Skip to content

Instantly share code, notes, and snippets.

from langgraph.store.mongodb import MongoDBStore
from pymongo.collection import Collection
from pymongo.database import Database
from pymongo import MongoClient
import os
from langgraph.checkpoint.mongodb import MongoDBSaver
from dotenv import load_dotenv
from langchain_openai import AzureOpenAIEmbeddings
from langchain_openai import AzureChatOpenAI
/**
* Main function to get comments from the active Google Document, send them to the Azure OpenAI API, and log the responses.
*/
function respondToComments() {
try {
// Get the active document and its ID
var doc = DocumentApp.getActiveDocument();
var documentId = doc.getId();
// Get the body text of the document
@ranfysvalle02
ranfysvalle02 / gs_comments.gs
Created January 23, 2025 04:21
gs_comments.gs
function getComments() {
try {
var doc = DocumentApp.getActiveDocument();
var documentId = doc.getId();
var fields = 'comments(author/displayName,content,createdTime),nextPageToken';
var pageToken = null;
var comments = [];
do {
# Import necessary libraries
from langgraph.graph import StateGraph, END
from typing import Dict, TypedDict, Optional, Literal, List, Union
# Define Graph State
class GraphState(TypedDict):
init_input: Optional[str] = None
fruit: Optional[str] = None
final_result: Optional[str] = None
user_confirmation: Optional[str] = None
from unstructured.partition.auto import partition
import pymongo
from openai import AzureOpenAI
az_client = AzureOpenAI(azure_endpoint="",api_version="",api_key="")
def generate_embeddings(text, model=""): # model = "deployment_name"
return az_client.embeddings.create(input = [text], model=model).data[0].embedding
MDB_URI = ""
DB_NAME = ""
import json
import requests
def get_repo_info(owner, repo):
url = f"https://api.github.com/repos/{owner}/{repo}"
headers = {"Accept": "application/vnd.github+json"}
response = requests.get(url, headers=headers)
if response.status_code == 200:
return response.json()
else:
from openai import AzureOpenAI
import os
import subprocess
import json
from shutil import rmtree
# Azure OpenAI configuration
azure_openai_endpoint = os.getenv('OPENAI_AZURE_ENDPOINT', '')
azure_openai_api_key = os.getenv('OPENAI_API_KEY', '')
azure_openai_deployment_id = ''
from openai import AzureOpenAI
import os
import subprocess
import json
from shutil import rmtree
# Azure OpenAI configuration
azure_openai_endpoint = os.getenv('OPENAI_AZURE_ENDPOINT', '')
azure_openai_api_key = os.getenv('OPENAI_API_KEY', '')
azure_openai_deployment_id = ''
from youtube_transcript_api import YouTubeTranscriptApi
from duckduckgo_search import DDGS
from openai import AzureOpenAI
# Replace with your actual values
AZURE_OPENAI_ENDPOINT = "https://DEMO.openai.azure.com"
AZURE_OPENAI_API_KEY = ""
deployment_name = "gpt-4-32k" # The name of your model deployment
client = AzureOpenAI(azure_endpoint=AZURE_OPENAI_ENDPOINT,api_version="2023-07-01-preview",api_key=AZURE_OPENAI_API_KEY)
# Replace with your actual values - if desired
from elevenlabs.client import ElevenLabs
from elevenlabs import play
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from langchain_openai import AzureOpenAIEmbeddings
from langchain_core.messages import HumanMessage
from langchain_openai import AzureChatOpenAI
import pymongo
# PDF loaded into MongoDB Atlas = https://arxiv.org/pdf/2303.08774.pdf
MDB_URI = ""
cluster = pymongo.MongoClient(MDB_URI)