Verify Permissions
diskutil verifyPermissions /
Repair Permissions
diskutil repairPermissions /
# tested on silius with conda python(2.7) installed | |
TOOLSDIR=/host/silius/local_raid/ravnoor/00_toolbox | |
conda install libgcc | |
###################################################### | |
# build and install gcc > 4.8 (c++ 11 support) | |
wget http://ca.mirror.babylon.network/gcc/releases/gcc-4.9.4/gcc-4.9.4.tar.gz | |
tar xzf gcc-4.9.4.tar.gz |
# Implementation of a simple MLP network with one hidden layer. Tested on the iris data set. | |
# Requires: numpy, sklearn, theano | |
# NOTE: In order to make the code simple, we rewrite x * W_1 + b_1 = x' * W_1' | |
# where x' = [x | 1] and W_1' is the matrix W_1 appended with a new row with elements b_1's. | |
# Similarly, for h * W_2 + b_2 | |
import theano | |
from theano import tensor as T | |
import numpy as np | |
from sklearn import datasets |
# Example code to demonstrate parallel for loop implementation using joblib | |
from joblib import Parallel, delayed | |
import multiprocessing | |
# Vars | |
my_list = range(10) | |
squares = [] | |
# Function to parallelize | |
def find_square(i): |
rsync (Everyone seems to like -z, but it is much slower for me)
conda create -n tf-keras python=2.7 | |
pip install numpy | |
wget https://github.com/bazelbuild/bazel/releases/download/0.5.2/bazel-0.5.2-installer-linux-x86_64.sh | |
# 0.5.4 incompatibility issues | |
chmod +x bazel-0.5.2-installer-linux-x86_64.sh | |
HOME=/00_toolbox ./bazel-0.5.2-installer-linux-x86_64.sh --prefix=/00_toolbox/bazel-build | |
git clone https://github.com/tensorflow/tensorflow |
# https://github.com/andreimouraviev/Mets/blob/a8ce43b335584187f0728a4b3975c679ccf06cbc/UNET_2D_AUG17.py | |
# coding: utf-8 | |
# In[1]: | |
import os | |
os.chdir(r'/home/amourav/Python') | |
import sklearn | |
from UTILS import * |
# https://github.com/Rachnog/Deep-Trading/blob/master/volatility/volatility.py | |
epsilon = 1.0e-9 | |
def qlike_loss(y_true, y_pred): | |
y_pred = K.clip(y_pred, epsilon, 1.0 - epsilon) | |
loss = K.log(y_pred) + y_true / y_pred | |
return K.mean(loss, axis=-1) | |
def mse_log(y_true, y_pred): | |
y_pred = K.clip(y_pred, epsilon, 1.0 - epsilon) |