Skip to content

Instantly share code, notes, and snippets.

@ravindu9701
Created May 24, 2020 19:11
Show Gist options
  • Save ravindu9701/4b9bb1cba49fa60ce491cc449ff6f644 to your computer and use it in GitHub Desktop.
Save ravindu9701/4b9bb1cba49fa60ce491cc449ff6f644 to your computer and use it in GitHub Desktop.
data preprocessing code
Display the source blob
Display the rendered blob
Raw
import cv2,os
data_path='dataset'
categories=os.listdir(data_path)
labels=[i for i in range(len(categories))]
label_dict=dict(zip(categories,labels))
print(label_dict)
print(categories)
print(labels)
img_size=100
data=[]
target=[]
for category in categories:
folder_path=os.path.join(data_path,category)
img_names=os.listdir(folder_path)
for img_name in img_names:
img_path=os.path.join(folder_path,img_name)
img=cv2.imread(img_path)
try:
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#Coverting the image into gray scale
resized=cv2.resize(gray,(img_size,img_size))
#resizing the gray scale into 100x100, since we need a fixed common size for all the images in the dataset
data.append(resized)
target.append(label_dict[category])
#appending the image and the label(categorized) into the list (dataset)
except Exception as e:
print('Exception:',e)
#if any exception rasied, the exception will be printed here. And pass to the next image
import numpy as np
data=np.array(data)/255.0
data=np.reshape(data,(data.shape[0],img_size,img_size,1))
target=np.array(target)
from keras.utils import np_utils
new_target=np_utils.to_categorical(target)
np.save('data',data)
np.save('target',new_target)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment