This document summarizes some potentially useful papers and code repositories on Sentiment analysis / document classification
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# List unique values in a DataFrame column | |
# h/t @makmanalp for the updated syntax! | |
df['Column Name'].unique() | |
# Convert Series datatype to numeric (will error if column has non-numeric values) | |
# h/t @makmanalp | |
pd.to_numeric(df['Column Name']) | |
# Convert Series datatype to numeric, changing non-numeric values to NaN | |
# h/t @makmanalp for the updated syntax! |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# List unique values in a DataFrame column | |
# h/t @makmanalp for the updated syntax! | |
df['Column Name'].unique() | |
# Convert Series datatype to numeric (will error if column has non-numeric values) | |
# h/t @makmanalp | |
pd.to_numeric(df['Column Name']) | |
# Convert Series datatype to numeric, changing non-numeric values to NaN | |
# h/t @makmanalp for the updated syntax! |