Last active
January 25, 2017 15:44
-
-
Save rasmuse/b55fe9db407ed2f43bd4b0fa9f908c7e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Create the data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"nx = 2\n", | |
"ny = 3\n", | |
"nz = 4\n", | |
"\n", | |
"yvals = np.array([1, 3, 5, 7])\n", | |
"\n", | |
"Y = np.random.choice(yvals, size=(nx, ny, nz))\n", | |
"\n", | |
"X = np.zeros((len(yvals), 2))\n", | |
"X[:, 0] = yvals\n", | |
"X[:, 1] = np.array([val * 10 for val in yvals])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[[7, 7, 5, 5],\n", | |
" [5, 3, 3, 3],\n", | |
" [1, 1, 1, 1]],\n", | |
"\n", | |
" [[5, 1, 5, 5],\n", | |
" [3, 5, 7, 5],\n", | |
" [3, 1, 5, 1]]])" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"Y" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 1., 10.],\n", | |
" [ 3., 30.],\n", | |
" [ 5., 50.],\n", | |
" [ 7., 70.]])" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"X" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Method one: Find the factors from X, go through Y, bring out the factors" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[[ 490., 490., 250., 250.],\n", | |
" [ 250., 90., 90., 90.],\n", | |
" [ 10., 10., 10., 10.]],\n", | |
"\n", | |
" [[ 250., 10., 250., 250.],\n", | |
" [ 90., 250., 490., 250.],\n", | |
" [ 90., 10., 250., 10.]]])" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"def find_factor(yval):\n", | |
" matches = X[X[:, 0] == yval, 1]\n", | |
" assert len(matches) == 1 # how can we be sure?\n", | |
" return matches[0]\n", | |
"\n", | |
"factors = np.zeros(Y.shape)\n", | |
"\n", | |
"for index, value in np.ndenumerate(Y):\n", | |
" factors[index] = find_factor(value)\n", | |
" \n", | |
"Y * factors" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Method two: Use numpy's vectorize for convenience" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[[ 490., 490., 250., 250.],\n", | |
" [ 250., 90., 90., 90.],\n", | |
" [ 10., 10., 10., 10.]],\n", | |
"\n", | |
" [[ 250., 10., 250., 250.],\n", | |
" [ 90., 250., 490., 250.],\n", | |
" [ 90., 10., 250., 10.]]])" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"def multiply_factor(yval):\n", | |
" return find_factor(yval) * yval\n", | |
"\n", | |
"np.vectorize(multiply_factor)(Y)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Method three: Ensure that the factors actually map to one value" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[[ 490., 490., 250., 250.],\n", | |
" [ 250., 90., 90., 90.],\n", | |
" [ 10., 10., 10., 10.]],\n", | |
"\n", | |
" [[ 250., 10., 250., 250.],\n", | |
" [ 90., 250., 490., 250.],\n", | |
" [ 90., 10., 250., 10.]]])" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"factors = {row[0]: row[1] for row in X}\n", | |
"\n", | |
"def multiply_factor(yval):\n", | |
" return factors[yval] * yval\n", | |
"\n", | |
"np.vectorize(multiply_factor)(Y)" | |
] | |
} | |
], | |
"metadata": { | |
"anaconda-cloud": {}, | |
"kernelspec": { | |
"display_name": "Python [conda env:dairy-n]", | |
"language": "python", | |
"name": "conda-env-dairy-n-py" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment