Created
November 25, 2017 09:34
-
-
Save rbiswas4/8f9c011c4edfd8c8b0e946c865ddaf32 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline\n", | |
"import matplotlib.pyplot as plt\n", | |
"import seaborn as sns\n", | |
"sns.set_context('notebook')\n", | |
"sns.set_style('whitegrid')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Text(0,0.5,'Num SN selected for Cosmology')" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEFCAYAAAASWssjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XtUVOXiPvBnYASVi0hqRzQ84jUP\nkcKk+NXwkh6sNAEVlEJNW5YpilmioIMXyNCk0xGVJI8meANRQ/NoQSiihjp5ORJmeTyUl0QFFAYa\nkL1/f7icX4TD5uLMbOD5rOVazmZm9jOj8PC+e8+7FaIoiiAiIqqBhbkDEBGR/LEsiIhIEsuCiIgk\nsSyIiEgSy4KIiCQpzR3gSdFoNOaOQETUKHl4eEjep8mUBVC7F2yIRqNp0OPNgZlNg5lNg5lN48+Z\na/uLNqehiIhIEsuCiIgksSyIiEgSy4KIiCSxLIiISBLLgoiIJLEsiIhIEsuCiIgkNakP5RGRcSkU\nijo/hpfMaRqMOrI4f/48goKCqmzbv38/AgIC9LeTkpLg5+cHf39/ZGRkAAAKCgowbdo0BAYGIiQk\nBGVlZcaMSUREEoxWFvHx8Vi8eDF0Op1+W25uLnbv3q3/TeP27dtISEjAzp07sWnTJsTExKC8vBzr\n16/H6NGjsX37dvTp0we7du0yVkyiZk2hUNTpzyOiKEr+oabFaNNQzs7OWLt2LRYsWAAAKCwsxMcf\nf4ywsDAsWbIEAHDhwgX069cPVlZWsLKygrOzMy5dugSNRoO3334bAODl5YWYmBhMnTpVcp8NXUyw\nMS5GyMymwcz1f25j3Vcumktmo5WFt7c3rl27BgCorKxEeHg4wsLCYG1trb9PSUkJ7Ozs9LdtbGxQ\nUlJSZbuNjQ2Ki4trtU8uJCh/zGwadc1szJFAbXM0h/dZDuq7kKBJDnDn5OQgLy8PS5cuhU6nw88/\n/4yoqCh4enpCq9Xq76fVamFnZwdbW1totVq0bNkSWq0W9vb2pohJREQGmOTUWTc3N3z11VdISEhA\nTEwMunfvjvDwcLi5uUGj0UCn06G4uBhXrlxBz5494e7ujqNHjwIAMjMzG11zExE1NWY9dbZ9+/YI\nCgpCYGAgRFHEvHnzYG1tjZkzZyI0NBRJSUlo27Yt1qxZY86YRETNnlHLonPnzkhKSqpxm7+/P/z9\n/avcp127dti0aZMxoxERUR3wE9xERCSJZUFERJJYFkREJIllQUREklgWREQkiWVBRESSuEQ5USPA\npcHJ3DiyICIiSRxZEDUitRktPBqF1Gc0QmQIRxZERCSJZUHUxIiiiDNnztTqAkW8UBHVFsuCiIgk\nSZbFsmXLcOHCBVNkISIimZI8wO3m5oY1a9agoKAAY8eOxdixY9G+fXtTZCNq0ngAmhoTybLw9fWF\nr68vbt68iQMHDmDixIno3r07JkyYgBEjRpgiIxE1YnUpRR4/ka9aHbP49ddfsWfPHuzduxddunTB\nyJEj8e9//xsLFiwwdj6iJo8HoqkxkBxZTJo0CXfu3MHYsWPx+eefw8nJCQDg4+MDLy8vowckosap\nLuXGKTn5kyyLOXPmYODAgdUfqFTixIkTRglFRETyIlkWqampSE1N1d9WKBRo2bIlunXrhgkTJsDK\nysqoAYmIyPwkj1lYWlqipKQEI0aMwIgRI6DT6XD37l1cvXoVERERpshIRERmJjmyyM3NRUpKiv72\n8OHDMWHCBHz66ad47bXXjBqOiIjkQXJkUVpaitu3b+tv3717FzqdDgBQWVlZ42PPnz+PoKAgAA9L\nJzAwEEFBQZg+fTru3LkDAEhKSoKfnx/8/f2RkZEBACgoKMC0adMQGBiIkJAQlJWV1e/VERHREyE5\nsggODoafnx/69esHQRBw8eJFhIeHY+3atfi///s/g4+Lj49HamoqWrVqBQCIiorCkiVL8Oyzz2Ln\nzp2Ij4/HW2+9hYSEBKSkpECn0yEwMBCDBg3C+vXrMXr0aPj5+WHjxo3YtWsXpk6d+sReNBER1Y1C\nrMX5bQUFBdBoNLC0tETfvn3h6OiIoqIiODg4GHzM4cOH0atXLyxYsABJSUnIz89Hhw4dAADbtm3D\nrVu38Pzzz+Po0aNYvnw5AGDWrFl4++23ERERgY0bN6J9+/a4dOkSYmJisHHjxhozajSaurxuIrNT\nqVQAgDNnzpg5ifnxvTAvDw8PyftIjizKysqwadMmnDx5EpWVlfD09MTcuXNrLAoA8Pb2xrVr1/S3\nHxXF999/j8TERGzbtg3Hjh2DnZ2d/j42NjYoKSlBSUmJfruNjQ2Ki4slXwhQuxdsiEajadDjzYGZ\nTcPYmY3x3I3xfQaM814YU2N8n/+cuba/aEses1i+fDnKysrw4YcfIjo6GhUVFfU+C+rgwYP6UYOj\noyNsbW2h1Wr1X9dqtbCzs6uyXavVwt7evl77IyKiJ0OyLHJycqBWq9G7d2/07t0barUaOTk5dd7R\nl19+icTERCQkJOCZZ54B8HCRQo1GA51Oh+LiYly5cgU9e/aEu7s7jh49CgDIzMxsdM1NRNTUSE5D\niaKI+/fv63+7v3//PiwtLeu0k8rKSkRFRaFjx44IDg4GALzwwguYM2cOgoKCEBgYCFEUMW/ePFhb\nW2PmzJkIDQ1FUlIS2rZtizVr1tTjpRER0ZMiWRZTp07F+PHjMXz4cIiiiIyMDMyYMaNWT965c2ck\nJSUBAE6dOvXY+/j7+8Pf37/Ktnbt2mHTpk212gcRERmfZFmMGzcOzz33HE6fPg1BELB27Vr06tXL\nFNmIiEgmDJbFvn37qty2sbEB8PDDdbm5ufDx8TFuMiIikg2DZZGdnV3jA1kWRFVxmW1qygyWxcqV\nK/V/r6iowNWrV1FZWYkePXpAqZScvSIioiZE8qf+xYsXMWfOHDg4OEAQBNy5cwfr1q3D888/b4p8\nRI0Or2hHTZFkWURGRuKTTz7Rl8O5c+ewYsUK7N692+jhiIhIHmq16uwfRxF9+/bVrzpLRETNg2RZ\ntGnTBmlpafrbaWlpkutCERFR0yI5DbVixQp88MEHCA8PBwA888wzWLVqldGDERGRfEiWxV//+lck\nJyejtLQUgiDA1tbWFLmIiEhGJMvizJkz+OKLL3Dv3r0q27du3Wq0UEREJC+SZbFw4ULMnj0bTk5O\npshDREQyJFkWTz/9ND+tTUTUzEmWRVBQEN5//314enpW+eQ2C4SIqPmQLIuUlBTodLpql95jWRAR\nNR+SZXHnzh3s3bvXFFmIiEimJD+U5+bmhoyMDFRWVpoiDxERyZDkyCI9PR27du2CQqHQL5CmUCiQ\nm5tr9HBERCQPkmWRlZVlihxEssRrVBA9JDkN9csvvyA1NRWiKEKtVmPcuHG4ePGiKbIREZFMSJbF\nokWLIAgC0tPTcfXqVSxatAiRkZGmyEYkG6Io1voPUVMkWRY6nQ4+Pj7IyMjAmDFjoFKpUF5eXqsn\nP3/+PIKCggAAeXl5mDRpEgIDAxEREQFBEAAAsbGxGD9+PCZOnIgLFy7UeF8iIjIPybKwtLTE4cOH\nceTIEQwdOhRpaWmwsJB8GOLj47F48WL9tS9WrlyJkJAQbN++HaIoIj09HTk5OTh16hSSk5MRExOD\nZcuWGbwvERGZj+RP/eXLl+PIkSOIiIhAhw4d8NVXX9VqGsrZ2Rlr167V387JyUH//v0BAF5eXjhx\n4gQ0Gg0GDx4MhUIBJycnVFZWoqCg4LH3JSIi85E8G6pXr16YOnUqTp8+jS1btmDGjBno3bu35BN7\ne3vj2rVr+tuiKOrPLLGxsUFxcTFKSkqqXEjp0fbH3bc2/vwp87pq6OPNgZlNg5lNg5lNoz6ZJcti\n3759iI2NxYgRIyAIAmbPno2ZM2di/PjxddrRH6eutFot7O3tYWtrC61WW2W7nZ3dY+9bGx4eHnXK\n9EcajaZBjzcHZjadxpaZ77NpNMb3+c+Za1scktNQmzdvRnJyMhYuXIiwsDAkJydjy5YtdQ7Yp08f\nZGdnAwAyMzOhUqng7u6OrKwsCIKAGzduQBAEODo6Pva+RNT0KRSKWv8h05IcWQiCgLZt2+pvOzo6\n1usfKjQ0FEuWLEFMTAxcXFzg7e0NS0tLqFQqBAQEQBAEqNVqg/clIiLzqdUxi6ioKP200+7du2t1\nzAIAOnfujKSkJABA165dkZiYWO0+wcHBCA4OrrLN0H2JqGkSRbHWUzocVZiH5DRUZGQkrKysEBYW\nhkWLFkGpVCIiIsIU2YiISCYkRxZWVlb44IMPAAB3797FU089ZfRQREQkLwZHFoWFhXjjjTdw6NAh\n/balS5fi9ddfR1FRkUnCERGRPBgsi6ioKLz44osYNWqUfts///lPDBw4EB9++KFJwhERkTwYLIvL\nly/j7bffrvKZB4VCgdmzZ+OHH34wSTgiIpIHg8csajrjoDZrQxHJFc+mIao7gz/1nZyccPTo0Wrb\nMzMz4ejoaNRQREQkLwZHFh988AGmTJmCgQMHok+fPrC2tsZ//vMfZGZmIj4+3pQZiYyitteeaIxr\n/xA9aQbLwsXFBSkpKdixYwe+++47KBQKuLq6Yt++fWjXrp0pMxIRkZnV+DmLDh06YO7cuabKQkRE\nMsUj1UREJIllQUREkiTLYtGiRabIQUREMiZZFpcvX65ygSIiImp+JBcStLCwwLBhw9C1a1dYW1vr\nt2/dutWowYiISD4ky+LRirNERNR8SU5D9e/fH2VlZcjIyMA333yD+/fvo3///qbIRkREMiFZFvHx\n8YiNjUXHjh3RuXNnxMXFYcOGDabIRlQrdbluM9eFIqofyWmo1NRUJCcno2XLlgAAf39/+Pn5YebM\nmUYPR0RE8iBZFqIo6osCAKytraFUSj6MyORqu9YTEdWd5E99T09PBAcHw9fXFwCwb98+DBgwwOjB\niIhIPgyWRV5eHrp06YLw8HBs374d+/btgyiK8PT0REBAQL12VlFRgYULF+L69euwsLDAihUroFQq\nsXDhQigUCvTo0QMRERGwsLBAbGwsjhw5AqVSibCwMLi5udX7RRIRUcMYLIvZs2dj//79mDVrFtav\nX4/XX3+9wTs7evQoHjx4gJ07d+L48eP4xz/+gYqKCoSEhGDAgAFQq9VIT0+Hk5MTTp06heTkZNy8\neRPBwcFISUlp8P6JiKh+DJZFixYtMGnSJPz444+YPHlyta/X50N5Xbt2RWVlJQRBQElJCZRKJc6d\nO6c/FdfLywvHjx9H165dMXjwYCgUCjg5OaGyshIFBQW86BIRkZkYLIutW7ciNzcX4eHhmD179hPZ\nWevWrXH9+nW8/PLLKCwsRFxcHE6fPq0/ndHGxgbFxcUoKSmBg4OD/nGPtkuVRUMvUtMYL3LDzMZ/\nXmM/t7E09cxyeX1yyVEX9clssCxsbW3xwgsvYOfOnU/sN/otW7Zg8ODBmD9/Pm7evIkpU6agoqJC\n/3WtVgt7e3vY2tpWWY9Kq9XCzs5O8vk9PDzqnU2j0TTo8ebAzFUZ63n5PptGXTPL4fU1hfe5tsUh\n+aG8Jzn1Y29vr/+h36ZNGzx48AB9+vRBdnY2gIfX91apVHB3d0dWVhYEQcCNGzcgCAKnoIiIzMik\nH5iYOnUqwsLCEBgYiIqKCsybNw+urq5YsmQJYmJi4OLiAm9vb1haWkKlUiEgIACCIECtVpsyJhER\n/YlJy8LGxgaffvppte2JiYnVtgUHByM4ONgUsYiISILBsujdu3eVdXSUSiUsLS2h0+lga2uL06dP\nmyQgERGZn8GyuHTpEgAgIiIC7u7ueO2116BQKHD48GEcO3bMZAGJiMj8JA9wX7hwAWPHjtWPMry9\nvXHx4kWjByMiIvmQLItWrVohJSUFpaWlKCkpwbZt29CmTRtTZCMiIpmQLIvVq1fjm2++waBBgzBk\nyBB89913WLVqlSmyERGRTEieDdWpUyfExcWhqKioyqeqiYio+ZAcWeTm5mLUqFHw8fHBrVu3MHLk\nSOTk5JgiGxERyYRkWURGRmLdunVwcHDA008/jaVLlyIiIsIU2YiISCYky6KsrAzdunXT3x40aBDK\ny8uNGoqISAqvvW5akmXh4OCAS5cu6d/s1NRUng1FRNTMSB7gXrp0KUJDQ/HTTz9BpVKhS5cu+Pjj\nj02RjYiomrpea52jiidDsix0Oh127NiB0tJSCIIAW1tbnDt3zhTZqBnjNziRvBgsC41GA0EQsHjx\nYkRFRenb/MGDB1i6dCkOHz5sspBERGReBsvixIkTOHXqFPLz86usFKtUKhEQEGCScER1nXIgIuMw\nWBaPlgfft28fRo8eDaVSiYqKClRUVKB169YmC0hEROYneTaUlZUVfH19AQA3b97Eyy+/jLS0NKMH\nIyIi+ZAsiw0bNmDz5s0AAGdnZ+zZswdr1641ejAiIpIPybKoqKhAu3bt9LefeuopziMTETUzkqfO\nenh44L333sOYMWOgUChw8OBB9O3b1xTZiIhIJiTLIiIiAgkJCdi1axeUSiVUKhUCAwNNkY2IiGRC\nsiysrKzg7e2Nbt26YfDgwbh58yasrKxMkY2IiGRC8pjFwYMHMXPmTERFReHevXuYOHEivvzyy3rv\n8LPPPkNAQAD8/PyQnJyMvLw8TJo0CYGBgYiIiIAgCACA2NhYjB8/HhMnTsSFCxfqvT8iImo4ybKI\nj4/Hjh07YGNjg6eeegp79+7Fxo0b67Wz7OxsnD17Fjt27EBCQgJ+++03rFy5EiEhIdi+fTtEUUR6\nejpycnJw6tQpJCcnIyYmBsuWLavX/oiI6MmQLAsLCwvY2trqb3fo0AEWFpIPe6ysrCz07NkTs2bN\nwjvvvIOhQ4ciJycH/fv3BwB4eXnhxIkT0Gg0GDx4MBQKBZycnFBZWYmCgoJ67ZOIiBpO8phFjx49\nkJiYiAcPHiA3Nxfbt29H796967WzwsJC3LhxA3Fxcbh27RpmzpwJURT1i8bZ2NiguLgYJSUlVS7h\n+mi7o6Njjc+v0WjqletJPd4cmnpmubw+ueSoC2Y2zXM3l/dZsizUajU2bNgAa2trhIWFwdPTE6Gh\nofUK6ODgABcXF1hZWcHFxQXW1tb47bff9F/XarWwt7eHra0ttFptle12dnaSz+/h4VGvXMDDN68h\njzeH5pBZDq+vObzPcmDszMZ47qbwPte2OCTnk1q3bo358+cjJSUFe/fuRWhoaJVpqbrw8PDAsWPH\nIIoibt26hbKyMgwcOBDZ2dkAgMzMTKhUKri7uyMrKwuCIODGjRsQBEFyVEHyp1AooFKpeFUzokbI\n4Miid+/ej/2mfTRtlJubW+edDRs2DKdPn8b48eMhiiLUajU6d+6MJUuWICYmBi4uLvD29oalpSVU\nKhUCAgIgCALUanWd90VERE+OwbK4dOmSUXa4YMGCatsSExOrbQsODtavfEtNC5eLIWp8JKehysvL\nERcXh9DQUJSUlCA2Nhbl5eWmyEZERDIhWRbLly9HaWkpcnJyYGlpiby8PISFhZkiGxERyYRkWeTk\n5OC9996DUqlEq1atsGrVKqNNURERkTxJloVCoUB5ebn+YHdhYSHPViEiamYkP2cxefJkvPnmm7h9\n+zaioqKQlpaGWbNmmSIbERHJhGRZ+Pj4wNXVFdnZ2aisrERcXBx69eplimxERCQTktNQRUVFyM/P\nx+uvv47S0lKsW7cOv/zyiymyERGRTEiWxfz585Gbm4uTJ0/i66+/xvDhwxEeHm6KbEREJBOSZXHv\n3j1Mnz4daWlp8PHxgY+PT5V1m4iIqOmTLAtBEHDx4kWkpaVh2LBhyM3NRWVlpSmyUSNQm3WeuN4T\nUeMneYD7gw8+wKpVqzBt2jQ888wz8Pf3x6JFi0yRjYjoianLLyxckqY6ybIYOHAgBg4cqL+dlJRk\n1EDUONX2m6sxrv1PRLUoCyKixqwuowROlxpWv+ujEhFRs8KyICIiSQanoYYPH17jkCw9Pd0ogYiI\nSH4MlkVCQkK1bQcOHEBcXBwmT55s1FBERCQvBsuiU6dO+r8XFBRArVYjLy8PCQkJcHV1NUk4IiKS\nB8ljFgcOHMBrr72Gbt26Yc+ePSwKIqJmyODIoqCgABEREfjf//6Hzz77DH/7299MmYuIiGTEYFm8\n8sorKC0txciRI5GYmFjt6ytXrjRqMCIikg+DZREaGmrKHEREJGMGy8LX17fatsLCQjg4ODT4U453\n796Fn58f/vWvf0GpVGLhwoVQKBTo0aMHIiIiYGFhgdjYWBw5cgRKpRJhYWFwc3Nr0D6JiKj+DB7g\nLigowJw5c5CdnQ1BEDB79mwMGzYMI0eOxJUrV+q9w4qKCqjVarRs2RLAw+mskJAQbN++HaIoIj09\nHTk5OTh16hSSk5MRExODZcuW1Xt/RETUcAZHFitWrICrqytcXV1x6NAh/PDDD8jKysJPP/2EyMhI\nbN68uV47jI6OxsSJE7Fx40YAQE5ODvr37w8A8PLywvHjx9G1a1cMHjwYCoUCTk5OqKysREFBARwd\nHWt87oYuUtcYF7mTS+a65JBL5rpgZtOQS2b+f67OYFn8/PPP+OSTTwAAmZmZGDVqFGxtbdGvXz/k\n5+fXK+CePXvg6OiIF198UV8Woijqp7VsbGxQXFyMkpISODg46B/3aLtUWXh4eNQrF/DwzWvI481B\nTplrm0NOmWuLmU1DTpmb0//n2haHwbL443GJ7777DpGRkfrbZWVl9cmIlJQUKBQKnDx5Erm5uQgN\nDUVBQYH+61qtFvb29rC1ta1yNT6tVgs7O7t67ZOIiBrO4DELJycnHDx4ECkpKSgrK9NPFX355Zfo\n0aNHvXa2bds2JCYmIiEhAc8++yyio6Ph5eWF7OxsAA9HMCqVCu7u7sjKyoIgCLhx4wYEQZAcVdCT\nUZcr33E5Z6Lmw+DIIiIiAmq1Gnfv3sWaNWtgZWWFlStXIiMjQz+F9CSEhoZiyZIliImJgYuLC7y9\nvWFpaQmVSoWAgAAIggC1Wv3E9kdERHVnsCw6duyI+Pj4KtveffddhIaGwsKi4Sub/3Ghwsd96C84\nOBjBwcEN3g/VDy8rSUR/VKcr5bVp08ZYOYiISMZ48SMiIpLEsiAiIkmS01D//e9/kZSUhHv37lXZ\nzoUEiYiaD8mymD17Nl555RX06tXLFHmIiEiGJMvC3t4es2fPNkUWIiJZqMtniJrLmYOSZeHr64tP\nPvkEnp6eUCr//91feOEFowYjIiL5kCyLs2fP4vvvv8f333+v36ZQKLB161ajBiMiMrW6jBKa2woG\nkmWRk5ODr7/+2hRZiIhIpiRPne3RowcuXbpkiixERCRTtTp11tfXF+3bt0eLFi30S4qnp6ebIh89\nAc1tuExET55kWaxbt84UOYiISMYky+L06dOP3d6pU6cnHoaMq7mc4kdET55kWTy61gTw8PrZGo0G\nKpUKPj4+Rg1GRETyIVkWf17Wo6ioCPPmzTNaICIikp86LyTYunVrXL9+3RhZiIhIpiRHFkFBQfqz\naURRxLVr1zBkyBCjByMiIvmQLIs/Xq1OoVCgbdu26N69u1FDERGRvBgsixs3bgAAOnfu/NivOTk5\nGS8VERHJisGyeOONN6BQKKqcbqlQKHD79m1UVFQgNzfXJAGJiMj8DJbFt99+W+W2VqtFdHQ0srKy\nsGLFCqMHIyIi+ZA8ZgEAJ0+exOLFizFo0CCkpqbC1ta2XjurqKhAWFgYrl+/jvLycsycORPdu3fH\nwoULoVAo0KNHD0RERMDCwgKxsbE4cuQIlEolwsLC4ObmVq99EhFRw9VYFqWlpfjoo4/0o4lBgwY1\naGepqalwcHDA6tWrUVhYCF9fX/Tu3RshISEYMGAA1Go10tPT4eTkhFOnTiE5ORk3b95EcHAwUlJS\nGrTvpobrPRGRKRn8nMXJkycxZswYAMD+/fsbXBQAMGrUKMydO1d/29LSEjk5Oejfvz8AwMvLCydO\nnIBGo8HgwYOhUCjg5OSEyspKFBQUNHj/RERUPwZHFm+++SaUSiWysrJw/Phx/faGrDprY2MDACgp\nKcGcOXMQEhKC6Oho/W/JNjY2KC4uRklJCRwcHKo8rri4GI6OjjU+v0ajqXOmJ/l4czhz5kyt7yuX\n1yeXHHXBzKbBzKZRn8wGy8JYS5DfvHkTs2bNQmBgIMaMGYPVq1frv6bVamFvbw9bW1totdoq2+3s\n7CSf28PDo965NBpNgx5vLo0tc2N8n5nZNBpjZqDxfw/WtjgMloUxVpW9c+cOpk2bBrVajYEDBwIA\n+vTpg+zsbAwYMACZmZnw9PSEs7MzVq9ejenTp+O3336DIAiSowoiIjKeWp0N9aTExcXh/v37WL9+\nPdavXw8ACA8PR2RkJGJiYuDi4gJvb29YWlpCpVIhICAAgiBArVabMiYREf2JScti8eLFWLx4cbXt\niYmJ1bYFBwdXWWqEiIjMx6RlQUTU1NT1NPbGehGyOi9RTkREzQ/LgoioHkRRxJkzZyCKYq3+NHYs\nCyIiksSyICIiSTzALSNc74mI5IojCyIiksSRhQzV9mBYY1yThogaJ44siIhIEsuCiIgksSyIiEgS\ny4KIiCSxLIiISBLPhjIifm6CiP6sLj8X5LRMCEcWREQkiSMLE5DTbwdEZB51+Tkgx1kJjiyIiEgS\ny4KIiCSxLIiISBKPWdSRHOcSiYiMjWVBRCRTcjrNVrZlIQgCli5dih9//BFWVlaIjIxEly5dzB1L\nj2c4EVFzItuySEtLQ3l5OXbt2oVz587ho48+woYNG4yyL04tEZGcyPE0W9ke4NZoNHjxxRcBAH37\n9sXFixfNnIiIqPlSiDKdTwkPD8ff//53DBkyBAAwdOhQpKWlQal8/GCIFwIiIqofDw8PyfvIdhrK\n1tYWWq1Wf1sQBINFAdTuxRIRUf3IdhrK3d0dmZmZAIBz586hZ8+eZk5ERNR8yXYa6tHZUJcvX4Yo\nivjwww/RrVs3c8ciImqWZFsWREQkH7KdhiIiIvlgWRARkSSWBRERSWpWZSEIAtRqNQICAhAUFIS8\nvLwqX09KSoKfnx/8/f2RkZFhppRVSWXesmULJkyYgAkTJiA2NtZMKauSyvzoPm+99RZ27NhhhoTV\nSWU+evQo/P394e/vj6VLl8oOEQpAAAAFsElEQVRmuRep3Js2bYKfnx/GjRuHb775xkwpqzt//jyC\ngoKqbf/2228xbtw4BAQEICkpyQzJDDOU+cCBA5gwYQImTpwItVoNQRDMkO7xDGV+ZMmSJfj4449r\n92RiM3L48GExNDRUFEVRPHv2rPjOO+/ov5afny+OHj1a1Ol04v379/V/N7eaMv/yyy+ir6+v+ODB\nA7GyslIMCAgQc3NzzRVVr6bMj6xZs0YcP368uH37dlPHe6yaMhcXF4uvvvqqePfuXVEURXHjxo36\nv5tbTbnv3bsnDhkyRNTpdGJRUZE4dOhQc8WsYuPGjeLo0aPFCRMmVNleXl4ujhgxQiwqKhJ1Op3o\n5+cn5ufnmyllVYYyl5WViS+99JJYWloqiqIozps3T0xLSzNHxGoMZX5kx44dor+/v7h69epaPV+z\nGlnUtITIhQsX0K9fP1hZWcHOzg7Ozs64dOmSuaLq1ZT5L3/5Cz7//HNYWlrCwsICDx48gLW1tbmi\n6kkt1XLo0CEoFAp4eXmZI95j1ZT57Nmz6NmzJ6KjoxEYGIh27drB0dHRXFGrqCl3q1at4OTkhLKy\nMpSVlclmDTRnZ2esXbu22vYrV67A2dkZbdq0gZWVFTw8PHDmzBkzJKzOUGYrKyvs3LkTrVq1AgDZ\nfA8ChjMDD/9Pnz9/HgEBAbV+vmZVFiUlJbC1tdXftrS0xIMHD/Rfs7Oz03/NxsYGJSUlJs/4ZzVl\nbtGiBRwdHSGKIqKjo9GnTx907drVXFH1asp8+fJlHDhwAHPnzjVXvMeqKXNhYSGys7Px/vvvIz4+\nHl988QWuXr1qrqhV1JQbADp27IhXX30Vvr6+mDx5sjkiVuPt7f3Y1Rjk+j0IGM5sYWGBdu3aAQAS\nEhJQWlqKQYMGmTreYxnKnJ+fj9jYWKjV6jo9n2yX+zCGmpYQ+fPXtFptlf+45iK17IlOp0NYWBhs\nbGwQERFhjojV1JR53759uHXrFqZMmYLr16+jRYsW6NSpk9lHGTVldnBwwHPPPYf27dsDAFQqFXJz\nc2VRzDXlzszMRH5+PtLT0wEA06dPh7u7O9zc3MySVYpcvwelCIKA1atX4+rVq1i7dq1sRnCGHDp0\nCIWFhZgxYwZu376N33//HS4uLvDz86vxcc1qZFHTEiJubm7QaDTQ6XQoLi7GlStXZLHESE2ZRVHE\nu+++i169emH58uWwtLQ0V8wqasq8YMECJCcnIyEhAb6+vpg6darZiwKoObOrqysuX76MgoICPHjw\nAOfPn0f37t3NFbWKmnK3adMGLVu2hJWVFaytrWFnZ4f79++bK6qkbt26IS8vD0VFRSgvL8eZM2fQ\nr18/c8eSpFarodPpsH79ev10lJxNnjwZe/bsQUJCAmbMmIHRo0dLFgXQzEYWI0eOxPHjxzFx4kT9\nEiKbN2+Gs7MzXnrpJQQFBSEwMBCiKGLevHmymHusKbMgCDh16hTKy8tx7NgxAMB7771n9m8wqfdZ\njqQyz58/H2+99RYAYNSoUbL4RQKQzn3ixAn4+/vDwsIC7u7uspki+aP9+/ejtLQUAQEBWLhwIaZP\nnw5RFDFu3Dg8/fTT5o73WI8yu7q6Yvfu3VCpVJgyZQqAhz+MR44caeaE1f3xfa4PLvdBRESSmtU0\nFBER1Q/LgoiIJLEsiIhIEsuCiIgksSyIiEgSy4KIiCSxLIiISFKz+lAekSlt3boVKSkpAIDff/8d\nv/76K44ePapfNoSoMeGH8oiMTBRFBAcHo2/fvvpPgRM1NpyGIjKyTz/9FC1atGBRUKPGaSgiIzp0\n6BAyMjKwc+dOc0chahCWBZGR5ObmIjo6Glu3bm0Uq5ES1YTHLIiMZNq0afjpp5/Qvn17VFZWAnh4\nzWOVSmXmZER1x7IgIiJJPMBNRESSWBZERCSJZUFERJJYFkREJIllQUREklgWREQkiWVBRESS/h+3\nV/yAMiPjpwAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x110f27278>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fig, ax = plt.subplots()\n", | |
"df = pd.read_csv('z_samples.csv')\n", | |
"_ = ax.hist(df.z.values, bins=np.arange(0., 1.4, 0.05), histtype='step',\n", | |
" lw=2, alpha=1, color='k')\n", | |
"ax.set_xlabel('z')\n", | |
"ax.set_ylabel('Num SN selected for Cosmology')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment