Created
January 5, 2021 18:42
-
-
Save redoxate/c5cb93e0d5cf8f67d98eeeb20d949f98 to your computer and use it in GitHub Desktop.
classification_APS.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "classification_APS.ipynb", | |
"provenance": [], | |
"collapsed_sections": [], | |
"authorship_tag": "ABX9TyM0qoC0a1/ExAP4qMEjxFil", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/redoxate/c5cb93e0d5cf8f67d98eeeb20d949f98/classification_aps.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "vfxAtXT_gbeu" | |
}, | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"from sklearn.impute import SimpleImputer\n", | |
"from sklearn.metrics import confusion_matrix\n", | |
"from sklearn.tree import DecisionTreeClassifier\n", | |
"from sklearn.linear_model import LogisticRegression\n", | |
"from sklearn.model_selection import train_test_split\n", | |
"from sklearn.neighbors import KNeighborsClassifier\n" | |
], | |
"execution_count": 98, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "llFVfVvor71S" | |
}, | |
"source": [ | |
"data = pd.DataFrame(pd.read_csv('aps_failure_training_set.csv', encoding='utf-8'))" | |
], | |
"execution_count": 99, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "v2WOZuo-sO1T" | |
}, | |
"source": [ | |
"data = data.replace(['na'],np.nan)\n", | |
"data = data.replace(['neg'],0)\n", | |
"data = data.replace(['pos'],1)" | |
], | |
"execution_count": 100, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "Ny-keFEE3BEo" | |
}, | |
"source": [ | |
"imputer = SimpleImputer(missing_values=np.nan, strategy='mean')\n", | |
"#imputer.fit(data)\n", | |
"#data = imputer.transform(data)\n", | |
"data = imputer.fit_transform(data)\n", | |
"y = data[:,0]\n", | |
"X = data[:,1:]\n", | |
"\n", | |
"X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.20, random_state=42)\n", | |
"\n" | |
], | |
"execution_count": 101, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 0 | |
}, | |
"id": "bVyLgG3A9Pal", | |
"outputId": "8c44cb16-8414-4bbc-db1c-2173cd3d423e" | |
}, | |
"source": [ | |
"for n_voisins in [3,4,5,6,7]:\n", | |
" KN = KNeighborsClassifier(n_neighbors=n_voisins)\n", | |
" KN.fit(X_train,y_train)\n", | |
" y_kn_predict= KN.predict(X_test)\n", | |
"\n", | |
" tn, fp, fn, tp = confusion_matrix(y_test, y_kn_predict).ravel()\n", | |
" print('KN avec n_voisins : ', n_voisins , (tn, fp, fn, tp))" | |
], | |
"execution_count": 103, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"KN avec n_voisins : 3 (11745, 43, 115, 97)\n", | |
"KN avec n_voisins : 4 (11764, 24, 141, 71)\n", | |
"KN avec n_voisins : 5 (11747, 41, 115, 97)\n", | |
"KN avec n_voisins : 6 (11763, 25, 143, 69)\n", | |
"KN avec n_voisins : 7 (11750, 38, 118, 94)\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 0 | |
}, | |
"id": "t8UYjaMxCSlx", | |
"outputId": "5d58a69f-1e7f-4ac5-febe-052b54c29613" | |
}, | |
"source": [ | |
"\n", | |
"\n", | |
"clf = DecisionTreeClassifier()\n", | |
"clf = clf.fit(X_train,y_train)\n", | |
"y_clf_predict = clf.predict(X_test)\n", | |
"\n", | |
"tn, fp, fn, tp = confusion_matrix(y_test, y_clf_predict).ravel()\n", | |
"print('DecisionTree: ', (tn, fp, fn, tp))\n" | |
], | |
"execution_count": 91, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"DecisionTree : (11713, 75, 69, 143)\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 0 | |
}, | |
"id": "GHG3s7b9IYfb", | |
"outputId": "bf51fa5f-bef2-46c1-ef52-926cdafc513f" | |
}, | |
"source": [ | |
"\n", | |
"from sklearn.model_selection import GridSearchCV\n", | |
"\n", | |
"\n", | |
"logisticRegr = LogisticRegression()\n", | |
"param_grid = [ \n", | |
" {'solver' : ['lbfgs','newton-cg','liblinear','sag','saga'],\n", | |
" 'penalty' : ['l1', 'l2', 'elasticnet', 'none'],\n", | |
" 'max_iter' : [100, 1000,2500, 5000]\n", | |
" }\n", | |
"]\n", | |
"logisticRegr\n" | |
], | |
"execution_count": 108, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", | |
" intercept_scaling=1, l1_ratio=None, max_iter=100,\n", | |
" multi_class='auto', n_jobs=None, penalty='l2',\n", | |
" random_state=None, solver='lbfgs', tol=0.0001, verbose=0,\n", | |
" warm_start=False)" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 108 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 0 | |
}, | |
"id": "38wqorNOkOKQ", | |
"outputId": "179f681c-bf73-4be6-9e23-65c3e059157a" | |
}, | |
"source": [ | |
"clf = GridSearchCV(logisticRegr, param_grid = param_grid, cv = 3, verbose=True, n_jobs=-1)\n", | |
"best_clf = clf.fit(X_train,y_train)\n", | |
"best_clf.best_estimator_" | |
], | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"Fitting 3 folds for each of 80 candidates, totalling 240 fits\n" | |
], | |
"name": "stdout" | |
}, | |
{ | |
"output_type": "stream", | |
"text": [ | |
"[Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.\n", | |
"[Parallel(n_jobs=-1)]: Done 46 tasks | elapsed: 29.4min\n" | |
], | |
"name": "stderr" | |
} | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment