Created
December 17, 2015 18:17
-
-
Save rashivkp/579516287a0c97de001b to your computer and use it in GitHub Desktop.
presentation notebook on jupyter. Install https://github.com/damianavila/RISE to show it as presentation within the notebook itself.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"# Jupyter\n", | |
"\n", | |
"![Jupyter Logo](files/main-logo.svg)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"## About Me\n", | |
"\n", | |
"--\n", | |
"\n", | |
"### Mohamed Rashid\n", | |
"\n", | |
"*rashivkp at gmail dot com*\n", | |
"\n", | |
"@rashivkp\n", | |
"\n", | |
"http://github.com/rashivkp" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"#### Contents\n", | |
"\n", | |
"- iPython\n", | |
"- jupyter\n", | |
"- some libraries for scientific python\n", | |
"- demo using jupyter " | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"#### IPython \n", | |
"\n", | |
"http://ipython.org/ipython-doc/stable/interactive/tutorial.html\n", | |
"\n", | |
"- interactive shell for python\n", | |
"- started in 2001 as gist by Fenando Perez with 259 loc\n", | |
"- revised BSD license" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"#### features\n", | |
"- System shell commands\n", | |
"- introspection\n", | |
"- tab completion\n", | |
"- access to python's help system \n", | |
"- Magic functions\n", | |
"- better debugging\n", | |
"- rich history\n", | |
"- parallel computing" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"#### ipython notebook\n", | |
"a web based shell to ipython\n", | |
"\n", | |
"- supports markdown\n", | |
"- latex -- $\\sum\\limits^{i=3}_{i=1}X_i = X_1+X_2+X_3$\n", | |
"- immediate results\n", | |
"- graphical plots\n", | |
"- sharing and viewing through nbviewer.- http://nbviewer.jupyter.org/" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"#### Jupyter https://github.com/jupyter\n", | |
"\n", | |
"- a language agnostic notebook platform\n", | |
"- the big split http://blog.jupyter.org/2015/04/15/the-big-split\n", | |
"- support 54 kernels, and counting\n", | |
" \n", | |
" * IJulia\n", | |
" * IR\n", | |
" * IHaskell\n", | |
" * IRuby\n", | |
" * lot more - https://github.com/ipython/ipython/wiki/IPython-kernels-for-other-languages" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"#### scientific python\n", | |
"\n", | |
"- NumPy\n", | |
" n-dimensional array\n", | |
"- SciPy\n", | |
" mathematics\n", | |
"- matplotlib\n", | |
" plots in 2D and 3D\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "fragment" | |
} | |
}, | |
"source": [ | |
"#### Demo" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"### Thank You" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"$c = \\sqrt{a^2 + b^2}$" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/latex": [ | |
"$$F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx$$" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Math object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"from IPython.display import display, Math, Latex\n", | |
"display(Math(r'F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx'))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/latex": [ | |
"\\begin{align}\n", | |
"\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n", | |
"\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n", | |
"\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n", | |
"\\nabla \\cdot \\vec{\\mathbf{B}} & = 0\n", | |
"\\end{align}" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Latex object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"%%latex\n", | |
"\\begin{align}\n", | |
"\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n", | |
"\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n", | |
"\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n", | |
"\\nabla \\cdot \\vec{\\mathbf{B}} & = 0\n", | |
"\\end{align}" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 31, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 32, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Populating the interactive namespace from numpy and matplotlib\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"WARNING: pylab import has clobbered these variables: ['colors']\n", | |
"`%matplotlib` prevents importing * from pylab and numpy\n" | |
] | |
} | |
], | |
"source": [ | |
"%pylab inline\n", | |
"pd.set_option('display.mpl_style', 'default')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 39, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"avg_weather = pd.read_csv('data.csv')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 40, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Month</th>\n", | |
" <th>Panjab</th>\n", | |
" <th>UP</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>Jan</td>\n", | |
" <td>40</td>\n", | |
" <td>42</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>Feb</td>\n", | |
" <td>41</td>\n", | |
" <td>43</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>Mar</td>\n", | |
" <td>45</td>\n", | |
" <td>46</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>Apr</td>\n", | |
" <td>41</td>\n", | |
" <td>42</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>May</td>\n", | |
" <td>42</td>\n", | |
" <td>43</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>Jun</td>\n", | |
" <td>40</td>\n", | |
" <td>45</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>July</td>\n", | |
" <td>39</td>\n", | |
" <td>43</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>Aug</td>\n", | |
" <td>38</td>\n", | |
" <td>42</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>Sep</td>\n", | |
" <td>37</td>\n", | |
" <td>40</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>Oct</td>\n", | |
" <td>34</td>\n", | |
" <td>37</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>Nov</td>\n", | |
" <td>30</td>\n", | |
" <td>32</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>Dec</td>\n", | |
" <td>25</td>\n", | |
" <td>28</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Month Panjab UP\n", | |
"0 Jan 40 42\n", | |
"1 Feb 41 43\n", | |
"2 Mar 45 46\n", | |
"3 Apr 41 42\n", | |
"4 May 42 43\n", | |
"5 Jun 40 45\n", | |
"6 July 39 43\n", | |
"7 Aug 38 42\n", | |
"8 Sep 37 40\n", | |
"9 Oct 34 37\n", | |
"10 Nov 30 32\n", | |
"11 Dec 25 28" | |
] | |
}, | |
"execution_count": 40, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"avg_weather" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 42, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Month</th>\n", | |
" <th>Panjab</th>\n", | |
" <th>UP</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>Jan</td>\n", | |
" <td>40</td>\n", | |
" <td>42</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>Feb</td>\n", | |
" <td>41</td>\n", | |
" <td>43</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>Mar</td>\n", | |
" <td>45</td>\n", | |
" <td>46</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>Apr</td>\n", | |
" <td>41</td>\n", | |
" <td>42</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>May</td>\n", | |
" <td>42</td>\n", | |
" <td>43</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Month Panjab UP\n", | |
"0 Jan 40 42\n", | |
"1 Feb 41 43\n", | |
"2 Mar 45 46\n", | |
"3 Apr 41 42\n", | |
"4 May 42 43" | |
] | |
}, | |
"execution_count": 42, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"avg_weather.head()\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 43, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Month</th>\n", | |
" <th>Panjab</th>\n", | |
" <th>UP</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>Aug</td>\n", | |
" <td>38</td>\n", | |
" <td>42</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>Sep</td>\n", | |
" <td>37</td>\n", | |
" <td>40</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>Oct</td>\n", | |
" <td>34</td>\n", | |
" <td>37</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>Nov</td>\n", | |
" <td>30</td>\n", | |
" <td>32</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>Dec</td>\n", | |
" <td>25</td>\n", | |
" <td>28</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Month Panjab UP\n", | |
"7 Aug 38 42\n", | |
"8 Sep 37 40\n", | |
"9 Oct 34 37\n", | |
"10 Nov 30 32\n", | |
"11 Dec 25 28" | |
] | |
}, | |
"execution_count": 43, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"avg_weather.tail()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 44, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Panjab</th>\n", | |
" <th>UP</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>count</th>\n", | |
" <td>12.000000</td>\n", | |
" <td>12.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>mean</th>\n", | |
" <td>37.666667</td>\n", | |
" <td>40.250000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>std</th>\n", | |
" <td>5.565042</td>\n", | |
" <td>5.361903</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>min</th>\n", | |
" <td>25.000000</td>\n", | |
" <td>28.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25%</th>\n", | |
" <td>36.250000</td>\n", | |
" <td>39.250000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>50%</th>\n", | |
" <td>39.500000</td>\n", | |
" <td>42.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75%</th>\n", | |
" <td>41.000000</td>\n", | |
" <td>43.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>max</th>\n", | |
" <td>45.000000</td>\n", | |
" <td>46.000000</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Panjab UP\n", | |
"count 12.000000 12.000000\n", | |
"mean 37.666667 40.250000\n", | |
"std 5.565042 5.361903\n", | |
"min 25.000000 28.000000\n", | |
"25% 36.250000 39.250000\n", | |
"50% 39.500000 42.000000\n", | |
"75% 41.000000 43.000000\n", | |
"max 45.000000 46.000000" | |
] | |
}, | |
"execution_count": 44, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"avg_weather.describe()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 46, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7f84641a0d10>" | |
] | |
}, | |
"execution_count": 46, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAECCAYAAAAxVlaQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd0FPUWwPHv7G52ExISIBA6gQChF0VRpKooigqoOIgC\nih1EERBULBSlqYAFhKfYEHky6lNQUUSkWyiCBmmRklATaYFAsnXeHwlIi8kmO9l2P+dwDltm5t4s\n3Mze+c3vp+i6jhBCiOBi8ncAQgghvCfFWwghgpAUbyGECEJSvIUQIghJ8RZCiCAkxVsIIYKQpShv\nUlV1N5AFeACnpmmtVVUtD8wDEoHdgKppWpZBcQohhDhLUc+8PUAnTdMu0TStdf5zTwM/aJrWAPgR\neMaIAIUQQlyoqMVbuch7uwMf5v/9Q6CHr4ISQgjx74pavHVgsaqqa1VVfSD/ucqapmUAaJp2EEgw\nIkAhhBAXKmrxbqtp2qVAV+BRVVXbk1fQzyb32QshRClRvJ3bRFXVUUA28AB5ffAMVVWrAEs1TWtU\n0HZLliyR4i6EEMVw7bXXKuc/V+hoE1VVywAmTdOyVVWNBq4HxgALgHuBScA9wPzC9nXppZd6GbIQ\nQoS333777aLPF6VtUhlYparqBuAX4CtN074nr2hfp6rqNuBaYKKPYg0Zq1at8ncIpU5yDn3hli8E\nZs6FnnlrmrYLaHmR548AnY0ISgghxL/zuuddXEuWLNGlbSKEEN757bffLtrzltvjhRAiCBXp9nhR\nPKtWraJdu3b+DqNUSc6h73S+uq6TmZmJ2+32d0iGy8rKIi4uzpB967pOXFwcMTExXm0nxVsIUSyZ\nmZmULVuWMmXK+DsUw1WrVs2wfeu6zpEjR7Db7cTHxxd5O2mbGCiczsZOk5xD3+l83W53WBRuoymK\nQnx8PHa73avtpHgLIUQQkuJtoEAcG2o0yTn0hVu+gUqKtxBCFMGwYcOYPHlykd7brVs35syZY2g8\ncsHSQOHWCwXJORwEQ74tWrTg0KFDmM1moqOjueaaa3jllVdK1KMvauEuLXLmLYQIOYqi8Mknn5Ce\nns7SpUvZuHFjwBXfkpLibaBw7A1KzqEvWPI9ffd4lSpV6Ny5M1u2bGHu3LlceeWV1KpVi1atWvHB\nBx+cef/q1atp2rQp06dPp0GDBjRp0oS5c+eeef3RRx9l/PjxQN647969e5OcnEzdunXp3bs3+/fv\nP+f4u3btonPnziQmJtK3b1+ysny7SqQUbyFESNu7dy+LFy+mWbNmVKpUiXnz5pGens60adN47rnn\nSElJOfPezMxMsrOz2bx5M6+99hojRozg+PHjF+zT4/Fw9913k5KSwh9//EFUVBRPPfXUOe+ZN28e\n06dPZ+vWrZhMpgteLynpeRsoGHqDviY5h76i5nuqaXOfHK/Mpj+KtV2fPn2wWCzExsbSpUsXhg4d\nis1mO/N6mzZtuPrqq/n5559p1qwZAFarleHDh2MymbjuuuuIjo4mNTWVVq1anbPv8uXLc/PNNwNg\ns9kYMmQIPXqcuxJkr169aNCgAQAjR46kU6dOzJgxA0W5YJqSYpHiLYQwRHGLrq98/PHHtG/f/pzn\nFi9ezCuvvMKOHTvweDzk5ubSuHHjM6+XL18ek+mfhkRUVBQnT568YN85OTmMHDmSH3/8kaysLHRd\n5+TJk+i6fqY4V69e/cz7a9asicPh4PDhw1SsWNEn+UnbxEDB0hv0Jck59AVLvufPmOpwOOjfvz+P\nP/44qampZ3rSxZlZddq0aezcuZMlS5awe/duvvnmmwuOuW/fvjN/37NnD1ar1avb3wsjxVsIERYc\nDgcOh4P4+HhMJhOLFy9m6dKlxdrXyZMniYyMpGzZshw9epRJkyZd8B5N09i+fTunTp1i4sSJdO/e\n3WctE5Dibahw64WC5BwOgiHfixXJmJgYJk6cSP/+/UlKSuKLL77gxhtv9Ho/AI888gg5OTnUr1+f\nG264gc6dO1+wXa9evRg4cCCNGzfG6XQyYcKE4id0sdhkMQYhRHHs37/f0Nn2As3AgQNJSkriySef\nNGT/Bf08ZTEGPwiW3qAvSc6hL9zyBXC5XKSmppKYmOjvUM6Q4i2EEIVo1KgR5cuX55ZbbvF3KGfI\nUEEDBUNv0Nck59AXbvkCpKam+juEC8iZtxBCBCEp3gYKx96g5Bz6wi3fQCXFWwghgpAUbwOFY29Q\ncg594ZZvoJLiLYQQQUiKt4HCsTcoOYe+cMs3UEnxFkKEnPj4eHbv3n3Oc5MmTWLAgAFA3sILFStW\npFatWiQmJnLFFVecs/BCMJBx3gYKx96g5Bz6giHfokwAVbVq1TMLMSxcuJB7772Xyy67jOTkZKPD\n8wk58xZChBxv52zq2rUr5cqVY9u2bQZF5HtSvA1yItfFipXh1xsMx35ouOUcavnqus7XX3/N8ePH\nz1mYIdBJ28QAf+4/wZgF20ksY6Z9O92nc/gKESxufG2NT/bz7ROtfbKf8x04cICkpCRMJhM1atRg\n5syZ1K1b15BjGUGKt4+tSj3Cmz/uZnDnOny69gD/XbOfu66oXviGISIY+qG+Fm45FzVfo4puUZjN\nZpxO5znPuVwuLJZ/St7ZPe9gJG0TH/pyw0FmLk9j3K0NaFuvAi90q8+iTX+zbOthf4cmRFipUaMG\n6enp5zyXlpZGzZo1/RSR70nx9gGPrvP28jQWpmQyWW1MvYRoADZvWMPo7snMXJ7Gn/tP+DnK0hFq\n/dCiCLecgyHfW2+9lcmTJ7N//350XWfZsmUsWrSIbt26+Ts0n5HiXUIOl4eJC3eQmnmKyWpjKsfa\nznm9TsUyPNkliXFf/8WBrFw/RSlEeBk+fDitW7ema9euJCUlMXbsWN555x0aNmzo79B8psjLoKmq\nagLWA3s0Teumquoo4EEgM/8tIzVN+66g7UNxGbQTuS7GLNhOfLSVYV2SsFoK/l349e8ZLNiYwZRe\njYmJlEsNIviF2zJoRvN2GTRvqshg4E8g9qznpmiaNsXrKEPAwSw7z3+5jSuSynFfu5qYChlRcnOL\nyuw9msu4b/7ixR7JWMzypUcIUXxFqiCqqtYAugKzznspLMfAbc/IZpi2mVtaVOaB9rUKLNzn9wYf\n7FALq8XE9KVpXt9EECyCoR/qa+GWc7jlG6iKevo3FRgOnF9xBqmqulFV1Vmqqsb5NrTAtGbXMZ7/\ncjsDr06kW8vKBb7Pc/AgynlDlcwmhadvrMv2jJN8vv6g0aGGjZN2N4eyHf4OQ4hSVWjxVlX1JiBD\n07SNnHum/RaQpGlaS+AgUGj75Ozf2KtWrQq6x29+8ROvLd7F6Fvqox/cXOD7PenpZHe/lTrvvIvu\ndp/zepTVzOhuyWi/pjPrq9UBlZ8vHp8eA1wax1u5chWLNv3Ngx/+wYPvb2DMf3/mpN3ts/0X9XG7\ndu0C5udfmvlmZWUhfOfsn+f5P/+LKfSCpaqq44E+gAuIAsoC/9M0rd9Z70kEvtI0rXlB+wnmC5a6\nrvPRz/tYtu0wL/ZoQPXykQW/NyuL3Lv7YLnzTtw//oipYUOsI4Zf8L7UjJM89+U2XuyRTHLlGCPD\nD0lbDmQzY1kaFpPCgE6JxMdE8MHqvfyWlsW9bWtyTaP4Qq9DiJKRC5a+5e0Fy0LPvDVNG6lpWi1N\n05KAO4EfNU3rp6pqlbPedhuwqQRxByyn28Pk73fyW1oWU3o1/vfC7XRif2Io5g4diOhzNxt69cK9\nciXOT+Zd8N76laMZfG0dxn6Vyt8n7EamUKqM7oceOelg8qKdjPs6le4tK/Oq2oj6laOpEG1l6PVJ\nPHdzfb76PYMntS1sz8g2NJbTwq0HfDpfs9nMqVOn/BxN8NN1ncOHD2Oz2Qp/81lKMmbtZVVVWwIe\nYDfwcAn2FZBO2l2M++YvbBYTE3s2JDLCXOB7dV3HMeZFlJhoIoYNBcAdXQbb9Gnk9r0HU80amNu2\nPWebq+qV50BWLqPmb+dVtTFlrAXvP9w53R7mb8zg07UHuL5JJd6+p/lFf14Nq8Yw9c7GLN58iNHz\nU7kiqRz3XFWDcmUi/BB1aEtISCAzM5Njx475OxTDZWVlERdnzGU9XdeJi4sjJsa7b+BFHuddUsHW\nNjmU7eCFL7fRpFpZHumUiNn071/BnbPexbVoEZEffoBSpsw5r7l/+w37E0OIfHcWpvr1z3lN13Wm\n/bibv084GNUtudDjhKN1u48xc3k6VeNsPNyxFjXKRxVpu+xcF3N/3ceSrYfp3boaNzdPkCGaIugU\nu20SjnYdOsXQeZu5umFFBl5deOF2ff89rv9+gm3amxcUbgDzpZdiHTEC+6DH0A+dO8+JouT1bF0e\nnbdXpF+wbTjbfyyXMQu289bSNB5sX5Ox3ZOLXLgBYiItPNQxkZd7NmLNrmMMmvsnG9LlIpsIDVK8\nz7Nxz3Ge+Xwr97WtyR2XVS10Old3SgqOF8dhm/YGpsrnDh08uxdqufkmzN26YX/8cfTcc2+Tt5hN\njOxaj43px5m/MbiHEPqi/5vjcPPB6j0M+WQzjarGMLNvM65IKl/sqXUT46MYd2sD+rapzus/7OKl\nr1PJyPLddYZw7XmHk0DMWYr3WX7ccohJ3/7FyJvq0alhfKHv9+zfj+PxJ7COHY2pUaNC3x8xcABK\njRo4nn0O3eM557WYSAtjuiejrT3Aml2h30O8GF3XWbb1MA/NTiHzhIPpfZqiXl7tX6cdKCpFUWhb\nrwL/6decpEpleOy/m5jz815ynW4fRC5E6ZOeN3lFQ1t7gIUpmYztkUxi/IWtjwu2OXGC3L79sNx2\nGxH9+hb9WHY79vsfxHT5ZVgHP37B61v2n2DMV6lMuK0hdSoVHkeo2Pn3KWYsS+OUw82ATok0rV7W\n0ONlHrfz7so9bD2YzYMdatG2XvHP7IUwki/mNglJbo/OW0t3s/XgSab0akx8jLXQbXSXC/uTwzG3\naoWlbx+vjqfYbNjeeI3cu/rgSkzE0qP7Oa83qlaWAZ0SGb1gO1PvbEyF6MLjCWbHc5zM/nkfq/86\nQt8ra9ClaaVSuWibEGvjmZvq8fue48xclsbXf2TySMda1K4YPr8wRXAL67ZJrtPN2K9SOZhl55U7\nGhWtcOs6zgkTQYeIZ57+17O1gvpkSoUK2KZPwzFlKu41ay94vWODeG5olsDo+duD7mt9UXuDbo/O\n179n8NDsFEwKvN2vOV2bJ5T6aJsWNWOZdndTrqpbnqc/38rMZWmcyHV5tY9A7IcaKdzyhcDMOWyL\n99GTTkZ8tpW4qLxec1HHWLvmfIx7/Xpsk19BsRT/i4upbhK2lydif3I4nt27L3j9zsurUis+ile+\n24knxCaxStl7nMfn/smK7UeYcFtDBl5dm7J+nCbXbFLo1rIy/+nXDKfbw8OzU/huUyZuT2j93EVo\nCcue996jOTz/5XaubRjP3VdWL3Kv07VsGc4xL2KbMxtTdd+sS+n67HOc771P5Nw5KOXKnfOaw+Xh\n2S+20bBKDPe3D/7lm/4+kddn3nwgmwfa16R9/QoB2Wf+K/MkM5am4XR7eKRTIo2rGdt/F+LfyDjv\nfJv3n2DEp1u58/Jq9GlTo8jFw7NlC47nR2F9farPCjeApeftmDtfi33wE+iOc2fGs1pMPH9zPX7a\ncYTvNmUWsIfA53B5+O+a/Tz68SaqlY/k7X7N6JAcH5CFG6BeQjSvqo3ocWkVxi/8i1cX7eDISZm1\nUASWsCreq/86wtivUhl6fR26NK1U5O08GRnYBz2O9blnMTcvcO6tCxS1TxbxxGCU8uVxjBp9wTzf\nsVERjOmezOyf9gXFDSZn56zrOr/sOMrDH6WQmnGSN3o3pV+bGv86zUCgUBSFaxpW5O1+zYmPtjLg\no018uu4ADpfngvcGYj/USOGWLwRmzmFTvL/ccJAZy9J46dYGXFa7XOEb5NNPncI+6DEsd/bC0uV6\nQ2JTTCasE8aj79yF6+13Lni9Rvkonu5al0nf7iD9SI4hMfjaniN5ran3Vu1h0DW1eeGW+lSJ827i\nnUBQxmqmf7uaTOnVmE37TjBwTgprw3QcvggsId/z9ug6s1aksy4tixd7NLhggeB/o7vdOJ4YAnFx\nWF8ca/jXfP3vv8m9qw8RQ57A0vXGC15fvPlv5v66n6m9GgfsREsn7W7m/rqPHzYf4s7W1bilRWjN\nJ7Jm1zHeXp5G9fJRPNyxFtXKFTzLpBC+EHbjvHVdJ/1IDnN+2cexUy4mq429HtHgnDIV/UQ2timT\nS6U/q1SqhG3am+Q++CBKtWqYW7Y45/XrGldi/zE7L36VyoTbG/rkzkNfOXbKyeq/jjL31320Soxj\nZt9mlI8OzF8wJdG6Tjla1oxl/sYMhnyymeubVOL6JhWpUT4yYHv4IjSF1Jm33eXh9z3HWbvr2Jlb\nzNsnV6BfmxpeFzqn9imu2bOJ/HgOSjGngjx7ZRlvuFesxP7CKCLnzMZUo8Y5r3l0nUkLd2AywYgb\n6vqtYHh0nR2Zp1iz6xhrdx1j79FcWtaKpb4lk143tC18ByHgcLaDeWv3s2xzBtFlImldpxyta8fR\nrEZsQP1i9bXi/rsOZv7MOWTPvDOP21m7O4s1u46Ssu8EdStF07pOOcb2SKZWhahiFTf36p9wTn+L\nyI8+LHbhLglzh/ZEPPQg9oGDiJwzGyU29sxrJkVhaJcknvpsC3N+2UffNjX+ZU++dcrhZkN6Vn7B\nziLaZqZ1nXLc264mTarFEGE2sWpVRqnF42/xMVYGXl2bZpa9VG/YjDW7jjH31/3sXriDFjXKcnmd\nclxepxwVi3DzlxDeCrozb7dHZ8uB7Lyz693HOHLSyWWJcVxepxytEuNKfLOH56+/yL3vfmxTp2Bu\n1arE8ZaEY/xEPDt3YpsxHSXi3BbE0ZNOhsz7k35tanBNo4qGxbDvaG5esd59jK0HsmlYNSbvDLNO\nOen3FiArx8n6tCzW7DzG+rQsEmJtZ87Kk6vEyJztwisFnXkHRfE+nuNkXVoWa3fl/WeoVNaY/wz6\nocPk3n03EY8+iqXbLT7ZZ4nicbmwPzYYpXIC1lEvXPAtIu3wKZ76bCvP3VzfZxM5Od0eNu07caYd\nkuv05J1B1i7HJbViiZLVfrxy+mTj9M/zyCnfnmyI0BdUxVvXdXYdyjnzD3734RzDv4bqubnY738A\nU5s2WAc96pN9+qJPpp88SW7fe7B0u4WIe++54PX1aVlMXrSTV9VGxT4TPnLSwdpdee2QjXuOU7NC\nJFfk/6zrVirjVetJ+qH/LuO4nbX532ROt/kurx3HFUnlit3mK23yGZeugO955zrdbEw/nv8VPQuL\nWaF1nXLcdUU1wy8A6R4PjudeQKlWjYhHBxp2nOJQoqOxTZ+GvU8flJo1sVx7zTmvt0qMo8+V1Rk1\nfztTehVtRI1H10nNOHnml+OBLDuX1oqjTd3yPHZt7YAdhhgKKsfauLlFZW5uUfnMBfY1u47xwpfb\ngbzRLJfXKUeLmrHYQviipyg5v555H8yynykgfx44QXJCNJfn91NLc+iV481peH75Fdt7s1C8XMG5\ntLg3/Yl9wEAiZ87A1KTxBa+/syKdHZknefHWBkRcZFz1SbuL39LyCsW6tGPERkbQuk7e1/fGVWNC\naix2MNJ1nbTDOWdOXnb8fZJm1ctyee28/w8JXtyfIEJLQLRNmrdoyeb92azZnTeU70Sui8sSy9E6\nqRyX1ool2lb6XwRc8+fjnDGTyLkfo1SoUOrH94brhyU4J0zANmcOpqpVznnN7dF56etUykZaGHJd\nHQD2nL7YuOsYqRknaVKtLK2T8vrXwXi3Yzg5ketiff51nnW7s6gQHXHmxKZRVbnoGU4ConhP+FWn\napztzD/C+pWjMfmxx+deuw77sGFEvv8eprp1fb5/I/pkzvfex/XNQiJnf4ASHX3OazkON8M/3UJ8\nTATpR3JxufUzZ9cta8YaNqeIruvou3fjXruODVYrrc9bYCLUGd0PdXt0th3MPjNE8+9sO60S47i+\nSSUuqVX6Q1ml5126AqLn/Z9+zQJmZRjP7t3Yhz2JbdIkQwq3USz978WTloZ9+FPY3nwdxfxPQY6y\nmhnbI5mVqUe496qa1K5o3AUw3eHAs3Yd7hUrcK9YCXY7pkta0nDVapz792O5rz9KpAwl9AWzSaFx\ntbI0rlaWe9vW5O8TDtbsOsYbP+wmqVIZHuxQS75JhaGAHG1iNP3YMXLv7ktE/3uw9Ozp73C8pjud\n2AcMxFSvHtannyq143oyM/GsWIl7xUrca9ZgqpuEuUMHzB3aozRsiKIoePbvxzl5Cp6UTUQMH4a5\nc+egGEERjBwuD5+vP8AXGw5yS4vK3HFZ1aCYsVF4JyDaJoFQvHWnE/uDD2Fq1gzrsKH+DqfY9OPH\nyb27L5a7ehPR+05jjuF249m0Ka9Yr1iBvm8/5quuwtyhPeZ2bf/1GoF7zRocEyaiVKiA9ZmnMdWr\nZ0iMIm+Ri1kr97D1QDYPtK9Fu/qymHIokcUYyOvNOkaPQYmNI2LIE4Yfz8g5gJXYWGxvTcf5n7dx\n+/A4+vHjuL5bhH3ks+RcfQ2OF0aD04n1qRFErViG7dWXsXS7pcDCfTpnc+vWRH6qYb72WnL7349j\nwkT048d9Fmcg8fdcz5XK2nimaz2GdUli7pp9PP35VnYdOmXY8fydrz8EYs4BM867NLjefgc99S9s\nH7yHYgr+31ummjWwTZ2CffBgIme9gyk52et96LqOvnMn7uV5vWvP5s2YWl2KuUMHIh4dWKJVgxSL\nhYi7emO5oQvON6eRc0t3rI8Nwnxrj3N69cI3mteIZdpdTfk2JZNnPt9Kxwbx9LmyutzFGaLCpm3i\n+vY7nJOnYJs7B1NCgt/iMIJr4UKcr72Rtw5mxcLnOdHtdjxr1pxph+D25LVCOnTAdEVrlKgoQ+L0\nbN6MY/xEcDiIGPnMBVPeCt85nuPkw5/28dOOI/RtU4MuTSrJ8MIgFdY9b/fG37E/9jiR77yNqWED\nv8RgNOeMmbiXr8D2/rsXLb6egwfzzqxXrMC9dh2mBsn/XGysX7/UeqS6ruP+ZiHOKVMxXdEa69Ah\nKJWKviSd8M5fmSeZuSyNXKeHAVcn0kQWUw46Ydvz9uzdi2PIUGwvvVjqhbs0+2SWRx5GqV0bx8hn\n0T0edLcb928bcLz2Ojm39SS3p4pn/XrMXW8k6vvviJz9IREP3I8pOdmnhbuwnBVFwXLzTUR+NR8l\nIYGcW2/H+d776E6nz2IobYHYDz2tXkI0r9zRiJ6tqjJx4Q5e/m4Hh7JLtphyIOdrlEDMOWSLt37q\nFK4lP2IfOAjLA/dj7tjB3yEZSlEUrGNHox8+jL3fveR0vBrHS+MAsD73LFHLl2KbNBFL165+maP8\nfEp0NNYhTxD58Ue4160n99bbcK9c6e+wQpKiKHRqGM/b/ZqRUNbKo3M2oa3df9HFlEXwCKm2iSc9\n/Z8Lb7//jql5Myw33ojl9tsMPW4g0bOycK9chalVqwtuoQ9k7uUrcEx6GaVObaxPjcBUq5a/QwpZ\n+4/l8vaKdPYcyeHhjom0rlP0BblF6QvJnrfudOL57bd/xiGfyMbcvn3exbc2V6LExPj0eMJYusOB\n66M5ON97H0vPnkQ8/CBKmTL+Ditkrd11jP+sSKdanI2HOtaiRnljLlSLkgmZnrd+6BCuL77EPmQo\nOR064XztdZSYGGwTJxL14w/YXhyD5brOAVG4A7FPZrSS5KxYrUTcfx+RX3yOnpFB7i3dcH3zDaV1\nglFcwfo5X16nHDP6NKV5zViGzdvCe6v2cMrhLnS7YM23JAIx54AfAKp7PHj+3Ix7xQo8K1bi2ZOO\n+corMXfsiPXZZ1Eqxvs7ROFjpoQEbBPH511wnTAB1zwt7y7NRo38HVrIiTCb6NmqKtc0jOf9VXt5\naPYf3Ne2Jlc3jJe7NANckdsmqqqagHXAXk3TuqmqWh6YByQCuwFV07Ssgrb3aiWd7GzcP/2U1w5Z\nuQolNjavFdKxA6ZLLrlgPUcRunS3G/cXX+B4YxqWa68l4vFBKOXL+zuskLXlQDYzlqURYVIYcHUi\n9RKiC99IGMoXbZPBwOazHj8N/KBpWgPgR+CZ4gan6zqeXbtwfjib3PvuJ+eazrg+/x+mRo2InPMR\nUV/Nxzr8ScytW0vhDjOK2YylZ0+ivloAERHkdO+B87+foLtc/g4tJDWqGsNrdzbm+iaVeOHL7bzx\nwy6OnQreYZyhrEjFW1XVGkBXYNZZT3cHPsz/+4dAD28OrDscuFf/hGPCRHK73oz9gQfx7NqFpU8f\nopb9SOR/ZhJx912YatbwZrcBJRD7ZEYzKmclLhbryKeJnPUO7u8Xk3tHL9xr1hpyLG+F2udsUhS6\nNK3E2/2aYYsw8chHKczfeBC3J+9beqjlWxSBmHNRe95TgeHA2QOEK2ualgGgadpBVVULvefck5GB\nZ+XpKUXXYqpbF3OH9timTkZp0EB6bKJQpuRkbO/Nwr14MY5nn8PUvDkRTw4LqmGRwSIm0sLDHRO5\noWkCM5el8V3K3zzSKdHfYYl8hZ55q6p6E5ChadpG4N+qa6HN89xbb8f96xrM111H1LffEPnxR0Q8\n/BCm/LmgQ024rTYCpZOzoihYrr+eyAVfotSpTW7PO3C88irudev80k4J9c85MT6K8bc1oE+b6kxd\nvJOVx6sUaVRKKAnEz7jQC5aqqo4H+gAuIAooC3wBXAZ00jQtQ1XVKsBSTdMKHA6wZMkS/dSJE7Tr\n2BH452vI6R+KPJbHxX3s2bePXa+/QdymTZQ5loX5qqvYUaUyWU2b0OaGG/weXyg9vvzKq5i5LI0N\nOzPoVc/FjdcEVnyh+NgnN+moqtoRGJY/2uRl4LCmaZNUVX0KKK9p2tMFbevvWQX9Qdb6K30FrvbT\nsYNhrTl/51zaVq5cxT5bEt+mZDK2RwMS40P/5p5QW8NyIqCpqnofkAaoJdiXED5hSkjA1PN2LD1v\nz1tnc9163CtWYB/6JNhzMbXPm/rWfOUVcvdmMSkK3Nm6GpXKWnn68y0807UezWvE+jussBPUt8cL\n4Q3P7t2VjAJGAAAar0lEQVR5Z+TLl+NJ2YSpZct/5jGvVdPf4QWlDelZTPp2BwM6JdKxgdwwZ4SA\nWD1eCH8y1a6NqXZtIvr1zbsR7OefcS9fifOdWSixZc+0V+RGsKK7pFYcE25vyKj52/k728Htl1YJ\nycEHgSjo5jYJJoE4NtRowZKzEhOD5brrsL00lqilS7BOmIASHY1zymvkdOyEfegwXF/ORz90uNB9\nBUvOvnJ+vnUqlmGy2pglWw4xY1namfHgoSQQP2Mp3iLsKSYT5qZNiBg4gMhP5hK1YD7m9u1xL19O\nzi3dyL3zLpxvzcC96U90j8yBfTGVylp59Y5G7DmSy7hv/iLXGV5DCf1Bet5C/IuLTjvcrh3mjh0w\nX9UGJVrm/jib0+3h9R92se9oLqO6JVOujLSfSiok5/MWorR50vfgXpG/4MfGjZiaNzuzFqipdm1/\nhxcQdF1n9s/7WLH9MC/2aEC1cpH+Dimohcx83sEkEPtkRgv1nE21ahLR524i355J1LIfsfTuzYHV\nP2G/7wFyut6MY+Ik3D/9jO4o2TqRgawo65Tec1UNbm9VlSe1LWw9kF1KkRknEP9dy2gTIYpJKVMG\ny7XXkG6zUrNtW/StW3GvWIlz+nQ8O3Zibt06r73SoT1KpUr+DrfUdW2WQMUYK6MXbGdw5zq0qStT\n+fqStE2EMIB+5AjuVavzeuU//YRSo/o/7ZWmTVFM4fOld3tGNmMWpHJn62rc0qKyv8MJOjLOW4hS\npFSogKXbLVi63YLucuHZuBH3ipU4nh+FfvRI3kXPDvkXPWND++7E5MoxvKo24vkvt5N53EH/djUw\nyVjwEgufX/9+EIh9MqNJzhdSLBbMl12GdegQouZ/QeR/52Jq1gzX/PnkXNeF3Hvvw/ne+3h27Az4\n9TqheJ9x1bhIpqiN2HzgBC9/uwOHK7iGXAbiv2sp3kKUMlP16kT0vpPIGW8RtexHIu69B33vXuwP\nP0LujV1xjJ+Ae9UqdLvd36H6VGxUBONva4jLo/PcF9vIzpXVkEpCet5CBAhd19FTU8+MKfdsT8V8\nWStMp3vlVUJjwQmPrjNrRTrr047zYo9kEmJt/g4poMk4byGCjJ6VhXv1atzLV+JevRolISF/Ie6O\nmJo3QzGb/R1iiXzx20E+/+0AY7olU1cWOi6QjPP2g0DskxlNcvYdJS4OS9eu2CZNIGr5UqzPPQuA\n48WXyOl4NfannsG1cCF6VpYhxy+Ir/K99dIqPNIxkWe/2Mb6tNLNwVuB+O9aRpsIEQQUsxnzpZdg\nvvQSeGIwngMHca9ciXvhtzjGvIipQfKZoYhK/fpBM7Nfu/oVKB8dwbiv/6J/2xpc1yT8xsMXl7RN\nhAhyut2OZ+3aM71y3B7M7dvltVdaX44SFfgr3ew9ksPzX26nc+OK3HVFtaD55VMapOctRBjQdR19\n507cy/PnX9myBdOll2LumL/oRLVq/g6xQEdOOhg9fzt1KpXhsWtqYzFLVxek5+0XgdgnM5rk7F+K\nomCqW5eI+/oT+cF7RC1ehKV7Nzx/pJB7Z29yetyKY8pU3OvWobuKN1TPqHwrRFuZ1LMRR086Gb0g\nNaBWqA+kz/g0Kd5ChDAlNhbLDV2wjR9H1LKlWMeOAasVx8uvkNOhE/YnR+Ba8BX60aP+DhWAKKuZ\nUd2SSShrZcSnWzhyMnQn+CopaZsIEaY8mZl4VqzM65WvWYOpbtKZpeCUBg382nfWdZ15aw+E1Qr1\nBZG5TYQQ5zAlJGDqeTuWnrejOxx41q3HvWIF9qFPgj0XU/u8Prn5yitQypQp1dgURZEV6gshbRMD\nBWKfzGiSc3BSrFbMV7XB+vRTRC38Gtu7szAlJeH6+GNyOl1D7kOP4JzzMZ70PaWa77WNKjLihrqM\n/+Yvlm8rfD1RowTiZyxn3kKIC5hq18ZUuzYR/fqiZ2fj/vln3MtX4nxnFg2jovDMfKvUVg46e4V6\nj65zdcOKpXLcQCc9byFEkekeD+7//Q/Hm9OxvTYV8yUtS+3YO/8+xcj/beXNu5pQqWz4zIciQwWF\nECWmmExYevbE9tJY7IMH4/phSakdO6lSGXpcUoWpi3cFxdS5RpPibaBA7JMZTXIOfatWrcLcvj2R\nM2fgHD8B55yPS+3Yd1xWlVMON9/8kVlqx4TA/IyleAshisXUuDG2jz7EpX2K45VX0T3GL7BgNik8\neX0SH/2yj/3Hcg0/XiCTnrcQokT0rOPYBw9GiY/HOn4cis34fvSXGw6yMvUIL/dshNkU2vOgSM9b\nCGEIJS4W239mAgr2Bx8qlSlqu7WsjMWk8L/fDhp+rEAlxdtAgdgnM5rkHPoulq9is2F9ZRKm5s3J\n7dMPz759hsZgUhSGXpfEZ+sPsPvQKUOPBYH5GUvxFkL4hGIyYX1yGJbed2Lvew+ePzcberzKcTbu\na1uTVxftxOkOrgWNfUF63kIIn3P9sATH2LHYxr2EuX17w46j6zqjF2ynXkI0fdvUMOw4/iQ9byFE\nqbF0vhbbG29gf34Urs8+N+w4iqIwuHMdFqZksu1gtmHHCURSvA0UiH0yo0nOoa+o+ZpbtiDyg/dw\nvvsejmnTDbuxpkK0lUc6JjL5+53YXca0TwLxM5biLYQwjKl2bSLnzMazejWO555HdzoNOU7HBvHU\niS/D7J/2GrL/QCQ9byGE4fRTp3CMeAo9147ttSkoMTE+P8bxHCcD52ziqRvr0iyEpo8t9nzeqqra\ngBWANf/PfE3TRqqqOgp4EDh9n+pITdO+82HMQogQoZQpg/X113COn0Buv3uxzZiOqXJlnx4jNiqC\nx66tzZTvdzG9T1PKWM0+3X+gKbRtommaHbha07RLgObANaqqts1/eYqmaZfm/5HCfZ5A7JMZTXIO\nfcXNVzGbiXjuWSw3dcXepx+e1FQfRwZXJJWnec2yzFqR7tP9BuJnXKSet6Zpp0fB2/K3Ob3gXWjf\nlyqE8ClFUYi4/z4innic3PsfwL1mjc+P8VCHRNanZbFu9zGf7zuQFKnnraqqCVgP1AVmapo2Ir9t\nci+QBawDhmmaVuB9sdLzFkKczb1mLfYnh2MdMRzLzTf5dN8b9xzn1UU7mNGnGWUjg3vNmRKN89Y0\nzZPfNqkBdFBVtSPwFpCkaVpL4CAwxZcBCyFCm7n15US+Nwvn62/gfGeWT4cStqwZS9t6FZixLM1n\n+ww0Xv1K0jTtuKqq3wCXaZq2/KyX3gG+Kmz7VatW0a5duzN/B0L6cUpKCgMGDAiYeErj8ennAiWe\n0nh8fu7+jifY8rXNmc2RfvdycsMGar3xOorF4pN4GyrwcUYsq1KPQMbmEu1vxowZNGvWzG8//4sp\ntG2iqmpFwKlpWpaqqlHAImAM8KemaQfz3zMEuFzTtLsK2k84tk3O/mUVLiTn0GdEvnp2NvYhw1Bs\nVqwvT/LZavVbDmTz4lepTL+7KeWjI4q9H39+xgW1TYpSvJsBH5J3cdIEfKRp2quqqs4GWgIeYDfw\nsKZpGQXtJxyLtxCi6HSnE8foMeg7dmKb/iZKfLxP9vvB6j2kH87h+VvqoyjBN8ai2MXbV6R4CyEK\no+s6zulv4f76G2w+WqHe4fLwxCd/ctulVencOPhWnpeJqfwgEMeGGk1yDn1G5qsoCtZBjxLx4APk\n3tMf94aNJd6n1WLiyS51mbUynb9P2Iu1j0D8jKV4CyECjuX223y6Qn0orjwvbRMhRMDybN6MfdDj\nWO7rT0Sfu0u0L7dHZ5i2mc6NKnJzC9/emm8kaZsIIYKOL1eoD7WV56V4GygQ+2RGk5xDX2nna6pe\nnciPZuNJScE5YWKJ9lWjQhS9W1dj8qKduD1F7zoE4mcsxVsIEfCUuFhs06fhXrMW55yPS7Svbi0r\nYzEH/8rzUrwNFE43bpwmOYc+f+WrlC2L7a1puN59D/ey5YVvUIDirDwfiJ+xFG8hRNAwVa+O9bUp\n2J9/Ac/WbcXeTyisPC/F20CB2CczmuQc+vydr7lFC6zPjsQ+6DE8mZmFb1CA65tUJD4mgk/W7C/0\nvf7O+WKkeAshgo7lhi5Y1DtwDHoc/VTRWh/nC/aV52WctxAiKOm6juO55+FENtapk1HMxVv2bPm2\nw3z86z7evKspNkvgnc/KOG8hREhRFAXr6FHox4/jnPpasfcTrCvPS/E2UCD2yYwmOYe+QMpXiYjA\n9toU3EuX4fr0s2Lv59FrElm+7TB/7D1+0dcDKefTpHgLIYKaUq4ctrem4Zg2HffPvxRrH6dXnp/6\n/S5OOdw+jtAY0vMWQoQE97p12IcOI/L99zDVrVusfUxdvBOzovB45zo+jq74pOcthAhp5ssuwzps\nGPZHB6EfPlysfQTTyvNSvA0UiH0yo0nOoS+Q87V074b5ppuwPz4YPdf7yaeibWaGXJ/Eaz/s4kSu\n68zzgZizFG8hREiJeHQgStVqOJ57oVizEAbLyvNSvA0UiPMhGE1yDn2Bnq9iMmF9aSz6gf0435pR\nrH30b1uD7Rkn81aeJzBzluIthAg5SmQktjdex/3117jmL/B6+8gIM8OuT+KtpWkcPek0IMKSk+Jt\noEDskxlNcg59wZKvEh+Pbfo0HJMn4163zuvtG1WN4fomFXlzyS5Wrgy8nKV4CyFClqluXWwTJ2If\nNhxPmvc97LuuqM7B43ZSDgdeqQy8iEJIIPbJjCY5h75gy9d8VRusgx7FPnAQelaWV9ueXnl+eUYk\nOzJPGhRh8UjxFkKEPMsdPTF36oh98BB0p3c97KRKZRh0dW3GfJXK4WyHMQEWgxRvAwVLb9CXJOfQ\nF6z5RgwdghJbFsfoMXh7Z7mSuZmbmiUwesF2cp2Bcfu8FG8hRFhQzGasEyfgSU3F9c4sr7dXL69K\nnYplePnbHV4tXmwUmdtECBFWPJmZ2O/qQ8STw7Dc0MWrbZ1uD8/+bxvJVaJ5oH0tgyI8l8xtIoQQ\ngCkhAdu0N3CMG4/799+92jbCbOL5W+rzy46jLEwp/hJsviDF20DB2hssCck59IVCvqaGDbG9OBbH\nE0Px7NtX6PvPzrlspIUx3Rsw5+d9/Jbm3egVX5LiLYQIS+ZOHbHc1z9vFsITJ7zatnr5SEbeVI+X\nv9tB2uEcgyL8d9LzFkKELV3XcY4bjyd9D7bpb6JERHi1/ZIth5jz8z6m3tmYcmW827aopOcthBDn\nURSFiKefApOCc/xEr4cQXtuoIlc3imfMgu3YXd7PYFgSUrwNFAq9QW9JzqEv1PJVLBZsr76Ce+MG\nXB/Nueh7/i3nvldWp3KsjSnf78RTSp0MkOIthBAoMTHYpk/D9f4HuJYu9W5bRWHo9Un8fcLBnJ8L\nv/jpK9LzFkKIfO6UFOwDBxH5nxmYGjf2attjp5wM+WQzd19Znc6NK/osJul5CyFEIczNmmF9/lns\njw3Gc/CgV9uWKxPB6O7JzFqZTsre4wZF+A9LYW9QVdUGrACs+X/ma5o2UlXV8sA8IBHYDaiapvlv\n0GMAWrVqVdDNwFZSknPoC/V8Lddfj56+B/ugx4mc/QFKmTJFzjkxPoqnbqzLhIU7eOWORlQvH2lY\nnIWeeWuaZgeu1jTtEqA5cI2qqm2Bp4EfNE1rAPwIPGNYlEIIUYos99+HqVEjHCOeQnd7NxHVJbXi\n6NumOqPmbztnEWNfK1LbRNO0U/l/teVvcxToDnyY//yHQA+fRxfkQvnspCCSc+gLh3wVRcH6wnPo\np07hnDzF65xvbJbAlXXL8+JXqTjdxgwhLFLxVlXVpKrqBuAgsEzTtM1AZU3TMgA0TTsIJBgSoRBC\n+IESEYFt6lTcK1fi/GSe19v3b1uTmEgLb/yw2+vx40VRaM8bQNM0D3CJqqqxwCJVVTsB50dTaHRn\n941Oj5sM5ccpKSkMGDAgYOIpjcennwuUeErj8fm5+zseyde3j23Tp3Hstp7sVOCyXr282n7EDW0Y\n8ekWXv7sZ9pW9RQ7novxeqigqqrPAznA/UAnTdMyVFWtAizVNK1RQduF41DBUL+wczGSc+gLt3wB\ntkx6mdpr1hL5yVyvb6E/nO1gyLzNPNC+Jh2S470+drGHCqqqWlFV1bj8v0cB1wEbgAXAvflvuweY\n73VUIS7c/oGD5BwOwi1fgIYjhqNUroxz5n+83jY+xsrobsm8tTSNLQeyfRZTUXreVYGl+T3vX4AF\nmqYtASYB16mqug24Fpjos6iEECKAKIqCbcwoXJ9+hjslxevtkyqVYej1Sbz0dSoZWXbfxCR3WBon\nHL9eSs6hL9zyhX9ydn23COf06UR+qqFEej+Ge/6GgyxM+ZspvRoRbSvSJUe5w1IIIUrKckMXTA0a\n4nz9jWJt361lZVrULMu4b/7CVcIhhHLmLYQQXtCPHSP3tp5YJ07A3Ppyr7d3e3RGL9hOQlkrg66p\njaJccFJ9DjnzFkIIH1DKlcM66gUczz+PfvKk19ubTQpP31iPzQey+XJDRrHjkOJtoFCb97goJOfQ\nF275woU5mzt2wHTFFThefqVY+4u2mRnTLZnP1x/glx1Hi7UPKd5CCFEM1hHD8fz8C+4VK4u1fUKs\njedvqc/UH3bxV6b3Z/DS8xZCiGJyr1mD45mRRP7vc5S4uGLtY1XqEf6zPJ0pvRpTqaz1gtel5y2E\nED5mbt0a83XX4Rg3vtj7aFe/At1aVmb0gu3kOIo+g6EUbwNJbzA8hFvO4ZYv/HvOEYMfx7N5M65F\n3xd7/z1bVaF+QjSTvtuB21O0bogUbyGEKAElKgrr+HE4xo1HP3SoePtQFB69JpFcp4d3V6YXbRvp\neQshRMk5Xn8DPTUV65tvFDp2uyAncl0MnbeZ7i0rc3OLyoD0vIUQwlARAwfg2X8A95fFn6OvbKSF\nMd2TmfvrftbtPvav75XibSDpDYaHcMs53PKFouWsRERgmzAex5SpePbvL/axqpWLZORN9Xh10U52\nHzpV4PukeAshhI+YGiQT0a8vjudfQPcUf+6SptXL8nDHWoyav73A90jPWwghfEh3ubDfcy/mm24i\n4q7eJdrXN39kUtW1V3reQghhNMViwTruJZxvzcCze3eJ9nVT84KXBpbibSDpDYaHcMs53PIF73M2\n1a5NxIBHcDz7HLq76DfeeHUMQ/YqhBBhztL7TrDZcL3/gSH7l563EEIYxLN/P7m9ehP57juYkpOL\ntQ8Z5y2EEKXMVK0a1iFPYH/mWXSn07f79unexDmkNxgewi3ncMsXSpaz+dYeKFUq45wx04cRSfEW\nQghDKYqCbfQoXJ99jvuPP3y3X+l5CyGE8Yq78rz0vIUQwo9KuvL8+aR4G0h6g+Eh3HIOt3zBdzlb\nnxuJe9H3uNesLfG+pHgLIUQpKenK8+fsS3reQghRuuwvjAJFwTZmdKHvlZ63EEIEiJKuPA9SvA0l\nvcHwEG45h1u+4PuclZgYrC+NxTFmDHpWVrH2IcVbCCH84MzK8y+NK9b20vMWQgg/0XNyyL1DJWLQ\nICw3dLnoe6TnLYQQAebMyvPjJ3i98rwUbwNJbzA8hFvO4ZYvGJuzuXlzLLffhn3UaLzphEjxFkII\nP4sYOAD9YIZXK89Lz1sIIQKAZ9t2ch94kMh5/8VUrdqZ56XnLYQQAczblecthb1BVdUawGygMuAB\n3tY07U1VVUcBDwKZ+W8dqWnad8UPPfSsWrWKdu3a+TuMUiU5h75wyxdKL2dL/3txL1uG65N5ha48\nX2jxBlzAUE3TNqqqGgOsV1V1cf5rUzRNm1LCeIUQQvDPyvO5ffphvqoNptq1C36vtz1vVVW/BN4E\n2gHZmqZNLsp20vMWQoiicX48F/fChdg+/IANf/xR8p63qqq1gZbAr/lPDVJVdaOqqrNUVY0rechC\nCCHOrDz/wYcFvqfIxTu/ZfIZMFjTtGzgLSBJ07SWwEFA2ifnkfGw4SHccg63fKH0c1ZMJqwvvYjz\nw9kFv6cobRNVVS3A18C3mqa9fpHXE4GvNE1rXtA+lixZUjpjEoUQIsRcrG1SlAuWAO8Bm88u3Kqq\nVtE07WD+w9uATd4eXAghRPEUeuatqmpbYAWQAuj5f0YCd5HX//YAu4GHNU3LMDJYIYQQeUrtDksh\nhBC+I3dYCiFEEJLiLYQQQaioFyyLTVXVG4DXyPtF8a6maZOMPqY/XWQ6gXc0TXvDv1GVDlVVTcA6\nYK+mad38HY/R8u9tmAU0Je+zvk/TtF//favgpqrqM0AfwE3edbD+mqY5/BuVb6mq+i5wM5BxegSd\nqqrlgXlAInnX+FRN04q3fpmPGHrmnf+feRrQBWgC9FZVtaGRxwwAp6cTaAK0AR4Ng5xPGwxs9ncQ\npeh1YKGmaY2AFsAWP8djqPwhwQ8Cl+QXNQtwp3+jMsT75NWssz0N/KBpWgPgR+CZUo/qPEa3TVoD\nqZqmpWma5gQ+AbobfEy/0jTtoKZpG/P/nk3ef+jq/o3KePnfOLqSdyYa8lRVjQXaa5r2PoCmaS5N\n0477OSyjHQccQHT+vR9lgP3+Dcn3NE1bBRw97+nuwOnbHT8EepRqUBdhdPGuDuw56/FewqCQnXaR\n6QRC2VRgOHlDScNBHeCQqqrvq6r6m6qqb6uqGuXvoIykadpRYDKQDuwDjmma9oN/oyo1CaeHQuff\n35Lg53jkgqVRLjKdQMhSVfUm8vqDGwEl/0+oswCXAtM1TbsUOEXeV+uQpapqEjCEvL5vNSBGVdW7\n/BuV3/j9JMXo4r0PqHXW4xr5z4W0/K+UnwEfaZpW9HWNgldboJuqqjuB/wJXq6pa8KQMoWEvsEfT\ntHX5jz8jr5iHssuA1ZqmHdE0zQ38D7jKzzGVlgxVVStD3t3l/LOOgd8YXbzXAvVUVU1UVdVK3sWN\nBQYfMxBcMJ1AKNM0baSmabU0TUsi7zP+UdO0fv6Oy0j5X6H3qKqanP/UtYT+xdptwJWqqkaqqqqQ\nl3OoXqQ9/xvkAuDe/L/fA/j9pMzQoYKaprlVVR0EfM8/QwVD9cMGzkwncDeQoqrqBvKnE5BVhkLS\n48DHqqpGADuB/n6Ox1Capv2e/41qPXlDBTcAb/s3Kt9TVXUu0AmIV1U1HRgFTAQ+VVX1PiANUP0X\nYR65PV4IIYKQXLAUQoggJMVbCCGCkBRvIYQIQlK8hRAiCEnxFkKIICTFWwghgpAUbyGECEJSvIUQ\nIgj9HwQf7U0Clw/cAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f846435c750>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"%matplotlib inline\n", | |
"import brewer2mpl\n", | |
"colors = brewer2mpl.get_map('Set1', 'qualitative', 8).mpl_colors\n", | |
"mpl.rcParams['axes.color_cycle'] = colors\n", | |
"# there was a bug, with plot\n", | |
"\n", | |
"\n", | |
"avg_weather.plot()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 47, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAECCAYAAAAfE3cCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPW9//HXzGQjJLEqJCCrAgJiXbhqtWIrArJcW/Sq\n35a2t+6ita2KP6u1rdf2tipYLS61V+tStHX51nKvS6sii9KorQsiESiCGygQEBSyTpKZ+f0xwYkh\nmUwyk3POzHk/Hw8ejznDyXy/+WTOZ77zOd/zPYFYLIaIiOS2oNsdEBGR3qdkLyLiA0r2IiI+oGQv\nIuIDSvYiIj6gZC8i4gN5mXgRY8w0YD7xD497rbVzO9nvaOAl4BvW2oWZaFtERLqW9sjeGBME7gCm\nAuOAWcaYMZ3sdyPwbLptiohI92SijHMMsN5a+4G1thl4BJjZwX4/AB4DtmWgTRER6YZMJPtBwKY2\n2x+2PvcZY8wBwKnW2t8BgQy0KSIi3eDUCdr5wFVttpXwRUQclIkTtB8BQ9tsD259rq2jgEeMMQGg\nHzDdGNNsrX2isxddsmSJFu0REemmSZMmdTiYzkSyfxUYaYwZBmwBvgnMaruDtfagPY+NMfcDTyZL\n9HuMHz8+A90TEfGHFStWdPp/aZdxrLUR4PvAImA18Ii1dq0xZrYx5sIOfiRrRuyVlZVud8EzFIsE\nxSJBsUjweiwyMs/eWvsMMLrdc3d1su+5mWhTRERSF/DqevZLliyJqYwjIpK6FStWdFqz13IJIiI+\noGSfhNdrcE5SLBIUiwTFIsHrsVCyFxHxAdXsRURyhGr2IiI+p2SfhNdrcE5SLBIUiwTFIsHrsVCy\nFxHxAdXsRURyhGr2IiI+p2SfhNdrcE5SLBIUiwTFIsHrsVCyFxHxAdXsRURyhGr2IiI+p2SfhNdr\ncE5SLBIUiwTFIsHrsVCyFxHxAdXsRURyhGr2IiI+p2SfhNdrcE5SLBIUiwTFIsHrscjIPWiNMdOA\n+cQ/PO611s5t9/9fB/4biAIR4EfW2qWZaFtERLqW9sjeGBME7gCmAuOAWcaYMe12W2ytPdxaeyRw\nDnB3uu06YcKECW53wTMUiwTFIkGxSPB6LDJRxjkGWG+t/cBa2ww8Asxsu4O1tr7NZgnwcQbaFRGR\nFGUi2Q8CNrXZ/rD1uc8xxpxqjFkL/A34YQba7XVer8E5SbFIUCwSFIsEr8fCsRO01tr/s9aOBb4G\nPOhUuyIikplk/xEwtM324NbnOmStrQTyjDH7d/XCbT8pKysrHd9u3xe3++PmdvuYuN0fN7cnTJjg\nqf64ub2nTu2V/ri53Zbb/elI2hdVGWNCwDpgErAFeAWYZa1d22afEdbad1ofjwf+bK0dkex1dVGV\niEj39OpFVdbaCPB9YBGwGnjEWrvWGDPbGHNh626nG2PeMsasAG4FvpFuu07o6pPSTxSLBMUiQbFI\n8HosMjLP3lr7DDC63XN3tXk8D5iXibZERKT7tDaOiEiO0No4IiI+p2SfhNdrcE5SLBIUiwTFIsHr\nsVCyFxHxAdXsRURyhGr2IiI+p2SfhNdrcE5SLBIUiwTFIsHrscjIPHuRXBOJwO7dUF8foLERIpEA\n0Sit/8bxr38FCQYhFIpRVATFxTHKyiAUcrvnIh1TzV58q6kJqqsDbN8eZPv2ADU1AbZuDfLuu0HW\nrw+xZUuQ6uogdXUdlkA/U1ISo6IiygEHRBg5MsqIEVHKy6OUlcUoL4/Sv3+M/v1jFBQ49IuJbyWr\n2WtkL74Qi8HmzQGqq4NUVwdYvz7Ec8/ls3JlXpfJvCu1tQFqa0O8806Iv/997/8vLY1x5JEtTJnS\nzIgREQYMiFJeHmPgwBiB9JoWSZmSfRJtV/Xzu2yMRTgMGzcGee+9IM8+m8/ChQXs2uX8aaqamgDL\nl+ezfHn+Z8/tt1+UM85oYvLkZg48MMKQIdk58s/G90Vv8XoslOwlp9TUwPvvB3n77RDWFvD88/k0\nN3tv+LxzZ5C77y7i7ruLKCiIMXlyM2ee2cSIERGGD49SUuJ2DyXXqGYvOWHjxgCrV4f47W+LeOml\nPMB7CT41MSZObOGiixo55JAIgwZ58/gUb1LNXnJSQwNs2BBk+fJ85s8vYseOXJhJHGDZsnyWLcun\nvDzKnDkNHH98CyNHRiksdLtvks1y4ejoNV6fN+skL8Vi1y6orMzj4ouLmTixjJ/9rDhHEv3nbdsW\n5Oqr+3LiiWVcemkxL78coqbG7V59npfeF27zeiw0spesUVcHq1eHmDu3D8uW5Xf9AzkiEglgbSHW\nFjJtWhNXXBEv8fTp43bPJJuoZi+e19QEa9aE+N3vCvnznwvI3np8ZgQCMb773TDnntvEmDER8v3z\nuSdd0No4kpViMVi7NsgvflHE5Mml/PnPhfg90QPEYgEWLChi0qRS5s4tYt06HcbSNb1LkvB6Dc5J\nTsdix44ADz9cwOTJZdx5Zx+iUSX59lpaAtxySx+mTClj4cJ8du50vg86RhK8HouM1OyNMdOA+cQ/\nPO611s5t9//fAq5q3awBLrbWVmWibcktsRisWRPk2muLfVWXT0dtbYDzzy9h+vQmfvrTBsaOjbrd\nJfGgtEf2xpggcAcwFRgHzDLGjGm327vAV6y1hwO/BH6fbrtO8PLVcE5zIhZ7RvMnn1ymRN8DTz9d\nwNSpZfzlL86N8nWMJHg9FpkY2R8DrLfWfgBgjHkEmAn8a88O1tp/tNn/H8CgDLQrOWTNmiA/+5lG\n8+mqrQ1wwQXxUf611zYwerRG+RKXiZr9IGBTm+0PSZ7MzweezkC7vc7rNTgn9VYsmpvhhRfymD5d\no/lMevrpAmbMKOWll0JEIr3Xjo6RBK/HwtETtMaYicA5JOr3SbUNXmVlpePbVVVVaf18Lm1XVVVl\n/PVfffVtHnqogNNPL6GmRidgM+2TT4Kcemopjz2WzyuvrPXU+ykXt72ULzqS9jx7Y8yxwHXW2mmt\n21cDsQ5O0h4G/AWYZq19p6vX1Tz73LZ5c4D584u4554it7viC5de2sDs2WEGDPDmdTWSGb29Ns6r\nwEhjzDBgC/BNYFbbHYwxQ4kn+v9MJdFLblu/PshllxXz8ssq2zjl1lv7UFWVx7x59Rx0kOr4fpR2\nGcdaGwG+DywCVgOPWGvXGmNmG2MubN3tZ8B+wJ3GmDeMMa+k264TvF6Dc1KmYlFVFWTmzFIlehcs\nXZrP6af3Ze3azFVvdYwkeD0WGZlnb619Bhjd7rm72jy+ALggE21J9lq5MsQZZ5Swc6eu5XPLBx/k\n8R//Ucqf/1zDoYdqhO8nWhtHHPH66yFOP72E3buV6L2gX78ojz1Ww2GHKeHnEq2NI6564w0leq/5\n+OMgp59eSlWV/iZ+ob90El6vwTmpp7FYtSrIGWco0XvRjh1BjCllzZqe/210jCR4PRY6AqXXrFsX\n5MwzS/nkE73NvKq6Osg3vlHChg36G+U6/YWT8PpaF07qbiw2bQpw8cV92b5dbzGv++ijEJdfXszm\nzd2/sE3HSILXY6EjUTJu506YN68PK1fqRmjZ4sUX87n99iJ27XK7J9JblOyT8HoNzkmpxqKxEawt\n5E9/0t2xs81ddxXxxBMFNDen/jM6RhK8Hgsle8mo5cvz+MlPdHPUbHX55cW8/LK+keUizbOXjHnz\nzSD//u9l1NdrUbNsVlYW5W9/q+GQQzQHP9tonr30uq1bA1x6aV8l+hywe3eQH/2omO3b9bfMJUr2\nSXi9BuekZLFoaYGFCwtYtUpf/3PFSy/l8/TT+XT1xV/HSILXY6FkL2lbtSrEf/2X6vS55qqrinnr\nrZDb3ZAMUbJPwuvzZp3UWSy2bg0wZ04xkYi+8ueacDjANdf0SVrO0TGS4PVYKNlLj6l8k/tefDG1\nco54n5J9El6vwTmpo1hUVal84wdXXVXM6tUdl3N0jCR4PRYakkmP1NTAr39dpPKND4TDAe66q5B5\n8+rpo892du2Cjz8O8PHHQZqbIRIJ0NwMtbX/xgsvhMjLg8JC6NcvRnl5lOJit3scp3n20iMvvRTi\nlFPK3O6GOCbGokU1HHVUxO2OOGr3bti+PUB1dZCtW4O88koeL7yQz/r1QaLR5AOdwsIY48a1MHly\nC4ceGqGiIkr//jEqKqK99qHZ2/egFZ/ZuRN+8QsN8fwlwE03FfH739dRluOf8bEYvPdekFWrQtx+\neyFvvpnXZWLvSDgcYMWKfFasSNyCs7AwxsSJzZx/fpixYyMMHOjcYFs1+yS8XoNzUttYrFiRxyuv\n6B6yfvPccwWsWvX52n0uHSN1dfEb7cybV8TEiWWce24Jb7yR36NE35lwOMAzzxRwxhmlTJlSxv33\nF7B2bbBb6xH1VEZG9saYacB84h8e91pr57b7/9HA/cB44Bpr7S2ZaFecV10d0No3PnbddX149NE6\n9t/fm+Xfnti5Mz6A+d3vili2LA9w5jzU5s1BrriiL3l5MWbNamLWrDCHHRbptRp/2iN7Y0wQuAOY\nCowDZhljxrTbbQfwA+CmdNtzktfnzTppTyz++c881q9X9c+v4mWJxOg+24+RNWuCXHhhCcaUsmxZ\nPk4l+rZaWgI8+GAhM2aUcv31Rbz/fu8UXDLxqscA6621H1hrm4FHgJltd7DWfmytfR1oyUB74pKd\nOwPccEOR290Ql91yS/ave79zJzz6aD4nn1zG0qVeKUkGuPPOPnztayUsX55HfX1mXz0TyX4QsKnN\n9oetz2W9XKpHpquyspJ164KsW6dRvd/Fv93FR/fZeIysWRNk9uwSLr64xJML9330UYhTTy1pHeVn\nrn+ePnIrKys/+5q4503l5HZVVZWr7Xtpe/Pm7Tz/vNZJEYAACxcGgNc/e8bt92cq2wUF+7Fp0+FZ\nsjprfJT/+OMF3H13HcHgP2huDnf5+xYnKfinPc/eGHMscJ21dlrr9tVArP1J2tb/+y+gJpUTtJpn\n7y1r1wb56lfLaGnx+kEiTujTJ8YLL+xm5MjsWPP+009hwYJCfv5zj1zh1A35+TEWLKhl0qQW8ruo\nOPX2evavAiONMcOMMQXAN4EnkuyvbJGFXn45T4lePtPQEPjciVov27EDbrutKCsTPUBzc4DvfKeE\nJ57Ip7Gx56+TdrK31kaA7wOLgNXAI9batcaY2caYCwGMMRXGmE3A5cBPjDEbjTEl6bbd27KxHtkb\ntmwJcPPNmm4pn/frXxfx2msfuN2NpD75BG69tYj587P7/RuNBrjggr489VR+j+fkZ6Rmb619Bhjd\n7rm72jyuBoZkoi1x3vr1IbZs0fV38nkbNuSxY0c/t7vRqZoauPfeIu64I7sTfUKAiy7qS9++tZx8\ncguhbn6x0hGcRLbPIc6UF1/09Hl8cdE77+zndhc61NwMf/lLAddfnyuJPi4aDXDWWSX84x/dL6Ep\n2UtS1dUB/vSnQre7IR61YEEhn3zidi/2tmpViCuvzM4afVdaWgKcd14J777bvXNoSvZJqGYPGzcG\n2bxZbxPp2Pr1QTZu9Nb7Y/PmAJddltt3T9u2LciddxZRW5v6z3jrrySeo3uQSnIB3n7bO++RPeWb\n1atzv/R4332F/POfqf+eSvZJ+L1mX1MDDzxQ4HY3xOMefrgwrSmBmbRqVchHy28HuOSSvimXc5Ts\npVMbNwZ5883cHyFJev7+9zxWrgzx3nvBbpUVMs0P5Zv2ulPOUbJPwu81+48+CqJr4KQrkUiAysp8\nvvSlMqZPL+V//qeQt94KEg47249nnsn3RfmmvfvuK2Tlyq5LaUr20ql33vFOLVa8LRyGYBBWr87j\nmmuKOfHEMi65pJjXXgs5cmOODz8MMG+eX8o37QW4++4iGhqS76Vkn4Sfa/bNzbB4sf9GSdIza9aE\nOOSQxP1po9EACxcWMm1aKbffXsRHH/XuN8Q1a0Js2+bfdPbXv+azYUPy39+/0ZGktm0L8PrrSvaS\nmjffzOPww/e+GXk0GuCXv+zDGWeUsGpV76Sb2lr43e/8fZ+FWCzQ5br8SvZJ+Llm//HHAXbv1ttD\nUrN5c4BBgzpfAXPdujxmzizltdcyXxp8++0QL7yggclttyX/wNPRLB2qrtZbQ7qj6zLNrl3BjI/w\nYzF49ll3bifoNZ98ojJOj/m5Zt9b98GU3NXcDHl5ye+PsXt3kO9+t2/Grrp9772g70s4qdIRLR1a\nu1YzcaR7qquDVFR0fTOkjRvzWLCgICMXYm3aFKS2VqP6VCjZJ+HXmn0kwmf3GBVJ1ZYtQSoqUrtz\n1W9+U5SRm59o3abUKVKyl127YOtWvTWke6qrAyknewhwww19qKlJr83ly3ViNlU6opPwa82+oSGg\nE7TSbdXVQQYMSP2e1i++mJfWImrbtwd0r4Vu0BEte6mvD1BXpzqodM/27QH69+/ODcgD/PWv+UR7\neM/yHTsCfPihUliqFKkk/Fqzd3MxK8le0WiAYDczyoMPFrJtW88GFvFvnxqUpCoj34GMMdOA+cQ/\nPO611s7tYJ/bgOlAHXC2tXZlJtqWzNOoXpyyY0eQ7dsD3Sr/7LF1q96n3ZH2yN4YEwTuAKYC44BZ\nxpgx7faZDoyw1o4CZgP/k267Tjj+eH/W7FtadBBJz8S6n7N7fH7o009VmOiOTETrGGC9tfYDa20z\n8Agws90+M4EHAKy1/wT2McZUZKDtXrFuXZALLijmO9/p22vreXhZU5PbPRA/6Wmy1/z67slEGWcQ\nsKnN9ofEPwCS7fNR63PVGWg/o2pqYM6cYl5+Ob6o0KpVeSxevDuli0VyhVfuOiT+UFPTs6RdX5/h\njuQ4Tw9b254graysdGQ7HA6wcWNiOlh1dYBwOOBY+17Y7unsCJGeaGmBl19+uVvv11dffZWGhhZH\n+5ntMjGy/wgY2mZ7cOtz7fcZ0sU+e2k7z739nPfe2o5GY/zyl/Wcd15folG4/vp6KiqiDB3qTPte\n2C4sRMQxxcUxjjvuuM8919X79eijj2bpUs2x745MROtVYKQxZhiwBfgmMKvdPk8AlwCPGmOOBT61\n1nquhAPxu+3MmNHM3/++m0gERoyI+i75FWldKXFQeXnPSqR9+/qntJoJaZdxrLUR4PvAImA18Ii1\ndq0xZrYx5sLWff4GvGeM2QDcBXwv3XZ7U34+jB0b5dNPl9PHh3c6C4V0EEnPBHpQfi8v71ndsLRU\n79PuyMj3IGvtM8Dods/d1W77+5loS3qfHz/gxB0FBbEej+x7+iHhV54+Qes2v66No6/H0jPdf998\n+cstPU7aPbkQy8+U7GUvffuqlCPdV1ra/WmUs2c3Ulzcs/b6949SUqL3aaqU7JPw69o4ffrE6N9f\nB5F0z4ABUbZsST2l9OsXZdy4vW9Snqry8hhHHKHpl6lSspe9lJTEGDBA9VDpnoqKKNXVqY/sr7qq\ngcGDez6oKCiAyZObe/zzfqNkn4Rfa/bFxTB8uJK9dM+AAdGUlz744hdbmDEj/UQ9alTPvxn4jZK9\ndOjgg3UQSfcMHBhLKdmHQjFuuaWegQPTLxUOGhSlJyeG/UjJPgm/1uwBxoxRspfuKSmJpXSCdt68\neg47LDPvrxEjokycqLp9KpTspUOp30tUJHXXXNPAGWc0kZ+fmdfr2xcuukgr9wEEAsm/4SjZJ+HX\nmj1ARUVM0y8lZcXFMRoaku0RX3PqggsaKS3NbNvjxkV0gRXwta8lX5tcyV461L9/lIMP1gEkqfni\nFyO89VbHF+QPGhTh8cdrOPvsMPvsk/m2Dzggxpw5Gt2fc46SfY/5uWZfWgoTJ+ouJpKaww9vYeXK\n0OeeC4Vi/OAHDTz5ZC0nnBDp8cVTqZgwodnX30SHDIl0eZ5Na4RKp446SidpJTX77x/j44/jY8eK\niihXXNHAl7/cwsiRUQoKer/9ESOinHFGE48+6rMlaltdeWUjFRUxPkqycLySfRJ+rtkDDByoMo6k\nZvjwCPffX8uAAVGGDIlywAHOjrILC+F73wvzf/9XQDjsr9sVDh/ewle+0vU1C0r20qkhQ6Lsv3+U\nHTtU7ZPODRkSYeLEFvr1c7eMcuihEebOreeyy/q62g8nBQIx7rijnqFDu469juIk/Fyzh/iJL2NU\nt5fkvvvdJtcTPcTX0p8+vZkJE/yzhMIVVzQyfnxq5VYle0nqpJP8c+BIzxxzjHcuaurfP8avftVA\nYaH7Hz69bfjwFv7zP8Mp31lOyT4Jv9fsAQ48MOqLA0d6prQ0xrBh3jqRv6eck8sCgRi//W09Q4ak\nfmwq2UtSQ4ZEmTJFo3vp2GmnhdNaubI37CnnnHBC7r5vr7yykSOP7N6HrJJ9En6v2UP8frynn666\nvXTsK1/5lKAHs0j//jHmz69j7FjvlJgyxZgw556bevlmj7Rm4xhj9gUeBYYB7wPGWrurg/3uBU4B\nqq21h6XTpjhv9OgI+fkxmpv9NaVNkisujnHAAbWAN+e2H3hgjD/8oY4zzyxh48ZQ1z+QBaZObeLa\naxt6dN/edD+TrwYWW2tHA0uBH3ey3/3A1DTbcpxq9nEjRkSZNSvsdjfEYy64oJFjjtnf7W4kNWpU\nlIcfrmXIEG+dV+iJk05qZt68+h5fw5Busp8JLGh9vAA4taOdrLWVwCdptiUuyc+Hb3xDpRxpK8Yp\npzR7soTT3tixUR57rJbRo7O3pHPaaWFuvbWuWydk20v3T1Vura0GsNZuBcrTfD1PUc0+oaDgHQ45\nJHsPFsms445rYdSoSNYcI6NGRXnooTqOPTb7Ttqed14jv/pVA4MGpXcivMuavTHmOaCizVMB4reG\n+WkHu2f0tHxlZeVnpZQ9byont6uqqlxt30vbK1Y8x8UXD+YHP+iPyLnn7qSq6tXPtt1+f6a6ff/9\nJ/Dkk/n85CfFnj8Hte++UX7723qOP76ZN9+sZMOGrn+/4iSrzQVisZ7nZ2PMWuBEa221MWYAsMxa\nO7aTfYcBT6Z6gnbJkiWx8ePH97hvknnvvhvkxBPLqK319kEivWu//aIsXbo7pUv0vSgSgbfeCvL/\n/l8xr7+eobuoZNisWWEuu6yRUaO6tz7VihUrmDRpUocHaLplnCeAs1sfnwU8nmTfQOs/yVIHHhjl\n4ou1brjfXX55Y9YmeoBQCA4/PMof/1jHvHl15Od753fZd98oDz1Uy4031nc70Xcl3WQ/F5hijFkH\nTAJuBDDGDDTGPLVnJ2PMQ8BLwMHGmI3GmHPSbNcR2VKPdEJlZSWBAJx6ahNFRd45OMRZpaUxTj45\nUffO5mOkoiLGOec0sWjRbqZObcLNG5cXFMSYPbuRZ56pYdq05ozfzQvSnGdvrd0JTO7g+S3E59Xv\n2f5WOu2Id4weHeVHP2rgF7/oxTtRiGdde23mR5xu2jPKv+eeOjZsCLF4cT63317I7t3OTDMaPDjC\nlVc2cswxLRx0UDRj9+btSFo1+96kmr13vfNOkEmTSh07IMQb+vePsmhRDcOG5U6y78j77wepqgrx\nm98UsnJl5rNvIBBjxoxmzjsvzJgxEQYMyFwOTlaz13r20m0jRkS57roG5szxz7rhAr/6VX3OJ3qA\n4cOjDB8e5YQTmlm/PsSHHwZ59dU8nn8+n7ffDhKNdu/UY2FhjEMPbWHy5BbGjWth6NAoo0ZF6dOn\nl36BTijZJ9F26qfftY/FSSc1U1ERpbpao3s/GD68heOP3/s6i1w+Rr7wBTj66AhHHx3htNOa2b27\nge3bA1RXB9m2LciaNSE+/TRAbW2AmpoAgUCUsrIApaUx+vePcfDBLVRUxCgvj9G/f7RX78GbCiV7\n6ZGhQ2Ncf309551X4nZXxAE33NDAwIHeLPk6pawMyspijBgRASKceurnL9BauXIlRxxxhDudS4GG\nZUnk6oilJzqKxQknpHbvS8lup5wS7vQGJTpGEryc6EHJXtLQr1+M//7vBk3FzGGlpTGuuaaRffd1\nuyeSLiX7JLJ5DnGmdRaLQw+NcNNNuX1XID+bP7+OMWM6PymrYyTB67FQspe0BAIwdWqzyjk56JRT\nwpx4ov6uuULz7CUj3norxMknl9LYqBUxckFpaYxnn92ddFQv3tOba+OIADBuXISbb65zuxuSIbfd\nlrx8I9lHyT4Jr9fgnNRVLPbc5Pm887RQWra77LIGJk1KrXyjYyTB67FQspeM+cIX4isifulLqvNm\nq0mTmpk9O0yJLp/IOarZS8atXx/k618v1dW1WWbo0AgLF9Zw0EHezAnSNdXsxVGjRkV54IFaCgqU\nNLJFcXGMP/yhVok+hynZJ+H1GpyTuhuLo46KcPfddbi5RrikJhCIcd99tRxxRPdPyOoYSfB6LJTs\npVcEAjB5cjM33qgLrrwtxm231fPVr+pm8rlOyT4JrfuR0JNYFBfDt77VxM9/roTvTTFuvrme005r\norCwZ6+gYyTB67FQspdeVVICZ50V5ic/aXC7K9LODTc0YEyT60vvijOU7JPweg3OSenEoqwMzj+/\nkeuu0wjfG2L8+td1fOc7Yfqmef8ZHSMJXo9FWuvZG2P2BR4FhgHvA8Zau6vdPoOBB4AKIAr83lp7\nWzrtSvbZZx8499wwRUUxrr66GNCyCu6Icfvt8dKNRvT+ku7I/mpgsbV2NLAU+HEH+7QAc6y144Dj\ngEuMMWPSbNcRXq/BOSkTsSgpgW9/u4l77qkjP1+zdJxWWBjjwQfrOP30zCV6HSMJXo9Fusl+JrCg\n9fEC4NT2O1hrt1prV7Y+rgXWAoPSbFeyVN++MHNmM48/XsP++2vtFacMHBjhqadqmDGjmaIit3sj\nbkg32Zdba6shntSB8mQ7G2OGA0cA/0yzXUd4vQbnpEzGIhSCY4+NJ58jj9SUv9725S838/jjtfzb\nv0UIZLh6pmMkweux6LJmb4x5jni9fY8A8StlftrB7p1+NzfGlACPAZe2jvC71PZmxnsC6eR2VVWV\nq+17abuqqqpXXn/BghOYN68Pf/xjD+f+SVIXXtjID3/YyLvv/p2tWzP/99vD7fenF7a9kC+Kk9Tn\n0lobxxizFjjRWlttjBkALLPWju1gvzzgKeBpa+2tqby21sbxj5074X//t4Af/7iYlhaduM2EgoL4\nHPpTTmlvzkwNAAAJl0lEQVRin33c7o04pTfXxnkCOLv18VnA453sdx+wJtVEL/6y335w1llNPPts\nDYcfrrJOuo49tplFi2qYNUuJXhLSTfZzgSnGmHXAJOBGAGPMQGPMU62Pjwe+DZxkjHnDGLPCGDMt\nzXYd4fUanJN6OxZ5eXDkkREefriW66+vJy9Ps3W6q6Agxi231PGHP9Rx2GERgg5cRaNjJMHrsUhr\nnr21dicwuYPntwCntD5+EQil0474x4ABMc4/P8yXvtTCnDnFvPlmWm9R3zj22GZuvLGBQw91JslL\n9tF69uJZW7YEeOaZfK67rpiaGtXyO/KFL0T55S8bmDy5mfJybx7L4pxkNXsNm8SzBg6Mcc45TUyY\n0MKTTxZw001FhMNK+gB9+sS45poGpk9v5qCDdL2CdE1f+JLweg3OSW7GYtSoKJdd1siSJbv53vca\nCAb9O4LNy4sxZ04DS5fu5nvfC7ue6HWMJHg9Fkr2khWCQTjkkCjXXtvIkiU1fOtbYUIh/yT9vLwY\n55wT/92vuqqR0aOjGb9ASnKbavaSlcJh2LAhyIsv5nPzzUVs356b45aBA6NccUUDxx3XwsiRUfLz\n3e6ReJlq9pJzCgth3Lgo48aFmTGjiTVrQtx5ZxHLl+eR/StqxpgypZkLLwxzyCERBg705oBMsktu\nDocyxOs1OCd5ORaDB8c4+eQW/vjHWhYvruHGG+sZM6aF7Lr/bYwvfrGFm26qY+nSGu67r45Jk1o8\nn+i9/L5wmtdjoZG95IySEhg/PsL48RGMCbNxY5C33w7x6KMFvPBCvueWYigoiHHSSc2ceWYTI0dG\nGDYsSlmZ272SXKWaveS8xkbYtCnIe+8F+de/QixenM/KlXnU1jqb/EtLY4wf38yUKS0cfHCE4cOj\nDB0apaDA0W5IDlPNXnytqCg+fXPUqCgnn9zCRReF2bYtwPbtQbZuDbB+fYjnn89j06YQW7cGqatL\n50MgRmkpVFREGTYswsSJLYwYEaGiIkq/fjHKy2NK7uIKJfsk2i6x7He5FIuCgnidf/DgCADTp7dw\nySVhdu+G+voA9fUB6uqgtjZAbW18OxKBaDT+LxwO06dPIcFgfE2f4uIYJSUx+vaNUVISv+CpuDhG\nWVl87f5clkvvi3R5PRZK9iLEk/K++8K++8bo6sRuZeVLnj6oRTqimr2ISI7ozfXsRUQkCyjZJ+H1\nebNOUiwSFIsExSLB67FQshcR8QHV7EVEcoRq9iIiPqdkn4TXa3BOUiwSFIsExSLB67FIa569MWZf\n4FFgGPA+YKy1u9rtUwgsBwpa/z1urb0mnXZFRKR70h3ZXw0sttaOBpYCP26/g7U2DEy01h4JHAac\nZIw5Ps12HaELZxIUiwTFIkGxSPB6LNJN9jOBBa2PFwCndrSTtba+9WFha5ufpNmuiIh0Q7rJvtxa\nWw1grd0KlHe0kzEmaIx5A9gKPG+tXZNmu47weg3OSYpFgmKRoFgkeD0WXdbsjTHPARVtngoQXzzk\npx3s3uE8TmttFDjSGFMGLDLGfNVa+0JXbbddWGhPIJ3crqqqcrV9L21XVVV5qj/a9sb2Hl7pj9/z\nRXFxMZ1Ja569MWYtcKK1ttoYMwBYZq0d28XP/Ayot9benGw/zbMXEeme3pxn/wRwduvjs4DH2+9g\njOlnjNmn9XEfYAqwMs12RUSkG9JN9nOBKcaYdcAk4EYAY8xAY8xTrfsMBJa11uz/ATxhrV2SZruO\n8HoNzkmKRYJikaBYJHg9FmnNs7fW7gQmd/D8FuCU1sdVgOoxIiIu0to4IiI5QmvjiIj4nJJ9El6v\nwTlJsUhQLBIUiwSvx0LJXkTEB1SzFxHJEarZi4j4nJJ9El6vwTlJsUhQLBIUiwSvx0LJXkTEB1Sz\nFxHJEarZi4j4nJJ9El6vwTlJsUhQLBIUiwSvx0LJXkTEB1SzFxHJEarZi4j4nJJ9El6vwTlJsUhQ\nLBIUiwSvx0LJXkTEB1SzFxHJEarZi4j4XFq3JTTG7As8CgwD3geMtXZXJ/sGgdeAD621X0+nXadU\nVlYyYcIEt7vhCYpFgmKRoFgkeD0W6Y7srwYWW2tHA0uBHyfZ91JgTZrtiYhID6Sb7GcCC1ofLwBO\n7WgnY8xgYAZwT5rtOcrLn9JOUywSFIsExSLB67FIN9mXW2urAay1W4HyTvb7DXAl4M2zwSIiOa7L\nmr0x5jmgos1TAeJJ+6cd7L5XMjfG/DtQba1daYw5sfXns4LXa3BOUiwSFIsExSLB67FIa+qlMWYt\ncKK1ttoYMwBYZq0d226f64HvAC1AH6AUWGit/W6y116yZIm+BYiIdFNnUy/Tmo0DPAGcDcwFzgIe\nb7+DtfYa4BoAY8xXgSu6SvTQeYdFRKT70q3ZzwWmGGPWAZOAGwGMMQONMU+l2zkREckMz15BKyIi\nmaMraEVEfEDJXkTEB9I9QZuTjDHTgPnEPwzvtdbOdblLrmm9IO4B4tNvo8DvrbW3udsr92Tjsh+9\nwRizD/GLJA8l/r4411r7T3d75Q5jzI+JzziMAFXAOdbaJnd7tTeN7NtpPZjvAKYC44BZxpgx7vbK\nVS3AHGvtOOA44BKfx0PLfsTdCvytdar14cBal/vjCmPMMOAC4Ehr7WHEB9DfdLdXHdPIfm/HAOut\ntR8AGGMeIb4sxL9c7ZVLWq+M3tr6uLb12opB+DAebZb9+BUwx+XuuMYYUwacYK09G8Ba2wLsdrVT\n7tkNNAF9jTFRoBjY7G6XOqZkv7dBwKY22x8S/wDwPWPMcOAIwJdf10ks+7GP2x1x2YHAx8aY+4mP\n6l8DLrXWNrjbLedZaz8xxtwMbATqgUXW2sUud6tDKuNISowxJcBjxA/qWrf747S2y34QX/LDzxf9\n5QHjgd9aa8cTT3JXu9sldxhjDgIuJ77M+wFAiTHmW+72qmNK9nv7CBjaZntw63O+ZYzJI57oH7TW\n7nWVtE8cD3zdGPMu8DAw0RjzgMt9csuHwCZr7Wut248RT/5+dBTworV2p7U2AiwEvuxynzqkMs7e\nXgVGtp542UL8ZMssd7vkuvuANdbaW93uiFt6uuxHLmpdC2uTMeZga+3bxK+e9+tJ63XAz4wxRUCY\neCxedbdLHdPIvp3WT+fvA4uA1cAj1lpfzjQAMMYcD3wbOMkY84YxZkXr1FTxtx8CfzLGrCRet7/e\n5f64wlr7JvGpya8DbxIv793taqc6oeUSRER8QCN7EREfULIXEfEBJXsRER9QshcR8QElexERH1Cy\nFxHxASV7EREfULIXEfGB/w/gGIsjv1gSqgAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f846406f750>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"x = [0,2,4,6,8,4]\n", | |
"y = [0]*len(x)\n", | |
"s = [20*4**n for n in range(len(x))]\n", | |
"plt.scatter(x,y,s=s)\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 54, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[<matplotlib.lines.Line2D at 0x7f8463b0cc10>]" | |
] | |
}, | |
"execution_count": 54, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAECCAYAAAAfE3cCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGU9JREFUeJzt3X2MXNV9xvHvGtgNKBVSGsmhfgGVkEZERYYkFohVnECi\n4LzYVYp+5EWipKq8AiNRrxW1paratKYhUlG8NiZ2UxLVlVL8K0HY4b1xSdASxXUwlsaAFYytBJxg\nKQvEBSJs8PaPveuMh7kzd2fOnXvOzPORVto7czx+dIC7v3nm7mVoenoaERHpb/OqDiAiIuXTyV5E\nZADoZC8iMgB0shcRGQA62YuIDACd7EVEBsDpRRea2Tzgp8AL7r6iyfMbgOXAa8B17r43WEoREenK\nXCb7m4Cnmz1hZsuB8939AmAM2Bwgm4iIBFLoZG9mC4FPAf+Ws2QlsBXA3XcBZ5vZ/CAJRUSka0Un\n+28AXwHyft12AfB83fHh7DEREYlA25O9mX0aOJJ18EPZl4iIJKTIB7SXAyvM7FPAmcDvmdlWd7+2\nbs1hYFHd8cLssaZ27typG/KIiHTgyiuv7Gjgbnuyd/ebgZsBzGwZsLbhRA+wA1gNbDOzS4FX3P1I\nq9e95JJLOskrIjIQpqemOHbLP3PiwHMMr/tHTrvoIvbs2dPx63V8nb2ZjZnZKgB3fwA4ZGYHgC3A\nDR0nisjk5GTVEQpRzrBSyJlCRlDOTr350MP89nNXM7RoEe/4r22cdtFFXb9m4evsAdz9R8CPsu+3\nNDx3Y9dpREQGWP00P7JxIshJftZQFfez37lz57RqHBGR33nzoYc59rVbOf1PVnLGDdczNDLytjV7\n9uwpr7MXEZHylDnN19O9cVqIrcfLo5xhpZAzhYygnO2U0c3n0WQvItJjvZrm66mzFxHpoSLdfB51\n9iIikatimq+nzr4F9Y1hKWc4KWQE5ZzVy24+jyZ7EZGSVD3N11NnLyJSgm66+Tzq7EVEIhHTNF9P\nnX0L6hvDUs5wUsgIg5czhm4+jyZ7EZEuxTrN11NnLyLShTK6+Tzq7EVEeiyFab6eOvsWBq1vLJty\nhpNCRujfnDF383k02YuIFJTaNF9Pnb2ISAG97ObzqLMXESlJytN8PXX2LfRr31gV5QwnhYyQfs4U\nu/k8bSd7MxsBHgOGs6/t7n5zw5plwHbgYPbQPe6+LnBWEZGe6Jdpvl6hzt7MznL3183sNOBxYK27\nP173/LLssRVF/lJ19iISqxi6+Tyld/bu/nr27Qgz1c/LTZZ1FEBEJAb9OM3XK9TZm9k8M3sSeBH4\nobs/3WTZZWa218zuN7MLg6asSOp9Y2yUM5wUMkI6Ofetn+ibbj5PoZO9u59w94uBhcBHstqm3hPA\nYndfAtwO3Bs2pohIeNNTU7wxvpZz7rufkY0TDK/5y6hqm5DmdDWOux8F7gc+1PD4q7NVj7s/CJxh\nZu9q9Vr1P/EnJyejPB4dHY0qT97x7GOx5NF+ln/cmLXqPHnHo6OjUeWpP5690ubw0BD7//ZvTk7z\nseTLO+5U2w9ozezdwHF3/42ZnQk8DHzV3XfWrZnv7key75cC7u7n5b2mPqAVkaqc7OafPcDwLf+U\nVGXTzQe0RSb7c4BHs87+J8AOd99pZmNmtipbc7WZ7cvWrAeu6SRMbEL8NO0F5QwrhZwpZIT4cp68\nbn7hQt5xt58yzfe7tlfjuHsNeNsY7u5b6r7fBGwKG01EJIz6ab4fr7QpQvfGEZG+dvK6+ZUrOGP1\nDUl/AKt744iINNA0fyrdG6eFVHo85QwrhZwpZITqcuZ183lS2c9uaLIXkb6haT6fOnsR6Qv91M3n\nUWcvIgNL03wx6uxbSKXHU86wUsiZQkYoP+dcu/k8qexnNzTZi0hyNM3PnTp7EUnKIHTzedTZi0jf\n0zTfHXX2LaTS4ylnWCnkTCEjhMsZqpvPk8p+dkOTvYhES9N8OOrsRSRKg9zN51FnLyJ9Q9N8OdTZ\nt5BKj6ecYaWQM4WMMPecZXfzeVLZz25osheRymmaL586exGplLr54tTZi0hyNM33ljr7FlLp8ZQz\nrBRyppAR8nNW1c3nSWU/u9F2sjezEeAxYDj72u7uNzdZtwFYDrwGXOfuewNnFZHEaZqvTtvJ3t3f\nAD7m7hcDFwFXmNnl9WvMbDlwvrtfAIwBm8sI22ujo6NVRyhEOcNKIWcKGeHUnLFN8/VS2c9uFKpx\n3P317NuR7M+83LBkJbA1W7sLONvM5ocKKSLpmp6a4o3xtRzfdAcjGycYHl+jD2ErUOhkb2bzzOxJ\n4EXgh+7+dMOSBcDzdceHs8eSlkqPp5xhpZAzhYwA+9ZPRDvN10tlP7tRdLI/kdU4C4GPmNmybv/i\n+s2dnJzUcRfHtVotqjypH6ewn7VaLao8jcc/eeBB3hhfyx/cdx/7/+LP+d+lHz45zceQL7X9rD/u\n1JyvszezvwNed/fb6h7bDDzq7tuy4/3AMnc/0uw1dJ29SP/SdfPlKfU6ezN7N3Dc3X9jZmcCnwC+\n2rBsB7Aa2GZmlwKv5J3oRaQ/6UqbuBWpcc4BHs06+58AO9x9p5mNmdkqAHd/ADhkZgeALcANpSXu\noRBvnXpBOcNKIWdsGfOutIktZ55Ucnaj7WTv7jXgbZ2Lu29pOL4xYC4RSYCm+XTo3jgi0hF1872n\ne+OISM9omk+T7o3TQio9nnKGlULOqjLO9bdgU9hLSCdnNzTZi0hbmubTp85eRFpSNx8PdfYiEpym\n+f6izr6FVHo85QwrhZxlZwx1h8oU9hLSydkNTfYicpKm+f6lzl5EAHXzKVBnLyId0zQ/GNTZt5BK\nj6ecYaWQM1TGsv/vUSnsJaSTsxua7EUGkKb5waPOXmTAqJtPlzp7EWlL0/xgU2ffQio9nnKGlULO\nuWYsu5vPk8JeQjo5u6HJXqSPaZqXWersRfqUuvn+o85eRE7SNC/NqLNvIZUeTznDSiFnXsaquvk8\nKewlpJOzG20nezNbCGwF5gMngG+5+4aGNcuA7cDB7KF73H1d4KwikkPTvLTTtrM3s/cA73H3vWb2\nTuAJYKW7769bswxY6+4rivyl6uxFwlE3PzhK7ezd/UXgxez7V83sGWABsL9haUcBRKQzmuZlLubU\n2ZvZecASYFeTpy8zs71mdr+ZXRgiXNVS6fGUM6wUcu5bPxFVN58nhb2EdHJ2o/DJPqtw7gZucvdX\nG55+Aljs7kuA24F7271e/eZOTk7quIvjWq0WVZ7Uj2Pez+mpKQ5f+2e863vfY2TjBMPja3h89+5o\n8qV6XKvVosrT6rhTha6zN7PTgfuAB919osD6Q8AH3f2lZs+rsxeZO3Xz0k1nX3Sy/zbwdN6J3szm\n132/FBjKO9GLyNxMT03xxvhajm+64+Q0rxO9zFXbk72ZXQ58CbjCzJ40sz1mdpWZjZnZqmzZ1Wa2\nz8yeBNYD15SYuWdCvHXqBeUMK6acedfNx5SxFeWMR5GrcR4HTmuzZhOwKVQokUGnK20kNN0bRyQy\n6uYlj+6NI9IHNM1LmXRvnBZS6fGUM6wqcs71njbay7BSydkNTfYiFdI0L72izl6kIurmZa7U2Ysk\nRNO8VEGdfQup9HjKGVaZOUPdb157GVYqObuhyV6kBzTNS9XU2YuUTN28hKLOXiRCmuYlJursW0il\nx1POsELkLPv/BTtIe9kLqeTshiZ7kYA0zUus1NmLBKJuXsqmzl6kQprmJQXq7FtIpcdTzrDmkrPs\nbj5PP+5llVLJ2Q1N9iId0DQvqVFnLzJH6ualKursRXpA07ykTJ19C6n0eMoZVrOcVXXzeVLeyxil\nkrMbbSd7M1sIbAXmAyeAb7n7hibrNgDLgdeA69x9b+CsIj2naV76RZHJ/k1g3N0/AFwGrDaz99cv\nMLPlwPnufgEwBmwOnrQCo6OjVUcoRDnDms0Z2zRfL7W9jF0qObvR9mTv7i/OTunu/irwDLCgYdlK\nZqZ/3H0XcLaZzQ+cVaQnpqemeGN8Lcc33cHIxgmGx9foQ1hJ3pw6ezM7D1gC7Gp4agHwfN3xYd7+\nAyE5qfR4yhnOmw89zNHProxymq+Xwl6Ccsak8NU4ZvZO4G7gpmzC78rk5OTJt06zGx3bcX3WGPLk\nHddqtajypLifpx/9Py7+wQ848ewBHvnExzln6YcZzab5GPI1HtdqtajypH6c0n52qtB19mZ2OnAf\n8KC7TzR5fjPwqLtvy473A8vc/Uiz19N19hITXTcvqejFdfbfBp5udqLP7ABWA9vM7FLglbwTvUgs\ndKWNDJK2nb2ZXQ58CbjCzJ40sz1mdpWZjZnZKgB3fwA4ZGYHgC3ADaWm7pFUejzlnLtWV9rElDNP\nChlBOWPSdrJ398eB0wqsuzFIIpESaZqXQaV748jAUDcvqdO9cURa0DQvonvjtJRKj6ec+Tr5LdgU\n9jOFjKCcMdFkL31J07zIqdTZS99RNy/9Sp29CJrmRVpRZ99CKj2ecoa9Q2UK+5lCRlDOmGiyl6Rp\nmhcpRp29JGl6epq3Hn5E3bwMFHX2MlCmp6Y4tu4WThx4TtO8SEHq7FtIpccblJzT09O8+eBDM938\nokWl3W8+hf1MISMoZ0w02UsSNM2LdEedvURtenqatx56mGO3fl3dvAw8dfbSlzTNi4Sjzr6FVHq8\nfsvZq24+Twr7mUJGUM6YaLKXqGiaFymHOnuJgrp5kfbU2UvSNM2LlE+dfQup9Hip5qy6m8+Twn6m\nkBGUMyZtJ3szuxP4DHDE3d/2X6KZLQO2Awezh+5x93VBU0rf0TQv0ltFapzvABuBrS3WPObuK8JE\nisfo6GjVEQpJKWdjN/+OW78WXTefwn6mkBGUMyZtT/buPmlm57ZZ1tEHBjJYNM2LVCdUZ3+Zme01\ns/vN7MJAr1m5VHq82HPOdvNHP7syqm4+T+z7CWlkBOWMSYiT/RPAYndfAtwO3FvkD9Vv7uTkpI67\nOK7ValHlqT+enpril9dex9HbbuO568cYHl/D47t3R5Ov2XHM+zl7XKvVosqT+nFK+9mpQtfZZzXO\n95t9QNtk7SHgg+7+Ut4aXWff/3TdvEh43VxnX3SyHyKnlzez+XXfLwWGWp3opf9NT01xbHwtx+/4\nJiMbJxgeX6MTvUjF2p7szey7wI+B95nZL8zsy2Y2ZmarsiVXm9k+M3sSWA9cU2Lengrx1qkXYsnZ\n7rr5WHK2k0LOFDKCcsakyNU4X2zz/CZgU7BEkiRdaSMSN90bR7qibl6kd3RvHKmEpnmRdOjeOC2k\n0uP1Omen97TRfoaTQkZQzphospc50TQvkiZ19lKIunmR6qmzl1JpmhdJnzr7FlLp8crKGfp+84O+\nnyGlkBGUMyaa7KUpTfMi/UWdvZxC3bxIvNTZSxDTv57i2Lp1nHjuoKZ5kT6jzr6FVHq8bnOe7Ob/\n9GqGFi8u7X7zg7KfvZBCRlDOmGiyH3Ca5kUGgzr7AaVuXiQ96uxlTjTNiwwedfYtpNLjFc3Zq24+\nT7/tZ5VSyAjKGRNN9gNC07zIYFNn3+fUzYv0D3X20pSmeRGZpc6+hVR6vMacVXfzeVLdzxilkBGU\nMyZtJ3szuxP4DHDE3ZueMcxsA7AceA24zt33Bk0phWmaF5Fmikz23wE+mfekmS0Hznf3C4AxYHOg\nbJUbHR2tOkIho6Oj0U7z9VLaz9ilkBGUMyZtT/buPgm83GLJSmBrtnYXcLaZzQ8TT4qY/vUUx9aM\nc/yObzKycYLh8TX6EFZEThGis18APF93fDh7LHmx93iz0/zRFSujnebrxb6fs1LImUJGUM6YVHY1\nzuTk5Mm3TrMbHdtxfdYY8tQfn370KBc/8t+ceO4gj3zi45yz9MOMZtN8DPlS28/641qtFlWeZse1\nWi2qPKkfp7SfnSp0nb2ZnQt8v9kHtGa2GXjU3bdlx/uBZe5+JO/1dJ1953TdvMjg6sV19kPZVzM7\ngNXANjO7FHil1YleOqcrbUSkU207ezP7LvBj4H1m9gsz+7KZjZnZKgB3fwA4ZGYHgC3ADaUm7qFY\nerx2V9rEkrMd5QwnhYygnDFpO9m7+xcLrLkxTBxppGleRELQvXEipW5eRBrp3jh9RtO8iISme+O0\n0Oser9Pfgk2lb1TOcFLICMoZE032kdA0LyJlUmdfMXXzIlKUOvtEaZoXkV5RZ99CWT1e6DtUptI3\nKmc4KWQE5YyJJvse0zQvIlVQZ98j6uZFpFvq7COnaV5EqqbOvoVue7xe/d+jUukblTOcFDKCcsZE\nk31JNM2LSEzU2Qembl5EyqLOPhKa5kUkVursWyja4/Wqm8+TSt+onOGkkBGUMyaa7LukaV5EUqDO\nvkPq5kWk19TZ95imeRFJjTr7Fhp7vKq7+Typ9I3KGU4KGUE5Y1Josjezq4D1zPxwuNPdv97w/DJg\nO3Awe+ged18XMmjVNM2LSMradvZmNg/4GXAl8EtgN/B5d99ft2YZsNbdVxT5S1Pq7NXNi0gsyu7s\nlwLPuvvPAczsLmAlsL9hXUcBYqZpXkT6RZHOfgHwfN3xC9ljjS4zs71mdr+ZXRgkXUVmu/mjK1ZG\n1c3nSaVvVM5wUsgIyhmTUB/QPgEsdvclwO3Ave3+QP3mTk5ORnM8PTXFL6+9jqO33cZz148xPL6G\nx3fvjiZfs+NarRZVntSPU9jPWq0WVZ7Uj1Paz04V6ewvBf7B3a/Kjv8amG78kLbhzxwCPujuLzV7\nPsbOXt28iMSu7M5+N/BeMzsX+BXweeAL9QvMbL67H8m+XwoM5Z3oYzQ9NcWxdbdw4sBz6uZFpC+1\nrXHc/S3gRuAR4CngLnd/xszGzGxVtuxqM9tnZk8yc4nmNaUlDujkdfOfu5qhRYve1s2HeOvUC8oZ\nVgo5U8gIyhmTQtfZu/tDwB81PLal7vtNwKaw0cqlaV5EBsnA3RtH3byIpEr3xilI07yIDKqBuDdO\nu24+Tyo9nnKGlULOFDKCcsak7yd7TfMiIn3c2aubF5F+o86+gaZ5EZFT9VVn32k3nyeVHk85w0oh\nZwoZQTlj0jeTvaZ5EZF8yXf26uZFZFAMbGevaV5EpJgkO/vQ3XyeVHo85QwrhZwpZATljElyk72m\neRGRuUums1c3LyKDru87e03zIiLdibqz71U3nyeVHk85w0ohZwoZQTljEu1kr2leRCSc6Dp7dfMi\nIs31TWevaV5EpByFOnszu8rM9pvZz8zsr3LWbDCzZ81sr5ktmUuIqrv5PKn0eMoZVgo5U8gIyhmT\ntid7M5sH3A58EvgA8AUze3/DmuXA+e5+ATAGbC4aYHpqimPjazl+xzcZ2TjB8Pga1TYiIoEVmeyX\nAs+6+8/d/ThwF7CyYc1KYCuAu+8Czjaz+a1eNNZpvt7o6GjVEQpRzrBSyJlCRlDOmBTp7BcAz9cd\nv8DMD4BWaw5njx3Je9Fj42vVzYuI9Ehl19nHOs3XS6XHU86wUsiZQkZQzpgUmewPA4vrjhdmjzWu\nWdRmzSn2fXQZPPVUkYyVOeuss9izZ0/VMdpSzrBSyJlCRlDOmBQ52e8G3mtm5wK/Aj4PfKFhzQ5g\nNbDNzC4FXnH33Aqn0+tERUSkM21rHHd/C7gReAR4CrjL3Z8xszEzW5WteQA4ZGYHgC3ADSVmFhGR\nOarkN2hFRKS3or4RmoiIhKGTvYjIACj13jhmdhWwnpkfKne6+9ebrNkALAdeA65z971lZmqmXU4z\nWwZsBw5mD93j7ut6nPFO4DPAEXdver1qJHvZMmcke7mQmV8CnA+cAL7l7huarKt0P4vkjGQ/R4DH\ngOHsa7u739xkXdX72TZnDPuZ5ZgH/BR4wd1XNHl+zntZ2mRf9m0Wepkz85i7X5J99fwfPvAdZjI2\nFcNeZlrmzFS9l28C4+7+AeAyYHWM/25SIGem0v109zeAj7n7xcBFwBVmdnn9mhj2s0jOTNX/fgLc\nBDzd7IlO97LMGqeU2yyUoEhOgEovF3X3SeDlFkti2MsiOaH6vXxxdhJy91eBZ5j5je96le9nwZxQ\n8X4CuPvr2bcjzJxXGv8dqHw/s7+7XU6oeD+zd3SfAv4tZ0lHe1lmjVPKbRZKUCQnwGVmtpeZjF9x\n96Y/dSsUw14WFc1emtl5wBJgV8NTUe1ni5wQwX5m75CfAM4HNjfJEMV+FsgJ1e/nN4CvAGfnPN/R\nXuoD2mKeABa7+xJmKp97K86Tsmj20szeCdwN3JRNzlFqkzOK/XT3E1k9shD4SNZ9R6dAzkr308w+\nzcznXXuZeYcR7F1GmSf7Um6zUIK2Od391dm3f+7+IHCGmb2rdxELiWEv24plL83sdGZOoP/h7tub\nLIliP9vljGU/6/IcBe4HPtTwVBT7OSsvZwT7eTmwwswOAv8JfMzMtjas6WgvyzzZn7zNgpkNM3Ob\nhR0Na3YA1wIUuc1CSdrmrO/DzGwpMOTuL/U2JtD6J30MezkrN2dEe/lt4Gl3n8h5Ppb9bJkzhv00\ns3eb2dnZ92cCnwAarw6pfD+L5Kx6P939Zndf7O5/yMy56H/c/dqGZR3tZam/QZtd0jjB7y5pvNXM\nxoBpd//XbM3twFXMXEL0ZXfv+d2I2uU0s9XA9cBx4LfAmuyDkV5m/C7wUeD3menm/p6Zy8di28uW\nOSPZy8uZuQSvBkxnXzcD5xLRfhbJGcl+/jHw78z8gJ/HzLuQf4ntv/UiOWPYz7q8y4C17r4ixF7q\ndgkiIgNAH9CKiAwAnexFRAaATvYiIgNAJ3sRkQGgk72IyADQyV5EZADoZC8iMgB0shcRGQD/D8+p\nrwOB6lK0AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7f8463cc4e10>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.plot(range(5))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"celltoolbar": "Slideshow", | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.6" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment