Created
May 23, 2018 06:43
-
-
Save rbiswas4/67212020d8cc1eebbe3366ccdf00da66 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "from sklearn.metrics import log_loss", | |
"execution_count": 1, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import numpy as np", | |
"execution_count": 2, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import sklearn\nprint(sklearn.__version__)", | |
"execution_count": 3, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": "0.19.1\n", | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "truths = np.array([1., 0., 1.], dtype=np.int)\n# Perfect Classifier\npredictions = np.zeros(shape=(3,2), dtype=np.float)\npredictions[:, 1]= [1, 0, 1]\npredictions[:, 0] = [0, 1, 0]", | |
"execution_count": 4, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "# value from sklearn. Ideally this should be zero, but because of the\n# clipping I expect a small non zero value of epsilon. Works !\nlog_loss(truths, predictions, eps=1.0e-15)", | |
"execution_count": 5, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 5, | |
"data": { | |
"text/plain": "9.992007221626415e-16" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "# The probability matrix is still what we put in!\npredictions", | |
"execution_count": 6, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 6, | |
"data": { | |
"text/plain": "array([[0., 1.],\n [1., 0.],\n [0., 1.]])" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "## Proclam" | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "from proclam.metrics import LogLoss", | |
"execution_count": 7, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "D = LogLoss()", | |
"execution_count": 8, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "# This is equal to epsilon\nD.evaluate(predictions, truths)", | |
"execution_count": 9, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 9, | |
"data": { | |
"text/plain": "2.220446049250313e-16" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "# Now prediction\npredictions", | |
"execution_count": 10, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 10, | |
"data": { | |
"text/plain": "array([[2.22044605e-16, 1.00000000e+00],\n [1.00000000e+00, 2.22044605e-16],\n [2.22044605e-16, 1.00000000e+00]])" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import proclam\nproclam.__file__", | |
"execution_count": 12, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 12, | |
"data": { | |
"text/plain": "'/Users/rbiswas/astroml_miniconda3/envs/plasticc/lib/python3.6/site-packages/proclam-0.1-py3.6.egg/proclam/__init__.py'" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import sys\neps =sys.float_info.epsilon", | |
"execution_count": 37, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "truths = np.array([1, 0, 1, 2, 0], dtype=np.int)\npredictions = np.zeros(shape=(5,3), dtype=np.float)", | |
"execution_count": 18, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "predictions[:, 0] = [0, 1, 0, 0, 1]\npredictions[:, 1] = [1, 0, 1, 0, 0]\npredictions[:, 2] = [0, 0, 0, 1, 0]", | |
"execution_count": 19, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "D.evaluate(predictions, truths)", | |
"execution_count": 21, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 21, | |
"data": { | |
"text/plain": "4.440892098500626e-16" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "# predictions changed\npredictions", | |
"execution_count": 28, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 28, | |
"data": { | |
"text/plain": "array([[2.22044605e-16, 1.00000000e+00, 2.22044605e-16],\n [1.00000000e+00, 2.22044605e-16, 2.22044605e-16],\n [2.22044605e-16, 1.00000000e+00, 2.22044605e-16],\n [2.22044605e-16, 2.22044605e-16, 1.00000000e+00],\n [1.00000000e+00, 2.22044605e-16, 2.22044605e-16]])" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "#probabilities not normalized correctly\nall(predictions.sum(axis=1)>1.)", | |
"execution_count": 27, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 27, | |
"data": { | |
"text/plain": "True" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "predictions[3] = (1., 0., 0.)", | |
"execution_count": 32, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "predictions.sum(axis=1)", | |
"execution_count": 34, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 34, | |
"data": { | |
"text/plain": "array([1., 1., 1., 1., 1.])" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "D.evaluate(predictions, truths)", | |
"execution_count": 35, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 35, | |
"data": { | |
"text/plain": "12.014551129705717" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "- np.log(eps)/3.", | |
"execution_count": 39, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 39, | |
"data": { | |
"text/plain": "12.014551129705717" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "", | |
"execution_count": null, | |
"outputs": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3", | |
"language": "python" | |
}, | |
"language_info": { | |
"name": "python", | |
"version": "3.6.5", | |
"mimetype": "text/x-python", | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"pygments_lexer": "ipython3", | |
"nbconvert_exporter": "python", | |
"file_extension": ".py" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment