repolist
yum -y install ambari-server
#!/bin/bash | |
set -e | |
apt-get install -y curl python-setuptools python-pip python-dev python-protobuf | |
# zookeeper | |
apt-get install -y zookeeperd | |
echo 1 | dd of=/var/lib/zookeeper/myid |
#!/bin/bash | |
# Here are some embedded Python examples using Python3. | |
# They are put into functions for separation and clarity. | |
# Simple usage, only using python to print the date. | |
# This is not really a good example, because the `date` | |
# command works just as well. | |
function date_time { |
/* | |
This example uses Scala. Please see the MLlib documentation for a Java example. | |
Try running this code in the Spark shell. It may produce different topics each time (since LDA includes some randomization), but it should give topics similar to those listed above. | |
This example is paired with a blog post on LDA in Spark: http://databricks.com/blog | |
Spark: http://spark.apache.org/ | |
*/ | |
import scala.collection.mutable |