Created
June 23, 2017 00:44
-
-
Save rbiswas4/9a0b57355c8145f383ddbb616ae9e609 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": true | |
}, | |
"cell_type": "code", | |
"source": "import numpy as np\nimport pandas as pd\nfrom lsst.sims.photUtils import BandpassDict", | |
"execution_count": 1, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": true | |
}, | |
"cell_type": "code", | |
"source": "bpdict = BandpassDict.loadTotalBandpassesFromFiles()", | |
"execution_count": 2, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "# Let us make up a set of observation times and filters \nnum = 1000000\nbands = np.random.choice(list('ugrizy'), replace=True, size=num)\nmjds = np.random.uniform(0, 10000, size=num)", | |
"execution_count": 3, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "df = pd.DataFrame(dict(mjd=mjds, band=bands))", | |
"execution_count": 4, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": true | |
}, | |
"cell_type": "code", | |
"source": "df_long = pd.DataFrame(dict(mjd=mjds, band=map(lambda x: bpdict[x], bands)))", | |
"execution_count": 5, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "df_category = df_long.copy()\ndf_category.band = df_category.band.astype('category')", | |
"execution_count": 6, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": true | |
}, | |
"cell_type": "code", | |
"source": "import sys", | |
"execution_count": 7, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "x = np.array(map(sys.getsizeof, [df, df_long, df_category]), dtype=np.float)", | |
"execution_count": 8, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": true | |
}, | |
"cell_type": "code", | |
"source": "x = x/x.min()", | |
"execution_count": 9, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "x", | |
"execution_count": 10, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "array([ 5.99978223, 5.33314104, 1. ])" | |
}, | |
"metadata": {}, | |
"execution_count": 10 | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "df.info()", | |
"execution_count": 11, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": "<class 'pandas.core.frame.DataFrame'>\nRangeIndex: 1000000 entries, 0 to 999999\nData columns (total 2 columns):\nband 1000000 non-null object\nmjd 1000000 non-null float64\ndtypes: float64(1), object(1)\nmemory usage: 15.3+ MB\n", | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "df_long.info()", | |
"execution_count": 12, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": "<class 'pandas.core.frame.DataFrame'>\nRangeIndex: 1000000 entries, 0 to 999999\nData columns (total 2 columns):\nband 1000000 non-null object\nmjd 1000000 non-null float64\ndtypes: float64(1), object(1)\nmemory usage: 15.3+ MB\n", | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "df_category.info()", | |
"execution_count": 13, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": "<class 'pandas.core.frame.DataFrame'>\nRangeIndex: 1000000 entries, 0 to 999999\nData columns (total 2 columns):\nband 1000000 non-null category\nmjd 1000000 non-null float64\ndtypes: category(1), float64(1)\nmemory usage: 8.6 MB\n", | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "sys.getsizeof(bands)", | |
"execution_count": 14, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "1000096" | |
}, | |
"metadata": {}, | |
"execution_count": 14 | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "type(bands)", | |
"execution_count": 15, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "numpy.ndarray" | |
}, | |
"metadata": {}, | |
"execution_count": 15 | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "bands.dtype", | |
"execution_count": 16, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "dtype('S1')" | |
}, | |
"metadata": {}, | |
"execution_count": 16 | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": true | |
}, | |
"cell_type": "code", | |
"source": "", | |
"execution_count": null, | |
"outputs": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"name": "python2", | |
"display_name": "Python [default]", | |
"language": "python" | |
}, | |
"anaconda-cloud": {}, | |
"language_info": { | |
"mimetype": "text/x-python", | |
"nbconvert_exporter": "python", | |
"name": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.12", | |
"file_extension": ".py", | |
"codemirror_mode": { | |
"version": 2, | |
"name": "ipython" | |
} | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment