Skip to content

Instantly share code, notes, and snippets.

@renexdev
Created March 29, 2018 12:38
Show Gist options
  • Save renexdev/5ad9ee11067a3df754e4eef6d2c46a98 to your computer and use it in GitHub Desktop.
Save renexdev/5ad9ee11067a3df754e4eef6d2c46a98 to your computer and use it in GitHub Desktop.
Math sucessions
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Dr. René Cejas Bolecek, 2018\n",
"Matemática 1 del Profesorado y Licenciatura en Cs. Biológicas de la Universidad de Comahue Regional Bariloche, Argentina"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Sucesiones teórico"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Suceción: i\n",
"valores de n: [2, 4, 6, 8, 10, 1, 3, 5, 7, 9]\n",
"valores de i (n): [20, 20, 20, 20, 20, 1, 9, 25, 49, 81]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEKCAYAAADjDHn2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG7dJREFUeJzt3X+U1fV95/Hna36IZDAJ4MiCiuiGJceYRHCCpjqpiLbY\n5ARsTqm0NLSrcM6SGsm2qTRns6Y93ay7yckx24acgLHFkpVQFWRTl8RS3JDGYgawRiUcUnREBGZC\nYqJTM8yP9/5xv3gHHOZ7vzN37vde5vU4Z879fr/3++PN58C8+Xy+nx+KCMzMzIZSl3cAZmZW/Zws\nzMwslZOFmZmlcrIwM7NUThZmZpbKycLMzFI5WZiZWSonCzMzS+VkYWZmqRryDmAkzj///JgxY0be\nYZiZ1ZTdu3f/JCKas1xT08lixowZtLW15R2GmVlNkdSe9Ro3Q5mZWSonCzMzS+VkYWZmqZwszMws\nlZOFmZmlcrIwM7NUThZmZpbKycLMzFI5WZiZWSonCzMzS+VkYWZmqZwszMwslZOFmZmlqulZZ83M\nql378S7W7TzIlr2v0NXdS9O4BhbNnsby1su4ZHJT3uGVzMnCzGyU7NjfwcoNe+jp66e3PwB4vbuX\njU8d4uHdh1mzdA7zZl2Qc5SlcTOUmdkoaD/excoNe3ijp+/NRHFSb3/wRk8fKzfsof14V04RZuNk\nYWY2CtbtPEhPX/+Q5/T09XPfzhcqFNHI5JIsJH1K0nOSnpX0oKRzJU2S9LikA8nnxDxiMzMrhy17\nX3lLjeJ0vf3B5r2HKxTRyFQ8WUi6EPgk0BIRVwD1wK3AamB7RMwEtif7ZmY1qau7t7TzTpR2Xt7y\naoZqAMZLagDeBrwCLATWJ9+vBxblFJuZ2Yg1jSut/1DTObXRz6jiySIiDgNfBF4CjgA/j4jvAFMi\n4khy2lFgSqVjMzMrl0Wzp9FQpyHPaagTt8y+sEIRjUwezVATKdQiLgWmAU2Slg48JyICGLSxT9IK\nSW2S2jo7O0c9XjOz4VjeehmN9UP/im2sr+P21ksrFNHI5NEMdSPwQkR0RkQP8AjwK8AxSVMBks+O\nwS6OiLUR0RIRLc3NzRUL2swsi0smN7Fm6RzGN9a/pYbRUCfGN9azZumcmhmYl0eyeAm4RtLbJAmY\nD+wDtgLLknOWAY/mEJuZWdnMm3UB21a1smTudCaMa0CCCeMaWDJ3OttWtdbMgDwAFVp8KvxQ6c+A\n3wZ6gb3A7cAEYBMwHWgHFkfET4e6T0tLS7S1tY1ytGZmZxdJuyOiJcs1ubyGj4i7gbtPO9xNoZZh\nZmZVxiO4zcwslZOFmZmlcrIwM7NUThZmZpbKycLMzFI5WZiZWSonCzMzS+VkYWZmqZwszMwslZOF\nmZmlcrIwM7NUThZmZpbKycLMzFI5WZiZWSonCzMzS5XHGtyzJD094OcXklZJmiTpcUkHks+JlY7N\nzMwGV/FkERH7I+LKiLgSuAr4N2AzsBrYHhEzge3JvpmZVYG8m6HmA/8aEe3AQmB9cnw9sCi3qMzM\n7BR5J4tbgQeT7SkRcSTZPgpMySckMzM7XW7JQtI5wEeBvzv9u4gIIM5w3QpJbZLaOjs7RzlKMzOD\nfGsWNwN7IuJYsn9M0lSA5LNjsIsiYm1EtERES3Nzc4VCNTMb2/JMFksoNkEBbAWWJdvLgEcrHpGZ\nmQ2q5GQhqU7SZ8rxUElNwE3AIwMO3wPcJOkAcGOyb2ZmVaCh1BMjol/SR4DPj/ShEdEFTD7t2HEK\nvaPMzKzKZG2GekbS3ZLy7kVlZmYVVHLNIjEJ+FXgP0naBTwDPBMRb+nRZGZmZ49MySIiFgNIGge8\nB3gvcDWDdH81M7OzR6ZkIWkysBj4JfAcsCki1g99lZmZ1bqs7x42A80UXnJ/Afi5pH1lj8rMzKpK\n1mRxXkT8OXAsIn6VwlgJN0GZmZ3lsiaLXyaf3ZLGR8TDwK+VOSYzM6syWXtDfVHSJOCbwP2Svg+8\ns/xhmZlZNclUs4iIhyPipxHxJeAx4GLgN0clMjMzqxpZaxZvioi/LWcgZmZWvTLVLCTdLGmXpP2S\nNkm6ZrQCMzOz6pH1Bfca4D8D1wBrKbzDWFL2qMzMrKpkbYbqiIh/Srb/QdKTwC5OnWrczMzOMllr\nFi9I+otklTuAHqC3zDGZmVmVyZos+oFbgEOSvgf8GHhC0syyR2ZmZlUj60SCvyOpEainMJHg+5Of\ndZIui4jpoxCjmZnlLGtvqHVAO3CAwsvuDwI/jojrsyQKSe+U9JCkH0naJ+mDkiZJelzSgeRzYqY/\niZmZjZqszVAfAi6OiJOD8TYDTcN47peBbRHxbgo1k33AamB7RMwEtif7ZmZWBbL2htpFYTnUjog4\nDBymMJK7ZJLeQSHp/D5ARJwATkhaCFyfnLYeeAK4K2N8ZmY2CrLWLL4G/D9JfyypNfnFn9WlQCfw\n15L2SrpPUhMwJSKOJOccBaYMdrGkFZLaJLV1dnYO4/FmZpZV1mSxAXiAQo1kJfB9Sf+a8R4NwBzg\nqxExG+jitCaniAggBrs4ItZGREtEtDQ3N2d8tJmZDUfWZqiXI+K/DzyQLLGa6R7JfXYl+w9RSBbH\nJE2NiCOSpgIdGe9rZmajJGvN4mlJdw48EBHdWW4QEUcpjNOYlRyaDzwPbAWWJceWAY9mjM3MzEZJ\n1prFFOBGSXcBe4B/AZ6OiKyr5d0BfCMZCX4Q+AMKiWuTpNsodM9dnPGeZmY2SrIOylsMbzY9vQd4\nL3A1GZdWjYingZZBvpqf5T5mZlYZJSULSZ+LiM9JuhZ4JiJeo1Cz2DOq0ZmZWVUotWbx7eTzTuCK\nZMqP54FnKCSPrM1QZmZWQ0pKFhHxZPJZlmYoMzOrLZneWUi6Afhd4FXgWQo1i42jEJeZmVWRrL2h\n7gdWAY3A+4BFFGoY7ypzXGZmVkWyJov2iNiSbLvpycxsjMg6KO+7kj4lSaMSjZmZVaWsNYvLKbzU\nvkvSbuBphjcoz8zMakjWQXkfA5A0nmLiuAY3SZmZndVGMihvd/JjZmZnOQ/KMzOzVB6UZ2ZmqTL1\nhpL0XUlvT6YlnwtMBD4zKpGZmVnVyNp19h0R8QtJVwHLKSSLdeUPy8zMqknWrrM9khqAjwP/IyI2\nSWobhbjMzKyKZE0W/4vCgkfnUlw3e0LWh0p6EXgN6AN6I6JF0iTgm8AM4EVgcUT8LOu9zcys/LKO\ns3hA0iNAX0S8IeldwJPDfPa8iPjJgP3VwPaIuEfS6mT/rmHe28xy1H68i3U7D7Jl7yt0dffSNK6B\nRbOnsbz1Mi6Z3JR3eDYMiojKP7RQs2gZmCwk7Qeuj4gjkqYCT0TErDPdA6ClpSXa2twKZlZNduzv\nYOWGPfT09dPbX/z90lAnGuvrWLN0DvNmXZBjhCZpd0QMtlrpGaW+4JZ0k6R1kq5M9lcMN8ABAvgH\nSbsH3G9KRBxJto9SWO/bzGpI+/EuVm7Ywxs9fackCoDe/uCNnj5WbthD+/GunCK04SqlN9R/BD4N\nLE3Ws7iyDM+9LiKuBG4GPiHpQwO/jEJ1Z9Aqj6QVktoktXV2dpYhFDMrl3U7D9LT1z/kOT19/dy3\n84UKRWTlUkqyeC0iXo2IPwZ+DfjASB8aEYeTzw5gM4UxG8eS5ieSz44zXLs2IloioqW5uXmkoZhZ\nGW3Z+8pbahSn6+0PNu89XKGIrFxKSRZ/f3IjIlYDD4zkgZKaJJ13cptCAnoW2AosS05bBjw6kueY\nWeV1dfeWdt6J0s6z6pHaGyoiHj1t/y9H+MwpwOZkSYwG4H9HxDZJPwA2SboNaAcWj/A5ZlZhTeMa\neL2EhNF0TtZe+5a3cqzB/Wwy/UdJIuIg8P5Bjh8H5meJx8yqy6LZ09j41KEhm6Ia6sQtsy+sYFRW\nDlmn+7gf+D/APwOXAf8VeK7cQZlZbVreehmN9UP/Wmmsr+P21ksrFJGVi9fgNrOyuWRyE2uWzkkd\nZ+GBebXHa3CbWVnNm3UB21a1smTudCaMa0CCCeMaWDJ3OttWtXpAXo3KNIJb0sMU1rB4O4VV8nJd\ng9sjuM3MshvOCO5yrMHtxY/MzM5yw+q/FhFv4DW4zczGjKzvLMzMbAxysjAzs1RZ1+C+Q9LE0QrG\nzMyqU9aaxRTgB5I2SVrgLrRmZmNDpmQREf8FmAl8Hfh94ICkz0v696MQm5mZVYnM7yyStSaOJj+9\nwETgIUn/s8yxmZlZlcg6keCdwMeBnwD3AZ+OiB5JdcAB4E/KH6KZmeUt6ziLScBvRkT7wIMR0S/p\nI+ULy8zMqknWEdx3D/HdvpGHY2Zm1cjjLMzMLFXJyUIFF5fjoZLqJe2V9K1kf5KkxyUdSD49lsPM\nrIqUnCySXlCPlem5dwIDm61WA9sjYiawPdk3M7MqkbUZao+kD4zkgZIuAj5MoTfVSQuB9cn2emDR\nSJ5hZmbllbU31NXA70pqB7oAUah0vC/DPe6l0MX2vAHHpkTEkWT7KIWR4oOStAJYATB9+vQMjzUz\ns+HKmix+fSQPS7rXdkTEbknXD3ZORISkM67IFBFrgbVQWPxoJPGYmVlpsnadbU8/a0jXAh+V9BvA\nucDbJW0AjkmaGhFHJE0FOkb4HDMzK6PMXWclTZQ0V9KHTv6Uem1E/GlEXBQRM4BbgX+MiKXAVmBZ\nctoy4NGscZmZ2ejJOt3H7RR6Ml1EYf3ta4AngRtGGMc9wCZJtwHtwOIR3s/MzMoo6zuLO4EPAP8c\nEfMkvRv4/HAeHBFPAE8k28eB+cO5j5mZjb6szVC/jIhfAkgaFxE/AmaVPywzM6smWWsWL0t6J7AF\neFzSzyg0G5mZ2Vksa2+oW5LNz0naAbwD2Fb2qMzMrKpkfcF9LrASuA4I4Ht4MkIzs7Ne1maoB4DX\ngL9M9n8H+Fvgt8oZlJmZVZesyeKKiLh8wP4OSc+XMyAzM6s+w5lI8JqTO5KuBtrKG5KZmVWbrDWL\nq4DvS3op2Z8O7Jf0Q7JPKGhmZjUia7JYMCpRmJlZVav0RIJmZlaD3O3VzMxSOVmYmVmqrIPyxgEf\nA2YMvDYi/ry8YZmZWTXJ+oL7UeDnwG6gu/zhmJlZNcqaLC6KCPeIMjMbY7K+s/i+pPeO5IGSzpX0\nlKR/kfScpD9Ljk+S9LikA8nnxJE8x8zMyidrsrgO2C1pv6RnJP1Q0jMZ79EN3BAR7weuBBYko8JX\nA9sjYiawPdk3M7MqkLUZ6uaRPjAiAng92W1MfgJYCFyfHF9PYRW9u0b6PDMzG7lcBuVJqqfwkvxd\nwFciYpekKRFxJDnlKDClHM8yM7ORy2WcRUT0RcSVwEXAXElXnPZ9UKhtvIWkFZLaJLV1dnZWIFoz\nM8t1UF5EvArsoDDn1DFJUwGSz44zXLM2IloioqW5ublywZqZjWEVTxaSmpN1vJE0HrgJ+BGwFViW\nnLaMwpgOMzOrAiW9s5D0vYi4TtJrnNo8JAqtRm/P8MypwPrkvUUdsCkiviXpSWCTpNuAdmBxhnua\nmdkoKilZRMR1yed5I31gRDwDzB7k+HFg/kjvb2Zm5eeJBM3MLFWmZCHptySdl2x/VtIjkuaMTmhm\nZlYtsg7K+2xE/J2k6yg0GX0B+CpwddkjM6sx7ce7WLfzIFv2vkJXdy9N4xpYNHsay1sv45LJTXmH\nZzYiWZuh+pLPDwNrI+LvgXPKG5JZ7dmxv4MF9+5k41OHeL27lwBe7+5l41OHWHDvTnbsH7QnuFnN\nyJosDkv6GvDbwGPJ+hZ+72FjWvvxLlZu2MMbPX309p86lrS3P3ijp4+VG/bQfrwrpwjNRi7rL/rF\nwLeBX08G1E0CPl32qMxqyLqdB+np6x/ynJ6+fu7b+UKFIjIrv0zJIiL+LSIeiYgDyf6RiPjO6IRm\nVhu27H3lLTWK0/X2B5v3Hq5QRGbl5yYksxHq6u4t7bwTpZ1nVo2cLMxGqGlcaZ0Km87J2vnQrHqU\n/LdX0rsprDlxYXLoMLA1IvaNRmBmtWLR7GlsfOrQkE1RDXXiltkXnvF7s2pXUs1C0l3ARgpzQT2V\n/Ah4UJJXtLMxbXnrZTTWD/1PqbG+jttbL61QRGblV2rN4jbgPRHRM/CgpC8BzwH3lDsws1pxyeQm\n1iydw8oNe+jp6z+lhtFQJxrr61izdI4H5llNK/WdRT8wbZDjU5PvzMa0ebMuYNuqVpbMnc6EcQ1I\nMGFcA0vmTmfbqlbmzbog7xDNRkSFRelSTpIWAH8FHAAOJYenU1gW9Y6I+L+jFuEQWlpaoq2tLY9H\nm5nVLEm7I6IlyzWlTlG+TdJ/AOZy6gvuH0RE35mvtNHkuYiKXBZFLosil0XRwLI459+966qs15dU\ns4A3e0NdCOyKiNcHHF8QEdtKfqB0MfAAMIXCQkprI+LLkiYB3wRmAC8CiyPiZ0PdayzXLHbs70ht\nIx8rTR8uiyKXRZHLouj0sjiyfhXdRw4oyz1K7Q31SQrLnN4BPCtp4YCvP5/lgUAv8EcRcTlwDfAJ\nSZcDq4HtETET2J7s2yA8F1GRy6LIZVHksigaqiyyKPUF93LgqohYBFwPfFbSncl3mbJTMkXInmT7\nNWAfhRrLQmB9ctp6YFGW+44lnouoyGVR5LIoclkUlVIWpSg1WdSdbHqKiBcpJIybk66zmZLFQJJm\nUFhidRcwJSKOJF8dpdBMZYPwXERFLosil0WRy6KolLIoRanJ4pikK0/uJInjI8D5wHuH82BJE4CH\ngVUR8YuB30XhRcqgfzpJKyS1SWrr7OwczqNrnuciKnJZFLksilwWRaWWRZpSk8XHKfxv/00R0RsR\nHwc+lPWhkhopJIpvRMQjyeFjkqYm308FBl0tJiLWRkRLRLQ0NzdnffRZwXMRFbksilwWRS6LolLL\nIk1JySIiXo6Io2f47p+yPFCSgK8D+yLiSwO+2gosS7aXUXihboNYNHsaDXVDt/6NlbmIXBZFLosi\nl0VRKWVRijxmnb0W+D3gBklPJz+/QWHKkJskHQBuxFOInJHnIipyWRS5LIpcFkWllEUpKp4sIuJ7\nEaGIeF9EXJn8PBYRxyNifkTMjIgbI+KnlY6tVpyci2h8Y/1b/sfQUCfGN9aPmbmIXBZFLosil0XR\nUGWRRcmD8qrRWB6UB4X+0/ftfIHNew/TdaKXpnMauGX2hdzeeumY+EcwkMuiyGVR5LIoGlgWB772\nh3QfzTYoz8nCzGyMGc7cUF4pz8zMUjlZmJlZKicLMzNL5WRhZmapnCzMzCyVk4WZmaVysjAzs1RO\nFmZmlsrJwszMUjlZmJlZKicLMzNL5WRhZmapnCzMzCyVk4WZmaWqeLKQdL+kDknPDjg2SdLjkg4k\nnxMrHZeZmZ1ZHquV/w3wV8ADA46tBrZHxD2SVif7d+UQm2XUfryLdTsPsmXvK3R199I0roFFs6ex\nvPWyMbe4jNnZLI9lVb8LnL5k6kJgfbK9HlhU0aBsWHbs72DBvTvZ+NQhXu/uJYDXu3vZ+NQhFty7\nkx37O/IO0czKpFreWUyJiCPJ9lFgyplOlLRCUpukts7OzspEZ2/RfryLlRv28EZPH739p6622Nsf\nvNHTx8oNe2g/3pVThGZWTtWSLN4UhXVez7jWa0SsjYiWiGhpbm6uYGQ20LqdB+np6x/ynJ6+fu7b\n+UKFIjKz0VQtyeKYpKkAyafbL6rclr2vvKVGcbre/mDz3sMVisjMRlO1JIutwLJkexnwaI6xWAm6\nuntLO+9EaeeZWXXLo+vsg8CTwCxJL0u6DbgHuEnSAeDGZN+qWNO40jrSNZ2TR4c7Myu3iv9Ljogl\nZ/hqfkUDsRFZNHsaG586NGRTVEOduGX2hRWMysxGS7U0Q1mNWd56GY31Q//1aayv4/bWSysUkZmN\nJicLG5ZLJjexZukcxjfW01CnU75rqBPjG+tZs3SOB+aZnSWcLGzY5s26gG2rWlkydzoTxjUgwYRx\nDSyZO51tq1qZN+uCvEM0szJRYVhDbWppaYm2tra8wzAzqymSdkdES5ZrXLMwM7NUThZmZpbKycLM\nzFI5WZiZWSonCzMzS+VkYWZmqZwszMwslWd5GwYvJWpmY42TRUY79newcsMeevr635xE7+RSog/v\nPsyapXM8ctnMzjpuhsrAS4ma2VjlZJGBlxI1s7GqqpKFpAWS9kv6saTVecdzOi8lamZjVdUkC0n1\nwFeAm4HLgSWSLs83qlN5KVEzG6uqJlkAc4EfR8TBiDgBbAQW5hzTKbyUqJmNVdWULC4EDg3Yfzk5\nVjUWzZ72loV+TuelRM3sbFRz/wWWtAJYkex2S3q2Ys9uOGdc4+SLL0c6c5KN6P9vXzj0/F/0nuiu\nVFyJ84GfVPiZ1cplUeSyKHJZFM3KekE1JYvDwMUD9i9Kjp0iItYCawEktWVdwONs5bIoclkUuSyK\nXBZFkjKvGldNzVA/AGZKulTSOcCtwNacYzIzM6qoZhERvZL+EPg2UA/cHxHP5RyWmZlRRckCICIe\nAx7LcMna0YqlBrksilwWRS6LIpdFUeayUMTQg8zMzMyq6Z2FmZlVqZpMFtU+LUilSLpY0g5Jz0t6\nTtKdeceUN0n1kvZK+lbeseRJ0jslPSTpR5L2Sfpg3jHlRdKnkn8fz0p6UNK5ecdUKZLul9QxcIiB\npEmSHpd0IPmcWMq9ai5Z1MK0IBXUC/xRRFwOXAN8YgyXxUl3AvvyDqIKfBnYFhHvBt7PGC0TSRcC\nnwRaIuIKCp1nbs03qor6G2DBacdWA9sjYiawPdlPVXPJghqYFqRSIuJIROxJtl+j8AthzA4fl3QR\n8GHgvrxjyZOkdwAfAr4OEBEnIuLVfKPKVQMwXlID8DbglZzjqZiI+C7w09MOLwTWJ9vrgUWl3KsW\nk0XVTwuSB0kzgNnArnwjydW9wJ8AQ88jf/a7FOgE/jppkrtP0phcwjEiDgNfBF4CjgA/j4jv5BtV\n7qZExJFk+ygwpZSLajFZ2GkkTQAeBlZFxC/yjicPkj4CdETE7rxjqQINwBzgqxExG+iixKaGs03S\nHr+QQgKdBjRJWppvVNUjCt1hS+oSW4vJoqRpQcYKSY0UEsU3IuKRvOPJ0bXARyW9SKFp8gZJG/IN\nKTcvAy9HxMla5kMUksdYdCPwQkR0RkQP8AjwKznHlLdjkqYCJJ8dpVxUi8nC04IkJIlCu/S+iPhS\n3vHkKSL+NCIuiogZFP5O/GNEjMn/QUbEUeCQpJOTxc0Hns8xpDy9BFwj6W3Jv5f5jNGX/QNsBZYl\n28uAR0u5qKpGcJfC04Kc4lrg94AfSno6OfaZZCS8jW13AN9I/kN1EPiDnOPJRUTskvQQsIdC78G9\njKGR3JIeBK4Hzpf0MnA3cA+wSdJtQDuwuKR7eQS3mZmlqcVmKDMzqzAnCzMzS+VkYWZmqZwszMws\nlZOFmZmlcrIwM7NUThZmZpbKycKsjCTNSNaPWJesofAdSePzjstspJwszMpvJvCViHgP8CrwsZzj\nMRsxJwuz8nshIk5Ov7IbmJFjLGZl4WRhVn7dA7b7qME52MxO52RhZmapnCzMzCyVZ501M7NUrlmY\nmVkqJwszM0vlZGFmZqmcLMzMLJWThZmZpXKyMDOzVE4WZmaWysnCzMxS/X84Xx6hhJ4TLQAAAABJ\nRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f6ada6f8748>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from math import *\n",
"%matplotlib inline\n",
"\n",
"#Nmax de la sucesion\n",
"NMax = 10\n",
"#Change the label of the serie: a, b, etc\n",
"label = 'i'\n",
"\n",
"#Sucesiones\n",
"x = list(range(1,NMax+1))\n",
"y = np.zeros(NMax)\n",
"\n",
"if(label == 'a'):\n",
" y = list(x[i]**2 for i in range(len(x))) \n",
"if(label == 'b'):\n",
" y = list((-1)**i*x[i]**2 for i in range(len(x)))\n",
"if(label == 'c'):\n",
" y = list((2*x[i]-2)/(x[i]+1) for i in range(len(x)))\n",
"if(label == 'd'):\n",
" y = list(-2*x[i]+6 for i in range(len(x)))\n",
"if(label == 'e'):\n",
" y = list((-1)**x[i] for i in range(1,len(x)))\n",
"if(label == 'f'):\n",
" y = list((-0.5)**x[i] for i in range(len(x)))\n",
"if(label == 'g'):\n",
" y = list(sin(x[i]*pi/4.) for i in range(len(x)))\n",
"if(label == 'h'):\n",
" y = list(4+1/x[i] for i in range(len(x)))\n",
"if(label == 'i'):\n",
" xa = list( x[i] for i in range(len(x)) if(i%2==1))\n",
" xb = list( x[i] for i in range(len(x)) if(i%2==0))\n",
" yi_a = list( 20 for i in range(len(x)) if(i%2==1))\n",
" yi_b = list( x[i]**2 for i in range(len(x)) if(i%2==0))\n",
" x = xa+xb\n",
" y = yi_a+yi_b\n",
"\n",
"tags=['$n^2$','$(-1)^n\\,n^2$','$(2n-2)/(n+1)$','$-2n+6$','$(-1)^n$','$(-0.5)^n$','$\\sin(n*\\pi/4)$','$4+1/n$','20 si n par y $n^2 si n impar$']\n",
"print('Suceción:',label)\n",
"print('valores de n:',x)\n",
"print('valores de ',label,'(n): ',y)\n",
"\n",
"labelDic = {'a':0,'b':1,'c':2,'d':3,'e':4,'f':5,'g':6,'h':7,'i':8}\n",
"labelId = labelDic[label]\n",
"\n",
"plt.ylabel(tags[labelId])\n",
"plt.plot(x, y, 'o', markersize = 10)\n",
"plt.plot([0,NMax], [0,0], '-',color='k', lw =0.5)\n",
"\n",
"plt.ylim([0, max(y)+0.1*max(y)])\n",
"\n",
"plt.xlim(0, NMax)\n",
"\n",
"plt.xlabel('n')\n",
"plt.savefig(label+'_n.jpg')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"celltoolbar": "Raw Cell Format",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Dr. René Cejas Bolecek, 2018\n",
"Matemática 1 del Profesorado y Licenciatura en Cs. Biológicas de la Universidad de Comahue Regional Bariloche, Argentina"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Sucesiones teórico"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Suceción: i\n",
"valores de n: [2, 4, 6, 8, 10, 1, 3, 5, 7, 9]\n",
"valores de i (n): [20, 20, 20, 20, 20, 1, 9, 25, 49, 81]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEKCAYAAADjDHn2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG7dJREFUeJzt3X+U1fV95/Hna36IZDAJ4MiCiuiGJceYRHCCpjqpiLbY\n5ARsTqm0NLSrcM6SGsm2qTRns6Y93ay7yckx24acgLHFkpVQFWRTl8RS3JDGYgawRiUcUnREBGZC\nYqJTM8yP9/5xv3gHHOZ7vzN37vde5vU4Z879fr/3++PN58C8+Xy+nx+KCMzMzIZSl3cAZmZW/Zws\nzMwslZOFmZmlcrIwM7NUThZmZpbKycLMzFI5WZiZWSonCzMzS+VkYWZmqRryDmAkzj///JgxY0be\nYZiZ1ZTdu3f/JCKas1xT08lixowZtLW15R2GmVlNkdSe9Ro3Q5mZWSonCzMzS+VkYWZmqZwszMws\nlZOFmZmlcrIwM7NUThZmZpbKycLMzFI5WZiZWSonCzMzS+VkYWZmqZwszMwslZOFmZmlqulZZ83M\nql378S7W7TzIlr2v0NXdS9O4BhbNnsby1su4ZHJT3uGVzMnCzGyU7NjfwcoNe+jp66e3PwB4vbuX\njU8d4uHdh1mzdA7zZl2Qc5SlcTOUmdkoaD/excoNe3ijp+/NRHFSb3/wRk8fKzfsof14V04RZuNk\nYWY2CtbtPEhPX/+Q5/T09XPfzhcqFNHI5JIsJH1K0nOSnpX0oKRzJU2S9LikA8nnxDxiMzMrhy17\nX3lLjeJ0vf3B5r2HKxTRyFQ8WUi6EPgk0BIRVwD1wK3AamB7RMwEtif7ZmY1qau7t7TzTpR2Xt7y\naoZqAMZLagDeBrwCLATWJ9+vBxblFJuZ2Yg1jSut/1DTObXRz6jiySIiDgNfBF4CjgA/j4jvAFMi\n4khy2lFgSqVjMzMrl0Wzp9FQpyHPaagTt8y+sEIRjUwezVATKdQiLgWmAU2Slg48JyICGLSxT9IK\nSW2S2jo7O0c9XjOz4VjeehmN9UP/im2sr+P21ksrFNHI5NEMdSPwQkR0RkQP8AjwK8AxSVMBks+O\nwS6OiLUR0RIRLc3NzRUL2swsi0smN7Fm6RzGN9a/pYbRUCfGN9azZumcmhmYl0eyeAm4RtLbJAmY\nD+wDtgLLknOWAY/mEJuZWdnMm3UB21a1smTudCaMa0CCCeMaWDJ3OttWtdbMgDwAFVp8KvxQ6c+A\n3wZ6gb3A7cAEYBMwHWgHFkfET4e6T0tLS7S1tY1ytGZmZxdJuyOiJcs1ubyGj4i7gbtPO9xNoZZh\nZmZVxiO4zcwslZOFmZmlcrIwM7NUThZmZpbKycLMzFI5WZiZWSonCzMzS+VkYWZmqZwszMwslZOF\nmZmlcrIwM7NUThZmZpbKycLMzFI5WZiZWSonCzMzS5XHGtyzJD094OcXklZJmiTpcUkHks+JlY7N\nzMwGV/FkERH7I+LKiLgSuAr4N2AzsBrYHhEzge3JvpmZVYG8m6HmA/8aEe3AQmB9cnw9sCi3qMzM\n7BR5J4tbgQeT7SkRcSTZPgpMySckMzM7XW7JQtI5wEeBvzv9u4gIIM5w3QpJbZLaOjs7RzlKMzOD\nfGsWNwN7IuJYsn9M0lSA5LNjsIsiYm1EtERES3Nzc4VCNTMb2/JMFksoNkEBbAWWJdvLgEcrHpGZ\nmQ2q5GQhqU7SZ8rxUElNwE3AIwMO3wPcJOkAcGOyb2ZmVaCh1BMjol/SR4DPj/ShEdEFTD7t2HEK\nvaPMzKzKZG2GekbS3ZLy7kVlZmYVVHLNIjEJ+FXgP0naBTwDPBMRb+nRZGZmZ49MySIiFgNIGge8\nB3gvcDWDdH81M7OzR6ZkIWkysBj4JfAcsCki1g99lZmZ1bqs7x42A80UXnJ/Afi5pH1lj8rMzKpK\n1mRxXkT8OXAsIn6VwlgJN0GZmZ3lsiaLXyaf3ZLGR8TDwK+VOSYzM6syWXtDfVHSJOCbwP2Svg+8\ns/xhmZlZNclUs4iIhyPipxHxJeAx4GLgN0clMjMzqxpZaxZvioi/LWcgZmZWvTLVLCTdLGmXpP2S\nNkm6ZrQCMzOz6pH1Bfca4D8D1wBrKbzDWFL2qMzMrKpkbYbqiIh/Srb/QdKTwC5OnWrczMzOMllr\nFi9I+otklTuAHqC3zDGZmVmVyZos+oFbgEOSvgf8GHhC0syyR2ZmZlUj60SCvyOpEainMJHg+5Of\ndZIui4jpoxCjmZnlLGtvqHVAO3CAwsvuDwI/jojrsyQKSe+U9JCkH0naJ+mDkiZJelzSgeRzYqY/\niZmZjZqszVAfAi6OiJOD8TYDTcN47peBbRHxbgo1k33AamB7RMwEtif7ZmZWBbL2htpFYTnUjog4\nDBymMJK7ZJLeQSHp/D5ARJwATkhaCFyfnLYeeAK4K2N8ZmY2CrLWLL4G/D9JfyypNfnFn9WlQCfw\n15L2SrpPUhMwJSKOJOccBaYMdrGkFZLaJLV1dnYO4/FmZpZV1mSxAXiAQo1kJfB9Sf+a8R4NwBzg\nqxExG+jitCaniAggBrs4ItZGREtEtDQ3N2d8tJmZDUfWZqiXI+K/DzyQLLGa6R7JfXYl+w9RSBbH\nJE2NiCOSpgIdGe9rZmajJGvN4mlJdw48EBHdWW4QEUcpjNOYlRyaDzwPbAWWJceWAY9mjM3MzEZJ\n1prFFOBGSXcBe4B/AZ6OiKyr5d0BfCMZCX4Q+AMKiWuTpNsodM9dnPGeZmY2SrIOylsMbzY9vQd4\nL3A1GZdWjYingZZBvpqf5T5mZlYZJSULSZ+LiM9JuhZ4JiJeo1Cz2DOq0ZmZWVUotWbx7eTzTuCK\nZMqP54FnKCSPrM1QZmZWQ0pKFhHxZPJZlmYoMzOrLZneWUi6Afhd4FXgWQo1i42jEJeZmVWRrL2h\n7gdWAY3A+4BFFGoY7ypzXGZmVkWyJov2iNiSbLvpycxsjMg6KO+7kj4lSaMSjZmZVaWsNYvLKbzU\nvkvSbuBphjcoz8zMakjWQXkfA5A0nmLiuAY3SZmZndVGMihvd/JjZmZnOQ/KMzOzVB6UZ2ZmqTL1\nhpL0XUlvT6YlnwtMBD4zKpGZmVnVyNp19h0R8QtJVwHLKSSLdeUPy8zMqknWrrM9khqAjwP/IyI2\nSWobhbjMzKyKZE0W/4vCgkfnUlw3e0LWh0p6EXgN6AN6I6JF0iTgm8AM4EVgcUT8LOu9zcys/LKO\ns3hA0iNAX0S8IeldwJPDfPa8iPjJgP3VwPaIuEfS6mT/rmHe28xy1H68i3U7D7Jl7yt0dffSNK6B\nRbOnsbz1Mi6Z3JR3eDYMiojKP7RQs2gZmCwk7Qeuj4gjkqYCT0TErDPdA6ClpSXa2twKZlZNduzv\nYOWGPfT09dPbX/z90lAnGuvrWLN0DvNmXZBjhCZpd0QMtlrpGaW+4JZ0k6R1kq5M9lcMN8ABAvgH\nSbsH3G9KRBxJto9SWO/bzGpI+/EuVm7Ywxs9fackCoDe/uCNnj5WbthD+/GunCK04SqlN9R/BD4N\nLE3Ws7iyDM+9LiKuBG4GPiHpQwO/jEJ1Z9Aqj6QVktoktXV2dpYhFDMrl3U7D9LT1z/kOT19/dy3\n84UKRWTlUkqyeC0iXo2IPwZ+DfjASB8aEYeTzw5gM4UxG8eS5ieSz44zXLs2IloioqW5uXmkoZhZ\nGW3Z+8pbahSn6+0PNu89XKGIrFxKSRZ/f3IjIlYDD4zkgZKaJJ13cptCAnoW2AosS05bBjw6kueY\nWeV1dfeWdt6J0s6z6pHaGyoiHj1t/y9H+MwpwOZkSYwG4H9HxDZJPwA2SboNaAcWj/A5ZlZhTeMa\neL2EhNF0TtZe+5a3cqzB/Wwy/UdJIuIg8P5Bjh8H5meJx8yqy6LZ09j41KEhm6Ia6sQtsy+sYFRW\nDlmn+7gf+D/APwOXAf8VeK7cQZlZbVreehmN9UP/Wmmsr+P21ksrFJGVi9fgNrOyuWRyE2uWzkkd\nZ+GBebXHa3CbWVnNm3UB21a1smTudCaMa0CCCeMaWDJ3OttWtXpAXo3KNIJb0sMU1rB4O4VV8nJd\ng9sjuM3MshvOCO5yrMHtxY/MzM5yw+q/FhFv4DW4zczGjKzvLMzMbAxysjAzs1RZ1+C+Q9LE0QrG\nzMyqU9aaxRTgB5I2SVrgLrRmZmNDpmQREf8FmAl8Hfh94ICkz0v696MQm5mZVYnM7yyStSaOJj+9\nwETgIUn/s8yxmZlZlcg6keCdwMeBnwD3AZ+OiB5JdcAB4E/KH6KZmeUt6ziLScBvRkT7wIMR0S/p\nI+ULy8zMqknWEdx3D/HdvpGHY2Zm1cjjLMzMLFXJyUIFF5fjoZLqJe2V9K1kf5KkxyUdSD49lsPM\nrIqUnCySXlCPlem5dwIDm61WA9sjYiawPdk3M7MqkbUZao+kD4zkgZIuAj5MoTfVSQuB9cn2emDR\nSJ5hZmbllbU31NXA70pqB7oAUah0vC/DPe6l0MX2vAHHpkTEkWT7KIWR4oOStAJYATB9+vQMjzUz\ns+HKmix+fSQPS7rXdkTEbknXD3ZORISkM67IFBFrgbVQWPxoJPGYmVlpsnadbU8/a0jXAh+V9BvA\nucDbJW0AjkmaGhFHJE0FOkb4HDMzK6PMXWclTZQ0V9KHTv6Uem1E/GlEXBQRM4BbgX+MiKXAVmBZ\nctoy4NGscZmZ2ejJOt3H7RR6Ml1EYf3ta4AngRtGGMc9wCZJtwHtwOIR3s/MzMoo6zuLO4EPAP8c\nEfMkvRv4/HAeHBFPAE8k28eB+cO5j5mZjb6szVC/jIhfAkgaFxE/AmaVPywzM6smWWsWL0t6J7AF\neFzSzyg0G5mZ2Vksa2+oW5LNz0naAbwD2Fb2qMzMrKpkfcF9LrASuA4I4Ht4MkIzs7Ne1maoB4DX\ngL9M9n8H+Fvgt8oZlJmZVZesyeKKiLh8wP4OSc+XMyAzM6s+w5lI8JqTO5KuBtrKG5KZmVWbrDWL\nq4DvS3op2Z8O7Jf0Q7JPKGhmZjUia7JYMCpRmJlZVav0RIJmZlaD3O3VzMxSOVmYmVmqrIPyxgEf\nA2YMvDYi/ry8YZmZWTXJ+oL7UeDnwG6gu/zhmJlZNcqaLC6KCPeIMjMbY7K+s/i+pPeO5IGSzpX0\nlKR/kfScpD9Ljk+S9LikA8nnxJE8x8zMyidrsrgO2C1pv6RnJP1Q0jMZ79EN3BAR7weuBBYko8JX\nA9sjYiawPdk3M7MqkLUZ6uaRPjAiAng92W1MfgJYCFyfHF9PYRW9u0b6PDMzG7lcBuVJqqfwkvxd\nwFciYpekKRFxJDnlKDClHM8yM7ORy2WcRUT0RcSVwEXAXElXnPZ9UKhtvIWkFZLaJLV1dnZWIFoz\nM8t1UF5EvArsoDDn1DFJUwGSz44zXLM2IloioqW5ublywZqZjWEVTxaSmpN1vJE0HrgJ+BGwFViW\nnLaMwpgOMzOrAiW9s5D0vYi4TtJrnNo8JAqtRm/P8MypwPrkvUUdsCkiviXpSWCTpNuAdmBxhnua\nmdkoKilZRMR1yed5I31gRDwDzB7k+HFg/kjvb2Zm5eeJBM3MLFWmZCHptySdl2x/VtIjkuaMTmhm\nZlYtsg7K+2xE/J2k6yg0GX0B+CpwddkjM6sx7ce7WLfzIFv2vkJXdy9N4xpYNHsay1sv45LJTXmH\nZzYiWZuh+pLPDwNrI+LvgXPKG5JZ7dmxv4MF9+5k41OHeL27lwBe7+5l41OHWHDvTnbsH7QnuFnN\nyJosDkv6GvDbwGPJ+hZ+72FjWvvxLlZu2MMbPX309p86lrS3P3ijp4+VG/bQfrwrpwjNRi7rL/rF\nwLeBX08G1E0CPl32qMxqyLqdB+np6x/ynJ6+fu7b+UKFIjIrv0zJIiL+LSIeiYgDyf6RiPjO6IRm\nVhu27H3lLTWK0/X2B5v3Hq5QRGbl5yYksxHq6u4t7bwTpZ1nVo2cLMxGqGlcaZ0Km87J2vnQrHqU\n/LdX0rsprDlxYXLoMLA1IvaNRmBmtWLR7GlsfOrQkE1RDXXiltkXnvF7s2pXUs1C0l3ARgpzQT2V\n/Ah4UJJXtLMxbXnrZTTWD/1PqbG+jttbL61QRGblV2rN4jbgPRHRM/CgpC8BzwH3lDsws1pxyeQm\n1iydw8oNe+jp6z+lhtFQJxrr61izdI4H5llNK/WdRT8wbZDjU5PvzMa0ebMuYNuqVpbMnc6EcQ1I\nMGFcA0vmTmfbqlbmzbog7xDNRkSFRelSTpIWAH8FHAAOJYenU1gW9Y6I+L+jFuEQWlpaoq2tLY9H\nm5nVLEm7I6IlyzWlTlG+TdJ/AOZy6gvuH0RE35mvtNHkuYiKXBZFLosil0XRwLI459+966qs15dU\ns4A3e0NdCOyKiNcHHF8QEdtKfqB0MfAAMIXCQkprI+LLkiYB3wRmAC8CiyPiZ0PdayzXLHbs70ht\nIx8rTR8uiyKXRZHLouj0sjiyfhXdRw4oyz1K7Q31SQrLnN4BPCtp4YCvP5/lgUAv8EcRcTlwDfAJ\nSZcDq4HtETET2J7s2yA8F1GRy6LIZVHksigaqiyyKPUF93LgqohYBFwPfFbSncl3mbJTMkXInmT7\nNWAfhRrLQmB9ctp6YFGW+44lnouoyGVR5LIoclkUlVIWpSg1WdSdbHqKiBcpJIybk66zmZLFQJJm\nUFhidRcwJSKOJF8dpdBMZYPwXERFLosil0WRy6KolLIoRanJ4pikK0/uJInjI8D5wHuH82BJE4CH\ngVUR8YuB30XhRcqgfzpJKyS1SWrr7OwczqNrnuciKnJZFLksilwWRaWWRZpSk8XHKfxv/00R0RsR\nHwc+lPWhkhopJIpvRMQjyeFjkqYm308FBl0tJiLWRkRLRLQ0NzdnffRZwXMRFbksilwWRS6LolLL\nIk1JySIiXo6Io2f47p+yPFCSgK8D+yLiSwO+2gosS7aXUXihboNYNHsaDXVDt/6NlbmIXBZFLosi\nl0VRKWVRijxmnb0W+D3gBklPJz+/QWHKkJskHQBuxFOInJHnIipyWRS5LIpcFkWllEUpKp4sIuJ7\nEaGIeF9EXJn8PBYRxyNifkTMjIgbI+KnlY6tVpyci2h8Y/1b/sfQUCfGN9aPmbmIXBZFLosil0XR\nUGWRRcmD8qrRWB6UB4X+0/ftfIHNew/TdaKXpnMauGX2hdzeeumY+EcwkMuiyGVR5LIoGlgWB772\nh3QfzTYoz8nCzGyMGc7cUF4pz8zMUjlZmJlZKicLMzNL5WRhZmapnCzMzCyVk4WZmaVysjAzs1RO\nFmZmlsrJwszMUjlZmJlZKicLMzNL5WRhZmapnCzMzCyVk4WZmaWqeLKQdL+kDknPDjg2SdLjkg4k\nnxMrHZeZmZ1ZHquV/w3wV8ADA46tBrZHxD2SVif7d+UQm2XUfryLdTsPsmXvK3R199I0roFFs6ex\nvPWyMbe4jNnZLI9lVb8LnL5k6kJgfbK9HlhU0aBsWHbs72DBvTvZ+NQhXu/uJYDXu3vZ+NQhFty7\nkx37O/IO0czKpFreWUyJiCPJ9lFgyplOlLRCUpukts7OzspEZ2/RfryLlRv28EZPH739p6622Nsf\nvNHTx8oNe2g/3pVThGZWTtWSLN4UhXVez7jWa0SsjYiWiGhpbm6uYGQ20LqdB+np6x/ynJ6+fu7b\n+UKFIjKz0VQtyeKYpKkAyafbL6rclr2vvKVGcbre/mDz3sMVisjMRlO1JIutwLJkexnwaI6xWAm6\nuntLO+9EaeeZWXXLo+vsg8CTwCxJL0u6DbgHuEnSAeDGZN+qWNO40jrSNZ2TR4c7Myu3iv9Ljogl\nZ/hqfkUDsRFZNHsaG586NGRTVEOduGX2hRWMysxGS7U0Q1mNWd56GY31Q//1aayv4/bWSysUkZmN\nJicLG5ZLJjexZukcxjfW01CnU75rqBPjG+tZs3SOB+aZnSWcLGzY5s26gG2rWlkydzoTxjUgwYRx\nDSyZO51tq1qZN+uCvEM0szJRYVhDbWppaYm2tra8wzAzqymSdkdES5ZrXLMwM7NUThZmZpbKycLM\nzFI5WZiZWSonCzMzS+VkYWZmqZwszMwslWd5GwYvJWpmY42TRUY79newcsMeevr635xE7+RSog/v\nPsyapXM8ctnMzjpuhsrAS4ma2VjlZJGBlxI1s7GqqpKFpAWS9kv6saTVecdzOi8lamZjVdUkC0n1\nwFeAm4HLgSWSLs83qlN5KVEzG6uqJlkAc4EfR8TBiDgBbAQW5hzTKbyUqJmNVdWULC4EDg3Yfzk5\nVjUWzZ72loV+TuelRM3sbFRz/wWWtAJYkex2S3q2Ys9uOGdc4+SLL0c6c5KN6P9vXzj0/F/0nuiu\nVFyJ84GfVPiZ1cplUeSyKHJZFM3KekE1JYvDwMUD9i9Kjp0iItYCawEktWVdwONs5bIoclkUuSyK\nXBZFkjKvGldNzVA/AGZKulTSOcCtwNacYzIzM6qoZhERvZL+EPg2UA/cHxHP5RyWmZlRRckCICIe\nAx7LcMna0YqlBrksilwWRS6LIpdFUeayUMTQg8zMzMyq6Z2FmZlVqZpMFtU+LUilSLpY0g5Jz0t6\nTtKdeceUN0n1kvZK+lbeseRJ0jslPSTpR5L2Sfpg3jHlRdKnkn8fz0p6UNK5ecdUKZLul9QxcIiB\npEmSHpd0IPmcWMq9ai5Z1MK0IBXUC/xRRFwOXAN8YgyXxUl3AvvyDqIKfBnYFhHvBt7PGC0TSRcC\nnwRaIuIKCp1nbs03qor6G2DBacdWA9sjYiawPdlPVXPJghqYFqRSIuJIROxJtl+j8AthzA4fl3QR\n8GHgvrxjyZOkdwAfAr4OEBEnIuLVfKPKVQMwXlID8DbglZzjqZiI+C7w09MOLwTWJ9vrgUWl3KsW\nk0XVTwuSB0kzgNnArnwjydW9wJ8AQ88jf/a7FOgE/jppkrtP0phcwjEiDgNfBF4CjgA/j4jv5BtV\n7qZExJFk+ygwpZSLajFZ2GkkTQAeBlZFxC/yjicPkj4CdETE7rxjqQINwBzgqxExG+iixKaGs03S\nHr+QQgKdBjRJWppvVNUjCt1hS+oSW4vJoqRpQcYKSY0UEsU3IuKRvOPJ0bXARyW9SKFp8gZJG/IN\nKTcvAy9HxMla5kMUksdYdCPwQkR0RkQP8AjwKznHlLdjkqYCJJ8dpVxUi8nC04IkJIlCu/S+iPhS\n3vHkKSL+NCIuiogZFP5O/GNEjMn/QUbEUeCQpJOTxc0Hns8xpDy9BFwj6W3Jv5f5jNGX/QNsBZYl\n28uAR0u5qKpGcJfC04Kc4lrg94AfSno6OfaZZCS8jW13AN9I/kN1EPiDnOPJRUTskvQQsIdC78G9\njKGR3JIeBK4Hzpf0MnA3cA+wSdJtQDuwuKR7eQS3mZmlqcVmKDMzqzAnCzMzS+VkYWZmqZwszMws\nlZOFmZmlcrIwM7NUThZmZpbKycKsjCTNSNaPWJesofAdSePzjstspJwszMpvJvCViHgP8CrwsZzj\nMRsxJwuz8nshIk5Ov7IbmJFjLGZl4WRhVn7dA7b7qME52MxO52RhZmapnCzMzCyVZ501M7NUrlmY\nmVkqJwszM0vlZGFmZqmcLMzMLJWThZmZpXKyMDOzVE4WZmaWysnCzMxS/X84Xx6hhJ4TLQAAAABJ\nRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f6ada6f8748>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from math import *\n",
"%matplotlib inline\n",
"\n",
"#Nmax de la sucesion\n",
"NMax = 10\n",
"#Change the label of the serie: a, b, etc\n",
"label = 'i'\n",
"\n",
"#Sucesiones\n",
"x = list(range(1,NMax+1))\n",
"y = np.zeros(NMax)\n",
"\n",
"if(label == 'a'):\n",
" y = list(x[i]**2 for i in range(len(x))) \n",
"if(label == 'b'):\n",
" y = list((-1)**i*x[i]**2 for i in range(len(x)))\n",
"if(label == 'c'):\n",
" y = list((2*x[i]-2)/(x[i]+1) for i in range(len(x)))\n",
"if(label == 'd'):\n",
" y = list(-2*x[i]+6 for i in range(len(x)))\n",
"if(label == 'e'):\n",
" y = list((-1)**x[i] for i in range(1,len(x)))\n",
"if(label == 'f'):\n",
" y = list((-0.5)**x[i] for i in range(len(x)))\n",
"if(label == 'g'):\n",
" y = list(sin(x[i]*pi/4.) for i in range(len(x)))\n",
"if(label == 'h'):\n",
" y = list(4+1/x[i] for i in range(len(x)))\n",
"if(label == 'i'):\n",
" xa = list( x[i] for i in range(len(x)) if(i%2==1))\n",
" xb = list( x[i] for i in range(len(x)) if(i%2==0))\n",
" yi_a = list( 20 for i in range(len(x)) if(i%2==1))\n",
" yi_b = list( x[i]**2 for i in range(len(x)) if(i%2==0))\n",
" x = xa+xb\n",
" y = yi_a+yi_b\n",
"\n",
"tags=['$n^2$','$(-1)^n\\,n^2$','$(2n-2)/(n+1)$','$-2n+6$','$(-1)^n$','$(-0.5)^n$','$\\sin(n*\\pi/4)$','$4+1/n$','20 si n par y $n^2 si n impar$']\n",
"print('Suceción:',label)\n",
"print('valores de n:',x)\n",
"print('valores de ',label,'(n): ',y)\n",
"\n",
"labelDic = {'a':0,'b':1,'c':2,'d':3,'e':4,'f':5,'g':6,'h':7,'i':8}\n",
"labelId = labelDic[label]\n",
"\n",
"plt.ylabel(tags[labelId])\n",
"plt.plot(x, y, 'o', markersize = 10)\n",
"plt.plot([0,NMax], [0,0], '-',color='k', lw =0.5)\n",
"\n",
"plt.ylim([0, max(y)+0.1*max(y)])\n",
"\n",
"plt.xlim(0, NMax)\n",
"\n",
"plt.xlabel('n')\n",
"plt.savefig(label+'_n.jpg')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"celltoolbar": "Raw Cell Format",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment