Skip to content

Instantly share code, notes, and snippets.

@rbiswas4
Created April 12, 2018 13:37
Show Gist options
  • Save rbiswas4/a74a43900b466a541b213c5b8e0ade26 to your computer and use it in GitHub Desktop.
Save rbiswas4/a74a43900b466a541b213c5b8e0ade26 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "from astropy.constants import c",
"execution_count": 1,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "import numpy as np",
"execution_count": 2,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "from astropy.cosmology import Planck15 as cosmo",
"execution_count": 3,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "%matplotlib inline\nimport matplotlib.pyplot as plt\nimport seaborn as sns\nsns.set_style('whitegrid')\nsns.set_context('talk')",
"execution_count": 4,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "def zspec(zcosmo, vpec):\n return zcosmo + vpec *0.30e6/ c.value * (zcosmo + 1)",
"execution_count": 5,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "fig, ax = plt.subplots(3, sharex=True, squeeze=True)\nz = np.arange(0., 0.2, 0.01)\nax[0].plot(z, zspec(z, 1), color='r', label='300km/s')\nax[0].plot(z, zspec(z, 5/3.), color='b', label='500km/s')\nax[0].plot(z, zspec(z, -1), color='r', label='-300km/s', ls='dashed')\nax[0].plot(z, zspec(z, -5/3.), color='b', label='-500km/s', ls='dashed')\nax[0].legend(loc='best')\nax[1].plot(z, zspec(z, -1) - z, color='r', ls='dashed')\nax[1].plot(z, zspec(z, 1) - z, color='r')\nax[1].plot(z, zspec(z, 5/3.) - z, color='b')\nax[1].plot(z, zspec(z, -5/3.) - z, color='b', ls='dashed')\nax[2].plot(z, cosmo.comoving_distance(zspec(z, 1.)).value - cosmo.comoving_distance(z).value, color='r')\nax[2].plot(z, cosmo.comoving_distance(zspec(z, 5/3.)).value - cosmo.comoving_distance(z).value, color='b')\nax[2].plot(z, cosmo.comoving_distance(zspec(z, - 1.)).value - cosmo.comoving_distance(z).value, color='r', ls='dashed')\nax[2].plot(z, cosmo.comoving_distance(zspec(z, - 5/3.)).value - cosmo.comoving_distance(z).value, color='b',\n ls='dashed')\nax[0].set_ylabel('zspec')\nax[1].set_ylabel('$\\Delta$ z')\nax[2].set_ylabel(r'$\\Delta$ d (Mpc)')\nax[2].set_xlabel('z_cosmo')",
"execution_count": 6,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 6,
"data": {
"text/plain": "<matplotlib.text.Text at 0x11acc1198>"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": "<matplotlib.figure.Figure at 0x11abd2cc0>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAESCAYAAAC7NAEnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4VNX5+D+zJJOFhAQI+w7hAGGZAC5IURGLK1qLy9e617Uu/dVqW3dEFGptta7Vqlgr2lardV+oFREVVNCwhHAgJOyQENYkZJJJZn5/3JnMZDIzmclMMiG8n+e5T+495z3vPfckOe89557zvia3240gCIIgtDfmRFdAEARBODoRAyQIgiAkBDFAgiAIQkIQAyQIgiAkBDFAgiAIQkIQAyQIgiAkBGuiKxAPlFL5wHNAHrARuEFrvTyI3LXAb4FegAZ+rbVe2p51FQRBEAyO+BGQUioFeA94CcgCngDeVUp1CZCbBswDLvDIPQW8p5Tq3r41FgRBEKATGCBgGuDSWv9Fa+3UWi8AyoAzA+T6A49orQu01i6t9ctAA8aoSRAEQWhnOsMU3EhgXUCa9qT7ErR+xf9aKTUFyAhSNigrV64UlxGCIAitYOLEiaZg6Z1hBJQOHA5IOwykhSqglBoNvAncp7WuaMO6CYIgCCHoDCOgw0BqQFoaUBVMWCk1A/gX8Cet9e+juVFeXutm62praykuLmb48OHYbLZW6TiakfaLDWm/2Dia2s/lgpISE6uWHGTN5wdYvcrEmu3ZjOxzkLcK+pGUFL3OwsLCkHmdwQAVATcHpCngtUBBpdRVwOPA9Vrrf0R7o5SUlFZV0IvNZotZx9GMtF9sSPvFRmdrv5oaWLuqgYJF5RR8WUXBuiSKdmUxyFXCUErIpJLuWDmOFD4qOZMkh5OUjIy41qEzGKDPAJtS6hbgWeAyjGXWn/gLKaWmA88AM2TptSAIRxPl5bDqmxoKPimn4Ns6CorTWb+/Fy4s9KOeGSxlAGm4GchqxlHAhMayJlwUPvBvUnIujHu9jngDpLWuVUqdgWF85gHFwDla62ql1LMemRuA3wHJwEdKKX8V52utP27naguCIMQdlws2bYKCz/dT8L99FBS4WbUlC5vjICMpogcVJOGmgeNx0ReAFGp4iZ8302Uz1TImpxz7yBq6XxK4qDg+HPEGCEBrvRo4IUj6DX7nM9q1UoIgCG1IsCm0Vbt74WwwMZNPyaCSbiQxml6sZQwfcnZj2dsynuOPM77BPi2bPicr1OQyhuRUYx/nwn5yFvbp3VEjbVitA9r0GTqFARIEQejM7Nnjm0L74RtjCm3Pfgt5FNKXnaxhLGsYD4AFJ//hp7iwBNU1PKOMcTedyNnzRzWmFR9ql8dohhggQRCEDoKxCs1vCu0HNwVbs0mp2c9IiujOPqy4GUY2DSi+4CRcWLiQfzGj91rso2qxT0nnwj8eQ2ldP8bmlGEf6WD85DTyT+/F2AlJZGT0wvhMnnjEAAmCICQAh8N/Cq2SgsJk9K4MBrpKqaILG/z20iv28AEzQ+rKnKT443f2xutPfwE9e4LVOrBNnyFWxAAJgiC0MRUVsOobBwWflFHwbS0FG9PZs8/MKIroyy6SqKMv6TgZxBrGcgJf0YVq7Jml2IdV8mbRKLTDWJGWm1mOfVgl9mOsjD+1J/Yp6fTpY29yv759E/SgUSIGSBAEIU64XFBaCgWfH6Dgf3sp+MHNqs1dqXRYOUA2MAiAWfybOsayhJNxB3FI4+zSjZW7FHSZCMCkD/dDRj1j86106dIb6N2OT9V2iAESBEFoBQ4HFK5uoOC/eyhYWklBoRW9M5OBrhIGs5kuVJFJMrn0Jgknn3A6QyjBnlxErbsLG5y+7SA9bQfIH7AX+3g39mlZTDh1AnTxuU+bfGZ2Ih6xzREDJAiC0AIHDlj4/OM61i0uo+CbWn7YmE7Rvl40YAV6M5Nv6E0dDgaxlrGs5Jgm5YdmvMyMcSdSXnmQ2v79OXHUJUyp2syIqTY++OxBCgqW48jIYOJFN3HBBRcA4Ha7efTRR3njjTdoaGjg3HPP5c4778RisfDWW2+xcOFC3nrrrZifbdGiRSxbtozZs2fHrCtaxAAJgiB4cLsDp9BcrCrtSrIjjZEsIZt9AOSRzFouBiCbfbgw828uaKIrzVzDuF5ljBhewoqKR5n3+AImTpzI119/zXXXXccXX3zB/fffT7duaXz99ddorbn22mvJzc3Fbrfz6quv8vnnn/Puu+9iMpm4/vrrWbBgAddee21cn3nx4sWcfvrpcdUZKWKABEHoHNTVwbZtEYvX1kLxhgaKlu5l3Ypq1m2wsn5Pdyob0shjLQrNUKxk0hPNCNYxurFsBd15e+YL5P84hwHTR/DxJ7m4ni3GPh7GT+uGfVo2w3NTsVgGA4Oprv6a9PR06uvrqaioID09neTkZD799FM++eQTbDYb48aN4+yzz+btt9/GbrfzzjvvcMUVV9CzZ08Arr/+eh5//PFmBqisrIyf/exnzJo1ixtvvJFTTjmFK664gldffZXy8nLOOeccpk+fzoMPPsi+ffuYNWsWd911FwAul4tvv/2WOXPmcOjQIe644w5WrFhBeno6J5xwAvfdd1+bOmAVAyQIwpFPXR0oBZs3R1zEhhGNsjU+7suT+5H8+BqyhhjfZs4YDWfcGlo+PT2dbdu2cdppp+Fyubj//vvZunUrVquVAQN83gaGDBnCokWLACgpKWH48OFN8kpLS3G7faHJ9u3bx5VXXsl5553HjTfe2Jj+8ccf88Ybb1BRUcHMmTMpLS3lzTffZOfOncyaNYsLLriA3NxcVq1ahVKK5ORknnnmGSwWC19++SU1NTVcccUVvPvuu41Tgm1Bwg2QUsoE/Boo9waNU0p9AnyotX48oZUTBEEIQs++SdAvPaoyffr0YdWqVaxYsYIbb7yRq6++upl37ZSUFBwOBwA1NTVN8lNTU3G5XNTV1QFQXV3Nz3/+c8aOHcvNNzcNCHDhhRfStWtXunbtSk5ODueffz6ZmZlkZmaSk5PDzp07yc3NZfHixUybNg0wvH0XFhbywQcfMHXqVN566y3M5rYNGZdwAwTMBy4HrvdLexe4UynVVWv9QGKqJQhCR6auDtatdRkbOb84xNqGj6g2H6S3azv92MFipuHwxKUcyTrW+02hBdLbtp+//rmGvB8bG2hcLiPdbDbiAW3YuJERubm+6agBAyA5Oar6Wq1Gdzt58mRmzJjB2rVrqa2tbSLjcDhISzPqnJKS0iS/pqYGq9XaWIfNmzczZcoUli5dyv79+8nO9q2U69q1a+O5xWIhMzOz8dpsNuPyPODixYtZsGABANdddx0ACxYs4K677mLixIk8+OCDDB48OKrnjIaOYIAuBy7yD5GgtX5aKVUEvAyIARKEo5z9+/02cn7joGBDGnv3wgg0vSkjCSddyWAfQ/iQs6nDxtm8Q4+MeuzDDjFgkIVZ7wzDTAOjsndjH16N/dhk7DN6Mn5yGjk5Te/n/97vdjioq6nBPXQotCIe0JIlS3jppZf429/+1pjmdDoZOHAgX3zxBTt37qSvZ+doaWlp47TbsGHDKC0tZfz48Y15Q4cObdQxYsQIFixYwNVXX838+fP5wx/+0JhnMgWNgN2E7du3Y7PZyPE8/MaNGzn33HP5xS9+QVlZGfPmzWPu3Lm8+OKLUT9zpHQEA9QFPEtLmrIb6JyL3wVBCIrbDVu3wg+LPavQvnexenMGyYf3s5O+VHo2cg6hhCTgM04Nqev8G3tzxdPHNer97tsG8sZZSE3t1x6P0sjo0aNZu3Ytb7/9Nueccw5Lly5lyZIlvP766+zatYs//elPPPjgg2zcuJH333+fv/71rwCcc845vPjiixx//PFYrVaee+45zj333Ea9SZ7wpLNnz2bmzJnMnDmTqVOnRlyvxYsXc/LJJzdev/7662zbto3HHnuM7OxsUlJSGkdtbUVHMECfAQ8rpS7VWh8AUEplAnOAJQmtmSAIbUZdHRQV+qbQCtZa2bgjlX4NWxjIVtKpJpUUBtCX1YxjLGvYQX/syesY02cvD2/5v0Zd/VMrsA/aj91uwj69O/aTsxgy9LjGfJMJJh0X3Dt0W5OTk8Ozzz7LvHnzeOCBBxg8eDBPP/00w4YNY+7cucyePZuTTjqJtLQ0fvOb3zSOeH72s59RUVHB+eefj9PpZObMmVx11VXN9A8cOJAbbriB2bNn895770Vcr8WLF3Pbbbc1Xt96663ce++9TJ8+HafTybHHHsuDDz4YewOEweS/oiIRKKUGAJ8C/YEST/IQoBQjsFxpourmz8qVK90TJ05sVVmHw0FhYSF5eXmdKqRveyHtFxsdof0OHPCbQlvuoGBDKuv35uAgFQArdZzNB5QyhHWMxknz7yuzR7/O/f/9EfTpAyYTL83dzsD87ow/PpUePdqu7h2h/Y5kVq5cycSJE4POCSZ8BKS13qaUGgucCowG6oANwCKttSuhlRMEISq8U2jGRs4KCr53saa0C0mHD5DLRrI5gAszfehOH+AjziSTg9hNq1nmnkyZn4+zDEs14/uUk5/nZPyPunDi+bOgr28Uc9W9/RPwhEI8SbgBAtBa1ymlDgB7gX8DAzHqVpfQigmCEJJgU2gFO3M4UJ8BZPEzPsCGmb70Yw1jm61CuzT9P5Q8+A6Df5yLSU3mgcs2UG+qMqbQpmUzeHA6ZvOQxDyc0C4k3AAppXKA94B8jMUnSzCWZo9WSs3QWpeEKy8IQtsTbApt3143uWygF+VYqSeTrhzgJwBYcfIDdooCtnlaqWd0t93YR1Rz1k8nMORXgxrz7vtH6GXSQuck4QYI+DPGirfuwC5P2hXAP4DHIUwUJkEQ4orbbXizKfj8AAWfVvDD9y4KNmexubonJ/M1A9iGCzO96ME+RvM/ftxY9hTTYl780d+wn5DK6BkDuHtuCjmbSsgfU8/4H2WQf1pPRo2xYrPJ1Jlg0BEM0I+BU7TWVUoZ7sm11vuVUrcBXyW0ZoLQiXE6A6fQLBTvSKVf/WYGsI0a0njf7/2vigxe4Yqgugal7SF3Qk9+/sW0xrQ/ndLmjyAc4XQEA2QFgq2P7ArUt3NdBKFTUlVl5sv/OY1wAsuMKbQ9FSZGUkRPyrHSQCaZZDGMFRzDck4gj7Vc2uVt7EMOYp9o4bMfslm12klet93YRxzGfnwK9tN6Me7YFLKzc4CcFushCP50BAP0Hzz7gAA34FZKjQaeAt5JaM0E4QjD7Ybt26FgyUEjUNr3LlaXpJN0OJmerGAJvhHKND7jU2aE1FWR3JeX94/GbDX8AhxbCbNtkJw8IGQZQYiGjmCAfgW8CJQBJmAtkIKxMCGMf1lBOLpxOmH9Ou8U2kEK1ljZtMNGn/qtDGA7qdRgIZUc+rOWMeylBwPYwvik9dj77cHV4GaxJ3rBkPQy7IMPYp9gZvz0HthPzmLgwG74e3TJyEjMcwqdl4QbIK11JXChUmooMAqjTkVa6w2JrZkgdBwOHYJV39ZS8PFuYxWaTqGiArYyCOgN9GY6/6ULffiOY1nOCc10VJLJro8K6H3aDDCZ2F1aw2kbHYw7NoWsrF5Ar/Z+LOEoJ+EGCEApZQPsGAaoAahVSm3SWjcktmaC0L643bBjR9MptLUlaViqDzCMTXTlIA1Y6E4OFSgyOIgbM3bTKoan7uZ/h32r0rKtleT3K2fMqDp65VYz49I8ekywG/MMQO8hqfSWbTbtwosvvshjjz3W6L8N4Pnnnyc3N5e77rqL5cuXk5GRwU03SUjudsXzvedjDMejGmNBwj3AZqXU6Vrr7YmsnyC0FU4n6CLPFNqSgxSstVCwI4e9zq5AV0azjTzWkU1/1jCOdYxppuP98xdwxr3HYh51HBU77PSbXYz9VGMKrX//DEymDD9XMiba2LdkQokyIGrE1Naa2L49mdRUE62NxrBu3TpuvfVWrr766ibpv/zlL0lLk5DcieQvwHLgGq31IQClVBbwkidP9gEJRzyHDsHq72op+GS3sQptfQoHK+oYyia6sxcLDaSRRRaj2EtXLNSTzX7e4MImemymWsb02I1dObBPTmHCjZdgHmz0ij0GJ3Hvy8OD3b7T04qAqFFgA8Y2SRk8GLSO3AgVFRUxa9asJmnV1dUSkrvNNEfOJGCi1/gAaK0PKKXuBr5NXLUEIXrcbti5038KrYGC0q4UV/YmmyrO5nPqsZJNT3aSxyKavnnO6fssZ17yA3mn9cc6biwzJ29kzGg340/sSv6MHNQoG0lJg0LcXeiI1NTUUFpayt///nd+85vfkJmZydVXX83o0aMlJHebaY6cQuAEYH1A+mgMp6SC0CGpr28+hbZpezJ9nFvpxw5ScLCB8RRjbLB2kBJyI+fwLruxDz3Iyb89i0mX+Dqkj4uz2uVZjnSSk40RSdtMwdWyceMGcnNHNI4GopmCq6ioYOLEiVx88cU88cQTrF69mhtuuIGrrrpKQnK3qfbIeA34s1JqEvAlxubTfOBGYIFS6jqvoNb6r4mponC0U1npmUL7eDcFy2so0KmsLe/JiSyhBxWYcZFCFjZyWc5kXJ691VdYXuHSUasZn2/G/uMcTrwxj8y0euwjHYw/Ps3YyHmMjYwMYyWb0HqSk2HYsPjrdTjc1NTUMXSouzUBURkwYAALFy5svJ40aRLnnnsuK1askJDcbaY5cv4fhhfsMzyHl33ATzwHGJtUxQAJbYrbDbt2eabQPt1DwYoGCktSsFbtYwibKWUIq7F7pfmSH3GYLkF15SQfYNz/jePXL49vTCu6FCKIlix0IgoLC/nqq68aO3gwRlV9+vTB6XRKSO5EorWWhaBCQqivhw3rXca3miUHKFhtoXS7ld7ObfRlJyk4cJFGFwayhrGsJp/T+ZB+SXuw991D/lgnj346nm8c48jNKMM+9BD2SVbsP87BfmImvXtnYTI1nUIT43P0kZaWxlNPPcXAgQOZMWMG33zzDR988AELFy6ksrJSQnInGqVUD6Baa12jlJoAnAWs0Fp/lOCqCZ2EqipYs6KWHz4uo2DZYQqKUjiwpxYXZjaRi3cT5gl8yVdMwU3wuW9r/768t3V8oyWZVOImp6eJLl36AH3a6WmEI4khQ4bw5z//mccee4w77riDXr16MX/+fPLy8iQkdwcIyf0TjNALM4HNwA/AVmAQcKfW+snE1c6HhOROHNG0n9sNu3f7rUJb2UDhphSsVXsZzBYyqMRJEuX0Yi1jGEURK5jEeNNq7N23U1rZnY9rDTfOPZP3Y++/l/FjG8g/OQv7j3PIVeYjbi+N/P3FhrRfbHTokNzAA8BsrfWnSqn5wFatdZ5SaiZGPKAOYYCEjkdDg98U2ucHKFhjZt22DLY7e2M4U+/KebxJKgNZyxhWMaGZjl6WvRxaUYIlbxIkTWbZO+X8v7pK7FMz6N07G2N/tCAIbUFHMEAjMEZAYIyCvB6wVyPLggQPhw+bWf6Fk6LFZRR8XUPBehsHy2sZTCnd2YsJSCKLcZjYzlmYcKHQ1JttrHAd06gnzVzDuJ67sY+qZfzkdCacMQyL3beedvK5PRPwdIJwdNIRDNAOIN/zHWg0cL0n/SygNGG1EhJCsCm0gpIMNlaOx42ZU/iGHPaQRm9KGINmZJPy2exj2f/7J2PPHED6cWP43xspjP5wA/mnZGE/NYfhualYLLLuRRA6Ah3BAD0C/BtjmfVyrfVXSqnZwN3AZQmtmdCmBJtC27zNQi/nNnqzGxu1mEhmA//XWMaFmX9xcRM9ZhpQXXdjH1aJfVISE+ZfQHKqsQ9n+jVdmX5Nuz6WIAgR0hEMUA4wHegOfOJJ+wT4HJgN/Csx1RLiSXU1rFlZZ2zk/PowBetTWL2nN/1dW5nEd5hxY6EbDYxgKSc1ljPhYt6wvzJA1XLieUPYfLAXd/yxFPuoWuxT0rGf3psx+UmkpfVL4NMJgtAaOoIBmgNUABdrrWsAtNbLlVK9wK8nEo4Ydu+Ggi8OGSObFU4KN9lIqtzHQLbShSr+xUXUY3x3yeAQ/+CSoHr62vZiH7iX8xfO5JBlJz3z8hiYksLXtwUVFwThCKMjGCCA54D3lVJztdbzEl0ZITIaGqB4o5sfPilvnELbsC2V/nWbPFNoddSSThKDKWQMP2AsY/8/878Y2N+FPa+ebv1SOOsFOyOzdmMfVoX9mCTsp/Vi/JQu5OR0B7p7lsHuTOzDCoIQdzqKAXoSWAS8rpQ6HrgU45uQ0EE4fNh/Cq2aVUXJHCxzMJAtLGMyBz0ONxVFTabQAuliruaaJ8Yz/SZj8YDLBZVPQGpq/3Z5DkEQOg4dwQC5AbTWS5VSEzEWJPwAXJnISh3NlJV5ptAWlVOwop51m5JJqqxgANvpQjV1JGOlN7sYyzryOIEvcZps2LttI29wJb9aOQqA/il7sA/cz/jxbvJP6cb46T0YOiwds9m3cs1shtTURD2pILQv69evZ+7cuRQVFdGlSxcuuugibrzxRkwmU9gIqADvv/8+jz32GHv37uW4447joYceokePHmzfvp3p06fz/fffk56eHlP99u3bxxVXXBGVR4VY6AgGqHGHrNZ6p1LqJOAJfAsShDaioQE2FbspWFTOD4sPULDazNZtsK2uJ5V0BTLJYh+D2MJq7Kzk2KB6Zv24il+/fywkG/ttJnxymFET0+jRIwdjjYkgCC6Xi1/84hdceeWVvPLKK+zevZsLL7yQkSNHMn369LARUNevX8/s2bNZsGABSinmzp3LnXfeyfPPPx/XOi5ZsoQTTzwxrjrD0REM0BygynuhtXYCv1BKfQtcnrBadTIOH4a139dR8PEuCr46zKqiZA6VHaY/28hmP2DCTTcOo5jISj7nFHLZwPi0jSw6/COc3kUDlmrG9yrDPrqucRVanv108IuNMvW0tMQ8pCBs2hQ+v0cP8AtVQGmpMQ8cim7dmg7RN2823txaEffBbDbzwQcfkOrRt3//flwuV2PohHARUN977z2mT5/e6Cfu9ttvZ/LkyVRUVDS5h9Pp5Oabb8btdvPUU09x33330a1bN77//nvWr1/PmDFj+O1vf8u8efPQWmO323nyySfp0sXw6L548WIuv9zodh955BHefvttXC4Xo0eP5v77728SPC8eJNwAaa3nhEh/CSMstxAl5eVNp9AKSjLQB3vjIhkYyCz+jZnebGMsawNCDQOc1mMl777yFRnH50HWCF64axPdBjuxT+/O4CHpmM1Dm99UEDoCw1sISf7UU3DTTb5ru92Ilx6Khx6CX//adz11KmzfbuyYbgXeWD/Tp09n+/btzJw5kwkTDBdR4SKglpSUkJ+f35iXnZ1N165dKS0tpU8fwwmuy+Xi9ttvx+Vy8fTTT5PsiZj31ltvsXDhQvr06dMYtvvll1+mR48eXHjhhbzzzjtccskl1NXVsXbtWvLz81m2bBkfffQR77//PhkZGcyePZsnn3yySciHeJBwAyS0HpfLM4X233J++OwABatNbN3qpkfdTnpRRhJOqslkOFCE4ca9BxWswk4xuY16rDgZnb0Le2419mOTOfmC08g4MaMx/5p5bRDlSxCOYj788EPKysq4/vrrefrpp7nlllvCRkANzPPm19TUNF7fe++9rF+/nvfee6/R+ABMmzat0bCNHTuW5ORkhnlGcOPHj2fHjh0AfPvtt0ycOBGLxUJSUhJ79+7ljTfe4NRTT2Xu3LltEh1VDNARQk2NdwptNwVfVVOw3saqst5Uu9L4CV+RioMGulPJSAqZ1qTsmdaP+eDCV7Gf2oM+00by0O8c7DmwHvuPumA/rRejxydhsw1M0JMJQhwpLg6f36NH0+uCgpan4PxZutSYgouQ++67r/GDft++ffnggw8AI/z1wIEDueaaa/jb3/7GLbfcEjYCqn+obv9874gKoLy8nLKyMlatWsUxx/j8H7YUHdUbEcE/PPekSZOYP38+r732Gk888QT9+vXjzjvvbBI/KB6IAeqA7NnjP4XmZH1xEpZDFfRnB2kcpooMvm4MFAubGUIB+c30DEotwz7oAKedNoQz/3x6Y/o94ltC6KxE+21mSAR+Af07/ijDUz/wwAM88MADgLHCbPr06bz55ptkZRmBCp1OZ6NBCBcB1ZvnZd++fRw8eJBhw4ZRXV0NwDPPPMO//vUv7rnnHt59993G0N2RREcFWLp0Kb/61a8A2LVrF0OHDmXhwoVUV1fz6quv8qtf/YqVK1c2rsqLB53CACml8jE2s+YBG4EbtNbLg8hdDDyEEX1sMXC11rqsPevqj8sFJZuMVWgFn++nYJWJH7b1oJdjC7lsIIl6qsjAyRBWM5HvOB6ASXzH7QP+iT3PiX1qJq9+mAVFW7HnVjP+WJuxkfOEdLKze+ENtCYIQmLp1q0b3bt357HHHuPuu+9m27ZtvPDCC9zk+SYVLgLq2WefzaWXXsqsWbMYO3Ysjz76KCeeeCLZ2dmNBigpKYmf//znvPvuuzz11FNNgs21hNaa3r17k5FhTL2vWrWK+fPns3DhQgYMGEBmZiaZmZlxNT7QCQyQUioFeA/DsLyA4cD0XaXUUK11lZ/cOOBZYAZGqIcnMRY5nNke9aytNbFyeT1Fn22l4KtqVq+zUllWTV/3dky4+YCZjbID2cDrfg44/cmyVNJ3aBce2eDLn3cXiPsIQej4PP7448yZM4cpU6bQtWtXrrzySs477zwgfATUUaNGMXfuXO6++2727NnTOEUWSFJSEnPmzOHKK6/kjDPOiLhe/tNvAKeffjpaay6++GKqq6sZMmQITzzxRIxP35yER0SNFaXUGcBzWuuBfmlrgLla69f90h4G+mitL/dcdwf2eNJaHAW1NiLqxm/38/OzduGsOEBfdpHGYWpJYQd9WctYKslkIFvIMVVgzzZGMWX7knhw40UMSdvN+EEHseebGD+9B/mnZDNwkIkIR9SdBolIGRvSfrEh7RcbHT0iaqyMBNYFpGlPeqDcskYBrfcqpfYBCohoGi7wI2AkfPHk99gqXCxjGg0hmrvM1JvvN9pI75cHwMEDbm7C4ZknzvKTrMXvG+VRg/fDbO3R+PBxQNovNqT92o7OYIDSgcPjEDJUAAAgAElEQVQBaYeBwN2QkcqFpLCwMOrKjbvcwqbPN/G/7T8GIMtykDE521HDKhmWb2Lo8akMHu5k8wHgwI4mZXfsCKLwKKa4pRVOQlik/WJD2i/+dAYDdBgI9CaWhp93hSjlQpKXlxd15QC6fTSK3m9+z/RZwxg6zIbJJPtqoqG2tpbi4mKGDx/euLJHiBxpv9iQ9ouNcC/uncEAFQE3B6Qp4LUgcqpRwAgB3s2THhGtnf/tNxymnL2dYcNtMoccA979EELrkPaLDWm/+NMZFiHYgBLg9xir3C7znA/RWlf7ydmBJcBZwAqMVXB9tdZnRXKflStXHtkNJQiCkCBCLUI44g0QNFliPRYoBn7hiar6LIDW+gaP3IXAg0BvYClwlda6PDG1FgRBOLrpFAZIEARBOPKIv3c5QRAEQYgAMUCCIAhCQugMq+AEQRCOCJRSk4BvgBq/5Hla63lKKROGV61rMPrmvwO/1lo3eMoG9WWplBoMlAIZ/u7HWlm/HOB/WutxseiJFDFAgiB0GkwmWtpkV+F2c9BPfgjhZ4L2ud3s95MfDFjcbloIvRqSfOAjrfXZQfJuwlilOw5wA+8DtwF/aEdflmcCH8VZZ0jEAAmC0JloyV3BzcDTftcFQGYIWYC7aerrdynQH2itR8Z8zz2DcRnwZ631LgCl1HxgLvAH4BLgHa31N5683wF7lFJN3N0rpZKA/3jq91OMKAHlwBTAjrEF5TfAnzFWDS8HZmmtvWFhZ3ryvP4zr8Aw0N8DN2qtS1r53EGRb0CCIAjtRz4wRSlVqpTaqpT6o2cvIzT3a6kB5Zmaa5Kntd4LeH1ZerEAr2L06z/VWnud110FXIsxddcLeAf4OTDQc1yGcaNkYCKwTCk1HbgII8RNX2A7cH88GsAfGQEJgtCZGN5CfkXAtZ0WpuACrqdidPStZQ/wOcbIpBfwBjAHuIPm/ioPe+pmC5Lnzff3ZflXjOcZ62d8AN7XWq8DUEp9B9Rqrdd7rr8BBnnkTga+1Fo3KKVqgZ4Y36PeBq7TWocJHds6xAAJgtBpiPbbjNtNactSTeQ3RyPv2Qx/qedyi9ba36FkiVJqHsYU3x0091eZBtRrrR1KqUh8WfYF+gHHAV/4pfsb0QbggN+1C58Bnonx3Qmt9ZdKqSsxvkvNBTYrpW7VWn/Q4kNHgUzBCYIgtBFa6xu01l201l2AH3mm3DL8RFIAb5yXJv4qPedFwfJC+LI8F8PTy/OeQJ1eIvU2cDrwsUf/AKP6+iTPfV4EXldKxTUkaocZAcUjrHY4HUqp/sBTGENoJ8bQ9/aAoaogCEJbcRA4DzAppe7AmPq6G2PqDGAh8Bul1GcYfdSdwCuevH8AS5RSCzAWEszHWE2318+g1QF/xBhxzfaUjwil1Fhgm9bau0LwOOAxpdRJWusSpdQBYL93SXi86BCueDzWupimYbV/DwQLq72UpksR+2qtz2xJh1Lqc2AtcDtGlLe3gU+11vdEUkdxRioIgtA6OnpE1GmAS2v9F8/1AqXUrRhr0l/3kwu3FHFCKB1KqbeBauBBrbUD2K2UehXjbSRiWhOSGySkb6xI+8WGtF9sdJb2c7mgvt44Ghp855Eco0ZBVlbL9wjGypUrQ+Z1FAMUj7DaIXVoreswNnj5MxNYFU0lWxOSGySkb6xI+8XG0d5+bnf4DrehwRQ2v6amnq1bM9iypQGTqa5ZB26cmwJ0Bnb0piD3bTnfd20KUa6pTOg8cLtbu3UJunVzs3FjLWkRx4+OjI5igOIRVjsiHZ419Y9jGKxLiYLWhOT2R0L6xoa0X/S4XN4O1kRBQUnjua/TNUWUFk7GeLNuuUxDgylArnlac10+Pb704Lr95fyfu6Gh9R2vgQ0YEY9fxxFLjx41bNxYhDXOFqOjGKB4hNVuUYdSKhXjo95Y4KRoYwG1NiS3hPSNjda0n9sd7E236VtvuCmHwPzAt8rAt97mb8S+/OB5od+aA99oQ0+ZGOX9p1YC84X4YrG4sVppdpjN3vPm+b685vkWS6Aud5M8b77FAklJvnz/csF0+JdrWj70M/j0uZvpzsgwYzK1rv87EkJyxyOsdkY4HUqpbhhLDKuAyVrrwA1mLRLr/G97hPR1u8N1SOGG+PEpE4nOaO/rdCZTVTWapCQbDQ3miPS64r5l7ujGbA7W0QXrvIKneTu/lmRD6UxKit/9I72v93A6HWhdyLhxeaSmtvT/K0Y/GjqKAfoMsCmlbsEXVrsX8EmAXLiliCF1eKbd3gJ2Y/g9crbHQwEcOACPPGKlqGggGRnWxjfzeHTkoeQ6H2aaD27b8e7m4B1opB1hazvgYG+v0Xa+Vis0NNSxfXsJw4cPIT3dFrURsFiMNjhacTiMdjCJbYk7HcIAaa1rlVJnYBiOeRjLqc/RWlf7h9XWWhcopa4FFuAXVjsCHScAJ2Fs+NqvVOMg6nut9Ylt+WxvvAHz5lmBnLa8TZvgnTqI5g00mo4x0ny320lFRRn9+vUiNTUp6nuH68BburfZfOR3PA6Hi8LCavLy3BzBi7iETkiHMEAAWuvVwAlB0m8IuH6dpkuzI9HxNQkaG59zDixfXs/mzZV065ZJcrKl3acQIjUggW/tHeWt1+FooLCwjLy8HqSkJCW6OoIgxIkOY4A6K716wdNP11NYWOLZRxBXTxaCIAhHLB3kHVcQBEE42hADJAiCICQEMUCCIAhCQpBvQIIgCKHw9+NTW2tsMDPcLIQ/byk/8Lw1ZSK9VzzuOWUKXH553JtXDJAgtBeR/OO3QedjdjjILC3FvHmzscQx1g4vXp1utB1ze93f/9rtJgUjTvVRzfPPw3nnQUZGy7JRIAboSMTt9r2ZtfWbTyI7H8+5ta6O/uXlWLOzjbXhCaxLTG2RIJKB3ITdXWg1JpNvP4T3ZyTn0chGej51atyND4gBantKSki69lpGb9lCcnJyU8MRiwE5irBiuLQQWo/b05GYEtF5tVZ/LPeJ473q6usp3baNwUOHYktJid89w93fZDryd0BHgBigtmbJEiyffZZARzJxxmSK/h/M+ybXyn/IBqCqpoYumZlYkpKi74iC6Y1HRxGvDrgtOn2/c0ddXaeIZ5MoXA4HVYWFuPPyEFcS8UUMUFtz8cU46+spKyykV9++JNls0XU+oTrwtjAAkXSgCXgrczocFHs6UIt0AILQaRAD1NakpNBw2WWUFRbSIy+PJOlABUEQAGQfkCAIgpAYxAAJgiAICUEMkCAIgpAQxAAJgiAICSEiA6SUulcp1T9IerYnEqkgCIIgREWkI6A5wPdKqekB6ckYkUYFQRAEISqimYJ7DnhfKXVXW1VGEARBOHqIZh/Qk8Ai4HWl1PHApYC7TWolCIIgdHoiNUBuAK31UqXURODfwA/AlfGqiFIqH2OUlQdsBG7QWi8PIncx8BCGe7DFwNVa67KWdCilsoEFwCnAQWCO1vrFeNVfEARBiI5Ip+Aa/a9orXdifPdZBHwSj0oopVKA94CXgCzgCeBdpVSXALlxwLPAxUAPYLenTCQ6ngeqMAzX+cAfPCM5QRAEIQFEOgKag9F5A6C1dgK/UEp9C1weh3pMA1xa6794rhcopW4FzgRe95O7BHhHa/0NgFLqd8AepVQvYEIoHUqpD4GfACO01g7gW6XUa566NxtlCYIgCG1PRAZIaz0nRPpLeEYgMTISWBeo3pMeKLfM7/57lVL7ANWCjo2AU2tdEpD302gq6XA4ohFvpLa2tslPITqk/WJD2i82pP3ajo7ijDQdOByQdhhIi0KupbyaCPSHpbCwMBrxZhQXF8dU/mhH2i82pP1iQ9ov/nQUA3QYmoXMScNv2i8CuZbyAt1QB9Mflry8vGjEG6mtraW4uJjhw4djs9lapeNoRtovNqT9YkPaLzbCvbjHZICUUpnAZVrrp2PRAxQBNweqB14LIqf87t8D6OZJzwijYyOQrJQaqLXe6pcXOGUXlliDedlsNgkIFgPSfrEh7Rcb0n7xp1UGSCk1BbgWuABjZBGrAfoMsCmlbsFY5XYZxmq1wFV2/wCWKKUWACuA+cBHnm9BIXVorauVUu8A85VS12Is0/4ZxiIHQRAEIQFE7AlBKdVNKXWrUqoQ+AIYBDwWj0porWuBMzCWV+8DbgHO8RiOZ5VSz3rkCjAM3wKgHOgLXNWSDs9trgWSgO3Am8BvvKvpBEEQhPanxRGQUmoacB3GMubNwCvAQq31VqVUHnBnPCqitV4NnBAk/YaA69dpujS7RR2evH3AhbHXVBAEQYgHYQ2QUmojkAn8E5iqtV7RLrUSBEEQOj0tTcENBb7BcHlT0PbVEQRBEI4WIjFAqzEWGexSSj2tlDqu7aslCIIgdHbCGiCt9Rat9T3AQIyP+IOAr5RSWil1D4aBEgRBEISoidQVTwPwNvC2UmoAcA3GwoT+SEgGQRAEoRVEE5AOAK31Nq31bGAwcA6GB2pBEARBiIpWe0LQWruA9z2HIAiCIERFR/EF16kxrV1Ln+efx9KnDyQng9kMFkvTn9ddB143H1u3wn//2zQ/sMxpp0F6uiG/fz98+21wvd7zMWMgzeN71eGAkpLmev2ve/Qw6grgckFVVXC9JpNxCIIgRIkYoHbAtGYNff/61/BCl1/uM0CrVsE114SX37zZZ4DWrIHTTw8vv3o1jB1rnGsNdnt4+aVL4Uc/Ms63boUhQ0LLmkzw/vtwpsez0f79MGhQcMPpTXvySTj3XEPe5TIMZKAR9Jwnm0xknX8++DuDPfdcqKsLWYZLLvHpB7jtNjh0KLisxQKnngpnnOGTf+op2Ls39EuA3Q7Tpvnk334bKipCvzAMGgTHHuuT/+472Lcv9AtAt26glE9+61aorAwtn5ICOTk++epqqK838uvqMNXWGu2VlGSkyUuD0AEQA9QedOtG1ZgxpNlsmN1uo8N1uaChwXdu9ftV2GzQr59Pxl8umLzL1XIdzH6f+6KVb2gIL+t2N5evrAxfpsYvOkZDAxQVha4KYJ0+vWnif//bVEcgxxzT9Pq112D37tDyqanNDZDWoeVvvrmpAZo3zzAqobjsMvj7333Xd90Fn34aWv6cc+Cdd3zXv/41vPlmaPmTT4bFi33Xv/wlLFgAGM4aJwTKT5gAK1f6ru+4A55+OvQLw5Ah8OWXPvmnnvLJByvTrRt89JFP/s034dlngxtos9kwjP/8p0/+iy/gpZdCj+jNZnj4YaMcQGGhUT6UfosFrr/e99K2fTt88EH4WYMzzoCMDAAslZWYP/7YMPSh6jNuHHTxBGB2OGDDhtB1MZuhZ0/fS6fLBQcOhJ/16IQvDWKA2gHXaaeh+/cnLy8vMm+6M2YY/yCRcvLJzQ2Uv4FraIDMTJ98Xh5s29bUsPnLulww1G+Ffb9+sGxZcHnv+cSJPvmMDHjjjdAGtKGhqYEwm+HRR5vr9VzX19ZyeGRAbMJbbjHe6EPVyTva8zJzpjEyC/asLhcMH95U3m6H7Gxf/d3upvJ9+jSV79nT99IQrE3TAkJPuVtYPGqxNL1u6aXB/wUgEvnAzqymxphmDUVg/cvLYf360PL+ozEwRuzhDK53utfLhg3wt7+FlgeYP993vm4dPPhgePlLL/UZoHXr4IYbwstv2NBogGxbtpB85ZXh5b/7DiZNMs5LS2H8+PDyn34K3her3buNv59wvPkm/NQTQ7O62mjjcAbuz3+GC/28j40e7XtZDFbuttvgoot88ued55t6//DD5n+TcUAMUGfBZDL+QCL5I0lOhv79I9edkgLHHx+5vM0G558fubzFArfeGjK73uHgcGBMkYcfjlw/QEtToIH4v41HwvtRrsX59FOjM/COiAONYuDv8YUX4IknQr8ApAaEwrr3XqODbWig9vBhNpeWMmTgQJKtVkPe07E2ctVVMHVqcN2BLzBgjA66dQtt0APrM3Gi0cEF0x/seYcONTrDUPKBZbp3hxNOCN0+LpdvtATG3+jAgeHl/fSb3G7cFgumcLMBscwyRCLv/7wuV/gZADBGYf6EmWUAjJcKfz7/3BiVQfMXnDghBkgQEoV3AYfZ3HRKNRjduhlHpAwd2jiKdTscVGVn48rL8035BGK3t/xd0J/Jk40jUk4+2Tgi5ZRTjKOt5E86CbZsiVi8euxYaquqjBmMwNGw99x/lKgU7NwZclSPy2UYQC89exoLicLJ+4+oUlLgrbeCG1Dv9QkBfpm9LzChZj6OC3By88tfwuHDRl4bTf+JARIEQYgGk6nlFwartfk0bTiSk5t/twxHUpIxRRYNt9wSnfycOdHJt4K2GVcJgiAIQguIARIEQRASghggQRAEISHIN6B2YMkSM3PmDCcrK4nkZGN62GIxfnqPxx/3bSEoKjJWoPrnB8pfeaVvYVJ5ubEtxj8/8Jg4sekWhU2bQuu2Wg3Zlqa5BUEQYkG6mHZg505YtqxrWJlHH/WdFxfDH/4QXudPfuIzQOvXG1scwhGLI4QtW2DYsNDGymIxDKZ3EdKhQ8aCp3AG8fbb4cQTDXmXC66+OrSs221l9Oi0Jo4QnnnGtx832DFuHIwY4ZP/+mtjMU8wWYvFWMXbvbtP/uBB38p2r5w4EBCE+CIGqB3IzXVz8cVldO3aHbBSX0/j0dBg/PTfh9etm7HJ3pvvdPrkvIfN5pM3mYwygTL+Wxb8txDU17dcZ//Rj1dXuC0QTqfvvLYWfvghvP5LLmmqP/yeQyt33dV0I+Ttt4ffBvHII4aMl5/+FMrKQsvffXfTfYzHHmvsQ2xWE48xuukm+OMffennnGMY+VAG8eyz4Z57fPL33GN4UAoln5/fdJ/ka68ZLxqh5AcMMPbaevnuO8N7j9UKLpeZHTsyKS83k5Zm/C107dp0r255ufHiEO6lIZI91IIQDR3GACmlfgX8BsgA3gWu11pXB5GzAc8A5wFO4Amt9UOR6FFKnQs8iBFYbxtwj9b6P235XACTJrm57bbt5OV1JSWl5SafMgU++yxy/VOnGm7LAvFuV3A6mxqssWMNRwv+xirwGD3aJ9+7t+G1JJy8/+gkLc3wTOPN8zeg3p+5uU3retFFTfP9j9paFz16OJvIDx9uTCWGqk9gZ9mSN6HA6cZQRjqYcQfYsSP8thL/9gRjRObvOSeQn/60qQF64w3D3Vwopk9vaoCefhpeftl7lQw0bfBJk5p6DnroIWObSChyc5sa5AcegN//PrSx6tXLcJ7h5dVXDe894YzbP/7hk1+61CgTasRqtcKdd/p+b8XF4aehvf57vf8H+/cbU92hdFut0Levb+9qQ4PhfMC7AltGw/GhQxggpdTZGEZjGlAG/AN4BLgxiPhDGAZkCNATWKSU2qi1fj2cHqXUCOAV4CfAYuDHwFtKqUla6zA+RY5cvP8sgZ1rcnLLXj/8SU/3+RmNVP7OOyOXT04O73jA4aijsPAgRvxDg9WrI9cPhoEIZty8R9eAGdL//MfYgxc4UvUegb5Z77nHGEUE0+10GiMaf849F0aNCl2fwD2BI0caLyah5Pv2bSqfnGz8Hox8Nw0NTXvLQMcDLY2KA/+GamvDj0Bra5teb98Oy5eHlg/09FNYCM89F75O/n9jK1bAjcF6Cz/27vUZoOXLW/6b3rTJ55FqzZp0jjuu6VtN4HT0F18YU79gGOszzwz/nfXxx31T4RUVhqu6cAb3uusMn71gtO/DD4fWbbUa0+DDhvnq+/bb4Ue4gwY19aC0ZYtvj3Tv3m1jcDuEAQIuA17UWm8AUErdC3yulLrFE401UPZirfVB4KBS6ingSuD1cHowAug9r7X2ji0WKaU0cCwQkQFyBLq2iJBaz39jbeB/pRAR8Wo/k8l4o/X3yOKP/6/X//tRKPzl/f2YRiJ//fXRyc+eHZ38E0/4RjS1tbVs3FjM0KHDsVhs1Ncbo2N/+bvugptuMgU1tk6nMUJxOHz+684/38TYsaaAka2vvCHv+9edNMnE3XdbghrPhgajE3U4fFawTx8zM2dagkxBm/zqVddoOC0WM4MHWxvzXa7mI3Cns7bxmQ8fNmOMDENTX+/A4TDaL9CAg29a2vtnWVdX29hGBw6Y2LTJ1qyMP3v3+uT37jXx1lvh5adNq2P4cMNlz/79MHt2+DnRl16qo18/Q97lgvPOCy//+ONOrrvO9zsbM8ZGVZXx3FVVjrZwBdd+BkgpZQW6BMlyASMB/6kw7ZHtB2z105GNMepZFyB7k+c8pB6t9SJgkZ+uoUAesCrSZygM9EcWJcXFxTGVP9qR9ms9JhOUlkbefmazMYry/zYZ+OcfOI0aiL98VlbLG/f95fv3b9norvPrBYYOhX//O7z89u0+H7/9+xurUxsaTJ4Dv3Pjev/+2kan7kqZeeGF9c1k6ut919XVByksNDr8Q4es/O532c1k/O9VU1NBYWEdAPv3WznvvL7NZAyDasLlMlFVtZPCwsMAVFZaGDNmeKO89x6GVx3jfN++rZ6ZA3A6Tdhs9ka5YJSV7aSwsKLx2unMBwzZoqLCI34EdDLw3yDpW4B64LBfmvc8YGBOekC+9zzNL79FPUqpvsCHwN+01hEboDz/Dx1RUFtbS3FxMcOHD8dmC/+WIzRH2i82pP1iw9t+55/fp4X2azoP6l1FGprsKOWbzvuGjv7h9hz98Z+2PnCgrvHcf4ToPVJTe5Ga2qtRZsUKZ2PemDGt6/sg/It7uxkgrfWneM1pAEqp1YC/+1yvwQj0D+81KKnAIT/ZKr/8sHqUUvnAexihxFuYNW5KRKEUwmCz2WLWcTQj7Rcb0n6xcbS1n/d7U1vSUb4BFQF+4R9RwAFgp7+Q1nqfUqrck1/mJ+sdjIfVo5Q6HfgX8IDW+k/RVnKlfwCvVhDrFN7RjrRfbEj7xYa0X/wxuVsKjNUOKKVmAs8CMzCWR/8D2Ky1vimI7J+AfOB8oDvGd53faq3fCKdHKZUHfAtcrbWOMtiLIAiCEG86hC84rfV7wMPABxiLDg5gLKcGQClVpZSa6rm8B9iAsXLtS4yVbW9EoOf/YUzPveDR5z2ua+vnEwRBEJrTIUZAgiAIwtFHhxgBCYIgCEcfYoAEQRCEhCAGSBAEQUgIYoAEQRCEhCAGSBAEQUgIYoAEQRCEhCAGSBAEQUgIYoAEQRCEhCAGSBAEQUgIHcUZaYdn5cqV4jJCEAShFUycODFoJAQxQFEwceLEVpVzOBwUFhaSl5d3VLlzjxfSfrFxtLaf220cLpdxeM8Df7aUV1PjQOuN5OaOICnJFlX5aGQi+dnavFjLH388nHpq634P4aIIdBgDpJQagRHt1AXs1lqXJLhKQgfD7TZCIHv/ob1HsLRoD/+Ooj3KhivTmrxg6d40p9NKRcVAsrKsmM3hy8VyHS/ZaM7D5cePFGBsPBUecVitsG8fZGTEWW981UWHUmoKcAtG+IQsvyy3Umof8DHwF63114moXzxwu2HZMhMrVmShtRmrtWmHGdh5RprXUucbqWw05cOlR5rfOnkbLlfrRp8CGP/mOYmuhBAhJpNxmM3Nz0P9jDYv2vwTT4y/8YEEGSCl1HDgOYx4se8AF2AEldsLWIAewHhgKvAPpVQJcL3WekMi6hsL//wn/OxnNmBYoqtyBNMGwejjgPefNPAITDeZwGIJntdS2XiUd7kaqK4+RNeumSQlWcLWs6XzSMq2VD7a+4aSj7RcSzpb6uDr6mopKdnIiBG5pKTYoi4frezRRKJGQC9jRCX9JET+Ns/xvlLqDmCmp8zkdqpf3Bg5EgYMcLNnj4ukJDNms6nxj9HbqYS69qb5d0AtlQl2Ha58S/cO7ADDyYfKD1Y+kvt7D6ezju3btzBkyCBSUpLD6gl2RHL/aMp73wqPlM7C4XBSWFji+QZkSXR1jjgcDjcuVy25uW6Ook9o7UJCDJDWekoUsm7gXc9xxJGfDxs21B6VH4HjhcPhorDwEHl5LukABKETkfBFCEopE/BroFxr/Yon7RPgQ6314wmtnCAIgtBmmBNdAWA+cBtG+Gwv7wK/UUrdl5gqCYIgCG1NRzBAlwMXaa3f8yZorZ/2pF+bsFoJgiAIbUrCp+CALsC+IOm7gex430wpdTswD6jzSz5Da7003vcSBEEQQtMRDNBnwMNKqUu11gcAlFKZwBxgSRvcLx+4S2v9xzbQLQiCIERIRzBAtwCfAjs8+30AhgClwDltcL984KXWFHQ4HK26YW1tbZOfQnRI+8WGtF9sSPu1HSZ3fH1WtAqlVDJwKjAaY2psA7BIa+2K833SgErgQ+AYYD/wiNZ6QUtlxRlpB8XrxMpzmAKuAUxe3yzea38/Lt7rMDoi1unVG4HOSMpEUtcW01rS3UJaa8u1qu6e32ebpXn/XhJRPqBsM72h0oO1VWt0hHqWlurnocpuZ/P997d681uHdkaqta5TSnm/+TQAW+JtfDz0Ar4E/gLMAo4D3lNK7dJaf9RS4by8vOjveOgQPPUUBzduJCszE4v3F+j/z+nfmblcTTuPIPlBz8Pl+6WZAsu0pC9YegvXIe8R+NxR6He7XIY/BP97CILQLiTv2UP6Sy+1yh9PYWFhyLyEGyClVF/gbWAixojEAmQqpT4FLtRaH4zXvbTWpcBJfklLlVKvAD8BWjRArdpEunAhzJ2L7J+MjSPE6UD7EuiwK9hhNuM2mXC5XJitVkzhZIOUjVi2rY5grifauQ4NLhf7Dx4kOysLi9UaWralusVa91j1B8uPMM10zDGk5MTfn2DCDRDwV6AGyPV6wPZ4xl4APAVcFq8bKaUmADO01r/3S04BDsfrHs046ywaLrmEqtJSunTtisXrGyfQAVSo81D5kZTtaOXDpYWRrXM62bptGwMHDSI5JSV8mZauW3H/sP/UicqPgtqjNBxDvHA6HGwpLKRLXh4Wab+40hEM0MnA8f7hF7TWG5RSNxP/VXBVwGylVDHwFjAN+D+ajoriS58+OF94gZACLisAABXNSURBVGJPByB/wNHjcjg4WFiIKy8P8cUjCJ2HjrARdSswPEh6DlAWzxt5vGlfCNyHsRjhGeAqrfX38byPIAiC0DIdYQT0R+A5z7Tbl0A9xlLpe4EFSqkZXkGt9aJYb+bxuPBei4KCIAhCm9IRDNALnp+/D5J3j9+5G2OBgiAIgtAJSLgB0lp3hGlAQRAEoZ2Rzl8QBEFICIkKyf1ZpLJa61Pasi6CIAhCYkjUFNzJgAtYBnyF8X1HEARBOIpIlAE6FsMVzk8x4v78B3gT+LyNXPAIgiAIHYyEGCCt9QpgBXCnUmoMhiF6FOinlHoHwxj9V2tdn4j6CYIgCG1PwhchaK3Xaq0f0FrbgcnAeozl12VKqb8ntnaCIAhCW5HwZdgBlAM7gW3AWGB6vG+glMoHngPygI3ADVrr5fG+jyAIghCehI+AlFJ9lVI3KqUWARXA/RjueU4D+sf5XikYXhBeArKAJ4B3lVJd4nkfQRAEoWUStQx7NEYIhJ8AE4DVGCEZbtNar2nDW08DXFrrv3iuFyilbgXOBF5vw/sKgiAIASRqCm4tRuTTz4GbMMJvA/RRSvXxF4yH/zc/RgLrAtK0J71FJCR3YpD2iw1pv9iQ9ms7EvkNKBmY4TlCEW//b+k0j/1zGEiLpHC4yH6RUFxcHFP5ox1pv9iQ9osNab/4k6hl2In69nQYSA1IS8OIE9QirQrJjfHmVFxczPDhw7HZbK3ScTQj7Rcb0n6xIe0XGx0uJLdSqovWOqJO369Mhta6MsZbFwE3B6oGXoukcKzRJG02m0SkjAFpv9iQ9osNab/4k6gpuK+VUguAv2qtw4bDVkplA9dieEwYE+N9PwNsSqlbgGcxwn33Aj6JUa8gCIIQJYkyQFOBecAupdQSYBFQiLEM2wz0AMYDJ2KsXHvNUyYmtNa1SqkzMIzPPKAYOEdrXR2rbkEQBCE6EvUN6P+3d+ZRVlT5Hf+81wvdioggQhOIBPH9VGxlizqi4BjMiI64e0SjgFGIogOjwYWJQY+jHnRcM4pGRY3O0YzoHBfGUVQSxaMgjQg2cF0bXEBBYAR771f549ajql6/rbtfd3W6f59z6rx6Vd/7q1u3btXv3lp+96/ATBG5DZgOTAFG4L1w0AisAhYDM40x3+Rx22uAY/NlT1EURWkdoUZCcB3LPGCeiESBvtjvdH4IM1+KoihK+9NpQvG4UbC3hp0PRVEUpWMIPRSPoiiK0j1RB6QoiqKEgjogRVEUJRTUASmKoiihEFYkhM3YOG9ZMcYMbOfsKIqiKCEQ1ltw1/vmhwK/BhYAHwANwGhslOy7Oz5riqIoSkcQ1oeoTybmRWQ5cJkx5r99khdFZDV2cLpb87VdEfkY6/Di7qKNxpjWRRhtCd98Q69ly4h+/TX06AHRKEQi3m8kAscdB0VFVr99O2zY0Fzjnx8+HIqLrb66GqqqUmsTvwMHevqGBti6NbP9ffaBQrd6xONQW9tck/xfURSlBXSG74AOB1anWL4B6yzygoiUYsf9GWCM2ZYvu7kQffttDp49O7Noxw7o3dvOv/suTJqUWV9VBQceaOdXroTx4zPr16yB8nI7X1kJI0dm1r/zjnWKABs3wtAsh+KVV+DUU+389u3Qv39mh7VwIZxzjtU3NXn6FE6xB9BnxgzrdBOUl0NNTXonevXVcMklnv4Xv4Bt29I7zylTYMYMTz9lCmzalHofIhF7fK64wtPPmQOffNJcl0g7bhxc6YuDO38+fPxxc30izYgRQf2jj8KqVenzP2wYzJzp6Rctgg8+gGiUwqYmBm7bRuEBB9hGTiQCZWVw+eWefskSWL48ff732w8uvdTTL18O77+fOv+RCJSWwtSpnv7jj1PbT0wFBXDBBZ7+iy9s/tOVP8Bpp9l0AJs3Ny+f5On4420DEOz5tmZNah3Y3xEj7H4A0ZoaIhUVUFLSXOc/Bnu5I7vU1cGXX6a2m5jKyvbYp6kJvv22ucY/7buv3T6A49jzLJO+pMRr1IJtRKbSJ5YlyrkjcRwn1CkWi70Vi8WeicViPX3L+sRisZdjsdgredzOUbFY7OvWpl+5cqXTWuoWLnTi0agTj0Qcx1ad5tPOnV6CF19Mr0tMGzd6+qVLs+vXrvX0q1Zl1y9b5uk//zy7fvFiT79tW3b9M894+vr6rPqqG25wampqvDSlpZnTzJ8fPAgDBmTWz50b1Itk1l95ZVB/1FGZ9RddFNRPmJBZP2lSUH/22Zn1J5wQ1F9ySWb9iBFB/ezZmfVDhwb18+Zl1vftG9TffXdmfWFhUP/oo9nrUHW1p3/uuez6zZs9/euvZ9dv2OA4juPU1NQ46554Irt+xQrP/vr12fVLlnj6zZuz6xct8vTV1dn1CxcGy7SwMLP+nnuC+n79HCcScZxo1HEaG53W4l47STV1hh7QDOBVYIuIfAlEsD2fT4GJLTEkIoVAzxSr4sBIoEFE3gOGAR8Cs4wx63O13+oRUc86i7VHHOGNJ5I45PG4N19U5LVQTjwRvv/e0/h1ifm+fT39yJG29e04BFxcQhuP4wwe7OmHDCHywQep8+HOO7GYp+/Th8iSJXbecYik0MfLyz19URHRRYvSV/V4nPioUZ4+Hie6cGFA49+Phvp6dpeV0ds3ImXBHXfYW4kpbOM4xI89Fsd3vArmzIHdu5vpE/sSP+444n791KlEtm0Llo1vio8dG9RPmkRkxIiUecFxcI4+mia/fvx4ov36pbc/alRQP2IE0bq6tPvrlJfT6NcfdBDR8ePtusZGampqKC0psa+9Og7xgw8O6svKKBg1as8xbmZ/0CAa/Pp996UgFkt/jHv3pt6vLy6msKzMrkvehuNAYSF1Pn00EqGoV6/Utt30dXV1e1rs0YYGiqJRr+6koLaubk+di9bXU5xS5VFXX49TW5vzSKgJPUCkro5sIwfV19d7daimhmwDPbRU39DQEKhDPRyHTP2bZvqmpj3nYW1dne0h5ZmIk+ZgdSQiUoQdGfVQwAHWAm8aY5paaGcCsCTFqo3A7cA/ANcC3wE3ApOBw4wxNdlsV1RUhF9QiqLkTrLT8t9iiseJJBow4DV4fOnipaXeLb7GRgp27w428BJaN31j7944iVtejY0Ub92aVovjUH/AATiJW2qNjZR89VWzPPu3Vz9wIE377GP1TU3sZUxqrbutusGDaezTZ09x9Fy1qrnet7+1Bx5Iw4ABe/T7rFixp4x+HDu2TbfnRo8enTJxp3BAYSAiEWAncLIx5r1s+oqKCkdHRA0HLb+2oeXXNrT82kZlZWVaB9QZbsF1CCIyHfjCGPOGu6gAKAJyvq+mI6KGi5Zf29Dyaxtafvmn2zggYCAwS0ROxg58Nx/7pt1HoeZKURSlm9JpQ/GISC8RmZldmTO3YofeXgF8DxwEnOEOA6EoiqJ0MJ2uByQiY4HLgHOBEuCBfNg1xjQAV7uToiiKEjKdwgGJSB/ssNyXYj8WfRu4B7ghzHwpiqIo7UeoDkhEfg5MB84AqoCngKeNMZtEZDhdxAF99FGEhx8eSP/+hRQX27dBo1H7hmdi/le/8j5yrqqCxYuba/z/Tz8derpfPG3bBsuWZdaPGePpq6ttMAS/Ljnt4MHeR9qNjfDdd831/jQlJV7knsSLlRqdR1GUTITmgETkU6AX8CxwvDFmZVh5aW/WrYvw+ONlGTXTp3sOaO3aYBSWVFRVeQ5l3To488zMen8knk8/haOOyqz3R+L56qvskXgWL4ZTTrHzO3bY72QhvdN67DE491yricdtqLpUWvvpRjHTpu0XiMRz7LH2m8J0DnHGjGBklwsvtPlKt42zzoLzz/f0c+fCli3p9ePGeZGEAB58EL7+OhiCzz+VlwejK73wgi1Xbx+D+iFDYMKE4PHIZH///W2ZJFi3zkaniUahsTHCxo092bkzQmmpXdazJxx+uKf/9lvbkEmXn+Ji2yhJsGuX/a43eJyC/3v6PglvarINEw0dqPgJswc0FFgMLCV1LLguQ79+MGrULkpK9gaixOP2hEwEOYjHvd4D2J7HQQd5msTJm04P1nkl1iX0fvwfMcdzeO3Cr8/lU7F09hN5Ssa/rKnJ9rAyWOennwoCS1avtqHg0vHLXwb/v/WWdSjpiMWC/59/3gaXSIfjBB3Qk0/CihXp9RdfHHRACxbAG2+k159+etAB3XefzVM6TjgBli71/t91lw23Z+kBSEA/cqQNnZbgzjvh3nvT2x86FD7/PGj/5pvT6/v2tQ4twf332/B8fvxOq0cP69QSPP00XHVVMERZsrP77DOv0faXv6TW+3/ffNM6arBh6WbNCtpNnn/iCc/pVlX14De/KaKwMHWaSARuv92GgwPr/K+9NrUu8Tt7NhxyiNX/+CPceGNqbWL+wgu9cIgNDXDbbZn3d+LEYCPjgQeCjQB/YyAahWOOCYZbfO45qK+36ydPbp9GQ9gO6DLsSwaPiMgfgf8yxiwPMU/twoQJccrKPmH48OE5fUcwYYI9uXJl3LjmF2N/JJWmpmBMwvJyG8cwlSNM/C/zddgGDbK9Mr8uOe1hh3n6Xr3g9debO0R/mqOP9vTRqD3Zk+0nptraBgYN2g3035PmllvsSZhqH+JxezL5ufRSe5Kn28bo0UH9KafYWJTpGgDJ3ySPGmUbDqlsNzXZHo2fwYPtxSdZm9hO4kKZYO+9bTzQ5Hwk0viPL2RvZCRfTLLpk6OwZGuU5KJPbLOpqXl+amth587M2/Cn2bUr+znj38edO60TyoQ/8tbu3QW89lpBejFw3XVB+08/ndn+eed5Dmj3buukMzFmjFfv6uvhppsy6/v1CzqgWbNsWafj3nuD9XrGDHvXAOzdgS7lgIwxG4F/E5F5wGnYFxDeFZHPsc+C9PucNuBv2ST3lgoL7cUsV4qLgxU5F/1JJ+WuLyiwwafTUVvbRGVl8Hvha67J3T5Yh9US7rmnZfoFC1qm93onufHkky3TP/YYPPKIvfD/9FMtlZXrOOSQw+jRo4R4vPnF5JZb4PrrUzu35AYM2EDgZ5/d3HEm5guSrtXnnANHHplen8yJJ8KzzwYbAP7wesl3AUaOhN//PrXtRHr/LcFhw+wFPFnr//WfI336NHL55Y0UFBSm3EZyo6FXL9tj8W8/2X6/fp6+uBhOPjm1LjHv10ejthGXrPX/Jp/jw4YFG1NJ4QpJRPlJ0Lev3Y7jtN8t004VikdEBmMd0TRgEOAYYzI3OzqIiooKZ3RyMzlHamtrqayszLkHpATR8msbWn5tQ8uvbVRUVKQNxRNNtTAsjDFfGWPmAUOAScDL4eZIURRFaS86VQ+oM6PRsBVFUVqHRsNWFEVROhWd6hacoiiK0n1QB6QoiqKEgjogRVEUJRTUASmKoiihoA5IURRFCQV1QIqiKEooqANSFEVRQkEdkKIoihIKnWJE1P+viMhI4GFgOPAp8C/GmPdT6CYDt2LDOS8F/tkY811LbHRF8lR+/wrcBtT7kkw0xrzTztkPnZbWHRH5NTDWGHOOb5nWv7aVX7etf/lAe0CtRERKsLHqHgd6A/cDL4lIzyTdEcBDwGRgf2CLmyZnG12RfJSfy0hgrjGmp2/q8id/S+qOiOwtIncAd7XWRlcjH+Xn0i3rX75QB9R6fg7EjTELjDENxpiFwHfAKUm6C4EXjTHLjTE1wHXAySLSvwU2uiL5KD+wF4AuPaBhGlpSd/4EHIxt7bfWRlcjH+UH3bf+5QV1QK3nEGBd0jLjLk+rM8b8AGzHDlGZq42uSJvLT0T2wpbjLBHZIiLrReSSdsxzZ6IldWeqMeZM7AW2tTa6Gm0uv25e//KCOqDWszdQnbSsGtirBbpcbXRF8lF+/YFlwALgb4HpwN0iMjHvue185Fx3jDHfttVGFyQf5ded619e0JcQWk81UJq0bC9gdwt0udroirS5/IwxXwLjfcvfEZGngDOAV/OY185IPuqO1r8gLdr3bl7/8oL2gFrPemz324/QvFsf0InI/kAfd3muNroibS4/ERklItcn6UuAWro++ag7Wv+CtGjfu3n9ywvaA2o9bwE9ROQq7FtaF2G75K8l6Z4B/ldEFgIrgduBV40xP4hIrja6Ivkov77APBH5DHgB+2D5fIKt0q5KPuqO1r+27ftuum/9ywvaA2olxpg6YCL29eDtwFXAJGPMTyLykIg85OpWA5cBC4HvgYHAtGw2Onh3Opw8ld8nwHnAvwO7gAeBacaYVR28Ox1OruXXWhvtl/POQZ7Kr9vWv3yhI6IqiqIooaA9IEVRFCUU1AEpiqIooaAOSFEURQkFdUCKoihKKKgDUhRFUUJBHZCiKIoSCuqAFEVRlFBQB6QoiqKEgjogRVEUJRQ0FpyitAMichMwL8Wqm4wxN2dJewRwD3AM8ANwnzHmLnddGfA74B+BIuAlYJYxZoe7/nJgDvA32GGmbzTG/MldV4Ud2nwqMApYC1wAXAlcAvwVmGOMedbV98ION30W0At4E7jKGLOphcWhKCnRHpCitA+/A8p8061YZ/J4pkRutO+3gE3AGGAmcLOInCsiRVgn0B/rgCYChwNPu2lHYoeWvgaIAU8Bz4rIAb5N3IYN6DoG2A/4AGgE/h5YDPynux2A54GxwDnubynwiogUtKpEFCUJjQWnKO2MiBwPLMEGu3w9i3YmMBcYYoxpcJdNwzovB3gOGGyM2equOxQ7hMCRwEHAH4FjjDEVIhIBTgLedYNsVmGHN5/lpr0DmAKUGWPiPltDgZ7AGuBIY8waV98X6xgnG2NeykvhKN0a7QEpSjsiIgOxTuPWbM7H5TBgdcL5ABhjHncv+IcCXyacj7tuPbDDTfcaUAGsFJFKbE/ny6To1p/55quBjcaYuPu/xv3t4W6rJuF83G39gB22+rAc9kNRsqIOSFHaCREpBhZhncJvc0xWn2FduoHOCoACY0w18DNgHPAycDrwoYiM8WkbktLGSU3GbWXIo6LkjDogRWk/7sM+//knY0yu97o/AY7wP2cRkfki8iiwAfg7/zMdERmOfUHAiMjPgHnGmHeMMddjeyqbgFNbkfcNQKmIHOnb1v7AwdhekKK0GX0LTlHaAfe5zVTgZKBYRAa4q+qNMdszJP0DcDNwv4jch3UiV2Cf1byBfUbzBxGZgx3++UHgPWwv6wjgNyKyFftCQTkwxF3XIowxn4jIi8AT7nOpn4A7gc3An1tqT1FSoT0gRWkfpmAdxP8AW7AX7s3YoZvTYoz5ETgFGIF9CeBu4DpjzAvus5rTsc5gGdYRfAicaoxxjDEfARdj35zbAPwHMNcY80or92Gam4c/A+9gR/08wb3VpyhtRt+CUxRFUUJBb8EpSgfhfl/TN4vse99baYrSpVEHpCgdx2js85pMlGFv2SlKl0dvwSmKoiihoC8hKIqiKKGgDkhRFEUJBXVAiqIoSiioA1IURVFCQR2QoiiKEgr/B/mvv2Bf15v/AAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "fig.savefig('zspecvsz.png')",
"execution_count": 7,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
}
],
"metadata": {
"kernelspec": {
"name": "python3",
"display_name": "Python 3",
"language": "python"
},
"language_info": {
"name": "python",
"version": "3.6.2",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment