duplicates = multiple editions
A Classical Introduction to Modern Number Theory,Kenneth IrelandMichael Rosen
A Classical Introduction to Modern Number Theory,Kenneth IrelandMichael Rosen
| #!/usr/bin/env python2.6 | |
| """ | |
| Python script to pull all reviews a user has commented on | |
| Works with Review Board 2.0.18 | |
| """ | |
| import site | |
| site.addsitedir('/usr/local/linkedin/lib/python2.6/site-packages') | 
This gist is part of a blog post. Check it out at:
http://jasonrudolph.com/blog/2011/08/09/programming-achievements-how-to-level-up-as-a-developer
| (325 (10 15) (6 17) (1 18)) ;; 325 = 10^2 + 15^ = 6^2 + 17^2 = 1^2 + 18^2 | |
| (425 (13 16) (8 19) (5 20)) | |
| (650 (17 19) (11 23) (5 25)) | |
| ;; ... | |
| ;; ... | |
| ;; ... | |
| (5050 (45 55) (17 69) (3 71)) | |
| (5125 (47 54) (34 63) (30 65)) | 
| (use '[clojure.contrib.duck-streams :only (reader read-lines)]) | |
| (defn build-sum-mtx [triangle] | |
| (let [len (count triangle)] | |
| (loop [mtx [] i 0] | |
| (cond | |
| (= i len) mtx | |
| :else (let [row (get mtx (dec i)) | |
| sum (fn [n j] | |
| (let [a (or (get row (dec j)) 0) | 
| (define image (line 0 0 'white)) | |
| (define (draw-line v1 v2) | |
| (set! image | |
| (add-line image | |
| (xcor-vect v1) ; x-coordinate ...etc | |
| (ycor-vect v1) | |
| (xcor-vect v2) | |
| (ycor-vect v2) | |
| 'black))) | 
| (define (segments->painter segment-list) | |
| (lambda (frame) | |
| (for-each | |
| (lambda (segment) | |
| (draw-line | |
| ((frame-coord-map frame) (start-segment segment)) | |
| ((frame-coord-map frame) (end-segment segment)))) | |
| segment-list))) | 
| (use '[clojure.contrib.duck-streams :only (reader read-lines)]) | |
| (def letter->index | |
| {\A 1 | |
| \B 2 | |
| \C 3 | |
| \D 4 | |
| \E 5 | |
| \F 6 | |
| \G 7 | 
| (def number->wrd-cnt | |
| {1 (count "one") | |
| 2 (count "two") | |
| 3 (count "three") | |
| 4 (count "four") | |
| 5 (count "five") | |
| 6 (count "six") | |
| 7 (count "seven") | |
| 8 (count "eight") | |
| 9 (count "nine") | 
| (defn amicable? [a] | |
| (if (@amicable-nos a) true | |
| (let [b (d a) | |
| db (d b)] | |
| (if (and (not= a b) (= a db)) | |
| (do (swap! amicable-nos assoc b true) true) | |
| false)))) |