Last active
August 29, 2015 13:56
-
-
Save restrepo/8967336 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "metadata": { | |
| "name": "Cuartiles-resumen" | |
| }, | |
| "nbformat": 3, | |
| "nbformat_minor": 0, | |
| "worksheets": [ | |
| { | |
| "cells": [ | |
| { | |
| "cell_type": "heading", | |
| "level": 1, | |
| "metadata": {}, | |
| "source": "Cuartiles Grupos A, Instituto de F\u00edsica UdeA" | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": "Fuentes: S\u00e1lida en excel de las categor\u00edas de [SJR](http://www.scimagojr.com/journalrank.php), con algunas entradas manuales de: [ISI-Thompson](http://aplicacionesbiblioteca.udea.edu.co:2253/JCR/JCR) (accesible desde la UdeA): [Cuartiles](https://docs.google.com/spreadsheet/ccc?key=0AuLa_xuSIEvxdHk4Tk9GczNxdFRTYkd5YlhHVFFQZkE&usp=sharing)." | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": "cd gssis/utilities/", | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": "/home/ipython/gssis/utilities\n" | |
| } | |
| ], | |
| "prompt_number": 1 | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": "Instale el programa `gssis`, y en particular el m\u00f3dulo `cvsreader` de m\u00e1s abajo, desde: https://github.com/rescolo/gssis " | |
| }, | |
| { | |
| "cell_type": "heading", | |
| "level": 2, | |
| "metadata": {}, | |
| "source": "Cargue datos" | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": "from cvsreader import *\ndef loaddf(google_gss_key,google_gss_sheet=0):\n return read_google_cvs(gss_key=google_gss_key,gss_sheet=google_gss_sheet,gss_query='select *')\n\nIndicadores={'Art\u00edculos':'0AjqGPI5Q_Ez6dDA3ajhtYVVDOWdBckVhWm1MSFRET1E'} \nIndicadores['Cuartiles']=\"0AuLa_xuSIEvxdHk4Tk9GczNxdFRTYkd5YlhHVFFQZkE\"\n\narticulos=loaddf(Indicadores['Art\u00edculos'])\npublicadas=articulos[articulos['ISSN']!='0000-0000'].reset_index(drop=True)\n\ncuartiles=loaddf(Indicadores['Cuartiles'])\n#fix missing leading 0's in ISSN\ncuartiles['ISSN']=[re.sub('^([0-9]{4})$','0000\\\\1',i) for i in cuartiles['ISSN']]\ncuartiles['ISSN']=[re.sub('^([0-9]{5})$','000\\\\1',i) for i in cuartiles['ISSN']]\ncuartiles['ISSN']=[re.sub('^([0-9]{6})$','00\\\\1',i) for i in cuartiles['ISSN']]\ncuartiles['ISSN']=[re.sub('^([0-9]{7})$','0\\\\1',i) for i in cuartiles['ISSN']]\n#fix ISSN hypenathion\ncuartiles['ISSN']=[re.sub('^([0-9]{4})','\\\\1-',i) for i in cuartiles['ISSN']]\n", | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 2 | |
| }, | |
| { | |
| "cell_type": "heading", | |
| "level": 2, | |
| "metadata": {}, | |
| "source": "Adicione cuartiles a la tabla de art\u00edculos" | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": "Escoja el cuart\u00edl m\u00e1s alto entre ISI y Scopus" | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": "publicadas['Cuartiles']=''\npublicadas['Categorias']=''\nfor i in range(len(publicadas)):\n journal=cuartiles[cuartiles['ISSN']==publicadas['ISSN'][i]].sort('Quartile').reset_index(drop=True)\n if journal:\n publicadas['Cuartiles'][i]=journal['Quartile'][0]\n publicadas['Categorias'][i]=journal['Categories'][0]\n ", | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 3 | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": "Defina Grupos y a\u00f1os de publicaci\u00f3n" | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": "grupos={'GFIF':'Grupo de Fenomenolog\u00eda de Interacciones Fundamentales',\n 'GFAM':'Grupo de F\u00edsica At\u00f3mica y Molecular',\n 'GMC':'Grupo de Materia Condensada',\n 'GOF':'Grupo de \u00d3ptica y Fot\u00f3nica',\n 'GES':'Grupo de Estado S\u00f3lido','MS':'Magnetismo y Simulaci\u00f3n'}\nyears=[2012,2013]\ndf=pd.DataFrame(data=None,columns=['Grupo','Q1(2012)','Q2(2012)','Q3(2012)','Q4(2012)','Total(2012)',\n 'Q1(2013)','Q2(2013)','Q3(2013)','Q4(2013)','Total(2013)',])\nfor grupo in grupos.keys():\n pb=publicadas[publicadas['Grupo'].str.contains(grupo)].reset_index(drop=True)\n entry={'Grupo':grupos[grupo]}\n for year in years:\n crtls=pb[pb['A\u00f1o']==year]['Cuartiles'].value_counts()\n crtlsd=crtls.to_dict()\n total=0\n for i in range(1,5):\n if crtlsd.has_key('Q%d' %i):\n entry['Q%d(%d)' %(i,year)]=crtls['Q%d' %i]\n total=total+crtls['Q%d' %i]\n else:\n entry['Q%d(%d)' %(i,year)]=0\n \n \n entry['Total(%d)' %year]=total\n \n df=df.append(entry,ignore_index=True) ", | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 4 | |
| }, | |
| { | |
| "cell_type": "heading", | |
| "level": 2, | |
| "metadata": {}, | |
| "source": "Resultados:" | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": "df", | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Grupo</th>\n <th>Q1(2012)</th>\n <th>Q2(2012)</th>\n <th>Q3(2012)</th>\n <th>Q4(2012)</th>\n <th>Total(2012)</th>\n <th>Q1(2013)</th>\n <th>Q2(2013)</th>\n <th>Q3(2013)</th>\n <th>Q4(2013)</th>\n <th>Total(2013)</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td> Grupo de Estado S\u00f3lido</td>\n <td> 5</td>\n <td> 2</td>\n <td> 0</td>\n <td> 0</td>\n <td> 7</td>\n <td> 3</td>\n <td> 5</td>\n <td> 4</td>\n <td> 2</td>\n <td> 14</td>\n </tr>\n <tr>\n <th>1</th>\n <td> Grupo de F\u00edsica At\u00f3mica y Molecular</td>\n <td> 3</td>\n <td> 0</td>\n <td> 0</td>\n <td> 4</td>\n <td> 7</td>\n <td> 4</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 5</td>\n </tr>\n <tr>\n <th>2</th>\n <td> Grupo de Materia Condensada</td>\n <td> 11</td>\n <td> 17</td>\n <td> 0</td>\n <td> 1</td>\n <td> 29</td>\n <td> 3</td>\n <td> 8</td>\n <td> 0</td>\n <td> 0</td>\n <td> 11</td>\n </tr>\n <tr>\n <th>3</th>\n <td> Grupo de \u00d3ptica y Fot\u00f3nica</td>\n <td> 4</td>\n <td> 1</td>\n <td> 0</td>\n <td> 0</td>\n <td> 5</td>\n <td> 4</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 4</td>\n </tr>\n <tr>\n <th>4</th>\n <td> Grupo de Fenomenolog\u00eda de Interacciones Fundam...</td>\n <td> 6</td>\n <td> 0</td>\n <td> 1</td>\n <td> 0</td>\n <td> 7</td>\n <td> 10</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 10</td>\n </tr>\n <tr>\n <th>5</th>\n <td> Magnetismo y Simulaci\u00f3n</td>\n <td> 1</td>\n <td> 0</td>\n <td> 3</td>\n <td> 0</td>\n <td> 4</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n <td> 0</td>\n </tr>\n </tbody>\n</table>\n</div>", | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 5, | |
| "text": " Grupo Q1(2012) Q2(2012) \\\n0 Grupo de Estado S\u00f3lido 5 2 \n1 Grupo de F\u00edsica At\u00f3mica y Molecular 3 0 \n2 Grupo de Materia Condensada 11 17 \n3 Grupo de \u00d3ptica y Fot\u00f3nica 4 1 \n4 Grupo de Fenomenolog\u00eda de Interacciones Fundam... 6 0 \n5 Magnetismo y Simulaci\u00f3n 1 0 \n\n Q3(2012) Q4(2012) Total(2012) Q1(2013) Q2(2013) Q3(2013) Q4(2013) \\\n0 0 0 7 3 5 4 2 \n1 0 4 7 4 1 0 0 \n2 0 1 29 3 8 0 0 \n3 0 0 5 4 0 0 0 \n4 1 0 7 10 0 0 0 \n5 3 0 4 0 0 0 0 \n\n Total(2013) \n0 14 \n1 5 \n2 11 \n3 4 \n4 10 \n5 0 " | |
| } | |
| ], | |
| "prompt_number": 5 | |
| }, | |
| { | |
| "cell_type": "heading", | |
| "level": 2, | |
| "metadata": {}, | |
| "source": "Conclusiones" | |
| }, | |
| { | |
| "cell_type": "heading", | |
| "level": 4, | |
| "metadata": {}, | |
| "source": "Porcentaje de art\u00edculo ISI o Scopus en Q1:" | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": "#for year in years\nyear=2012\nfor year in years:\n print '%d: %g' %(year,(df['Q1(%d)' %year].values.sum()/float(df['Total(%d)' %year].values.sum())*100))+'%'", | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": "2012: 50.8475%\n2013: 54.5455%\n" | |
| } | |
| ], | |
| "prompt_number": 6 | |
| } | |
| ], | |
| "metadata": {} | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment