Created
May 22, 2018 17:40
-
-
Save rbiswas4/4169c1147ad740c0ec274a788f1ee681 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import numpy as np", | |
"execution_count": 1, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "truths = np.array([0, 0, 1, 1, 0], dtype=np.int)\npredictions = np.ones(shape=(5,2), dtype=np.float)", | |
"execution_count": 2, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "predictions[:, 1] = 0\npredictions[[2,3], 0] = 0\npredictions[[2,3], 1] = 1", | |
"execution_count": 3, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "predictions", | |
"execution_count": 4, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 4, | |
"data": { | |
"text/plain": "array([[1., 0.],\n [1., 0.],\n [0., 1.],\n [0., 1.],\n [1., 0.]])" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import proclam", | |
"execution_count": 5, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "D = proclam.metrics.LogLoss()", | |
"execution_count": 6, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "D.evaluate(predictions, truths)", | |
"execution_count": 7, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 7, | |
"data": { | |
"text/plain": "2.220446049250313e-16" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "D.evaluate(predictions, truths, averaging='per_class')", | |
"execution_count": 8, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 8, | |
"data": { | |
"text/plain": "2.220446049250313e-16" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "Since all predictions are correct, we should expect the logloss to be\n\n5 * log(p=1) = 0" | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "predictions", | |
"execution_count": 9, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 9, | |
"data": { | |
"text/plain": "array([[1.00000000e+00, 2.22044605e-16],\n [1.00000000e+00, 2.22044605e-16],\n [2.22044605e-16, 1.00000000e+00],\n [2.22044605e-16, 1.00000000e+00],\n [1.00000000e+00, 2.22044605e-16]])" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "Assuming this was clipped so that the probabilities don't add up to 1.0 but 1.0 + 2.22e-16, \nThis would be -5 * log(1-2.2e-16)/ 5 = 2.2e-16 . " | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "newpredictions = np.ones(shape=(5,2), dtype=np.float)", | |
"execution_count": 10, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "newpredictions[:, 1] = 0", | |
"execution_count": 11, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "D.evaluate(newpredictions, truths, averaging='per_class')", | |
"execution_count": 21, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 21, | |
"data": { | |
"text/plain": "18.021826694558577" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "Now we have two incorrect ones, so I would expect \n(- 3* log(1)/3. - 2*log(2.2e-16)/2. -5* 2.2e-16) / 5" | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "2 * 16 *np.log(2.2) /2.", | |
"execution_count": 26, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 26, | |
"data": { | |
"text/plain": "12.615317765828324" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "", | |
"execution_count": null, | |
"outputs": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3", | |
"language": "python" | |
}, | |
"language_info": { | |
"name": "python", | |
"version": "3.6.5", | |
"mimetype": "text/x-python", | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"pygments_lexer": "ipython3", | |
"nbconvert_exporter": "python", | |
"file_extension": ".py" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment