Created
April 24, 2018 13:13
-
-
Save rbiswas4/fe9c15e2de8e8f1183bf6e7b577099da to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": true | |
}, | |
"cell_type": "code", | |
"source": "import pandas as pd\nimport numpy as np", | |
"execution_count": 1, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": true | |
}, | |
"cell_type": "code", | |
"source": "# Rough LSST pointing numbers per location over 10 years\ndf = pd.DataFrame([56, 80, 184, 184, 160, 160], index=list('ugrizy'))", | |
"execution_count": 2, | |
"outputs": [] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "### From note on minion knee for twilight is at mag of ~ 13\n- Looking at the times it seems we should be able to gain 8 * 2 minutes during twilight.\n- Using 5 second exposures this gives ~ 190 pointings extra pointings which we think we will want to use in g, r, i; or g and r; or g only\n- The number of pointings is much smaller if we assume the altsched mean slew time of ~ 11 sec. (However, should this not be lower mean slew time, since we will only do smaller regions of sky near the zenith, if that gives us a strip that is ok, and because we will not have to run over as much?). This gives us 60 pointings. " | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": true | |
}, | |
"cell_type": "code", | |
"source": "df = pd.DataFrame([56, 80, 184, 184, 160, 160], index=list('ugrizy'))", | |
"execution_count": 3, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "# Rough estimate\nnumFields = 2300\ndef improvedRatio(band, visits): \n return (df.ix[band] * numFields + visits *3650 ) / np.float(df.ix[band] * numFields)", | |
"execution_count": 12, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "improvedRatio('g', 60)", | |
"execution_count": 13, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "0 2.190217\nName: g, dtype: float64" | |
}, | |
"metadata": {}, | |
"execution_count": 13 | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": false | |
}, | |
"cell_type": "code", | |
"source": "improvedRatio('r', 60)", | |
"execution_count": 14, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "0 1.517486\nName: r, dtype: float64" | |
}, | |
"metadata": {}, | |
"execution_count": 14 | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true, | |
"collapsed": true | |
}, | |
"cell_type": "code", | |
"source": "improvedRatio", | |
"execution_count": null, | |
"outputs": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"name": "conda-env-4.2.12.lsst1-py", | |
"display_name": "Python [conda env:4.2.12.lsst1]", | |
"language": "python" | |
}, | |
"anaconda-cloud": {}, | |
"language_info": { | |
"mimetype": "text/x-python", | |
"nbconvert_exporter": "python", | |
"name": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2", | |
"file_extension": ".py", | |
"codemirror_mode": { | |
"version": 3, | |
"name": "ipython" | |
} | |
}, | |
"gist_id": "fe9c15e2de8e8f1183bf6e7b577099da" | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment