Skip to content

Instantly share code, notes, and snippets.

@rbiswas4
Created April 24, 2018 13:13
Show Gist options
  • Save rbiswas4/fe9c15e2de8e8f1183bf6e7b577099da to your computer and use it in GitHub Desktop.
Save rbiswas4/fe9c15e2de8e8f1183bf6e7b577099da to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"metadata": {
"trusted": true,
"collapsed": true
},
"cell_type": "code",
"source": "import pandas as pd\nimport numpy as np",
"execution_count": 1,
"outputs": []
},
{
"metadata": {
"trusted": true,
"collapsed": true
},
"cell_type": "code",
"source": "# Rough LSST pointing numbers per location over 10 years\ndf = pd.DataFrame([56, 80, 184, 184, 160, 160], index=list('ugrizy'))",
"execution_count": 2,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### From note on minion knee for twilight is at mag of ~ 13\n- Looking at the times it seems we should be able to gain 8 * 2 minutes during twilight.\n- Using 5 second exposures this gives ~ 190 pointings extra pointings which we think we will want to use in g, r, i; or g and r; or g only\n- The number of pointings is much smaller if we assume the altsched mean slew time of ~ 11 sec. (However, should this not be lower mean slew time, since we will only do smaller regions of sky near the zenith, if that gives us a strip that is ok, and because we will not have to run over as much?). This gives us 60 pointings. "
},
{
"metadata": {
"trusted": true,
"collapsed": true
},
"cell_type": "code",
"source": "df = pd.DataFrame([56, 80, 184, 184, 160, 160], index=list('ugrizy'))",
"execution_count": 3,
"outputs": []
},
{
"metadata": {
"trusted": true,
"collapsed": false
},
"cell_type": "code",
"source": "# Rough estimate\nnumFields = 2300\ndef improvedRatio(band, visits): \n return (df.ix[band] * numFields + visits *3650 ) / np.float(df.ix[band] * numFields)",
"execution_count": 12,
"outputs": []
},
{
"metadata": {
"trusted": true,
"collapsed": false
},
"cell_type": "code",
"source": "improvedRatio('g', 60)",
"execution_count": 13,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": "0 2.190217\nName: g, dtype: float64"
},
"metadata": {},
"execution_count": 13
}
]
},
{
"metadata": {
"trusted": true,
"collapsed": false
},
"cell_type": "code",
"source": "improvedRatio('r', 60)",
"execution_count": 14,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": "0 1.517486\nName: r, dtype: float64"
},
"metadata": {},
"execution_count": 14
}
]
},
{
"metadata": {
"trusted": true,
"collapsed": true
},
"cell_type": "code",
"source": "improvedRatio",
"execution_count": null,
"outputs": []
}
],
"metadata": {
"kernelspec": {
"name": "conda-env-4.2.12.lsst1-py",
"display_name": "Python [conda env:4.2.12.lsst1]",
"language": "python"
},
"anaconda-cloud": {},
"language_info": {
"mimetype": "text/x-python",
"nbconvert_exporter": "python",
"name": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2",
"file_extension": ".py",
"codemirror_mode": {
"version": 3,
"name": "ipython"
}
},
"gist_id": "fe9c15e2de8e8f1183bf6e7b577099da"
},
"nbformat": 4,
"nbformat_minor": 1
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment