We suffer more in imagination than in reality - - Seneca
Right now
- fear:
- prevent by:
- repair by:
- fear:
OVERVIEW: IREE compilation driver | |
USAGE: iree-compile [options] <input file or '-' for stdin> | |
OPTIONS: | |
CUDA HAL Target: | |
--iree-hal-cuda-dump-ptx - Dump ptx to the debug stream. | |
--iree-hal-cuda-llvm-target-arch=<string> - LLVM target chip. |
~/torch-mlir/build/bin/torch-mlir-opt --convert-torch-to-linalg --convert-torch-to-tmtensor --debug -mlir-disable-threading -mlir-print-ir-after-all ./stripped-opt-125M.fp32.onnx.torch.mlir &> /tmp/torchopt.out | |
/home/azureuser/torch-mlir/build/bin/torch-mlir-opt: /home/azureuser/miniconda/lib/libtinfo.so.6: no version information available (required by /home/azureuser/torch-mlir/build/bin/torch-mlir-opt) | |
Args: /home/azureuser/torch-mlir/build/bin/torch-mlir-opt --convert-torch-to-linalg --convert-torch-to-tmtensor --debug -mlir-disable-threading -mlir-print-ir-after-all ./stripped-opt-125M.fp32.onnx.torch.mlir | |
Load new dialect in Context builtin | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::ShapedType) | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::MemRefLayoutAttrInterface) | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::TypedAttr) | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::ElementsAttr) | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::DistinctAttr) |
/home/azureuser/iree-build/tools/iree-compile: /home/azureuser/miniconda/lib/libtinfo.so.6: no version information available (required by /home/azureuser/iree-build/lib/libIREECompiler.so) | |
iree-compile: iree/third_party/llvm-project/llvm/include/llvm/Support/Casting.h:566: decltype(auto) llvm::cast(const From &) [To = mlir::DenseElementsAttr, From = mlir::Attribute]: Assertion `isa<To>(Val) && "cast<Ty>() argument of incompatible type!"' failed. | |
Please report issues to https://github.com/openxla/iree/issues and include the crash backtrace. | |
Stack dump: | |
0. Program arguments: /home/azureuser/iree-build/tools/iree-compile --iree-hal-target-backends=llvm-cpu opt-125M.fp32.onnx.torch.mlir | |
Stack dump without symbol names (ensure you have llvm-symbolizer in your PATH or set the environment var `LLVM_SYMBOLIZER_PATH` to point to it): | |
0 libIREECompiler.so 0x00007fed01436997 llvm::sys::PrintStackTrace(llvm::raw_ostream&, int) + 39 | |
1 libIREECompiler.so 0x00007fed01434bc0 llvm::sys::RunSignalHandlers() + 80 | |
2 libIREECo |
/home/azureuser/iree-build/tools/iree-compile: /home/azureuser/miniconda/lib/libtinfo.so.6: no version information available (required by /home/azureuser/iree-build/lib/libIREECompiler.so) | |
Args: /home/azureuser/iree-build/tools/iree-compile --iree-hal-target-backends=llvm-cpu -o output.vmfb stripped-opt-125M.fp32.onnx.torch.mlir --debug | |
Load new dialect in Context builtin | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::ShapedType) | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::MemRefLayoutAttrInterface) | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::TypedAttr) | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::ElementsAttr) | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::DistinctAttr) | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::BytecodeOpInterface) | |
ImplicitTypeIDRegistry::lookupOrInsert(mlir::SymbolOpInterface) |
import onnx | |
import numpy as np | |
from onnx import numpy_helper, TensorProto, save_model | |
from onnx.helper import make_model, make_node, make_graph, make_tensor_value_info | |
from onnx.checker import check_model | |
# condition has to be a float tensor | |
condition = make_tensor_value_info('condition', TensorProto.FLOAT, [1]) |
import gc | |
import sys | |
import torch | |
import torch_mlir | |
batch_size = 1 | |
seq_len = 3 | |
input_size = 5 | |
hidden_size = 5 | |
kernel_size = 3 |
Add | |
AveragePool | |
BatchNormalization | |
Cast | |
Clip | |
Concat | |
Constant | |
ConstantOfShape | |
Conv |
// torch-mlir/.vscode/settings.json | |
{ | |
"files.associations": { | |
"*.inc": "cpp", | |
"ranges": "cpp", | |
"regex": "cpp", | |
"functional": "cpp", | |
"chrono": "cpp", | |
"__functional_03": "cpp", | |
"target": "cpp", |
OVERVIEW: MLIR modular optimizer driver | |
Available Dialects: builtin, chlo, complex, func, linalg, memref, ml_program, scf, sparse_tensor, stablehlo, tensor, tm_tensor, torch, torch_c, tosa, vhlo | |
USAGE: torch-mlir-opt [options] <input file> | |
OPTIONS: | |
Color Options: | |
--color - Use colors in output (default=autodetect) |